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Abstract

This paper considers a continuous-time biological model in which the growth rate of a

population is determined by the risk attitude of its individuals. We consider choices over

lotteries which determine the number of offspring and involve both idiosyncratic and aggregate

risks. We distinguish between two types of aggregate risk: environmental shocks and natural

disasters. Environmental shocks influence the death and birth rates, while natural disasters

result in instantaneous drops in population size.

Our main result is a utility representation of the evolutionary optimal behavior. The utility

is additively separable in the two types of aggregate risk. The term involving environmental

shocks is a von Neumann-Morgenstern utility which induces the same attitude towards both

idiosyncratic and aggregate risk. The term involving disasters cannot be interpreted as an

expected utility maximization and induces less tolerance towards aggregate risk.

1 Introduction

Most models in economics take preferences as given and derive the choices induced by those pref-

erences. This paper does just the opposite. We entertain the hypothesis that choice behaviours

are genetically determined and shaped by natural selection. The underlying individual preferences

are then merely the representations of those evolutionary optimal choice behaviours. We work

from the basic premise that in the long-run context of evolution, only the fastest-growing genes

survive. As this paper focuses on risk preferences, we consider choices over lotteries that affect the

reproductive value of individuals. Our main result is a utility representation of the optimal choice

behaviour.

The corner stone of our analysis is a characterization of the long run dynamics of a population

that inhabits a risky environment. Two types of aggregate risk are present, which we refer to as
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environmental shocks and natural disasters. Environmental shocks influence the birth and death

rates of individuals, determining the rate of increase of the population size. Meanwhile, natural

disasters cause discrete drops in population size, affecting the level as opposed to the slope. The

reproductive fitness of an individual is also subject to idiosyncratic risk, that is, conditional on

an environmental shock or a natural disaster, the birth rate and the survival probability are still

random variables. Because the population is affected by aggregate shocks, it does not grow at a

constant rate. Our key result consists of a characterization of the asymptotic growth rate as a

function of the ergodic distributions of the various types of risk. The main theorem of this paper

states that this function is the utility representation of the evolutionary optimal choice behaviour

over lotteries in an environment where the risk is determined by individuals’choices.

In order to better explain our contribution and to contrast our results with those in existence, we

first describe Robson’s (1996a) seminal paper on the evolution of risk preferences. Time is discrete

and individuals live for one period. The number of offspring an individual has is determined by

the realization of a lottery. A lottery, L, is described by a triple,
(
Ω, G, {F (·|ω)}ω∈Ω

)
, where Ω

denotes the set of possible states of the world, G is the ergodic distribution on Ω, and F (·|ω) is

the distribution on the number of offspring if the state of the world is ω. Conditional on ω, the

realization of F (·|ω) is independent across individuals, so this element represents the idiosyncratic

component of the risk. The distribution G represents the aggregate risk, since ω determines the

distribution of reproductive values in the population. Robson (1996) shows that the asymptotic

growth rate of the population is

u (L) =

∫
log

(∫
ηdF (η|ω)

)
dG (ω) . (1)

Since the gene inducing the choice of the lottery L grows at rate u (L) in the long run, Robson

(1996a) interprets u as the utility representation of the evolutionary optimal behaviour. That is,

the surviving gene chooses L over L′ if and only if u (L) ≥ u (L′). The main implication of (1)

is that the evolved attitude towards risk depends strongly on whether the risk is idiosyncratic

or aggregate. In fact, individuals will be relatively less tolerant of aggregate risk, as compared

to idiosyncratic risk. To illustrate this observation, consider two lotteries, L1 and L2. Suppose

that both lotteries generate the same distribution of offspring, H. However, the risk induced by

L1 is purely idiosyncratic while L2 involves only aggregate risk.1 By (1), u (L1) =
∫
ηdH (η) >∫

log ηdH (η) = u (L2). That is, even though L1 and L2 induce the same risk from the viewpoint

of a single individual, L1 is strictly preferred to L2.

In contrast to Robson (1996a), we consider a continuous time model, which allows us to distin-

guish between two types of aggregate risk: environmental shocks and natural disasters. Recall that

environmental shocks determine the rate of increase of the population size, while natural disasters

cause instantaneous changes in the level. In discrete time, any aggregate shock necessarily results

1Formally, L1 =
(
Ω, G, {F1 (·|ω)}ω∈Ω

)
where F1 (·|ω) ≡ H (·) and L2 =

(
R+, H, {F2 (·|ω)}ω∈Ω

)
where F2 (η|ω) =

0 if η < ω and one otheriwise.
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in a discrete change in the population size. It then becomes natural to ask whether the results

obtained by Robson (1996a) apply only to natural disasters, or to aggregate risk in general. Our

somewhat surprising answer is that his results do not hold for environmental shocks: the evolu-

tionary optimal behaviour induces the same attitude towards both idiosyncratic risk and aggregate

risk due to environmental shocks.

In order to state our representation theorem, let us describe our setup in detail. Time is

continuous and population dynamics are determined by a lottery L = (Ω, G, λ, Fn (·|ω) , Fe (·|ω)).

The set Ω denotes the set of states of the world and G is the ergodic distribution on Ω. The

function λ : Ω→ R is the arrival rate of a disaster. The c.d.f. Fn (·|ω) denotes the distribution of

the survival probability at the moment a natural disaster occurs. Fe (·|ω) denotes the distribution

of the net birth-rate (birth-rate minus death-rate) of an individual conditional on ω. Our main

result is that the asymptotic growth rate, U (L), is

U (L) =

∫ ∫
εdFe (ε|ω) dG (ω) +

∫
λ (ω) log

(∫
ηdFn (η|ω)

)
dG (ω) . (2)

In order to show that the function U can indeed be interpreted as a utility function of the

evolutionary optimal choice behaviour in this context, we introduce the stochastic arrival of choice

problems over lotteries. A gene is defined to be a choice behaviour, that is, a mapping from choice

sets into choices. At each moment in time, the dynamics of the population are determined by the

lottery chosen in the most recent choice problem. We show that only those genes which behave as

if they were maximizing the function U will survive.

The two additive terms in the utility representation (2) have very different economic inter-

pretations. The first term, which is associated with environmental shocks, is a standard von

Neumann-Morgenstern representation with Bernoulli utility as the identity function.2 This im-

plies that the choice induced by U depends only on the expected value of the net birth-rate; it

doesn’t matter whether the source of the risk is aggregate or idiosyncratic. The second term, which

is associated with natural disasters, is analogous to (1) of Robson (1996a). Indeed, if λ (ω) ≡ 1,

which corresponds to the frequency of discrete changes in Robson (1996a), the two expressions co-

incide. Let us again point out that this term is not a von-Neumann Morgenstern representation of

risk attitude. Interestingly, this term is formally identical to a smooth ambiguity-averse preference

representation where the ambiguity is determined by G and the ambiguity aversion is determined

by the logarithm function. For a discussion and axiomatic characterization of smooth ambiguity

averse preferences, see Klibanoff et al. (2005).

Let us emphasize that in our model, environmental shocks do not by any means have to be

associated with smooth changes. In fact, these shocks might have profound instantaneous effects
2Since the lotteries directly determine net birth-rates, the Bernoulli utility is the identity function, and hence,

these preferences exhibit risk-neutrality. However, it is not hard to generate risk-aversion in our model. If the lotteries

were to determine reproductive resources instead of net birth-rates and these resources could be transformed into

offspring according to a reproduction function, the Bernoulli utility would become the reproduction function. The

concavity of such a reproduction function would induce risk-averse preferences.
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on death rates. The spread of a viral disease, for example, could triple the death-rate and wipe out

a significant fraction of the population within a short period of time. Dramatic changes in weather

conditions could also be modelled as environmental shocks. A long lasting drought reduces food

sources, and a large proportion of the population might starve to death within a summer. What

these examples have in common is that the increased number of deaths occur through a shift in the

rate, and do not occur at a single point in time. Of course, the evolutionary optimal behaviour tries

to eliminate the risk of increased death rates associated with such environmental shocks. However,

our model predicts that this type of risk is not treated any differently from idiosyncratic risk.

There are, undoubtedly, events which cause the instantaneous death of many individuals at the

same time. Such events might include earthquakes, forest fires and floods. It is less clear, however,

that these events should be considered more important than environmental shocks in determining

the evolution of risk preferences. At the end, we do interpret our representation theorem as, at

least a partial, evolutionary justification for von Neumann-Morgenstern preferences.

Literature Review

Numerous papers use evolution to at least partially explain preferences. The first is probably

Becker (1976), who adopts an evolutionary argument to explain altruism. Overviews of the theories

on the relationship between biology and economic behaviour can be found in Robson (2001 and

2002). Here we review only selected papers concerned with the evolution of risk preferences.

Our continuous time assumption is not the only difference between our paper and Robson

(1996a). Robson (1996a) considers finite populations and derives conditions under which the

population does not go extinct with probability one. We consider continuum populations and, by

assumption, they never go extinct. The assumption regarding the continuum population enables

us to integrate out the idiosyncratic risk and sidestep problems related to extinction. We note that

if a population grows at a constant rate asymptotically, it either goes extinct or it becomes very

large. The former case is uninteresting from the evolutionary viewpoint and in the context of the

latter one, the continuum assumption does not seem far-fetched.

Robson (1996b) analyses a strategic biological model. First, each male chooses a lottery. The

outcome of the lottery is the male’s income. After the outcomes of the lotteries are realized, each

female decides which male to mate with. A male can mate with multiple females but not vice versa.

The number of offspring of a female is a function of the male’s income per females who chose him.

This model provides a rationale for a particular form of risk taking. Males are willing to take fair

bets which result in small losses with large probability and large gains with small probability. The

intuition is that a large gain might enable the male to mate with more females. Small losses, on

the other hand, might reduce slightly the number of offspring per female but unlikely to reduce the

number of females the male can mate with. Under reasonable assumptions on the reproduction

function, the positive effect on the number of females dominates the negative effect on the number

of offspring per female.

Dekel and Scotchmer (1999) also analyze evolutionary optimal choices over lotteries in a strate-
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gic model. In their model, individuals participate in contests within groups. The outcome of a

contest is determined by the realizations of the lotteries picked by the group members. The real-

izations of the lotteries are independent across individuals and the winner is the individual with

the largest realization. The key assumption is that only the winner reproduces. Since the winner

takes all, the evolutionary optimal behaviour will necessarily be risk-loving in some sense. How-

ever, the authors show that the evolutionary optimal behaviour cannot be represented by rational

preferences.

Unlike Robson (1996b) and Dekel and Scotchmer (1999), our model does not involves strategic

interactions; individuals only solve decision problems. Indeed, it is not clear to us how one might

identify preferences and strategic components from equilibrium behaviour. It is, of course, not to

say that the strategic nature of the environment does not influence the evolution of preferences.

Finally, the difference between the effects of idiosyncratic and aggregate risks on preferences

are also emphasized by Robson and Samuelson (2009). The authors consider the evolution of

intertemporal preferences in an age-structured biological model. Among other things, they show

that if the effects of aggregate shocks on an individual do not depend on the age of the individual,

then aggregate risk slows down population growth. It is not hard to show, that our main result

imply that this conclusion is only true for natural disasters but not for environmental shocks.

2 Model

Time is continuous and is indexed by t ∈ R+. At each moment, a continuum of individuals make

up the population. The population dynamics are governed by the lottery

L =
(
Ω, G, {λ (ω)}ω∈Ω , {Fe (·|ω)}ω∈Ω , {Fd (·|ω)}ω∈Ω

)
. (3)

Ω ⊂ R is the set of possible states of the world. Let ωt denote the state of the world at time t. The
dynamic process {ωt}t∈R is an ergodic3 Markov process with ergodic distribution G. We assume
that ωt is almost surely continuous in t almost everywhere.

Environmental shocks.– The net birth-rate of an individual at time t is εt = bt − δt, where bt
denotes her birth rate and δt denotes her death rate. The variable εt ∈ R is distributed according
to the conditional c.d.f. Fe (εt|ωt) and it is measurable in t almost surely. We allow the net birth
rate of an individual, εt, to change over time even if ωt stays constant. We assume that E (ε|ω)

is a bounded function of ω, and Fe (ε|ω) is uniformly continuous in ω. The realizations of ε′ts are

assumed to be independent across individuals conditional on ωt. We assume that the Law of Large

3This implies that whenever
∫
A 1dG (ω) > 0 then for each ω′ ∈ Ω, conditional on ω0 = ω′ :∫

I (ωt ∈ A) dt = +∞,

almost surely. That is, conditional on any initial condition, the process spends an infinite amount of time in every

positive G-measure set with probability one (see e.g. Glynn (1994) and Duffi e and Glynn (2004)).
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Numbers holds, and hence, at time t the population grows at rate

r (ωt) ≡
∫
εdFe (ε|ωt) . (4)

Natural disasters.– Natural disasters hit the population stochastically according to a non-

homogenous Poisson process. The arrival rate of the process at time t is λ (ωt) ∈ [0,∞) where

λ : Ω → R+ is a bounded, measurable function in L1 (Ω, G). If a natural disaster occurs at time

t, an individual survives with probability ηt ∈ [0, 1]4 , and Fn (·|ωt) denotes the distribution of ηt
conditional on ωt. We assume that Fn (η|ω) is uniformly continuous in ω. We also assume that

E (η|ω) is uniformly bounded away from zero, that is, the population never goes extinct. Again, the

realization of ηt is independent across individuals conditional on ωt. This assumption essentially

implies that the survival probability ηt is re-drawn at each moment a natural disaster occurs, and

hence, the distribution of ηt is indeed independent of the previous history of disasters. We appeal

to the Law of Large Numbers once more and assume that the fraction of the population that

survives a natural disaster is

j (ωt) ≡
∫
ηdFn (η|ωt) . (5)

We further assume that for each individual, the shocks εt and ηt are independent at each time

t conditional on ωt.

In what follows, we describe the simple case in which each random variable is binary and all

changes in the environment arrive according to Poisson distributions.

Example. Suppose that Ω =
{
ωH , ωL

}
and the state of the world switches according to a

Poisson process with arrival rate µ > 0. This process is assumed to be independent of all other

random variables. So, the ergodic distribution of ω is given by Pr
(
ωH
)

= Pr
(
ωL
)

= 1/2.

The net birth rate of an individual is also binary, εt ∈
{
εl, εh

}
and its distribution is described

by

εt =

εh with probability pe (ωt) ,

εl with probability 1− pe (ωt) ,

where εh > εl and pe
(
ωH
)
> pe

(
ωL
)
. These inequalities imply that if the state is ωH , an individual

reproduces at a higher rate in expectation. The net birth rate of an individual is constant over

time unless the state of the world changes. When the state changes, the net birth rate of each

individual is instantaneously redrawn according to the distribution described above.

Natural disasters arrive according to a Poisson process with rate one, that is, λ
(
ωH
)

= λ
(
ωL
)

=

1. The survival probability of an individual, ηt, can take one of two values from
{
ηl, ηh

}
and its

distribution is described by

ηt =

ηh with probability pn (ωt) ,

ηl with probability 1− pn (ωt) ,

4For our mathematical results to hold, we do not need ηt to be less than one. We only make this assumption for

the sake of interpretation.
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where ηh > ηl and pn
(
ωH
)
> pn

(
ωL
)
. These inequalities imply that if the state is ωH , each

individual is more likely to survive a natural disaster. At the moment when the state, ωt, changes

or a natural disaster occurs, the survival probability of each individual is redrawn according to the

distribution described above. Otherwise, the survival probability of each individual is constant.

Finally, the aggregate net birth rates and the average survival rates in disasters are described

by

r (ω) = εhpe (ω) + εl [1− pe (ω)] , (6)

j (ω) = ηhpn (ω) + ηl [1− pn (ω)] , (7)

respectively.

3 Results

In this section we analyze the speed of population growth. Let yt denote the size of the population

at time t and let y0 be normalized to one. If there is a natural disaster at time t, yt denotes the size

of the surviving population. The basic diffi culty is that, due to aggregate shocks, the population

does not grow at a steady state rate. Nevertheless, it is possible to characterize a growth rate, g,

such that if t is large enough, the size of the population is approximately the same as if it were

growing at a constant rate g, that is,

yt ≈ egt. (8)

Such a growth rate g is called the continuously compounded growth rate of the population and is

formally defined in Section 3.2.

Next, we derive an expression for the law of motion of the population along a realized path of

the random variables. In Section 3.2, we use this expression to prove our key result, which is a

characterization of the continuously compounded growth rate in terms of the lottery (3). Finally,

in Section 3.3, we introduce stochastically arriving choice problems. Each choice problem is a set

of lotteries, and each lottery is just like L in (3). We show that only those genes which behave as

if they were maximizing the continuously compounded growth rate will survive.

3.1 Law of motion of the population

Let N (t) denote the number of natural disasters which occurred between time zero and time t. In

addition, let τ i ∈ [0, t], i ∈ {1, ..., N (t)} , denote the arrival time of the ith natural disaster.

Proposition 1 The size of the population at time t is given by:

yt = exp

[∫ t

0

r (ωs) ds

]N(t)∏
i=1

j (ωτ i) , (9)

where
∏N(t)
i=1 j (ωτ i) is defined to be one if N (t) = 0.
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A notable property of the expression on the right-hand side of (9) is that it is multiplicatively

separable in natural disasters and environmental shocks. To illustrate this observation, let us

consider a population that grows at a constant rate for a unit amount of time. Suppose that this

population is hit by a disaster and half of the population dies. Then, irrespective of the exact time

of the disaster, the population at the end of the time period will be half as large as it would have

been if the disaster had not occurred. Of course, this argument presumes that the disaster leaves

the net birth rate of the surviving population unaffected. In our model, this assumption is satisfied

because εt and ηt are independent conditional on ωt.

Proof. We prove the proposition by induction with respect to the number of natural disasters,

N (t). Suppose first that N (t) = 0. Then, by (4), the law of motion of the population is described

by the following differential equation between time zero and time t:

.
yτ = yτr (ωτ ) . (10)

The solution of this differential equation is5

yt = exp

(∫ t

0

r (ωs) ds

)
,

which is just the statement of the proposition for N (t) = 0.

Suppose that the statement of the proposition is true for all t whenever N (t) ≤ k and let us

assume that N (t) = k + 1. By the inductive hypothesis,

lim
τ→τN(t)

τ<τN(t)

yτ = exp

{∫ τ

0

r (ωs) ds

}N(t)−1∏
i=1

j (ωτ i) .

At time τN(t) there is a natural disaster and, by (5), only a fraction j
(
ωτN(t)

)
of the population

survives. Hence,

yτN(t)
= exp

{∫ τ

0

r (ωs) ds

}N(t)∏
i=1

j (ωτ i) . (11)

The law of motion of the population for τ ∈ [τN(t), t] is again described by the differential equation

(10) and initial condition (11). The solution is

yt = yτN(t)
exp

(∫ t

τN(t)

r (ωs) ds

)
= exp

{∫ t

0

r (ωs) ds

}N(t)∏
i=1

j (ωτ i) ,

where the second equality follows from (11).

3.2 Continuously compounded growth rate

Motivated by (8), we first provide a formal definition for the continuously compounded growth

rate.
5The solution exists because r is continuous and bounded, see Coddington and Levinson (1955), Chapter 2.
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Definition 1 We call the number g ∈ R the continuously compounded growth rate of the population
if

lim
t→∞

log yt
t

= g

almost surely.

In order to see that the continuously compounded growth rate is indeed a useful object in

the evolutionary context, consider two populations, y1
t and y

2
t , with corresponding compounded

growth rates g1 and g2. We show that if g1 > g2 then, asymptotically and with probability one,

y1
t is going to be infinitely large relative to y

2
t . To see this, note that, by Definition 1,

lim
t→∞

log
y1
t

y2
t

t
= lim
t→∞

log y1
t

t
− lim
t→∞

log y2
t

t
= g1 − g2 > 0

almost surely. But this can only be the case if y1
t /y

2
t converges to infinity as t goes to infinity with

probability one.

Next, we show that the continuously compounded growth rate exists and characterize it in

terms of the lottery, L. This is our main result.

Theorem 1 For almost all ({ωt} , {N (t)})t∈R ,

lim
t→∞

(
log yt
t

)
=

∫ ∫
εdFe (ε|ω) dG (ω) +

∫
λ (ω) log

(∫
ηdFn (η|ω)

)
dG (ω) . (12)

Let us explain the basic idea of the proof. By Proposition 1,

lim
t→∞

log yt
t

= lim
t→∞

∫ t
0
r (ωs) ds

t
+ lim
t→∞

∑N(t)
i=1 log j (ωτ i)

t
, (13)

where the second term in the right-hand side is defined to be zero if N (t) = 0. Since ωt is an ergodic

process, both r (ω) and log j (ω) are also ergodic. As a consequence, the limit on the left-hand side

of (12) is the sum of the time averages of two ergodic variables. Birkhoff’s Ergodic Theorem states

that, under certain conditions, the time average of the realization of an ergodic variable converges

to the expected value of the variable with probability one, where the expectations are formed

according to the ergodic distribution. In the proof, we argue that Birkhoff’s Ergodic Theorem is

applicable, and show that the time average of r (ω) and log j (ω) converge to the first and second

terms in the right-hand side of (12), respectively.

Proof. First, consider the time average of r (ωt). Since the state of the world has an ergodic

distribution and r is continuous, Birkhoff’s Ergodic Theorem implies that

lim
t→∞

∫ t
0
r (ωs) ds

t
=

∫
r (ω) dG (ω)

almost surely6 . Substituting the definition of the function r in (4), we obtain

lim
t→∞

∫ t
0
r (ωs) ds

t
=

∫ ∫
εdFe (ε|ω) dG (ω) . (14)

6See, for instance, Doob (1953), Chapter XI, for a version of Birkhoff’s Ergodic Theorem for continuous-time

processes.
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We now turn to the second expression on the right-hand side of (13) and rewrite it as

N (t)

t

∑N(t)
i=1 log j (ωτ i)

N (t)
.

If
∫
λ (ω) dG (ω) = 0 then λ = N (t) = 0 almost surely, so (14) implies (12). In what follows we

restrict attention to the case when
∫
λ (ω) dG (ω) > 0. We first show that

lim
t→∞

N (t)

t
=

∫
λ (ω) dG (ω) (15)

almost surely. To this end, assume that t ∈ N for simplicity and define Xi = N (i)−N (i− 1) for

all i ∈ N. Since N (t) is a non-homogenous Poisson process, the random variables X1, X2, ... are

independent conditional on the realization of {ωt}t∈R+
, and EXi = V ar (Xi) =

∫ i
i−1

λ (ωτ ) dτ . By

Kolmogorov’s Strong Law of Large Numbers7

lim
t→∞

N (t)−
∫ t

0
λ (ωτ ) dτ

t
= lim
t→∞

∑t
i=1

[
Xi −

∫ i
i−1

λ (ωτ ) dτ
]

t
= 0 (16)

almost surely conditional on {ωt}t∈R+
. Finally, notice that Birkhoff’s Ergodic Theorem implies

that

lim
t→∞

1

t

∫ t

0

λ (ωs) ds =

∫
λ (ω) dG (ω) (17)

almost surely. From (16) and (17) the equation in (15) follows.

Next, we show that

lim
t→∞

∑N(t)
i=1 log j (ωτ i)

N (t)
=

∫
log j (ω)

λ (ω)∫
λ (ω′) dG (ω′)

dG (ω) (18)

almost surely. Recall that τ i denotes the time of the ith natural disaster. For all i ∈ N, define
Zi = log j (ωτ i). By (15) and

∫
λ (ω) dG (ω) > 0 it follows that there are infinitely many disasters

with probability one, so these variables are well-defined. The discrete time process {Zi}i∈N is also
an ergodic Markov process and its ergodic distribution, Ĝ, is given by8

dĜ (ω) =
λ (ω) dG (ω)∫
λ (ω′) dG (ω′)

.

Therefore, Birkhoff’s Ergodic Theorem implies that9

lim
n→∞

∑n
i=1 Zi
n

=

∫
log j (ω) dĜ (ω)

7This theorem is indeed applicable since (See e.g. Feller (1950), Chapter X.7):

∞∑
i=1

V ar [N (si)−N (si−1)]

i2
= lim
i→∞

1

i2

∫ i

0
λ (ωτ ) dτ = lim

i→∞

1

i

∫
λ (ω) dG (ω) = 0 <∞.

8See Proposition 2 in Duffi e and Glynn (2004).
9See Corollary 1 of Proposition 2 of Duffi e and Glynn (2004).
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with probability one. Substituting the definitions of Zi and Ĝ into the previous equation yields

(18). Finally, notice that from (15) and (18) it follows that

lim
t→∞

∑N(t)
i=1 log j (ωτ i)

t
=

∫
λ (ω) log j (ω) dG (ω) =

∫
λ (ω) log

∫
ηdFn (η|ωt) dG (ω) (19)

almost surely, where the second equality is just (5).

From equations (14) and (19) the statement of the theorem follows.

Example (Continued). We apply Theorem 1 to the example presented in Section 2. Recall that

in this example, the ergodic distribution on Ω =
{
ωH , ωL

}
is given by Pr

(
ωH
)

= Pr
(
ωL
)

= 1/2.

Then substituting (6) and (7) into (12) we get

lim
t→∞

(
log yt
t

)
=

1

2

[
r
(
ωH
)

+ r
(
ωL
)]

+
1

2

[
log j

(
ωH
)

+ log j
(
ωL
)]

(20)

=
1

2

∑
ω∈{ωH ,ωL}

[
εhpe (ω) + εl (1− pe (ω))

]
+

1

2

∑
ω∈{ωH ,ωL}

log
[
ηhpn (ω) + ηl (1− pn (ω))

]
almost surely.

3.3 Endogenous growth and utility representation

As previously discussed, if the population corresponding to a particular gene has a higher con-

tinuously compounded growth rate than that of another population, it will eventually grow to

be infinitely larger than that other population. Therefore, if the level of environmental risk is

determined by choices made by individuals, and that choice behaviour is genetic, the continuously

compounded growth rate is the evolutionary optimal decision criterion. That is, only those genes

which generate the largest continuously compounded growth rate survive in the long run. This

leads us to interpret

U (L) =

∫ ∫
εdFe (ε|ω) dG (ω) +

∫
log

∫
ηdFn (η|ω)λ (ω) dG (ω) (21)

as the utility representation of the evolutionary optimal choice behaviour. One concern which

might arise with respect to our analysis thus far pertains to our implicit assumption that the

choice of a lottery is made once and for all, and determines the growth rate of the gene forever.

We have not yet demonstrated that the same utility criterion is used to solve individual choice

problems if the overall risk is determined by a combination of various decisions. Next, we take our

analysis one step further and formalize the claim that the function U can indeed be interpreted as

a utility function of the evolutionary optimal choice behaviour in this context.

To this end, we introduce the stochastic arrival of choice problems. Each choice problem is a

set of lotteries. Each of these lotteries is like L defined in (3). We define a gene to be a choice
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behaviour, that is, a mapping from choice sets into choices. We then consider the dynamics of

the population corresponding to a certain gene. At each moment in time, the dynamics of the

population are determined by the lottery chosen in the most recent choice problem. We show

that only those genes which behave as if they were maximizing the function U defined in (21) will

survive.

Let L (Ω, G) denote the set of lotteries of the form (3) with the same (Ω, G). The pair

({lk}nk=1 , {µk}
n
k=1) is called an environment where lk ⊂ L (Ω, G), |lk| < ∞ and µk (> 0) is the

Poisson arrival rate of lk (k = 1, ..., n). A gene, c, in the environment ({lk}nk=1 , {µk}
n
k=1) is a

mapping from choice sets to elements of these sets, that is, c : {l1, .., ln} → L (Ω, G), such that

c (lk) ∈ lk for all k = 1, ..., n. Note that a gene is defined to be simply a choice behaviour on a

restricted domain.

In what follows, we investigate the population growth corresponding to a certain gene, c. The

population dynamics in the environment ({lk}nk=1 , {µk}
n
k=1) are defined as follows. At t = 0, the

population is normalized to one and a choice problem is drawn, lk with probability µk/Σ
n
i=1µi. If

t > 0 and there is an s < t, such that (i) no choice problem arrived during the time interval (s, t]

and (ii) a choice problem l arrived at s, and c (l) = L then the dynamics of the population at time t

are determined by the lottery L. We say that a gene survives evolution if its induced continuously

compounded growth factor is at least as large as that of any other gene.

Theorem 2 For all (Ω, G) and for each environment ({lk}nk=1 , {µk}
n
k=1) , the surviving gene, c∗,

satisfies

c∗ (lk) ∈ arg max
L∈lk

U (L) , (22)

for all k = 1, .., n.

Let us emphasize that the decision criterion in (22) is robust in the sense that the utility of

a lottery is independent of the environment. That is, it depends neither on the other potential

choice problems, nor on their frequencies of arrival.

We have not allowed for idiosyncratic uncertainty in the arrival of choice problems. However,

it would not be diffi cult to introduce some such heterogeneity, and allow for the possibility that at

some points in time different individuals of the same population face different problems. We might

allow, for example, the population to consist of many colonies and the choice problems to arrive

independently across colonies. In this case the size of the total population is simply the sum of the

sizes of the colonies, so Theorem 2 remains valid.

Proof. Fix an environment, ({lk}nk=1 , {µk}
n
k=1) , and an arbitrary gene c. Let

Lk =

(
Ω, G,

{
λk (ω)

}
ω∈Ω

,
{
F ke (·|ω)

}
ω∈Ω

,
{
F kd (·|ω)

}
ω∈Ω

)
denote c (lk), and let yt denote the size of the population corresponding to c at time t with the

normalization y0 = 1. Corresponding to (4) and (5), for each Lk, let rk (ω) and jk (ω) denote the

12



average net birth rate and the survival population, respectively, conditional on ω. We show that

the continuously compounded growth rate of the gene is

n∑
k=1

µk
µ1 + ...+ µn

U (Lk) . (23)

In other words, the asymptotic growth rate of the gene is the average of the continuously com-

pounded growth rates induced by the chosen lotteries weighted by the frequencies of these choices.

Note that the statement of the theorem follows from (23), because the fastest growing gene maxi-

mizes the summation in (23) pointwise, that is, it satisfies (22).

The statement of Proposition 1 is still valid because it is about the population dynamics along

realized paths and it does not matter whether these paths are determined by a single lottery or the

combination of many lotteries. Recall that N (t) denotes the number of natural disasters which

occurred between time zero and time t and τ i ∈ [0, t], i ∈ {1, ..., N (t)}, denotes the arrival time of
the ith natural disaster. Let Lt denote the most recently chosen lottery at time t. Finally, r (ωt)

and j (ωt) denote rk (ωt) and jk (ωt), respectively, if Lt = Lk. Then, by Proposition 1,

log yt =

∫ t

0

r (ωs) ds+

N(t)∑
k=1

log j (ωτ i)

n∑
k=1

∫ t

0

I (Lt = Lk) rk (ωs) ds+

N(t)∑
k=1

I (Lt = Lk) log jk (ωτ i)

 ,
where I denotes the indicator function. Next, we decompose yt to be the product of k different

population sizes. To this end, let us define zkt for all k = 1, ..., n and t ∈ R+ such that,

log zkt =

∫ t

0

I (Ls = Lk) rk (ωs) ds+

N(t)∑
k=1

I (Lτ i = Lk) log jk (ωτ i) .

Intuitively, zkt would be the size of a population at time t if its growth is determined by L
k at time

t if Lt = Lk and stays constant in any other moment. It follows from the previous two displayed

equations that

log yt =

n∑
k=1

log zkt . (24)

Notice that

lim
t→∞

log zkt
t

= lim
t→∞

[∫ t
0
I (Ls = Lk) ds

t

][
log zkt∫ t

0
I (Ls = Lk) ds

]
. (25)

Since choice problems arrive independently and according to the arrival rates µ1, ..., µn,

lim
t→∞

[∫ t
0
I (Ls = Lk) ds

t

]
=

µk
µ1 + ...+ µn

(26)

almost surely. Define z̃kτ to be z
k
T (τ) where the function T is defined by

∫ T (τ)

0
I (Ls = Lk) ds = τ

for all τ ∈ R+. Intuitively, z̃kτ would be the size of a population at time τ if its growth just like z
k
t
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except that time is measured by a clock which is stopped whenever Lt 6= Lk. Note that

lim
τ→∞

log z̃kτ
τ

= lim
τ→∞

log zkT (τ)∫ T (τ)

0
I (Ls = Lk) ds

= lim
t→∞

log zkt∫ t
0
I (Ls = Lk) ds

,

where the first equality follows from the definition of z̃kτ and the second one from limτ→∞ T (τ) =∞.
Since the arrivals of the choice problems are independent of ωt, the lottery determining the growth

of z̃kτ is identical Lk. Hence, Theorem 1 implies that

lim
τ→∞

log z̃kτ
τ

= U (Lk) . (27)

Plugging (26) and (27) into (25) we get

lim
t→∞

log zkt
t

=
µk

µ1 + ...+ µn
U (Lk) .

Hence, by (24),

lim
t→∞

log yt
t

= lim
t→∞

n∑
k=1

log zkt
t

=

n∑
k=1

µk
µ1 + ...+ µn

U (Lk) ,

which is just (23).

Interpretation

The two terms on the right-hand side of (21) have very different behavioural implications. Ob-

serve that the lottery L can be viewed as the combination of two compound lotteries: ({Fe (·|ω)}ω , G)

and ({Fn (·|ω)}ω , G), which are associated with environmental shocks and natural disasters respec-

tively. Equation (21) implies that a decision maker who maximizes U reduces the compound lottery

({Fe (·|ω)}ω , G) to a simple one. That is, conditional on the risk associated with natural disasters,

choices will be based only on the expected rate of reproduction. Whether environmental shocks

are aggregate or idiosyncratic is irrelevant. Therefore, the first term is simply a standard von

Neumann-Morgenstern representation.

In sharp contrast, the second term does not correspond to expected utility maximization. In

particular, the compound lottery ({Fn (·|ω)}ω , G) is not reduced to a simple one in the utility

function U . This term is formally identical to the representation of smooth ambiguity-averse

preferences. In the context of ambiguity (Ω, G) corresponds to the subjective state space and

beliefs, Fn (·|ω) describes uncertainty, and ambiguity-aversion is determined by the logarithmic

function. Since the logarithmic function is concave, this representation implies that the decision

maker with utility function U is less tolerant towards aggregate risk than towards idiosyncratic

risk.

One notable feature of the function U is its additive separability in the risks due to environ-

mental shocks and natural disasters. This arises from the fact that yt is multiplicatively separable

in these two types of aggregate risk. As previously mentioned, this separability is due to our as-

sumption that, for each individual, εt and ηt are independent conditional on ωt. We could relax
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this independence assumption and still obtain an additive representation similar to (21). However,

the c.d.f. Fe would be replaced by an ergodic distribution of the birth rates which would depend

on, among other objects, Fn and λ. So, while the utility representation would still be additive, the

term corresponding to environmental shocks would depend on the risks faced due to disasters.

4 On the limit of the model of Robson (1996a)

Theorem 1 implies that environmental shocks and natural disasters affect growth in very different

ways. However, one might suspect that environmental shocks could be approximated arbitrarily

well with a sequence of small natural disasters. Can the continuous time model be viewed as the

limit of discrete time models as time intervals shrink? In order to answer this question, we revisit

the model of Robson (1996a) in the context of a binary example. We shall consider two possible

lotteries; a purely idiosyncratic one and purely aggregate one. Robson (1996a) shows that the

population corresponding to the idiosyncratic lottery grows faster. In what follows, we show that

as the length of a time interval goes to zero, the growth rates of the two populations converge.10

Suppose that time is discrete and indexed by t ∈ N. Assume that Ω =
{
ωH , ωL

}
and the

ergodic distribution of ω is given by Pr
(
ωH
)

= Pr
(
ωL
)

= 1/2. Each individual lives for one

period, and her number of offspring is the realization of a lottery. In each period t, the realization

of the lottery is independent across individuals conditional on ωt. We consider the following two

lotteries

LA =

{
H if ω = ωH ,

L if ω = ωL
and LI =

{
H with probability 1/2,

L with probability 1/2,

where 1 < L < H. Note that the lottery LA involves only aggregate risk and the lottery LI
involves only idiosyncratic risk. Also note that the risks induced by these two lotteries are the

same from the viewpoint of a single individual; with probability one-half she produces H offspring,

and with probability one-half she produces L. Let g (L) denote the compounded growth factor of

the population corresponding to the lottery L (∈ {LA, LI}). The main result from Robson (1996a)

implies

log g (LA) =
logH + logL

2
< log

(
H + L

2

)
= log g (LI) , (28)

and hence, the population choosing LI grows faster than the other.

In what follows, we shrink the length of the time intervals from one to ∆ and examine the

consequences on the speed of population growth as ∆ approaches zero. If the time intervals are

downscaled and individuals reproduce according to the lotteries LA and LI in each period, the

populations grow faster, and they explode as ∆ goes to zero. In order to compare growth rates

10We are able to prove the same result in the general model of Robson (1996a) but we believe that the binary

example is suffi cient to illustrate our point.
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across different ∆’s, we redefine the lotteries as follows

L∆
A =

{
H∆ if ω = ωH ,

L∆ if ω = ωL
and L∆

I =

{
H∆ with probability 1/2,

L∆ with probability 1/2.

The idea behind this rescaling is as follows. If the realization of the lottery is constant within

a unit of time, the induced growth factor does not depend on ∆. To see why, note that if an

individual produces H∆ offspring in each ∆-long period, she will have
(
H∆

)1/∆
= H genetic copies

after a unit amount of time. Let g∆

(
L∆
)
denote the compounded growth factor of the population

corresponding to L∆
(
∈
{
L∆
A , L

∆
I

})
per ∆-long time period. Again, from Robson (1996a) it follows

that

log g∆

(
L∆
A

)
=

logH∆ + logL∆

2
< log

(
H∆ + L∆

2

)
= log g∆

(
L∆
I

)
. (29)

Next, we take ∆ to zero and compare the growth factors per unit interval of the populations

corresponding to L∆
A and L∆

I . Note that if the growth factor per ∆-long period is g∆ then the

growth factor per unit-interval is (g∆)
1/∆. Consider first the population governed by the aggregate

lottery L∆
A . By (29),

lim
∆→0

log g
1/∆
∆

(
L∆
A

)
= lim

∆→0

logH∆ + logL∆

2∆
=

logH + logL

2
. (30)

Comparing this expression with the left-hand side of (28), we conclude that the population facing

the aggregate lottery is unaffected by the time scaling. Consider now the population governed by

the idiosyncratic lottery. Again by (29),

lim
∆→0

log g
1/∆
∆

(
L∆
I

)
= lim

∆→0

log
(
H∆+L∆

2

)
∆

.

On the right-hand side, both the numerator and the dominator converge to zero. We apply

L’Hopital’s rule to obtain

lim
∆→0

log g
1/∆
∆

(
L∆
I

)
= lim

∆→∞

1(
H∆+L∆

2

) (H∆ logH + L∆ logL

2

)
=

1

2
(logH + logL) , (31)

where the second equality follows from the observation that both H∆ and L∆ converge to one as

∆ goes to zero. From (30) and (31), we conclude that, as ∆ goes to zero, the population facing

aggregate risk grows just as fast as the population facing only indiosyncratic risk.

5 Conclusion

We believe endogenizing preferences to be an important research agenda, and that adopting the

biological approach, as we have done, might prove to be a fruitful enterprise. It seems reasonable to

hypothesize that evolution did not influence only physical traits but also shaped choice behaviours.

An advantage of this approach is that it has strong predictions about the relationship between
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fertility and choices which, in principle, can be tested empirically. We do recognize that many

choice problems faced by individuals in modern times were unlikely to be faced in evolutionary

times. Yet, we hypothesize that preferences, at least in part, are hardwired and that many choices

made today reflect the evolutionary optimal behaviour.
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