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Abstract

A group of individuals with identical preferences must make a decision under uncertainty about which
decision is best. Before the decision is made, each agent can privately acquire a costly and imperfect signal.
We discuss how to design a mechanism for eliciting and aggregating the collected information so as to
maximize ex-ante social welfare.

We first show that, of all mechanisms, a sequential one is optimal and works as follows. At random, one
agent at a time is selected to acquire information and report the resulting signal. Agents are informed of
neither their position in the sequence nor of other reports. Acquiring information when called upon and
reporting truthfully is an equilibrium.

We next characterize the ex-ante optimal scheme among all ex-post efficient mechanisms. In this mech-
anism, a decision is made when the precision of the posterior exceeds a cut-off that decreases with each
additional report. The restriction to ex-post efficiency is shown to be without loss when the available sig-
nals are sufficiently imprecise. On the other hand, ex-post efficient mechanisms are shown to be suboptimal
when the cost of information acquisition is sufficiently small.
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1. Introduction

Consider a setting in which a group of individuals with a common goal must make a single
choice among a number of alternatives, where the alternative that is best depends on an unknown
state. Further, suppose that each group member can privately choose to invest in a costly and
imperfectly informative signal about the state. Such situations are not uncommon: recruiting
committees in academic departments, boards of directors evaluating a potential merger, teams of
doctors deciding upon the best course of treatment for a patient; each of these group decision-
making situations, and many more like them, fits reasonably well into the basic framework of
this paper.

In such environments, there is typically a free-rider problem at work; if sufficiently many indi-
viduals are expected to invest in and report their information, then any one of them, recognizing
that his information is unlikely to be pivotal, will rationally choose not to invest, thereby saving
his investment cost. This creates a social inefficiency because the free-rider’s decision does not
take into account the reduction in the others’ payoffs. Note that punishment severe enough to
deter free-riding when information acquisition is observable might not be effective here, where
it is private, because the free-rider can always pretend to have invested by providing a report that
some signal might have generated. What then is the most efficient way to deal with this free-rider
problem? The purpose of the present paper is to bring the tools of mechanism design to bear on
this fundamental question of group decision-making.

An interesting preliminary observation is that the most commonly employed version of the
revelation principle is insufficient for our purposes. To understand this, recall that the standard
revelation principle asserts that it is without loss of generality to ask each agent to simultaneously
report his type. But this is not possible in our environment because, when first approached by the
mechanism-designer, our agents possess no information and hence have no type to report. The
version of the revelation principle that we require must apply when agents optimally choose
whether to obtain private information, i.e. when private information is endogenous. Our first
result is to show that it is without loss of generality to restrict attention to mechanisms within the
following class. First, the agents are randomly ordered. Next, the agents are sequentially asked to
acquire and report their signal. An agent receives no information about either her position in the
order or the signals reported by previous agents in the sequence. After each agent’s report, either
a final decision is made or the next agent in the sequence is asked to acquire and report a signal.
Finally, each such mechanism must be incentive compatible. That is, it must be an equilibrium
for each agent to acquire and report truthfully their signal when asked to do so.

Let us call a mechanism ex-post efficient if the resulting decision is efficient, given the infor-
mation acquired by the agents. We view the class of ex-post efficient mechanisms as particularly
important and natural for at least two reasons. First, committing to ex-post inefficient decisions
is often very difficult in practice. For example, it is unlikely that a group of doctors can commit
to recommending a treatment they all believe is less likely than another to cure a patient. Second,
there are legal considerations that make ex-post inefficient decisions potentially very costly and,
if they are costly enough, the fully optimal mechanism will be ex-post efficient.1 For these and

1 We are grateful to Richard Epstein and Richard Posner for pointing this out. In general, the law treats failure to act on
a known risk more severely than failure to act on an unknown risk. To illustrate the relevance of this issue to our model
consider the following two scenarios. Case 1: A hospital provides a patient with treatment X. The patient dies and it
turns out that treatment Y could have saved his life. The hospital could have known this if it had acquired information
about the patient. But the hospital did not know. Case 2: The hospital examines the patient, conducts several tests. The
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related reasons, the agents may well be able to commit to a mechanism that sometimes makes a
decision without asking all group members to gather information, but may be unable to commit
to deliberately making a decision that is suboptimal given the collected information.

If the precision of the signal is sufficiently low relative to the number of agents, the restriction
to ex-post efficient mechanisms is without any loss; the ex-ante optimal mechanism, among all
possible mechanisms, is ex-post efficient. On the other hand, when the cost of information is
sufficiently small relative to the precision of the signal, ex-ante social surplus is maximized by
making ex-post inefficient decisions with positive probability. In this case, ex-post inefficient
decisions serve as a cost-efficient threat to induce agents to acquire information.

Our main result is a characterization of the optimal ex-post efficient mechanism. It has the
following simple form: if after receiving reports from n agents, the posterior distribution over
states of the world has precision above some cut-off f (n), information acquisition stops and the
efficient decision given the reports is made. Otherwise, an additional agent is asked to acquire
information and to report her resulting signal. A key property is that f is decreasing. Conse-
quently, less precise information is required to induce a decision as the number of solicited agents
increases.

The intuition behind this result is the following. An agent is willing to acquire information
only if her probability of being pivotal is sufficiently large. To see how the mechanism provides
this probability, suppose that an agent is pivotal, i.e., that her report changes the decision. Given
the ex-post efficient decision-rule, the resulting decision must then be taken with an imprecise
posterior, otherwise her single report would unlikely to change it. Consequently, the mechanism
can provide an agent with opportunities to be pivotal only by sufficiently often making a de-
cision with an imprecise posterior. Thus, providing incentives to invest runs counter to making
informed decisions. We should therefore expect the optimal mechanism to make imprecise de-
cisions that have a large impact on the agents’ incentives to invest, but a small impact on the
potential inefficiency of the outcome. And indeed, this is what our optimal mechanism achieves.
Because the precision cut-off function f (n) is decreasing, when a decision is made, it is made
with an imprecise posterior only if sufficiently many agents have been asked to acquire informa-
tion. Consequently, from an ex-ante point of view, decisions with imprecise priors are unlikely
(because a decision is unlikely to require asking many agents), and their efficiency cost is there-
fore small. But here is the critical point. Despite the fact that the event in which a decision is
made with an imprecise posterior has an ex-ante small probability, it has a sufficiently large con-
ditional probability in the eyes of an agent who is asked to acquire information that gives her the
correct incentives. This is because the random ordering of agents implies that it is unlikely that
any particular agent is near the beginning of the order. Hence, conditional upon being asked to
acquire information, it is unlikely that only a small number of agents have previously been asked.
Consequently, the conditional probability that a relatively large number of agents have already
been asked, increases compared with the ex-ante situation, thereby increasing the conditional
probability that (a) the precision cut-off f is low (because f is decreasing), (b) that the decision
is made with an imprecise posterior, and finally (c) that the agent is pivotal.

tests indicate that treatment X is the wrong treatment, and treatment Y is the right one. Nevertheless, the hospital applies
treatment X and the patient dies. The law would describe Case 1 as a case of palpable negligence. The hospital would
be liable for compensatory damages. In Case 2, the law would consider the hospital’s conduct reckless, and the hospital
would likely be forced to pay punitive as well as compensatory damages. Further, if it can be proven that the hospital
acted with deliberate disregard, it can be convicted for murder as well as malpractice.
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Most of the existing literature has focused on voting models with an exogenously given infor-
mation structure. See [1,5,9–11,14,17]. For example, [8] compares sequential and simultaneous
voting and find an equivalence between different voting schemes in terms of the equilibrium
outcome. In particular, the authors of [8] find that for any choice rule, there is a Pareto best
equilibrium outcome that is the same whether voting is sequential or simultaneous. In contrast,
this paper shows that sequential schemes always dominate simultaneous ones when information
acquisition is costly.

There is a growing literature on costly information acquisition in mechanism design. Most of
this literature deals with auction and public goods models where utilities are perfectly transfer-
able, unlike in voting models, where monetary transfers are not feasible. See [3,18,22], and the
references therein. These papers focus on simultaneous information acquisition. Their goal is to
analyze the incentives to acquire information in different classical mechanisms. They do not seek
the optimal mechanism, as we do here.

[23] examines two-stage voting games of the following form. In the first stage, all committee
members simultaneously decide whether to acquire a noisy signal about the state of the world
or to remain uninformed. In the second stage, they vote. The author analyzes the optimal voting
scheme among threshold voting rules and the optimal size of the committee. [12] analyzes envi-
ronments similar to those in [23]. The authors enrich the model by introducing a communication
stage before voting and demonstrate that this cheap talk stage can make the mechanism more
efficient. [21] analyzes the effect of committee size on the accuracy of the final decision. He
shows that in symmetric mixed-strategy equilibria, increasing the committee size may lead to a
less accurate decision. In asymmetric pure-strategy equilibria, however, changing the committee
size does not affect the accuracy of the final decision. All of these papers employ specific ex-post
efficient voting procedures and embrace the idea that it is important to improve outcomes through
careful design. We agree and take this view a step further by optimizing over all ex-post efficient
mechanisms.

All of the papers described in the previous paragraph analyze settings with homogeneous
preferences. [4] allows for heterogeneous preferences with both non-verifiable information ac-
quisition and costly participation in a committee. In this model, members are supposed to report
their information to a principal. The principal makes the final decision based on the reports.
[4] characterizes the optimal committee size when the signals as well as the decision are con-
tinuous variables and the principal uses the mean decision rule to determine the final decision.
[13] examines a committee with a fixed number of members. Each member acquires a noisy
signal. The signals become public after acquisition. He analyzes the properties of the optimal
decision rule for the case of simultaneous information acquisition. To provide incentives for
acquiring information, it is optimal to distort the decision rule away from the ex-post efficient
one. [4] treats the decision rule as given and focuses on committee size. [13] does the opposite.
[2] also considers a model where the voters have heterogeneous preferences over two alterna-
tives. In addition, the voters are allowed to communicate prior to voting. The authors show that
unanimous voting makes it impossible to reveal all private information.

[15] discusses environments in which voters have common preferences but are uncertain
which of two alternatives is better for them. Each voter can acquire a costly signal; the precision
of this signal depends on the amount of investment. The author proves that if the cost and the
marginal cost of precision are zero at zero, then the majority decision induced by simultaneous
voting is asymptotically efficient.

Several key features of our version of the revelation principle are discussed in [20]. For ex-
ample, the author notes that when agents can take actions that affect their private information,
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they need only report their new information to the mechanism and the mechanism need only
communicate to the agents the actions they should take. In all cases, communication is private
between the mechanism and each agent. However, [20] focuses on the communication between
the mechanism and the agents, taking the order of play and actions of the agents as given.

[24] analyzes the problem of free riding in multi-agent computations. Each agent can retrieve
a binary input at a cost. The goal of the group is to compute the value of a given function, G,
mapping from input vectors into {0,1}. The agents face a free-rider problem similar to ours: If the
probability that a single input affects the value of G is small, an individual prefers not to incur the
cost and provides an input at random. The authors independently derive a version of the revelation
principle that is similar to the one we employ here. In particular, their canonical mechanism is
also sequential and each agent is told only whether she should or should not retrieve the input.
The goal of the authors is to characterize the set of those functions that can be computed with
probability one. This mechanism design problem is conceptually different from ours. Therefore,
the results in [24], apart from the derivation of the canonical mechanisms, are not comparable to
ours.

The paper is organized as follows. Section 2 describes the model and characterizes the first-
best voting scheme. We preview our main results in Section 3. Section 4 characterizes the
canonical mechanisms, and explicitly derives the incentive compatibility constraint. Section 5
introduces the notion of continuation mechanism and proves some basic properties of the opti-
mal mechanisms. The main results are in Section 6. Section 7 concludes. Some of the proofs are
posted on the JET Supplementary Materials website and on the homepages of the authors.

2. The model

There is a society consisting of K(∈ N ∪ {∞}) agents. The state of the world can take one of
two values, A or B . Each state occurs with probability one-half. The society must take an action,
either α or β . An agent’s utility is

u(α|A) = u(β|B) = 1,

u(α|B) = u(β|A) = 0.

Every agent can draw a signal at most once at a cost c. The signal can take one of two values, a

or b and is distributed as follows:

P(a|A) = P(b|B) = p > 1/2,

P (a|B) = P(b|A) = 1 − p = q.

The signals are independently distributed across agents conditional on the state of the world.
Information acquisition is unobservable. (We also implicitly assume that information acquisition
takes no time.) An agent’s payoff is u if she does not invest into information, and u−c otherwise.

There is a Social Planner (SP) who wants to maximize expected sum of the agents’ utilities,
net of the expected total cost of information acquisition. However, we allow the SP to weight
costs and benefits differently from the agents. The objective of the SP is to maximize

K0Eu − cL, (1)

where L is the expected number of agents who collect information, and K0 (> 1) is an integer. If
K < ∞, one can assume that K0 = K, in which case (1) is the standard social welfare. The SP
cannot use a transfer scheme to induce the agents to acquire information.
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It is useful to introduce the following notation. Let #a(s) (#b(s)) denote the number of signals
a (b) in the finite signal sequence s. The following lemma states that the posteriors about the
state of the world and about the next signal after observing a sequence of signals depend only on
the difference between the numbers of signals a and b observed so far.

Lemma 1. Let s be a finite sequence of signals such that #a(s) − #b(s) = d . Then

P(A|s) = pd

pd + qd
and P(a|s) = pd+1 + qd+1

pd + qd
.

Proof. See Appendix A. �
We introduce the following notation: P(d) = pd/(pd + qd), Q(d) = 1 − P(d), p(d) =

(pd+1 + qd+1)/(pd + qd), and q(d) = 1 − p(d). Notice, P(d) denotes the probability that
the action α (β) is the efficient one, given that #a(s) − #b(s) = d (#b(s) − #a(s) = d). Q(d)

denotes the probability that the action α (β) is the efficient one, given that #a(s) − #b(s) = −d

(#b(s) − #a(s) = −d).
In order to make our problem interesting, we assume P(1) − 1/2 > c. This means that the

benefit to an individual of acquiring a signal exceeds its cost. If this assumption does not hold,
no agent would ever invest in information, and hence the optimal mechanism would be to take
an action randomly without information acquisition.

2.1. The first-best mechanism

Next, we characterize the first-best voting scheme. That is, the optimal mechanism in which
the agents do not behave strategically, and hence the scheme does not have to be incentive com-
patible. Since information acquisition takes no time, the first-best mechanism can be assumed to
be sequential. The SP sequentially asks the agents to draw signals and report them. After each
agent, the SP has to decide whether to ask an additional agent or to take a final action. Clearly,
whenever the SP takes an action, it corresponds to the majority of the reports. That is, the final
action is α if and only if more signals a were reported than signals b. The problem of the SP
is a standard stochastic dynamic programming problem. From Lemma 1, it follows that one of
the state variables is the difference between the number of signals received of each type. In fact,
if K = ∞ this is obviously the only state variable. On the other hand, if K < ∞ there is an
additional state variable: the number of agents who have previously been asked. The reason the
number of agents already asked is a state variable can be shown by the following example. Sup-
pose there are ten agents. Compare the following two cases. In case one, only three agents have
been asked and each of them has reported signal a. In case two, nine agents have been asked;
six of them reported signal a, and three of them reported signal b. By Lemma 1, the posteriors
of the SP are identical in the two cases. However, unlike in case one, in case two the value of
asking an additional agent is zero, since even if she reports signal b, taking action α will remain
optimal. In general, the fewer agents that remain to possibly ask, the smaller the value of asking
an additional agent given a certain posterior. Hence, conditional on the same posterior, the larger
is the number of agents who have already been asked, the less likely the SP will ask an additional
agent.

The following proposition characterizes the first-best mechanism.
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Proposition 1. There exists a weakly decreasing function g : N → N such that if, after asking l

agents, the reported signal sequence is s and |#a(s) − #b(s)| � g(l), |#a(s) − #b(s)| � g(l) the
SP makes the majority decision. Otherwise, the SP asks an additional agent.

(i) If K = ∞ then there exists k ∈ N such that g ≡ k. In addition, k → ∞ as K0 → ∞.
(ii) If K < ∞ then for all l ∈ N, g(l + 1) = g(l) or g(l + 1) = g(l) − 1, and g(K − 1) = 1.

Part (i) is the standard Wald Theorem. Part (ii) can be deduced from [7, Theorems 2 and 3 in
Chapter 12.5], and hence the proofs are omitted.

Observe that g(K − 1) = 1 does not mean that, in the first-best mechanism, all the agents are
potentially asked to acquire information. In general, the value of g is one for a number smaller
than K − 1.

3. Preview of the results

This section is devoted to an illustration of our main theorem by a numerical example. Sup-
pose that K = K0 = 9, p = 2/3, and c = 0.04. Below, we describe the optimal mechanism and
the strategies of the agents. We note that the optimal mechanism is ex-post efficient in this exam-
ple (see Theorem 4).2 We shall compare this mechanism with the optimal simultaneous voting
scheme, in which some of the agents have to acquire information at the same time.

The optimal mechanism works as follows. The SP asks, at random, one agent at a time to
invest in information and to report the resulting signal. Agents are informed of neither their
position in the sequence nor the reports of previous agents. After receiving a report, the SP has to
decide whether to take a final action, or to ask an additional agent. In our example, this decision
can roughly be characterized by the function

f (l) =

⎧⎪⎨
⎪⎩

4 if l ∈ {1,2,3,4},
3 if l ∈ {5,6,7},
2 if l = 8,

1 if l = 9.

If, after receiving l signals, d = |#a(s) − #b(s)| � f (l) the SP takes the optimal action given the
collected signals. If d = |#a(s) − #b(s)| < f (l) then the SP asks an additional agent to acquire
information. There is only one exception: if l = 5 and |#a(s) − #b(s)| = 3, the SP randomizes
between taking an action and asking an additional agent. This mechanism is represented by
squares in Fig. 1.

The strategy of each agent is to invest in information whenever she is asked to do so, and to
report the resulting signal truthfully.

Consider now the simultaneous voting game which is the one most commonly analyzed in
the literature. Suppose that five out of nine agents are asked to acquire information and report
the resulting signals. In addition, the action α is taken if and only if at least three agents report
signal a. This is the optimal mechanism among the simultaneous ones. Although agents have to
take actions at the same time, one can still represent this scheme as a sequential mechanism, in

2 Since the cost of information is low, the first-best mechanism specifies asking an agent to acquire information when-
ever the reports of the remaining agents affect the final decision with positive probability.
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Fig. 1. The optimal and the simultaneous mechanisms.

which no matter what the reports are, exactly five agents are asked to invest.3 This scheme is
described by the function

h =
{

5 if l � 4,

1 if l � 5,

and is represented by triangles in Fig. 1.
The main difference between the optimal scheme and the simultaneous one is that in the

simultaneous scheme, the history of reports does not affect whether the SP asks an additional
agent. Indeed, no matter what the reports are, the SP always asks exactly five agents. In contrast,
in the optimal mechanism, the SP stops asking agents if his posterior given a history of reports
exceeds a cutoff level. In addition, given that the function f is gradually decreasing, the greater
is the number of agents who have already acquired information, the smaller is this cutoff level.
There are two reasons explaining this feature: (i) it makes the mechanism cost efficient, and (ii) it
provides the agents with proper incentives to acquire information. Next, we elaborate on these
reasons.

3.1. Cost efficiency

The reason the decreasing function f saves costs is the same as the reason the function g char-
acterizing the first-best mechanism decreases when K < ∞ (see part (ii) of Proposition 1). That
is, as more agents invest in information, fewer agents remain to acquire signals. It is therefore
less likely that the reports of the remaining agents change the posterior of the SP. To illustrate,
consider the points (3,3) and (5,3) in Fig. 1. These points correspond, for example, to the report
sequences s1 = (a, a, a) and s2 = (a, a, a, b, a), respectively. The optimal mechanism solicits
information from an additional agent after s1, but recommends action α after s2 with positive
probability. The reason is that, after the sequence s1, the SP still has available six more agents.
Therefore, there is a relatively high probability that the reports of the remaining six agents will
induce the SP to take an action different from α. In contrast, after the sequence s2, the SP has
only four available agents. The SP would take an action different from α only if all four agents

3 This is because the simultaneous and the sequential mechanisms are strategically equivalent as long as the agents
receive no information when they are asked to invest in signals.
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report the signal b. Since this event has a low probability, it is optimal to take the action α now,
avoiding additional costs to gathering information.

Now, consider the simultaneous mechanism and the point (3,3) in Fig. 1. This point corre-
sponds, for example, to the report sequence s = (a, a, a). The simultaneous mechanism specifies
asking two more agents after the sequence s. No matter what these agents report, the action α

is taken because the function h jumps down from five to one at l = 4. Therefore, after the se-
quence s, asking two more agents is costly but yields no benefit. In fact, any large downward
jump of the stopping rule is associated to acquiring irrelevant information. Our optimal mech-
anism saves the cost of this type of redundant information for the following reason: since the
function f never jumps down more than one step at a time, whenever an agent is asked to ac-
quire information his report influences the final decision with positive probability.

In general, unlike the simultaneous scheme, the optimal mechanism stops soliciting infor-
mation if the cost of information acquisition outweighs the benefit of making a more efficient
decision. As expected, the social welfare generated by our optimal mechanism is higher than the
social welfare generated by the simultaneous scheme.

3.2. Efficient incentive provision

The second reason f is gradually decreasing is that it provides the agents with better incen-
tives to acquire information. An agent is willing to acquire information only if her probability
of being decisive is sufficiently large. The only way to provide opportunities for being pivotal
is to take actions even if the posterior is imprecise,—thatis, when a single report can potentially
determine the final action. Since f is decreasing, final actions when the posterior is imprecise
are made after long sequences of reports rather than after short ones. The key insight is that con-
ditional on being asked, an agent believes that she is more likely to have been asked along a long
sequence than along a short one. Next, we explain why the probabilities of long sequences are
exaggerated, conditional on being asked.

Suppose that there are one hundred agents, and consider the following mechanism. With prob-
ability .9 only a single agent is asked at random to acquire information, and with probability .1
all agents are asked. When an agent is asked, she receives no additional information. In partic-
ular, she does not know if she is the only one who has been asked to acquire information, or
if there are 99 other agents who have also been asked. We emphasize that this mechanism has
little to do with the optimal one, and we merely use it to illustrate the difference between the
conditional probabilities of short and long sequences. Using Bayes’ rule, the probability that the
SP asks each agent conditional on being asked is .1/(.1 + .9/100) > .9. That is, although the
probability of a hundred-long sequence is only .1, the probability of the same event conditional
on being asked is larger than .9. Since the actual probability of a long sequence is small, the ef-
fect of such a sequence on social welfare is small. However, since the conditional probability of
a long sequence is large, the effect on the incentive compatibility constraint is also large. That is
why the cut-off function f is decreasing; after a short sequence of reports the SP takes an action
only if the posterior is precise, but after a long sequence a decision is made even if the posterior
is fuzzy.

The main result of our paper, see Theorem 1, is that, no matter what the values of the parame-
ters are, the optimal ex-post efficient mechanism has similar attributes to those of the mechanism
described above. In particular, the SPs decision about whether to ask an additional agent, or to
take a final action can always be characterized by a function f , which has the following two
properties:
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(i) for all l ∈ N, f (l + 1) = f (l) or f (l + 1) = f (l) − 1, and
(ii) there exists an N ∈ N, N � K, such that f (N) = 1.

Property (i) implies that the function f gradually decreases, but never jumps down more than
one step. Property (ii) implies that there is a bound, N , above which the value of the function
f is one. Notice that after asking either N or N + 1 agents, the difference between the number
of different signals is at least one. Hence, even if K = ∞, the SP never asks more than N + 1
agents to acquire information.

The contrast between the first-best and second-best mechanisms is especially sharp when
K = ∞. Recall from part (i) of Proposition 1, that the first-best mechanism is then character-
ized by a constant. The second-best mechanism, on the other hand, is still characterized by a
decreasing step function. In addition, unlike in the first-best mechanism, the maximum number
of agents acquiring information is bounded in the second-best mechanism. When K = ∞, the
function f is decreasing only to provide incentives for the agents to incur the cost of information
acquisition. Indeed, since K = ∞, the number of agents already asked has no impact on how
likely it is that the remaining agents change the posterior of the SP.

4. The revelation principle and incentive compatibility

4.1. Canonical mechanisms

A voting mechanism is an extensive-form game (with perfect recall) where the players are the
agents. At each information set, either chance or an agent moves.4 Since information acquisition
is unobservable, at any information set where a certain agent has to move, she can also acquire
information if she has not done so at a previous information set.5 Furthermore, each terminal
node corresponds to taking either action α or action β . Let G be such a mechanism and NE be
a Bayesian Nash equilibrium in the game. The profile NE can be a mixed-strategy equilibrium.6

The pair (G,NE) is said to implement k ∈ R if the value of (1) is k if players follow the equilib-
rium strategies specified by NE. A mechanism is said to be sequential if the agents never have to
take actions simultaneously.

The next lemma states that we can restrict attention to a manageable class of mechanisms. We
call the elements of this class canonical mechanisms. A mechanism is canonical if it satisfies the
following three properties: (i) it is sequential, (ii) for each agent, there is at most one information
set where the agent has to take an action, and (iii) the possible actions of the agents are reporting
signal a and reporting signal b after either acquiring a signal or not. That is, in a canonical
mechanism, the agents are sequentially asked to acquire and report information according to a
possibly random order. After an agent is asked, either a final decision is made or an additional
agent is asked to acquire information. Property (ii) says that when an agent is asked to invest

4 First, chance determines the state of the world, and also the realizations of the signals. However, a move of the chance
does not necessarily correspond to a randomization by nature. It may mean, for example, asking more agents to collect
information, revealing some information to certain agents, or making a final decision. It can be useful to think of the
chance as a mediator or a machine as in [20].

5 Remember, each agent can acquire a signal once at most.
6 Chance may also randomize when taking an action. In fact, we will show that the optimal mechanism generically

involves such randomizations.
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in a signal, she receives information neither about her position in the sequence, nor about other
agents’ reports.7

Lemma 2. Suppose that (G,NE) implements k (∈ R). Then there exists a canonical mechanism,
G′, and an equilibrium NE′ in G′ such that (G′,NE′) also implements k. Furthermore, NE′ is a
pure-strategy equilibrium and specifies that whenever an agent has to take an action she acquires
information and reports it truthfully.

Proof. Since information acquisition takes no time, one can assume that G is sequential.8 Let us
modify G in the following ways.

(a) Suppose that at a certain information set, denoted by I , a certain agent takes an action
without acquiring information with probability γ (> 0). Then introduce a new information set
I ′ into the game. The information set I ′ is similar to I except that chance moves instead of the
agent. Furthermore, from any node preceding I , the information set I is reached with probability
1 − γ and I ′ is reached with probability γ . At I ′, chance moves and takes the same (possibly
random) action as the one taken by the agent after not acquiring information at I in G.

Let G′′ denote the game after applying (a) whenever possible. Let NE′′ denote the strategy
profile, where each agent, at each information set, takes the same action as in G at the cor-
responding information set after acquiring information. Since NE is an equilibrium in G, the
profile NE′′ is an equilibrium in G′′. In addition, each agent collects information before taking
an action in NE′′. Next, we modify G′′ and NE′′ in the following ways.

(b) Suppose that, at information set I , some agent can take an action other than reporting a or
reporting b after acquiring information. Modify the game such that the agent’s available actions
at I are reporting a and reporting b. In addition, if the agent reports signal s (∈ {a, b}) then
chance moves, and takes the same action as the one taken by the agent with signal s in NE′′.
Finally, specify the strategy of an agent for reporting the acquired signal.

(c) Notice that, after the modifications above, it is still possible that an agent, after acquiring
information, reports her signal multiple times along a path of the game. Modify the game such
that whenever an agent has to move for at least the second time along a certain path of the play,
then chance moves instead of the agent and takes the same action as the agent took at the first
information set along this path.

(d) After the changes above, an agent always acquires information and reports her signal
truthfully at each information set. Unify all of the information sets where a certain agent has to
take an action, so each agent moves at most at one information set.

After applying (b)–(d), we defined a new game G′ and a strategy profile NE′. The game G′
satisfies properties (i)–(iii). The agents indeed collect information and report it truthfully in NE′.
Obviously (G′,NE′) implements k, too. It remains to show that in G′, the strategy profile NE′
is indeed an equilibrium. But if there were a profitable deviation, then by (b), there would have
been a profitable deviation in NE too. �

7 [19] and [20] derive similar results in general principal-agent models. These papers show that there is no loss of gener-
ality in assuming that the agents always report their new information to the principal, and the principal only recommends
actions to the agents. [24] also arrives at similar conclusions.

8 If after some history, several agents have to take actions simultaneously, one can separate out these simultaneous
moves by modifying the game as follows. After this history, make these agents move sequentially without receiving
information about the actions taken by the other agents. This change does not affect the equilibrium strategies.
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Property (ii) of the canonical mechanisms, which says that each agent has at most one in-
formation set where she can take an action, deserves some discussion. One might think, for
example, that the optimal mechanism has the following feature. If after a long sequence of re-
ports the posterior is imprecise, the SP reveals some information to the next agent in order to give
her more incentive to invest. But in this case, if an agent is asked to acquire a signal and does
not receive additional information, she concludes that she was not asked after a long sequence
where the posterior of the SP is imprecise. As a result, she might find it optimal not to acquire
a signal. In general, if a mechanism provides information to the agents about previous reports,
there are several information sets corresponding to each agent, and there is an incentive compat-
ibility constraint corresponding to each of these information sets. If this mechanism is modified
such that no information is revealed to the agents, each agent will have only one information set
and a single incentive constraint. This constraint is the average of the constraints corresponding
to the agent’s information sets in the original mechanisms. The reason one can restrict attention
to mechanisms where no information is revealed to the agents is that it is easier to satisfy the
average of several constraints than each of them individually.

One can also assume that the optimal mechanism is ex-ante symmetric with respect to a(A)

and b(B). The reason is the following. Let us assume that the optimal mechanism is asymmetric.
Then let us consider another mechanism where the role of a(A) and b(B) are switched. This
is clearly also an optimal mechanism. Now consider the mechanism in which the SP uses the
previous two mechanisms, each with probability one-half. This mechanism is also optimal, and
it is ex-ante symmetric with respect to a(A) and b(B). From now on, we restrict attention to
canonical mechanisms that are symmetric with respect to a(A) and b(B).

If the maximum number of agents asked in a mechanism is bounded, say by N (∈ N), then one
can also assume that N agents have to acquire information according to a uniform order, and the
rest of them are never asked. If K < ∞, the maximum number of agents asked in a mechanism is
obviously bounded by K . If K = ∞ and the maximum number of agents asked in a mechanism
is unbounded, one cannot assume that agents are ordered uniformly, because there is no uniform
distribution over the integers. This implies that agents cannot be treated identically by such a
mechanism, and different agents will have different incentive constraints. In order to avoid this
complication, in the rest of this section, and throughout Section 5, we restrict attention to the
model where there are finitely many agents, that is, K < ∞.9 In addition, we restrict attention to
canonical mechanisms in which the SP uniformly orders the agents and asks them accordingly.

4.2. Incentive compatibility

The goal of this subsection is to explicitly characterize the incentive compatibility constraint,
that is, the constraint that guarantees an agent indeed has an incentive to collect information when
asked. (Another incentive compatibility constraint guarantees that an agent, upon acquiring in-
formation, will report her signal truthfully. As we will show, that constraint is trivially satisfied.)
The derivation of this constraint is somewhat different from the usual incentive constraint in
Bayesian mechanism design, since the agents do not have private information to start with. The
idea of deriving this constraint is to compare an agent’s expected payoff if she acquires infor-
mation and reports it truthfully with her payoff if she just randomizes between reporting signal

9 We shall show in the proof of Theorem 1 that, even if K = ∞, the maximum number of agents asked in the optimal
ex-post efficient mechanism is bounded.
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a and reporting signal b without actually drawing a signal. Surprisingly, the difference between
these two payoffs can be expressed in a fairly simple form.

Let S(k) denote the set of signal sequences that are weakly shorter than k. Let l(s) denote the
length of the signal sequence s. Let us fix a voting mechanism G. The mechanism may involve
some randomization by the SP. Let r(M : s) (r(m : s)) denote the probability that the SP stops the
mechanism after the reported sequence s (but not before) and makes the majority (minority) de-
cision, conditional on s being reported. (A majority (minority) decision after a sequence s means
taking action α if and only if there are more (fewer) signals a in s than signal b.) Notice that the
randomization of the SP is independent of the realization of the sequence. (All of these random-
izations can be made ex-ante.) Let p(s) denote the unconditional probability of the sequence s.
Let d(s) denote #a(s) − #b(s). Finally, let pc(s,M) (pc(s,m)) denote the probability that the
reported signal sequence is s, and decision M (m) is made after s (but not before) conditional
on being asked, and given that each agent acquires a signal and reports it truthfully. Hence the
payoff to an agent who has been asked to collect information is∑

s∈S(K)

[
pc(s,M)P

(∣∣d(s)
∣∣) + pc(s,m)Q

(∣∣d(s)
∣∣)] − c. (2)

Let L denote the expected length of a sequence of signals after which the SP stops and makes
a decision, conditional on each agent acquiring information upon being asked. That is, L is the
expected number of agents asked in G and

L =
∑

s∈S(K)

p(s)
(
r(M : s) + r(m : s))l(s).

The next proposition characterizes the incentive compatibility constraint of an agent.

Proposition 2. The agents have incentive to acquire information if and only if

p − q

4pq

∑
s∈S(K)

r(M : s)p(s)P
(∣∣d(s)

∣∣)[∣∣d(s)
∣∣ − (p − q)l(s)

]

+ p − q

4pq

∑
s∈S(K)

r(m : s)p(s)Q
(∣∣d(s)

∣∣)[−∣∣d(s)
∣∣ − (p − q)l(s)

]
� cL. (3)

Proof. Suppose that an agent is contemplating a deviation. We shall refer to this agent as
Agent 1. Since the mechanism and the information structure are symmetric with respect to a

and b one can assume that if Agent 1 deviates, she reports signal a without acquiring it. First, we
rewrite the payoff of Agent 1 if she acquires information conditional on being asked and given
that all other agents invest in information. Then, we compare it to her deviation payoff.

Fix a sequence of signals, s. Suppose that, in this sequence, there are i + d signals a and i

signals b (where d � 0). Furthermore, suppose that the action of the SP is α after the sequence s,
and Agent 1 acquires information if she is asked to do so. Next, we compute pc(s,M) using
Bayes’ rule. Let X, Y , Z, and Z denote the following events:

• X: if the first l(s) agents acquire information, then the reported sequence is s.
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• Y : the SP decides that, if the reported sequence was s, he does not stop the mechanism after
any subsequence of s and makes decision M after s.10

• Z: Agent 1 is asked to collect information.
• Z: Agent 1 is ordered among the first l(s) individuals.

Using these notations:

pc(s,M) = P(X ∩ Y : Z) = P(X ∩ Y ∩ Z)

P (Z)
.

The unconditional probability that Agent 1 is asked, P(Z), is clearly L/K . Notice that

P(X ∩ Y ∩ Z) = P(X ∩ Y ∩ Z).

The reason is that if the decision is made after an l(s)-long report sequence, then Agent 1 is
asked if and only if she is ordered among the first l(s) agents. Since X, Y , and Z are independent,
P(X ∩ Y ∩ Z) = P(X)P (Y )P (Z). The probability that Agent 1 is ordered among the first l(s)

agents, P(Z), is l(s)/K = (2i + d)/K . In addition, P(X) = p(s) because each agent, including
Agent 1, collects information upon being asked. Furthermore, P(Y ) = r(M : s) by definition.
Hence,

pc(s,M) = P(X)P (Y )P (Z)

P (Z)
= 2i + d

L
p(s)r(M : s). (4)

Next, we compute the difference between Agent 1’s payoff when she collects information and
her payoff if she does not, conditional on her being asked. As we mentioned earlier, one can
assume that the deviator reports a. Let p′

c(s,M) (p′
c(s,m)) denote the probability of making a

decision M (m) after a reported sequence s conditional on Agent 1 is being asked, and given
that she reports a and all other agents report their acquired information. Since Agent 1 reports
a without acquiring information the probabilities of the events X, Y , and Z might be different
from the previous ones. Let P ′ denote the probabilities instead of P . We need one more piece
of notation: let Z′ denote the event where Agent 1’s position in the order corresponds to those
places where there is a signal a in the sequence s.11 Then

p′
c(s,M) = P ′(X ∩ Y : Z) = P ′(X ∩ Y ∩ Z)

P ′(Z)
= P ′(X ∩ Y ∩ Z′)

P ′(Z)
.

The second equality follows from X ∩ Y ∩ Z = X ∩ Y ∩ Z′. This is because when decision
M is made after the reported sequence s, Agent 1 is asked if and only if her position in the
order corresponds to one of the signals a in the sequence s. Furthermore, P ′(X ∩ Y ∩ Z′) =
P ′(Y )P ′(X ∩ Z′) because Y is independent of X and Z′. By the Bayes’ rule P ′(X ∩ Z′) =
P ′(X : Z′)P ′(Z′). Hence,

p′
c(s,M) = P ′(Y )P ′(X : Z′)P ′(Z′)

P ′(Z)
.

10 We emphasize that the SP makes this decision ex-ante, before any signal is reported. Also notice that the event Y does
not imply the realization of s. This is because, for example, the SP might decide to take action α if the first reported signal
is a, but the first reported signal can turn out to be b.
11 For example if s = (b, a, b, a), then Z denotes the event where Agent 1 is ordered either as the second or as the
fourth agent.
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Notice that P ′(Z) = P(Z) and P ′(Y ) = P(Y ) because Z and Y do not depend on the deviation.
When one computes the probability that the reported sequence is s, given that Agent 1 reported a,
one must take away a signal a and compute the likelihood of the remainder of the sequence. This
is because one of the signals a in sequence s is due to the deviation and has nothing to do with
the distribution of the signals. Hence,

P ′(X : Z′) = 1

2
(pq)i

(
pd−1 + qd−1) = p(s)

pd−1 + qd−1

pd + qd
.

Furthermore, P ′(Z′) = (i +d)/K , because there are i +d signals a in the sequence s. Therefore,

p′
c(s,M) = i + d

L
p(s)

pd−1 + qd−1

pd + qd
r(M : s) = pc(s,M)

i + d

2i + d

pd−1 + qd−1

pd + qd
. (5)

It turns out to be useful to execute the same computation for the complement of s, denoted
by s. (‘Complement’ means that a and b are reversed. For example, if s = (a, a, b), then s =
(b, b, a).) The same argument as the one above12 yields that

p′
c(s,M) = i

L
p(s)

p−d−1 + q−d−1

p−d + q−d
r(M : s) = pc(s,M)

i

2i + d

p−d−1 + q−d−1

p−d + q−d
. (6)

If s is the reported sequence of signals, decision M is made after s and Agent 1 reports a,
then her expected utility from the majority decision is P(d − 1). Again, this is because Agent 1
computes the posterior as if there were one fewer signal a in s. Similarly if s is the reported
sequence of signals, her expected utility is P(d + 1). Notice that by Lemma 1,

P(d − 1)
pd−1 + qd−1

pd + qd
= P(d)

p
and P(d + 1)

p−d−1 + q−d−1

p−d + q−d
= P(d)

q
. (7)

Hence, the difference between the expected benefit of Agent 1 multiplied by the probabilities of
making decision M after s and s conditional on being asked when she collects information and
when she does not is:

pc(s,M)P (d) + pc(s,M)P (d) − [
p′

c(s,M)P (d − 1) + p′
c(s,M)P (d + 1)

]
= pc(s,M)

(
P(d) − i + d

2i + d

pd−1 + qd−1

pd + qd
P (d − 1)

)

+ pc(s,M)

(
P(d) − i

2i + d

p−d−1 + q−d−1

p−d + q−d
P (d + 1)

)

= pc(s,M)

(
P(d) − i + d

2i + d

P (d)

p

)
+ pc(s,M)

(
P(d) − i

2i + d

P (d)

q

)

= pc(s,M)P (d)

2i + d

(
2(2i + d) − i + d

p
− i

q

)

= pc(s,M)P (d)

l(s)

(
2l(s) − l(s) + d

2p
− l(s) − d

2q

)

12 In this computation we use the formula p(s) = (1/2)(pq)i+d (p−d + q−d ). The probability that the deviator’s posi-
tion in the ordering corresponds to a signal a in s is i/K . In addition, the probability that the sequence of reports is s is
(1/2)(pq)i+d (p−d−1 + q−d−1). Notice that d(s) � 0 if d(s) � 0.
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= pc(s,M)P (d)

l(s)

p − q

2pq

[
d − (p − q)l(s)

]
= p(s)r(M : s)P (d)

L

p − q

2pq

[
d − (p − q)l(s)

]
. (8)

The first equality follows from (5) and (6). The second equality follows from (7). The third one
follows from the assumption that the mechanism is symmetric with respect to a and b. The last
equality follows from (4).

What happens if, after the realization of s and s, the SP makes the minority decision? The
same arguments leading to (5) and (6) now yield

p′
c(s,m) = pc(s,m)

i + d

2i + d

pd−1 + qd−1

pd + qd
and

p′
c(s,m) = pc(s,M)

i

2i + d

p−d−1 + q−d−1

p−d + q−d
.

If s is the reported sequence of signals, decision m is made and Agent 1 reported a, then her
expected utility from the minority decision is Q(d − 1). Again, this is because the deviator
computes the posterior as if there were one fewer signal a in s. Similarly if s is the reported
sequence of signals, her expected utility is Q(d + 1). From Lemma 1,

Q(d − 1)
pd−1 + qd−1

pd + qd
= Q(d)

q
and Q(d + 1)

p−d−1 + q−d−1

p−d + q−d
= Q(d)

p
.

Hence, similarly to (8), we get

pc(s,m)Q(d) + pc(s,m)Q(d) − [
p′

c(s,m)Q(d − 1) + p′
c(s,m)Q(d + 1)

]
= pc(s,m)Q(d)

l(s)

p − q

2pq

[−d − (p − q)l(s)
]

= p(s)r(m : s)Q(d)

L

p − q

2pq

[−d − (p − q)l(s)
]
. (9)

To compute the difference between the expected benefit of Agent 1 when she acquires infor-
mation and when she just reports signal a, one has to execute the following computation. Sum
up for all possible sequences of signals the last expressions in (8) and in (9). Then, divide this
sum by two because in each term of the summation we have counted a sequence and its com-
plement. A mechanism is incentive compatible if and only if this difference exceeds the cost
of information acquisition. Hence, the mechanism is incentive compatible if and only if (3) is
satisfied. �

So far, we have ignored the constraint that guarantees that once an agent acquires information,
she indeed reports the true signal. We show, however, that this constraint is satisfied whenever
(3) is satisfied.

Remark 1. Suppose that (3) is satisfied. Then the agents have an incentive to report the true
signals.

Proof. Let u denote the probability of making the correct final decision, conditional on an agent
being asked and reporting a signal corresponding to the true state of the world and the rest
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of the agents acquiring information and reporting it truthfully. Let u denote the probability of
making the correct final decision, conditional on an agent being asked and reporting a signal not
corresponding to the true state of the world and the rest of the agents acquiring information and
reporting it truthfully. Since the probability that a signal corresponds to the true state of the world
is p, the incentive compatibility constraint, (3), can be rewritten as

pu + (1 − p)u − c � 1

2
(u + u ).

Since c > 0 and p > 1/2 the previous inequality implies u > u, and in turn

pu + (1 − p)u � pu + (1 − p)u.

This is exactly the constraint that guarantees that an agent reports the true signal if she acquires
one. �
4.3. Markovian mechanisms

Next, we show that we can restrict our search for the optimal mechanisms to the class of
Markovian mechanisms. To this end, let us define V (l, d) as follows:{

s
∣∣ l(s) = l, d(s) = d

}
.

That is, V (l, d) is the set of signal sequences of length l in which the difference between the
number of signals a and the number of signals b is d . We refer to V (l, d) as a state. Call a state
V (l, d) feasible if l � K , |d| � l and l −d is divisible by two. Let V (K) denote the set of feasible
states. We can extend the definition of the functions d and l to these states. That is, if V ∈ V (K),
then d(V ) = d and l(V ) = l if and only if V = V (l, d).

Three decisions can be made at any state: the majority decision (M), the minority decision
(m), and the decision to ask one more agent (C). The mechanism determines the probabilities
over these decisions at each state. What the mechanism specifies after reaching V (l, d) may de-
pend on the history, that is, on how V (l, d) is actually reached.13 However, for each mechanism,
there exists another one that operates as follows: The decision at V (l, d) depends only on the
probabilities determined by the original mechanism, not on the actual sequence.14 Notice that
the unconditional probability of any sequence in a certain state is the same. Hence, from (3), it
is clear that if the original mechanism was incentive compatible, the new one is also incentive
compatible. The value of the objective function is also the same, so one can restrict attention to
those mechanisms where the decision at each state is independent of the history.

Definition 1. A mechanism is said to be Markovian if for all sequence s ∈ S(K), the decision
D(∈ {M,m,C}) after s depends only on l(s) and d(s).

From now on, we restrict attention to Markovian mechanisms. Let G denote a mechanism. Let
p(D : V,G) (where D ∈ {M,m,C}, V ∈ V (K)) denote the probability of making decision D at

13 Suppose, for example, that after the sequence (b, a, a) the SP asks an agent, but after the sequence (a, b, a) she makes
the majority decision. Notice, that (b, a, a), (a, b, a) ∈ V (3,1).
14 That is, the probability of making the majority decision at state V (l, d) is∑

s∈V (l,d)

p(s)r(M : s)
/ ∑

s∈V (l,d)

p(s).
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state V , conditional on G and being at state V . A Markovian mechanism G can be identified by
the collection of these probabilities, that is, by{

p(D : V,G)
∣∣ D ∈ {M,m,C}, V ∈ V (K)

}
. (10)

Notice that the cardinality of V (K) is less than K2, and
∑

D∈{M,m,C} p(D : V (l, d),G) = 1.

Therefore, a mechanism can be defined as a point in a compact subset of [0,1]3K2
. Next, we

show that both (1) and (3) can be rewritten in terms of p(D : V,G)’s and they are continuous in
these probabilities. Hence, a solution to our optimal mechanism design problem exists.

Define ρ(V,D : G) (V ∈ V (K), D ∈ {M,m,C}) as the probability of reaching state V and
making a decision D given mechanism G. Furthermore, let p(V : G) denote the probability of
reaching V conditional on G. Then clearly p(D : V,G) = ρ(V,D : G)/p(V : G).

With this notation, we can rewrite the maximization problem of the SP and (3) as follows:

max
G

K0

∑
V ∈V (K)

[
ρ(V,M : G)P

(∣∣d(V )
∣∣) + ρ(V,m : G)Q

(∣∣d(V )
∣∣)] − cL(G), (11)

subject to the incentive compatibility constraint

p − q

4pq

∑
V ∈V (K)

ρ(V,M : G)P
(∣∣d(V )

∣∣)[∣∣d(V )
∣∣ − (p − q)l(V )

]

+ p − q

4pq

∑
V ∈V (K)

ρ(V,m : G)Q
(∣∣d(V )

∣∣)[−∣∣d(V )
∣∣ − (p − q)l(V )

]
� cL(G), (12)

where L(G) is the expected number of agents asked in mechanism G. The left side of the last
inequality is basically the probability of some agent being pivotal times L(G).

Suppose that a mechanism G is a probability mixture of some incentive compatible mech-
anisms G1, . . . ,Gn. That is, the SP uses mechanism Gi with probability pi . (The agents only
know pi ’s, but not the realization of the randomization.) Then

ρ(V,D : G) =
n∑

i=1

piρ(V,D : Gi),

and clearly

L(G) =
n∑

i=1

piL(Gi).

Notice that both (11) and (12) are linear in ρ(V,D : G). Hence we can claim the following:

Remark 2. The probability mixture of incentive compatible mechanisms is also incentive com-
patible. Furthermore, the value of the objective function is the probability mixture of the values
of the objective functions corresponding to the mechanisms used in the mixture.

Next, we show that in optimal mechanisms, the agents are indifferent between collecting
information and making a random report.
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Lemma 3. Suppose that the first-best mechanism is not incentive compatible and G∗ is either the
ex-ante optimal mechanism or the ex-ante optimal mechanism among the ex-post efficient ones.
Then (12) holds with equality.

Proof. Suppose, on the contrary, that (12) holds with strict inequality. Consider the following
mechanism: employ the first-best mechanism with probability ε (> 0) and mechanism G∗ with
probability 1−ε. Clearly, this new mechanism increases the value of social welfare. Furthermore,
(12) is continuous in the probabilities ρ(V,D : G) (D ∈ {M,m}), and these probabilities are
continuous in ε. Hence, if ε is small enough, the new mechanism is incentive compatible. This
contradicts to the optimality of G∗. �
5. Continuation mechanisms

The arguments of most proofs regarding the optimality of mechanisms involve modifying
the mechanism at some states. We introduce the notion of a continuation mechanism, which is
the part of a mechanism that follows after reaching a certain state. In the first-best mechanism,
when the SP had to decide whether to ask an additional agent or to make a decision, he only
had to compare the cost of a continuation mechanism from a particular state with the expected
increase in precision due to the continuation mechanism. It did not matter how the mechanism
would operate when starting from another state. Such a simple argument cannot be used when
the mechanism is subject to the incentive compatibility constraint, because there is an interaction
between continuation mechanisms through this constraint. Intuitively, if at a certain state, the SP
decides to ask more agents to invest in order to make a more informed final decision, each agent
becomes less likely to be pivotal. Therefore, the SP might be forced to stop asking agents in an-
other state in order to satisfy the incentive constraints of the agents. This means that employing a
continuation mechanism at a certain state can make it impossible to employ another continuation
mechanism at a different state. Hence, finding an optimal incentive compatible voting scheme is
a stochastic dynamic problem with a non-recursive structure.

Recall, the reason the function defining the first-best scheme was decreasing (see part (ii) of
Proposition 1) is that the larger the number of agents have already been asked, the less valuable
it is to ask an additional agent given a certain posterior. In what follows, we establish a similar
monotonicity property of continuation mechanisms, even when the schemes are subject to the
incentive compatibility constraint, as long as we also require that final decisions are ex-post
efficient. To that end, we define the efficiency of continuation mechanisms. Then, we show that
the efficiency of a given continuation mechanism decreases in the number of agents already
asked. In addition, we prove that in an optimal mechanism, if a certain continuation mechanism
is employed with positive probability, any other continuation mechanism that is more efficient
and feasible must also be employed.

A continuation mechanism at state V (l, d) is just a mechanism G defined by (10) specifying
the decisions of the SP after reaching V (l, d). Let G(l, d) denote the continuation mechanism
G at V (l, d). Similarly to ρ(V,D : G), one can define ρd(V,D : G(l, d)) as the probability of
reaching V (l + l(V ), d + d(V )) from V (l, d) and making a decision D given the continuation
mechanism G. However, a majority (minority) decision, M (m), means taking action α if and
only if d(V ) + d > (<) 0. A continuation mechanism G at V (l, d) is said to be ex-post efficient
if

ρd
(
V,m : G(l, d)

) = 0 for all V ∈ V (K).
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That is, the minority decision is never made. Notice that whether a continuation mechanism is ex-
post efficient depends on the state V at which it is employed. However, it depends only on d(V )

and not on l(V ). Hence, an ex-post efficient continuation mechanism at V (l, d) is necessarily
asymmetric with respect to a(A) and b(B) unless d = 0.

For example of a continuation mechanism, consider G defined by

p
(
M : V (1,1),G

) = p
(
M : V (1,−1),G

) = 1.

That is, G specifies action α after signal a and action β after signal b. Suppose that G is used at
V (3,3). Then,

ρ3(V (1,1),M : G(3,3)
) = p(3), ρ3(V (1,−1),m : G(3,3)

) = q(3),

and all the other probabilities are zero. Observe that the continuation mechanism G(3,3) is not
ex-post efficient.

Definition 2. A continuation mechanism G is feasible at V (l, d) with respect to a mechanism G′
if (i) p(V (l, d) : G′) > 0, and (ii) if p(V ′ : G) > 0 then l(V ′) � K − l.

The previous definition states that given a mechanism G′, a continuation mechanism is fea-
sible at V (l, d) if and only if V (l, d) is reached with positive probability according to G′.
Furthermore, the continuation mechanism G never specifies that the SP asks more agents than
the number available after reaching V (l, d), that is K − l.

Let ΔW(G(l, d)) denote the change in the objective function of the SP if, instead of making
the majority decision at V (l, d), the mechanism continues according to G conditional on being
at V (l, d). That is,

ΔW
(
G(l, d)

) = K0

∑
V ∈V (K)

ρd(V,M : G)P
(∣∣d(V ) + d

∣∣)
+ K0

∑
V ∈V (K)

ρd(V,m : G)Q
(∣∣d(V ) + d

∣∣)
− cLd(G) − K0P

(|d|), (13)

where Ld(G) denotes the expected number of agents asked according to G if G is employed at
V (l, d). Furthermore, define ΔIC(G(l, d)) as

p − q

4pq

∑
V ∈V (K)

ρd(V,M : G)P
(∣∣d(V ) + d

∣∣)[∣∣d(V ) + d
∣∣ − (p − q)

(
l(V ) + l

)]

+ p − q

4pq

∑
V ∈V (K)

ρd(V,m : G)Q
(∣∣d(V ) + d

∣∣)[−∣∣d(V ) + d
∣∣ − (p − q)

(
l(V ) + l

)]

− cLd(G) − p − q

4pq
P

(|d|)[|d| − (p − q)l
]
. (14)

Roughly, ΔIC(G(l, d)) is the change in the incentive compatibility constraint if the SP continues
asking agents according to G instead of making the majority decision at V (l, d) conditional on
being at V (l, d).

Suppose that for a mechanism G′, ρ(V (l, d),M : G′) > 0. Then, if G′ is modified such
that the SP continues asking additional agents according to G at V (l, d) instead of mak-
ing the majority decision, the value of the SPs objective function increases by ρ(V (l, d),
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M : G′)ΔW(G(l, d)). Furthermore, the new incentive compatibility constraint is almost the same
as the one corresponding to G′, but ρ(V (l, d),M : G′)ΔIC(G(l, d)) must be added to the left
side of (12). Notice that neither ΔW(G(l, d)) nor ΔIC(G(l, d)) depends on G′. This is why one
can evaluate the efficiency of a continuation mechanism independent of G′.

Definition 3. Let G be a mechanism. The efficiency of G at V (l, d) is defined as

e
(
G(l, d)

) =
⎧⎨
⎩

ΔW(G(l,d))
|ΔIC(G(l,d))| if ΔW(G(l, d))ΔIC(G(l, d)) < 0,

∞ if ΔW(G(l, d)),ΔIC(G(l, d)) � 0,

−∞ if ΔW(G(l, d)),ΔIC(G(l, d)) � 0.

The efficiency of a continuation mechanism essentially specifies how much the objective func-
tion of the SP increases if the incentive compatibility constraint changes by one unit. There
are continuation mechanisms for which ΔW(G(l, d)) as well as ΔIC(G(l, d)) are negative, but
those continuation mechanisms are obviously never employed in optimal mechanisms. Their
efficiencies are defined to be −∞. There may also exist continuation mechanisms for which
ΔW(G(l, d)) and ΔIC(G(l, d)) are positive, but then, at V (l, d) the SP always continues to ask
more agents. The efficiency of such a continuation mechanism is set to be ∞. The subjects of our
interest are those continuation mechanisms for which ΔW(G(l, d)) is positive but ΔIC(G(l, d))

is negative, or vice versa. That is, employing G at V (l, d) increases the value of the SPs objective
function at the cost of incentive compatibility, or vice versa.

Lemma 4. Let G be a feasible ex-post efficient continuation mechanism at V (l, d). Then∑
V ∈V (K)

ρd
(
V,M : G(l, d)

)
P

(∣∣d(V ) + d
∣∣) � P

(|d|).
The right side of the inequality is the SPs posterior at V (l, d) about the true state of the world.

The left side is the expected posterior if continuation mechanism G is used. The lemma states
that the expected posterior at V if an ex-post efficient continuation mechanism is employed at
V is at least as precise as the posterior at V . Clearly, more information cannot result in a less
accurate expected posterior.

Proof. See the Online Appendix. �
The next lemma shows that G(l′, d) is more efficient than G(l, d) whenever l′ < l.

Lemma 5. Let G be a mechanism such that G is ex-post efficient at V if d(V ) = d . Suppose that
G is feasible at V (l, d) as well as at V (l′, d). If l > l′, then

e
(
G(l, d)

)
� e

(
G(l′, d)

)
,

and the inequality is strict whenever |e(G(l′, d))| 
= ∞.

This lemma is the key to characterizing the optimal ex-post efficient mechanism. It estab-
lishes a monotonicity property of the optimal mechanism; given a certain posterior, the longer
the sequence, the less efficient it is to ask more agents instead of making the final decision. The
intuition behind this lemma is the following. If the SP continues to ask more agents at a certain
state, the agents have less incentive to collect information because it becomes more likely that
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other agents correct the noise introduced by a deviation. The lemma says that given a certain
posterior, this effect on the incentive compatibility is less severe if the SP asks additional agents
after a short sequence and more severe after a long sequence. The reason is the following. When
an agent computes the probability of a sequence s conditional on being asked, she multiplies the
unconditional probability of the sequence by l(s)/L(G). Therefore, long sequences enter into
the incentive compatibility constraints with larger weights relative to the unconditional probabil-
ities and the short sequences enter with smaller weights. Since the actual probability of a long
sequence is small the effect of such a sequence on the objective function is small.

Proof. Because of Lemma 1, the probability of realizing a certain sequence conditional on being
at V (l, d) is the same as that conditional on being at V (l′, d). Hence, ρd(V,D : G(l, d)) =
ρd(V,D : G(l′, d)) for all V ∈ V (K) and D ∈ {M,m,C}. From (13), it follows that

ΔW
(
G(l, d)

) = ΔW
(
G(l′, d)

)
.

Furthermore, from (14),

ΔIC
(
G(l, d)

) − ΔIC
(
G(l′, d)

)
= −(l − l′) (p − q)2

4pq

[ ∑
V ∈V (K)

ρd
(
V,M : G(l, d)

)
P

(∣∣d(V ) + d
∣∣) − P

(∣∣d(V )
∣∣)].

From the previous lemma, we know that the term in square brackets is positive. Since
l > l′ this expression is negative. Hence e(G(l, d)) � e(G(l′, d)). Furthermore, whenever
|e(G(l′, d))| 
= ∞ the inequality is obviously strict. �

Given a mechanism G′ and a feasible continuation mechanism G at V (l, d) with respect to G′,
let P(G(l, d) | G′) denote the probability of using continuation mechanism G according to G′
conditional on reaching V (l, d).

Lemma 6. Let G∗ be an optimal mechanism among the ex-post efficient ones. Suppose that
G(l, d) and G′(l′, d ′) are feasible ex-post efficient continuation mechanisms with respect to G∗.
Suppose that P(G′(l′, d ′) | G∗) > 0.

(i) If e(G(l, d))e(G′(l′, d ′)) > 0 and e(G(l, d)) > e(G′(l′, d ′)), then p(V (l, d),C,G∗) = 1.
(ii) If e(G(l, d))e(G′(l′, d ′)) < 0, P(G(l, d)|G∗) ∈ (0,1), and P(G′(l′, d ′) | G∗) < 1, then

|e(G(l, d))| = |e(G′(l′, d ′))|.

Part (i) of this lemma essentially states that if G∗ is an optimal ex-post efficient mechanism,
then it never happens that the mechanism stops at V (l, d) with positive probability if there exists
a feasible continuation mechanism at V (l, d) that is more efficient than another continuation
mechanism that is used in G∗ with positive probability.

Proof. We only prove part (i) of the lemma for the case when

ΔIC
(
G(l, d)

)
< 0 and ΔW

(
G(l, d)

)
> 0.

The proofs of the other cases and part (ii) are similar to this one.
Suppose that the hypothesis of the lemma is satisfied but p(V (l, d),C,G∗) < 1. Let us con-

sider the following mechanism, denoted by G∗∗. G∗∗ is almost identical to G∗, only it is modified
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at V (l, d) and V (l′, d ′). At V (l, d), it uses the continuation mechanism G with probability
ε (> 0) instead of making the majority decision, and at V (l′, d ′) it stops with probability

ε
ΔIC(G(l, d))p(V (l, d),G∗)

ΔIC(G′(l′, d ′))p(V (l′, d ′),G∗)
and makes the majority decision instead of using G′ as a continuation mechanism. If

ε < min

{
p
(
M : V (l, d),G∗),P (

G′(l′, d ′)
∣∣ G∗)ΔIC(G(l′, d ′))p(V (l′, d ′) : G∗)

ΔIC(G(l, d))p(V (l, d) : G∗)

}
,

these changes are indeed feasible and the new mechanism is well defined. (Since p(V (l, d),

C,G∗) < 1, ε can be chosen to be bigger than zero.) The change in the incentive compatibility
constraint is

p
(
V (l, d) : G∗)εΔIC

(
G(l, d)

)
− p

(
V (l′, d ′) : G∗)ε ΔIC(G(l, d))p(V (l, d) : G∗)

ΔIC(G′(l′, d ′))p(V (l′, d ′) : G∗)
ΔIC

(
G′(l′, d ′)

)
= 0.

Hence, since the mechanism G∗ is incentive compatible, the new mechanism is also incentive
compatible. Furthermore, the change in the objective function of the SP is

p
(
V (l, d) : G∗)εΔW

(
G(l, d)

)
− p

(
V (l′, d ′) : G∗)ε ΔIC(G(l, d))p(V (l, d) : G∗)

ΔIC(G′(l′, d ′))p(V (l′, d ′) : G∗)
ΔW

(
G′(l′, d ′)

)
= p

(
V (l, d) : G∗)εe(G(l, d)

)∣∣IC(
G(l, d)

)∣∣
− p

(
V (l′, d ′) : G∗)ε |ΔIC(G(l, d))|p(V (l, d) : G∗)

p(V (l′, d ′) : G∗)
e
(
G′(l′, d ′)

)
= p

(
V (l, d) : G∗)ε∣∣IC(

G(l, d)
)∣∣(e(G(l, d)

) − e
(
G′(l′, d ′)

))
.

Since e(G(l, d)) > e(G′(l′, d ′)), the new mechanism increases the value of the objective func-
tion, contradicting the optimality of G∗. �

Notice that the only reason G(l, d) and G′(l′, d ′) were required to be ex-post efficient is that
G∗ was the optimal mechanism among the ex-post efficient ones. The proof of the lemma has
not used the ex-post efficiency property of the continuation mechanisms. Hence, we can claim a
similar result for the optimal (not necessarily ex-post efficient) mechanism.

Remark 3. Let G∗ be an optimal mechanism. Suppose that G(l, d) and G′(l′, d ′) are fea-
sible continuation mechanisms with respect to G∗. Suppose that e(G(l, d))e(G′(l′, d ′)) > 0,
e(G(l, d)) > e(G′(l′, d ′)) and P(G′(l′, d ′) | G∗) > 0. Then p(C : V (l, d),G∗) = 1.

Lemma 7. Suppose that G∗ is an optimal mechanism among the ex-post efficient ones,
P(G(l, d)|G∗) > 0, and d 
= 0. Then there exists a state V ′ ∈ V (K − l) such that d(V ′)d < 0
and

ρd
(
V ′,M : G(l, d)

)
> 0.
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The condition d(V ′)d < 0 means that the majority decision at V ′ is different from the ma-
jority decision at V (l, d). Hence, the previous lemma says that if a continuation mechanism in
an optimal mechanism is employed at state V (l, d), then it reaches and specifies the majority
decision in at least one state where the decision differs from the majority decision at V (l, d).
This means that an agent is never asked to collect information if her report will not affect the
final decision.

Proof. See the Online Appendix. �
Lemma 8. There exists an optimal mechanism G∗ among the ex-post efficient ones such that
the SP either does not randomize or there is a pair (̂l, d̂) such that he randomizes only at states
V (̂l, d̂) and V (̂l,−d̂). Furthermore, generically, if the first-best mechanism is not incentive com-
patible, the optimal mechanism G∗ among the ex-post efficient ones must involve randomization.

Generically means that the Lebesgue measure of those (p, c) pairs for which the statement of
the lemma is false is zero.

Proof. See the Online Appendix. �
6. Optimal mechanisms

In this section, we first characterize the optimal ex-post efficient mechanism. Then we dis-
cuss some attributes of this mechanism. Finally, we show that the ex-ante optimal mechanism
sometimes does and sometimes does not involve ex-post inefficient decisions.

6.1. Optimal ex-post efficient mechanism

We are ready to characterize the optimal mechanism in the class of ex-post efficient mecha-
nisms, that is, the class of mechanisms where the SP always makes a majority decision.

Theorem 1. Suppose that the first-best mechanism does not satisfy the incentive compatibility
constraint, (12). Let G� be an ex-ante optimal mechanism among the ex-post efficient ones. Then,
there exists a decreasing step function f : N → N, and N ∈ N, such that

for all l ∈ N, f (l + 1) = f (l) or f (l + 1) = f (l) − 1, and f (N) = 1.

Let

T = {
V : f (

l(V )
) = ∣∣d(V )

∣∣, f (
l(V ) − 1

) = f
(
l(V )

) + 1
}
.

G� is defined by the following three conditions:

(i) if V /∈ T and f (l(V )) � |d(V )| then p(M : V,G�) = 1,
(ii) if V /∈ T and f (l(V )) > |d(V )| then p(C : V,G�) = 1,

(iii) if V ∈ T then p(M : V,G�) � 0, p(C : V,G�) > 0.

Furthermore, generically, there exists an optimal ex-post efficient mechanism for which there are
only two states, V1,V2 ∈ T , such that p(M : Vi,G

�) > 0 for i = 1,2. In addition, if K < ∞, then
N = K .
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Theorem 1 essentially claims that an optimal ex-post efficient mechanism can be described by
the decreasing step function f . The SP keeps asking the agents sequentially to collect information
and report it to him. Once a state V (l, d) is reached where f (l) = |d|, the SP makes the majority
decision. Since the function f is decreasing, the more agents the SP has already asked, the
less precise is the required posterior to induce the SP to stop asking agents and take an action.
Furthermore, the function f never jumps down by more than one steps. Since, generically, in
such a deterministic mechanism the incentive compatibility constraint holds with inequality, the
SP randomizes at certain states. Property (iii) says randomization can happen at a state V (l, d)

only if f (l) = |d| and the function f jumps down at l − 1.
We emphasize that Theorem 1 characterizes the optimal mechanism even when K = ∞. In

this case, the contrast between the first-best and second-best mechanisms is particularly sharp.
While the first-best mechanism is characterized by a constant, the function f characterizing the
second-best mechanism is a decreasing step function. If K = ∞, the feasibility of a continuation
mechanism at a state V does not depend on the number of agents who have already acquired in-
formation, l(V ), as long as V is reached with positive probability. Hence, the reason the function
f is decreasing cannot be that the number of available continuation mechanisms decreases as the
number of agents asked increases. It is only the incentive compatibility constraint that forces f

to be decreasing.
Indeed, the way to guarantee a large probability of being pivotal to the agents is to make de-

cisions after signal sequences where the difference between the numbers of different signals is
small. That is, the SP makes a decision after sequences that generate imprecise posteriors. We
claim that providing a large probability of being pivotal is more efficient after long sequences
than after short sequences. The intuition is as follows. Conditional on being asked, a voter be-
lieves that she is more likely to have been asked along a long sequence rather than a short one.
This is because when a voter computes the probability of a sequence s conditional on being
asked, she multiplies the unconditional probability of s by l(s)/L(G). The actual probability of
a long sequence is small, and hence the effect of such a sequence on the social welfare is small.
However, the conditional probability of such a sequence is large, because l(s) is large. Hence, the
effect on the incentive compatibility constraint is also large. For this reason the function f is de-
creasing. That is, after a short sequence the Social Planner makes a decision only if his posterior
is precise, but after a long sequence he makes a decision even if his posterior is imprecise.

Sketch of the proof. The proof of Theorem 1 is relegated to Appendix A. Here, however, we
present the main argument for K < ∞. Let d denote the largest d for which there exists an l such
that p(V (l, d) : G∗) > 0. For each d (∈ {1, . . . , d − 1}), let φ(d) denote the largest possible l for
which p(C : V (l, d),G∗) is positive. (It can be shown that the function φ is well defined.) We
claim that, conditional on reaching V (l, d), the mechanism continues at V (l, d) if and only if
l < φ(d). If l < φ(d), then the continuation mechanism at V (φ(d), d) is feasible at V (l, d), too.
By Lemma 5, the continuation mechanism used at V (φ(d), d) is more efficient at V (l, d). Hence,
from Lemma 6, it is impossible that the mechanism stops at V (l, d) conditional on reaching
V (l, d). If φ(d) < l, then the mechanism stops at V (l, d) by the definition of φ. We show that
φ is a strictly decreasing function. Suppose not, and d > d ′ and φ(d) � φ(d ′). This means that
the mechanism continues at V (φ(d), d) with positive probability. Notice, however, that after
continuing from V (φ(d), d), the mechanism must stop whenever the difference between the
number of different signals is d ′. (This is because φ(d ′) < φ(d).) Therefore, the decision of the
SP after reaching V (φ(d), d) is always the majority decision at this state, no matter what the
agents report in the continuation mechanism. This contradicts Lemma 7. It can be shown that the
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mechanism continues at state V (l, d) if and only if l � φ(d). Furthermore, since φ is decreasing,
p(M : V (l, d),G∗) is positive if and only if φ(d − 1) � l − 1 and φ(d) < l. The first inequality
guarantees that the mechanism continues at V (l−1, d −1); hence V (l, d) can indeed be reached.
The second inequality guarantees that the mechanism does not continue at V (l, d). The function
f in Theorem 1 can be defined as follows:

f (l) = min
d∈{1,...,d−1}

{
d

∣∣ φ(d) � l
}
.

Notice that f (φ(d)) = d , so one can think of the function f as the inverse of φ. Since φ is strictly
decreasing, the function f is also decreasing. It is easy to show that the rest of the properties of
f described in the theorem hold. As we pointed out earlier, from Lemma 3, it follows that the
optimal mechanism generically involves randomization. From Lemmas 6 and 7, it follows that
randomization can happen only at states in T . From Lemma 8, it follows that there generically
exists an optimal mechanism in which randomization happens at two states. �

Next, we claim that the optimal voting scheme described in Theorem 1 is essentially unique.

Theorem 2. The optimal ex-post efficient mechanism described in Theorem 1 is generically
unique and involves randomization at two states.

Proof. See the Online Appendix. �
The argument of the proof of Theorem 2 is as follows. First, we show that if, for a certain

pair (p, c), there are at least two different optimal mechanisms, then there exists an optimal
mechanism that involves randomizations in at least two different states, V1 and V2, such that
l(V1) 
= l(V2). By Lemma 6, it follows that there are at least two deterministic continuation
mechanisms that have the same efficiency. Since there are only finitely many deterministic con-
tinuation mechanisms, if the optimal mechanism were not generically unique, there would exist
two continuation mechanisms with the same efficiency for a positive measure of (p, c). In the
proof of Theorem 2, we show that this is impossible.

6.2. Ex-ante optimal mechanisms

In this section, we prove two results regarding the ex-post efficiency of the ex-ante optimal
mechanisms. First, we show that the optimal mechanism sometimes involves ex-post inefficient
decisions. Second, we characterize a set of parameter values for which the ex-ante optimal mech-
anism never makes ex-post inefficient decisions.

The first result is proved by contradiction. It will be shown that if the cost of information
acquisition is small enough, then the optimal ex-post efficient mechanism can be improved upon
by replacing a continuation mechanism with an ex-post inefficient continuation mechanism.

Next, we define two continuation mechanisms, G1(N,1) and G2(N,1). Employing G1 at
V (N,1) means the following. The SP asks an additional agent. If the agent confirms the posterior
of the SP, he makes the majority decision. If not, the SP asks an additional agent and makes the
decision corresponding to the report of the last agent. In contrast, employing G2 at V (N,1)

means the following. At V (N,1), the SP asks an agent, and if she confirms his posterior, he
makes the majority decision. If not, the SP asks two more agents. If their reports are the same,
he again makes the majority decision. However, if the two agents report different signals, the SP
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asks an additional agent and makes the minority decision. In the following lemma we show that
if c is small enough, then G2 is more efficient than G1 at V (N,1).

Lemma 9. There exist a c̃ (> 0) and N ∈ N such that for all N � N and c ∈ (0, c̃ ),

e
(
G2(N,1)

)
> e

(
G1(N,1)

)
.

Proof. See the Online Appendix. �
We have to show that for some values of c, the optimal ex-post efficient mechanism indeed

uses G1(N,1) with probability strictly between zero and one for some N .

Lemma 10. For all ĉ (> 0) and N ∈ N there exist K,N ∈ N, c < ĉ such that P(G1(N,1) | G∗) ∈
(0,1) and N ∈ {N, . . . ,K − 4}.

Proof. See the Online Appendix. �
Now we are ready to state our third theorem.

Theorem 3. For all ĉ (> 0) there exist K ∈ N, c < ĉ such that the ex-ante optimal mechanism
involves ex-post inefficient decisions.

Proof. By Lemmas 9 and 10, for all ĉ (> 0) and N ∈ N there exist K,N ∈ N, c < ĉ such that
P(G1(N,1) | G∗) ∈ (0,1), e(G2(N,1)) > e(G1(N,1)) and N ∈ {N, . . . ,K − 4}. In addition,
G2 is feasible at V (N,1) because N � K − 4. Hence, by Remark 3, the optimal mechanism
among the ex-post efficient ones, G∗, is not optimal. Therefore, the optimal mechanism involves
ex-post inefficient decisions. �

Next, a set of parameter values is characterized for which the ex-ante optimal mechanism is
always ex-post efficient. The proof of this theorem is based on the following observation. For
a fixed K , if the precision of the signal, p, is small enough then in any mechanism switching
a minority decision to a majority decision makes the mechanism more incentive compatible.
Since these switches also increase social welfare, the ex-ante optimal mechanism cannot involve
minority decisions.

Theorem 4. If (2p − 1) � 1/
√

K , then in the ex-ante optimal mechanism only ex-post efficient
decisions are made.

Proof. Suppose that at state V the optimal mechanism G∗ specifies the ex-post inefficient
decision with positive probability. This implies that on the left-hand side of the incentive com-
patibility constraint, (12), there is a term in the following form:

ρ(V,m : G∗)Q
(∣∣d(V )

∣∣)[−∣∣d(V )
∣∣ − (p − q)l(V )

]
,

where ρ(V,m : G∗) is strictly positive. We show that turning the ex-post inefficient decision into
an ex-post efficient one increases the incentives of the agents to collect information. (This change
obviously increases social welfare.) If we do so, then instead of the previous term the following
expression appears in the incentive compatibility constraint:

ρ(V,m : G∗)P
(∣∣d(V )

∣∣)[∣∣d(V )
∣∣ − (p − q)l(V )

]
.
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We have to show that

Q
(∣∣d(V )

∣∣)[−∣∣d(V )
∣∣ − (p − q)l(V )

]
� P

(∣∣d(V )
∣∣)[∣∣d(V )

∣∣ − (p − q)l(V )
]
.

Recall that Q(|d(V )|) = 1 − P(|d(V )|). Hence, the previous inequality can be rewritten as(
2P

(∣∣d(V )
∣∣) − 1

)
(p − q)l(V ) �

∣∣d(V )
∣∣.

Equivalently

l(V ) � |d(V )|
(2P(|d(V )|) − 1)(p − q)

. (15)

Notice however that

1

(p − q)2
� |d(V )|

(2P(|d(V )|) − 1)(p − q)
.

Since l(V ) must be smaller than K , and K � 1/(p − q)2, the inequality (15) is satisfied. �
7. Discussion

This paper analyzed optimal voting schemes in environments where information acquisition
is costly and unobservable. Theorem 1 characterized the optimal ex-post efficient voting scheme.
We showed that it can essentially be defined by a decreasing step function. For each number
of agents already asked, this function assigns a value of the posterior. The Social Planner stops
asking agents only if his posterior is more precise than the value of this function corresponding
to the number of agents already asked. Since the function is decreasing, this decision rule means
that when more agents have already been asked, a less precise posterior will induce the Social
Planner to take a final action instead of acquiring more information. On the one hand, the Social
Planner wants to act only if his posterior is sufficiently precise. On the other hand, to give agents
enough incentive to acquire information, he must make sure each agent is sufficiently likely to
be decisive. An agent is more likely to be pivotal if the Social Planner’s posterior is imprecise
when the Social Planner makes a decision. Theorem 1 says that the Social Planner should make
the agents pivotal along relatively long sequences. This is because an agent, conditional on being
asked, assigns a high probability to long sequences relative to the actual probability of those
sequences. This intuition does not involve any assumption about the distribution of states of the
world and signals. Hence, we conjecture that the statement of Theorem 1 is valid in one form or
another under virtually any information structure.

What was essential in our computations is that the posterior of the SP was a function only
of the number of reported signals and the difference between the numbers of different signals.
It does not seem to be important that the posterior actually does not depend on the number of
signals. This is because these two variables define the state space. Suppose, for example, that the
range of signals is {a, b,∅} instead of {a, b}, p(a|A) = p(b|B), and p(∅|A) = p(∅|B). That is,
an agent may observe a signal ∅ and be unable to update her prior about the state of the world.
The posterior of the SP remains a function only of the difference between the number of signals
a and b. We conjecture that the claim of Theorem 1 is still valid. The only difference is that all
states of the form V (l, d), |d| � l, must be considered and not only those where l − d is an even
number.

What happens if the prior about the state of the world is asymmetrically distributed? Notice,
that if for example p(A) > 1/2, then there is an initial bias toward action α. In this case, one
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cannot restrict attention to mechanisms that are symmetric with respect to the reported signals.
Therefore, one cannot assume that if an agent decides not to acquire information, she is indiffer-
ent between reporting either of the signals. There will be two incentive compatibility constraints,
corresponding to each signal. It can be shown that our main result is robust to local perturbation
in the prior. That is, for all (p, c,K) there exists an ε > 0, such that if |p(A)− 1/2| < ε, then the
statement of Theorem 1 is essentially the same. Furthermore, our approach turns out to be useful
even if in the optimal mechanism an agent who has not acquired information strictly prefers to
report one of the signals, say signal a. Then, it can be shown that the decision α can again be
characterized by a decreasing step function.15

Nonetheless, we view our model’s assumptions about the information structure as restrictive.
Only the particular assumed distributions enabled us to explicitly characterize the incentive com-
patibility constraint. Recall that having the explicit form of the incentive compatibility constraint
made it possible to compute the efficiency of continuation mechanisms. These computations
played a major role in the proof of Theorem 3, which states that if the cost of information ac-
quisition is small enough, the ex-ante optimal voting mechanism sometimes necessarily involves
ex-post inefficient decisions. The fact that ex-post inefficient decisions can increase ex-ante effi-
ciency in voting models was also reported in [5,12,13]. We find this result surprising. It says that
the Social Planner can threaten the agents by committing to make ex-post inefficient decisions.
This threat induces the agents to acquire information to avoid inefficient decisions.

We have also characterized a set of parameters where in the ex-ante optimal mechanism
ex-post inefficient decisions are never made (see Theorem 4). However, if the ex-ante optimal
mechanism involves ex-post inefficient decisions, hardly anything is known about the optimal
scheme. Nonetheless, we view the problem of identifying optimal mechanisms that are ex-post
inefficient as rather theoretical. We believe that in most economic and political situations of in-
terest, commitment to inefficient actions is not feasible.

How large is the efficiency loss due to incentive problems? It can be shown that as the number
of agents goes to infinity the probability of making the right decision goes to one in the first-
best scheme. And so does the expected payoff of an agent. In contrast, in the optimal incentive
compatible mechanism the probability of making the right decision converges to a number that is
strictly less than one. The expected payoff of an agent also converges to this number. This implies
that the ratio of the expected payoff of an agent in the optimal incentive compatible mechanism
and in the first best scheme converges to a number strictly less than one as K goes to infinity.
Hence, the total welfare loss goes to infinity.

A feature of the optimal mechanism is that agents cannot abstain. What happens if for some
reason the SP must allow agents to abstain? We claim that the SP can achieve the same value
of his objective function as without this restriction. The mechanism described in Theorem 1
can be modified as follows. The possible actions of an agent are reporting signal a or b or
abstaining. If an agent abstains but no agent abstained before, the SP randomizes between signals
a and b and continues to operate the mechanism as if the agent had reported the outcome of this
randomization. If an agent abstains and there was already an agent who abstained in the sequence,
the SP stops asking agents and makes the ex-post efficient decision. From the agent’s point of
view, abstaining is the same as reporting a signal randomly, given that the other agents acquire
information. Ex-post efficiency is not violated, either, since the SP makes a final decision only if

15 All these results can be found at http://home.uchicago.edu/~szentes/asymmetric.pdf.
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the difference between the numbers of each type of signal is not zero. Hence the deviation of a
single agent cannot make the final decision ex-post inefficient.

We assumed that the cost of acquiring information is the same for all agents. What happens
if the agents’ costs are heterogeneous? The derivation of the canonical mechanism (Lemma 2)
is still valid. However, one cannot restrict attention to the uniform ordering of agents anymore.
Clearly, the SP prefers to place the low-cost agents at the beginning of the sequences. On the
other hand, an agent has little incentive to acquire information if she knows that she is at the
beginning of a sequence. Hence, we conjecture that in the optimal mechanism, the low-cost
agents are placed at the beginning of the ordering relatively more frequently but not always.
Also, the difficulty of analyzing that problem is that each agent who is ordered differently will
have a different incentive compatibility constraint.

Finally, throughout the paper we maintained the assumption that the Social Planner cannot
use a transfer scheme to induce the agents to acquire information. If he could do so, he could
implement the first-best mechanism. Such a mechanism would specify a transfer scheme that
rewards an agent if her report matches the majority of other agents’ reports and punishes the
agent otherwise. (For further details of such mechanisms, see [6] and [16].) We believe that
many environments where small groups make decisions should be modeled with nontransferable
utilities.

Appendix A. The proof of Theorem 1 for K < ∞

Let d denote the largest d for which there exists an l such that p(V (l, d),G∗) > 0. For
each d , (d ∈ {0, . . . , d − 1}), let φ(d) denote the largest possible l for which ρ(V (l, d),C : G∗)
(and by symmetry ρ(V (l,−d),C : G∗)) is positive. Since there exists a state V (l, d) such that
p(V (l, d),G∗) > 0 for all d (|d| ∈ {0, . . . , d − 1}), there must exist an l such that ρ(V (l, d),C :
G∗) > 0. (Otherwise the state V (l, d) could not have been reached with positive probability.)
Hence the function φ is well defined. Next, we show that conditional on reaching V (l, d), the
mechanism continues at V (l, d) if and only if l < φ(d).

Lemma 11. Suppose p(V (l, d) : G∗) > 0. If φ(|d|) � l, then p(C : V (l, d),G∗) > 0. If
φ(|d|) < l, then p(C : V (l, d),G∗) = 0.

Proof. Without loss of generality, assume d � 0. First, suppose that p(V (l, d) : G∗) > 0 and
φ(d) > l. Assume, by contradiction, that p(C : V (l, d),G∗) 
= 1. (That is, p(M : V (l, d),G∗) >

0.) By the definition of the function φ, a continuation mechanism is employed at the state
V (φ(d), d) with positive probability. Since p(V (l, d) : G∗) > 0 and φ(d) < l, this continu-
ation mechanism is also feasible at the state V (l, d). Furthermore, by Lemma 5, the contin-
uation mechanism is more efficient at V (l, d) than at V (φ(d), d). But then, by Lemma 6,
p(M : V (l, d),G∗) > 0 is impossible. If φ(d) = l, then by the definition of the function φ,
p(C : V (l, d),G∗) > 0.

If φ(d) < l, then the mechanism stops at V (l, d) by the definition of φ. �
Lemma 12. The function φ is strictly decreasing.

Proof. Suppose, by contradiction, that d > d ′ (� 0) and φ(d) � φ(d ′). Notice that the mecha-
nism continues at the state V (φ(d), d). However, after continuing from V (φ(d), d), whenever
the difference between the numbers of different signals is d ′, the mechanism must stop. (This
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is because φ(d ′) < φ(d).) Hence the decision of the SP after reaching V (φ(d), d) is always the
majority decision at V (φ(d), d), no matter what the agents report in the continuation mechanism.
This contradicts the statement of Lemma 7. �

Lemma 11 only characterized those states where the mechanism continues conditional on
reaching those states in terms of the function φ. The next lemma essentially says that the states
characterized in Lemma 11 are actually reached.

Lemma 13. Let V (l, d) ∈ V (K). Then

ρ
(
V (l, d),C : G∗) > 0 ⇔ l � φ

(|d|).
Proof. If ρ(V (l, d),C : G∗) > 0, then by the definition of the function φ, l � φ(|d|).

Suppose that there exists a state V (l, d) ∈ V (K) such that l � φ(|d|) but ρ(V (l, d),C : G∗) =
0. That is, the set

Ω = {
V (l, d): V (l, d) ∈ V (K), l � φ

(|d|), ρ
(
V (l, d),C : G∗) = 0

}
is non-empty. Among such states, consider the set Ω̃ of those where l + |d| is minimal. That is,

Ω̃ = arg min
V ∈Ω

{
l(V ) + ∣∣d(V )

∣∣}.
Among these states, consider one where l is minimal. Let V (l′, d ′) be such a state. That is,

V (l′, d ′) ∈ arg min
V ∈Ω̃

{
l(V )

}
.

Since the mechanism is symmetric with respect to a and b, d ′ � 0 can be assumed. There can
be two reasons why ρ(V (l′, d ′),C : G∗) = 0: either the state V (l′, d ′) is never reached, or al-
though it is reached, the mechanism stops there. First, suppose that p(V (l′, d ′) : G∗) > 0. Then,
by Lemma 11, ρ(V (l′, d ′),C : G∗) > 0, a contradiction. Hence, p(V (l′, d ′) : G∗) = 0. Then
ρ(V (l′ − 1, d ′ − 1),C : G∗) = 0, for otherwise the state V (l′, d ′) would be reached with positive
probability. We consider two different cases.

Case 1. d ′ > 0. Then, since l′ � φ(d ′), from Lemma 12 it follows that l′ − 1 � φ(d ′ − 1). That
is, V (l′ − 1, d ′ − 1) ∈ Ω . Since l′ − 1 + d ′ − 1 < l′ + d ′, V (l′, d ′) /∈ Ω̃ , a contradiction.

Case 2. d ′ = 0. Then p(V (l′ − 1,−1) : G∗) must be zero. (If not, then since V (l′,0) ∈ Ω̃ ,
V (l′ − 1,−1) ∈ Ω̃ also. But then

V (l′,0) /∈ arg min
V ∈Ω̃

{
l(V )

}
,

a contradiction.) Since p(V (l′ − 1,−1) : G∗) = 0, it follows that the mechanism cannot con-
tinue at V (l′ − 2,0). That is, ρ(V (l′ − 2,0),C : G∗) = 0. This implies V (l′,0) /∈ Ω̃ , again a
contradiction. �

Let T denote the set of states where the mechanism involves randomization:

T = {
V : ρ(V,C : G∗), ρ(V,M : G∗) > 0

}
.

Lemma 14. Let V (̂l, d̂) ∈ T . Then φ(|d̂|) = l̂.
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Proof. Since ρ(V (̂l, d̂),C : G∗) > 0, l̂ � φ(|d̂|) by Lemma 13. Suppose that l̂ < φ(|d̂|). By the
definition of the function φ, ρ(V (φ(|d̂|), d̂),C : G∗) > 0. Notice that the continuation mecha-
nism induced by G∗ at V (φ(|d̂|), d̂) is feasible at V (̂l, d̂) and more efficient by Lemma 5. Since
ρ(V (̂l, d̂),M : G∗) > 0, this contradicts Lemma 6, and therefore φ(|d̂|) = l̂. �

The function f in Theorem 1 can be defined as follows:

f (l) = min
{
d

∣∣ d > d � 1, φ(d) � l
}
. (A.1)

We are ready to prove Theorem 1 for K < ∞.

Proof of Theorem 1 for K < ∞. We have to show that the function f defined by (A.1) satisfies
the claim of the theorem. Since φ is decreasing (by Lemma 12) the function f is also decreasing.
Next, we show that

f (l + 1) = f (l) or f (l + 1) = f (l) − 1.

If l + 1 = φ(d) then, by (A.1), f (l + 1) = d . Since φ(d) > l and φ is decreasing, it follows from
(A.1) that f (l) > d . But φ(d + 1) < φ(d) = l + 1. Therefore,

f (l) = d + 1 = f (l + 1) + 1.

If f (l + 1) = d and l + 1 < φ(d), then clearly l � φ(d). Hence f (l) = d = f (l + 1). From this
argument, it follows that the set T in the claim of Theorem 1 can be defined as

T = {
V : φ

(∣∣d(V )
∣∣) = l(V )

}
. (A.2)

f (K) is one for the following reason. From (A.1), it follows that f (K) � 1. Suppose, by
contradiction, that f (K) > 1. Then at a state V (K − 1, d) where d � 1, an additional agent
is asked to collect information even though she cannot change the posterior of the SP. This
contradicts to the statement of Lemma 7.

It remains to show that conditions (i)–(iii) are also satisfied.
(i) Suppose that f (l) � d and V (l, d) /∈ T . Also assume that p(V (l, d) : G∗) > 0.

Suppose, by contradiction, that the mechanism continues with positive probability, that is,
p(C : V (l, d),G∗) > 0. But then φ(|d|) � l by the definition of φ. If φ(|d|) = l, then V (l, d) ∈ T

by (A.2), a contradiction. If φ(d) > l, then f (l) = d is impossible by the definition of f .
(ii) Suppose that f (l) < d , V (l, d) /∈ T , and p(V (l, d) : G∗) > 0. Since f (l) > d and

V (l, d) /∈ T , it follows that φ(d) > l. From Lemma 13 p(C : V (l, d),G∗) > 0 follows. By
Lemma 14, p(M : V (l, d),G∗) = 0. Hence p(C : V (l, d),G∗) = 1.

(iii) This follows immediately from (A.2) and Lemma 14.
From Lemma 8, it follows that there exists an optimal ex-post efficient mechanism that in-

volves randomization at only a single state. Hence, for this mechanism, there is a single state
V ∈ T such that p(M : V,G�) > 0. �
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