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Abstract. For any D > 1 and for any n ≥ 2 we construct a set of n points on a

sphere in R3 of diameter D determining at least cn
√

log n unit distances. This
improves a previous lower bound of Erdős, Hickerson and Pach (1989). We also

construct a set of n points in the plane not containing collinear triples or the

vertices of a parallelogram and determining at least cn
√

log n unit distances.

1. Introduction

For any finite set P of points let u(P ) denote the maximum number of unit
distances occurring between points of P :

u(P ) = #{pq ∈
(
P
2

)
: |pq| = 1},

where throughout the paper |pq| denotes the Euclidean distance between p and q,
and #S denotes the number of points in the finite set S. For n ≥ 1, let u(n) =
max{u(P ) : P ⊂ R2,#P = n}. Erdős [3] initiated the investigation of the function
u(n). Currently the best known asymptotic bounds on u(n) are

n1+ c
log log n < u(n) < c′n4/3.

The lower bound can be obtained from the (properly scaled)
√

n×
√

n square grid,
as shown in [3]. The upper bound was obtained by Spencer, Szemerédi and Trotter
[13], and received many different proofs [2, 12], with the simplest being that of
Székely [14]. Erdős [3] conjectured that u(n) < n1+o(1) and in many later papers
also u(n) < n1+ c

log log n (for example [4, 5, 6, 7]). In this paper we study an analogous
problem on a sphere in R3. Let S2

D denote the sphere in R3 of diameter D > 1
centered at the origin o:

S2
D = {p ∈ R3 : |op| = D/2}.

For n ≥ 1, let
uD(n) = max{u(P ) : P ⊂ S2

D,#P = n}.
Leo Moser [10] (see also [9, 11]) conjectured that uD(n) < cn for any D > 1. This
was disproved by Erdős, Hickerson and Pach [8], who showed that u√2(n) = Θ(n4/3)
and uD(n) > cn log∗ n for all D > 1 and n ≥ 2. Here log∗ n is the iterated
logarithm function, i.e., the smallest k such that ak = 0, where we define a0 = n
and ak+1 = log max{ak, 1}. Here we improve the cn log∗ n lower bound to cn

√
log n:

Theorem 1. There exists c > 0 such that for any D > 1 and n ≥ 2,

uD(n) > cn
√

log n.
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The best known upper bound for uD(n) is uD(n) < cn4/3. This can be obtained
by adapting some of the proofs of u(n) < cn4/3 (e.g. Székely’s proof [14]) from the
plane to the sphere. This bound is asymptotically of the right order if D =

√
2 (see

[8]), but for other values of D > 1 nothing more is known.
The proof technique giving Theorem 1 can also be applied to construct planar

point sets in “general position” with the same lower bound for the number of unit
distances. For example, say that P is in general position if P does not contain three
collinear points or the vertex set of a parallelogram. Let

u′(n) = max{u(P ) : P ⊂ R2,#P = n, P is in general position}.

For a lower bound we cannot use the grid construction or the Minkowski sum
construction (i.e. projecting the 1-skeleton of a hypercube onto the plane) anymore.
Brass [1] noticed that a planar analogue of the construction in [8] gives u′(n) >
cn log∗ n. Using a similar construction as in Theorem 1 we improve this as follows:

Theorem 2. There exists c > 0 such that for any n ≥ 2,

u′(n) > cn
√

log n.

We do not know of any upper bound for u′(n) better than u′(n) ≤ u(n) < cn4/3.

We finally mention that Theorem 1 also holds for the hyperbolic plane of any
curvature, and that the proof is virtually identical. This observation is due to Endre
Makai Jr.

2. Proof of Theorem 1

The line through the poles (0, 0,±D/2) of S2
D is called the main axis and the

great circle S2
D∩{(x, y, z) ∈ R3 : z = 0} the equator. Let S1 be the unit circle in the

xy-plane. We consider its elements to be angles and we identify an angle α ∈ S1

with the rotation around the main axis by α in the counterclockwise direction
when looking from the north pole (0, 0, D/2). We denote the image of point p after
rotation through the angle α by pα, and the image of a set of points A by Aα.

Our construction strongly relies on the fact that the rotations in S1 are isometries
(in particular, unit distances are preserved) and that they form an abelian group.

Let A ⊂ S2
D be a set of t ≥ 1 points lying in a sufficiently small neighbourhood

of some point on the equator. For any ordered pair (p, q) ∈ A2 let β(p, q) be
the counterclockwise angle β ∈ S1 such that |pqβ | = 1. For S ⊆ A2, let β(S) =∑

(p,q)∈S β(p, q).

Claim 1. For any t ≥ 1 the set A can be chosen in such a way that the 2t2 sets
Aβ(S) are mutually disjoint, where S ranges over all subsets of A2.

Assuming this claim, let B =
⋃

S⊆A2 Aβ(S). Then #B = t2t2 . Consider two
subsets S, S′ ⊆ A2 such that the symmetric difference S∆S′ contains exactly one
element, say S = S′ \ {(p, q)}. Then there is at least one unit distance between
Aβ(S) and Aβ(S′), since

|pβ(S)qβ(S′)| = |pβ(S)qβ(S)+β(p,q)| = |pqβ(p,q)| = 1.

Since there are t2

2 2t2 unordered pairs of subsets of A2 with symmetric difference of
size 1, the number of unit distances in B is at least t2

2 2t2 , hence uD(t2t2) ≥ t2

2 2t2 .
Now let n ≥ 2 be arbitrary. Let t ≥ 1 be the unique integer satisfying t2t2 ≤

n < (t + 1)2(t+1)2 . Take k :=
⌊

n
t2t2

⌋
disjoint copies of the set B constructed above
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(e.g. take Biε, i = 1, 2, . . . , k, where ε > 0 is a sufficiently small angle). Further,
add n− kt2t2 arbitrary points to obtain n points in total. Then

u(n) ≥ k
t2

2
2t2 >

n

2t2t2

t2

2
2t2 =

nt

4
> cn

√
log n

where c > 0 is a reasonable constant, e.g. c = 1/10 will do if the logarithm is base
2. We mention that this method actually gives

u(n) > (1− o(1))
1
2
n
√

log2 n.

It remains to prove Claim 1. Suppose that for some set A the sets Aβ(S) are not
mutually disjoint. We will show that they are all disjoint after finitely many small
perturbations of A.

We may suppose that the following condition holds:

(∗) The points of A have distinct distances from the north pole.

We say that that an unordered pair {S, S′} of distinct subsets S, S′ ⊆ A2 is bad if
β(S) = β(S′), and good if β(S) 6= β(S′). Clearly, if (∗) holds then all Aβ(S) are
disjoint iff all pairs of distinct subsets of A2 are good.

Standard continuity arguments give the following observations:

Observation 1. If (∗) holds, then (∗) still holds after any sufficiently small per-
turbation of A.

Observation 2. If {S, S′} is good, then it is still good after any sufficiently small
perturbation of A.

It remains to show that if {S, S′} is bad then there are arbitrarily small pertur-
bations of A changing {S, S′} to a good pair. Let {S, S′} be a bad pair.

If S∆S′ ⊆ {(a,a) : a ∈ A}, then

0 = β(S)− β(S′) =
∑

(a,a)∈S\S′

β(a,a)−
∑

(a,a)∈S′\S

β(a,a).

We choose any (a,a) ∈ S∆S′, and perturb a such that β(a,a) changes. Then
{S, S′} becomes a good pair.

Otherwise there exists (a, b) ∈ S∆S′ with a 6= b. In this case let γ = β(a, b).
Let C1 be the set of points on S2

D at distance 1 to bγ . Then clearly C1 is a circle
passing through a (see Figure 1).

Observation 3. β(a′, b) = γ for any a′ ∈ C1 with |aa′| < 1
10 .
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Similarly, let C2 be the set of points on S2
D at distance 1 to a−γ . Then C2 is a

circle passing through b (Figure 1), and

Observation 4. β(a, b′) = γ for any b′ ∈ C2 with |bb′| < 1
10 .

Suppose that {S, S′} stays bad if we replace a ∈ A by a′, as well as if we replace
b by b′. A simple calculation then shows that if we simultaneously replace a by a′

and b by b′, then β(S) − β(S′) is increased by β(a′, b′) − β(a, b). The following
claim shows that we can perturb a, b along the circles C1, C2 such that β(a, b) is
changed.

Claim 2. For any ε > 0 there exist a′ ∈ C1, b
′ ∈ C2, |aa′| < ε, |bb′| < ε such that

β(a, b) 6= β(a′, b′).

Proof. Fix any b′ ∈ C2 with 0 < |bb′| < min{ 1
10 , ε}. There are at most two points

on C1 at unit distance from b′γ (since two circles intersect in at most two points).
Choose for a′ ∈ C1 any other point near a. �

Thus we can make all pairs of subsets of A2 good by at most
(
2t2

2

)
small pertur-

bations of A. This finishes the proof of Claim 1, and also of Theorem 1. �

3. Proof of Theorem 2

The proof is almost identical to that of Theorem 1. We consider rotations around
the point (0, r), r > 0, as well as horizontal translations, which may be thought of
as rotations around (0,∞). We denote the image of a point p when rotated in the
counterclockwise direction by an angle α around (0, r) by pr

α (and when translated
by the distance α to the right by pα).

Let A ⊆ R2 be a set of t ≥ 1 variable points {p1, . . . ,pt} in a 1/10-neighbourhood
of (0,−1). We denote their coordinates by pi = (xi, yi). We assume that yi 6= yj

for all 1 ≤ i < j ≤ t. We define βr(p, q) to be the counterclockwise angle β such
that |pqr

β | = 1 (and β(p, q) to be the distance β such that |pqβ | = 1). Note that
β(p, q) and βr(p, q) are smooth functions of p and q in a bounded open set (for
r > 0 sufficiently large), and that aβ(p,q) = limr→∞ aβr(p,q) for any point a.

We now use the set of unordered pairs
(
A
2

)
instead of A2 to define B. For any

S ⊆
(
A
2

)
, let β(S) =

∑
pipj∈S β(pi,pj), where in the sum we always have i < j.

Let B =
⋃

S⊆(A
2) Aβ(S), where Aβ(S) is defined as before. We also similarly define

βr(S), Aβr(S) and Br.

Claim 3. For any t ≥ 1 and any sufficiently large r > 0 the set A can be chosen
in such a way that the sets Aβr(S) are mutually disjoint, where S ranges over all
subsets of

(
A
2

)
, and furthermore such that B does not contain three collinear points

nor the vertex set of a parallelogram.

Assuming this claim, the proof of Theorem 2 can be finished by making the
appropriate changes to the remainder of the proof of Theorem 1. In particular, due
to the fact that we use unordered pairs instead of ordered pairs, the lower bound
obtained now has a slightly worse constant:

u′(n) > (1 + o(1))
√

2
4

n
√

log2 n.

Proof of Claim 3. To show that there are arbitrarily small perturbations of any A
such that Aβr(S) are all disjoint for r > 0 sufficiently large, the proof of Claim 1
may be repeated almost verbatim (we only have to modify (∗) by replacing “north
pole” with “the point (0, r)”). It remains to show that if r > 0 is sufficiently large,
Br does not contain collinear triples nor the vertex set of a parallelogram. Note
that as r → ∞, Br → B. Thus we first prove that A can be chosen in such a
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way that if B contains a collinear triple or a parallelogram, it must be of a very
special type, and then the corresponding points in Br cannot be a collinear triple
or a parallelogram. Then if r > 0 is sufficiently large, no new collinear triples or
parallelograms are created that was not originally in B, and it follows that Br is
the required set.

First consider a parallelogram

(pi)β(S) − (pj)β(T ) = (pk)β(U) − (p`)β(V )

in B. Then yi− yj = yk − y`. By making a sufficiently small perturbation of A, we
may assume yi − yj 6= yk − y` for all distinct pairs {i, j} and {k, `}. It follows that
without loss of generality the parallelogram is

(p1)β(S) − (p1)β(T ) = (p2)β(U) − (p2)β(V ).

Thus β(S)− β(T ) = β(U)− β(V ), and we have a linear dependence∑
i<j

λijβ(pi,pj) = 0,

where λij ∈ {0,±1,±2} depends only on which of S, T, U, V contains pipj .

Observation 5. When considered as functions of x1, . . . , xt, y1, . . . , yt ranging over
any open set where xi 6= xj , yi 6= yj, β(pi,pj) (i < j) are linearly independent.

Proof. Let F (x1, . . . , xt, y1, . . . , yt) =
∑

i<j λijβ(pi,pj). Note that

β(pi,pj) = xi − xj +
√

1− (yi − yj)2.

Assume F ≡ 0 and for any fixed i < j take partial derivatives with respect to yi

and yj :
∂2F/∂yi∂yj = λij(1− (yi − yj)2)−3/2 ≡ 0,

thus λij = 0. �

It follows that all λij = 0, and we have βr(S)− βr(T ) = βr(U)− βr(V ) for any
r. Thus in Br we have that the segments (p1)r

βr(S)(p1)r
βr(T ) and (p2)r

βr(U)(p2)r
βr(V )

are chords spanning the same angle at (0, r). Since we have assumed that p1 and
p2 have different y-coordinates, (p1)r

βr(S) and (p2)r
βr(U) have different distances to

(0, r) for sufficiently large r. It follows that the two chords do not have the same
length, hence cannot form a parallelogram.

Next consider a collinear triple (pi)β(S), (pj)β(T ), (pk)β(U) ∈ B. If the triple
is horizontal, pi,pj ,pk have the same y-coordinate, which means pi = pj = pk

(since we assume that the points in A have distinct y-coordinates). Then the
corresponding points in Br are not collinear, as they are on a circle with centre
(0, r). In the remaining case, pi,pj ,pk are distinct, and we assume without loss of
generality that these points are p1,p2,p3.

Assume that we cannot perturb A to make (p1)β(S)(p2)β(T )(p3)β(U) noncollinear.
Then it is possible to arrive at a contradiction, as we now sketch. Thus in some
open subset of R2t

D(x1, . . . , xt, y1, . . . , yt) :=

∣∣∣∣∣∣
1 x1 + β(S) y1

1 x2 + β(T ) y2

1 x3 + β(U) y3

∣∣∣∣∣∣ ≡ 0.

For any distinct i, j ≥ 4, if we calculate ∂2D/∂yi∂yj we obtain that pipj must
either be in each of S, T, U or in none of S, T, U . Thus S, T, U coincide on

({p4,...,pt}
2

)
.

For any i ≥ 4 if we calculate ∂3D/∂yi∂y2∂y1 we obtain that S and U coincide
on p1pi, and T and U on p2pi. Similarly, by considering ∂3D/∂yi∂y3∂y1 and
∂3D/∂yi∂y3∂y2 we obtain that S, T, U coincide on {pipj : 1 ≤ i ≤ 3, 4 ≤ j ≤ t}.
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It follows that we may replace S by S′ = S ∩ {p1p2,p2p3,p1p3}, and T and U
by similarly defined T ′, U ′ without changing D (just expand the determinant).

We use the following indicator function:

χ(pq ∈ C) =
{

1 if pq ∈ C
0 if pq /∈ C

.

By calculating ∂D/∂x1 we find

∂D

∂x1
= −y3 + y2 +(y2 − y3)(χ(p1p2 ∈ S) + χ(p1p3 ∈ S))

+(y3 − y1)(χ(p1p2 ∈ T ) + χ(p1p3 ∈ T ))
+(y1 − y2)(χ(p1p2 ∈ U) + χ(p1p3 ∈ U)) ≡ 0.

It follows that

1 + χ(p1p2 ∈ S) + χ(p1p3 ∈ S)
= χ(p1p2 ∈ T ) + χ(p1p3 ∈ T )(1)
= χ(p1p2 ∈ U) + χ(p1p3 ∈ U).

By similarly calculating ∂D/∂x3 we obtain

χ(p2p3 ∈ S) + χ(p1p3 ∈ S)
= χ(p2p3 ∈ T ) + χ(p1p3 ∈ T )(2)
= −1 + χ(p2p3 ∈ U) + χ(p1p3 ∈ U).

Finally, by calculating

∂3D

∂y3∂y2∂y1
=

−χ(p1p2 ∈ S) + χ(p1p2 ∈ T )
(1− (y1 − y2)2)3/2

+
−χ(p2p3 ∈ T ) + χ(p2p3 ∈ U)

(1− (y2 − y3)2)3/2

+
−χ(p1p3 ∈ U) + χ(p1p3 ∈ S)

(1− (y1 − y3)2)3/2
≡ 0,

we obtain

(3) χ(p1p2 ∈ S) = χ(p1p2 ∈ T ) and χ(p2p3 ∈ T ) = χ(p2p3 ∈ U).

From the first inequlities in (1), (2) we obtain 1+χ(p1p3 ∈ S) = χ(p1p3 ∈ T ), and
from the latter inequalities in (2) and (3) we obtain χ(p1p3 ∈ T ) = −1 + χ(p1p3 ∈
U). Thus 2 + χ(p1p3 ∈ S) = χ(p1p3 ∈ U), a contradiction.

This finishes the proof of Claim 3, and also of Theorem 2. �
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Probab. Comput. 6 (1997), 353–358. MR 98h:52030

Department of Mathematics, Applied Mathematics and Astronomy, University of
South Africa, PO Box 392, Pretoria 0003, South Africa

E-mail address: swanekj@unisa.ac.za

Department of Applied Mathematics and Institute for Theoretical Computer Sci-
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