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Abstract

This paper considers a dynamic economy in which agents are repeatedly matched with one

another and decide whether to enter into profitable partnerships. Each agent has a physical

colour and a social colour. The social colour of an agent acts as a signal about the physical

colour of agents in his partenrship history. Before an agent makes a decision, he observes his

match’s physical and social colours. Neither the physical colour nor the the social colour is

payoff-relevant.

We identify environments where, in some equilibria, agents condition their decisions on the

physical and social colours of their potential partners. That is, they discriminate. The main

result of the paper is that, in these aforementioned environments, every stable equilibrium

must involve discrimination. In particular, the colour-blind equilibrium is unstable.

1 Introduction

Consider a town in the southern United States with a mix of non-white and white residents, some of

whom are members of the Ku Klux Klan. These Klan members dislike their non-white neighbours,

and are willing to punish those who even associate themselves with non-whites. The townspeople

are otherwise tolerant, having no bias on the basis of skin colour. Each individual observes, perhaps

imperfectly, social interactions within the community. Suppose now that a non-white community

member is in search of employment. Klan members will obviously refuse to hire him. However,

even an unbiased white employer, acting out of fear of punishment from the Klan, might refuse

to hire a non-white applicant. In the end, this unfortunate job-seeker might face discrimination

from the entire white community, and thus remain unemployed. Crucial in this story is the fact

that individuals obtain some information about the interactions of others, for if hiring decisions

weren’t observed unbiased employers would be unafraid of hiring non-whites. But how many local
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members does the Klan need in order to sustain discrimination? This paper shows that even if no

one actually belongs to the Klan, the community might end up discriminating against non-whites.

This paper proposes a new theory of racial discrimination. The theory is based on the follow-

ing assumption: each individual carries a label which conveys information about his past social

interactions, and specifically the race of those he has chosen to associate himself with, directly or

indirectly. Others are able to observe this label, and condition their decisions accordingly. One

consequence, and indeed the main result of this paper, is that even individuals who are basically

tolerant of other races might prefer to interact only with those of the same colour, and might also

avoid those who even associate themselves with the opposite race. In other words, being labelled as

someone who associates with one’s own physical colour becomes valuable through the equilibrium

play.

In an effort to develop the intuition behind this result, let us revisit the town described above

and consider a white member of the community who holds no bias towards non-whites, but avoids

interaction with them out of fear of punishment. He might also want nothing to do with anyone

who has employed a non-white worker, because an indirect association with non-whites could be

punished in the future. Taking this one step further, he might even avoid those who are only

indirectly associated with non-whites despite never having employed them. As a result, employing

non-whites and being associated with them is punished socially not only by the Ku Klux Klan, but

by unbiased townspeople who are concerned about their reputations. This concern can be entirely

self-enforcing and independent of the Klan; if a resident knows that others are reluctant to interact

with anyone associated with non-whites, then he too is better off staying away from non-whites.

In the specific model analysed in this paper, agents are repeatedly matched with one another.

After being matched, each agent must decide whether or not to enter into a profitable relationship

with his match. Each agent maximizes the discounted present value of expected monetary payoffs.

Every relationship formed immediately generates positive payoffs for both parties. Each agent has

a physical colour, either black or white. Before an agent decides whether or not to enter into a

business relationship, he observes the physical colour of his potential partner and an additional

piece of information about his match’s past partners. We model this information as a binary signal,

either black or white, and refer to it as the social colour of the agent. If an agent decides to enter

into a partnership, there is a chance that his social colour will switch to the physical or social

colour of his partner.

We seek to characterize the stable equilibria of our model. An equilibrium is called stable if, after

perturbing the equilibrium strategies slightly, myopic best-response dynamics imply convergence

back to the equilibrium. The main result of this paper is that each stable equilibrium involves

discrimination under certain conditions. In particular, the colour-blind equilibrium, in which

agents ignore both physical and social colours, is unstable. Under our assumed conditions there

are three stable equilibria. One equilibrium involves segregation: members of each race discriminate

against those of a different colour. In the other two equilibria, discrimination is one-sided: one race
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discriminates against the other, while members of the persecuted race use colour-blind strategies.

Let us emphasize that both the physical and social colours of the agents are payoff-irrelevant.

Agents are motivated exclusively by monetary payoffs, and have no intrinsic preferences for one

colour over another. Therefore, the equilibrium discrimination found in our model is not taste-

based. In addition, agents of different colours are identical in terms of payoff-relevant characteristics,

both ex-ante and ex-post. That is, an agent’s physical colour reveals absolutely nothing about his

potential as a business partner in terms of profitability. Therefore, the discrimination in our model

is not statistical discrimination.

The existing literature on taste-based discrimination is ample, see Becker (1971) and Schelling

(1971). These approaches explain racial discrimination by assuming that individuals derive disu-

tility from interacting with members of a different race. Such preferences may be the result of

group selection; perhaps one group gains an advantage over other groups when its members co-

operate only with each other and not with outsiders. Alternatively, a taste for discrimination

might develop as an outcome of group formation processes. Similar people tend to have similar

backgrounds, equipping them with similar tastes, values, and attitudes, and these shared qualities

might facilitate collective decision making (Baccara and Yariv (2008), see also Alesina and Ferrara

(2005)).

A common critique of taste-based theories of discrimination is that employers who do not

discriminate make larger profits than those who discriminate, hence the latter would not succeed

in competitive markets. In our model, an employer who does not discriminate also has higher

instantaneous profits. However, these short-term gains from a colour-blind hiring policy are offset

by the boycott an employer will face from members of his own race in the future. That is, it is

precisely the employer’s profit-maximizing behaviour that leads to discrimination in equilibrium.

According to theories of statistical discrimination, employers believe that observable physical

attributes of workers are correlated with unobservable but payoff-relevant characteristics. For an

overview of statistical discrimination, see Fang and Moro (2010). Phelps (1972) explains differences

in the wages of black and white workers by assuming that the unobservable productivity of a worker

is correlated with his colour; employers use colour as a signal of employee productivity.

Arrow (1973) shows that discrimination can be a result of self-fulfilling expectations even if

all agents are identical ex-ante. In his model, workers can decide how much to invest in human

capital. These decisions are not observable. Employers expect black workers to invest less than

white workers and, hence, they offer lower wages to black workers. Anticipating this, black workers

rationally invest less in human capital than white workers. As a result, workers of different colours

are different ex-post. Coate and Loury (1993) places Arrow’s arguments in an equilibrium model

but takes wages to be exogenous, as our model does. This assumption is relaxed in Moro and

Norman (2004). Rosén (1997) offers another explanation for self-fulfilling statistical discrimination;

workers observe their idiosyncratic productivity, privately, prior to applying for a job. If black

workers choose to apply despite having a low productivity, firms rationally expect white applicants
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to be more productive. Therefore, firms prefer to hire white workers which results in a lower value

for unemployed black workers. As a consequence, black workers rationally apply for jobs even

if they are less productive. In Mailath, Samuelson, and Shaked (2000), employers observe the

worker’s productivities perfectly. However, the employers may decide not to search among black

workers in anticipation of low skill-investment.

In our model, workers are identical both ex-ante and ex-post. Unlike the vertical discrimination

caused by statistical discrimination, our setup might result in a mutual bias, with each race dis-

criminating against the other. Such a phenomenon is inconsistent with statistical discrimination

because the signal value of colour must be the same for any employer, regardless of his own colour.

Lang, Manove, and Dickens (2005) shows that even a slight presence of taste-based or statis-

tical discrimination can have surprisingly large effects. Even if employers have only lexicographic

preferences for white workers, or if white workers are only slightly more productive than black

workers, the gap between white and black wages might be wide.

Ours is not the first model in which discrimination arises without the presence of payoff-relevant

differences between agents of different colours. Eeckhout (2006) considers a dynamic marriage

market involving random matching of individuals. Once a marriage is formed, the two partners

repeatedly play the Prisoner’s Dilemma game. If either partner defects, both individuals return to

the market and receive new matches. In order to induce some cooperation, the equilibrium play

must involve defection with positive probability at the beginning of a marriage. Otherwise, agents

would defect and search for a new partner immediately. The author shows that any colour-blind

equilibrium is Pareto dominated by strategies in which the probability of defection depends on the

colour of the partner.

In our model, a white agent discriminates against black workers because he fears that otherwise

other white agents may refuse to hire him in the future. Punishment by peers for behaviour that

differs from the accepted norm is a well-known phenomenon in sociology as well as in economics,

see Austen-Smith and Fryer (2005) and the references therein.

The model presented by Mailath and Postlewaite (2006) involves a population of men and

women who, each period, are matched and produce offspring. Agents differ in their non-storable

endowments, and care about the consumption of their descendants. In addition, some agents have

a particular physical attribute, such as blue eyes, which is inherited by offspring. There exist

equilibria in which the attribute has a value, that is, agents with the attribute are better off than

agents without it. In this type of equilibrium, high-endowment agents without the attribute prefer

to match with low-endowment agents with the attribute rather than with high-endowment agents

without it. Such preferences arise from risk-aversion among agents; high-endowment individuals

are willing to forgo present consumption in order to increase the expected consumption of their

offspring by equipping them with the attribute. In other words, the biological attribute is used

to transfer wealth to future generations.1 Because in our setup agents are risk-neutral, they have

1A similar explanation has been proposed to explain the evolution of peacock tails Ridley (1993)
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no incentive to transfer wealth across periods. However, while our concept of social colour is

payoff-irrelevant, it acquires a value in equilibria, similar to the biological attribute in Mailath and

Postlewaite (2006).

The social colour allocated to each agent in our model plays a role which is similar to the

labels in Kandori (1992). Kandori considers a model in which members of two communities have

repeated interactions. In every period, each member of a community is randomly matched with

a member of the other community, and the pair plays a game. Players only observe the actions

played in their past matches. However, each player is able to observe his partner’s label, which

contains some information about his past actions. An individual’s label is updated each period,

and is determined by his previous label, his partner’s label, and the action he takes. Players

might choose to condition their behaviour on labels, despite the fact that they are not directly

payoff-relevant. The author proves a Folk Theorem for this setting. In this paper we also show

that acting on payoff-irrelevant information is a possibility, but unlike Kandori (1992) and Mailath

and Postlewaite (2006), we prove that in certain environments, stable equilibria necessarily involve

discrimination.

2 The Model

Consider a population of agents, normalized to have unit mass. Each agent lives forever and is

risk-neutral. Time is continuous, and the common discount rate is r.

Agents randomly receive opportunities to participate in production. These opportunities ar-

rive independently across agents and time according to a Poison distribution with arrival rate δ.

Agents with opportunities are matched into pairs instantaneously. Within a match, each agent is

designated as either the employer or the worker with equal probability.2 The two agents observe a

match specific shock, s, which is exponentially distributed, that is, G (s) = 1−e−λs. The employer

then decides whether or not to employ the worker. If he does employ the worker, he receives a

payoff of s, and the worker receives a constant wage M (> 0).3 Otherwise, both agents receive a

payoff of zero. Each agent maximizes the discounted present value of monetary payoffs.

Each agent has a two-dimensional type; the first coordinate is the physical colour of the agent

and the second is his social colour. The physical colour is either black (b) or white (w) , and is

immutable. A fraction µw of the population is white, while the remaining fraction µb (= 1− µw)

is black. An agent’s social colour is also either black or white, and evolves as follows. The social

colour of a worker remains unaffected by his match.4 If an employer employs a worker with type

(c1, c2), the employer’s social colour remains unchanged with probability 1− γ, changes to c1 with

2Following the convention of the literature on racial discrimination, we adopt the employer-employee terminology.

However, we interpret a parnership as any mutually beneficial social or economic interaction.
3Since s is always positive, the total surplus generated in a relationship, s+M , is strictly positive.
4Recall that workers do not make decisions. Any change in the social colour of a worker would be just noise from

his point of view. We avoid dealing with this randomness by making this assumption.
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probability γα and becomes c2 with probability γ (1− α). If the employer decides not to employ

the worker, his social colour remains unchanged with probability (1− γ) and becomes his physical

colour with probability γ.

Prior to making a decision, an employer observes the type of the worker, but nothing else. Note

that the social colour of an agent carries information about his past employees. An agent’s social

colour is more likely to be white if, in the past, he hired white workers or workers with white social

colour.

Agents’ types are payoff irrelevant in the following sense. An agent’s payoff depends only on

the history of shock realizations and his past employment decisions, but not on his type, nor on

the types of agents with whom he interacts. If there were no types, this model would have a unique

equilibrium in which employers always choose to employ whichever workers they are matched with.

In fact, this is true even if agents have physical colours but no social colours; an employer receives

a positive payoff if he employs the worker and, in the absence of social colour, such a decision

cannot affect his future employment.

In this model, only employers make decisions. An employer’s strategy is a mapping from his

history, his type, and the type of the worker into an employment decision. In what follows, we

restrict our attention to steady state equilibria. That is, we characterize equilibria in which the

agents’ strategies depend neither on time nor on history.

3 Best Responses

This section characterizes the employers’ best-response decisions. An employer’s optimal hiring

decision is a complicated object even in a stationary environment because it might depend on his

type, the type of the worker and the realization of the shock. Nevertheless, we are able to reduce

the complexity of the employer’s problem appreciably. First, note that the optimal hiring decision

can always be characterized by cutoffs; if an employer with a given type is better off employing a

worker given a certain realization of the shock then he would be strictly better off employing the

same worker if the realization of the shock was higher. These cutoffs can depend on the types of

both the employer and the worker, so there might be sixteen of them. Second, we will show that the

employer’s social colour does not affect these cutoffs. So, four cutoffs characterize the strategy of a

white employer, and another four cutoffs define the strategy of a black employer. Finally, we will

prove that the various cutoffs of a black (white) employer are linearly dependent on one another,

with coefficients determined by the parameters of our model. This implies that any one of the

cutoffs completely determines the values that the other three cutoffs will take. As a consequence,

the best-response decision of a black (white) agent can always be represented as a one-dimensional

variable. This result is significant in the sense that finding a stationary equilibrium is now reduced

to a two-dimensional problem.

In the remainder of this section, we characterize the equilibrium values in terms of the two
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relevant cutoffs and express the best-response cutoffs of black and white agents as a function of

the cutoffs used by black and white employers. Finally, we derive an explicit formula for these

best-response functions and investigate their analytical properties.

3.1 Optimal Cutoffs

We fix a population strategy and a distribution of types at time zero. Neither the strategy nor

the distribution need correspond to an equilibrium or be stationary. We derive the initial best-

response cutoffs of each agent. To this end, let Vc1,c2 denote the value function of an agent with type

(c1, c2)
(
∈ {b, w}2

)
at time zero, before he knows whether a production opportunity has arrived.

That is, Vc1,c2 is the maximum discounted present value of the payoffs that a type-(c1, c2) agent

can achieve given the strategy and type-distribution of the others. This value depends only on

type and not on the identity of the agent, because two agents with the same type face the same

environment.

For example, the optimal cutoff for a white employer with social colour c who presently faces

a worker with type (b, w) is computed as follows. Suppose that the value of the shock is s. If

he employs the worker, he receives an instantaneous payoff of s. His social colour remains c with

probability (1− γ) and changes to b or w with probabilities γα and γ (1− α) respectively. Hence,

if the worker is hired, the discounted present value of the employer’s payoffs is

s+ (1− γ)Vw,c + γαVw,b + γ (1− α)Vw,w. (1)

If he does not employ the worker, his discounted present value is equal to

(1− γ)Vw,c + γVw,w. (2)

The employer is better off hiring the worker whenever (1) is larger than (2). The cutoff, above

which the worker is employed, is the shock realization, s, which makes (1) and (2) equal. That is,

the best-response cutoff is γα (Vw,w − Vw,b). Since the shock is always positive, having a negative

cutoff is equivalent to having a zero cutoff. Therefore, one can restrict attention to weakly positive

cutoffs, in which case, the best-response cutoff is uniquely defined by max {0, γα (Vw,w − Vw,b)}.

Note that this cutoff does not depend on the social colour of the employer, c. In both (1) and

(2), the only term which depends on c is (1− γ)Vw,c, which cancels out in the computation of

the cutoff. In fact, an employer’s social colour only affects his payoff in the event that his social

colour remains unchanged, and this event is independent of his decision. Therefore, while the

best-response cutoff of an agent may depend on his physical colour, it cannot depend on his social

colour.

Let xcc1,c2 denote the cutoff value of an employer with physical colour c if the type of the worker

is (c1, c2). We denote the colour which is not c by −c for c ∈ {w, b}. Above, we have shown
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that xwb,w = max {0, γα (Vw,w − Vw,b)}. The other cutoffs can be computed similarly and they are

summarized by the following

Lemma 1 The following equations establish the relationship between best-response cutoffs and the

value functions:

xc−c,−c = max {0, γ (Vc,c − Vc,−c)} ,

xcc,−c = max {0, γ (1− α) (Vc,c − Vc,−c)} ,

xc−c,c = max {0, γα (Vc,c − Vc,−c)} ,

xcc,c = 0.

An employer with physical colour c who is considering hiring a worker will be concerned about

the effect it will have on his social colour. Having a social colour c instead of −c provides the agent

with an additional value of Vc,c − Vc,−c. This difference can be interpreted as a bias the agent

has towards his own physical colour.5 The above lemma implies that the best-response cutoffs are

proportional to this bias, up to the requirement that the cutoffs be non-negative. The coefficients

of the bias corresponding to various cutoffs are determined by the probabilities of the social colour

becoming c and −c, which in turn, depend on the type of the worker.

Let xc = xc−c,−c and note that

xcc,−c = (1− α)x
c, xc−c,c = αx

c, and xcc,c = 0. (3)

Since agents of the same type have identical value functions, this lemma implies that any stationary

equilibrium is symmetric. That is, employers with the same physical colour use the same strategies.

Also note that, by (3), an equilibrium strategy of a colour-c employer is identified by xc. In what

follows, we refer to the cutoff xc as a strategy or cutoff while keeping in mind that the cutoffs used

against different types of workers are defined by (3).

3.2 The Best-Response Curves

Our next goal is to explicitly characterize the best responses of black and white agents as functions

of the cutoffs of others. We denote the best response cutoff of an agent with colour c by bc (xc, x−c)

if each employer with physical colour c (−c) always uses cutoff xc (x−c).

Lemma 2 The best response curve of an agent with colour c is defined by the following equation:

bc
(
xc, x−c

)
=
Mδγ

2r
max

{
0, µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))}
. (4)

5This bias may well be negative, that is, an agent is better off if his physical colour does not coincide with his

social colour.
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The rest of this section is devoted to the proof of this lemma. In fact, we do not only characterize

best responses against constant strategies where each colour-c agent uses the same cutoff, but

against any stationary distribution of strategies, as long as these strategies satisfy (3). This turns

out to be useful when we later examine the stability properties of the equilibria. LetXc (c ∈ {b, w})

denote the random variable corresponding to the distribution of cutoffs of colour-c agents in the

population. We shall compute the bias Vc,c − Vc,−c for c ∈ {b,w} given
(
Xb,Xw

)
.6 These objects

then identify the best-response cutoffs by Lemma 1.

Let Πlc1,c2 and Π
e
c1,c2 denote the agent’s value function if he is a worker or employer respectively,

where (c1, c2) ∈ {b, w}
2is his type. The heuristic equation describing the relationship between

Vc1,c2 , Π
l
c1,c2 and Πec1,c2 is:

Vc1,c2 = (1− δdt) (1− rdt)Vc1,c2 + δdt

(
1

2
Πsc1,c2 +

1

2
Πec1,c2

)
.

To see this, notice that the probability a particular agent does not receive an opportunity

in time dt is 1−δdt, and hence his value remains Vc1,c2 . This is discounted at the rate r. Otherwise

the agent receives an opportunity, and is equally likely to become an employer or a worker. After

dividing through by dt and taking the limit as dt goes to zero, we obtain

Vc1,c2 =
δ

δ + r

(
1

2
Πlc1,c2 +

1

2
Πec1,c2

)
. (5)

A worker with type (c, c) is employed whenever he is matched with an employer with physical

colour c, which happens with probability µc. He is also employed whenever he is matched with an

employer with physical colour −c whose cutoff is x−c and s ≥ x−c. This happens with probability

µ−c (1−EG (X
−c)), where the expectation is taken according to the distribution of the cutoff

X−c. Finally, an employed worker’s value changes to Vc,c, and he also receives M whenever he is

employed, therefore,

Πlc,c =M
(
µc + µ−c

(
1−EG

(
X−c

)))
+ Vc,c. (6)

Similarly,

Πlc,−c =M
(
µc (1−EG ((1− α)X

c)) + µ−c
(
1−EG

(
αX−c

)))
+ Vc,−c. (7)

Using (5), (6), and (7) we can express Vc,c − Vc,−c as follows:

Vc,c − Vc,−c =
δ

δ + r

[
1

2

(
Πlc,c −Π

l
c,−c

)
+
1

2

(
Πec,c −Π

e
c,−c

)]

=
δ

δ + r

1

2
M
[
µcEG ((1− α)X

c) + µ−c
(
EG

(
αX−c

)
−EG

(
X−c

))]

+
δ

δ + r
[Vc,c − Vc,−c]

6The obvious dependence of the values of the agents on
(
Xb,Xw

)
is supressed from the notation Vc1,c2 for

simplicity.
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That is,

Vc,c − Vc,−c =
Mδ

2r

[
µcEG ((1− α)X

c) + µ−c
(
EG

(
αX−c

)
−EG

(
X−c

))]
.

Recall from Lemma 1 that the best-response cutoff of an employer with physical colour c against

a worker with type (−c,−c) is γ (Vc,c − Vc,−c). Then the previous displayed equality implies that

this cutoff is

K
[
µcEG ((1− α)X

c) + µ−c
(
EG

(
αX−c

)
−EG

(
X−c

))]
, (8)

where K denotes Mδγ/2r.

Suppose now that each employer with physical colour c uses xc, that is, Xc ≡ xc. Then the

best response of an agent can be written as

b̃c
(
xc, x−c

)
= K

[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]
. (9)

Recall that since the shocks are always positive, one can restrict attention to weakly positive

cutoffs, in which case, the best-response correspondence is uniquely identified by

bc
(
xc, x−c

)
= max

{
0, b̃c

(
xc, x−c

)}
,

which is just (4). A notable feature of the best response function is that it does not depend on the

distribution of social colours.

3.3 Properties of the Best-Response Curves

The next two lemmas describe some properties of the best-response curves.

Lemma 3 The function bc satisfies the following properties:

(i) if bc (xc, x−c) > 0 then bc is locally concave and strictly increasing in xc,

(ii) bc (0, x−c) = 0 for all x−c,

(iii) for all x−c > 0, bc (xc, 0) = limx−c→∞ b
c (xc, x−c) ≥ bc

(
xc, x−c

)
.

Part (ii) implies that the function bc (xc, 0) intersects the 45-degree line at xc = 0. Whether

or not there is another intersection carries great importance in characterizing the set of equilibria.

The next lemma states that the existence of another intersection depends on the size of λ.

Lemma 4 Let λ0 = 1/ (K (1− α)µc). Then,

(i) if λ > λ0, then there exists a unique xc > 0 such that bc (xc, 0) = xc, and

(ii) if λ ≤ λ0, then bc (xc, 0) < xc for all xc > 0.

Figure 1 plots bb (., 0) and bb (., xw) (xw > 0) for the case when λ is large. The function bb (., 0)

is identical to b̃b (., 0) because b̃b (., 0) is weakly positive (see (4) and (9)). For xw > 0, bb (., xw) is a

downwards shift of bb (., 0), except it is zero whenever the shifted curve becomes negative. Since b̃b
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Figure 1: Best Responses

is concave in xb, bb (., xw) is locally concave in xb whenever it is positive (part (i) of Lemma 3). Part

(ii) of Lemma 3 states that if the cutoff of each black agent is zero, then the best response cutoff of

a black agent is also zero. To see this, notice that if xb = 0 then black agents are better off having

a white social colour than a black one. This is because their social colours have no impact on their

employment if the employer is black
(
xb = 0

)
but they are more likely to be employed by white

agents if their social colour is white. Therefore, a black employer always employs a type-(w,w)

worker, that is, the best-response cutoff is zero.

Part (iii) of Lemma 3 states that the best response cutoff of a black agent is the same whether

white agents do not discriminate (xw = 0) or whether they discriminate fully (xw = ∞). The

reason for this is that a black agent is always employed by white agents if xw = 0 and is never

employed by them if xw = ∞. That is, the white agents’ decisions to hire black workers do not

depend on the workers’ social colours. Therefore, the black workers’ best-response is determined

solely by the cutoff xb in both cases.

Part (iii) also says that bb
(
xb, xw

)
decreases if xw becomes larger than zero. The intuition

is as follows. As xw becomes positive, a black worker benefits from having a white social colour

whenever he meets a white employer. Therefore, holding xb fixed, a black agent has less incentive

to discriminate against type-(w,w) workers, that is, bb goes down.

Note that in Figure 1 the curve bb (., 0) intersects the 45-degree line twice. The function bb (., 0)

is strictly concave and zero at the origin. In addition, this slope converges to zero as xb goes to

infinity. Therefore, the function bb (., 0) intersects the 45-degree line at a strictly positive value if

and only if its slope at zero is larger than one. The slope of bb (., 0) is large if and only if λ is large

(Lemma 4).
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The positive intersection of bb (., 0) and the 45-degree line has an interesting interpretation.

Suppose for a moment that white agents are non-strategic and their cutoff is zero, and consider

our model as a game played by only black agents. If bb
(
xb, 0

)
= xb and xb > 0, the best response

of a black agent is xb whenever every other black agent uses cutoff xb. In other words, the cutoff

xc is an equilibrium in the game where only black agents act strategically. Since this cutoff is

positive, black agents discriminate against others with white physical and social colour.

4 Equilibria

This section accomplishes two goals. First, we give an exact characterization of those environments

where the colour-blind equilibrium is not the unique equilibrium. To be more specific, we show

that there exist equilibria in which some agents discriminate if and only if λ > 1/ (K (1− α)µc)

for some c ∈ {b,w}. Second, we give a sharp characterization of the equilibrium strategies if λ is

very large. In particular we prove that, in every equilibrium, the cutoff of an agent is either very

small or very large.

Proposition 1 The colour-blind cutoff profile, (0, 0), is an equilibrium. In addition,

(i) if λ ≤ 1/ (K (1− α)µc) for both c ∈ {b, w}, the profile (0, 0) is the unique equilibrium, and

(ii) if λ > 1/ (K (1− α)µc), there exists an equilibrium (xc∗, x
−c
∗ ) such that xc∗ > 0.

Before we prove this proposition, we restate the definition of equilibrium in terms of the best-

response curves as follows. The cutoff profile (xc∗, x
−c
∗ ) is an equilibrium if and only if

(
xc∗, x

−c
∗

)
=
(
bc
(
xc∗, x

−c
∗

)
, b−c

(
x−c∗ , x

c
∗

))
. (10)

Proof. Recall that part (ii) of Lemma 3 says that bc (0, x−c) = 0 for all x−c and c ∈ {b, w}. In

particular, bc (0, 0) = 0 for c ∈ {b, w}. Hence, (0, 0) satisfies (10).

In order to prove part (i) we have to show that if λ ≤ 1/ (K (1− α)µc) for c ∈ {b, w} then the

only equilibrium is (0, 0). Suppose that (xc∗, x
−c
∗ ) is an equilibrium. Then equation (10) implies

that bc (xc∗, x
−c
∗ ) = xc∗ for c ∈ {b, w}. Since λ ≤ 1/ (K (1− α)µc) it follows from part (iii) of

Lemma 3 and part (ii) of Lemma 4 that xc∗ = 0 for c ∈ {b, w}.

We turn our attention to part (ii). If λ > 1/ (K (1− α)µc) then there is an xc > 0 such that

bc (xc, 0) = xc by part (i) of Lemma 4. In addition, b−c (x−c, 0) = 0 by part (ii) of Lemma 3.

Therefore, (xc, 0) satisfies equation (10).

Note that in the proof of part (ii) we showed that if bc (xc, 0) = xc, xc > 0, then (xc, 0) is an

equilibrium. Part (i) of Lemma 4 says that such an xc does not only exist but is unique. Therefore,

we can state the following

Remark 1 If λ > 1/ (K (1− α)µc) then for each c ∈ {b, w}, there is a unique xc > 0 such that

the cutoff profile (xc, 0) is an equilibrium.
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Part (ii) of Proposition 1 provides little information about the set of equilibria which involve

discrimination. Although we do not characterize the set of equilibria when λ is large, we do

establish some attributes of equilibrium strategies. In the next section, we will use these results to

fully characterize all of the stable equilibria for the case of λ large.

Note that if (xc∗, x
−c
∗ ) is an equilibrium, then by (10), xc∗ = b

c (xc∗, x
−c
∗ ) for c ∈ {b,w}. This

means that the function bc (., x−c∗ ) intersects the 45-degree line at x
c
∗. As previously indicated (see

part (ii) of Lemma 3), these curves intersect at zero. Next, we investigate intersections which are

strictly positive.

We will show that for each x−c, there are either two positive intersections of bc (., x−c) and the

45-degree line, or there are none. Figure 1 illustrates a situation in which there are two intersections

for c = b. (These intersections are denoted by xb1 (x
w) and xb2 (x

w).) For each x−c, let xc1 (x
−c)

and xc2 (x
−c) denote the smaller and larger positive intersections respectively, if they exist. We will

show that, depending on the parameter values, there are two different cases which can arise. Case

1: there are two intersections for each x−c and hence, xc1 and x
c
2 are defined everywhere. Case 2:

there are two intersections if x−c /∈
(
x−c, x−c

)
and there is no intersection if x−c ∈

(
x−c, x−c

)
. In

this case, the curves xc1 and x
c
2 are only defined on R+\

[
x−c, x−c

]
. The next figure depicts xc1 and

xc2 for both cases.

 

cx1  

cx2  cx2  

cx1  

cx−  

Case 1 
 

Case 2 
 

c
x

−
 

cx−  cx−  

Figure 2: Positive Intersections

Next, we explain how the curves are drawn on Figure 2. Recall that the function bc (., x−c) is

essentially a downward shift of bc (., 0) (see Figure 1). The size of this shift determines the number

of positive intersections. In the appendix, we show that this size is a non-monotonic function of

x−c. If x−c is small, an increase in x−c shifts the curve bc (., x−c) even further down. Above a

certain value of x−c, however, a further increase in x−c shifts the curve bc (., x−c) upwards. In fact,

as x−c goes to infinity, bc (., x−c) converges back to bc (., 0) (see part (iv) of Lemma 3). Recall that if

λ is large, the first derivative of bc (., 0) is larger than one (see Lemma 4). Hence, bc (., x−c) and the
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45-degree line have two intersections if the downward shift is small, and none if the shift is large.7

In the latter case, bc (., x−c) is pushed below the 45-degree line. Case 1 corresponds to parameters

where the curve bc (., x−c) intersects the 45-degree line even when it is shifted furthest down. In

Case 2, there is an interval such that, if x−c lies in this interval, the curve bc (., x−c) is pushed

below the 45-degree line. If x−c is outside of this interval, there are two positive intersections.

In both cases the curve xc1 first increases then decreases, because, the larger the downward

shift, the higher the first point of positive intersection will be. Similarly, the curve xc2 decreases

first, then increases because the location of the second positive intersection decreases as the size of

the shift increases. In the panel corresponding to Case 2, the values of xc1 and x
c
2 are equal at x

−c

and x−c; both x−c and x−c induce the same shift, that is, bc (., x−c) = bc
(
., x−c

)
. In addition, the

shifted best-response curve is exactly tangent to the 45-degree line, hence, the two intersections

collapse into one.

We state these results in the next lemma and prove them in the Appendix.

Lemma 5 If λ ≥ 1/ (K (1− α)µc) then either

(i) for all x−c > 0 there exist xc1 (x
−c), xc2 (x

−c) such that xci (x
−c) = bc (xci (x

−c) , x−c) and

0 < x1 (x−c) < x2 (x−c), or

(ii) there exist x−c,x−c ∈ R++, x−c ≤ x−c, such that for all x−c ∈
(
x−c, x−c

)
: bc (xc, x−c) <

xc, and for all x−c ∈ R++\
[
x−c, x−c

]
there exist xc1 (x

−c), xc2 (x
−c) such that xci (x

−c) = bc (xci (x
−c) , x−c),

0 < x1 (x
−c) < x2 (x

−c) , and

lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc2
(
x−c

)
lim

x−c→x−c
xc2
(
x−c

)
.

In addition, xc1 (x
−c) is increasing first, then is decreasing, and xc2 (x

−c) is decreasing first, then

is increasing. Finally, limx−c→0 x
c
1 (x

−c) = 0.

The curves xc1 and xc2 are only defined for strictly positive values of x−c. It turns out to be

useful to also define xci (0) = limx−c→0 x
c
i (x

−c). Note that xc1 (0) = 0 and x2 (0) corresponds to the

positive intersection of bc (., 0) and the 45-degree line. In addition, since bc (., x−c) intersects the

45-degree line at zero for all x−c (see part (ii) of Lemma 3), the curve xc0 (x
−c) ≡ 0 also defines an

intersection.

Now we can define equilibria in terms of the intersections of the curves
{
xbi
}2
i=0

and {xwi }
2
i=0 .

Formally, (xc∗, x
−c
∗ ) is an equilibrium cutoff profile if and only if there exist i, j ∈ {0, 1, 2} such that

xc∗ = x
c
i

(
x−c∗

)
and x−c∗ = x−cj (xc∗) . (11)

Therefore, in order to find equilibria geometrically, we need to add the curves
{
x−ci

}2
i=0

to Figure 2

and find every intersection. We did exactly this in Figure 3, in an environment where both colours

satisfy Case 1 in Figure 2.

7There is a non-generic third case where the curve bc
(
., x−c

)
is tangent to the 45-degree line when it is shifted

down the most.
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Figure 3: Equilibria

Note that by (9), the best-response cutoff of an agent with colour c is largest if x−c =∞ and

x−c = 0. In this case, the best-response cutoff is Kµc. This implies that the equilibrium cutoff of

an agent with colour c can never exceed Kµc. Let xcmax = Kµc. We are now ready to state the

main result of this section.

Proposition 2 For all K, µc, α and ε (> 0) there exists a λ0 such that if λ ≥ λ0, then if xc∗ is

an equilibrium cutoff then either:

(i) xc∗ = 0, or

(ii) xc∗ ∈ (0, ε), or

(iii) xc∗ ∈ (x
c
max − ε, x

c
max).

This proposition states that if λ is large enough, then, in every equilibrium, an agent either

does not discriminate at all (xc∗ = 0), or weakly discriminates (xc∗ < ε), or strongly discriminates

(xcmax − ε < x
c
∗). Proposition 2 is illustrated in Figure 3. Intuitively, strong discrimination of

agents with colour c corresponds to the curve xc2, weak discrimination corresponds to xc1, and x
c
0

implies no discrimination.

Note that if λ is large, then the realization of the shock is likely to be small. Hence, even if the

cutoff of an employer is small, he might choose to not employ the worker with high probability.

Can a weakly discriminating cutoff, xc∗ ∈ (0, ε), generate high unemployment? In the proof of
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Proposition 2, we show that it cannot. As λ goes to infinity, the probability of not employing

induced by a weakly discriminating cutoff goes to zero.

The proposition allows any combination of these possibilities to be present in equilibrium.

In Remark 1, we showed that the intersection of xc0 and x−c2 exists and is unique (c ∈ {b, w}).

The unique intersection of xc0 and x−c0 , (0, 0), corresponds to the colour-blind equilibrium. Since

xc1 (0) = 0, the intersection of xc1 and x−c0 is (0, 0), that is, there is no equilibrium in which one

colour weakly discriminates and the other does not discriminate at all. The proposition neither

implies the existence, nor the uniqueness of any of the other types of equilibria. The next section

introduces a stability concept with which we shall fully characterize those equilibria which are

stable.

5 Stability

Next, we introduce a fairly standard notion of stability8 . It is based on the requirement that a slight

perturbation of agents’ strategies around the equilibrium leads to the convergence of simple myopic

best-response dynamics back to that equilibrium. We model the myopic best-response dynamics

by assuming that each agent initially best-responds to some stationary population strategy. Each

agent may be best-responding to a different population strategy which clearly might also differ

from the strategy actually used by the population. Then, each agent stochastically receives an

opportunity to update his strategy. Whenever an agent has this opportunity, he myopically adjusts

his strategy to the current environment. That is, he best-responds to the current population

strategy as if it were to never change.

Formally, suppose that black and white agents’ initial cutoffs are denoted by a pair of random

variables
(
Xb,Xw

)
, and the strategy of each agent satisfies the statement of Lemma 1. This

latter assumption is satisfied if each agent best responds to some population strategy. Agents

receive opportunities to update their strategies according to a Poisson process with an arrival rate

normalized to be one.9 If an agent receives this opportunity at time t, he best-responds to the

cutoff distribution at t as if it were constant over time. Let xct (X
c,X−c) denote the best-response

cutoffs of an agent with colour c at time t if the initial distribution of cutoffs was (Xc,X−c).

Definition 1 The equilibrium cutoff vector
(
xb∗, x

w
∗

)
is said to be stable if there exists an ε > 0,

such that if |Xc−xc∗| < ε almost surely for c ∈ {b, w} then lim
t→∞

xct (X
c,X−c) = xc∗ for c ∈ {b, w}.

We next describe the equation that governs the best-response dynamics. Fix
(
Xb,Xw

)
and let(

Xb
t ,X

w
t

)
denote the population cutoffs at time t. We shall denote the myopic best response of

an agent with colour c by xct , suppressing its argument
(
Xb,Xw

)
. By (8), the best-response of an

8See, for example, Chapter 3 of Fudenberg and Levine (1998).
9This normalization is without the loss of generality because this arrival rate affects only the speed of convergence

and not the limits.
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agent with colour c at time t is

xct = K
[
µcEG ((1− α)X

c
t ) + µ−c

(
EG

(
αX−c

t

)
−EG

(
X−c
t

))]
.

Next, we approximate xct+dt by assuming that between t and t + dt, each agent changes his

strategy to the time t best-response cutoffs if he is able. There is a measure of dt agents who

receive an opportunity to change their strategies between t and t+ dt, and they all switch to xct .

Therefore,

xct+dt = K
[
µcEG

(
(1− α)Xc

t+dt

)
+ µ−c

(
EG

(
αX−c

t+dt

)
−EG

(
X−c
t+dt

))]

= (1− dt)K
[
µcEG ((1− α)X

c
t ) + µ−c

(
EG

(
αX−c

t

)
−EG

(
X−c
t

))]

+dtK
[
µcEG ((1− α)x

c
t) + µ−c

(
EG

(
αx−ct

)
− EG

(
x−ct

))]

= (1− dt)xt + dt̃b
c
(
xct , x

−c
t

)
,

where the first equality follows from (8). The second equality holds because the strategy of 1− dt

measure of the population is described by
(
Xc
t ,X

−c
t

)
, and the rest uses

(
xct , x

−c
t

)
. The third

equality follows from (8) and (9). Taking dt to zero leads to the following differential equation

describing the evolution of xct :
dxct
dt

= b̃c
(
xct , x

−c
t

)
− xct .

As we mentioned before, we can restrict attention to non-negative cutoffs. Note that if xct = 0 then

b̃c
(
xct , x

−c
t

)
= b

(
xct , x

−c
t

)
= 0 by (4), (9) and part (ii) of Lemma 3. Hence, the previous displayed

equation implies that dxct/dt = 0 whenever x
c
t = 0. Therefore,

dxct
dt

=

{
0 if xct = 0

b̃c
(
xct , x

−c
t

)
− xct if xct > 0

. (12)

Figure 4 helps to illustrate the best-response dynamics derived from (12). Consider xb >

xb2 (x
w). At this point, the best response curve is below the 45 degree line, that is bb

(
xb, xw

)
< xb.

In general, if
(
xb, xw

)
is to the right of the xb2 curve, the best response of a black agent is below

xb. Equation (12) implies that in this region, the best response of a black agent decreases. This

is represented by a horizontal arrow pointing to the left. A similar argument shows, that if

xb1 (x
w) < xb < xb2 (x

w), then bb
(
xb, xw

)
> xb. Hence, by (12), the best response of a black

agent increases. This is represented by horizontal arrow pointing to the right between the points

xb1 (x
w) and xb2 (x

w). Finally, if xb < xb1 (x
w), then bb

(
xb, xw

)
< xb which is represented by a

horizontal arrow pointing to the left. We are now ready to state the main theorem of the paper.

Theorem 1 For all K, µc, α and ε (> 0) there exists a λ0 such that if λ ≥ λ0, then there are

exactly three stable equilibria (xw∗ , 0),
(
0, xb∗

)
, and

(
x′w∗ , x

′b
∗

)
such that xc∗, x

′c
∗ ∈ (x

c
max − ε, x

c
max)

for c ∈ {b, w}.

17



 

bb(xb,xw) 
 

xb 
 

xb
2(x

w)  xb
1(x

w)  

Figure 4: Best-response Dynamics

If λ is large enough, then our model gives rise to the following three stable equilibria. First, the

white population discriminates strongly against the black population, while black agents do not

discriminate at all. Second, the blacks discriminate strongly against the whites, while the whites

do not discriminate at all. And finally, each race discriminates strongly against the other.

Equation (12) implies that the change in best responses at time t depends only on the time-t

best responses themselves,
(
xbt , x

w
t

)
, but not directly on the distribution of strategies,

(
Xb
t ,X

w
t

)
.

In particular, the initial distribution of strategies affects the best-response dynamics only through

the initial best-response profile
(
xb0, x

w
0

)
. Therefore, using (12), we can represent the best-response

dynamics by constructing a Phase Diagram, plotted in Figure 5. For each cutoff vector
(
xb, xw

)
,

the horizontal and vertical arrows on this figure indicate the directions of the best responses of

black and white agents respectively.

To understand how the arrows are drawn, recall from Figure 3 that if xb > x2 (x
w) then

bb
(
xb, xw

)
< xb, which is indicated by an arrow pointing to the left. In general, if

(
xb, xw

)
is to

the right of the xb2 curve, the best response of a black agent is smaller than xb. This is represented

in Figure 4 by horizontal arrows pointing to the left in the area that is to the right of the curve xb2.

Similarly, Figure 3 shows that if xb1 (x
w) < xb < xb2 (x

w), then the best response of a black agent

increases. This is why the horizontal arrows are pointing to the right between the curves xb1 and

xb2 on Figure 5. Finally, if xb < xb1 (x
w), then bb

(
xb, xw

)
< xb which is indicated by horizontal

arrows pointing to the left on the area that is to the left of xb1. The vertical arrows are constructed

in a similar manner, representing the best-response dynamics of the white population.

Figure 5 can be useful in understanding the stability properties of various equilibria. Consider,

for example, the colour-blind equilibrium, (0, 0). There are points below the curve xw1 and to the
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Figure 5: Stable Equilibria

right of the curve xb1, arbitrarily close to (0, 0). At these points, xbt increases and x
w
t decreases, and

the vector
(
xbt , x

w
t

)
converges to the intersection of xb2 and x

w
0 . Hence, the colour-blind equilibrium

is unstable. Similarly, it is easy to see that the intersections of the curves xc1 and x−c1 and the

curves xc1 and x
−c
2 are unstable for c ∈ {b, w}. On the other hand, from any point close to any of

the equilibria described in the statement of Theorem 1, the arrows point towards the equilibrium,

and hence these equilibria are stable.

Agents discriminate in equilibrium because social colour affects future employment. In par-

ticular, they are concerned about becoming workers and then being rejected by employers who

discriminate. If λ is very small, then only a small fraction of an agent’s payoff is due to the wage

M . Therefore, agents care less about being workers and hence do not discriminate. How large does

λ have to be for a version of Theorem 1 to hold? Recall that Proposition 1 states that the colour-

blind equilibrium is the unique equilibrium if and only if the slope of the best response function

is larger than one at the origin, that is, λ ≤ 1/ (K (1− α)µc). From the proof of Theorem 1 it is

clear that the colour-blind equilibrium is stable if and only if the slope of the best response curve

is smaller than one at zero. Otherwise, each stable equilibrium involves discrimination. In fact,

the equilibrium described in Remark 1 is stable. We formally state these results in the following

Theorem 2 (i) If λ ≤ 1/ (K (1− α)µc) for both c ∈ {b, w}, the equilibrium (0, 0) is stable.

(ii) If λ > 1/ (K (1− α)µc) the profile (0, 0) is not stable and there exists a stable equilibrium.
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6 Discussion

In this section, we begin by deriving some comparative static results. We then discuss some of

the assumptions and extensions of our model. Finally, we compare our empirical implications with

those of statistical and taste-based theories of discrimination.

6.1 Comparative Statics

In what follows we focus on the case where λ is large, that is, where the statement of Theorem 1

is valid. Recall that there are exactly three stable equilibria. Next, we investigate how the cutoffs

in these three equilibria change in response to a shift in parameters. We emphasize that these

comparative static results are valid only if the changes in the parameters are small enough that

Theorem 1 still holds. The following table summarizes the comparative static results. This table

shows what happens to the cutoffs if a certain parameter increases. It turns out that the direction

of the change of cutoffs is the same in all three equilibria.

xw∗ xb∗

discount rate (r) down down

wage (M) up up

shock distribution (λ) up up

measure of whites (µw) up down

matching frequency (δ) up up

persistence (γ) up up

The proof of these results is straightforward and is therefore omitted, but we will provide some

intuition for these observations. An agent is concerned about his social colour because it holds

influence over his future employment. Therefore, the more an agent’s payoff depends on future

wages, the more likely it is that employers condition their decisions on the types of the workers.

For example, if the discount rate increases, agents care more about their current payoffs, relative

to their future payoffs. Hence, they become more eager to employ workers of any type, and as

a result, their cutoffs decrease. Similarly, if M increases, being an employed worker becomes

more important, and the cutoffs increase. When λ increases, the expected payoff of an employer

decreases, so having the option of being a worker becomes more important relative to being an

employer. This is the reason that an increase in λ has the same effect as a decrease in M .

When µw increases, a larger fraction of agents’ payoffs comes from interacting with white agents.

This makes it more expensive to discriminate against whites, and cheaper to discriminate against

blacks. As a result, xw∗ goes up while xb∗ goes down.

An employer’s social colour remains unchanged with probability 1 − γ independently of his

decision. So, the larger γ is, the more likely it is that the worker’s type has an impact on the

employer’s future payoff. Hence, it becomes more important to discriminate.
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6.2 Assumptions

In this paper, our goal was to present a simple model which demonstrates that discrimination can

arise purely because agents observe information about others’ past actions. We do not claim that

equilibrium discrimination is robust to all the features of our model. Some of the assumptions we

make are only necessary in order to provide a graphical representation of equilibria and stability.

In what follows, we discuss some of our assumptions and extensions of the model.

Distribution of shocks.— We have assumed that the match-specific shock that determines the

surplus of a partnership is exponentially distributed. To what extent does our main result depend

on this assumption? For general distributions, we have no hope for a full characterization of

equilibria such as in Theorem 1. However, whether or not the colour-blind equilibrium is stable

depends only on the slope of the best-response functions at (0, 0). If this slope is less than one,

the colour-blind equilibrium is unique and stable. Otherwise, each stable equilibrium involves

discrimination. We formally state this result in the following

Theorem 3 Suppose that s is distributed on R+ according to the CDF G. If G is concave on R+

then either

(i) (0, 0) is the unique equilibrium and is stable, or

(ii) (0, 0) is not stable, and there exists a stable equilibrium.

Note that the total surplus of a partnership, s+M , is always positive. This assumption makes

the socially optimal employment decisions very easy to characterize. Efficiency requires employers

to hire whenever they can. This simplifies our analysis. Even if negative shocks were allowed, the

stability of the colour-blind equilibrium would only depend on the slope of the best-response curve

at the origin. However, in this case, there might be stable equilibria different from those described

in Theorem 1. In particular, it is possible that white employers would prefer to hire black workers

and vice versa, that is, it could be more valuable to have a social colour which is different from

one’s physical colour.

Social colour.— If an employer chooses not to hire, then, if his social colour changes it will

change to his own physical colour. This can be motivated by the assumption that if a white agent

refuses to hire a black employee despite the positive surplus, he will be viewed as loyal to other

whites and hostile to blacks. However, the main reason for this assumption is that it enabled us to

give a two-dimensional graphical representation of our problem. Recall that a consequence of this

assumption is that the best response cutoff of an employer does not depend on his social colour

(see Lemma 1 and (3)).

We assume that social colour is a binary signal and its evolution is only determined by the

physical colours of the worker and the employer; this is in the spirit of Kandori (1992). One might

choose to model the information an employer observes about a worker in a more complicated way.

For example, an employer might draw a random sample of the physical colours of the agents in
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the worker’s partnership history. Then, the type of the worker would consist of both his physical

colour and his full history. Such modelling would lead to a complex type space but does not alter

our main result regarding the instability of the colour-blind equilibrium.

It is easy to construct social colours different from ours which do no lead to discrimination. For

example, if this colour is not informative about past decisions then the colour blind equilibrium is

stable and unique. The characterization of those processes which necessarily lead to discrimination

is beyond the scope of this paper.

More attributes and social colours.— In reality, individuals have more than one physical at-

tribute. It is also possible that an individual is subject to several labels that depend on his history.

Of course, agents might condition their actions on these multi-dimensional attributes and labels.

We emphasize, however, that as long as one of the dimensions of the label evolves as our social

colour does, a version of Theorem 3 will remain valid. That is, provided that λ is large, the colour-

blind equilibrium will be unstable, and stable equilibria will exist. In other words, no matter

how many attributes and labels are observable, adding social colour destabilizes the colour-blind

equilibrium. In this sense, our results are robust to more complicated information structures.

Constant wage.— Workers receive a constant wageM regardless of their types, the types of their

employers and the profitability of the partnership. Therefore, any inefficiency due to discrimination

is in the form of suboptimal unemployment decisions. In particular, an agent against whom others

discriminate is only worse off because he is employed too infrequently. It would be interesting to

allow wages to be endogenous and analyze wage differentials due to racial discrimination. Unfor-

tunately, it is not entirely clear how endogenous wages would affect our main results. Difficulties

arise from the fact that if a black worker is willing to take a paycut in order to be employed by a

white employer, more white employers will employ black workers. This would increase the num-

ber of white agents with black social colour, which in turn, would make it less costly for a white

agent to have a black social colour. Therefore, it would be less likely for discrimination to arise in

equilibrium. A potential solution to this problem would be to allow social colour to change as a

function of the wage offered to a worker, for example, a lower wage for a black worker could lead

to an increased likelihood that the employer’s social colour becomes white.

We are currently developing models where wages are set endogenously. Preliminary results

suggest that as long as the wage of a worker cannot fall to zero, the main results of our paper

remain valid. There are various theories of wage determination, like efficiency wages and moral

hazard problems, that lead to strictly positive wages even if the outside option of a worker is zero.

6.3 Empirical Implications

Our theory is different from taste-based and statistical theories of discrimination because agents

have no intrinsic preferences for interacting with others of the same colour, and skin-colour provides
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no signal about productivity. We next discuss empirical predictions of our model which are different

from those of the other two theories.

It is not difficult to construct models of statistical or taste-based discrimination which generate

the same comparative static results as the ones presented in Section 6.1. There are, however,

testable implications of our theory which are unique. The key feature of our model is that the

history of a worker affects the likelihood of his being hired in the present. A white employer, for

example, uses a higher profitability-cutoff when deciding whether to hire a black worker than when

he is faced with a white worker. As a result, the profit of a white employer who hires black workers

is higher than that of those who hire white workers. This would also be true if discrimination was

taste-based, and one can imagine a variation of statistical discrimination which also generates this

result. However, in our model a white employer also uses a larger cutoff against other whites with

black social colour than against whites with white social colour. Therefore, white employers hiring

white workers with black social colours earn more than those who hire whites with white social

colours. Note that the social colour of an agent is more likely to be black if he interacted with

more blacks in his history. Hence, our model predicts that the profit of a white employer from

hiring a white worker is stochastically increasing in the number of black agents in the history of

the worker.

In addition, in our model, agents would never discriminate if they knew that their interactions

were not observed; our theory predicts that as the interactions become harder to observe it becomes

less likely that discrimination arises. Therefore, people are more likely to discriminate in smaller

communities, like villages, where people are better able to observe the actions of others, than in

larger communities, such as large cities, where individuals have less information about each other.

This is in sharp contrast to the predictions of the other two theories.

One notable feature of our model is the presence of stable equilibria in which each race dis-

criminates against the other one. This is inconsistent with the theory of statistical discrimination,

according to which the hiring decision of an employer should not depend on his own skin-colour.

7 Conclusion

This paper puts forward a new theory of racial discrimination. Individuals discriminate because

they do not want to be associated with the other race. Although the information about others’

association is not payoff-relevant, it plays a major role in determining the behaviour of economic

agents. Indeed, we showed that in some environments, every stable equilibrium must involve

discrimination.

Our model does not attempt to explain why agents might use skin colour as a basis for dis-

crimination as opposed to other observable physical attributes. People differ in height, weight,

eye-colour, and along many other dimensions. One potential explanation might take into account

the fact that members of a family or a community are more likely to have the same skin colour than
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the same height or weight. Discrimination against short individuals might be difficult to sustain

if many relatives of tall people are short. Recall that in our model, a white agent discriminates

against those who associate themselves with blacks because he is afraid of those whites who as-

sociate more closely with whites. Since individuals must necessarily associate with short and tall

individuals, these attributes cannot be used to sustain discrimination. Another reason for using

skin colour is because it is more easily observed that other attributes such as eye-colour.

Throughout the paper, we have assumed that the surplus generated by a partnership is ex-

ogenously divided between the worker and the employer. We have excluded the possibility that

discrimination results in a wage differential. Perhaps the most important elaboration of our model

would be to allow wages and profits to be determined endogenously.

We have not yet discussed policy in this paper. Recall that a white employer discriminates

against black workers because he is afraid of being turned down by white employers with white

social colour in the future. Hence, a policy intervention which would reduce the incentive to dis-

criminate might involve increasing the fraction of the population whose social colours are different

from their own physical colours. It is clear that subsidizing employers who hire workers of a

different physical colour would increase the fraction of the population whose physical and social

colour don’t match. This would of course result in a lower proportion of individuals with the same

physical and social colour, and reduce the incentive to discriminate. Such subsidies must be paid

from taxes, which might alter the incentives to produce. Therefore, in order to discuss policy in a

meaningful way, one must model production and the worker’s incentives carefully.

8 Appendix

8.1 Proof of the Lemmas

Proof of Lemma 3. (i) Notice that bc (xc, x−c) = b̃c (xc, x−c) whenever bc (xc, x−c) > 0. Hence,

it is enough to show that b̃c is concave and strictly increasing in xc. By (9)

∂b̃c (xc, x−c)

∂xc
= Kµc (1− α) g ((1− α)x

c) ,

where g (x) = λe−λx for all x ≥ 0. This partial derivative is positive and decreasing.

(ii) By (9),

b̃c
(
0, x−c

)
= K

[
µ−c

(
G
(
αx−c

)
−G

(
x−c

))]
≤ 0,

because G
(
αx−c

)
−G

(
x−c

)
≤ 0. Hence, (4) and (9) imply bc (0, x−c) = 0.

(iii) Notice that limx−c→∞G (αx
−c)−G (x−c) = 0. Therefore, by (4) and (9),

bc (xc, 0) = lim
x−c→∞

bc
(
xc, x−c

)
= KµcG ((1− α)x

c) .

Finally, the inequality bc (xc, 0) ≥ bc
(
xc, x−c

)
follows from G

(
αx−c

)
−G

(
x−c

)
≤ 0.
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Proof of Lemma 4. Since b̃c (xc, 0) ≥ 0 by (9), (4) implies b̃c (xc, 0) = bc (xc, 0). Therefore, by

the proof of part (i) of Lemma 3

∂bc (xc, 0)

∂xc
= Kµc (1− α)λe

−λ(1−α)xc .

This derivative is Kµc (1− α)λ at xc = 0, and converges to zero as xc goes to infinity.

(i) If λ > λ0 then Kµc (1− α)λ > 1. This means that ∂bc (xc, 0) /∂xc⌋xc=0 > 1 and therefore,

bc (xc, 0) > xc if xc is close to zero. Since the curve bc (xc, 0) is concave (part (i) of Lemma 3) and its

derivative goes to zero as xc goes to infinity, there exists a unique xc > 0 such that bc (xc, 0) = xc.

(ii) If λ ≤ λ0 then Kµc (1− α)λ ≤ 1. Since the curve b
c (xc, 0) is concave (part (i) of Lemma

3) bc (xc, 0) < xc for all xc > 0.

Proof of Lemma 5. First, observe that by (9) and (4), bc (xc, x−c)−xc if and only if b̃c (xc, x−c)−

xc. Therefore, we shall analyze the roots of the function Bx
−c

(xc) ≡ b̃c (xc, x−c)−xc for each x−c.

By (9)

Bx
−c

(xc) = KµcG ((1− α)x
c)− xc +Kµ−c

(
G
(
αx−c

)
−G

(
x−c

))
.

Next, we establish some properties of Bx
−c

for λ ≥ 1/ (K (1− α)µc).

(1) The function Bx
−c

is strictly concave . It follows from the proof of part (i) of Lemma 3.

(2) dBx
−c

/dxc
⌋
xc=0

> 0. It follows from the proof of part (i) of Lemma 4.

(3) limxc→∞Bx
−c

(xc) = −∞. This is because G is a CDF and hence, b̃c (xc, x−c) ≤ K.

(4) limxc→0B
x−c (xc) < 0. This is because G (αx−c)−G (x−c) is negative.

(5) Generically, Bx
−c

has either zero or two roots. This follows from (1)-(4).10

Note that the part of Bx
−c

(xc) which depends on x−c,Kµ−c (G (αx
−c)−G (x−c)), is additively

separable. Hence, the curve Bx
−c

(xc) is a vertical shift of B0 (xc). The number of roots of

Bx
−c

(xc) depends on the size of this shift. Let H (x−c) denote this shift, that is, H (x−c) =

Kµ−c (G (αx
−c)−G (x−c)). The following properties of H are straightforward consequences of

G (s) = 1− eλs:

(6) H (x−c) < 0 if x−c > 0.

(7) limx−c→∞H (x
−c) = limx−c→0H (x

−c) = 0.

(8) argminH (x−c) = (− logα) / [λ (1− α)] = x̂−c.

(9) H is strictly decreasing on (0, x̂−c) and strictly increasing on (x̂−c,∞).

We are ready to prove the lemma.

(i) Suppose thatmaxx−c B
x̂−c (xc) > 0. This, together with (8), implies thatmaxx−c B

x−c (xc) >

0 for all x−c > 0. On the other hand, infx−c B
x−c (xc) < 0 by (3). Hence, the Intermediate Value

Theorem implies that Bx
−c

has at least one root. Therefore, by (5), Bx
−c

has exactly two roots;

xc1 (x
−c) and xc2 (x

−c).

(ii) Suppose that maxBx̂
−c

(xc) < 0. This means that there are values of x−c for which Bx
−c

is always negative. (9) implies that the set of such x−cs is an interval. Let us denote this interval

10There is a non-generic case when Bx
−c

is tangent to the constant zero line.
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by (x−c, x−c). From (2) and B0 (0) = 0 it follows that x−c > 0. From (7) it follows x−c <∞. If

x−c ∈ (x−c, x−c), Bx
−c

< 0 and it has no roots. If x−c ∈ R+\
[
x−c, x−c

]
then the same argument

as in part (i) shows that Bx
−c

has two roots, xc1 (x
−c) and xc2 (x

−c). The values x−c and x−c

correspond to the non-generic case where Bx
−c

is tangent to constant zero line. From (1) and (9)

it follows that

lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc2
(
x−c

)
lim

x−c→x−c
xc2
(
x−c

)
.

It remains to show that xc1 (x
−c) is increasing first, then it is decreasing, and xc2 (x

−c) is de-

creasing first, then it is increasing. On the interval (0, x̂−c) an increase in x−c results a downwards

shift of Bx
−c

(see (9)). Hence, by (1), xc1 (x
−c) is increasing and xc2 (x

−c) is decreasing on this

interval. On [x̂−c,∞) an increase in x−c results an upward shift of Bx
−c

(see (9)). Hence, by (1),

xc1 (x
−c) is decreasing and xc2 (x

−c) is increasing on this interval. Finally, it follows from (2) and

(7) that limx−c→0 x
c
1 (x

−c) = 0.

8.2 Proof of Proposition 2

Before we proceed with the proof of Proposition 2 we prove a few Lemmas about the equilibrium

cutoffs. For convenience we introduce a few new notations. We shall denote min {µb, µw} by µmin.

In addition, we define two constants

ψ0 =
1

1
4Kα (1− α)µmin

, (13)

ψ1 = Kµmin
1

2

(
1− 2−α

) (
1− 2−(1−α)

)
.

In the proofs of the lemmas we often use the inequality stated in the next

Lemma 6 For all ξ ≤ log 2

1− e−ξ ≥
1

2
ξ. (14)

In what follows (xc, x−c) denotes an equilibrium cutoff profile.

Lemma 7 There exists a λ0 such that for all λ ≥ λ0 eithermax {xc, x−c} ≤ ψ0λ
−2 ormax {xc, x−c} ≥

ψ1.

Proof. First, suppose that both cutoffs are strictly positive, that is, xb, xw > 0. Then, by (8),

xb + xw =
∑

c∈{b.w}
K
[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]

=
∑

c∈{b.w}
Kµc [G ((1− α)x

c) +G (αxc)−G (xc)]

=
∑

c∈{b,w}
Kµc

(
1− e−αλx

c
)(
1− e−(1−α)λx

c
)
, (15)
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where the first equality follows from rearranging the terms corresponding to the same colour and

the second one from G (x) = 1− e−x and

[
1− e−αλx

c
]
+
[
1− e−(1−α)λx

c
]
+
[
1− e−λx

c
]
=
(
1− e−αλx

c
)(
1− e−(1−α)λx

c
)
.

We consider two cases. If max
{
xb, xw

}
≥ (log 2) /λ, then from the previous equality it follows

that

xb + xw ≥ Kµmin
(
1− e−α log 2

)(
1− e−(1−α) log 2

)

= Kµmin
(
1− 2−α

) (
1− 2−(1−α)

)
= 2ψ1.

Since max
{
xb, xw

}
≥ 1

2

(
xb + xw

)
, the previous inequality chain implies max

{
xb, xw

}
≥ ψ1. If

max
{
xb, xw

}
≤ (log 2) /λ, then, by Lemma 6,

1− e−αλx
c

≥
1

2
αλxc and 1− e−(1−α)λx

c

≥
1

2
(1− α)λxc (16)

for each c ∈ {b, w} . Equations (15) and inequalities (16) imply that

max
{
xb, xw

}
≥

∑
c∈{b,w}

1

4
Kα (1− α)µcλ

2 (xc)2

≥
1

4
Kα (1− α)µminλ

2
[
(xc)2 +

(
x−c

)2]
≥
1

ψ0
λ2
(
max

{
xb, xw

})2
.

Hence, max
{
xb, xw

}
≤ ψ0λ

−2.

Second, suppose that one of the cutoffs is zero, and without loss of generality assume that

xb = 0 and, hence, max
{
xb, xw

}
= xw. Then, by (8),

xw = Kµw

(
1− e−(1−α)λx

w
)
.

If xw ≥ (log 2) /λ then

xw ≥ Kµw

(
1− e−(1−α) log 2

)
≥ ψ1.

If xw ≤ (log 2) /λ then, by Lemma 6,

xw ≥ 2Kµw (1− α)λx
w.

If λ > 1/ (2Kµw (1− α)) then the previous inequality implies that xw ≤ 0 and hence, xw < ψ0λ
−2.

Lemma 8 There exists a λ0 such that if λ ≥ λ0 and xc ≥ ψ1 then either x−c ≤ ψ0λ
−2 or

x−c ≥ ψ1/2.

Proof. Suppose that xc ≥ ψ1. Suppose that x
−c > 0. Then

x−c = Kµ−cG
(
(1− α)x−c

)
+Kµc (G (αx

c)−G (xc))

≥ Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 , (17)
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where the equality is just (8) and the inequality follows from xc ≥ ψ1. We consider two cases.

Case 1: x−c ≥ (log 2) /λ. If λ is large enough so that Kµce
−λαψ1 ≤ 1

2ψ1,

Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 ≥ Kµ−c

(
1− e−(1−α) log 2

)
−
1

2
ψ1

≥ Kµ−c

(
1− 2−(1−α)

)
−
1

2
ψ1 ≥

1

2
ψ1,

where the last equality follows from ψ1 ≤ Kµ−c
(
1− 2−(1−α)

)
. The previous inequality chain and

(17) imply x−c ≥ 1
2ψ1.

Case 2: x−c < (log 2) /λ. Then, by Lemma 6,

1− e−λ(1−α)x
−c

≥
1

2
(1− α)λx−c. (18)

If λ is large enough so that Kµmaxe
−λαψ1 ≤ ψ0λ

−2, the previous inequality implies that

Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 ≥ Kµmin
1

2
(1− α)λx−c − ψ0λ

−2.

This inequality and the inequality chain (17) yields
(
Kµmin

1

2
(1− α)λ− 1

)
x−c ≤ ψ0λ

−2.

If λ is large enough so that Kµmin
1
2 (1− α)λ− 1 > 1 then x

−c ≤ ψ0λ
−2.

Recall that xmax is the largest possible cutoff which can be a best response to a cutoff profile

and xmax = Kµc.

Lemma 9 For all ε > 0, there exists a λ0, such that if λ > λ0 and xc ≥ ψ1/2 then either

x−c ∈
(
ψ0λ

−2, ψ1/2
)

or xc ∈ (xcmax − ε, x
c
max) .

Proof. Suppose that xc ≥ ψ1/2 and that x−c /∈
(
ψ0λ

−2, ψ1/2
)
. Notice that from (8) and

xmax = Kµc it follows that

xcmax − x
c = Kµc −

[
Kµc

(
1− e−λ(1−α)x

c
)
+Kµ−c

(
1− e−λx

−c

− 1 + e−λαx
−c
)]

(19)

= Kµce
−λ(1−α)xc −Kµ−c

(
e−λx

−c

− e−λαx
−c
)

= Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)
.

Case 1: x−c ≥ ψ1/2. Then

Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)

≤ Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c

≤ Kµce
− 1
2λ(1−α)ψ1 +Kµ−ce

− 1
2λαψ1 ,

where the first inequality follows from 1−e−(1−α)λx
−c

≤ 1 and the second one from x−c, xc ≥ ψ1/2.

This inequality chain and (19) imply that

xcmax − x
c ≤ Kµce

− 1
2λ(1−α)ψ1 +Kµ−ce

− 1
2λαψ1 .
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Notice that for each ε there is a λ0 such that if λ > λ0 the right-hand-side of this inequality is

smaller than ε and, hence, xc ∈ (xcmax − ε, x
c
max).

Case 2: If x−c ≤ ψ0λ
−2, then,

Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)

≤ Kµce
−λ(1−α)xc +Kµ−c

(
1− e−(1−α)λx

−c
)

≤ Kµce
− 1
2λ(1−α)ψ1 +Kµ−c

(
1− e

−ψ0(1−α)
λ

)
,

where the first inequality follows from e−λαx
−c

≤ 1 and the second one from xc ≥ ψ1/2 and

x−c ≤ ψ0λ
−2. This inequality chain and (19) imply that

xcmax − x
c ≤ Kµce

−1
2λ(1−α)ψ1 +Kµ−c

(
1− e

−ψ0(1−α)
λ

)
.

Observe that as λ goes to infinity both Kµce
−(1/2)λ(1−α)ψ1 and 1− e−ψ0(1−α)/λ converge to zero.

Therefore, for each ε there is a λ0 such that if λ > λ0 the right-hand-side of this inequality is

smaller than ε and xc ∈ (xcmax − ε, x
c
max).

We are ready to prove Proposition 2. By Lemma 7, we have to consider two cases: either

max {xc, x−c} ≤ ψ0λ
−2 or max {xc, x−c} ≥ ψ1.

Case 1: max {xc, x−c} ≤ ψ0λ
−2. Note that for each ε there is a λ0 such that for all λ > λ0 the

term ψ0λ
−2 is strictly smaller than ε, and hence, xb, xw < ε. Therefore, either (i) or (ii) holds in

the statement of Proposition 2.

Case 2: max {xc, x−c} ≥ ψ1. Without loss of generality assume that max {xc, x−c} = xc.

By Lemma 8, we have to consider only the following two subcases: either x−c ≤ ψ0λ
−2, or

x−c ≥ (1/2)ψ1.

Case 2.a: x−c ≤ ψ0λ
−2. Then for each ε there is a λ0 such that if λ ≥ λ0 then x−c ≤ ε,

and by Lemma 9, xc ∈ (xcmax − ε, x
c
max) . In this case (i) holds for x−c and (iii) holds for xc.

Case 2.b: x−c ≥ (1/2)ψ1. Since xc ≥ ψ1 > (1/2)ψ1, Lemma 9 implies that xc ∈

(xcmax − ε, x
c
max) for c ∈ {b, w} . Therefore, (iii) of the statement of Proposition 2 holds for

c ∈ {b, w}.

8.3 Proof of Theorem 1

By Proposition 2, for all ε there exists a λ0 such that any equilibria can be classifies into one of

the cases described by the following table.

xc x−c

Case 1 0 0

Case 2 0 ∈ (0, ε)

Case 3 0 ∈ (x−cmax − ε, x
−c
max)

Case 4 ∈ (0, ε) ∈ (0, ε)

Case 5 ∈ (0, ε) ∈ (x−cmax − ε, x
−c
max)

Case 6 ∈ (x−cmax − ε, x
−c
max) ∈ (x−cmax − ε, x

−c
max)
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We shall consider each case separately. We show that equilibria described by Case 2 do not exist

and equilibria corresponding to Cases 1, 4, and 5 are unstable. Finally, we prove that equilibria

corresponding to Cases 3 and 6 are unique and stable. Note that this accomplishes the proof of

Theorem 1. In what follows, we use the notations introduces in the last subsection, see (13).

Case 2.

In order to show that there does not exists an equilibrium described by Case 2, it is enough to

prove that if λ is large enough and xc = 0 then x−c = 0 or x−c ≥ ψ1. By Lemma 7, x−c ≥ ψ1

or x−c ≤ ψ0λ
−2. If x−c ≥ ψ1, we are done. It remains to be shown that x−c ≤ ψ0λ

−2 implies

x−c = 0. We prove it by contradiction, and assume that x−c ∈ (0, ψ0λ
−2]. Then,

x−c = Kµ−cG
(
(1− α)x−c

)
= Kµ−c

(
1− e−λ(1−α)x

−c
)
≥
1

2
Kµ−cλ (1− α)x

−c > x−c,

where the first equality is just (8) with xc = 0, the first inequality follows from Lemma 6, and

the second one from λ being large. Note that the previous inequality chain cannot hold, hence,

x−c = 0.

Case 1.

We show that the equilibrium cutoff profile (0, 0) is unstable. By Definition 1, it is enough

to show that there exists a distribution of cutoff profiles nearby (0, 0) such that the best-response

dynamics does not converge to (0, 0). To this end, choose Xc and X−c to be deterministic variables

such that X−c = 0 and Xc = δ, where δ ∈ (0, log 2/ [λ ( 1− α)]) . Let the best response of an agent

with colour c at time t denoted by xct if the initial distribution of cutoffs is (Xc,X−c). Equations

(8) and (12) imply that x−ct = 0 for all t. However, we show that xct does not converge to 0 for

sufficiently large λ. Since xc0 > 0, it is enough to prove that dxct/dt > 0 whenever x
c
t is small but

positive. Suppose that xct ∈ (0, log 2/ [λ ( 1− α)]). Then

dxct
dt

= Kµc

(
1− e−λ(1−α)x

c
t

)
− xct

≥ λ
1

2
Kµc (1− α)x

c
t − x

c
t =

(
λ
1

2
Kµc (1− α)− 1

)
xct ,

where the first equality is just (12) with x−ct = 0 and the inequality follows from xct ∈ (0, log 2/ [λ ( 1− α)])

and Lemma 6. If λ is large enough then λKµc (1− α) /2 > 1, and hence, dxct/dt > 0.

Cases 4 and 5.

Using the equation describing the best-response dynamics, (12), we construct the Jacobian

matrix corresponding to the dynamic system
(
xct , x

−c
t

)
:

J
(
xct , x

−c
t

)
=




db̃c(xct ,x
−c
t )

dxct
− 1, db̃

c(xct ,x−ct )
dx−ct

,

db̃−c(xct ,x
−c
t )

dxct
,

db̃−c(xct ,x
−c
t )

dx−ct
− 1


 . (20)

where all the derivatives are taken at
(
xc0, x

−c
0

)
. Since in Cases 4 and 5 xc0, x

−c
0 > 0, the Hartman-

Grobman Theorem implies that
(
xc0, x

−c
0

)
is not a stable equilibrium if an eigenvalue of J

(
xc0, x

−c
0

)
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has a positive real part. It is well-known that if trJ
(
xc0, x

−c
0

)
> 0 or detD

(
xc0, x

−c
0

)
< 0, then the

real part of at least of the eigenvalues is positive. Therefore, in order to establish that
(
xc0, x

−c
0

)
is

unstable it is enough to show that tr J
(
xc0, x

−c
0

)
> 0.

In Case 4, Proposition 2 and Lemma 7 imply that xc ∈
(
0, ψ0λ

−2
)
if λ is large enough. In Case

5, Proposition 2 and Lemma 8 imply that xc ∈
(
0, ψ0λ

−2
)
if λ is large enough. Also notice that

db̃−c (x−c, xc)

dx−c
= Kµ−cλ (1− α) e

−λ(1−α)x−c ≥ 0,

and for sufficiently large λ,

db̃c (xc, x−c)

dxc
= Kµcλ (1− α) e

−λ(1−α)xc ≥ Kµcλ (1− α)
(
1− e−(1−α)ψ0/λ

)

≥
1

2
Kµcλ (1− α) ,

where the first inequality follows from xc < ψ0λ
−2 and the second one from e−(1−α)ψ0/λ < 1/2 if

λ is large. Therefore, if λ is large enough,

tr J
(
xc0, x

−c
0

)
=

db̃c
(
xc0, x

−c
0

)

dxc0
− 1 +

db̃−c
(
xc0, x

−c
0

)

dx−c0
− 1

≥
1

2
λKµmin (1− α)− 2 > 0.

Case 3.

Remark 1 established that, if λ is large, the equilibrium exists and is unique in this case. It

remains to show that this equilibrium is stable. Notice that this equilibrium corresponds to the

intersection of the x−c2 and xc0 curves, that is,
(
0, x−c2 (0)

)
. Since the curve x−c2 is continuous, there

exist δ1 and δ2 such that if xc < δ1 then |x−c − x−c2 (xc) | < δ2. In addition, we established in

Section 5 that if δ1 and δ2 is small enough, xc < δ1 and |x−c − x
−c
2 (0) | < δ2 then

b̃c
(
xc, x−c

)
− xc < 0 and b̃−c

(
x−c, xc

)
− x−c

> 0 if x−c < x2
−c (xc) ,

< 0 if x−c > x2−c (xc) ,

= 0 if x−c = x2
−c (xc) .

(21)

Let δ be so small that for any cutoff distribution (Xc,X−c) , if |Xc| < δ and |X−c − x−c2 (0) | < δ

almost surely then the initial best-response cutoff profile,
(
xc0, x

−c
0

)
, satisfy xc < δ1 and |x−c −

x−c2 (0) | < δ2. Then (21) implies that
(
xct , x

−c
t

)
is in the rectangle

{(
xc, x−c

)
: xc ∈ (0, δ1) , |x

−c − x−c2 (0) | < δ2
}

for all t.11 Therefore, limt→∞ x
c
t = 0 by (21). This, together with (21), implies limx−ct = x−c2 (0).

Case 6.

11This is because dxctdt < 0 whenever xct = δ1, dx
−c
t /dt < 0 if x−ct = x−c

2
(0) + δ2 and dx−ct /dt > 0 if

x−ct = x−c
2
(0)− δ2.
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First, we show that if this equilibrium exists it is stable. Recall the matrix introduced in Cases 4

and 5, J
(
xc0, x

−c
0

)
. Since xc0, x

−c
0 > 0, we can apply the Hartman-Grobman Theorem which implies

that
(
xc0, x

−c
0

)
is a stable equilibrium if all eigenvalues of J

(
xc0, x

−c
0

)
have negative real parts. It

is well-known that if trD
(
xb0, x

w
0

)
< 0 and detD

(
xb0, x

w
0

)
> 0 then the eigenvalues indeed have

negative real parts. In this case, if λ is large enough then xb, xw > xmax − ε > ψ1/2. In addition,

for all δ > 0 there is a λ0 such that if λ > λ0,

db̃c (xc, x−c)

dxc
− 1 = λKµc (1− α) e

−λ(1−α)xc − 1 ∈

(
−1,−1 +

δ

2

)
, (22)

and

db̃c (xc, x−c)

dx−c
= λKµ−c

(
αe−λαx

−c

− e−λx
−c
)

= λKµ−ce
−λαx−c

(
α− e−λ(1−α)x

−c
)
∈

(
0,
δ

2

)
.

Thus,

trD
(
xc0, x

−c
0

)
< −2 + δ < 0 and detD

(
xc0, x

−c
0

)
> 1− δ2 > 0.

In order to show the existence of an equilibrium in this case, we show that the curves xc2 and

x−c2 are defined on [ψ1/2,∞) and they intersect. By (22), b̃c (xc, x−c)− xc is strictly decreasing in

xc on this interval. Since b̃ is bounded from above by xmax, limxc→∞

[
b̃c (xc, x−c)− xc

]
= −∞. In

addition, Lemma 9 implies that, b̃c (xc, x−c) ≥ xcmax − ε = Kµc − ε > ψ1/2 if x
c, x−c ∈ [ψ1/2,∞).

Therefore, b̃c (xc, x−c)−xc is strictly decreasing, positive at xc = ψ1/2, and becomes negative as xc

gets large whenever x−c ∈ [ψ1/2,∞). Therefore, for each x
−c ∈ [ψ1/2,∞) there exists exactly one

xc such that b̃c (xc, x−c) = xc. We denotes this xc by xc2 (x
−c) (see Lemma 5). Lemma 9 implies

that xc2 (x
−c) ∈ [xcmax − ε, x

c
max] for all x−c ≥ ψ1/2. Since this argument holds for both c, the

mapping xc2 ◦ x
−c
2 :

[
1
2ψ1,∞

)
→ [xcmax − ε, x

c
max] is well-defined and clearly continuous. Therefore,

there exists an xc∗ ∈ [x
c
max − ε, x

c
max] such that

xc2
(
x−c2 (xc∗)

)
= xc∗.

Define x−c∗ = x−c2 (xc∗). Then, by (11), (xc∗, x
−c
∗ ) is an equilibrium cutoff profile.

In order to show the uniqueness, consider the mapping B : [ψ1/2,∞)
2 → R

2 defined by

B
(
xc, x−c

)
=
(
b̃c
(
xc, x−c

)
− xc, b̃−c

(
x−c, xc

)
− x−c

)
.

Note that (xc, x−c) is an equilibrium if and only if B (xc, x−c) = (0, 0). Note that the Jacobian

matrix of B is just J (xc, x−c). We have concluded above that the determinant of this matrix is

strictly positive on xc, x−c ∈ [ψ1/2,∞). Therefore, B is an injection and there can only be at most

one (xc, x−c) satisfying B (xc, x−c) = (0, 0).
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