Technological Diversification

By MIKLOS KOREN AND SILVANA TENREYRO*

Economies at early stages of development are frequently shaken
by large changes in growth rates, whereas growth in advanced
economies tends to be relatively stable. To explain this pattern,
we propose a theory of technological diversification. Production
makes use of input-varieties that are subject to imperfectly corre-
lated shocks. Endogenous variety adoption by firms raises average
productivity and provides diversification benefits against variety-
specific shocks. The volatility decline thus arises as a by-product
of the development process. We quantitatively assess the model’s
predictions and find that for reasonable parametrizations, it can
generate a decline in volatility with development consistent with
empirical patterns.

Economies at early stages of the development process are often shaken by abrupt
changes in growth rates. In his influential paper, Lucas (1988) notes that “within
the advanced countries, growth rates tend to be very stable over long periods of
time,” whereas within poor countries “there are many examples of sudden, large
changes in growth rates, both up and down.”

Motivated by this empirical observation, this paper proposes an endogenous
growth model of technological diversification. The model’s key idea is that firms
using a large variety of inputs can mitigate the impact of shocks affecting the
productivity of individual varieties. This process takes place through two chan-
nels. First, with a larger number of varieties, each individual variety matters less
in production, and productivity thus becomes less volatile given the law of large
numbers. Second, whenever a shock hits a particular variety, firms can adjust the
use of the other varieties to partially offset the shock. Both channels make the
productivity of firms using more sophisticated technologies less volatile. Since
firms in richer economies tend to rely on technologies involving a richer menu of
inputs, richer countries will also tend to be less volatile.

Building on the seminal contributions by Romer (1990) and Grossman and
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Helpman (1991), our model characterizes technological progress as an expansion
in the number of input varieties. The number of varieties evolves endogenously
in response to producers’ incentives to add to the range of inputs they use, and
increases in the number of varieties raise the average level of productivity. Our
contribution is to make the model stochastic, so that it can be used to study
its implications for output volatility. In particular, we assume that each vari-
ety can be affected by a productivity shock; thus the expansion in the number
of varieties can provide diversification benefits, and hence reduce the level of
volatility of the economy.! In other words, the reduction in volatility arises as a
likely by-product of firms’ incentives to increase productivity. As such, our model
highlights a hitherto overlooked implication of expanding-variety growth models,
which makes them suitable to explain the decline in volatility that accompanies
the development process.

We say “suitable to explain” because, interestingly, once technological diver-
sification is embedded in an endogenous growth model with multiple firms, it is
possible to generate examples where volatility and development do not necessarily
move in opposite directions. This happens, for example, if a significant number of
firms adopts an input that is already widely used by other firms; the economy as
a whole may then become highly technologically concentrated and hence exposed
to shocks to that particular input, leading to episodic surges in volatility—higher
productivity in this case can come at the cost of higher volatility. In practice,
however, development and volatility move in opposite directions most of the time,
and this is indeed the case in virtually all our numerical experiments. This oc-
curs because the introduction of a new variety in the economy always increases
the level of development, and raises the degree of technological diversification by
reducing the contribution to output of previously existing varieties (thus lowering
volatility). A calibrated version of the model can yield a decline in volatility with
development quantitatively comparable to that in the data.

A simple example of the mechanism of technological diversification is offered
by a comparison of an economy using only labour and an economy using labour
and capital. Under standard assumptions on technology, the latter will tend
to be more productive on a per-capita basis. Our point is that it will also be
less volatile. In particular, any shock that reduces the supply of labour (such
as an epidemic, a general strike, etc.) will have a bigger negative impact on
the economy that does not have scope to substitute labour with capital. Or, to
think of a currently more realistic example, consider leading-edge steel producers
that have the capacity to process iron ore of a range of qualities as compared to
more basic producers who can only accept high-quality ores as input. Clearly the
former are more productive, and, in addition, they should be less susceptible to
shocks to the (global or local) supply of high-quality iron ore.?

Hnput varieties are broadly construed to encompass both tangible and intangible inputs or technolo-
gies. Shocks are variety-specific and to the extent that the varieties are used by a positive measure of
firms, they lead to aggregate volatility.

2Throughout the paper, we focus the analysis on the case in which different varieties are gross
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A more drastic example of the lack of technological diversification in less de-
veloped economies is offered by the 2011 drought in East Africa and the Horn,
where a large fraction of the livestock (one of the main assets of these economies)
has died, causing large drops in production and threatening the livelihoods of
millions of people. (In sharp contrast, more developed and technologically di-
versified economies, count on irriagation systems to cope with droughts.) The
stabilizing virtues of technological diversification are also much in evidence in the
debate over energy policy in developed economies. The increase in oil prices in
the 2000s has led to overwhelming bipartisan support in the United States for the
H-prize Act of June 2007, which seeks to incentivise “achievements in overcoming
scientific and technical barriers associated with hydrogen energy” in order “to
free [the country] from its dependence on foreign oil.” 3

Previous theoretical studies on the relation between volatility and development,
including Greenwood and Jovanovic (1990), Saint-Paul (1992), Obstfeld (1994),
and Acemoglu and Zilibotti (1997), have focused on financial—as opposed to
technological—diversification. These models feature an inherent tradeoff between
productivity and risk at the microeconomic level: firms (or decision units) must
choose between low-productivity but safe activities and high-productivity but
risky ones. Firms in financially underdeveloped countries do not have the facility
to pool risks, so in the presence of risk aversion, they minimize risk by choosing
low productivity projects. In financially developed countries, risks can be pooled
and hence high-return and high-risk projects are undertaken. Aggregate volatil-
ity may still be lower in developed countries if financial development facilitates
the creation of new financial diversification opportunities across firms. Thus, as
Acemoglu (2005) summarizes it, the model of financial diversification implies “a
negative relationship between aggregate and firm-level volatility,” “a positive re-
lationship [between development and] firm-level volatility,” “a steady increase in
firm-level volatility, and a steady decline in aggregate volatility.”

Unlike existing models, the expanding-variety model we propose posits no trade-
off between productivity and risk at the firm level. Indeed our point is that there
are technological reasons to expect the adoption of a new variety to concurrently
lead to an increase in productivity and a decline in volatility. Hence, preferences
towards risk, which are crucial in models of “financial diversification,” play no
role in our story, where firms are uniquely concerned with profit maximization.?

substitutes. In the Web Appendix, we show that technological diversification can also lead to lower
volatility when varieties are gross complements in production, provided that shocks are not too large.
Intuitively, even when goods are complements there can be scope for substitutability in the budget; this
is similar to the result that “every good has at least one substitute,” even when there is complementarity
in production.

3The first quotation comes from the Act text itself. The second comes from its sponsor’s speech at
the House of Representatives; the Act was passed with 408 Ayes and 8 Nays.

4Blanchard and Gal{ (2007) find that in the United States, the share of oil used in production and
consumption in the late 1990s was smaller than in the 1970s, that is, the U.S. economy seemed to be
already (though slowly) diversifying away from oil.

5In particular, if firms were risk neutral, financial diversification models would predict complete
specialization in the most productive and risky sector or activity (and hence extreme volatility), while in
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Furthermore, in our model the process of technological diversification takes place
within the firm, not across firms. Finally, our results do not hinge on financial
development.

These theoretical differences lead to important differences in empirical impli-
cations. First, financial diversification models predict an increase in firm-level
volatility with the level of development, and a negative comovement between ag-
gregate and firm-level volatility. Instead, our model predicts a decline in firm-level
volatility with development and a positive comovement between aggregate and
firm-level volatility. On these two predictions, our model finds support in recent
work by Davis, Haltiwanger, Jarmin and Miranda (2006), who document that in
the United States, over time, privately held firms have experienced a substan-
tial decline in volatility; the authors further show that the decline in aggregate
volatility in the United States has been overwhelmingly driven by the decline in
firm-level volatility (and not by the aggregation of highly volatile firms exposed
to increasingly less correlated idiosyncratic shocks). In the next section we dis-
cuss new evidence for 17 other countries confirming the tendency for a positive
comovement between aggregate and firm-level volatility.

A second testable prediction of models of financial diversification is that the
decline in aggregate volatility with development is brought about by financial
development. In our model, the decline in volatility takes place independently of
the level of financial development. As we argue in the next section, this impli-
cation is corroborated by the evidence. The strong negative correlation between
volatility and development takes place at all levels of financial development. Put
differently, even controlling for the level of financial development, there remains a
strong negative correlation between volatility and development that needs expla-
nation. While we view both margins of diversification for the firm, financial and
technological, as complementary and empirically plausible, our model will focus
exclusively on the second one.’

As mentioned, our model posits no tradeoff between productivity and volatil-
ity at the microeconomic level. The absence of a tradeoff is motivated by the
finding that countries at early stages of development tend to specialize in low-
productivity, high-risk activities, whereas the opposite pattern is observed at later
stages of development. Moreover, even within narrowly defined sectors, develop-
ing countries tend to feature both lower productivity and higher volatility than
developed countries. (See Koren and Tenreyro (2007)).7%

our setting risk-neutral firms still want to “diversify” (i.e., expand the number of inputs in production).

STechnological diversification is also complementary to other finance-related mechanisms emphasized
in the literature. In particular, shocks can be amplified by introducing financial frictions, a task we do not
undertake in the interest of clarity and simplicity. For models with financial frictions, see, among others,
Bernanke and Gertler (1990), Kiyotaki and Moore (1997), Aghion, Angeletos, Banerjee and Manova
(2010).

"The sectoral composition of the economy alone cannot account for the differences in volatility between
developed and developing countries; the “within” sector decline in volatility is at least as important in
explaining volatility differences between developed and developing economies (Koren and Tenreyro 2007).

8In departing from a necessary tradeoff between productivity and volatility, our paper is closer to
Kraay and Ventura (2007), though the mechanisms are different: in their model, the key idea is that
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It is also important to distinguish our mechanism of technological diversification
from standard arguments concerning sectoral diversification (or diversification of
output), namely that developing countries should reduce their reliance on cash
crops or natural resources in order to hedge against fluctuations in these com-
modities’ prices. First, our model concerns the diversification of inputs, not the
diversification of outputs or products. Second, and most important, sectoral di-
versification is usually associated with a move away from comparative-advantage,
so it tends to reduce (average) income. Instead, technological diversification
chiefly occurs as a by-product of strategies whose main aim is to increase av-
erage income.”

Of course, technological diversification is not the only mechanism that can po-
tentially cause a decline in both aggregate and firm-level volatility with the level
of development. Indeed, there is a wide literature linking aggregate volatility to
different macroeconomic variables, including openness to trade, policy or political
volatility, institutions, and the size of governments. We show that even after con-
trolling for all these variables, the correlation between aggregate volatility and
the level of development remains strong, suggesting that existing explanations
cannot fully account for the large differences in volatility between rich and poor
countries. These results hence call for new theories to account for the empirical
correlation. This paper offers a new explanation framed within one of the canoni-
cal endogenous growth models, and it shows that a calibrated version of the model
can quantitatively account for a significant part of the volatility-development re-
lationship.

As in all expanding-variety endogenous growth models, countries at lower levels
of development use fewer inputs or technologies, i.e., technology diffusion across
countries is not costless or frictionless.!? Various studies document the slow and
delayed diffusion of technology. In a seminal paper, Griliches (1957) documents
the slow diffusion of agricultural technology across U.S. regions. Comin and
Hobijn (2004) find that most innovations originate in developed countries and
spread only gradually to less-developed countries. Caselli and Coleman (2001)
find that the adoption of computers depends crucially on the level of development
of the economy. Caselli and Wilson (2004) show that this result extends to a
broader set of sophisticated equipment.

Our model makes progress relative to existing models of aggregate fluctuations
in that it endogenizes the link between the level of development and the suscep-
tibility of the economy to shocks.!! To focus on this link, which is the novel

in the event of a shock, terms of trade respond more countercyclically in rich countries than in poor
countries.

91n fact, sectoral diversification as a hedging strategy is dominated by financial hedging on commodity-
futures markets. As discussed, no such (better) substitute exists for technological diversification.

10Moreover, trade liberalization per se, does not ensure that a country would adopt the technologies
or inputs of other (more developed) countries. Similarly, the fact that a firm uses a more sophisticated
technology in a given country does not assure that all other producers will be able to use that technology,
unless they invest in adoption (e.g. know how).

Mmplicitly, in real business cycle models, the source of aggregate fluctuations and the level of devel-
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contribution of the paper, the model is more stylized in other dimensions that
have been emphasized in the real business cycle (RBC) or the New Keynesian
literature. The paper does, on the other hand, speak to other regularities that
are not addressed in the RBC or New Keynesian literature, which we discuss in
the next section.

The paper is organized as follows. Section I documents a set of empirical obser-
vations that motivate our model and differentiate it from alternative explanations.
Section II presents the model of technological diversification and derives its im-
plications for aggregate dynamics. Section III presents a quantitative analysis of
the model. Section IV offers concluding remarks. The Web Appendix provides
additional evidence supporting the regularities in Section I. It then presents
the proofs, generalizes the model, and discusses its robustness under different
assumptions. In particular, it studies the conditions under which technological
diversification takes place when varieties are gross complements, as is the case
in the O-ring theory formulated by Kremer (1993), and it works out the impli-
cations of the model under different assumptions regarding technology and risk
preferences.

I. Empirical Motivation

This section presents the main empirical observations that motivate the the-
oretical model, and along which we shall later evaluate it. It also discusses a
set of auxiliary empirical results that justify the search for new models. In the
interest of space, most of the supporting tables and figures are reported in the
Web Appendix.

A.  Empirical Observations

Empirical Observation 1. GDP volatility declines with development, both in
the cross section and for a given country over time.

The negative association between aggregate volatility and the level of develop-
ment, noted in Lucas (1988)’s seminal paper, is one of the stylized facts in the
macro-development literature and the starting motivation of this paper. The re-
lation is summarized in the first column of Table 1, which reports the results from
a regression of the (log) level of volatility, measured as the standard deviation of
the annual growth rate of real GDP per capita over nonoverlapping decades from
1960 through 2007, on the average (log) level of real GDP per capita of the cor-
responding decade. The data come from the Penn World Tables (PWT, version
6.3) and are adjusted for purchasing-power parity (PPP). The second column
displays the regression results after controlling for country-specific fixed effects;
it indicates that for a given country over time, growth and changes in volatility

opment are considered unrelated phenomena or, put differently, the level of development plays no role in
determining fluctuations.
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are also negatively correlated.'> The third and fourth columns show the corre-
sponding results when the data are not adjusted for PPP.!3 In all cases, the slope
coefficients are statistically significant at the 1-percent level, and become larger
when fixed effects are included.

TABLE 1—VOLATILITY AND DEVELOPMENT

Dependent Variable: Standard Deviation of GDP per capita Growth Rates

PPP-adjusted data Non-PPP-adjusted data
R R -0.206*** -0.467***
Real GDP per capita (PPP adjusted, PWT) (0.032] [0.072]
R -0.118*** -0.456%**
Real GDP per capita (WDI) 0.023] [0.088]
-1.482%** 0.746 -2.542% %% -0.005
Constant [0.274] [0.612] [0.174] [0.659]
Country Fixed Effects
Observations 714 714 706 706
R-squared 0.108 0.564 0.069 0.467

Notes: All variables are in logs. The dependent variable is measured as the standard deviation of
annual real GDP per capita growth rates over nonoverlapping decades from 1960 to 2007. The
regressor is computed as the average over the decade. The data in the first two columns come from
PWT and are PPP adjusted. The data in the last two columns come from WDI and are not adjusted
for PPP. Clustered (by country) standard errors in brackets. * Significant at 10%; ** significant at 5%;
*** significant at 1%.

The model of technological diversification we present generates a negative cor-
relation between volatility and development as countries using a larger number of
input varieties are both more productive and typically better diversified across va-
rieties. The high volatility that characterizes early stages of development results
from the relatively low number of varieties used in the production process.

Empirical Observation 2. Firm-level volatility declines with fim size.

The volatility of an individual firm’s sales growth and the size of the firm,
whether gauged by the average volume of sales or the number of employees,
appear to be negatively correlated. This finding was first documented by Hymer
and Pashigian (1962) for the U.S. economy, and later corroborated by a number
of empirical studies (see, for example, Hall (1987) and Sutton (2002)).

The relation is illustrated in Table 2 for U.S. firms included in Standard and
Poor’s Compustat 2010 database. The table shows the coefficients from a re-
gression of (log) volatility of sales growth on average size, measured as either the
(log) number of employees or the (log) volume of sales. Volatility is calculated

12Tn related work, Ramey and Ramey (1995) study the link between volatility and growth. We focus
instead on the links between volatility and development or between changes in volatility and growth, to
be consistent with the predictions of the model we later develop.

13The non PPP adjusted data correspond to the series of GDP per capita in constant U.S. dollars
from the World Bank’s World Development Indicators (WDI).
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TABLE 2—FIRM-LEVEL VOLATILITY AND SIZE

Dependent Variable: Standard Deviation of Sales Growth Rates

Size Measure

Number of Employees Volume of Sales
. ~0.226%++ L0.134%%% | (.192%%* 0.157%%+
Size [0.003] [0.013] [0.002] [0.009]
_1O78%** JLADTHRRR | ] 779k 1791%%%
Constant [0.029] [0.082] [0.019] [0.037]
Country Fixed Effects No Yes No Yes
Observations 38,168 38,168 50,308 50,308
R-squared 0.246 0.713 0.244 0.675
Number of clusters 16,961 19,529

Notes: All variables are in logs. The equations use the 5 year standard deviation of annual (real) sales
growth rates from 1975 to 2007. The two size measures (number of employees and volume of sales) are
computed at their mean values over the lustrum. Year fixed effects included in all regressions. Clustered
(by firm) standard errors in brackets. * Significant at 10%; ** significant at 5%; *** significant at 1%.

for nonoverlapping 5-year periods from 1975 through 2005. The negative corre-
lation remains strong even if we include firm-fixed effects to consider within-firm
variation only. In Table A1 of the Web Appendix we report new evidence on the
cross-sectional relation between firm-level volatility and size for a broad group
of countries at different stages of development. The size-volatility relationship is
consistently negative in all countries.

There is also evidence that the share of small firms in the economy (measured
in terms of output or employment) correlates negatively with income per capita
both across countries (Leidholm and Mead (1987) and Banerji (1978)) and within
countries over time (Little, Mazumdar and Page (1987) and Steel (1993)). This
will be the case in our model: economies with lower income per capita have a
higher share of small and highly volatile firms (i.e., firms using a relatively small
number of varieties).

As previously stated, in our model technological diversification stems from the
diversification of (broadly construed) inputs, not outputs. It is hence pertinent to
note that the decline in firm volatility with size is not driven simply by large firms
operating in a bigger number of business segments; in other words, diversification
in output alone does not account for the negative correlation. We investigate
this issue in the Web Appendix, where we confirm that the results in Table 2 are
robust to controlling for the number of business segments in which firms operate
and that these results also hold for a sample of firms operating in a single business
segment—that is, firms with no diversification along the output dimension.

Empirical Observation 3. Firm-level and aggregate volatility tend to display
a positive comovement.
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Aggregate volatility and the volatility of privately owned firms tend to comove
positively. As shown by Davis et al. (2006), the decline in aggregate volatility in
the U.S. economy that took place from the mid 1980s until the mid 2000s has
been overwhelmingly driven by the decline in volatility of nonlisted firms and
not by the aggregation of increasingly more volatile firms displaying progressively
lower correlation in their performance.'®15 A similarly positive comovement be-
tween firm-level and aggregate volatility is documented for France by Thesmar
and Thoenig (2011) and for Germany by Strotmann, Dépke and Buch (2006). In
the Web Appendix we study a relatively long time series of firm-level data for
Hungary, confirming a positive comovement between firm and aggregate volatility.
The results are reported in Figure Al. In addition, the Web Appendix reports
further evidence for 14 other countries, for which we have shorter time series of
firm-level data. The results, while only suggestive given the data limitations, in-
dicate that firm-level and aggregate volatility tend to move in the same direction.

B. Alternative Explanations and Additional Evidence

Financial development. The positive comovement between firm-level and ag-
gregate volatility is one distinguishing feature of our mechanism vis-a-vis models
of financial diversification. In addition, in financial diversification models, the
decline in aggregate volatility with development is brought about by financial de-
velopment. In the data, however, the volatility-development relationship holds at
different levels of financial development, measured as private credit over GDP.16
This relationship is illustrated in Figure A2 of the Web Appendix, where we split
the level of financial development into different quartiles. The plots show that
the decline in volatility with development is not sensitive to the country’s level of
financial development, the key mediating mechanism in financial diversification
models. Put differently, even controlling for the level of financial development,
there remains a strong negative correlation between volatility and development
that needs explanation. Equally important, while the univariate regressions be-
tween volatility and financial development yield a negative coefficient, the corre-
lation vanishes once other controls are added to the specification. Instead, the
relation between volatility and development appears robust to the same controls
and is not altered by the inclusion of a proxy for financial development. This is
illustrated in Tables A4 and A5 of the Web Appendix, which report the results
from regressions of volatility on a number of covariates.!”

14 Comin and Philippon (2005) had previously documented that publicly traded U.S. firms experienced
an increase in volatility during the same period. However, publicly traded firms are only a small fraction
of all firms. Since a majority of firms in most countries are privately held, the evidence from Davis et al.
(2006) is more informative for our purposes.

15Models of financial diversification require a decrease in cross-fim correlation over time in order to
generate a decline in aggregate volatility. In our model, this correlation will be constant.

16The data come from the World Bank’s Financial Structure Database (v.4) and correspond to the
series private credit by deposit money banks and other financial institutions over GDP.

17 An additional difference with financial models concerns the relation between productivity and volatil-
ity at the microeconomic level. Koren and Tenreyro (2007) find a negative correlation between produc-
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Other covariates. The main goal of this paper is to account for the nega-
tive association between volatility in production and economic development. It
is important to stress that this negative correlation is not explained away by
other covariates that have been suggested in the literature. Previous studies have
stressed policy variability, openness to trade, and political instability as poten-
tial sources of volatility.'® In the Web Appendix we study the robustness of
the volatility-development relation to the inclusion of alternative determinants of
volatility. The results are reported in Tables A4 and A5. The main message from
our analysis is that there is a strong relationship between volatility and devel-
opment that remains statistically unexplained, even after controlling for a wide
range of covariates. We hence need new channels to explain the data and in this
paper we theoretically explore the extent to which technological differences, or,
more concretely, differences in the degree of technological sophistication across
countries, can quantitatively account for the observed correlation, and at the
same time match the firm-level evidence discussed in this section.

Skewness. An additional observation consistent with our model is that the time-
series of growth rates exhibit negative skewness.'® While in our model there are
both positive and negative “fundamental” shocks at the firm level, positive shocks
add up to a smooth aggregate process. This captures the empirical observation
that the growth process seems to be more gradual, with positive growth rates
clustered around the median growth rate. In contrast, falls (or negative deviations
from trend) do not wash out and generate sharp aggregate fluctuations.

Adoption of varieties. In our model firms grow by expanding the set of tech-
nologies or inputs they use. In the Web Appendix we discuss extensive evidence
supporting this assumption. For an overview, see Granstrand (1998), who sum-
marizes the results from several studies using data from Japanese, European, and
American companies, and argues that technology diversification (defined as the
firm’s expansion of its technology base into a wider range of technologies) was a
fundamental causal variable behind corporate growth; this was also the case when
controlling for product diversification and acquisitions. Granstrand, Pavitt and
Patel (1997) provide additional case-study analysis of the phenomenon of tech-
nological diversification in the growth of a firm and point out that technological
diversification took place even in firms whose “product base” shrank, following an
emphasis on “focus” and “back to basics” during the 1980s. Oskarsson (1993) doc-
uments an increase over time in technological diversification in OECD countries
at various levels of aggregation (industry, firm, product). He finds a strong posi-

tivity and volatility across and within sectors for a broad sample of countries, which is at odds with
standard assumptions in financial diversification models. Our model imposes no microeconomic tradeoff.

18See Becker and Mauro (2006) for an analysis of the sources of crises. Note that institutional insta-
bility can itself be the result of economic shocks. We take a broad interpretation of the sources of shocks:
as in the RBC literature’s tradition, changes in policies (through taxes, or regulations) can be the source
of changes in inputs’ or technologies’ productivity.

19McQueen and Thorley (1993), Sichel (1993) and Jovanovic (2006), highlighted this asymmetry using
U.S. data on industrial production and GDP growth rates. We found this asymmetry to be present in
the majority of countries in the sample (see Web Appendix, Section A4).
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tive correlation between sales growth and growth in technology diversification at
all levels of aggregation. Gambardella and Torrisi (1998) measure technological
diversification of the largest U.S. and European electronics firms by calculat-
ing the Herfindahl index of each firm’s number of patents in 1984-1991. Their
main findings are that better performance (in terms of sales and profitability) is
associated with increased technological diversification and lower product diver-
sification. They conclude that technological diversification is the key covariate
positively related with various measures of performance.

Feenstra, Markusen and Zeile (1992) provide evidence that input diversification
leads to growth and productivity gains. Using data on South Korean conglomer-
ates, they find that the entry of new input-producing firms into a conglomerate
increases the productivity of that conglomerate. In farming, there are multiple
examples of inputs leading to productivity gains and faster growth. The World
Bank (2011) reports that in larger scale crop production, the two short term in-
terventions with the greatest impact in productivity are the use of high quality
seed and chemical fertilizers. The same study lists a number of inputs that both
increase agricultural productivity and lower volatility, including fertilizers, mod-
ern seeds, agronomic skills, irrigation systems, and cell phones (useful to transmit
information on weather news).

In the Web Appendix we discuss additional studies and present evidence from
input-output tables in different countries showing that purchases (direct or indi-
rect) by a given sector from itself relative to total purchases by that sector have
fallen significantly over time in OECD countries from 1970 to 2007. The trend
towards higher usage of inputs from other sectors is another manifestation of the
technological diversification mechanism.

II. A Model of Technological Diversification

Before specifying the model in detail, we offer a brief informal preview of the
main features. Monopolistically competitive firms produce goods using a variety
of inputs (or, more broadly, technologies). There is free entry by firms and new
firms start up with no varieties. Firms can add new varieties to the range of
inputs they use by engaging in some adoption effort (e.g. to learn how to use it).
In particular, they can invest resources in an adoption process, which succeeds
the sooner the more resources the firm invests. In deciding how much to invest
in adoption each firm seeks to maximize the present discounted value of profits.
(Since firms are risk-neutral, profit maximization is the only goal of this process.)
Hence the adoption part of the model is very similar to standard expanding-
variety models, except that the adoption goes on simultaneously in multiple firms
and, due to the random elements of the model, it implies that different firms will
have different numbers of varieties at a given point in time.

The model’s innovative feature is that varieties are subject to productivity
shocks. In particular, once a new variety has been added to a firm’s range of
inputs or technologies, it becomes a permanent part of its productive process until
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a random shock causes a drop in its productivity (this assumption is motivated
below). This shock is variety-specific, so it affects all firms that happen to be using
that particular variety. The aggregate effects of such shocks depend, therefore, on
the distribution of varieties across different firms. Hence to study the evolution
of volatility over time it is necessary to keep track of this distribution.

To sustain long-term balanced growth, the model features an entry-exit margin
of firms and allows for external effects in production. Balanced growth is not
needed for the technological-diversification channel to operate, but it facilitates
tractability.

On the household side, identical agents supply labor effort inelastically in com-
petitive labor markets and seek to maximize the present discounted stream of
consumption of the final good, which is a composite of the individual goods pro-
duced by all firms in the economy. Households own the firms in the economy.

A.  The Economy

There is a continuum of monopolistically competitive firms, indexed by j, each
producing a differentiated product. The output of the final good is a constant-
elasticity-of-substitution (CES) aggregate of firm-level outputs,

M(t) e/(e—1)
(1) Y(t) = [/ y(j,t)EE dj] ;
0

where y(j,t) is the output produced by firm j at time ¢, M(t) is the mass of
firms at time ¢, and € € (1, 00) is the elasticity of substitution across firms. Each
individual firm produces output by combining a variety of inputs through the
CES production function,

e/(e-1)
(2) y(i.t) = A®) | Y D@L, n) e ,

1€Z(j,t)

where x;(t) is the productivity of variety i at time ¢; [;(j,t) is the number of
workers allocated to the operation of input-variety ¢ by firm j at time ¢; Z(j,t)
is the set of varieties used by firm j at t; and A(t) is an aggregate productivity
factor, which will vary due to external effects, introduced below.

For analytical convenience, we assume the elasticity of substitution between
varieties € in equation (2) to be the same as the elasticity of demand in (1).
This assumption will ensure that profits are linear in the number of varieties,
simplifying the algebra of aggregation. It can, however, be dispensed with at
the cost of additional algebra. In the Web Appendix we relax this assumption
and characterize the equilibrium conditions when the elasticities are different. As
usual in most endogenous growth models (Romer (1990), Grossman and Helpman
(1991)), we assume that € > 1, that is, technologies are gross substitutes. The
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Web Appendix derives the conditions under which technological diversification
can lead to lower volatility when € < 1, that is, when inputs are complements.

One could re-interpret the varieties in our model not as inputs but as disem-
bodied technologies to turn labor into output. Expanding the number of varieties
of such technologies is also likely to both increase productivity and provide tech-
nological diversification. Hence, in the rest of the paper we refer to the varieties
interchangeably as inputs and as technologies.?’

Notice that we are implicitly assuming that the firm uses each variety in con-
stant quantities, here normalized to 1. What varies is the number of varieties, the
quantity of labor assigned to each of them—capacity utilization—(both of which
depend on the firm’s decisions), and the productivity of each variety (which will
be random). In reality, the quantity of each input variety will also vary, but
abstracting from this decision allows us to focus on technological diversification,
which comes from an expansion in the number of varieties, without overly compli-
cating the analysis. Under the technology interpretation, the assumption would
be fine as is.

We assume that varieties have a constant productivity during their random
lifetime; when a shock hits the variety, it ceases to contribute to production.
(A variety can potentially be re-adopted if firms incur new adoption costs—see
below.) The arrival of shocks for a given variety ¢ is common to all firms using
this variety, and it follows a Poisson process with arrival rate . Shocks are
independent across varieties.

Because a shock arrives with a Poisson process, the input’s productive life-
time follows an exponential distribution with parameter . Hence, conditional on
variety ¢ working at time 0, the distribution of x;(¢) is given by

1 with prob. e,
Xi(t) = . o
0 with prob. 1 —e™".

Let aJ(bt) be a Poisson process with arrival rate b and jumps of size a.?! With
this notation, the dynamics of a variety’s productivity can be written as

(3) dxi(t) = —xi(t)dJi (1),

where the subindex i in J;(yt) highlights that the Poisson processes are variety-
specific and independent across varieties. Productivity is constant (at 1) before
a jump occurs, and it jumps down to zero with the first arrival of dJ; > 0.

20 Another interpretation is that the production function takes the form y = A [ZZ xi171/5}5/(€—1)
where x; is the intermediate good produced by the firm by transforming labour through z; = x;l;.
Nothing substantial changes either if the inputs are produced by specialized producers and sold to the
firm at arms’ length; in this case, shocks to x; map into input price shocks.

218ee, for example, Cox and Isham (1980), Section 3.1.
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Substituting this productivity into the production function of the firm, we obtain
e/(e=1)
y(G.t) = A®) | Y LGG)TYE

inxi (t)=1

We denote the number of productive varieties used by firm j at time ¢ by n(j,t).
Given that all productive varieties enter symmetrically in the production func-
tion, firms will allocate the same number of workers to each; hence, [;(j,t) =
l(j,t)/n(j,t), where I(j,t) is the total number of workers employed by firm j at
time ¢.22 We can then write the production function as

(4) y(j, t) = AL, t)n(j, ) EY.

Our main motivation for the choice of the stochastic process in equation (3)
is analytical tractability. It dramatically simplifies the firm’s decision problem,
because there is only one firm-level state variable to keep track of: since the
productivity of each variety can only take the values zero and one, firms only
care about the set of varieties that are still productive. Moreover, the stochas-
tic process, together with the symmetry of the varieties, ensures that it is only
the number of productive technologies that matter. Importantly, although the
Poisson process may suggest irreversibility, in practice the failure of a given vari-
ety in the model does not need to be completely irreversible, since a variety can
in principle be put back into place, provided that firms pay the adaptation (or
adoption) costs, which we shall describe later.?

While analytical tractability is a main consideration, equation (3) does describe
a class of relevant input-specific shocks, namely shocks that make an input com-
pletely unavailable (at least for a discrete period of time). This can occur and
has occurred in the case of some natural resources that exist in finite quantities.
The canonical example familiar from history textbooks is the nineteenth century
“guano crisis.” Guano was widely used as a fertilizer to increase crop yields during
the early nineteenth century all over the world. In the second half of the century
the reserves run out (largely due to the Peruvian government’s mismanagement)
and the fertilizer became unavailable, causing a major disruption in agriculture—
particularly in countries that did not use a more diversified set of fertilizers such
as nitrates and mined rock phosphate. Oil is another example; while oil reserves
have not (yet) been depleted, oil disruptions have been a recurrent and important

22This formula implicitly assumes that labour can be reallocated at no cost after a shock is realized.
This is exclusively done for simplicity; introducing reallocation costs will magnify the loss from technology
shocks and mitigate the immediate gain from successful adoption, but will not alter the main results.

23For completeness, the Web Appendix analyzes the case in which productivity drops, but not to
zero. It shows that the key intuition and implications of the technological diversification mechanism go
through as in the baseline model. This alternative setting adds a new state variable (because we have to
keep track of unproductive varieties), but does not add any new insight. To focus on the key mechanism
of the model we hence relegate this variation to the Web Appendix.



VOL. VOL NO. ISSUE TECHNOLOGICAL DIVERSIFICATION 15

source of output fluctuations in the last half century.

An input does not need to be an exhaustible natural resource to become (tem-
porarily or permanently) unavailable. In the 2011 drought in East Africa a large
fraction of the livestock has died, causing drastic drops in output. In 1993 an
explosion in a Sumitomo plant in Japan led to the annihilation of two-thirds
of the world supply of the high-grade epoxy resin used to seal most computer
chips, causing shortages and price hikes in the semiconductor industry for several
months. More generally, disasters of diverse nature can destroy the output of
intermediate goods producers. Similarly, government policies can hinder the pro-
duction or use of certain intermediate products. Human capital is not immune
from such shocks either: Pol-Pot and Mao Zedong wiped out the human capital
of an entire generation in their respective countries.

Even if not taken literally, the process described in equation (3) can also be seen
as a short-cut to model less radical disruptions; in that spirit, shocks to x; can
result, for example, from changes in taxes or regulatory policies, increases in the
cost of production or the import price of a variety (or from the price of an input
needed to use that variety, such as the price of fuels), trade disruptions, weather-
related shocks that render a variety useless or severely hinder its transportation
to its destination, and so on.2*

B. A Firm’s Static Decisions

Since firms engage in monopolistic competition, each firm faces an iso-elastic
demand with elasticity e:

(5) y(d,t) =Y ()p(j,t)~",

where aggregate output Y (¢) is taken as the numeraire, and p(j,¢) is the price
charged by firm j at time £.

The production function (4) pins down the number of workers necessary to
satisfy this demand,

1, 1) = y(i, (i, )/ O JA®) = Y (D), t) ~*n(j, 6) /179 JA().

Firms with more varieties of inputs are more productive (a standard love-of-
variety effect) and hence can produce a given level of output with fewer workers.

The firm hires workers in competitive labor markets. At time ¢ it faces a wage
rate w(t), which depends on the aggregate state of the economy, and is taken
as given by individual firms. Flow profits are revenue minus labor cost, so the
operating profit of the firm is

(6) m(jst) = Y (0)p(j, 1)~ = n(j, )/ Dw(@)Y (0)p(j, 1)/ At).

24 A transportation or trade disruption might make a technology or variety temporarily unavailable,
but the variety can potentially come back into use after reinvestment.
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Since at a given point in time the number of varieties n(j, t) is predetermined, the
only choice variable of the firm that can affect current profits is the price p(j,t).
The optimal price will in general be a function of n(j,t), aggregate demand Y (¢),
the wage rate w(t), and aggregate productivity A(t). The aggregate variables
Y (t), w(t), and A(t) all depend on the state of the economy in ways that will be
specified below.

C. Technology Adoption and Risk Preferences

As in Romer (1990) and Grossman and Helpman (1991), adopting new varieties
is a costly activity. Adoption costs can also be thought of as the cost of research
and development of new varieties; however, for most producers in most countries,
adoption or adaptation is probably a more realistic description of the investment
effort fuelling growth. Often times technologies are in principle available, but
firms do not invest in adoption.?®

For analytical convenience, we assume that the investment in adoption pays off
after a random time period. Higher investment in adoption results in a shorter
expected waiting time for the next variety. Specifically, following Klette and
Kortum (2004), we assume that the adoption of a new variety requires both a
stock of knowledge (embedded in current technologies, n) and a flow of investment.
If firm j spends I(j) units of the final good to adopt a new variety, the adoption
will be successful with a Poisson arrival rate f[I(j)/L,n(j)], where f(.,.) is a
standard neoclassical production function subject to constant returns to scale
and satisfying the Inada conditions; and L is the size of the labor force (assumed
to be constant throughout the paper).2

To draw an example from agriculture, a firm that seeks to adopt, say, a new
variety of fertilizer, will need to engage in costly activity, which might include the
effort to find the appropriate type and dose for its crop and soil conditions, the
build-up of infrastructure to spread it, and so on. The more the firm invests and
the more productive or bigger (and hence more knowledgeable) the firm is, the
sooner the new variety will be put into place.

Prospective entrants (whom we model as firms with no varieties) have to spend

25Griliches (1957), Caselli and Coleman (2001), Caselli and Wilson (2004), and Comin and Hobijn
(2004), among others, present examples of technologies or inputs that existed but were only slowly
adopted in both developed and developing countries. We do not draw a distinction between innovation,
adoption, adaptation, or imitation. In practice, all four processes have two features in common: i) they
need an investment for the variety to be operational (e.g., in the case of adoption or adaptation, the
know-how or training to operate a technology or input variety; in the case of innovation, the effort to
develop the technology and design its implemention; in the case of imitation, the effort to re-develop or
reverse engineer the technology); and ii) there is some uncertainty with regards to the timing in which
these technologies will be fully operational.

26The random, “memoryless” adoption process ensures that we do not have to track past adoption
investment flows of the firm. This is a standard simplifying assumption in endogenous growth models.

The scaling by labor force L is made to rule out weak scale effects at the country level. Without this
rescaling, the model would counterfactually predict that countries with larger population are proportion-
ally richer (see discussion in Jones (1995)). Note also that becasue of the model will allow for a firm
entry margin, the model will not feature strong scale effects, i.e., long-run growth will be independent of
country size. This is true whether or not adoption costs are scaled by L.



VOL. VOL NO. ISSUE TECHNOLOGICAL DIVERSIFICATION 17

kL units of the final good per unit of time in order to adopt their first technological
variety. The adoption of the first variety will then be successful with a Poisson
arrival rate 7, that is, the expected waiting time of a new entrant to become a
productive firm is 1/n. The entrant may also exit at any point in time.?7

Risk-neutral firms are indifferent as to which variety to choose, since all va-
rieties enter symmetrically in their profit function and their sole goal is profit
maximization. Since the choice is indeterminate, as a tie-breaker, we assume that
firms try to adopt technologies with lower indexes first. A firm of size n has thus
access to technologies 1, 2, ...,n and would, upon success, adopt technology n + 1
next. This tie-breaking condition captures the notion that some technologies or
inputs are easier to adopt and hence tend to be adopted first by most firms.?®

Let A(n) = f[I(n)/L,n]/n, for n > 0, denote the adoption intensity of a size-n
firm. Because f is homogeneous of degree one, the flow cost of this adoption
intensity is

(7) I(n) = g[A(n)]Ln, n>0

where ¢(.) is the inverse of f(., 1), an increasing, convex function. For prospective
entrants with n = 0, the flow cost of adopting the first variety is simply 7(0) = kL.

State variables. Because n is the only firm-level state variable, we introduce a
change of variables and index firms by n. A type-n firm has exactly n working
varieties at its disposal. Because we only need to keep track of the working
varieties, whenever a variety is hit by a shock, the index of all varieties with a
higher index is readjusted so as to leave no holes in the ordering.?”

Define as my(t) the measure of firms having exactly & = 0,1,2,... working
varieties at time ¢t. Let M(t) = {mq(t), m1(t), ma(t),...} denote the firm-size
mass distribution at time ¢. Hence, the total mass of firms at time ¢ is given by
M(t) = 332 o mi(t).>° Even though entrants have zero productivity and hence do
not contribute to output or employment, they may become successful in adopting
their first variety, so it is important to track them.

The mass distribution M (t) sufficiently characterizes the state of the economy,
both in terms of aggregate allocations and prices, and in terms of dynamics.
Note that M(t) is random: the firm-size mass distribution will depend on the
realization of adverse technology shocks. Let S denote the set of all possible firm-
size mass distributions. We assume that M(t) follows a Markov process with

27In equilibrium, free entry pins down the value of a prospective entrant at zero. Hence the marginal
entrant will be indifferent between continuing to spend on adoption costs or exiting.

28This could alternatively be modeled by assuming a functional form for fixed costs of investment,
whereby different varieties have different costs of investments and hence lower-cost varieties are adopted
first. The core results will be similar to the ordering assumption in the text.

29That is, if an economy has varieties k = 1,2, 3,4 and variety 3 fails, then, variety 4 is reindexed 3
and the new set of varieties has indexes k' = 1,2, 3.

30Note that M(t) is not a probability distribution as the total mass M (t) is in general different from

1; the probability (share) of firms with k varieties, is given by TXfi(%)
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deterministic trends and jumps (we later verify this to be true in equilibrium):
(8) dmy, = F,(M)dt + Z Gri(M)dJ;(y1),

where Fj, : § — R is a function capturing the deterministic change in my(t) for
all k > 1; Gg; © S — R is a function capturing the jump in my; due to a shock
to variety i; and the J;(7yt)s are independent Poisson processes, each with arrival
rate 7. As we shall show, the mass of new entrants at time ¢, mg(t), will be
pinned down by the free-entry condition at time t. The process starts from an
initial firm-size mass distribution M(0) = M.

Denoting the vector of elements Fj, by F = {F}, Fy,...}, and the vector of
elements Gy; by G; = {G1i, G, ...}, equation (8) can be written as

(9) dM = dt+ZG M)AT;(t).

Firm-level stochastic dynamics. The stochastic dynamics of n can be summa-
rized as follows. Any one of the varieties fails with arrival rate 7, decreasing n by
1. A firm may become successful in adopting a new input with arrival rate p(n)
(where p(n) = An for n > 0 and p(0) =), increasing n by 1. Hence:

(10) dn = dJy [ Z dJ;(yt),

where J4 (ut) is a Poisson process with arrival rate u, governing the success of
adoption. It is independent across firms and from the J;s. Because there is a
continuum of firms, a nonstochastic fraction of firms are going to be successful
in adoption at any point in time. This means that, in this setup, adoption does
not contribute to aggregate uncertainty.3! At the same time, negative technology
shocks affect all firms using the affected varieties and hence the Poisson process J;
in equation (10) is the same for all firms, and the same as in equation (9). This en-
sures that negative technology shocks have an aggregate impact. The asymmetry
in the aggregate impact of positive and negative microeconomic shocks generates
negative skewness in the distribution of growth rates, a feature consistent with
the data, as discussed earlier.

As mentioned, technological diversification in this model is not driven by risk
aversion. To stress this point, we next characterize the optimal rate of technology
adoption in the case of risk-neutral agents.>?> Identical risk-neutral households

31This also implies that each new technology is adopted gradually: frontier technologies will be used
by a bigger and bigger fraction of firms over time. This is consistent with the evidence discussed earlier.
32In the Web Appendix we characterize adoption under complete financial autarky and risk-averse
investors. We do this to highlight that there is technological diversification in both cases and that the
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maximize the present value of consumption, discounted at the rate p:

U= / e PLO(t) dt.
t=0

The Euler equation pins down the riskless rate of return in the economy at r(t) =
p. Investors maximize the expected present value of profits, discounted at the
rate p. To ensure non-negative growth and a finite value for the firm, we impose
the following parameter restrictions on =y, and the cost of adoption:

/ K .

(11) g (7)< ., and lim g(z) = oo,
The first condition ensures that a variety is profitable enough so that it is worth
investing in adoption costs when a variety suffers a shock. The second condition
ensures that adoption is costly enough so that the growth rate of the economy
will never exceed p, the subjective discount rate.

Bellman equation. Let V (n, M) denote the value of a size-n firm when the state
of the economy is M. It is the expected present value of the stream of future
profits, coming from net operating revenues minus the costs of adoption,

V(n,M) = I{Izl)fij)}(E t:) e PH{r[n(t), M(t)] — I[n(t)]}dt

where M(t) and n(t) evolve subject to the laws of motion described in equations
(9) and (10), respectively.

From the perspective of a firm, there is a firm-level state variable, n, and
an aggregate state variable, M, the two of which contain all the information
relevant in its decision. The firm chooses the price of its product (taking aggregate
demand, the production function and wages as given), and the intensity with
which it invests in adopting new varieties. The policy variables are thus p and .

Given the flow profit function in equation (6), the cost function for adoption in
equation (7), and the law of motion for M in equation (9), the Bellman equation
for the firm’s profit maximization problem can be written as:

pV(n,M) = H]f}x {r(p,n, M) — I + pu(n)[V(n+1,M) =V (n, M)]

+y Zn:[V(n — 1, M + Gi(M)) — V(n, M)] +
=1

(12) +9 Y [V M+ Gi(M)) — V(n, M)] +VMF(M)}.
i=n+1

incentive to diversify does not hinge on the financial structure of the economy or the degree of risk
aversion (though quantitatively they may affect these incentives).
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The opportunity cost of time is compensated by flow profits, 7—I, where 7 is given
by equation (6) for n > 0 and is zero for n = 0, and by expected capital gains.
With arrival rate p(n), a new variety is developed, and firm value changes by
V(in+1, M) —V(n, M). Because adoption success is idiosyncratic, the aggregate
state of the economy does not change when a new variety is adopted. With
arrival rate «y, a variety ¢ is lost. If this is among the varieties used by the firm
(i =1,2,...,n), firm value changes by V(n—1, M+ G;(M)) -V (n, M). The firm
will have one variety less, but also the aggregate state of the economy will jump.
If variety ¢ is not used by the firm (i =n + 1,7+ 2,...), then only the aggregate
state is affected. The last term, Vy(F (M), captures the expected changes in value
due to smooth changes in M alone, holding n fixed.

The first-order conditions for optimal pricing and optimal adoption for n =
1,2,... are:

(13) p= —cwMn'/1=9/AMm),

(14) JANL=V(n+1,M)-V(n,M)

The firm’s optimal price is a constant markup over unit cost. The unit cost
decreases in the number of varieties, and increases with the prevailing wage rate.
The marginal cost of adoption of new varieties has to equal the marginal benefit:
the potential jump in value when adoption is successful. Firms with n = 0 do
not produce, so they do not have a pricing decision to make, and their adoption
intensity is given by 7. Their key decision is on the entry-exit margin, which is
explained next.

Free entry. There is an unbounded mass of potential entrants who can start
a new firm at no cost. This pins down the value of new entrants at zero for all
possible states of the economy,

(15) V (0, M) = 0.

We next describe the aggregate variables in the economy.

Ezternal effects. Building on Arrow (1962) and Romer (1986)’s insights, we
allow for external effects stemming from the stock of knowledge embedded in the
aggregate number of varieties, conditional on the mass of firms in the economy.
External effects, in combination with the exit-entry margin will allow the economy
to achieve a balanced (expected) growth path (BEGP), to be defined below.?3
We stress that while a BEGP is convenient for the analysis, the technological
diversification mechanism also operates outside the BEGP and hence it is not
needed for the mechanism emphasized in this paper.

33Dixit-Stiglitz formulations with external economies go back to Ethier (1982), and have been used
to match other features of the data in more recent contributions; see for example Grossman and Rossi-
Hansberg (2010), and the references therein. As shall become clear, an entry-exit adjustment alone as
in Rossi-Hansberg and Wright (2007) is not sufficient to ensure a BEGP in our model and so we allow
the entry margin to have an external effect on the profitability of other firms.
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Denote by N(M) the aggregate number of varieties defined as:

dM = . 29
/Mn Z’l/m

=1

(16) N(M)

where [ 1AM stands for the Lebesgue integral over firms with different sizes,
with respect to the firm-size measure M.34

Aggregate productivity A(M) is given by a positive function A(N,mg) > 0
that depends on the total number of varieties N used by productive firms, and
on the mass of zero-size firms mg, which do not contribute to production. We
assume that A(N,mg) satisfies the following properties: On(M) >0, 0,,,(M) <0
and

(17) 6_%4—91\;(/\4) 1= Oy (M),

where Oy (M) = % is the elasticity of A(N, mg) with respect to N (hold-
ing myp fixed), and 6,,,(M) is the corresponding elasticity with respect to mg
(holding N fixed). These conditions are jointly sufficient for the existence and
uniqueness of a BEGP. The assumption that A is nondecreasing in N (6 (M) >0)
embeds the idea that there can be knowledge spillovers across productive firms.
Note that the inequality is weak, so O5(M) = 0 is a possibility. The assump-
tion that A is decreasing in mg (6, (M) <0) implies that for a given number of
varieties N, whenever there are too many new entrants relative to equilibrium,
profits per firm fall, reducing the incentives to enter. Intuitively, unproductive
firms with no varieties contribute negatively to the average stock of knowledge of
the economy. The final inequality condition ensures that the contribution of new
firms to GDP growth vanishes as the economy grows and guarantees a positive
measure of new firms in equilibrium.

Note that these conditions are sufficient, but not necessary for a BEGP. In
particular, if O (M) = 0, (M) = 0, the economy features a BEGP when & = 2.3
Similarly, if 6, (M) = 0, the economy features a BEGP when Oy (M) =1— .
In the baseline quantitative exercise, we allow for very small external effects,
consistent with the empirical literature. The entry margin mg adjusts so as to
prevent explosive growth in the case of low substitutability (¢ < 2), or to prevent

34The sum >-22, im; will be finite with probability one at any point in time, as long as we start from
an initial firm-size mass distribution Mo with finite N. This is because at any point in time ¢, N(t) has a
finite upper bound. From condition (11), adoption intensity by incumbents cannot be greater than v+ p
for any firm. Hence varieties used by incumbent firms can at most grow at the rate y+p. As it will become
clear, the growth stemming from the creation of new firms is n%, which is bounded from above by

n<T, where 7 is finite. Hence, for any ¢, N(t) < N(O)e(7+p+%)t. Note that after a positive amount of
time has passed, n will have full support with probability one. This is because successful adoption follows
a Poisson process, which makes the number of new varieties a Poisson-distributed random variable.

351f Oy = Oy, = 0 and € = 2, the aggregate demand externality and the competition effect cancel out
and profits per variety are constant, which is sufficient for a BEGP.
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stagnation, in the case of high substitutability (¢ > 2). Finally, we reiterate that
a BEGP is not needed for the technological diversification channel to operate and
therefore neither external effects nor parametric restrictions on € are necessary to
yield a decline in volatility with development over a finite time period.

D. FEquilibrium

In what follows, we first define the equilibrium in the economy and then estab-
lish the conditions for existence.

Definition 1. A recursive equilibrium in this economy is (i) a price policy func-
tion p(n, M), (ii) an innovation policy function A(n, M), (iii) a value function
V(n, M), (iv) a wage function w(M), (v) a final output function Y (M), (vi) a
mass of entrants mg(M) and (vii) a law of motion F(M) and G(M) for the vari-
ety distribution such that (i) given the law of motion, V'(n, M) satisfies the firm’s
Bellman equation, (12); (ii) the policy functions p(n, M) and A(n, M) maximize
firm value, (13) and (14); (iii) entrants make zero value (15); (iv) labor and fi-
nal good markets clear; (v) the law of motion coincides with the Markov process
characterized by the adoption function A(n, M) and the technology shock ~.

This equilibrium definition already makes use of the production function, and
the demand curve for individual products, which are both embodied in the profit
formula in the Bellman equation.

Income accounting. In the model’s economy, GDP is equal to consumption plus
investment (in adopting new varieties), which equals the output of the final good,

(18) Y(M) = C(M) + I(M),

where

I(M) = //vt I(n)dM = kLmg + /M g[A(n, M)]LndM,

and [ m AM, as before, stands for a Lebesgue integral defined over M. By Wal-
ras’s law, this equation will hold whenever labor markets clear.

The income side of GDP is made of wage income and profits, which accrue to
households owning the monopolistically competitive firms,

(19) Y (M) =w(M)L+ /W(n,./\/l)d./\/l.

As the next proposition makes clear, all static allocations and prices are a function
of N only.

Proposition 1. A recursive equilibrium exists. In equilibrium, firm value is
(20) V(n, M) = vn,

where v = %L is the firm value per variety, and innovation policy is a constant A
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implicitly defined by

(21) g =-.
Wages and final output are linear in N. Wages are
(22) w(M) = (e = DEN(M);
final output is

(23) Y(M)=erN(M)L,

where T = (p+v— )\)% + g(A) is per capita profits per variety, which is constant.
Firm prices are:

N(M)TYED
(21) pnat) = | XU
The mass of new entrants mg satisfies
1 =2
(25) 7= gN(M)JAUV, mo).

The law of motion for M is Markov with F; and G;; defined as

)\(Z — 1)mi,1 — Xim;  if i > 1,
nmo — Amy if i =1.

(26) Fi(M) = {

mi+1 — MMy if k& S i,
(27) Gir(M) = { mit ifk=1i+1,
0 ifk>i+ 1.

The proof of this and all other propositions are in the Web Appendix.

Equation (20) shows the firm value as a function of the adoption cost of new
entrants. Each new entrant spends kL for an expected 1/n units of time before
becoming a productive firm and achieving a value of V (1, M) = v. The rest of
the firm value function is linear in n. Equation (21) is the first-order condition
for optimal adoption. This condition pins down a unique, constant A that is
independent of n. Equation (22) shows how wages depend on the aggregate
number of varieties. When the economy uses more input varieties, aggregate
labor productivity is higher, and wages are higher in terms of the final good (the
numeraire). We have already substituted out the equilibrium value of the external
productivity A (equation (25)). Equation (23) expresses final output as a function
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of N. An increase in the number of varieties leads to higher GDP. Both wages
and GDP are linear in N, because the per variety profit per capita 7 = ”(Z’éw) is
constant. Equation (24) describes optimal pricing of a size-n firm: because firm-
level productivity increases in n and firms charge a constant markup, firm prices
will decrease in n. On the other hand, because wages increase in the aggregate
number of varieties, N, prices increase in N. Equation (25) is the zero-value
condition that pins down the equilibrium mass of entrants, so that prospective
entrants are indifferent between entering and not entering the market. Equation
(26) captures the deterministic component of the law of motion for M. A measure
A(i — 1)m;—1 of firms will be successful in adopting variety i, and become size i.
A measure \im; of size-i firms will be successful in adopting variety ¢ + 1, and
will no longer be size i. A measure nmg of new entrants will be successful in
adopting their first variety and will become size one. Equation (27) captures the
jump component of the law of motion for M. If any of the first ¢ varieties fail
(dJg > 0), then size-i firms become size i — 1, and, at the same time, firms of
size i + 1 see their size reduced to .36 Hence the change in the mass of firms. If
variety ¢ + 1 fails, all those firms become size i, adding to m;.

E. Firm-Level and Aggregate Dynamics

Proposition 2. In a recursive equilibrium, the expected growth of sales for a
firm of size n > 0 is constant,?”

(28)

and the variance of sales growth is decreasing in n,

Var(dn/n)  A+7

(29) dt n

It follows from equation (24) that sales are a linear function of n, hence their
growth rate equals the growth rate of n. The expected growth in the number
of varieties equals the rate of technology adoption minus the rate of technology
failure, A — . The variance of sales growth is driven by the two shocks the firm
faces: the randomness of the adoption process and variety failures. Hence the
variance of an individual variety is A +~. Total sales volatility then declines with
n by the law of large numbers. The formal proof follows directly from equation
(10) by Lemma 1 (in the Web Appendix).

Aggregate dynamics. To understand the dynamics of aggregate GDP, we need
to characterize the dynamics of N (see equation (23)). There are two types of
shocks affecting N. First, successful adoption by some firms will move them from

36Note that with the relabelling rule, i indexes firm sizes. (Recall that, if variety 4 fails, we relabel
varieties with higher indexes so that ¢ + 1 becomes i, etc.)
3TWe focus on the behavior of sales growth, for which data are available at the firm level.
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n varieties to n + 1 varieties. Recall that a size-n firm adopts new varieties with
arrival rate u(n) = An for n > 1 and ©(0) = n. At every point in time, a measure

/ 1(n)AMdE = AN (M)At + mmo(M)dt
M

of firms becomes successful in adopting the next variety.

The second type of shock is the failure of a particular technology k. This shock
decreases the number of varieties by 1 for all firms that use variety k. Because
there is a positive mass of these firms, this shock induces an instantaneous jump in
N. The aggregate impact of the shock (and, ultimately, aggregate volatility) will
depend on the measure of firms using technology k. Note that because technology
shocks are common across firms, they will also induce correlations across firms.
This is why there is aggregate uncertainty even with a continuum of firms.3®

Let M; denote the mass of firms using variety i. Because firms adopt lower-
indexed varieties first, this is the same as the mass of firms with ¢ or more varieties,
M; =372, my. Then, using the aggregation above and the Markov dynamics of
M as given by equations (26)-(27), we can write the dynamics of N as follows:

(30) dN = [)\N + nmo]dt — i MidJi(’}/t).

i=1

The first two terms are the effect of innovation. Each firm’s adoption is subject
to an independent Poisson process, the sum of which is a deterministic process by
the law of large numbers. The second term captures adverse productivity shocks,
which are common across firms and are not washed out by aggregation. Because
variety ¢ is used by a measure M; of firms, a shock dJ; reduces the total number
of varieties by M;.

Proposition 3. In a recursive equilibrium, the expected growth rate of the num-
ber of varieties N (and hence of output Y') is

E(dN/N)

mo

31 =\ -0
(31) P N T
and its instantaneous variance is

Var(dN/N) >\ 5
(32) T kz1 Sk»

where s = M} /N measures the contribution of variety k to GDP.

38Because positive shocks (technology adoptions) are independent across firms, while negative shocks
(technology failures) are common, aggregate shocks will have a negatively skewed distribution. This is
consistent with evidence presented by Jovanovic (2006) for the U.S. economy. See Web Appendix for
futher references as well as new evidence on skewness in other countries.
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Intuitively, the average firm innovates with intensity A+ 772, which then gives
the growth rate of N until a shock occurs. Shocks occur with arrival rate v, which
brings about an expected decline in the total number of varieties at the same rate.
In this sense ~ is akin to a (stochastic) depreciation rate.

To understand the intuition for the variance, consider a shock hitting variety
k. This reduces N by a fraction s;. Given that this has probability vdt, the
aggregate variance contributed by this shock is ’ysi dt. Because variety-specific
shocks are independent, we can simply add up the individual variances.? To gain
more intuition for formula (32), consider some simple examples. If all firms use
just one variety, the sum on the right-hand side is one. This leads to the highest
possible level of aggregate volatility, vd¢. If all firms use N different varieties,
the contribution of each variety to GDP is s = 1/N and the sum equals 1/N. In
this case, the sum decreases inversely with the number of varieties and volatility
(the standard deviation of growth rates) hence declines at the rate 1/v/N.% In
general, not all firms will use all varieties and the distribution of varieties will be
uneven. This, combined with the smaller number of varieties in less developed
economies, slows down the effect of the law of large numbers (LLN) and leads to
higher volatility in poor countries.*!

The term » ,- sz can be construed as an index of the economy’s technological
concentration or the inverse of an index of technological diversification; this is the
key determinant of volatility. In a multiple-firm economy, volatility depends not
only on the overall number of varieties N (¢), but also on the degree of diversifica-
tion in the usage of different varieties. As mentioned, both N(¢) and the shares
sp are history dependent.

F. Balanced-Ezpected-Growth Path

The BEGP of the economy is defined as follows.

Definition 2. A BEGP is a recursive equilibrium in which the expected growth
rates of output, consumption, investment, real wages, and the number of varieties
converge to a positive constant.

As said, a BEGP is not needed for the technological diversification channel to
operate. It is, however, standard practice to focus the analysis of growth models
on BEGP, and in the rest of this paper, we adhere to this practice.*?

39Note that mo does not contribute to instantaneous volatility (i-e., over an infinitesimal period of
time); however, by altering the (expected) time derivative of N, it affects volatility over a discrete period.
This will be reflected in the discrete-time simulations performed in the next Section. In our numerical
exercises, the quantitative contribution of new entrants to aggregate volatility turns out to be negligible
even at annual frequency.

40Note that since firms are not symmetric ex post (only a fraction of firms is successful in adoption),
this result cannot hold at every point in time.

411n related work, Gabaix (2011), Carvalho (2010) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2010)
offer examples in which the LLN is attenuated; however, none of these studies is concerned with the
relation between economic development and volatility.

42Growiec (2010) has argued against the BGP focus in the literature; he points out that the long run
with ¢ — oo is irrelevant, and proposes that only finite timespans be analyzed instead.
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Proposition 4. For all initial variety distributions, M(0) = My, the recursive
equilibrium converges to a balanced-expected-growth path. The expected long-
run growth rate x is implicitly defined by

(33) g(y+z)= p

with x € [0, p) and % gives the per capita firm value per variety. In the long-run,
as N — oo, the contribution of entrants mg to growth vanishes as 5> — 0.

The proof makes use of the sufficient conditions 65 (M) >0, 6,,,(M) <0 and
(17). As stressed earlier, these conditions are jointly sufficient but not necessary
for a BEGP. Note, in particular, that there are two alternative ways to achieve
a BEGP in our setup. The first, which does not rely on external effects, is to
impose a parametric restriction on the elasticity of substitution. Specifically,
when Oy (M) = 0,,,(M) = 0, a BEGP exists if ¢ = 2.43 The second alternative
that does not rely on external effects from entry (i.e., 6,,,(M) = 0) is to impose
the restriction that Oy (M) =1 — 5%.44 These two options cause output to be
linear in N, the key condition for a BEGP. In the baseline quantitative exercise
we allow for small external effects, consistent with the literature, and in the Web
Appendix we present the results without external effects.

G. GDP Dynamics along the Balanced-FExpected-Growth Path

Since at any time ¢ (instantaneous) GDP growth dY'(¢)/Y (¢) is a random vari-
able, it not only has an expected value but also a variance. This variance is not
constant, even on the BEGP. (Notice that if it were, the model would have no
hope of explaining the cross-sectional patterns of volatility and development that
motivate the paper.) Instead, it depends on the set of technologies in use, as
well as their distribution among firms. In general, these depend on the particular
history of shocks that have hit the economy, so the variance must be computed
by numerical simulation. Before we turn to this task, we offer some theoretical
results that both help to understand the simulations and provide some intuition
on the main mechanism at play.

The volatility of N (and hence of Y') depends on the whole distribution of
varieties used by firms. If some varieties are used by more firms than others,
then shocks affecting these varieties are going to have a larger impact on GDP.
Through the introduction of new varieties, technological progress increases the de-
gree of technological diversification (and hence lowers volatility) while increasing
the level of development. This imparts a natural tendency for a negative correla-
tion between volatility and development that will be prevalent in our numerical
analysis. Note, however, that in principle the relationship between volatility and
development does not always need to be strictly negative. To understand this

43In this case, profits per variety are constant and there is no entry of firms: mg = 0.
44 As before, in this case, there is no entry and mgo = 0.
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point, it is convenient to distinguish between the two forces that shape the be-
haviour of aggregate volatility and development in the model. The first is the
increase in usage of a variety in the economy, which results from firms’ adoption
processes; the second is a shock that destroys a variety. We discuss these forces
in Propositions 5 and 6, respectively.

Proposition 5. The increase in use of variety k in the economy increases output
unambiguously and decreases volatility if and only if >, s% > s, where s; is
the contribution to output of variety 1.

By an increase in the use of variety k in the economy we refer to a marginal in-
crease in the mass of firms using that variety (all else equal).*® Intuitively, as long
as a variety is not widely used in the economy, increasing its usage provides diver-
sification benefits against other variety-specific shocks and hence lowers aggregate
volatility. In contrast, when a variety is already intensely used, increasing its us-
age makes the economy more vulnerable to shocks affecting that variety. Note
that because lim;_,~ s; = 0, there is always an index K (a frontier variety) above
which all varieties are rare enough to satisfy this condition. Adopting frontier
varieties therefore always leads to lower volatility.

Proposition 6. A shock that destroys variety k decreases output unambiguously

and increases volatility if and only if Y 2, s% > 2k -

In words, as long as si is not too big, expected volatility increases with the
destruction of variety k. This happens together with the unambiguous decline in
output caused by the destruction of that variety. Volatility might decrease only if
the production process relies strongly on variety k. In this case, the disappearance
of that variety leads to higher diversification for the economy. As before, there
exists a frontier variety K such that the destruction of all varieties k > K lead
to an increase in volatility and a decline in income.

While one can construct examples where the negative relationship between
volatility and development breaks, the model dynamics tends to generate a nega-
tive correlation. This is because the growth process, through the steady introduc-
tion of frontier varieties, leads on average to both higher levels of development
and higher degrees of technological diversification. In the long run, as per capita
GDP grows without bound, volatility approaches zero.

Proposition 7. As per capita GDP increases without bound, volatility tends to
Zero.

The intuition is straightforward: long-run growth of per capita GDP is achieved
by the addition of frontier varieties, which reduces volatility. As time progresses,
volatility vanishes and the economy converges to a stable deterministic growth

45This leads to an increase in s, and the consequent relative decrease in the contribution of other
varieties—recall the shares si add to 1 by construction.
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path with rate A — . The decline in volatility thus results as a by-product of the
development process.

Before moving to the quantitative results, a comment on the asymmetry in the
sources of aggregate volatility is in order. In the model, positive shocks at the
micro level average up to a smooth aggregate process, whereas negative shocks at
the micro level generate aggregate volatility. While of course this is a modelling
simplification, the asymmetry leads to negative skewness in the distribution of
growth rates, a prediction that is consistent with the data (see Web Appendix).

ITI. Volatility and Development: A Quantitative Assessment

Our analysis so far has shown that volatility declines monotonically with the
degree of technological diversification and that, ceteris paribus, the introduction
of a new variety in the economy increases the level of development and the degree
of technological diversification, thus lowering volatility. We have also argued that
the growth process, through the expansion in the number of varieties, tends to
impart a negative correlation between volatility and development, though this
tendency may be overturned under certain histories of shocks; specifically, it is
conceivable that countries that use a few varieties very intensely display both
a relatively high level of development and high volatility due to their lack of
diversification. To establish whether these occurrences are frequent or rare, one
has to simulate the model.

Our strategy is to generate artificial data by simulating the model 1,000 times
for 64 different economies (countries) from 1870 through 2007. All economies start
at the stage of development they were in 1870, according to Maddison (2010).
(There are 64 countries at different stages of development with data on GDP per
capita in 1870; see Web Appendix for the list of countries.) An initial (single-
parameter) logarithmic firm-size distribution for each economy is calibrated so as
to match the level of development of the country in 1870 (we shall elaborate on
this later). All parameters characterizing the evolution of the economies are iden-
tical. However, shocks are country-specific and different realizations of shocks lead
to potentially different growth paths. We analyze the relation between volatility
and the level of development for the simulated economies and compare patterns
of volatility and development in the last 48 years of our simulations to the corre-
sponding patterns in the cross-sectional data that we already examined in Section
I, covering the period 1960-2007. Note that because the volatility of aggregate
GDP depends on the distribution of technologies across firms, our simulations
need to keep track of the entire distribution of technology usage across firms at
all points in time.

We emphasize that in reality there are several additional mechanisms driving
a country’s economic development and its patterns of volatility. The goal of this
numerical exercise is to study how the model behaves with reasonable parameter
values, not to run a horse race among potential explanations.
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A.  Parametrization and Computation

Technology and growth. We compute a discrete-time approximation of the
continuous-time model. In calibrating the discrete-time approximation, a pe-
riod is interpreted as a year. We need to set values for +, the arrival rate of
negative shocks, and p, the rate of time preference. In principle, we also need to
specify and parametrize the cost of adoption function g(.), the entry cost x and
the size of the labor force L. However, note that g, x, and L only serve to pin
down the search intensity A, which is constant in the BEGP. Hence we let g, k,
and L unspecified and calibrate A directly.

The model’s key parameter, 7, is in principle difficult to calibrate without
directly observing technology shocks. Our strategy is thus to simulate the model
for a reasonably wide grid of values for v, ranging from 0.05 to 0.20. Values below
0.05 imply very low aggregate volatility; values above 0.20 are unlikely, as they
would imply that technologies on average last less than five years.*6 Because v
is also the (stochastic) depreciation rate of the economy, v = 0.10 would be a
natural choice, but we find it useful to investigate the model’s outcomes for a
wider parameter range. Recalling that in the long run the expected growth rate
converges to A — vy, we can then set A so that the long-run annual growth rate is
0.02 (that is, A = v + 0.02).

In the baseline model we set the elasticity of substitution € equal to 3, and in
the Web Appendix we report results for € between 1.6 and 5 (Table A11).

Entrants and external effects. We also need to calibrate the success rate of
entrants 7 and the external effects they generate, captured by A(.). In the baseline
calibration, we set the success rate of new firms 7 so as to match the median age
of nonemployer firms at 7 years (Davis, Haltiwanger, Krizan, Jarmin, Miranda,
Nucci and Sandusky (2009)).47 In our model, the median age of a nonemployer
firm is In2/7n , which implies n = 0.1. For robustness, we also experimented with
a wider grid of values for 7, ranging from 0.05 to 0.20. Perhaps not surprisingly,
the results were not sensitive to the parametric choice.*® Indeed, as Proposition
4 indicates, the contribution of new entrants to growth vanishes in the long run.
This is because P, which is endogenously determined in the model, declines as
the economy grows, and the success rate of entrants matters less and less for
growth dynamics.

. . Om .
We assume a simple power function for the external effect A = N~ my °, with
On > 0 and 0,,, < 0, satisfying the sufficient conditions for long-term growth.
In words, firms’ productivity increases (or remains invariant) with the aggregate

46Technologies with such short duration exist in practice, but are unlikely to be the norm. One way
to extend the model is to allow for heterogeneity in the probability of failure across technologies. We
concentrate on what we think are the first-order insights of the model by assuming a constant ~.

47Tn our model, nonemployers do not generate revenues. In practice they do, but as Davis et al. (2009)
document, nonemployer firms account for a modest four percent of aggregate U.S. business revenue. As
in our model, the authors find that a substantial share of employers originate as nonemployer firms.

48Given that the parameter choices for entrants do not affect our results in any significant way, we
omit the results for alternative parameter choices, but these are available in the Web Appendix.
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number of varieties in the economy and decreases with the number of entrants.
We do not have direct estimates of 0y and 6,,,; the literature has pointed to
small but nonzero external effects. For example, Combes, Duranton and Gobillon
(2011a) and (2011b) estimate both positive urban externalities and congestions
costs to be of the order of 0.03. Hence we have selected Oy = —0,,, = 0.03 as
the baseline. (Note that the magnitudes do not need to coincide to satisfy the
sufficient conditions for BEGP.) For robustness, we experiment with different
values for Oy and (—6,,,) between 0 and 1 satisfying (17). We found that the
choice of these parameters was not important for the relation between volatility
and development; the robustness results are available in the Web Appendix. (Note
that in the limit case in which 0y = 6,,, = 0, a necessary and sufficient condition
for balanced growth is that ¢ = 2. The results for this case are in Table A12 of
the Web Appendix.)

Initial conditions. We initialize the model in 1870 and assume that in each
country, the initial firm-size distribution is logarithmic. (This is the distribution
of firms’ size in Klette and Kortum (2004), discussed thoroughly in the context
of firms’ sizes by Ijiri and Simon (1977).4%) We calibrate the parameter of the
country-specific distribution so as to match the country’s level of development
in 1870, according to Maddison (2010). Hence, all countries start at the level of
development they had in 1870. More specifically, the logarithmic distribution is
given by:

-1k
34 = k>1
(34) P ) B >
where py is the fraction of firms using k varieties. We assume all countries start
with a unit mass of productive firms, M7, in 1870, and let the distribution of firms
vary across countries with a country-specific parameter V.20 Thus, pr maps into
my, the mass of firms with £ > 1 varieties. The mean of the size distribution is

35 k-p. =
(35) ; Pk In(l—v)1—-v’

which is increasing in v. This mean maps into N, which is linearly related to
GDP per capita: Y(M)/L = exN(M). Hence from data on real GDP per capita
in 1870 (GDPPC, 1s70), for a given €, we can obtain ©N, 1870, where N 1870 is

49The logarithmic distribution is appealing in this context, both because it can match important fea-
tures of the firm-size distribution (Klette and Kortum (2004)) and because it relies on a single parameter,
which we can calibrate using aggregate data.

50Q0ver time, the size of M (t) will adjust through the entry margin.
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the average number of varieties in country ¢ in 1870:%!
(36) GDPPC, 1870 = enNe 1870

To pin down 7, we match an additional moment in the data as follows. Note first
that, given the initial distribution of varieties, the (initial) instantaneous variance
of real GDP growth is given by:

(1-v)(1+v)In(1 —2v?) —2v(1 —v)In(1 —v)

V2

Y

37) ) M{/N?=~
k=1

where My, = > 22, my, is as before, the mass of firms using variety k (those that
are at least k large). Hence, for a given 7 one could exactly pin down v using
data on the variance of per capita GDP growth. The limitation is that only a
small set of countries in Maddison (2010) have uninterrupted series of real GDP
per capita in the early period, necessary to compute variances.”> We thus use
data on the United States, for which Maddison (2010)’s series is uninterrupted,
and calculate the variance of per capita GDP growth during 1870-80.

Thus, for a given ~, we can pin down vyg from equation (37) and hence the
average number of varieties in the United States Nygis70 from equation (35).
Using the latter, together with data on real GDP per capita for the United States,
we can obtain 7 from equation (36). Having 7, we can calculate N 187 for all the
remaining countries using equation (36). For each N, 1g70, there is a parameter
v, for the logarithmic distribution that fits equation (35). This gives the initial
firm-size distribution in equation (34) for each country.

Simulation. We simulate the model in each economy 1,000 times from 1870
through to 2007. To do so, we resort to discrete-time methods. (Note that the
state space is already discrete.) We approximate the continuous-time adoption
and failure processes as follows. Over a period At, a firm of size n; adopts ¢ a¢
new varieties, where ¢; o+ has a Poisson distribution with expected value An;At.
As to new firms, they become successful with probability 1 — exp(—nAt), so this
fraction of size-zero firms will become size one. Similarly, we discretize the failure
process by assuming that each variety has the vAt probability of failing during a
period of time. As At tends to zero, these processes converge to the continuous-
time processes described in Section II. We take At to be a year. (Since both A and
~ are fairly small, At does not need to be too small for the above approximation
to be accurate.) In addition to the discretization of time, we also put an upper
bound on the support of n;, as the computer program cannot handle unbounded
support. We set the upper bound at npax = 900, which implies that even in
the richest country, 99.999 percent of firms remain within this bounded support

51We start in 1870 because the data coverage in that year is particularly good—there are many missing
observations in the early years of Maddison’s data.
521870 was a benchmark year with data for 64 countries, but this is not the case for subsequent years.
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during the 138 years of simulation.

At any point in time, we can take a snapshot of the economy by counting the
number of firms in each size bin, mq;, moy, ... Real GDP per capita at time ¢ can
then be calculated as e Z?:mf" im;. To construct statistics that have the same
interpretation as those in the empirical analysis of Section I, we compute decade
averages of (the log of) GDP per capita and (logs of) standard deviations of per
capita GDP growth (our measure of volatility). Recall that in Section I we run a
regression of country-level volatility on income for the nearly five decades between
1960 and 2007. To run a similar regression on our simulated panel of countries we
used the last 48 years of data generated in our simulations. To reduce simulation
error, we report the means from 1,000 simulations.

B. Results

This section presents and discusses the results from the baseline calibration,
along with the three main regularities motivating the model.

1. GDP volatility declines with development, both in the cross section and for
a given country over time.

The first set of rows in Table 3 shows for each value of 7, the model-generated
slope coefficients and the corresponding standard errors from OLS regressions
of decade (log) volatility on the average (log) GDP per capita of the decade,
pooling data from all simulated countries in the last five decades. The last two
columns in the row show the corresponding figures using two samples of PPP-
adjusted data from the PWT. The first sample uses the set of countries for which
Maddison’s data are available in 1870—the countries for which we pin down the
initial conditions. We refer to this subsample as the Maddison sample and the
results are reported in the next-to-last column. The last column uses the whole
sample, reproducing the results in the first column of Table 1.

The second set of rows shows, correspondingly, the within-country slopes and
the standard deviations resulting from the model-generated data for different
~s, as well as the empirical results based on the Maddison sample, and the whole
sample (the latter corresponding to the second column of Table 1). As in the data,
the time-series slopes generated by the model tend to be larger in magnitude
than the corresponding cross-sectional slopes. These results indicate that for
the parameter values analyzed, the coefficients in both the pooled and within-
country regressions are negative and significant at standard confidence levels and
quantitatively comparable to those in the data.

To assess whether and to what extent the model can account for the decline in
volatility with development seen in the data, it is important to know not only the
slope coefficients but also the degree of dispersion in GDP generated by the model.
In the 1960s, the standard deviation of (log) per capita GDP across countries in
the data was 0.970 (the corresponding value was 0.977 in Maddison’s sample).?3

53This is the standard deviation across countries of the decade-average (log) GDP per capita.
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This is shown in the third row of Table 3, along with the corresponding statistics
based on model-generated data.’® The dispersion generated by the model is
smaller than that in the data. Because the model has no mechanism to generate
convergence, over time, cross-country GDP dispersion tends to either increase or
remain constant, as appears to be the case in the data.?®

An appealing way to measure the statistical variation of volatility with the level
of development in the data is given by 8- ocgpp, where B is the slope regression
coefficient and oG pp is the standard deviation of (log) per capita GDP. It indicates
the percent decline in volatility generated by a 1-standard deviation increase in
(log) per capita GDP. We can construct similar statistics in the model-generated
data. The results are reported in the last row of Table 3. As shown, the model is
capable of generating a significant variation in volatility with respect to economic

development. One could use these figures to assess what fraction of the statistical

variation in the data can be generated by the model: w, where 3(7) and
‘0CGDP

oapp(y) are the model-generated slope coefficient and the standard deviation of
(log) GDP, for different values of . For example, the model’s explanatory power

at v = 0.10 is around WNO =73 percent. A value of v = 0.10 means

‘0OGDP
that technologies have a 10-year average lifetime.

2. Firm-level volatility declines with the size of the firm.

In the model’s BEGP, instantaneous firm-level volatility, (the standard devia-
tion of sales growth) is given by \/[A 4+ 7]/n(j,t), which declines monotonically
with the size n(j,t) of the firm. Hence, the model mechanically generates a neg-
ative relationship between firm-level volatility and size as the one in the data.

The model-generated slope is 0.5, while in the data the slope coefficient is
estimated to be between 0.1 and 0.3, depending on the country (Tables 2 and A1).
There are of course many possible explanations for the discrepancy between model
and data, including measurement error in firm-level data. Within the model, a
potential way to generate a smaller slope coefficient is to allow for variation in the
intensity of use of different input varieties by firms, in the same way as the overall
intensity of use varies for the economy as a whole. (Recall that, in the baseline
model, at the firm level, all productive varieties are used in equal quantities,
normalized to 1.) Note that it is precisely variations in the intensity of usage of
input varieties for the economy as a whole what leads to a slope coefficient smaller
than 0.5 in the cross-country regressions using model-generated data. We leave
this extension for future work.

As noted in Section 2, there is also evidence that the share of small firms in

54Note that GDP dispersion is slightly decreasing in . This is because in order to match the U.S.
level of volatility in 1870, a lower « implies a lower value for the initial v in (37). This leads to a lower
initial number of varieties in the United States, and, from (35) and (36) in all other countries. Hence,
while on the one hand, a lower v reduces country-level volatility, it necessitates a lower initial number of
varieties, which tends to increase it. The net effect over time can only be assessed quantitatively.

55In the data, the standard deviation of log GDP increased from 0.97 at the beginning of the regression
sample (1960s) to 1.2 by the end of the sample (2000s). For the Maddison subsample, the standard
deviation was 0.56 in 1870 and reached 0.977 in the 1960s, remaining relatively constant thereafter.
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TABLE 3—VOLATILITY AND DEVELOPMENT: QUANTITATIVE RESULTS FOR DIFFERENT -y

Poisson Parameter y Data

Maddison All

0.05 0.10 0.15 0.20 .
sample  countries

Cross-sectional slope (and std. dev.) of volatility on | -0.272 -0.262 -0.213  -0.169 | -0.270 -0.205
development 0.101)  (0.036)  (0.033) (0.032)  (0.056)  (0.032)
Time-series slope (and std. dev.) of volatility on -0.487 -0.455 -0.402  -0.355 -0.421 -0.496
development (0.054)  (0.056)  (0.060) (0.066)  (0.105)  (0.073)

0.894 0.729 0.688 0.648 0.977 0.970

Standard deviation of log-GDP per capita in 1960 (0.436) (0.069) (0.058)  (0.053)

Percent variation in volatility due to a 1-std dev.

. ; 7 -24.4% -19.1% -14.6%  -10.9% | -26.4% -19.9%
increase in log GDP per capita

Notes: The table shows, correspondingly, the cross-sectional and within-countryslope coefficients and
standard deviations (in parentheses) from regressions of (log) volatility of annualized quarterly growth
rates computed over non-overlapping decades on the average (log) level of development in the decade; a
constant (not reported) is included in each regression. The cross sectional regressions are based on
pooled data for 5 decades. The third set of rows shows the standard deviation of average logged GDP
per capita over the whole decade (and the standard deviation over 1,000 simulations). The fourth line
shows the percent variation in volatility generated by a 1 standard deviation increase in the logged
GDP per capita. Maddison sample is a subset of the whole sample that includes the countries with
data on GDP in 1870 (from Maddison, 2010). The results correspond to the baseline calibration; the
parameter values are: € = 3; O = —0,,,0 = 0.03; and n = 0.10. See text for explanations.

the economy correlates negatively with income per capita. This is also the case
in our model. A regression of the share of small firms®® on log GDP per capita
in the model, yields negative and significant coefficients, ranging from -0.049
(s.e.=0.011) for v = 0.05 to -0.025 (s.e.=0.009) for v = 0.20.

3. Firm-level and aggregate volatility tend to display positive comovement.

In the model-generated data, firm-level volatility, measured as the standard
deviation of sales growth for the median firm, and aggregate volatility are posi-
tively correlated. The mean correlations (and the standard deviations over 1,000
simulations—in parentheses) are, correspondingly 0.489 (0.048) for v = 0.05;
0.421 (0.042) for v = 0.10; 0.359 (0.055) for v = 0.15; and 0.274 (0.059) for
~v = 0.20. Interestingly, the results also suggest that when the volatility of shocks
is higher (that is, 7 is higher), the correlation between micro and macro volatility
becomes weaker. This model prediction can potentially be tested in the future,
as longer time series on firm-level data for different countries are gathered. In all,
the positive comovement generated by the model is consistent with the available
evidence (see Section I and the Web Appendix).

Finally, as noted earlier, in a majority of countries, the distribution of growth
rates is negatively skewed (skewness is measured as the sample third standardized
moment). The model is capable of generating this negative skewness, as only
negative shocks at the micro level contribute to aggregate volatility (positive
microeconomic shocks add up to a deterministic aggregate process). The average

56Small firms are defined as those having five or fewer input varieties.
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skewness for countries in the model-generated data ranges from —0.285 when
v = 0.05 to —0.076 when v = 0.20. When v = 0.10, skewness is —0.141. The
average skewness coefficient in the data is higher:—0.390. The model could yield
higher skewness if negative shocks were not independent across varieties.

In all, the quantitative exercise leads us to conclude that the technological-
diversification model, though stylized, can potentially account for a substantial
part of the decline in volatility with development observed in the data. The
model offers an alternative channel to account (at least partially) for the volatility-
size relationship observed at the firm level, and generates a positive correlation
between firm-level data and aggregate volatility that appears in line with recent
empirical findings in this area.

IV. Concluding Remarks

We argue that technological diversification offers a promising (yet so far over-
looked) explanation for the negative relation between volatility and development.
We do so by proposing a model in which the production process makes use of dif-
ferent varieties subject to imperfectly correlated shocks. As in Romer (1990) and
Grossman and Helpman (1991), technological progress takes place as an expan-
sion in the number of input varieties, increasing productivity. The new insight in
the model is that the expansion in input varieties can also lead to lower volatility
in production. First, as each individual variety matters less and less in produc-
tion, the contribution of variety-specific fluctuations to overall volatility declines.
Second, each additional variety provides a new adjustment margin in response to
external shocks, making productivity less volatile. In the model, the number of
varieties evolves endogenously in response to profit incentives and the decrease
in volatility results as a by-product of firms’ incentives to increase profits. We
simulate the model for plausible parameter values and find that it can quanti-
tatively account for a substantial fraction of the statistical variation in volatility
with respect to development observed in the data.

There are three natural directions for further investigation. First, extending the
setup to a multi-sector model that explicitly distinguishes between within- and
across-sector diversification. Second, allowing for international trade to analyze
the tradeoff between higher sectoral specialization (possibly brought about by
increased trade openness), and the scope for input or technology diversification
facilitated by trade.’” The third direction entails extending the model to match
the regularities emphasized in the RBC literature, with a focus on poor countries.
Some of the frictions (and shocks) needed to augment our model will be similar to
the extensions made to the RBC (or New Keynesian) model. The key contribution
of our model will be on the endogenous link between a country’s development and
its susceptibility to shocks, a link that is not addressed by the RBC literature.

57See Caselli, Koren, Lisicky and Tenreyro (2010) for an exploration of these mechanisms.
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