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Abstract

We consider a growth model in which intergenerational transfers are made via stocks of

private and public capital. Private capital is the outcome of individuals’private savings while

decisions regarding public capital are made collectively. We hypothesize that private saving

choices evolve through individual selection while public saving decisions are the result of group

selection. The main result of the paper is that the equilibrium return to private capital is

much more than twice as larger as the return to public capital if the two types of capital are

complements. In other words, social choices involving intertemporal trade-offs exhibit much

more patience than individual choices do.

1 Introduction

Policy issues often involve intergenerational trade-offs. Perhaps, the most publicized one is global

warming. Nordhaus (1994) found that there was no basis for draconian policies now to reduce

CO2 emissions; Stern (2006) suggested the situation was more dire. The difference can be traced

almost entirely to the pure rate of time preference used by these two authors– Nordhaus used a

few percent, based on estimates deriving from private economic behavior; Stern used essentially

zero, as a philosophical position. CO2 would obviously then be an important problem if there were

reasons to expect that the private rates of time preference were too high, so that public decisions

should be made on the basis of a lower rate.

To elaborate further, consider the following hypothetical problem. A policy maker has to decide

whether to invest in research into an alternative energy source, which yields some return for the next

generation. The internal rate of return of the project is R while the rate of return to private capital

is r. The positive view of Nordhaus (1994) is based on the idea that the implemented policies must

be in line with the preferences of the current generations. Since, by revealed preference, the current

generation is willing to save at return r, any project will be implemented as long as R ≥ r. But
what if R < r? The Pareto criterion offers little guidance in this case. Depending on whether the

∗Department of Economics, Simon Fraser University, Burnaby, BC, Canada. E-mail: robson@sfu.ca
†Department of Economics, London School of Economics, London, UK. E-mail: b.szentes@lse.ac.uk.

1



policy maker weights the welfare of the next generation more or less heavily than does the current

generation, he might find it desirable either to implement or to abandon it. Stern (2006) argues

that the justification of a positive discounting is that the human race may be extuinguished. Since

the probability of this event appears to be small, Stern (2006) suggests that the project should be

implemented even if R ≈ 0.

The goal of our paper is to provide a positive theory of private and social discounting. We

consider a model where both private and collective decision problems are present. Our theory

is positive in the sense that both of these decisions reflect the preferences of the members of

the society. Our main result is that there is a discrepancy between the discount factor of an

individual applied to private decisions and the one applied to collective decisions. We show that

individuals exhibit more patience if decisions are made collectively. In particular, we show that

the social discount factor is more than twice as large as the private factor. This result implies

that one must be careful when using data on individual consumption-saving behaviour to predict

the implementation of social policies even from a positive viewpoint. Our theory predicts that

individuals might welcome the implementation of social projects with a rate of returns vastly lower

than demanded for private projects.

We consider an evolutionary model where individuals face intertemporal tradeoffs. One tradeoff

is made individually; a second is made collectively. We model this by having two different capital

stocks in the production function; private and public. Each individual can decide how much to

invest in private capital, but the contribution to public capital is the same for everybody and is

decided collectively. Reproduction is sexual and the return from saving is equally shared by the

offspring. If the members of a couple save more in total, their children receive more resources

each but they are left with fewer resources to use to determine the number of offspring. In

other words, consumption-saving decisions involve a quantity-quality trade-off. We hypothesize

that individual choices evolve through individual selection and collective decisions evolve through

group selection. To be more specific, private saving choices must be evolutionary stable, that

is, they must be resistant to invasion by rare mutants. Collective decisions must generate the

largest possible population growth subject to the requirement that private saving decisions are

evolutionary stable.

Our main result is that the equilibrium gross return to public capital is less than half as

large as that of the private capital. In other words, individuals are significantly more patient

towards collective decisions than towards private choices. The key observation is that sexual

reproduction implies that rare mutants are only a half related to their children. As a consequence,

the individually selected saving behaviour maximizes its own growth rate as if its frequency was

zero in the population. To see this, note that mutants grow fastest initially if they maximize their

growth rate taking their zero frequency into account. Mutants can also match the growth rate

of the rest of the population by mimicing their behavior. Hence, the only way to ensure that

the mutants do not invade the population is for the saving behavior of the original population to
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maximize the growth rate of the associated gene as if its frequency were zero.1

This behaviour distorts the quantity-quality trade-off involving children when compared to

asexual reproduction. Indeed, if reproduction was asexual, children and grandchildren are identical.

Therefore, the saving decision which maximizes fitness equates the marginal return to saving

measured in the number of grandchildren with the marginal return of consumption in terms of

offspring. If reproduction is sexual, children are more valuable than grandchildren because they

are twice as related. As a consequence, individuals prefer to sacrifice some grandchildren by

investing less in their offspring in order to increase the number of their offspring. Therefore,

couples have a preference for too many children with too low quality. This induces a slower growth

rate in the equilibrium steady state, with fewer children than in the case of asexual reproduction.

Equivalently, this private investment is made with too much impatience. The decision that is

made on the public level is technologically analogous to the private investment. However, this

decision is made collectively and must be followed by each member of the community. Hence, this

choice is guided by the appropriate lower rate of time preference. Indeed, the public decision may

involve still greater investment to partially offset the distortion created by too low a level of private

investment.

We have in mind a rather general message here– there might be a depletable resource such as big

game, for example– or there might be a problem with polluting the local environment. Considering

our specific growth model with two capital stocks and the steady state merely facilitates the

analysis. The basic conclusions seem bound to hold in a variety of models involving intertemporal

tradeoffs. Indeed, in a final section, we sketch an application of this analysis to the modern debate

concerning global warming.

Related Literature

There is a small but steadily growing literature investigating the relationship between biology

and economic behavior. Further, some of these papers examine how time preferences evolved

through individual selection, see for example Rogers (1994), Robson and Szentes (2008), and

Robson et. al. (2012). The basic conclusion of these papers is that the evolutionarily stable

choice behaviour can be represented by time-separable utility. The discount rate is the sum of the

mortality rate and the population growth rate, and the overall utility function is reproductive value.

Robson and Samuelson (2009) shows that this conclusion crucially depends on the assumption that

all the risk is idiosyncratic. They argue that if there is aggregate uncertainty the evolutionary stable

behaviour no longer has an expected utility representation. In all these papers, all the decisions

are made at the individual level. Our primary goal here is to highlight a discepancy between

preferences for individual and collective choices.

1Bergstrom (1995) analyzes games played by siblings. He concludes that the strategy that cannot be invaded by

a mutant chooses an action as if the opponent mimics this action with probability half. This is the same principle

as here. That is, although, in equilibrium, siblings have the same genes and take the same actions, they behave as

if this probability was only a half.
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There are also papers that consider macroeconomic phenomena in a biological context. These

involve standard growth models with the twist that the reproduction technology is specified instead

of the preferences of individuals. The goal then is to characterize the choices that induce the largest

population growth rate. Hansson and Stuart (1990) consider a neoclassical growth model in which

clans compete for shares of resources. A clan’s production depends on the stock of clan-specific

capital and on the total population of all clans. The clans indeed face a carrying capacity constraint,

meaning that per capita production decreases as total population rises. An individual is active for

only one period, and each clan faces a consumption-saving decision. Higher consumption results in

higher immediate population growth but a smaller capital stock, and hence smaller output, in the

next generation. The carrying capacity constraint means that each clan’s size must be constant in

the long-run equilibrium. As a result, evolution selects clans with a zero rate of time preference.

Agents maximize the per capita steady state consumption of current and future generations.

Robson and Wooders (1997) also considers a macroeconomic model where total output depends

on different types of capital and labor. The per capita income of each type of labor determines its

growth rate. The authors show that when the balanced growth rate is maximized, income must

be distributed across individuals in accordance with marginal product pricing. In these papers,

reproduction is asexual and all the choices are made collectively. In other words, they are similar

to our model without the private capital.

Finally, there is a literature in macroeconomics which considers both private and public choices–

for example Perotti (1992 and 1993), Alesina and Rodrik (1994), Persson and Tabellini (1994), and

Milanovic (2000). In these models, individuals are heterogenous in wealth and collective decisions

are made regarding either income redistribution or public capital. (The aggregate production

function in Alesina and Rodrik (1994) is essentially identical to ours.) The key assumption of

these papers is that the collective decision is made by the median voter. The authors investigate

the relationship between economic grwoth and income inequality. The typical conclusion of this

literature is that large income inequality is harmful for economic development.

2 The Model

Time is discrete and there is a continuum of individuals.2 In each period, adult individuals are

randomly matched, allocate resources to reproduction and capital investment, and die. The new-

borns become the adults of the next period, and the return on investment is then available. We

next describe the technologies for production and reproduction.

There is a single aggregrate output which is produced from public capital, M , private capital,

K, and labor, L. The aggregate output available at time t+1 is given by the function G (Mt,Kt, Lt)

where Mt, Kt and Lt are the levels at time t of public capital, private capital, and labour, respec-

2Presumably, one half of the individuals are male and one half female. There is, however, no need for a formal

distinction in the model between the sexes.
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tively. (More precisely, Lt is the number of adults at time t.) For mathematical convenience, both

types of capital are “circulating,”so there is 100% depreciation.

We assume the production function G exhibits constant return-to-scale. Defining m = M/L

and k = K/L as per capita public and private capital, respectively, we then have G (M,K,L) =

LG (m, k, 1) = Lg (m, k) , say, where g (m, k) is per capita output. We assume that the function g is

three times continuously differentiable, satisfies Inada conditions in each input, is strictly concave,

and has the inputs as complements.3

The number of offspring a couple has depends on their total consumption, where consumption

is the residual resources left after investment. Suppose that one individual in a couple has resources

w1 and privately saves k1, whereas the other has resources w2 and saves k2. Then, if the per-capita

public capital is fixed at m, they consume c1 = w − k1 −m and c2 = w − k2 −m, respectively.
The expected number of offspring of a couple then depends on c1+ c2, and is given by 2f (c1 + c2).

The reproduction function f is continuously differentiable, where f ′(c) > 0, for all c ≥ 0, and

f(0) = 0. We assume that each individual has access to the production technology g. Hence, if

the parents invest k1 and k2 in private capital and the per-capita public capital is m then each of

their offspring receive resources
g (m, k1) + g (m, k2)

2f (c1 + c2)
.4 (1)

We assume that choices regarding private saving evolve through individual selection while

the decisions regarding public capital are shaped by group selection. Consider many isolated

communities, each of which is characterized by a per-capita level of public capital m. Private

saving behavior is genetic; each offspring inherits the choice behavior of one of her parents with

probability half. Private savings behavior is the result of individual selection if it is resistant to

invasion by any mutant, so that no mutant can grow faster than the original community. Such

behavior is an evolutionarily stable strategy, ESS, and we show that, for each m, there is a unique

ESS denoted by k̄ (m). Finally, a per-capita level of public capital m∗ is the result of group

selection if the community characterized by m grows faster than any other community subject

to the constraint that the private saving is an ESS in every community.5 More formally, we will

3That is, more precisely:

i) g(0, k) = g(m, 0) = 0, for all k,m ≥ 0,

ii) gm(m, k) > 0, gk(m, k) > 0, for all k,m > 0,

iii) gm(m, k)→
{
∞, as m→ 0, for all k > 0

0, as m→∞, for all k ≥ 0
and gk(m, k)→

{
∞, as k → 0, for all m > 0

0, as k →∞, for all m ≥ 0
,

iv) gmm(m, k) < 0, gkk(m, k) < 0 and gmm(m, k)gkk(m, k)− (gmk(m, k))2 > 0 for all m, k > 0,

v) gmk(m, k) > 0 for all m, k > 0.

4Alternatively, we could have assumed that individuals can save in a competitive market for capital. That is,

if an individual saves k′ and the population average of private capital is k then his offspring receive k′gk (m, k)

resources. Such an assumption has no impact on our results but seems less plausible in an evolutionary model.
5The idea behind this concept is that larger groups displace smaller groups. This notion of “group selection”

is controversial for non-human species in general. It is less so here. In the first place, private capital is chosen in
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identify the per-capita public capitalm = m which is feasible and maximizes the population growth

subject to the constraint that the private saving is k̄ (m).

3 Results

We first characterize the biologically effi cient steady state saving decisions. That is, we identify

the public and private capital levels which are feasible and which maximize the growth rate of the

population. This serves as a benchmark and allows us to identify the biological ineffi ciency due to

individual selection.

Suppose that k, m and c are constant over time. For feasibility, the triple (m, k, c) has to satisfy

the budget constraint that
g (m, k)

f (2c)
= m+ k + c, (2)

where the left-hand-side is the inheritance of an offspring from her parents, as in (1), and the

right-hand-side is the allocation of these resources to investments and consumption. Lemma 1 of

the Appendix shows that each pair m, k ≥ 0 uniquely determines the feasible level of consumption,

c(m, k) ≥ 0, say. If each couple has 2f (2c) offspring, the growth factor of this population is f (2c).

Since f is strictly increasing in c, the problem of maximizing the growth factor of the population

is simply to

max
m,k≥0

c(m, k).

The key observation in the characterization of the solution to this is as follows. Replacing c by

c (m, k) in Equation (2) and differentiating both sides by m yields

2f ′ (2c) cm(m, k) (c+m+ k) + f (2c) (cm(m, k) + 1) = gm (m, k) .

If (m, k) induces the largest possible consumption then cm = 0, so the previous equation simplifies

to f (2c) = gm (m, k). An analogous argument shows that f (2c) = gk (m, k). We have:

Theorem 1 There is a unique pair m, k > 0 which induce the largest feasible consumption c > 0.6

This pair is characterized by the first-order conditions

gm(m, k) = gk(m, k) = f(2c).

accordance with “individual selection.” See Boyd and Richerson (1990) for the appeal of group selection in such

circumstances. In the second place, humans are exceptional since culture makes it possible to ensure that individuals

have the selfish incentives to produce rather arbitrary social outcomes. We rely on this argument to underly the

choice of public capital.

One can explicitly model such a competition between groups by introducing a carrying capacity constraint, see

for example Hansson and Stuart (1990). This would entail induce a zero growth rate in equilibrium.
6We abuse notation slightly by using m, k to denote the general values of these variables, as well as the specific

optimal choices of them.
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Proof. See the Appendix for a rigorous detailed proof.

These optimality conditions are familiar in that they equate the marginal product of each type

of capital to the growth factor of population, f(2c).7 The only “wrinkle”is that the growth factor

of population is endogenous, indeed it is the objective to be maximized. In particular, the marginal

returns from public and private capitals are equal.

We turn now to formulating the problem with sexual reproduction. For eachm, we compute the

unique steady state investment in private capital which is immune to invasion by a rare mutant.

Suppose that, in the candidate steady state equilibrium, each non-mutant adult allocates m to

investment in public capital, k̄ to private capital, leaving c̄ to promote population growth. Consider

then a rare mutant that must also allocate m to public capital, but allocates k to private capital,

leaving c to promote growth.

Since mutants are rare, essentially all the matches involving mutants have one mutant and

one non-mutant. We then calculate the maximum steady state growth factor for the mutants in

this situation, so the mutant attains such steady state growth while remaining rare. The growth

factor of the mutant population is f(c̄+ c). That is, each mutant-non-mutant couple has 2f(c̄+ c)

offspring, one half of whom are mutants, on average. By (1), the budget constraint of a mutant is

m+ k + c =
g
(
m, k̄

)
+ g (m, k)

2f (c̄+ c)
. (3)

Lemma 2 of the Appendix shows that, although there may exist values of k for which (3) cannot

be satisfied, there must be some values for which it can be satisfied. The problem of maximizing

the growth rate of the mutants is then:

max c

subject to ∃k ∈ R+ such that (3) holds.

Lemma 2 also shows that, when (3) can be satisfied, there is a unique solution for c given by

c (k). Proceeding informally, then, it follows from (3) that

2f ′ (c̄+ c) c′ (k) (m+ k + c (k)) + 2f (c̄+ c (k)) (1 + c′(k)) = gk (m, k) .

If k generates the largest possible level of consumption, then c′(k) = 0, so the previous equation

becomes

2f(c(k) + c) = gk(m, k).

To complete the informal argument, note that mutants match the growth rate of the original

population if they invest k in private capital, but they maximize their growth rate by choosing

k. So, unless k = k, the mutants can invade the original population. In short,
(
k̄, c̄
)
is an

evolutionarily stable strategy, ESS, if and only if k = k̄ and c = c̄. We have:

7The assumption that all capital depreciates 100% means that that marginal product of capital must equal the

growth factor, rather than just the growth rate.
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Theorem 2 For each m > 0, there exists a unique (pure strategy) ESS
(
k̄, c̄
)
which satisfies

gk(m, k̄) = 2f(2c̄).8

Proof. Again, see the Appendix for a more rigorous proof.

The equilibrium condition determining k̄ equates the marginal product of private capital to

twice the population growth factor. Other things equal, then, the equilibrium choice of private

capital would be much too low.

The effect of sexual reproduction is to substantially increase impatience and therefore reduce

investment in private capital. The mutants try then to have a larger number of offspring by

reducing the income these offspring will have in the next period. The cost of this would be a

reduced potential number of grandchildren.9 However, in the steady state, since income falls, the

ultimate effect of the mutant is to reduce the number of children and the growth factor.

In a conceptual sense then the mutant is trading off immediate rewards (children) against a

delayed reward (grandchildren) and leaning too much in favor of the immediate reward. Sex then

in this model is an underlying cause of too much impatience.

Consider now how the optimal level of public capital, m̄, say, is determined by group selection.

Not only should the group choose on the basis of a lower and more appropriate rate of time

discount, but the group should increase m still further in order to offset the deleterious effect of

too low a value of k. The optimal public capital maximizes the growth rate subject to the feasibility

constraint and to private saving being determined as above by individual selection. Formally, m̄

is the solution of the problem10

max
m
c

subject to f (2c) (m+ k + c) = g(m, k) and gk(m, k) = 2f(2c).

Again, we content ourselves with an intuitive characterization of the solution, leaving a rigorous

treatment to the Appendix. Suppose c̄ (m) and k̄(m) satisfy the constraints, and differentiate both

sides of the first constraint with respect to m to get

2f ′ (2c̄ (m)) c̄′ (m)
(
m+ k̄ (m) + c̄(m)

)
+ f (2c̄ (m))

(
1 + k̄′ (m) + c̄′ (m)

)
= gm

(
m, k̄ (m)

)
+ gk

(
m, k̄ (m)

)
k̄′ (m) .

If m̄ maximizes c̄ then c̄′ (m̄) = 0. Using the second constraint as well, we then have

f (2c̄ (m̄))
(
1− k̄′ (m̄)

)
= gm

(
m̄, k̄ (m̄)

)
.

It follows that k̄′ (m̄) > 0, since the two types of capitals are complements. We have:
8We again abuse notation slightly by using m̄, k̄ to denote the values of these variables that might arise in the

general population, as well as the specific ESS values of them.
9More precisely, what is reduced is the income available to children. This income can be used to produce new

children, but also for investment to generate the income of the new children when they, in turn, become adults.
10For clarity, we spell out both relevant constraints, and avoid notation derived from satisfying one or both of

them.

8



Theorem 3 Group selection for the level of public capital, given individual selection for the level of

private capital, generates a level of public capital m̄ > 0, private capital k̄ (m̄) > 0 and consumption

c̄(m̄) > 0 which satisfy

gm(m̄, k̄ (m̄)) = f(2c̄(m̄))
(
1− k̄′ (m̄)

)
< f(2c̄(m̄)) < 2f(2c̄(m̄)) = gk(m̄, k̄ (m̄)).

Proof. See the Appendix.

That is, the marginal product of public capital is reduced below the population growth fac-

tor precisely because the marginal of private capital is above the population growth factor and

increasing public capital increases the equilibrium level of private capital.

4 Discussion

Carrying Capacity–We have not explicitly modeled competition among groups. Instead, we simply

assume that group selection generates collective choices that maximize population growth, with

no explicit restriction on what this maximum rate might be. However, limited carrying capacity

would force the equilibrium growth factor to be one (as in Hansson and Stuart (1990)). After

all, any appreciable growth rate of a few percent, if maintained for the 1.8 million years of our

existence, would lead to the absurd result that we would have long since exhausted standing room

on earth and are standing on one anothers’shoulders, exploding into space at the speed of light.

This consideration renders puzzling anthropological data for modern hunter-gatherers with growth

rates of even a few percent.

One attractive resolution of this is as follows. Suppose that these modern observations on

growth are representative of past hunter-gatherer societies. However, suppose that these periods of

tranquil growth are interrupted by the occasional disaster during which the population is drastically

reduced. (In the simplest case, these disasters bear equally on all age classes.) There is no

shortage of candidates for such disasters– ice-ages being only the best-known. Recently, it has

been suggested that a meteorite that hit the earth about one million years ago (ref?) caused a

catastrophic drop in the human population.

Robson and Samuelson (2009) establish results in a similar setting to this in which mortality

rates are subject to aggregate shocks. Rates of time preference are then those appropriate to

the tranquil periods of steady growth, with the catastrophes merely serving to lower growth to a

plausible level. The bottom line is essentially that the present results can be taken as is, with no

constraint set by a zero growth rate.

Extrapolation– Could this analysis apply to the current debate about global warming? How

might the current scenario concerning hunter-gatherers be translated to modern circumstances?

We hypothesize that the private rate of time preference was, at least to some extent, hard-wired

by evolution. We also hypothesize that public rates of time preference were similarly hard-wired,
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but at a lower level.11 That is, individuals evolved to desire that public decisions be made on

the basis of a lower rate of time preference than the rate used in private decisions.12 Given the

evolutionary basis of the public rate of time preference in maximizing population growth, the

analysis might most convincingly be interpreted as a positive theory of public decisions, rather

than an intrinsically ethical one. It predicts that public decisions about global warming would be

made using a lower rate of time preference than used in private decisions, without having to be

accepted as being the philosophical basis for such a lower rate.13 Indeed, we hypothesize that the

link between fertility and population growth, on the one hand, and the rates of time preferences

used in public and private decisions, on the other, has been severed.14 We emphasize that we do

not claim that investment in public projects (like global warming) is technologically similar to our

model. However, we believe that the aggregate CRS production function with complementarities is

not far fetched from the evolutionary prespective. Then individuals would apply these preferences

even to decision problems which are technologically different from the ones where the preferences

evolved.

Cooperation– Parents here make their savings decisions simultaneously and non-cooperatively,

and offspring are a public good, so it is not surprising that there is a free-rider problem. Indeed,

there is undercontribution by each parent to the private capital that will generate income for each

child. However, the issue is more subtle than this suggests. Undercontributing to the private

capital of each child is achieved by producing too many children. What does too little investment

in private capital imply? It limits the reproductive options of one’s children. For simplicity, think

of this as reducing the number of grandchildren. What is the basic reason for the distortion then?

Although the effect of sex is to dilute one’s concern with children by a factor of 1/2, the dilution of

concern with grandchildren is even greater, involving a factor of 1/4. Hence sex creates a distortion

from an attempt to favor the quantity of children over the quantity of grandchildren.

There are mechanisms that would address this distortion. Perhaps a biological solution would

be to forge a pair bond between parents; there are also familiar game-theoretic mechanisms for

inducing cooperation in repeated interactions. To the extent that these solutions are biological,

the effective change in preferences might be confined to settings involving children or might be

imperfect anyway. To the extent that the solutions are game theoretic, they would work in the

light of the inappropriate selfish preferences, and would not generate selection in favor of lower

private rates of time preference. In either case, then, there would remain a divergence between

private and public rates of time preference.

11 It is plausible that rates of time preference are also partly subject to enculturation, but this leads us still further

from conventional economics.
12 Individuals may vote for public choices from a less-than-perfectly-selfish perspective. Feddersen and Sandroni

(2006) present a model in which voters are motivated by ethical obligation. We extend this notion to time preference.
13See Binmore (2005) for an argument that we should take evolution seriously as the foundation of our expressed

ethical sense.
14Key here is the advent of modern birth control.
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5 Appendix-Proofs

Lemma 1 For all m, k ≥ 0, the equation (2) has a unique solution c(m, k) ≥ 0. Further, c(m, k)

is continuously twice differentiable.

Proof of Lemma 1. If m = 0 or k = 0 then the only solution is c = 0. If m, k > 0 then

(m+k+ c)f(2c) is less than g(m, k) at c = 0, greater than g(m, k) if c is large enough, and strictly

increasing in c. Hence there exists a unique solution c(m, k) > 0, which is clearly twice continuously

differentiable.
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Proof of Theorem 1. The solution cannot involve m = 0 or k = 0 since this implies c = 0 and

c > 0 is feasible. Further, since gm(m, k)→ 0 as k →∞, it follows that g(m, k)/(m+ k + c)→ 0

as k → ∞, so that c → 0. Similarly, c → 0 as m → ∞. Hence there must exist an interior
optimum with m, k > 0. Hence cm(m, k) = ck(m, k) = 0. It then follows from differentiating

(m+ k + c)f(2c) = g(m, k) that gm(m, k) = gk(m, k) = f(2c).

Further, there is only one solution to these first order conditions. It is straightforward to show

that, for each m > 0 there exists a unique k(m) such that gm(m, k(m)) = gk(m, k(m)). Further,

k(m) → 0 as m → 0 and k(m) is continuously twice differentiable. Define ĉ(m) = c(m, k(m)).

Upon differentiating the constraint twice and then setting cm(m, k) = ck(m, k) = 0, we obtain,

dropping most arguments for simplicity,

(1 + k′′ + ĉ′′)f(2ĉ) + 2(m+ k + ĉ)f ′(2ĉ)ĉ′′ = gmm + 2gmkk
′ + gkk(k′)2 + gkk

′′.

Since g is strictly concave, gmm + 2gmkk
′ + gkk(k′)2 < 0. Recalling that gk = f(2c), it follows that

ĉ′′ < 0 at any solution of the first order conditions. But this implies there can only be one such

solution, so there is a unique optimum as well.

Lemma 2 For given m, k, c̄ > 0, the constraint

2 (m+ k + c) f (c̄+ c) = g
(
m, k̄

)
+ g (m, k)

may have no solution for c for some k ≥ 0. However, the set of feasible k’s is a non-degenerate

interval. On this interval, there is a unique solution c(k) which is twice differentiable.15 Further,

given each m > 0, there is a unique (feasible) best reply, c(c̄), say, for the mutant to each c̄ > 0.

This is also the only solution to the first order condition

2f(c̄+ c) = gk(m, k).

Proof of Lemma 2. The constraint 2(m + k + c)f(c̄ + c) = g(m, k̄) + g(m, k) need not be

capable of being satisfied for all k ≥ 0. However, it always satisfied with k = k̄ > 0 and c = c̄ > 0.

Over the domain where it can be satisfied, there is a unique c(k), for each k. The function c(k)

is strictly quasiconcave, and twice continuously differentiable. At the edges of this domain either

k = 0 or c = 0. It follows that the domain is a non-degenerate interval. If k = 0 is in the

domain, it cannot be optimal since then c′(0) ≤ 0 but gk(m, k) → ∞ as k → 0. It follows that

there is an interior best reply. Differentiating the constraint once and setting c′(k) = 0 yields that

2f(c̄+ c) = gk(m, k). Differentiating the constraint twice and then setting c′(k) = 0 yields

2c′′(k)f(c̄+ c) + 2(m+ k + c)f ′(c̄+ c)c′′(k) = gkk(m, k) so c′′(k) < 0.

It follows that there can only be one such solution of c′(k) = 0. Hence there is a unique best reply,

c(c̄), as well.

15We suppress, for the moment only, that c is also a function of m.
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Proof of Theorem 2. Consider the conditions characterizing the mutant best reply 2f(c̄+c) =

gk(m, k) and 2 (m+ k + c) f (c̄+ c) = g
(
m, k̄

)
+ g (m, k) . If c̄ = 0 then 2f(c) = gk(m, k) > 0 so

c > 0. On the other hand, if c̄ is large enough, the conditions cannot be satisfied. At the largest

feasible c̄, c = 0. Over the feasible domain, let c(c̄) and k(c̄) denote the solutions for c and k. Now

differentiating the second condition yields 2(k′(c̄)+c′(c̄))f(c̄+c)+2(m+k+c)f ′(c̄+c)(1+c′(c̄)) =

gkk
′(c̄). Using the first condition, we have that c′(c̄) < 0. It follows that there exists a unique c̄

such that c(c̄) = c̄ > 0. This is then an ESS because c = c̄ is the unique best reply to c̄. Indeed,

from the above construction, this is is the only ESS in pure strategies.

Proof of Theorem 3. If m = 0, then c = 0, which is not optimal since m > 0 implies c > 0.

If m → ∞, then f(2c) = g(m, k)/ (m+ k + c) → 0, since gm(m, k) → 0. Hence c → 0 as m → ∞.
It follows that there exists an interior solution. From Theorem 2, the constraints(

m+ k̄ + c̄
)
f (2c̄) = g

(
m, k̄

)
and gk(m, k̄) = 2f(2c̄)

determine k̄ and c̄ as functions of m. Let these functions be k̄(m) and c̄(m), say, which are contin-

uously differentiable. At any interior solution, c̄′(m) = 0 so that, from the second constraint–

gkm(m, k̄)+gkk(m, k̄)k̄′(m) = 0 so that k̄′(m) = −gkm(m, k̄)

gkk(m, k̄)
> 0, since gkm(m, k̄) > 0 and gkk(m, k̄) < 0.

The first constraint then yields

f(2c̄)
(
1 + k̄′(m)

)
= gm(m, k̄) + gk(m, k̄)k̄′(m)

Using gk(m, k̄) = 2f(2c̄) again, it follows that, at the constrained best choice of m = m̄,

gm(m̄, k̄(m̄)) = f(2c̄(m̄))
(
1− k̄′(m̄)

)
< f(2c̄(m̄)).
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