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Abstract

This paper analyzes a bilateral trade model where the buyer can choose any cumulative

distribution function (CDF) supported on [0, 1], which then determines her valuation. The

seller, after observing the buyer’s choice of the CDF but not its realization, gives a take-

it-or-leave-it offer to the buyer. We characterize the unique equilibrium outcome of this

game and show that in this outcome, the price and the payoffs of both the buyer and the

seller are equal to 1/e. The equilibrium CDF of the buyer generates a unit-elastic demand

on [1/e, 1].

1 Introduction

For a given price of a good, a buyer is better off the higher is her valuation for the good.

However, a monopolist who knows that the buyer’s valuation is likely to be high will charge a

higher price. As a result, a buyer who could increase her willingness-to-pay stochastically would

face a trade-off between the higher payoff she would receive from the good and the higher price

she would have to pay. This paper analyses this trade-off without imposing any restriction on

the set of value-distributions available to the buyer, except that the maximum valuation is less

than one.1

In our model, the seller has full bargaining power. Specifically, after observing the distrib-

ution chosen by the buyer, the seller sets a price at which either the buyer trades or the game

ends. We show that this game has a unique equilibrium outcome. In each equilibrium, the

price is 1/e and the distribution of the buyer’s is supported on [1/e, 1], so that trade always

occurs and the seller’s payoff is 1/e. The buyer’s value-distribution is a combination of a con-

tinuous distribution on [1/e, 1) defined by the CDF F ∗ (v) = 1 − 1/ (ev) and an atom of size

∗We have benefited from discussions with Dirk Bergemann, Ben Brooks, Sylvain Chassang, Eddie Dekel, Jeff

Ely, Faruk Gul, Yingni Guo, Sergiu Hart, Francesco Nava, Santiago Oliveros, Ludovic Renou and Phil Reny.
†Department of Economics, University of Essex, Colchester, UK. E-mail: dcond@essex.ac.uk.
‡Department of Economics, London School of Economics, London, UK. E-mail: b.szentes@lse.ac.uk.
1Requiring the upper bound to be one is simply a normalization. Such an upper bound can be interpreted,

for example, as a technological frontier determining the object’s maximum value.
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1/e at v = 1. The total equilibrium surplus is found to be shared equally between the seller

and the buyer, so that the buyer also receives an equilibrium payoff of 1/e. The effi ciency loss

that results from the buyer’s desire to generate information rent is found to be more than one

quarter of the first-best social surplus.

The equilibrium CDF of the buyer, F ∗, generates a unit-elastic demand function on (1/e, 1),

such that the probability that the buyer is willing to buy the good at price p is 1 − F ∗ (p) =

1/ (ep). When faced with this demand function, the seller is indifferent between charging any

price in [1/e, 1], since any price in this range will result in an expected profit of p [1/ (ep)] = 1/e.

The problem analysed in our paper is a hold-up one. Indeed, if the buyer’s choice of the

CDF was contractible, the equilibrium outcome would be effi cient. Our model can therefore

be motivated by the same applications as the literature on hold-up problems. Most of this

literature considers the case where the buyer’s investment is costly, observable and shifts her

valuation deterministically. However, it seems likely that the returns to many investments are

stochastic and the investor has superior information about these returns. Consider, for example,

human capital investment. Prior to going on the job market, an individual decides the type and

length of her education. It is conceivable that education has a stochastic impact on productivity

and hence the type of education can be thought of as a distribution on productivities. In this

case, an employer can offer a contract based on the observed education but not on the actual

productivity. The goal of our paper is to reconsider the hold-up problem from this perspective

and to analyze the buyer’s incentive to generate information rent and the resulting ineffi ciencies.

We consider an extension of our baseline model to incorporate an additional constraint on

the buyer that her expected valuation cannot exceed a given threshold. We show that, as in the

baseline model, trade occurs with probability one and the buyer’s demand is unit-elastic. We

demonstrate that the buyer’s equilibrium CDF minimizes the seller’s profit among all CDFs

generating the threshold expectation. Furthermore, we show that the seller’s payoff converges

to zero while the buyer’s payoff converges to the threshold expectation as the upper bound of

the CDF’s support tends to infinity. As such, if the buyer is not constrained by the support

of the CDFs, she can choose a value distribution which induces the seller to set an arbitrarily

small price and generates the threshold expectation.

There are papers on the hold-up problem which also consider the buyer’s ability to generate

asymmetric information. Lau (2008) assumes that the seller observes the buyer’s investment

perfectly with a given probability, and receives an uninformative signal otherwise. Her main

result is that effi ciency is maximized when this probability is strictly between zero and one.

This result arises because the buyer can generate information rent by randomizing on various

investment levels, since randomization generates asymmetric information conditional on the

uninformative signal. In turn, the buyer’s information rent makes it more profitable for her to

invest. The equilibrium randomization of the buyer ensures that the seller is indifferent between

setting prices on the support of valuations, as in our model. In contrast to our equilibrium,
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however, trade often does not occur since the seller also randomizes on the full range of valu-

ations in order to ensure that the buyer is indifferent. Hermalin and Katz (2009) consider the

hold-up problem incorporating asymmetric information after the buyer’s investment decision.

In particular, a larger investment results in a first-order stochastic shift in the buyer’s value

distribution. The authors consider several scenarios in which the degree of observability of the

investment is varied and find that the buyer is made worse off if her investment is unobservable.2

Similarly, we demonstrate that in our model, the buyer’s equilibrium payoff is zero if the seller

is unable to observe the buyer’s CDF.

Roesler and Szentes (2015) analyze the same bilateral trade protocol as considered here but

with a different information structure. In their setup, the buyer has a given value distribution

and designs a signal structure to learn about her valuation. After observing the signal structure,

the seller sets a price and the buyer trades if the expected valuation conditional on her signal

exceeds the price. The buyer in Roesler and Szentes (2015) faces a trade-off between signal

precision improving the effi ciency of her purchase decision for a given price, but potentially

increasing the price since the buyer’s demand is determined by her signal. Roesler and Szentes

(2015) show that the latter determines the buyer’s equilibrium signal structure so that the

equilibrium price is the lowest across all signal structures and the buyer always trades. As in

our equilibrium, the seller is indifferent between any prices in the signal’s support.

Our buyer-optimal distribution also appears in a literature on non-Bayesian monopoly pric-

ing. Bergemann and Schlag (2008) consider a monopolist with the min-max regret criterion.

The seller’s ex-post regret is defined as the buyer’s payoff if a trade occurs and the buyer’s val-

uation otherwise. The authors argue that the optimal pricing policy coincides with the seller’s

equilibrium strategy in a zero-sum game played against nature in which nature chooses the

buyer’s valuation to maximize the seller’s regret. The authors show that nature’s equilibrium

strategy in this case is the same as our equilibrium CDF and the seller fully randomizes on its

support.3 Neeman (2003) considers second-price auctions with private values and addresses the

problem of finding the value-distribution which minimizes the ratio between the seller’s profit

and the expected value. The author shows that the solution generates a unit-elastic demand

function. Unit-elastic demands also play a role in models where randomization by the seller

is required for the existence of an equilibrium, since this form of demand function is required

to ensure that the seller is indifferent on the support of valuations. Renou and Schlag (2010)

consider models with min-max regret and imperfect competition and Hart and Nisan (2012)

approximate the seller’s maximum revenue in a multiple-item auction.4

2The consequences of the observability assumption in hold-up problems were also explored in Tirole (1986)

and Gul (2001) under various bargaining protocols.
3Since the seller’s regret is the buyer’s payoff if there is trade, it is not a coincidence that nature chooses the

CDF which maximizes the buyer’s expected surplus.
4 In a different context, Ortner and Chassang (2014) show that, in order to eliminate collusion between an

agent and the monitor, the principal benefits from introducing asymmetric information between the agent and

the monitor by making the monitor’s wage random. The optimal wage scheme is determined by a distribution
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Our paper also relates to a recent literature on the importance of information structures in

selling problems. For example, Bergemann and Pesendorfer (2007) consider the seller’s problem

of designing the information structure to determine how buyers learn about their valuations

prior to participating in an auction. Bergemann, Brooks and Morris (2015) analyze a model

where the buyer’s value distribution is given and the seller receives a signal about this value.

The authors characterize the entire set of payoff outcomes that can arise from some signal

structure.

2 Model

There is a seller who has an object to sell to a single buyer. Prior to interacting with the

seller, the buyer can choose the distribution of her valuation subject to the constraint that the

valuation is below one. Formally, the buyer can choose any F ∈ F where F is the set of CDFs
supported on [0, 1]. The seller observes the choice of the buyer, F , and gives a take-it-or-leave-it

price offer to the buyer, p. Finally, the buyer’s valuation, v, is realized and she trades with the

seller if and only if v ≥ p.5 If trade takes place, the payoff of the seller is p and that of the

buyer is v − p; both receive a payoff of zero otherwise. The seller and the buyer are expected
payoff maximizers. We restrict attention to Subgame Perfect Nash Equilibria of this game.

We introduce a few pieces of notation. For each F ∈ F and p ∈ R, let D (F, p) denote the

demand at price p generated by F , that is, the probability of trade. Observe that D (F, p) = 1−
F (p)+∆ (F, p), where∆ (F, v) denotes the probability of v according to F .6 If the buyer chooses

a CDF F ∈ F , then the seller’s profit is Π (F ) = maxp pD (F, p).7 The seller might be indifferent

between charging different prices which result in different payoffs to the buyer. For each F ∈ F ,
let P (F ) denote the set of profit maximizing prices, that is, P (F ) = arg maxp pD (F, p). Finally,

let U (F, p) denote the buyer’s payoff if the seller sets price p, that is, U (F, p) =
∫ 1

p
v−pdF (v).

3 Results

We solve our problem in two steps. First, for a given profit of the seller π, we compute the

CDF Fπ ∈ F which maximizes the buyer’s payoff subject to the constraint that the seller’s

profit is π. This step essentially reduces our search for an equilibrium to a one-dimensional

problem, since the buyer’s equilibrium CDF must be in the set {Fπ}π∈[0,1]. In the second step,

we characterize the profit π and the corresponding CDF Fπ which maximizes the buyer’s payoff.

similar to our equilibrium CDF.
5Assuming that the buyer is non-strategic in the final stage of the game and buys the object whenever her

valuation weakly exceeds the price has no effect on our results but makes the analysis simpler.
6That is, ∆ (F, v) = F (v)− supz<v F (z). If F does not specify an atom at v then ∆ (F, v) = 0.
7This maximum is well-defined because the buyer trades when she is indifferent.
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To this end, we next define the CDF Fπ and show that it maximizes the buyer’s payoff subject

to the constraint that the seller’s profit is π.

Equal-revenue distributions.– For each π ∈ (0, 1], let Fπ ∈ F be defined as follows:

Fπ (v) =


0 if v ∈ [0, π] ,

1− π
v if v ∈ (π, 1) ,

1 if v = 1.

Since Fπ (π) = 0, the valuation of the buyer is never below π. The function Fπ is continuous

and strictly increasing on [π, 1). On this interval, Fπ is defined by the decreasing density

fπ (v) = π/v2. Finally, there is an atom of size π at v = 1, that is, ∆ (Fπ, 1) = π.

Note that the seller is indifferent between setting any price on the support of Fπ, that is,

P (Fπ) = [π, 1]. To see this, suppose first that the seller sets price p ∈ [π, 1). Then the seller’s

payoff is pD (Fπ, p) = p [1− Fπ (p)] = p (π/p) = π. If the seller sets a price of one then his

payoff is ∆ (Fπ, 1) = π. Therefore, the seller’s payoff is π as long as he sets a price in [π, 1],

that is, Π (Fπ) = π.

Lemma 1 Suppose that G ∈ F and p ∈ P (G) and let π denote Π (G).

(i) Then Fπ first-order stochastically dominates G, that is, for all v ∈ [0, 1]

Fπ (v) ≤ G (v) . (1)

(ii) Furthermore, U (Fπ, π) ≥ U (G, p) and the inequality is strict if Fπ 6= G.

Part (i) of the lemma implies that the expected value induced by Fπ is larger than that

induced by G. Recall that π ∈ P (Fπ), that is, the seller finds it optimal to set price π in the

subgame generated by Fπ. In addition, Π (G) = π = Π (Fπ). Therefore, part (ii) implies that

the maximum payoff the buyer can achieve subject to the constraint that the seller’s profit is

π is U (Fπ, π).

Proof. To prove part (i), note that since p ∈ P (G), it must be that for all v ∈ [0, 1],

vD (G, v) ≤ pD (G, p) .

or equivalently,

1− pD (G, p)

v
+ ∆ (G, v) ≤ G (v) . (2)

Since ∆ (G, p) ∈ [0, 1] and π = pD (G, p) , the previous inequality implies (1).

To see part (ii), note that

U (Fπ, π) =

∫ 1

π

v − πdFπ (v) ≥
∫ 1

π

v − πdG (v) ≥
∫ 1

p

v − pdG (v) = U (G, p) ,
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where the first inequality follows from Fπ first-order stochastically dominating G and the second

one from π = pD (G, p) ≤ p. In addition, the first inequality is strict unless Fπ = G (see

Proposition 6.D.1 of Mas-Colell et al (1995)).

Let F ∗ and p∗ denote the equilibrium CDF of the buyer and the equilibrium price of the

seller, respectively. We are now ready to state our main result.

Theorem 1 In the unique equilibrium outcome, F ∗ = F1/e and p∗ = U (F ∗, p∗) = Π (F ∗) = 1/e.

The seller’s equilibrium strategy is not determined uniquely off the equilibrium path. He

might charge different prices if he is indifferent after observing out-of-equilibrium CDFs.

Proof. First, we show that there is an equilibrium in which the buyer chooses F1/e and the

seller responds by setting price 1/e. Recall that P (Fπ) = [π, 1] for all π, so the seller optimally

charges the price 1/e in the subgame generated by F1/e. Next, we argue that the buyer has no

incentive to deviate either. If the buyer does not deviate, her payoff is U
(
F1/e, 1/e

)
. By part

(ii) of Lemma 1, any deviation payoff of the buyer is weakly smaller than U (Fπ, π) for some

π ∈ [0, 1]. So, it is suffi cient to show that U (Fπ, π) is maximized at π = 1/e. Note that

U (Fπ, π) =

∫ 1

π

v − πdFπ (v) =

∫ 1

π

vfπ (v) dv + ∆ (Fπ, 1)− π =

∫ 1

π

π

v
dv = −π log π, (3)

where the second equality follows from fπ (v) = π/v2 and ∆ (Fπ, 1) = π. The function −π log π

is indeed maximized at 1/e. From the equality chain (3), the buyer’s payoff is U
(
F1/e, 1/e

)
=

−1/e log 1/e = 1/e in this equilibrium. Finally, note that Π
(
F1/e

)
= 1/e.

It remains to prove the uniqueness of the equilibrium outcome. Part (ii) of Lemma 1 implies

that the equilibrium payoff of the buyer, U (F ∗, p∗), is weakly smaller than U
(
FΠ(F∗),Π (F ∗)

)
.

We showed that U
(
FΠ(F∗),Π (F ∗)

)
≤ U

(
F1/e, 1/e

)
in the previous paragraph, so the buyer’s

payoffcannot exceed 1/e in any equilibrium. Since 1/e is the unique maximizer of U (Fπ, π), part

(ii) of Lemma 1 also implies that in order for the buyer to achieve this payoff, she must choose

F1/e and the seller must charge 1/e. Therefore, to establish uniqueness, it is suffi cient to show

that the buyer’s equilibrium payoff is at least 1/e. To this end, for each ε ∈ (0, 1/e), let F ε1/e be

ε+F1/e on [p, 1) and F1/e otherwise. The CDF F ε1/e is constructed from F1/ε by moving a mass

of size ε from the atom at v = 1 to v = 1/e. If the buyer chooses F ε1/e then the seller strictly

prefers to set price 1/e.8 In addition, the buyer’s payoff is ε-close to U
(
F1/e, 1/e

)
= 1/e.

Therefore, the buyer can achieve a payoff arbitrarily close to 1/e irrespective of the seller’s

strategy to resolve ties and hence the buyer’s equilibrium payoff cannot be smaller than 1/e.

From the proof of Theorem 1 it follows that the buyer’s expected valuation generated by

8Note that, by setting price 1/e , the seller achieves the same payoff as if the buyer chose F1/e. For any price

in (1/e, 1], the seller’s payoff is strictly smaller than after the choice of F1/e because the probability of trade is

smaller by ε.
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F1/e is 2/e. Indeed, from (3),∫ 1

1/e

vdF1/e (v) =

∫ 1

1/e

vf1/e (v) dv + ∆
(
F1/e, 1

)
=

∫ 1

1/e

1

ev
dv +

1

e
=

2

e
.

Note that effi ciency requires the buyer to choose a distribution which would specify v = 1

with probability one, and the seller to quote a price which is weakly less than one. The total

surplus would be one. In contrast, the total surplus in equilibrium is only U
(
F1/e, 1/e

)
+

Π
(
F1/e

)
= 2/e. Hence, the effi ciency loss due to the buyer’s desire to generate information

rent is 1− 2/e ≈ 0.26.

As mentioned earlier, requiring the upper bound of the buyer’s CDF’s support to equal one

is just a normalization. If this upper bound is k then the equilibrium price, the payoff of the

buyer and the payoff of the seller are k/e. As k goes to infinity, the payoffs also converge to

infinity.

An Extension: Bounded Expectations

In our baseline model, the only constraint faced by the buyer is that the upper bound of

the valuation-support must be smaller than one. Suppose now that the buyer faces another

constraint when choosing the distribution F , namely that the expected value cannot exceed µ,

that is ∫ 1

0

vdF (v) ≤ µ.

Let Fµ ⊂ F denote the set of CDF’s satisfying this constraint. We assume that µ ≤ 2/e, since

otherwise the new constraint does not bind and the unique equilibrium outcome is identical to

the one identified by Theorem 1.

We now characterize the equilibrium CDF of the buyer, F ∗µ , and the equilibrium price, p∗µ.

Proposition 1 If the buyer’s action space is Fµ then, in the unique equilibrium outcome,

F ∗µ = Fπ∗µ and π
∗
µ is defined by −π∗µ log π∗µ + π∗µ = µ.

The expected valuation of the buyer generated by Fπ is increasing in π. This expectation is

−π log π+π by the proof of Theorem 1. The previous proposition states that the buyer chooses

Fπ∗µ so that her expected valuation is exactly µ, so Fπ∗µ ∈ Fµ. Since the seller charges π
∗
µ, trade

always occurs and U
(
Fπ∗µ , π

∗
µ

)
= µ− π∗µ.

Proof. We only show that there exists an equilibrium outcome with the properties described

in the statement of the theorem. The uniqueness proof is essentially identical to that in the

proof of Theorem 1.

If the buyer chooses Fπ∗µ , then the seller optimally responds by setting price π
∗
µ since

P
(
Fπ∗µ

)
=
[
π∗µ, 1

]
. We have to show that the buyer has no incentive to deviate. Let G ∈ Fµ,

p ∈ P (G) and let π denote Π (G). We show that U (G, p) ≤ U
(
Fπ∗µ , π

∗
µ

)
. Note that

U (G, p) =

∫ 1

p

v − pdG (v) =

∫ 1

p

vdG (v)− pD (G, p) ≤ µ− π,
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where the inequality follows from G ∈ Fµ and π = pD (G, p). If π ≥ π∗µ then this inequality

chain implies U (G, p) ≤ U
(
Fπ∗µ , π

∗
µ

)
because U

(
Fπ∗µ , π

∗
µ

)
= µ− π∗µ. If π ≤ π∗µ then

U (G, p) ≤ U (Fπ, π) ≤ U
(
Fπ∗µ , π

∗
µ

)
,

where the first inequality follows from part (ii) of Lemma 1 and the second from U (Fπ, π) being

strictly increasing in π on (0, 1/e] (see (3)).

Next, we show that the CDF Fπ∗µ is not only optimal for the buyer but is also the CDF

which minimizes the seller’s profit among those CDFs which generate an expected valuation of

exactly µ.

Remark 1 If
∫ 1

0
vdG (v) = µ then Π (G) ≥ Π

(
Fπ∗µ

)
.

This result is also reported in Neeman (2003) and Kremer and Snyder (2016).

Proof. Let π denote Π (G). Note that∫ 1

0

vdFπ (v) ≥
∫ 1

0

vdG (v) = µ =

∫ 1

0

vdFπ∗µ (v) ,

where the inequality follows from part (i) of Lemma 1, the first equality is the hypothesis of this

remark, and the second equality follows from the statement of Proposition 1. Since
∫ 1

0
vdFp (v)

is strictly increasing in p, the previous inequality chain implies that π ≥ π∗µ.

Again, if the upper bound of the CDF’s support is required to be k instead of one, the

equilibrium price and the profit would be kπ∗µ/k and the equilibrium payoff of the buyer would

be kU
(
Fπ∗

µ/k
, π∗µ/k

)
. What happens if k goes to infinity for a fixed µ?

Remark 2 For all µ ∈ R++, limk→∞ kU
(
Fπ∗

µ/k
, π∗µ/k

)
= µ and limk→∞ kπ∗µ/k = 0.

This remark implies that if the upper bound k can be arbitrarily large, the buyer extracts

the full surplus, µ, by choosing a CDF which induces a price arbitrarily close to zero.

Proof. By Proposition 1, −π∗µ/k log π∗µ/k + π∗µ/k = µ/k or equivalently,

− log π∗µ/k + 1 =
µ

π∗µ/kk
.

Since π∗µ/k goes to zero as k goes to infinity, the left-hand side converges to infinity. Therefore,

the right-hand side must also go to infinity. Hence, the price kπ∗µ/k must converge to zero,

which implies that the seller’s payoff goes to zero and the buyer’s payoff, kU
(
Fπ∗

µ/k
, π∗µ/k

)
,

goes to µ.
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4 Discussion

To conclude, we discuss various assumptions of our model and describe equilibria under alter-

native assumptions.

Unobservable Distributions.– If the seller is unable to observe the buyer’s choice, the price

cannot depend on the chosen distribution. Hence, the buyer always prefers stochastically higher

valuations. As a consequence, the seller sets a price of one in each equilibrium and the buyer

chooses a distribution which specifies a large enough mass at one.

Investment Cost.– It is straightforward to introduce some costs associated with the buyer’s

choice of distribution. Suppose, for example, that if the buyer chooses a distribution and the

upper bound of its support is k then she has to pay an additively separable cost c (k). Recall

that we have shown that the buyer’s payoff is k/e if she can choose any distribution supported

on [0, k] at no cost. So, when determining the upper bound of the support, the buyer solves

maxk k/e− c (k). If, for example, c (k) = k2/2, the optimal choice is k = 1/e.

Production Cost.– We have implicitly assumed that the seller’s production cost is zero. It is

straightforward to generalize Theorem 1 to the case where the seller has to pay a cost c ∈ (0, 1)

if trade occurs. One can follow the same two-step procedure to solve the problem as in Section

3. Given that the seller’s profit must be π, the distribution which maximizes the buyer’s payoff

is defined by the continuous CDF 1− π/ (v − c) on [π + c, 1) and an atom of size π/ (1− c) at
v = 1. This distribution makes the seller indifferent between setting any price on [π + c, 1).

The profit which maximizes the buyer’s payoff is (1− c) /e+ 2c.

Multiple Buyers.– If there is more than one buyer and the seller is restricted to set a single

price then there are multiple equilibria. In each of these equilibria, the price is one and at

least two buyers choose distributions which specify suffi ciently large atoms at one. There is an

equilibrium in which the value of at least one buyer is always one, so full effi ciency is achieved.

In this sense, competition eliminates the ineffi ciency due to the hold-up problem.
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