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1 Introduction

Many people fall under the spell of the “gambler’s fallacy,” expecting outcomes in random sequences

to exhibit systematic reversals. When observing flips of a fair coin, for example, people believe that

a streak of heads makes it more likely that the next flip will be a tail. The gambler’s fallacy is

commonly interpreted as deriving from a fallacious belief in the “law of small numbers” or “local

representativeness”: people believe that a small sample should resemble closely the underlying

population, and hence believe that heads and tails should balance even in small samples. On the

other hand, people also sometimes predict that random sequences will exhibit excessive persistence

rather than reversals. While basketball fans believe that players have “hot hands,” being more

likely than average to make the next shot when currently on a hot streak, several studies have

shown that no perceptible streaks justify such beliefs.1

At first blush, the hot-hand fallacy appears to directly contradict the gambler’s fallacy because

it involves belief in excessive persistence rather than reversals. Several researchers have, however,

suggested that the two fallacies might be related, with the hot-hand fallacy arising as a consequence

of the gambler’s fallacy.2 Suppose that an investor prone to the gambler’s fallacy observes the

performance of a mutual fund, which can depend on the manager’s ability and luck. Convinced that

luck should reverse, the investor underestimates the likelihood that a manager of average ability will

exhibit a streak of above- or below-average performances. Following good or bad streaks, therefore,

the investor over-infers that the current manager is above or below average, and so in turn predicts

continuation of unusual performances.

This paper develops a model to examine the link between the gambler’s fallacy and the hot-

hand fallacy, as well as the broader implications of the fallacies for people’s predictions and actions

in economic and financial settings. In our model, an individual observes a sequence of signals

that depend on an unobservable underlying state. We show that because of the gambler’s fallacy,

the individual is prone to exaggerate the magnitude of changes in the state, but underestimate

their duration. We characterize the individual’s predictions following streaks of similar signals, and

determine when a hot-hand fallacy can arise. Our model has implications for a number of puzzles

in Finance, e.g., the active-fund and fund-flow puzzles, and the presence of momentum and reversal

in asset returns.

1The representativeness bias is perhaps the most commonly explored bias in judgment research. Section 2 reviews
evidence on the gambler’s fallacy, and a more extensive review can be found in Rabin (2002). For evidence on the
hot-hand fallacy see, for example, Gilovich, Vallone, and Tversky (1985) and Tversky and Gilovich (1989a, 1989b).
See also Camerer (1989) who shows that betting markets for basketball games exhibit a small hot-hand bias.

2See, for example, Camerer (1989) and Rabin (2002). The causal link between the gambler’s fallacy and the hot-
hand fallacy is a common intuition in psychology. Some suggestive evidence comes from an experiment by Edwards
(1961), in which subjects observe a very long binary series and are given no information about the generating process.
Subjects seem, by the evolution of their predictions over time, to come to believe in a hot hand. Since the actual
generating process is i.i.d., this is suggestive that a source of the hot hand is the perception of too many long streaks.

1



While providing extensive motivation and elaboration in Section 2, we now present the model

itself in full. An agent observes a sequence of signals whose probability distribution depends on an

underlying state. The signal st in Period t = 1, 2, .. is

st = θt + ǫt, (1)

where θt is the state and ǫt an i.i.d. normal shock with mean zero and variance σ2
ǫ > 0. The state

evolves according to the auto-regressive process

θt = ρθt−1 + (1 − ρ)(µ+ ηt), (2)

where ρ ∈ [0, 1] is the persistence parameter, µ the long-run mean, and ηt an i.i.d. normal shock

with mean zero, variance σ2
η, and independent of ǫt. As an example that we shall return to often,

consider a mutual fund run by a team of managers. We interpret the signal as the fund’s return,

the state as the managers’ average ability, and the shock ǫt as the managers’ luck. Assuming that

the ability of any given manager is constant over time, we interpret 1− ρ as the rate of managerial

turnover, and σ2
η as the dispersion in ability across managers.3

We model the gambler’s fallacy as the mistaken belief that the sequence {ǫt}t≥1 is not i.i.d.,

but rather exhibits reversals: according to the agent,

ǫt = ωt − αρ

∞∑

k=0

δk
ρǫt−1−k, (3)

where the sequence {ωt}t≥1 is i.i.d. normal with mean zero and variance σ2
ω, and (αρ, δρ) are param-

eters in [0, 1) that can depend on ρ.4 Consistent with the gambler’s fallacy, the agent believes that

high realizations of ǫt′ in Period t′ < t make a low realization more likely in Period t. The parameter

αρ measures the strength of the effect, while δρ measures the relative influence of realizations in

the recent and more distant past. We mainly focus on the case where (αρ, δρ) depend linearly on

ρ, i.e., (αρ, δρ) = (αρ, δρ) for α, δ ∈ [0, 1). Section 2 motivates linearity based on the assumption

that people expect reversals only when all outcomes in a random sequence are drawn from the

same distribution, e.g., the performances of a fund manager whose ability is constant over time.

This assumption rules out belief in mean reversion across distributions, e.g., a good performance by

one manager does not make another manager due for a bad performance next period. If managers

turn over frequently (ρ is small) therefore, the gambler’s fallacy has a small effect, consistent with

3Alternatively, we can assume that a fraction 1 − ρ of existing managers get a new ability “draw” in any given
period. Ability could be time-varying if, for example, managers’ expertise is best suited to specific market conditions.
We use the managerial-turnover interpretation because it is easier for exposition.

4We set ǫt = 0 for t ≤ 0, so that all terms in the infinite sum are well defined.
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the linear specification. Section 2 discusses alternative specifications for (αρ, δρ) and the link with

the evidence. Appendix A shows that the agent’s error patterns in predicting the signals are very

similar across specifications.

Section 3 examines how the agent uses the sequence of past signals to make inferences about

the underlying parameters and to predict future signals. We assume that the agent infers as a fully

rational Bayesian and fully understands the structure of his environment, except for a mistaken

and dogmatic belief that α > 0. From observing the signals, the agent learns about the underlying

state θt, and possibly about the parameters of his model (σ2
η , ρ, σ

2
ω, µ) if these are unknown.5

In the benchmark case where the agent is certain about all model parameters, his inference

can be treated using standard tools of recursive (Kalman) filtering, where the gambler’s fallacy

essentially expands the state vector to include not only the state θt but also a statistic of past luck

realizations. If instead the agent is uncertain about parameters, recursive filtering can be used to

evaluate the likelihood of signals conditional on parameters. An appropriate version of the law of

large numbers implies that after observing many signals, the agent converges with probability one

to parameter values that maximize a limit likelihood. While the likelihood for α = 0 is maximized

for limit posteriors corresponding to the true parameter values, the agent’s abiding belief that α > 0

leads him generally to false limit posteriors. Identifying when and how these limit beliefs are wrong

is the crux of our analysis.6

Section 4 considers the case where signals are i.i.d. because σ2
η = 0.7 If the agent is initially

uncertain about parameters and does not rule out any possible value, then he converges to the

belief that ρ = 0. Under this belief he predicts the signals correctly as i.i.d., despite the gambler’s

fallacy. The intuition is that he views each signal as drawn from a new distribution; e.g., new

managers run the fund in each period. Therefore, his belief that any given manager’s performance

exhibits mean reversion has no effect.

We next assume that the agent knows on prior grounds that ρ > 0; e.g., is aware that managers

stay in the fund for more than one period. Ironically, the agent’s correct belief ρ > 0 can lead him

5When learning about model parameters, the agent is limited to models satisfying (1) and (2). Since the true
model belongs to that set, considering models outside the set does not change the limit outcome of rational learning.
An agent prone to the gambler’s fallacy, however, might be able to predict the signals more accurately using an
incorrect model, as the two forms of error might offset each other. Characterizing the incorrect model that the agent
converges to is central to our analysis, but we restrict such a model to satisfy (1) and (2). A model not satisfying (1)
and (2) can help the agent make better predictions when signals are serially correlated. See Footnote 24.

6Our analysis has similarities to model mis-specification in Econometrics. Consider, for example, the classic
omitted-variables problem, where the true model is Y = α + β1X1 + β2X2 + ǫ but an econometrician estimates
Y = α + β1X1 + ǫ. The omission of the variable X2 can be interpreted as a dogmatic belief that β2 = 0. When this
belief is incorrect because β2 6= 0, the econometrician’s estimate of β1 is biased and inconsistent (e.g., Greene 2008,
Ch. 7). Mis-specification in econometric models typically arises because the true model is more complicated than
the econometrician’s model. In our setting the agent’s model is the more complicated because it assumes negative
correlation where there is none.

7When σ2

η = 0, the shocks ηt are equal to zero, and therefore (2) implies that in steady state θt is constant.
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astray. This is because he cannot converge to the belief ρ = 0, which, while incorrect, enables him

to predict the signals correctly. Instead, he converges to the smallest value of ρ to which he gives

positive probability. He also converges to a positive value of σ2
η, believing falsely that managers

differ in ability, so that (given turnover) there is variation over time in average ability. This belief

helps him explain the incidence of streaks despite the gambler’s fallacy: a streak of high returns,

for example, can be readily explained through the belief that good managers might have joined

the fund recently. Of course, the agent thinks the streak might also have been due to luck, and

expects a reversal. We show that the expectation of a reversal dominates for short streaks, but

because reversals that do not happen make the agent more confident the managers have changed,

he expects long streaks to continue. Thus, predictions following long streaks exhibit a hot-hand

fallacy.8

Section 5 relaxes the assumption that σ2
η = 0, to consider the case where signals are serially

correlated. As in the i.i.d. case, the agent underestimates ρ and overestimates the variance (1−ρ)2σ2
η

of the shocks to the state. He does not converge, however, all the way to ρ = 0 because he must

account for the signals’ serial correlation. Because he views shocks to the state as overly large in

magnitude, he treats signals as very informative, and tends to over-react to streaks. For very long

streaks, however, there is under-reaction because the agent’s underestimation of ρ means that he

views the information learned from the signals as overly short-lived. Under-reaction also tends to

occur following short streaks because of the basic gambler’s fallacy intuition.

In summary, Sections 4 and 5 confirm the oft-conjectured link from the gambler’s to the hot-

hand fallacy, and generate novel predictions which can be tested in experimental or field settings.

We summarize the predictions at the end of Section 5.

We conclude this paper in Section 6 by exploring Finance applications. One application concerns

the belief in financial expertise. Suppose that returns on traded assets are i.i.d., and while the agent

does not rule out that expected returns are constant, he is confident that any shocks to expected

returns should last for more than one period (ρ > 0). He then ends up believing that returns are

predictable based on past history, and exaggerates the value of financial experts if he believes that

the experts’ advantage derives from observing market information. This could help explain the

active-fund puzzle, namely why people invest in actively-managed funds in spite of the evidence

that these funds under-perform their passively-managed counterparts. In a related application we

show that the agent not only exaggerates the value added by active managers, but also believes

that this value varies over time. This could help explain the fund-flow puzzle, namely that flows

into mutual funds are positively correlated with the funds’ lagged returns, and yet lagged returns

8We are implicitly defining the hot-hand fallacy as a belief in the continuation of streaks. An alternative and closely
related definition involves the agent’s assessed auto-correlation of the signals. See Footnote 22 and the preceding
text.
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do not appear to predict future returns. Our model could also speak to other Finance puzzles, such

as the presence of momentum and reversals in asset returns and the value premium.

Our work is related to Rabin’s (2002) model of the law of small numbers. In Rabin, an agent

draws from an urn with replacement but believes that replacement occurs only every odd period.

Thus, the agent overestimates the probability that the ball drawn in an even period is of a different

color than the one drawn in the previous period. Because of replacement, the composition of the

urn remains constant over time. Thus, the underlying state is constant, which corresponds to

ρ = 1 in our model. We instead allow ρ to take any value in [0, 1) and show that the agent’s

inferences about ρ significantly affect his predictions of the signals. Additionally, because ρ < 1,

we can study inference in a stochastic steady state and conduct a true dynamic analysis of the

hot-hand fallacy (showing how the effects of good and bad streaks alternate over time). Because

of the steady state and the normal-linear structure, our model is more tractable than Rabin. In

particular, we characterize fully predictions after streaks of signals, while Rabin can do so only

with numerical examples and for short streaks. The Finance applications in Section 6 illustrate

further our model’s tractability and applicability, while also leading to novel insights such as the

link between the gambler’s fallacy and belief in out-performance of active funds.

Our work is also related to the theory of momentum and reversals of Barberis, Shleifer and

Vishny (BSV 1998). In BSV, investors do not realize that innovations to a company’s earnings

are i.i.d. Rather, they believe them to be drawn either from a regime with excess reversals or

from one with excess streaks. If the reversal regime is the more common, the stock price under-

reacts to short streaks because investors expect a reversal. The price over-reacts, however, to

longer streaks because investors interpret them as sign of a switch to the streak regime. This

can generate short-run momentum and long-run reversals in stock returns, consistent with the

empirical evidence, surveyed in BSV. It can also generate a value premium because reversals occur

when prices are high relative to earnings, while momentum occurs when prices are low. Our model

has similar implications because in i.i.d. settings the agent can expect short streaks to reverse

and long streaks to continue. But while the implications are similar, our approach is different.

BSV provide a psychological foundation for their assumptions by appealing to a combination of

biases: the conservatism bias for the reversal regime and the representativeness bias for the streak

regime. Our model, by contrast, not only derives such biases from the single underlying bias of

the gambler’s fallacy, but in doing so provides predictions as to which biases are likely to appear

in different informational settings.9

9Even in settings where error patterns in our model resemble those in BSV, there are important differences. For
example, the agent’s expectation of a reversal can increase with streak length for short streaks, while in BSV it
unambiguously decreases (as it does in Rabin 2002 because the expectation of a reversal lasts for only one period).
This increasing pattern is a key finding of an experimental study by Asparouhova, Hertzel and Lemmon (2008). See
also Bloomfield and Hales (2002).
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2 Motivation for the Model

Our model is fully described by Eqs. (1) to (3) presented in the Introduction. In this section we

motivate the model by drawing the connection with the experimental evidence on the gambler’s

fallacy. A difficulty with using this evidence is that most experiments concern sequences that are

binary and i.i.d., such as coin flips. Our goal, by contrast, is to explore the implications of the

gambler’s fallacy in richer settings. In particular, we need to consider non-i.i.d. settings since the

hot-hand fallacy involves a belief that the world is non-i.i.d. The experimental evidence gives

little direct guidance on how the gambler’s fallacy would manifest itself in non-binary, non-i.i.d.

settings. In this section, however, we argue that our model represents a natural extrapolation of

the gambler’s fallacy “logic” to such settings. Of course, any such extrapolation has an element of

speculativeness. But, if nothing else, our specification of the gambler’s fallacy in the new settings

can be viewed as a working hypothesis about the broader empirical nature of the phenomenon that

both highlights features of the phenomenon that seem to matter and generates testable predictions

for experimental and field research.

Experiments documenting the gambler’s fallacy are mainly of three types: production tasks,

where subjects are asked to produce sequences that look to them like random sequences of coin

flips, recognition tasks, where subjects are asked to identify which sequences look like coin flips, and

prediction tasks, where subjects are asked to predict the next outcome in coin-flip sequences. In all

types of experiments, the typical subject identifies a switching (i.e., reversal) rate greater than 50%

to be indicative of random coin flips.10 The most carefully reported data for our purposes comes

from the production-task study of Rapoport and Budescu (1997). Using their Table 7, we estimate

in Table 1 below the subjects’ assessed probability that the next flip of a coin will be heads given

the last three flips.11

According to Table 1, the average effect of changing the most recent flip from heads (H) to tails

10See Bar-Hillel and Wagenaar (1991) for a review of the literature, and Rapoport and Budescu (1992,1997)
and Budescu and Rapoport (1994) for more recent studies. The experimental evidence has some shortcomings. For
example, most prediction-task studies report the fraction of subjects predicting a switch but not the subjects’ assessed
probability of a switch. Thus, it could be that the vast majority of subjects predict a switch, and yet their assessed
probability is only marginally larger than 50%. Even worse, the probability could be exactly 50%, since under that
probability subjects are indifferent as to their prediction.

Some prediction-task studies attempt to measure assessed probabilities more accurately. For example, Gold and
Hester (2008) find evidence in support of the gambler’s fallacy in settings where subjects are given a choice between a
sure payoff and a random payoff contingent on a specific coin outcome. Supporting evidence also comes from settings
outside the laboratory. For example, Clotfelter and Cook (1993) and Terrell (1994) study pari-mutuel lotteries,
where the winnings from a number are shared among all people betting on that number. They find that people avoid
systematically to bet on numbers that won recently. This is a strict mistake because the numbers with the fewest
bets are those with the largest expected winnings. See also Metzger (1984), Terrell and Farmer (1996) and Terrell
(1998) for evidence from horse and dog races, and Croson and Sundali (2005) for evidence from casino betting.

11Rapoport and Budescu report relative frequencies of short sequences of heads (H) and tails (T) within the larger
sequences (of 150 elements) produced by the subjects. We consider frequencies of four-element sequences, and average
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3rd-to-last 2nd-to-last Very last Prob. next will be H (%)

H H H 30.0

T H H 38.0

H T H 41.2

H H T 48.7

H T T 62.0

T H T 58.8

T T H 51.3

T T T 70.0

Table 1: Assessed probability that the next flip of a coin will be heads (H) given the last three flips
being heads or tails (T). Based on Rapoport and Budescu (1997), Table 7, p. 613.

(T) is to raise the probability that the next flip will be H from 40.1% (= 30%+38%+41.2%+51.3%
4 ) to

59.9%, i.e., an increase of 19.8%. This corresponds well to the general stylized fact in the literature

that subjects tend to view randomness in coin-flip sequences as corresponding to a switching rate

of 60% rather than 50%. Table 1 also shows that the effect of the gambler’s fallacy is not limited

to the most recent flip. For example, the average effect of changing the second most recent flip

from H to T is to raise the probability of H from 43.9% to 56.1%, i.e., an increase of 12.2%. The

average effect of changing the third most recent flip from H to T is to raise the probability of H

from 45.5% to 54.5%, i.e., an increase of 9%.

How would a believer in the gambler’s fallacy, exhibiting behavior such as in Table 1, form

predictions in non-binary, non-i.i.d. settings? Our extrapolation approach consists in viewing the

richer settings as combinations of coins. We first consider settings that are non-binary but i.i.d.

Suppose that in each period a large number of coins are flipped simultaneously and the agent

observes the sum of the flips, where we set H=1 and T=-1. For example, with 100 coins, the agent

observes a signal between 100 and -100, and a signal of 10 means that 55 coins came H and 45 came

the two “observed” columns. The first four lines of Table 1 are derived as follows

Line 1 =
f(HHHH)

f(HHHH) + f(HHHT)
,

Line 2 =
f(THHH)

f(THHH) + f(HTTH)
,

Line 3 =
f(HTHH)

f(HTHH) + f(HTHT)
,

Line 4 =
f(HHTH)

f(HHTH) + f(HHTT)
.

(The denominator in Line 2 involves HTTH rather than the equivalent sequence THHT, derived by reversing H
and T, because Rapoport and Budescu group equivalent sequences together.) The last four lines of Table 1 are
simply transformations of the first four lines, derived by reversing H and T. While our estimates are derived from
relative frequencies, we believe that they are good measures of subjects’ assessed probabilities. For example, a subject
believing that HHH should be followed by H with 30% probability could be choosing H after HHH 30% of the time
when constructing a random sequence.
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T. Suppose that the agent applies his gambler’s fallacy reasoning to each individual coin (i.e., to

100 separate coin-flip sequences), and his beliefs are as in Table 1. Then, after a signal of 10, he

assumes that the 55 H coins have probability 40.1% to come H again, while the 45 T coins have

probability 59.9% to switch to H. Thus, he expects on average 40.1% × 55 + 59.9% × 45 = 49.01

coins to come H, and this translates to an expectation of 49.01 − (100 − 49.01) = −1.98 for the

next signal.

The “multiple-coin” story shares many of our model’s key features. To explain why, we specialize

the model to i.i.d. signals, taking the state θt to be known and constant over time. We generate a

constant state by setting ρ = 1 in (2). For simplicity, we normalize the constant value of the state

to zero. For ρ = 1, (3) becomes

ǫt = ωt − α

∞∑

k=0

δkǫt−1−k, (4)

where (α, δ) ≡ (α1, δ1). When the state is equal to zero, (1) becomes st = ǫt. Substituting into (4)

and taking expectations conditional on Period t− 1, we find

Et−1(st) = −α
∞∑

k=0

δkst−1−k. (5)

Comparing (5) with the predictions of the multiple-coin story, we can calibrate the parameters

(α, δ) and test our specification of the gambler’s fallacy. Suppose that st−1 = 10 and that signals

in prior periods are equal to their average of zero. Eq. (5) then implies that Et−1(st) = −10α.

According to the multiple-coin story Et−1(st) should be -1.98, which yields α = 0.198. To calibrate

δ, we repeat the exercise for st−2 (setting st−2 = 10 and st−i = 0 for i = 1 and i > 2) and then again

for st−3. Using the data in Table 1, we find αδ = 0.122 and αδ2 = 0.09. Thus, the decay in influence

between the most and second most recent signal is 0.122/0.198 = 0.62, while the decay between

the second and third most recent signal is 0.09/0.122 = 0.74. The two rates are not identical as our

model assumes, but are quite close. Thus, our geometric-decay specification seems reasonable, and

we can take α = 0.2 and δ = 0.7 as a plausible calibration. Motivated by the evidence, we impose

from now on the restriction δ > α, which simplifies our analysis.

Several other features of our specification deserve comment. One is normality: since ωt is

normal, (4) implies that the distribution of st = ǫt conditional on Period t − 1 is normal. The

multiple-coin story also generates approximate normality if we take the number of coins to be

large. A second feature is linearity: if we double st−1 in (5), holding other signals to zero, then

Et−1(st) doubles. The multiple-coin story shares this feature: a signal of 20 means that 60 coins

came H and 40 came T, and this doubles the expectation of the next signal. A third feature is

additivity: according to (5), the effect of each signal on Et−1(st) is independent of the other signals.
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Table 1 generates some support for additivity. For example, changing the most recent flip from

H to T increases the probability of H by 20.8% when the second and third most recent flips are

identical (HH or TT) and by 18.7% when they differ (HT or TH). Thus, in this experiment the

effect of the most recent flip depends only weakly on prior flips.

We next extend our approach to non-i.i.d. settings. Suppose that the signal the agent is ob-

serving in each period is the sum of a large number of independent coin flips, but where coins differ

in their probabilities of H and T, and are replaced over time randomly by new coins. Signals are

thus serially correlated: they tend to be high at times when the replacement process brings many

new coins biased towards H, and vice-versa. If the agent applies his gambler’s fallacy reasoning to

each individual coin, then this will generate a gambler’s fallacy for the signals. The strength of

the latter fallacy will depend on the extent to which the agent believes in mean reversion across

coins: if a coin comes H, does this make its replacement coin more likely to come T? For example,

in the extreme case where the agent does not believe in mean reversion across coins and each coin

is replaced after one period, the agent will not exhibit the gambler’s fallacy for the signals.

There seems to be relatively little evidence on the extent to which people believe in mean

reversion across random devices (e.g., coins). Because the evidence suggests that belief in mean

reversion is moderated but not eliminated when moving across devices, we consider the two extreme

cases both where it is eliminated and where it is not moderated.12 In the next two paragraphs we

show that in the former case the gambler’s fallacy for the signals takes the form (3), with (αρ, δρ)

linear functions of ρ. We use this linear specification in Sections 3-6. In Appendix A we study the

latter case, where (αρ, δρ) are independent of ρ. The agent’s error patterns in predicting the signals

are very similar across the two cases.13

To derive the linear specification, we shift from coins to normal distributions. Consider a mutual

fund that consists of a continuum with mass one of managers, and suppose that a random fraction

1 − ρ of managers are replaced by new ones in each period. Suppose that the fund’s return st is

an average of returns attributable to each manager, and a manager’s return is the sum of ability

and luck, both normally distributed. Ability is constant over time for a given manager, while luck

12Evidence that people believe in mean reversion across random devices comes from horse and dog races. Metzger
(1994) shows that people bet on the favorite horse significantly less when the favorites have won the previous two
races (even though the horses themselves are different animals). Terrell and Farmer (1996) and Terrell (1998) show
that people are less likely to bet on repeat winners by post position: if, e.g., the dog in post-position 3 won a race, the
(different) dog in post-position 3 in the next race is significantly underbet. Gold and Hester (2008) find that belief
in mean reversion is moderated when moving across random devices. They conduct experiments where subjects are
told the recent flips of a coin, and are given a choice with payoffs contingent on the next flip of the same or of a new
coin. Subjects’ choices reveal a strong prediction of reversal for the old coin, but a much weaker prediction for the
new coin.

13One could envision alternative specifications for (αρ, δρ). For example, αρ could be assumed decreasing in ρ, i.e.,
if the agent believes that the state is less persistent, he expects more reversals conditional on the state. Appendix A
extends some of our results to a general class of specifications.
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is i.i.d. Thus, a manager’s returns are i.i.d. conditional on ability, and the manager can be viewed

as a “coin” with the probability of H and T corresponding to ability. To ensure that aggregate

variables are stochastic despite the continuum assumption, we assume that ability and luck are

identical within the cohort of managers who enter the fund in a given period.14

We next show that if the agent applies his gambler’s fallacy reasoning to each manager, per

our specification (4) for ρ = 1, and rules out mean reversion across managers, then this generates

a gambler’s fallacy for fund returns, per our specification (3) with (αρ, δρ) = (αρ, δρ). Denoting by

ǫt,t′ the luck in Period t of the cohort entering in Period t′ ≤ t, we can write (4) for a manager in

that cohort as

ǫt,t′ = ωt,t′ − α
∞∑

k=0

δkǫt−1−k,t′ , (6)

where {ωt,t′}t≥t′≥0 is an i.i.d. sequence and ǫt′′,t′ ≡ 0 for t′′ < t′. To aggregate (6) for the fund, we

note that in Period t the average luck ǫt of all managers is

ǫt = (1 − ρ)
∑

t′≤t

ρt−t′ǫt,t′ , (7)

since (1−ρ)ρt−t′ managers from the cohort entering in Period t′ are still in the fund. Combining (6)

and (7) and setting ωt ≡ (1 − ρ)
∑

t′≤t ρ
t−t′ωt,t′ , we find (3) with (αρ, δρ) = (αρ, δρ). Since (αρ, δρ)

are linear in ρ, the gambler’s fallacy is weaker the larger managerial turnover is. Intuitively, with

large turnover, the agent’s belief that a given manager’s performance should average out over

multiple periods has little effect.

We close this section by highlighting an additional aspect of our model: the gambler’s fallacy

applies to the sequence {ǫt}t≥1 that generates the signals given the state, but not to the sequence

{ηt}t≥1 that generates the state. For example, the agent expects that a mutual-fund manager

who over-performs in one period is more likely to under-perform in the next. He does not expect,

however, that if high-ability managers join the fund in one period, low-ability managers are more

likely to follow. We rule out the latter form of the gambler’s fallacy mainly for simplicity. In

Appendix B we show that our model and solution method generalizes to the case where the agent

believes that the sequence {ηt}t≥1 exhibits reversals, and our main results carry through.

14The intuition behind the example would be the same, but more plausible, with a single manager in each period
who is replaced by a new one with Poisson probability 1−ρ. We assume a continuum because this preserves normality.
The assumption that all managers in a cohort have the same ability and luck can be motivated in reference to the
single-manager setting.
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3 Inference–General Results

In this section we formulate the agent’s inference problem, and establish some general results that

serve as the basis for the more specific results of Sections 4-6. The inference problem consists in

using the signals to learn about the underlying state θt and possibly about the parameters of the

model. The agent’s model is characterized by the variance (1−ρ)2σ2
η of the shocks to the state, the

persistence ρ, the variance σ2
ω of the shocks affecting the signal noise, the long-run mean µ, and the

parameters (α, δ) of the gambler’s fallacy. We assume that the agent does not question his belief

in the gambler’s fallacy, i.e., has a dogmatic point prior on (α, δ). He can, however, learn about

the other parameters. From now on, we reserve the notation (σ2
η , ρ, σ

2
ω, µ) for the true parameter

values, and denote generic values by (σ̃2
η , ρ̃, σ̃

2
ω, µ̃). Thus, the agent can learn about the parameter

vector p̃ ≡ (σ̃2
η , ρ̃, σ̃

2
ω, µ̃).

3.1 No Parameter Uncertainty

We start with the case where the agent is certain that the parameter vector takes a specific value

p̃. This case is relatively simple and serves as an input for the parameter-uncertainty case. The

agent’s inference problem can be formulated as one of recursive (Kalman) filtering. Recursive

filtering is a technique for solving inference problems where (i) inference concerns a “state vector”

evolving according to a stochastic process, (ii) a noisy signal of the state vector is observed in

each period, (iii) the stochastic structure is linear and normal. Because of normality, the agent’s

posterior distribution is fully characterized by its mean and variance, and the output of recursive

filtering consists of these quantities.15

To formulate the recursive-filtering problem, we must define the state vector, the equation

according to which the state vector evolves, and the equation linking the state vector to the signal.

The state vector must include not only the state θt, but also some measure of the past realizations

of luck since according to the agent luck reverses predictably. It turns out that all past luck

realizations can be condensed into an one-dimensional statistic. This statistic can be appended to

the state θt, and therefore, recursive filtering can be used even in the presence of the gambler’s

fallacy. We define the state vector as

xt ≡
[

θt − µ̃, ǫδt

]′
,

15For textbooks on recursive filtering see, for example, Anderson and Moore (1979) and Balakrishnan (1987). We
are using the somewhat cumbersome term “state vector” because we are reserving the term “state” for θt, and the
two concepts differ in our model.
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where the statistic of past luck realizations is

ǫδt ≡
∞∑

k=0

δk
ρ̃ǫt−k,

and v′ denotes the transpose of the vector v. Eqs. (2) and (3) imply that the state vector evolves

according to

xt = Ãxt−1 + wt, (8)

where

Ã ≡
[
ρ̃ 0

0 δρ̃ − αρ̃

]

and

wt ≡ [(1 − ρ̃)ηt, ωt]
′.

Eqs. (1)-(3) imply that the signal is related to the state vector through

st = µ̃+ C̃xt−1 + vt, (9)

where

C̃ ≡ [ρ̃,−αρ̃]

and vt ≡ (1 − ρ̃)ηt + ωt. To start the recursion, we must specify the agent’s prior beliefs for the

initial state x0. We denote the mean and variance of θ0 by θ0 and σ2
θ,0, respectively. Since ǫt = 0

for t ≤ 0, the mean and variance of ǫδ0 are zero. Proposition 1 determines the agent’s beliefs about

the state in Period t, conditional on the history of signals Ht ≡ {st′}t′=1,..,t up to that period.

Proposition 1 Conditional on Ht, xt is normal with mean xt(p̃) given recursively by

xt(p̃) = Ãxt−1(p̃) + G̃t

[

st − µ̃− C̃xt−1(p̃)
]

, x0(p̃) = [θ0 − µ̃, 0]′, (10)

and covariance matrix Σ̃t given recursively by

Σ̃t = ÃΣ̃t−1Ã
′ −
(

C̃Σ̃t−1C̃
′ + Ṽ

)

G̃tG̃
′
t + W̃ , Σ̃0 =

[
σ2

θ,0 0

0 0

]

, (11)

where

G̃t ≡
1

C̃Σ̃t−1C̃ ′ + Ṽ

(

ÃΣ̃t−1C̃
′ + Ũ

)

, (12)

Ṽ ≡ Ẽ(v2
t ), W̃ ≡ Ẽ(wtw

′
t), Ũ ≡ Ẽ(vtwt), and Ẽ is the agent’s expectation operator.

The agent’s conditional mean evolves according to (10). This equation is derived by regressing
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the state vector xt on the signal st, conditional on the history of signals Ht−1 up to Period t− 1.

The conditional mean xt(p̃) coming out of this regression is the sum of two terms. The first term,

Ãxt−1(p̃), is the mean of xt conditional on Ht−1. The second term reflects learning in Period t, and

is the product of a regression coefficient G̃t times the agent’s “surprise” in Period t, defined as the

difference between st and its mean conditional on Ht−1. The coefficient G̃t is equal to the ratio of the

covariance between st and xt over the variance of st, where both moments are evaluated conditional

on Ht−1. The agent’s conditional variance of the state vector evolves according to (11). Because

of normality, this equation does not depend on the history of signals, and therefore conditional

variances and covariances are deterministic. The history of signals affects only conditional means,

but we do not make this dependence explicit for notational simplicity. Proposition 2 shows that

when t goes to ∞, the conditional variance converges to a limit that is independent of the initial

value Σ̃0.

Proposition 2 Limt→∞Σ̃t = Σ̃, where Σ̃ is the unique solution in the set of positive matrices of

Σ̃ = ÃΣ̃Ã′ − 1

C̃Σ̃C̃ ′ + Ṽ

(

ÃΣ̃C̃ ′ + Ũ
)(

ÃΣ̃C̃ ′ + Ũ
)′

+ W̃ . (13)

Proposition 2 implies that there is convergence to a steady state where the conditional variance

Σ̃t is equal to the constant Σ̃, the regression coefficient G̃t is equal to the constant

G̃ ≡ 1

C̃Σ̃C̃ ′ + Ṽ

(

ÃΣ̃C̃ ′ + Ũ
)

, (14)

and the conditional mean of the state vector xt evolves according to a linear equation with constant

coefficients. This steady state plays an important role in our analysis: it is also the limit in the

case of parameter uncertainty because the agent eventually becomes certain about the parameter

values.

3.2 Parameter Uncertainty

We next allow the agent to be uncertain about the parameters of his model. Parameter uncertainty

is a natural assumption in many settings. For example, the agent might be uncertain about the

extent to which fund managers differ in ability (σ2
η) or turn over (ρ).

Because parameter uncertainty eliminates the normality that is necessary for recursive filtering,

the agent’s inference problem threatens to be less tractable. Recursive filtering can, however, be

used as part of a two-stage procedure. In a first stage, we fix each model parameter to a given

value and compute the likelihood of a history of signals conditional on these values. Because the

conditional probability distribution is normal, the likelihood can be computed using the recursive-
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filtering formulas of Section 3.1. In a second stage, we combine the likelihood with the agent’s prior

beliefs, through Bayes’ law, and determine the agent’s posteriors on the parameters. We show, in

particular, that the agent’s posteriors in the limit when t goes to ∞ can be derived by maximizing

a limit likelihood over all possible parameter values.

We describe the agent’s prior beliefs over parameter vectors by a probability measure π0 and

denote by P the closed support of π0.
16 As we show below, π0 affects the agent’s limit posteriors

only through P . To avoid technicalities, we assume from now on that the agent rules out values

of ρ in a small neighborhood of one. That is, there exists ρ ∈ (ρ, 1) such that ρ̃ ≤ ρ for all

(σ̃2
η , ρ̃, σ̃

2
ω, µ̃) ∈ P .

The likelihood function Lt(Ht|p̃) associated to a parameter vector p̃ and history Ht = {st′}t′=1,..,t

is the probability density of observing the signals conditional on p̃. From Bayes’ law, this density

is

Lt(Ht|p̃) = Lt(s1 · · · st|p̃) =
t∏

t′=1

ℓt′(st′ |s1 · · · st′−1, p̃) =
t∏

t′=1

ℓt′(st′ |Ht′−1, p̃),

where ℓt(st|Ht−1, p̃) denotes the density of st conditional on p̃ and Ht−1. The latter density can be

computed using the recursive-filtering formulas of Section 3.1. Indeed, Proposition 1 shows that

conditional on p̃ and Ht−1, xt−1 is normal. Since st is a linear function of xt−1, it is also normal

with a mean and variance that we denote by st(p̃) and σ2
s,t(p̃), respectively. Thus:

ℓt(st|Ht−1, p̃) =
1

√

2πσ2
s,t(p̃)

exp

(

− [st − st(p̃)]
2

2σ2
s,t(p̃)

)

,

and

Lt(Ht|p̃) =
1

√

(2π)t
∏t

t′=1 σ
2
s,t′(p̃)

exp

(

−
t∑

t′=1

[st′ − st′(p̃)]
2

2σ2
s,t′(p̃)

)

. (15)

The agent’s posterior beliefs over parameter vectors can be derived from his prior beliefs and

the likelihood through Bayes’ law. To determine posteriors in the limit when t goes to ∞, we

need to determine the asymptotic behavior of the likelihood function Lt(Ht|p̃). Intuitively, this

behavior depends on how well the agent can fit the data (i.e., the history of signals) using the

model corresponding to p̃. To evaluate the fit of a model, we consider the true model according to

which the data are generated. The true model is characterized by α = 0 and the true parameters p ≡
(σ2

η , ρ, σ
2
ω, µ). We denote by st and σ2

s,t, respectively, the true mean and variance of st conditional

on Ht−1, and by E the true expectation operator.

16The closed support of π0 is the intersection of all closed sets C such that π0(C) = 1. Any neighborhood B of an
element of the closed support satisfies π0(B) > 0. (Billingsley, 12.9, p.181)
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Theorem 1

lim
t→∞

logLt(Ht|p̃)
t

= −1

2

(

log
[
2πσ2

s (p̃)
]
+
σ2

s + e(p̃)

σ2
s(p̃)

)

≡ F (p̃) (16)

almost surely, where

σ2
s(p̃) ≡ lim

t→∞
σ2

s,t(p̃),

σ2
s ≡ lim

t→∞
σ2

s,t,

e(p̃) ≡ lim
t→∞

E [st(p̃) − st]
2 .

Theorem 1 implies that the likelihood function is asymptotically equal to

Lt(Ht|p̃) ∼ exp [tF (p̃)] ,

thus growing exponentially at the rate F (p̃). Note that F (p̃) does not depend on the specific

history Ht of signals, and is thus deterministic. That the likelihood function becomes deterministic

for large t follows from the law of large numbers, which is the main result that we need to prove

the theorem. The appropriate large-numbers law in our setting is one applying to non-independent

and non-identically distributed random variables. Non-independence is because the expected values

st(p̃) and st involve the entire history of past signals, and non-identical distributions are because

the steady state is not reached within any finite time.

The growth rate F (p̃) can be interpreted as the fit of the model corresponding to p̃. Lemma 1

shows that when t goes to ∞, the agent gives weight only to values of p̃ that maximize F (p̃) over

P .

Lemma 1 The set m(P ) ≡ argmaxp̃∈PF (p̃) is non-empty. When t goes to ∞, and for almost all

histories, the posterior measure πt converges weakly to a measure giving weight only to m(P ).

Lemma 2 characterizes the solution to the fit-maximization problem under Assumption 1.

Assumption 1 The set P satisfies the cone property

(σ̃2
η , ρ̃, σ̃

2
ω, µ̃) ∈ P ⇒ (λσ̃2

η , ρ̃, λσ̃
2
ω, µ̃) ∈ P, ∀λ > 0.

Lemma 2 Under Assumption 1, p̃ ∈ m(P ) if and only if

• e(p̃) = minp̃′∈P e(p̃
′) ≡ e(P )

• σ2
s(p̃) = σ2

s + e(p̃).
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The characterization of Lemma 2 is intuitive. The function e(p̃) is the expected squared differ-

ence between the conditional mean of st that the agent computes under p̃, and the true conditional

mean. Thus, e(p̃) measures the error in the agent’s predictions relative to the true model, and a

model maximizing the fit must minimize this error.

A model maximizing the fit must also generate the right measure of uncertainty about the

future signals. The agent’s uncertainty under the model corresponding to p̃ is measured by σ2
s(p̃),

the conditional variance of st. This must equal to the true error in the agent’s predictions, which

is the sum of two orthogonal components: the error e(p̃) relative to the true model, and the error

in the true model’s predictions, i.e., the true conditional variance σ2
s .

The cone property ensures that in maximizing the fit, there is no conflict between minimizing

e(p̃) and setting σ2
s(p̃) = σ2

s + e(p̃). Indeed, e(p̃) depends on σ̃2
η and σ̃2

ω only through their ratio

because only the ratio affects the regression coefficient G̃. The cone property ensures that given

any feasible ratio, we can scale σ̃2
η and σ̃2

ω to make σ2
s(p̃) equal to σ2

s + e(p̃). The cone property is

satisfied, in particular, when the set P includes all parameter values:

P = P0 ≡
{
(σ̃2

η , ρ̃, σ̃
2
ω, µ̃) : σ̃2

η ∈ R
+, ρ̃ ∈ [0, ρ], σ̃2

ω ∈ R
+, µ̃ ∈ R

}
.

Lemma 3 computes the error e(p̃). In both the lemma and subsequent analysis, we denote

matrices corresponding to the true model by omitting the tilde. For example, the true-model

counterpart of C̃ ≡ [ρ̃,−αρ̃] is C ≡ [ρ, 0].

Lemma 3 The error e(p̃) is given by

e(p̃) = σ2
s

∞∑

k=1

(Ñk −Nk)
2 + (Nµ)2(µ̃− µ)2, (17)

where

Ñk ≡ C̃(Ã− G̃C̃)k−1G̃+

k−1∑

k′=1

C̃(Ã− G̃C̃)k−1−k′

G̃CAk′−1G, (18)

Nk ≡ CAk−1G, (19)

Nµ ≡ 1 − C̃

∞∑

k=1

(Ã− G̃C̃)k−1G̃. (20)

The terms Ñk and Nk can be given an intuitive interpretation. Suppose that the steady state

has been reached (i.e., a large number of periods have elapsed) and set ζt ≡ st − st. The shock ζt

represents the “surprise” in Period t, i.e., the difference between the signal st and its conditional

16



mean st under the true model. The mean st is a linear function of the history {ζt′}t′≤t−1 of past

shocks, and Nk is the impact of ζt−k, i.e.,

Nk =
∂st

∂ζt−k

=
∂Et−1(st)

∂ζt−k

. (21)

The term Ñk is the counterpart of Nk under the agent’s model, i.e.,

Ñk =
∂st(p̃)

∂ζt−k

=
∂Ẽt−1(st)

∂ζt−k

. (22)

If Ñk 6= Nk, then the shock ζt−k affects the agent’s mean differently than the true mean. This

translates into a contribution (Ñk −Nk)
2 to the error e(p̃). Since the sequence {ζt}t∈Z is i.i.d., the

contributions add up to the sum in (17).

The reason why (21) coincides with (19) is as follows. Because of linearity, the derivative in

(21) can be computed by setting all shocks {ζt′}t′≤t−1 to zero, except for ζt−k = 1. The shock

ζt−k = 1 raises the mean of the state θt−k conditional on Period t− k by the regression coefficient

G1.
17 This effect decays over time according to the persistence parameter ρ because all subsequent

shocks {ζt′}t′=t−k+1,..,t−1 are zero, i.e., no surprises occur. Therefore, the mean of θt−1 conditional

on Period t− 1 is raised by ρk−1G1, and the mean of st is raised by ρkG1 = CAk−1G = Nk.

The reason why (18) is more complicated than (19) is that after the shock ζt−k = 1, the agent

does not expect the shocks {ζt′}t′=t−k+1,..,t−1 to be zero. This is both because the gambler’s fallacy

leads him to expect negative shocks, and because he can converge to G̃1 6= G1, thus estimating

incorrectly the increase in the state. Because, however, he observes the shocks {ζt′}t′=t−k+1,..,t−1 to

be zero, he treats them as surprises and updates accordingly. This generates the extra terms in (18).

When α is small, i.e., the agent is close to rational, the updating generated by {ζt′}t′=t−k+1,..,t−1

is of second order relative to that generated by ζt−k. The term Ñk then takes a form analogous to

Nk:

Ñk ≈ C̃ÃkG̃ = ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)
k−1G̃2. (23)

Intuitively, the shock ζt−k = 1 raises the agent’s mean of the state θt−k conditional on Period t− k

by G̃1, and the effect decays over time at the rate ρ̃k. The agent also attributes the shock ζt−k = 1

partly to luck through G̃2. He then expects future signals to be lower because of the gambler’s

fallacy, and the effect decays at the rate (δρ̃ − αρ̃)
k ≈ δk

ρ̃ .

We close this section by determining limit posteriors under rational updating (α = 0). We

examine, in particular, whether limit posteriors coincide with the true parameter values when prior

17In a steady-state context, the coefficients (G1, G2) and (G̃1, G̃2) denote the elements of the vectors G and G̃,
respectively.
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beliefs give positive probability to all values, i.e., P = P0.

Proposition 3 Suppose that α = 0.

• If σ2
η > 0 and ρ > 0, then m(P0) = {(σ2

η , ρ, σ
2
ω, µ)}.

• If σ2
η = 0 or ρ = 0, then

m(P0) =

{
(σ̃2

η , ρ̃, σ̃
2
ω, µ̃) : [σ̃2

η = 0, ρ̃ ∈ [0, ρ], σ̃2
ω = σ2

η + σ2
ω, µ̃ = µ]

or [σ̃2
η + σ̃2

ω = σ2
η + σ2

ω, ρ̃ = 0, µ̃ = µ]

}

.

Proposition 3 shows that limit posteriors under rational updating coincide with the true pa-

rameter values if σ2
η > 0 and ρ > 0. If σ2

η = 0 or ρ = 0, however, then limit posteriors include both

the true model and a set of other models. The intuition is that in both cases signals are i.i.d. in

steady state: either because the state is constant (σ2
η = 0) or because it is not persistent (ρ = 0).

Therefore, it is not possible to identify which of σ2
η or ρ is zero. Of course, the failure to converge to

the true model is inconsequential because all models in the limit set predict correctly that signals

are i.i.d.

4 Independent Signals

In this section we consider the agent’s inference problem when signals are i.i.d. because σ2
η = 0.18

Proposition 4 characterizes the beliefs that the agent converges to when he initially entertains all

parameter values (P = P0).

Proposition 4 Suppose that α > 0 and σ2
η = 0. Then e(P0) = 0 and

m(P0) = {(σ̃2
η , 0, σ̃

2
ω, µ) : σ̃2

η + σ̃2
ω = σ2

ω}.

Since e(P0) = 0, the agent ends up predicting the signals correctly as i.i.d., despite the gambler’s

fallacy. The intuition derives from our assumption that the agent expects reversals only when all

outcomes in a random sequence are drawn from the same distribution. Since the agent converges

to the belief that ρ̃ = 0, i.e., the state in one period has no relation to the state in the next,

he assumes that a different distribution generates the signal in each period. In the mutual-fund

context, the agent assumes that managers stay in the fund for only one period. Therefore, his

18As pointed out in the previous section, signals can be i.i.d. because σ2

η = 0 or ρ = 0. The source of i.i.d.-ness
matters when the agent has prior knowledge on the true values of the parameters. We focus on the case σ2

η = 0 to
study the effects of prior knowledge that ρ is bounded away from zero.
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fallacious belief that a given manager’s performance should average out over multiple periods has

no effect. Formally, when ρ̃ = 0, the strength αρ̃ of the gambler’s fallacy in (3) is αρ̃ = αρ̃ = 0.19

We next allow the agent to rule out some parameter values based on prior knowledge. Ironically,

prior knowledge can hurt the agent. Indeed, suppose that he knows with confidence that ρ is

bounded away from zero. Then, he cannot converge to the belief ρ̃ = 0, and consequently cannot

predict the signals correctly. Thus, prior knowledge can be harmful because it reduces the agent’s

flexibility to come up with the incorrect model that eliminates the gambler’s fallacy.

A straightforward example of prior knowledge is when the agent knows with confidence that

the state is constant over time: this translates to the dogmatic belief that ρ = 1. A prototypical

occurrence of such a belief is when people observe the flips of a coin they know is fair. The state

can be defined as the probability distribution of heads and tails, and is known and constant.

If in our model the agent has a dogmatic belief that ρ = 1, then he predicts reversals according

the gambler’s fallacy. This is consistent with the experimental evidence presented in Section 2.

Of course, our model matches the evidence by construction, but we believe that this is a strength

of our approach (in taking the gambler’s fallacy as a primitive bias and examining whether the

hot-hand fallacy can follow as an implication). Indeed, one could argue that the hot-hand fallacy

is a primitive bias, either unconnected to the gambler’s fallacy or perhaps even generating it. But

then one would have to explain why such a primitive bias does not arise in experiments involving

fair coins.

The hot-hand fallacy tends to arise in settings where people are uncertain about the mechanism

generating the data, and where a belief that an underlying state varies over time is plausible a priori.

Such settings are common when human skill is involved. For example, it is plausible–and often

true–that the performance of a basketball player can fluctuate systematically over time because of

mood, well-being, etc. Consistent with the evidence, we show below that our approach can generate

a hot-hand fallacy in such settings, provided that people are also confident that the state exhibits

some persistence.20

More specifically, we assume that the agent allows for the possibility that the state varies over

time, but is confident that ρ is bounded away from zero. For example, he can be uncertain as to

whether fund managers differ in ability (σ2
η > 0), but know with certainty that they stay in a fund

19The result that the agent predicts the signals correctly as i.i.d. extends beyond the linear specification, but with
a different intuition. See Appendix A.

20Evidence linking the hot-hand fallacy to a belief in time-varying human skill comes from the casino-betting study
of Croson and Sundali (2005). They show that consistent with the gambler’s fallacy, individuals avoid betting on a
color with many recent occurrences. Consistent with the hot-hand fallacy, however, individuals raise their bets after
successful prior bets.
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for more than one period. We take the closed support of the agent’s priors to be

P = Pρ ≡
{
(σ̃2

η , ρ̃, σ̃
2
ω, µ̃) : σ̃2

η ∈ R
+, ρ̃ ∈ [ρ, ρ], σ̃2

ω ∈ R
+, µ̃ ∈ R

}
,

where ρ is a lower bound strictly larger than zero and smaller than the true value ρ.

To determine the agent’s convergent beliefs, we must minimize the error e(p̃) over the set Pρ.

The problem is more complicated than in Propositions 3 and 4: it cannot be solved by finding

parameter vectors p̃ such that e(p̃) = 0 because no such vectors exist in Pρ. Instead, we need to

evaluate e(p̃) for all p̃ and minimize over Pρ. Eq. (17) shows that e(p̃) depends on the regression

coefficient G̃, which in turn depends on p̃ in a complicated fashion through the recursive-filtering

formulas of Section 3.1. This makes it difficult to solve the problem in closed form. But a closed-

form solution can be derived for small α, i.e., the agent close to rational. We next present this

solution because it provides useful intuition and has similar properties to the numerical solution

for general α.

Proposition 5 Suppose that σ2
η = 0 and ρ ≥ ρ > 0. When α converges to zero, the set

{(

σ̃2
η

ασ̃2
ω

, ρ̃, σ̃2
ω, µ̃

)

:
(
σ̃2

η, ρ̃, σ̃
2
ω, µ̃

)
∈ m(Pρ)

}

converges (in the set topology) to the point (z, ρ, σ2
ω, µ), where

z ≡
(1 + ρ)2

1 − ρ2δ
. (24)

Proposition 5 implies that the agent’s convergent beliefs for small α are p̃ ≈ (αzσ2
ω, ρ, σ

2
ω, µ).

Convergence to ρ̃ = ρ is intuitive. Indeed, Proposition 4 shows that the agent attempts to explain

the absence of systematic reversals by underestimating the state’s persistence ρ̃. The smallest value

of ρ̃ consistent with the prior knowledge that ρ ∈ [ρ, ρ] is ρ.

The agent’s belief that ρ̃ = ρ leaves him unable to explain fully the absence of reversals. To

generate a fuller explanation, he develops the additional fallacious belief that σ̃2
η ≈ αzσ2

ω > 0, i.e.,

the state varies over time. Thus, in a mutual-fund context, he overestimates both the extent of

managerial turnover and the differences in ability. Overestimating turnover helps him explain the

absence of reversals in fund returns because he believes that reversals concern only the performance

of individual managers. Overestimating differences in ability helps him further because he can

attribute streaks of high or low fund returns to individual managers being above or below average.

We show below that this belief in the changing state can generate a hot-hand fallacy.
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The error-minimization problem has a useful graphical representation. Consider the agent’s

expectation of st conditional on Period t − 1, as a function of the past signals. Eq. (22) shows

that the effect of the signal in Period t − k, holding other signals to their mean, is Ñk. Eq. (23)

expresses Ñk as the sum of two terms. Subsequent to a high st−k, the agent believes that the

state has increased, which raises his expectation of st (term ρ̃kG̃1). But he also believes that luck

should reverse, which lowers his expectation (term −αρ̃(δρ̃ −αρ̃)
k−1G̃2). Figure 1 plots these terms

(dotted and dashed line, respectively) and their sum Ñk (solid line), as a function of the lag k.21

Since signals are i.i.d. under the true model, Nk = 0. Therefore, minimizing the infinite sum in

(17) amounts to finding (
σ̃2

η

σ̃2
ω
, ρ̃) that minimize the average squared distance between the solid line

and the x-axis.
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k

Figure 1: Effect of a signal in Period t − k on the agent’s expectation Ẽt−1(st), as

a function of k. The dotted line represents the belief that the state has changed, the

dashed line represents the effect of the gambler’s fallacy, and the solid line is Ñk, the

sum of the two effects. The figure is drawn for (σ2

η/σ
2

ω, ρ, α, δ) = (0, 0.6, 0.2, 0.7).

Figure 1 shows that Ñk is not always of the same sign. Thus, a high past signal does not lead

the agent to predict always a high or always a low signal. Suppose instead that he always predicts a

low signal because the gambler’s fallacy dominates the belief that the state has increased (i.e., the

dotted line is uniformly closer to the x-axis than the dashed line). This means that he converges

to a small value of σ̃2
η , believing that the state’s variation is small, and treating signals as not very

informative. But then, a larger value of σ̃2
η would shift the dotted line up, reducing the average

distance between the solid line and the x-axis.

21Since (23) holds approximately, up to second-order terms in α, the solid line is only an approximate sum of the
dotted and dashed lines. The approximation error is, however, negligible for the parameter values for which Figures
1 and 2 are drawn.
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The change in Ñk’s sign is from negative to positive. Thus, a high signal in the recent past

leads the agent to predict a low signal, while a high signal in the more distant past leads him to

predict a high signal. This is because the belief that the state has increased decays at the rate ρ̃k,

while the effect of the gambler’s fallacy decays at the faster rate (δρ̃ − αρ̃)
k = ρ̃k(δ − α)k. In other

words, after a high signal the agent expects luck to reverse quickly but views the increase in the

state as more long-lived. The reason why he expects luck to reverse quickly relative to the state is

that he views luck as specific to a given state (e.g., a given fund manager).

We next draw the implications of our results for the hot-hand fallacy. To define the hot-hand

fallacy in our model, we consider a streak of identical signals between Periods t− k and t− 1, and

evaluate its impact on the agent’s expectation of st. Viewing the expectation Ẽt−1(st) as a function

of the history of past signals, the impact is

∆̃k ≡
k∑

k′=1

∂Ẽt−1(st)

∂st−k′

.

If ∆̃k > 0, then the agent expects a streak of k high signals to be followed by a high signal, and

vice-versa for a streak of k low signals. This means that the agent expects streaks to continue and

conforms to the hot-hand fallacy.22

Proposition 6 Suppose that α is small, σ2
η = 0, ρ ≥ ρ > 0, and the agent considers parameter

values in the set Pρ. Then, in steady state ∆̃k is negative for k = 1 and becomes positive as k

increases.

Proposition 6 shows that the hot-hand fallacy arises after long streaks while the gambler’s

fallacy arises after short streaks. This is consistent with Figure 1 because the effect of a streak is

the sum of the effects Ñk of each signal in the streak. Since Ñk is negative for small k, the agent

predicts a low signal following a short streak. But as streak length increases, the positive values of

Ñk overtake the negative values, generating a positive cumulative effect.

Propositions 5 and 6 make use of the closed-form solutions derived for small α. For general α,

the fit-maximization problem can be solved through a simple numerical algorithm and the results

confirm the closed-form solutions: the agent converges to σ̃2
η > 0, ρ̃ = ρ, and µ̃ = µ, and his

22Our definition of the hot-hand fallacy is specific to streak length, i.e., the agent might conform to the fallacy
for streaks of length k but not k′ 6= k. An alternative and closely related definition can be given in terms of the
agent’s assessed auto-correlation of the signals. Denote by Γ̃k the correlation that the agent assesses between signals
k periods apart. This correlation is closely related to the effect of the signal st−k on the agent’s expectation of st, with
the two being identical up to second-order terms when α is small. (The proof is available upon request.) Therefore,
under the conditions of Proposition 6, the cumulative auto-correlation

∑k

k′=1
Γ̃k is negative for k = 1 and becomes

positive as k increases. The hot-hand fallacy for lag k can be defined as
∑k

k′=1
Γ̃k > 0.
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predictions after streaks are as in Proposition 6.23

5 Serially Correlated Signals

In this section we relax the assumption that σ2
η = 0, to consider the case where signals are serially

correlated. Serial correlation requires that the state varies over time (σ2
η > 0) and is persistent

(ρ > 0). To highlight the new effects relative to the i.i.d. case, we assume that the agent has no

prior knowledge on parameter values.

Recall that with i.i.d. signals and no prior knowledge, the agent predicts correctly because

he converges to the belief that ρ̃ = 0, i.e., the state in one period has no relation to the state

in the next. When signals are serially correlated, the belief ρ̃ = 0 obviously generates incorrect

predictions. But predictions are also incorrect under a belief ρ̃ > 0 because the gambler’s fallacy

then takes effect. Therefore, there is no parameter vector p̃ ∈ P0 achieving zero error e(p̃).24

We solve the error-minimization problem in closed form for small α and compare with the

numerical solution for general α. In addition to α, we take σ2
η to be small, meaning that signals are

close to i.i.d. We set ν ≡ σ2
η/(ασ

2
ω) and assume that α and σ2

η converge to zero holding ν constant.

The case where σ2
η remains constant while α converges to zero can be derived as a limit for ν = ∞.

Proposition 7 Suppose that ρ > 0. When α and σ2
η converge to zero, holding ν constant, the set

{(

σ̃2
η

ασ̃2
ω

, ρ̃, σ̃2
ω, µ̃

)

:
(
σ̃2

η , ρ̃, σ̃
2
ω, µ̃

)
∈ m(P0)

}

converges (in the set topology) to the point (z, r, σ2
ω , µ), where

z ≡ νρ(1 − ρ)(1 + r)2

r(1 + ρ)(1 − ρr)
+

(1 + r)2

1 − r2δ
(25)

and r solves
νρ(1 − ρ)(ρ− r)

(1 + ρ)(1 − ρr)2
H1(r) =

r2(1 − δ)

(1 − r2δ)2
H2(r), (26)

23The result that σ̃2

η > 0 can be shown analytically. The proof is available upon request.
24The proof of this result is available upon request. While models satisfying (1) and (2) cannot predict the signals

correctly, models outside that set could. For example, when (αρ, δρ) are independent of ρ, correct predictions are
possible under a model where the state is the sum of two auto-regressive processes: one with persistence ρ̃1 = ρ,
matching the true persistence, and one with persistence ρ̃2 = δ − α ≡ δ1 − α1, offsetting the gambler’s fallacy effect.
Such a model would not generate correct predictions when (αρ, δρ) are linear in ρ because gambler’s fallacy effects
would decay at the two distinct rates δρ̃i

−αρ̃i
= ρ̃i(δ −α) for i = 1, 2. Predictions might be correct, however, under

more complicated models. Our focus is not as much to derive these models, but to characterize the agent’s error
patterns when inference is limited to a simple class of models that includes the true model.
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for

H1(r) ≡ νρ(1 − ρ)

(1 + ρ)(1 − ρr)
+
r(1 − δ)

[
2 − ρr(1 + δ) − r2δ + ρ2r4δ2

]

(1 − r2δ)2(1 − ρrδ)2
,

H2(r) ≡ νρ(1 − ρ)

(1 + ρ)(1 − ρr)
+
r(1 − δ)

(
2 − r2δ2 − r4δ3

)

(1 − r2δ)(1 − r2δ2)2
.

Because H1(r) and H2(r) are positive, (26) implies that r ∈ (0, ρ). Thus, the agent converges

to a persistence parameter ρ̃ = r that is between zero and the true value ρ. As in Section 4, the

agent underestimates ρ̃ in his attempt to explain the absence of systematic reversals. But he does

not converge all the way to ρ̃ = 0 because he must explain the signals’ serial correlation. Consistent

with intuition, ρ̃ is close to zero when the gambler’s fallacy is strong relative to the serial correlation

(ν small), and is close to ρ in the opposite case.

Consider next the agent’s estimate (1− ρ̃)2σ̃2
η of the variance of the shocks to the state. Section

4 shows that when σ2
η = 0, the agent can develop the fallacious belief that σ̃2

η > 0 as a way to

counteract the effect of the gambler’s fallacy. When σ2
η is positive, we find the analogous result

that the agent overestimates (1 − ρ̃)2σ̃2
η. Indeed, he converges to

(1 − ρ̃)2σ̃2
η ≈ (1 − r)2αzσ2

ω =
(1 − r)2z

(1 − ρ)2ν
(1 − ρ)2σ2

η ,

which is larger than (1 − ρ)2σ2
η because of (25) and r < ρ. Note that (1 − r)2z is decreasing in r.

Thus, the agent overestimates the variance of the shocks to the state partly as a way to compensate

for underestimating the state’s persistence ρ̃.

The error minimization problem can be represented graphically. Consider the agent’s expecta-

tion of st conditional on Period t − 1, as a function of the past signals. The effect of the signal

in Period t − k, holding other signals to their mean, is Ñk. Figure 2 plots Ñk (solid line) as a

function of k. It also decomposes Ñk to the belief that the state has increased (dotted line) and

the effect of the gambler’s fallacy (dashed line). The new element relative to Figure 1 is that an

increase in st−k also affects the expectation Et−1(st) under rational updating (α = 0). This effect,

Nk, is represented by the solid line with diamonds. Minimizing the infinite sum in (17) amounts

to finding (
σ̃2

η

σ̃2
ω
, ρ̃) that minimize the average squared distance between the solid line and the solid

line with diamonds.

For large k, Ñk is below Nk, meaning that the agent under-reacts to signals in the distant

past. This is because he underestimates the state’s persistence parameter ρ̃, thus believing that the

information learned from signals about the state becomes obsolete overly fast. Note that under-

reaction to distant signals is a novel feature of the serial-correlation case. Indeed, with i.i.d. signals,
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Figure 2: Effect of a signal in Period t − k on the agent’s expectation Ẽt−1(st), as

a function of k. The dotted line represents the belief that the state has changed,

the dashed line represents the effect of the gambler’s fallacy, and the solid line is

Ñk, the sum of the two effects. The solid line with diamonds is Nk, the effect on

the expectation Et−1(st) under rational updating (α = 0). The figure is drawn for

(σ2

η/σ
2

ω, ρ, α, δ) = (0.001, 0.98, 0.2, 0.7).

the agent’s underestimation of ρ̃ does not lead to under-reaction because there is no reaction under

rational updating.

The agent’s reaction to signals in the more recent past is in line with the i.i.d. case. Since Ñk

cannot be below Nk uniformly (otherwise e(p̃) could be made smaller for a larger value of σ̃2
η), it has

to exceed Nk for smaller values of k. Thus, the agent over-reacts to signals in the more recent past.

The intuition is as in Section 4: in overestimating (1 − ρ)2σ2
η , the agent exaggerates the signals’

informativeness about the state. Finally, the agent under-reacts to signals in the very recent past

because of the gambler’s fallacy.

We next draw the implications of our results for predictions after streaks. We consider a streak

of identical signals between Periods t−k and t−1, and evaluate its impact on the agent’s expectation

of st, and on the expectation under rational updating. The impact for the agent is ∆̃k, and that

under rational updating is

∆k ≡
k∑

k′=1

∂Et−1(st)

∂st−k′

.

If ∆̃k > ∆k, then the agent expects a streak of k high signals to be followed by a higher signal than

under rational updating, and vice-versa for a streak of k low signals. This means that the agent

over-reacts to streaks.

Proposition 8 Suppose that α and σ2
η are small, ρ > 0, and the agent has no prior knowledge
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(P = P0). Then, in steady state ∆̃k − ∆k is negative for k = 1, becomes positive as k increases,

and then becomes negative again.

Proposition 8 shows that the agent under-reacts to short streaks, over-reacts to longer streaks,

and under-reacts to very long streaks. The under-reaction to short streaks is because of the gam-

bler’s fallacy. Longer streaks generate over-reaction because the agent overestimates the signals’

informativeness about the state. But he also underestimates the state’s persistence, thus under-

reacting to very long streaks.

The numerical results for general α confirm most of the closed-form results. The only excep-

tion is that Ñk − Nk can change sign only once, from positive to negative. Under-reaction then

occurs only to very long streaks. This tends to happen when the agent underestimates the state’s

persistence significantly (because α is large relative to σ̃2
η). As a way to compensate for his error,

he overestimates (1− ρ̃)2σ̃2
η significantly, viewing signals as very informative about the state. Even

very short streaks can then lead him to believe that the change in the state is large and dominates

the effect of the gambler’s fallacy.

We conclude this section by summarizing the main predictions of the model. These predictions

could be tested in controlled experimental settings or in field settings. Prediction 1 follows from

our specification of the gambler’s fallacy.

Prediction 1 When individuals observe i.i.d. signals and are told this information, they expect

reversals after streaks of any length. The effect is stronger for longer streaks.

Predictions 2 and 3 follow from the results of Sections 4 and 5. Both predictions require

individuals to observe long sequences of signals so that they can learn sufficiently about the signal-

generating mechanism.

Prediction 2 Suppose that individuals observe i.i.d. signals, but are not told this information, and

do not exclude on prior grounds the possibility that the underlying distribution might be changing

over time. Then, a belief in continuation of streaks can arise. Such a belief should be observed

following long streaks, while belief in reversals should be observed following short streaks. Both

beliefs should be weaker if individuals believe on prior grounds that the underlying distribution

might be changing frequently.

Prediction 3 Suppose that individuals observe serially correlated signals. Then, relative to the

rational benchmark, they over-react to long streaks, but under-react to very long streaks and possibly

to short ones as well.
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6 Finance Applications

In this section we explore the implications of our model for financial decisions. Our goal is to show

that the gambler’s fallacy can have a wide range of implications, and that our normal-linear model

is a useful tool for pursuing them.

6.1 Active Investing

A prominent puzzle in Finance is why people invest in actively-managed funds in spite of the

evidence that these funds under-perform their passively-managed counterparts. This puzzle has

been documented by academics and practitioners, and has been the subject of two presidential

addresses to the American Finance Association (Gruber 1996, French 2008). Gruber (1996) finds

that the average active fund under-performs its passive counterpart by 35-164 basis points (bps,

hundredths of a percent) per year. French (2008) estimates that the average investor would save

67bps per year by switching to a passive fund. Yet, despite this evidence, passive funds represent

only a small minority of mutual-fund assets.25

Our model can help explain the active-fund puzzle. We interpret the signal as the return on a

traded asset (e.g., a stock), and the state as the expected return. Suppose that expected returns

are constant because σ2
η = 0, and so returns are i.i.d. Suppose also that an investor prone to the

gambler’s fallacy is uncertain about whether expected returns are constant, but is confident that

if expected returns do vary, they are serially correlated (ρ > 0). Section 4 then implies that the

investor ends up believing in return predictability. The investor would therefore be willing to pay

for information on past returns, while such information has no value under rational updating.

Turning to the active-fund puzzle, suppose that the investor is unwilling to continuously monitor

asset returns, but believes that market experts observe this information. Then, he would be willing

to pay for experts’ opinions or for mutual funds operated by the experts. The investor would thus

be paying for active funds in a world where returns are i.i.d. and active funds have no advantage

over passive funds. In summary, the gambler’s fallacy can help explain the active-fund puzzle

because it can generate an incorrect and confident belief that active managers add value.26 27

25Gruber (1996) finds that the average active fund investing in stocks under-performs the market by 65-194bps
per year, where the variation in estimates is because of different methods of risk adjustment. He compares these
estimates to an expense ratio of 30bps for passive funds. French (2008) aggregates the costs of active strategies over
all stock-market participants (mutual funds, hedge funds, institutional asset management, etc) and finds that they are
79bps, while the costs of passive strategies are 12bps. Bogle (2005) reports that passive funds represent one-seventh
of mutual-fund equity assets as of 2004.

26Our explanation of the active-fund puzzle relies not on the gambler’s fallacy per se, but on the more general
notion that people recognize deterministic patterns in random data. We are not aware of models of false pattern
recognition that pursue the themes in this section.

27Identifying the value added by active managers with their ability to observe past returns can be criticized on the
grounds that past returns can be observed at low cost. Costs can, however, be large when there is a large number
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We illustrate our explanation with a simple asset-market model, to which we return in Section

6.2. Suppose that there are N stocks, and the return on stock n = 1, .., N in Period t is snt.

The return on each stock is generated by (1) and (2). The parameter σ2
η is equal to zero for all

stocks, meaning that returns are i.i.d. over time. All stocks have the same expected return µ

and variance σ2
ǫ , and are independent of each other. An active-fund manager chooses an all-stock

portfolio in each period by maximizing expected return subject to a tracking-error constraint. This

constraint requires that the standard deviation of the manager’s return relative to the equally-

weighted portfolio of all stocks does not exceed a bound TE. Constraints of this form are common

in asset management (e.g., Roll 1992). We denote by st ≡
∑N

n=1 snt/N the return on the equally-

weighted portfolio of all stocks.

The investor starts with the prior knowledge that the persistence parameter associated to each

stock exceeds a bound ρ > 0. He observes a long history of stock returns that ends in the distant

past. This leads him to the limit posteriors on model parameters derived in Section 4. The investor

does not observe recent returns. He assumes, however, that the manager has observed the entire

return history, has learned about model parameters in the same way as him, and interprets recent

returns in light of these estimates. We denote by Ẽ and Ṽ ar, respectively, the manager’s expectation

and variance operators, as assessed by the investor. The variance Ṽ art−1(snt) is independent of t

in steady state, and independent of n because stocks are symmetric. We denote it by Ṽ ar1.

The investor is aware of the manager’s objective and constraints. He assumes that in Period t

the manager chooses portfolio weights {wnt}n=1,..,N to maximize the expected return

Ẽt−1

(
N∑

n=1

wntsnt

)

(27)

subject to the tracking error constraint

Ṽ art−1

(
N∑

n=1

wntsnt − st

)

≤ TE2, (28)

and the constraint that weights sum to one,
∑N

n=1wnt = 1.

of assets, as in the model that we consider next. Stepping slightly outside of the model, suppose that the investor
is confident that random data exhibit deterministic patterns, but does not know what the exact patterns are. (In
our model this would mean that the investor is confident that signals are predictable, but does not know the model
parameters.) Then, the value added by active managers would derive not only from their ability to observe past
returns, but also from their knowledge of the patterns.
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Lemma 4 The manager’s maximum expected return, as assessed by the investor, is

Ẽt−1(st) +
TE

√

Ṽ ar1

√
√
√
√

N∑

n=1

[

Ẽt−1(snt) − Ẽt−1(st)
]2
. (29)

According to the investor, the manager’s expected return exceeds that of a passive fund holding

the equally-weighted portfolio of all stocks. The manager adds value because of her information,

as reflected in the cross-sectional dispersion of return forecasts. When the dispersion is large, the

manager can achieve high expected return because her portfolio differs significantly from equal

weights. The investor believes that the manager’s forecasts should exhibit dispersion because the

return on each stock is predictable based on the stock’s past history.

6.2 Fund Flows

Closely related to the active-fund puzzle is a puzzle concerning fund flows. Flows into mutual funds

are strongly positively correlated with the funds’ lagged returns (e.g., Chevalier and Ellison 1997,

Sirri and Tufano 1998), and yet lagged returns do not appear to be strong predictors of future

returns (e.g., Carhart 1997).28 Ideally, the fund-flow and active-fund puzzles should be addressed

together within a unified setting: explaining flows into active funds raises the question why people

invest in these funds in the first place.

To study fund flows, we extend the asset-market model of Section 6.1, allowing the investor

to allocate wealth over an active and a passive fund. The passive fund holds the equally-weighted

portfolio of all stocks and generates return st. The active fund’s return is st + γt. In a first step,

we model the excess return γt in reduced form, without reference to the analysis of Section 6.1: we

assume that γt is generated by (1) and (2) for values of (σ2
η , σ

2
ǫ ) denoted by (σ2

ηγ , σ
2
ǫγ), γt is i.i.d.

because σ2
ηγ = 0, and γt is independent of st. Under these assumptions, the investor’s beliefs about

γt can be derived as in Section 4. In a second step, we use the analysis of Section 6.1 to justify

some of the assumed properties of γt, and more importantly to derive additional properties.

We modify slightly the model of Section 6.1 by replacing the single infinitely-lived investor with

a sequence of generations. Each generation consists of one investor, who invests over one period

and observes all past information. This simplifies the portfolio problem, rendering it myopic, while

the inference problem remains as with a single investor.

28Similar findings exist for hedge funds. See, for example, Ding, Getmansky, Liang and Wermers (2008) and Fund,
Hsieh, Naik and Ramadorai (2008). Berk and Green (2004) propose a rational explanation for the fund-flow puzzle.
They assume that ability differs across managers and can be inferred from fund returns. Able managers perform
well and receive inflows, but because of decreasing returns to managing a large fund, their performance drops to that
of average managers. Their model does not explain the active-fund puzzle, nor does it fully address the origin of
decreasing returns.
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Investors observe the history of returns of the active and the passive fund. Their portfolio

allocation decision, derived below, depends on their beliefs about the excess return γt of the active

fund. Investors believe that γt is generated by (1) and (2), is independent of st, and its persistence

parameter exceeds a bound ρ
γ
> 0. After observing a long history of fund returns, investors

converge to the limit posteriors on model parameters derived in Section 4.

The investor entering the market in Period t starts with wealth W̃ , and derives utility over

final wealth W̃t. To keep with the normal-linear structure, we take utility to be exponential with

coefficient of absolute risk aversion a. The investor chooses portfolio weight w̃t in the active fund

to maximize the expected utility

−Ẽt−1 exp(−aW̃t)

subject to the budget constraint

W̃t = W̃ [(1 − w̃t)(1 + st) + w̃t(1 + st + γt)]

= W̃ [(1 + st) + w̃tγt] .

Because of normality and exponential utility, the problem is mean-variance. Independence between

st and γt implies that the solution is

w̃t =
Ẽt−1(γt)

aW̃ Ṽ ar1γ

,

where Ṽ ar1γ ≡ Ṽ art−1(γt) and Ṽ ar denotes the variance assessed by the investor. (The variance

Ṽ art−1(γt) is independent of t in steady state.) The optimal investment in the active fund is a

linear increasing function of the investor’s expectation of the fund’s excess return γt. The net flow

into the active fund in Period t+ 1 is the change in investment between Periods t and t+ 1:

F̃t+1 ≡ W̃ w̃t+1 − W̃ w̃t =
Ẽt(γt+1) − Ẽt−1(γt)

aṼ ar1γ

. (30)

Lemma 5 determines the covariance between returns and subsequent flows.

Lemma 5 The covariance between the excess return of the active fund in Period t and the net flow

into the fund during Periods t+ 1 through t+ k for k ≥ 1 is

Cov

(

γt,
k∑

k′=1

F̃t+k′

)

=
σ2

ǫγÑk

aṼ ar1γ

. (31)

where Ñk is defined by (22), with γt replacing st.
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Recall from Section 4 (e.g., Figure 1) that Ñk is negative for small k and becomes positive as k

increases. Hence, returns are negatively correlated with subsequent flows when flows are measured

over a short horizon, and are positively correlated over a long horizon. The negative correlation is

inconsistent with the evidence on the fund-flow puzzle. It arises because investors attribute high

returns partly to luck, and expecting luck to reverse, they reduce their investment in the fund.

Investors also develop a fallacious belief that high returns indicate high managerial ability, and

this tends to generate positive performance-flow correlation, consistent with the evidence. But the

correlation cannot be positive over all horizons because the belief in ability arises to offset but not

to overtake the gambler’s fallacy.

We next use the analysis of Section 6.1 to derive properties of the active fund’s excess return

γt. Consider first properties under the true model. Since the returns on all stocks are identical

and constant over time, all active portfolios achieve zero excess return. The manager is thus

indifferent over portfolios, and we assume that he selects one meeting the tracking-error constraint

(28) with equality.29 Therefore, conditional on past history, γt is normal with mean zero and

variance σ2
ǫγ = TE2. Since the mean and variance do not depend on past history, γt is i.i.d..

Moreover, γt is uncorrelated with st because

Covt−1(γt, st) = Covt−1

(
N∑

n=1

wntsnt − st, st

)

= σ2
ǫ

(∑N
n=1wn,t

N
− 1

N

)

= 0,

where the second step follows because stocks are symmetric and returns are uncorrelated.

Consider next properties of γt as assessed by the investor. Since the investor believes that the

active manager adds value, γt has positive mean. Moreover, this mean varies over time and is

serially correlated. Indeed, recall from Lemma 4 that the active fund’s expected excess return,

as assessed by the investor, is increasing in the cross-sectional dispersion of the manager’s return

forecasts. This cross-sectional dispersion varies over time and is serially correlated: it is small, for

example, when stocks have similar return histories since these histories are used to generate the

forecasts.

Time-variation in the mean of γt implies that the value added by the manager is time-varying,

i.e., σ2
ηγ > 0. Section 4 derives belief in time-varying managerial ability as a posterior to which the

investor converges after observing a long history of fund returns. This section shows instead that

such a belief can arise without observation of fund returns, and as a consequence of the investor’s

belief in the power of active management. This belief can act as a prior when the investor observes

fund returns, and can lead to inferences different than in Section 4. Indeed, suppose that the

29We assume that the manager is rational and operates under the true model. The manager has a strict preference
for a portfolio meeting (28) with equality if returns are arbitrarily close to i.i.d.
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investor believes on prior grounds that σ2
ηγ exceeds a bound σ2

ηγ > 0. If the convergent posterior in

the absence of this prior knowledge is smaller than σ2
ηγ , then prior knowledge implies convergence

to σ2
ηγ instead. As a consequence, the fallacious belief that high returns indicate high managerial

ability becomes stronger and could generate positive performance-flow correlation over any horizon,

consistent with the fund-flow puzzle.

A problem with our analysis is that when stock returns are normal (as in Section 6.1), fund

returns, as assessed by the investor, are non-normal. This is because the mean of γt depends on the

cross-sectional dispersion of stock return forecasts, which is always positive and thus non-normal.

Despite this limitation, we believe that the main point is robust: a fallacious belief that active

managers add value gives rise naturally to a belief that the added value varies over time, in a way

that can help explain the fund-flow puzzle. Belief in time-variation could arise through the cross-

sectional dispersion of the manager’s return forecasts. Alternatively, it could arise because of an

assumed dispersion in ability across managers, e.g., only some managers collect information on past

returns and make good forecasts according to the investor. Neither of the two mechanisms would

generate time-variation under the true model because past returns do not forecast future returns.

Put differently, a rational investor who knows that active managers do not add value would also

rule out the possibility that the added value varies over time.

We illustrate our analysis with a numerical example. We assume that the investor observes

fund returns once a year. We set ρ
γ

= 0.6, i.e., at least 60% of managerial ability carries over to

the next year. We set the tracking error TE = 5%. We follow the calibration of Section 2 and set

the parameters of the gambler’s fallacy α = 0.2 and δ = 0.7. Section 4 then implies that in the

absence of prior knowledge on σηγ , the investor converges to σ̃ηγ = 3.66%. He thus believes that

managers performing one standard deviation above average beat those performing one standard

deviation below by 7.32% per year.

Can prior knowledge lead to the belief that σηγ exceeds σ̃ηγ? Suppose, for example, that there

are two types of managers: those collecting information on past returns and those who do not. A

manager collecting no information achieves zero expected excess return. To derive the expected

excess return, as assessed by the investor, of a manager collecting information, we make the following

assumptions. There are N = 50 stocks, and the manager observes stock returns and makes trades

once a month. We set ρ = 0.8, i.e., at least 80% of a shock to a stock’s expected return carries over

to the next month. For large N , the expected excess return in Lemma 4 becomes approximately

TE
√

Ṽ ar1

√

NṼ ar
[

Ẽt−1(snt)
]

. (32)
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The ratio

√

Ṽ ar
[

Ẽt−1(snt)
]

/Ṽ ar1 is 9.97%, meaning that the cross-sectional dispersion of the

manager’s return forecasts is 9.97% of her estimate of the standard deviation of each stock. Since we

are evaluating returns at a monthly frequency, we set TE = 5%/
√

12. Substituting into (32), we find

that the manager’s expected excess return is 0.77% per month, i.e., 9.23% per year. Assuming that

managers of the two types are equally likely, this translates to a standard deviation in managerial

ability of 4.62% per year. This is larger than σ̃ηγ = 3.66%. Adding the prior knowledge that

σηγ ≥ 4.62% to the analysis of Section 4 yields a positive performance-flow correlation over any

horizon, consistent with the fund-flow puzzle.

While flows in the numerical example respond positively to returns over any horizon, the re-

sponse is strongest over intermediate horizons. This reflects the pattern derived in Section 4 (e.g.,

Figure 1), with the difference that the Ñk-curve is positive even for small k. Of course, the delayed

reaction of flows to returns could arise for reasons other than the gambler’s fallacy, e.g., costs of

adjustment.

6.3 Equilibrium

Sections 6.1 and 6.2 take stock returns as given. A comprehensive analysis of the general-equilibrium

effects that would arise if investors prone to the gambler’s fallacy constitute a large fraction of the

market is beyond the scope of this paper. Nonetheless, some implications can be sketched.

Suppose that investors observe a stock’s i.i.d. normal dividends. Suppose, as in Section 6.2, that

investors form a sequence of generations, each investing over one period and maximizing exponential

utility. Suppose finally that investors are uncertain about whether expected dividends are constant,

but are confident that if expected dividends do vary, they are serially correlated (ρ > 0). If investors

are rational, they would learn that dividends are i.i.d., and equilibrium returns would also be i.i.d.30

If instead investors are prone to the gambler’s fallacy, returns would exhibit short-run momentum

and long-run reversal. Intuitively, since investors expect a short streak of high dividends to reverse,

the stock price under-reacts to the streak. Therefore, a high return is, on average, followed by

a high return, implying short-run momentum. Since, instead, investors expect a long streak of

high dividends to continue, the stock price over-reacts to the streak. Therefore, a sequence of high

returns is, on average, followed by a low return, implying long-run reversal and a value effect. These

results are similar to Barberis, Shleifer and Vishny (1998), although the mechanism is different.

A second application concerns trading volume. Suppose that all investors are subject to the

gambler’s fallacy, but observe different subsets of the return history. Then, they would form different

forecasts for future dividends. If, in addition, prices are not fully revealing (e.g., because of noise

30Proofs of all results in this section are available upon request.
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trading), then investors would trade because of the different forecasts. No such trading would occur

under rational updating, and therefore the gambler’s fallacy would generate excessive trading.

34



Appendix

A Alternative Specifications for (αρ, δρ)

Consider first the case where signals are i.i.d. because σ2
η = 0, and the agent initially entertains all

parameter values. Under the constant specification, where (αρ, δρ) are independent of ρ and equal

to (α, δ) ≡ (α1, δ1), Proposition 4 is replaced by

Proposition A.1 Suppose that α > 0 and σ2
η = 0. Then e(P0) = 0, and m(P0) consists of the two

elements

p̃1 ≡
(
α(1 − δ2 + δα)

δ(1 − δ + α)2
σ2

ω, δ − α,
δ − α

δ
σ2

ω, µ

)

and

p̃2 ≡ (σ2
ω, 0, 0, µ).

As in Proposition 4, the agent ends up predicting the signals correctly as i.i.d., despite the

gambler’s fallacy. Correct predictions can be made using either of two models. Under model p̃1,

the agent believes that the state θt varies over time and is persistent. The state’s persistence

parameter ρ̃ is equal to the decay rate δ − α > 0 of the gambler’s fallacy effect. (Decay rates are

derived in (23).) This ensures that the agent’s updating on the state can exactly offset his belief

that luck should reverse. Under model p̃2, the agent attributes all variation in the signal to the

state, and since the gambler’s fallacy applies only to the sequence {ǫt}t≥1, it has no effect.

Proposition 4 can be extended to a broader class of specifications. Suppose that the function

ρ ∈ [0, 1] → δρ − αρ crosses the 45-degree line at a single point ρ̂ ∈ [0, 1). Then, the agent ends

up predicting the signals correctly as i.i.d., i.e., e(P0) = 0, and m(P0) consists of the element p̃2

of Proposition A.1 and an element p̃1 for which ρ̃ = ρ̂. Under the linear specification, ρ̂ = 0, and

under the constant specification, ρ̂ = δ − α.

Consider next the case where the agent is confident that ρ is bounded away from zero, and the

closed support of his priors is P = Pρ. Under the constant specification, Proposition 6 is replaced

by

Proposition A.2 Suppose that α is small, σ2
η = 0, ρ ≥ ρ > δ, and the agent considers parameter

values in the set Pρ. Then, in steady state ∆̃k is negative for k = 1 and becomes positive as k

increases.

As in Proposition 6, the hot-hand fallacy arises after long streaks of signals while the gambler’s

fallacy arises after short streaks. Note that Proposition A.2 requires the additional condition ρ > δ.
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If instead ρ < δ, then the agent predicts the signals correctly as i.i.d. Indeed, because ρ < δ−α for

small α, model p̃1 of Proposition A.1 belongs to Pρ (provided that ρ is close to one so that ρ > δ),

and therefore, e(Pρ) = 0 and m(Pρ) = {p̃1}. Proposition A.2 can be extended to the broader class

of specifications defined above, with the condition ρ > δ replaced by ρ > ρ̂.

Consider finally the case where signals are serially correlated. Under the constant specification,

Proposition 8 is replaced by

Proposition A.3 Suppose that α and σ2
η are small, ρ /∈ {0, δ}, the agent has no prior knowledge

(P = P0), and one of the following is met

2ρ

1 + ρ2
> δ, (A.1)

ν2ρ4(1 − ρ)(1 − δ2)

(1 + ρ)3
> 1. (A.2)

Then, in steady state ∆̃k − ∆k is negative for k = 1, becomes positive as k increases, and then

becomes negative again.

As in Proposition 8, the agent under-reacts to short streaks, over-reacts to longer streaks, and

under-reacts to very long streaks. Proposition A.3 is, in a sense, stronger than Proposition 8 because

it derives the under/over/under-reaction pattern regardless of whether ρ is larger or smaller than

δ. (The relevant comparison in Proposition 8 is between ρ and zero.) The agent converges to a

value ρ̃ between ρ and δ. When ρ > δ, the under-reaction to very long streaks is because the agent

underestimates the state’s persistence. When instead ρ < δ, the agent overestimates the state’s

persistence, and the under-reaction to very long streaks is because of the large memory parameter

δ of the gambler’s fallacy. Conditions (A.1) and (A.2) ensure that when α and σ2
η are small, in

which case the agent converges to a model predicting signals close to i.i.d., it is σ̃2
η rather than

ρ̃ that is small. A small-ρ̃ model predicts signals close to i.i.d. for the same reason as model p̃2

of Proposition A.1: because variation in the signal is mostly attributed to the state. Appendix B

shows that when the gambler’s fallacy applies to both {ǫt}t≥1 and {ηt}t≥1, a model similar to p̃1

becomes the unique element of m(P0) in the setting of Proposition A.1, and Conditions (A.1) and

(A.2) are not needed in the setting of Proposition A.3.

B Gambler’s Fallacy for the State

Our model and solution method can be extended to the case where the gambler’s fallacy applies to

both the sequence {ǫt}t≥1 that generates the signals given the state, and the sequence {ηt}t≥1 that
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generates the state. Suppose that according to the agent,

ηt = ζt − α

∞∑

k=0

δkηt−1−k, (B.1)

where the sequence {ζt}t≥1 is i.i.d. normal with mean zero and variance σ2
ζ . To formulate the

recursive-filtering problem, we expand the state vector to

xt ≡
[

θt − µ̃, ǫδt , η
δ
t

]′
,

where

ηδ
t ≡

∞∑

k=0

δkηt−k.

We also set

Ã ≡





ρ̃ 0 −(1 − ρ̃)α

0 δρ̃ − αρ̃ 0

0 0 δ − α



 ,

wt ≡ [(1 − ρ̃)ζt, ωt, ζt]
′,

C̃ ≡ [ρ̃,−αρ̃,−(1 − ρ̃)α],

vt ≡ (1 − ρ̃)ζt + ωt, and p̃ ≡ (σ̃2
ζ , ρ̃, σ̃

2
ω, µ̃). Under these definitions, the analysis of the agent’s

inference in Section 3 carries through identical.

When signals are i.i.d. because σ2
η = 0, and the agent initially entertains all parameter values,

his limit posteriors are as follows:

Proposition B.1 Suppose that α > 0 and σ2
η = 0. If (αρ, δρ) = (αρ, δρ), then e(P0) = 0 and

m(P0) = {(0, 0, σ2
ω , µ)}.

If (αρ, δρ) = (α, δ), then e(P0) = 0 and

m(P0) =

{(
α(1 − δ2 + δα)

δ(1 − δ)2
σ2

ω, δ,
δ − α

δ
σ2

ω, µ

)}

.

Under both the linear and the constant specification, the agent ends up predicting the signals

correctly as i.i.d. Therefore, the main result of Propositions 4 and A.1 extends to the case where

the gambler’s fallacy applies to both {ǫt}t≥1 and {ηt}t≥1. The set of models that yield correct

predictions, however, becomes a singleton. The only model under the linear specification is one in

which the state is constant, and the only model under the constant specification is one similar to
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model p̃1 of Proposition A.1.

When the agent is confident that ρ is bounded away from zero, he ends up believing that σ̃2
η > 0.

When, in addition, α is small, so is σ̃2
η . Therefore, the effects of the gambler’s fallacy for {ηt}t≥1

are small relative to {ǫt}t≥1, and the analysis is the same as when the gambler’s fallacy applies only

to {ǫt}t≥1. In particular, the agent’s predictions after streaks are as in Propositions 6 and A.2.

Consider finally the case where signals are serially correlated. When α and σ2
η are small, the

agent converges to a model where σ̃2
η is small. (Unlike with Proposition A.3, Conditions (A.1) and

(A.2) are not needed to rule out the small-ρ̃ model.) Therefore, the effects of the gambler’s fallacy

for {ηt}t≥1 are small relative to {ǫt}t≥1, and the analysis is the same as when the gambler’s fallacy

applies only to {ǫt}t≥1. In particular, the agent’s predictions after streaks are as in Propositions 8

and A.3.

C Proofs

Proof of Proposition 1: Our formulation of the recursive-filtering problem is as in standard

textbooks. For example, (8) and (9) follow from (4.1.1) and (4.1.4) in Balakrishnan (1987) if xn+1

is replaced by xt, xn by xt−1, An by Ã, Un by 0, N s
n by wt, vn by st − µ̃, Cn by C̃, and N0

n by vt.

Eq. (10) follows from (4.6.14), if the latter is written for n + 1 instead of n, and xn+1 is replaced

by xt, xn by xt−1, and AKn +Qn by G̃t. That G̃t so defined is given by (12), follows from (4.1.29)

and (4.6.12) if Hn−1 is replaced by Σ̃t−1, GnG
′
n by Ṽ , and Jn by Ũ . Eq. (11) follows from (4.6.18)

if the latter is written for n+ 1 instead of n, Pn is substituted from (4.1.30), and FnF
′
n is replaced

by W̃ .

Proof of Proposition 2: It suffices to show (Balakrishnan, p.182-184) that the eigenvalues of

Ã− Ũ Ṽ −1C̃ have modulus smaller than one. This matrix is





σ̃2
ω

(1−ρ̃)2σ̃2
η+σ̃2

ω
ρ̃

(1−ρ̃)2σ̃2
η

(1−ρ̃)2σ̃2
η+σ̃2

ω
αρ̃

− σ̃2
ω

(1−ρ̃)2σ̃2
η+σ̃2

ω
ρ̃ δρ̃ − (1−ρ̃)2σ̃2

η

(1−ρ̃)2σ̃2
η+σ̃2

ω
αρ̃



 .

The characteristic polynomial is

λ2 − λ

[

σ̃2
ω

(1 − ρ̃)2σ̃2
η + σ̃2

ω

ρ̃+ δρ̃ −
(1 − ρ̃)2σ̃2

η

(1 − ρ̃)2σ̃2
η + σ̃2

ω

αρ̃

]

+
σ̃2

ω

(1 − ρ̃)2σ̃2
η + σ̃2

ω

ρ̃δρ̃

≡ λ2 − λb+ c

Suppose that the roots λ1, λ2 of this polynomial are real, in which case λ1 + λ2 = b and λ1λ2 = c.
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Since c > 0, λ1 and λ2 have the same sign. If λ1 and λ2 are negative, they are both greater than

-1, since b > −1 from αρ̃ < 1 and ρ̃, δρ̃ ≥ 0. If λ1 and λ2 are positive, then at least one is smaller

than 1, since b < 2 from ρ̃, δρ̃ < 1 and αρ̃ ≥ 0. But since the characteristic polynomial for λ = 1

takes the value

(1 − δρ̃)

[

1 − σ̃2
ω

(1 − ρ̃)2σ̃2
η + σ̃2

ω

ρ̃

]

+
(1 − ρ̃)2σ̃2

η

(1 − ρ̃)2σ̃2
η + σ̃2

ω

αρ̃ > 0,

both λ1 and λ2 are smaller than 1. Suppose instead that λ1, λ2 are complex. In that case, they are

conjugates and the modulus of each is
√
c < 1.

Lemma C.1 determines st, the true mean of st conditional on Ht−1, and st(p̃), the mean that

the agent computes under the parameter vector p̃. To state the lemma, we set ζt ≡ st − st,

D̃t ≡ Ã− G̃tC̃, D̃ ≡ Ã− G̃C̃, and

J̃t,t′ ≡
{∏t

k=t′ D̃k for t′ = 1, .., t,

I for t′ > t.

For simplicity, we set the initial condition x0 = 0.

Lemma C.1 The true mean st is given by

st = µ+
t−1∑

t′=1

CAt−t′−1Gt′ζt′ (C.1)

and the agent’s mean st(p̃) by

st(p̃) = µ̃+

t−1∑

t′=1

C̃M̃t,t′ζt′ + C̃M̃µ
t (µ− µ̃), (C.2)

where

M̃t,t′ ≡ J̃t−1,t′+1G̃t′ +
t−1∑

k=t′+1

J̃t−1,k+1G̃kCA
k−t′−1Gt′ ,

M̃µ
t ≡

t−1∑

t′=1

J̃t−1,t′+1G̃t′ .

Proof: Consider the recursive-filtering problem under the true model, and denote by xt the true

mean of xt. Eq. (9) implies that

st = µ+Cxt−1. (C.3)

Eq. (10) then implies that

xt = Axt−1 +Gt(st − st) = Axt−1 +Gtζt.
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Iterating between t− 1 and zero, we find

xt−1 =

t−1∑

t′=1

At−t′−1Gt′ζt′ . (C.4)

Plugging into (C.3), we find (C.1).

Consider next the agent’s recursive-filtering problem under p̃. Eq. (10) implies that

xt(p̃) = (Ã− G̃tC̃)xt−1(p̃) + G̃t(st − µ̃).

Iterating between t− 1 and zero, we find

xt−1(p̃) =

t−1∑

t′=1

J̃t−1,t′+1G̃t′(st′ − µ̃) (C.5)

=

t−1∑

t′=1

J̃t−1,t′+1G̃t′(ζt′ + µ− µ̃+ Cxt′−1),

where the second step follows from st′ = ζt′ + st′ and (C.3). Substituting xt′−1 from (C.4), and

grouping terms, we find

xt−1(p̃) =

t−1∑

t′=1

M̃t,t′ζt′ + M̃µ
t (µ− µ̃). (C.6)

Combining this with

st(p̃) = µ̃+ C̃xt−1(p̃) (C.7)

(which follows from (9)), we find (C.2).

We next prove Lemma 3. While this Lemma is stated after Theorem 1 and Lemmas 1 and 2,

its proof does not rely on these results.

Proof of Lemma 3: Lemma C.1 implies that

st(p̃) − st =

t−1∑

t′=1

et,t′ζt′ +Nµ
t (µ̃− µ), (C.8)

where

et,t′ ≡ C̃M̃t,t′ − CAt−t′−1Gt′ ,

Nµ
t ≡ 1 − C̃M̃µ

t .
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Therefore,

[st(p) − st]
2 =

t−1∑

t′,t′′=1

et,t′et,t′′ζt′ζt′′ + (Nµ
t )2(µ̃− µ)2 + 2

t−1∑

t′=1

et,t′N
µ
t ζt′(µ̃− µ). (C.9)

Since the sequence {ζt′}t′=1,..,t−1 is independent under the true measure and mean-zero, we have

E [st(p) − st]
2 =

t−1∑

t′=1

e2t,t′σ
2
s,t′ + (Nµ

t )2(µ̃− µ)2. (C.10)

We first determine the limit of
∑t−1

t′=1 e
2
t,t′σ

2
s,t′ when t goes to ∞. Defining the double sequence

{φk,t}k,t≥1 by

φk,t ≡
{
e2t,t−kσ

2
s,t−k for k = 1, .., t − 1,

0 for k > t− 1,

we have
t−1∑

t′=1

e2t,t′σ
2
s,t′ =

t−1∑

k=1

e2t,t−kσ
2
s,t−k =

∞∑

k=1

φk,t.

The definitions of et,t′ and M̃t,t′ imply that

et,t−k = C̃J̃t−1,t−k+1G̃t−k +

k−1∑

k′=1

C̃J̃t−1,t−k+k′+1G̃t−k+k′CAk′−1Gt−k − CAk−1Gt−k. (C.11)

Eq. (9) applied to the recursive-filtering problem under the true model implies that

σ2
s,t = CΣt−1C

′ + V.

When t goes to ∞, Gt goes to G, G̃t to G̃, Σt to Σ, and J̃t,t−k to D̃k+1. Therefore,

lim
t→∞

et,t−k = C̃D̃k−1G̃+
k−1∑

k′=1

C̃D̃k−1−k′

G̃CAk′−1G− CAk−1G = Ñk −Nk ≡ ek,

lim
t→∞

σ2
s,t−k = CΣC ′ + V = CΣC ′ + (1 − ρ)2σ2

η + σ2
ω = σ2

s , (C.12)

implying that

lim
t→∞

φk,t = e2kσ
2
s .

The dominated convergence theorem will imply that

lim
t→∞

∞∑

k=1

φk,t =

∞∑

k=1

lim
t→∞

φk,t = σ2
s

∞∑

k=1

e2k, (C.13)

41



if there exists a sequence {φk}k≥1 such that
∑∞

k=1 φk < ∞ and |φk,t| ≤ φk for all k, t ≥ 1. To

construct such a sequence, we note that the eigenvalues of A have modulus smaller than one, and

so do the eigenvalues of D̃ ≡ Ã− G̃C̃ (Balakrishnan, Theorem 4.2.3, p.111). Denoting by a < 1 a

number exceeding the maximum of the moduli, we can construct a dominating sequence {φk}k≥1

decaying geometrically at the rate a2k.

We next determine the limit of Nµ
t . Defining the double sequence {χk,t}k,t≥1 by

χk,t ≡
{

J̃t−1,t−k+1G̃t−k for k = 1, .., t − 1,

0 for k > t− 1,

we have

Nµ
t = 1 − C̃

t−1∑

k=1

J̃t−1,t−k+1G̃t−k = 1 − C̃
∞∑

k=1

χk,t.

It is easy to check that the dominated convergence theorem applies to {χk,t}k,t≥1, and thus

lim
t→∞

Nµ
t = 1 − C̃ lim

t→∞

[
∞∑

k=1

χk,t

]

= 1 − C̃
∞∑

k=1

lim
t→∞

χk,t = 1 − C̃
∞∑

k=1

D̃k−1G̃ = Nµ. (C.14)

The lemma follows by combining (C.10), (C.13), and (C.14).

Proof of Theorem 1: Eq. (15) implies that

2 logLt(Ht|p̃)
t

= −
∑t

t′=1 log
[

2πσ2
s,t′(p̃)

]

t
− 1

t

t∑

t′=1

[st′ − st′(p̃)]
2

σ2
s,t′(p̃)

. (C.15)

To determine the limit of the first term, we note that (9) applied to the agent’s recursive-filtering

problem under p̃ implies that

σ2
s,t(p̃) = C̃Σ̃t−1C̃

′ + Ṽ .

Therefore,

lim
t→∞

σ2
s,t(p̃) = C̃Σ̃C̃ ′ + Ṽ = σ2

s(p̃), (C.16)

lim
t→∞

∑t
t′=1 log σ2

s,t′(p̃)

t
= lim

t→∞
log σ2

s,t(p̃) = log σ2
s(p̃). (C.17)

We next fix k ≥ 0 and determine the limit of the sequence

Sk,t ≡
1

t

t∑

t′=1

ζt′ζt′+k

when t goes to ∞. This sequence involves averages of random variables that are non-independent
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and non-identically distributed. An appropriate law of large numbers (LLN) for such sequences is

that of McLeish (1975). Consider a probability space (Ω,F , P ), a sequence {Ft}t∈Z of σ-algebras,

and a sequence {Ut}t≥1 of random variables. The pair ({Ft}t∈Z, {Ut}t≥1) is a mixingale (McLeish,

Definition 1.2, p.830) if and only if there exist sequences {ct}t≥1 and {ψm}m≥0 of nonnegative

constants, with limm→∞ ψm = 0, such that for all t ≥ 1 and m ≥ 0:

‖Et−mUt‖2 ≤ ψmct, (C.18)

‖Ut − Et+mUt‖2 ≤ ψm+1ct, (C.19)

where ‖.‖2 denotes the L2 norm, and Et′Ut the expectation of Ut conditional on Ft′ . McLeish’s

LLN (Corollary 1.9, p.832) states that if ({Ft}t∈Z, {Ut}t≥1) is a mixingale, then

lim
t→∞

1

t

t∑

t′=1

Ut′ = 0

almost surely, provided that
∑∞

t=1 c
2
t /t

2 < ∞ and
∑∞

m=1 ψm < ∞. In our model, we take the

probability measure to be the true measure, and define the sequence {Ft}t∈Z as follows: Ft = {Ω, ∅}
for t ≤ 0, and Ft is the σ-algebra generated by {ζt′}t′=1,..,t for t ≥ 1. Moreover, we set Ut ≡ ζ2

t −σ2
s,t

when k = 0, and Ut ≡ ζtζt+k when k ≥ 1. Since the sequence {ζt}t≥1 is independent, we have

Et−mUt = 0 for m ≥ 1. We also trivially have Et+mUt = Ut for m ≥ k. Therefore, when k = 0,

(C.18) and (C.19) hold with ψ0 = 1, ψm = 0 for m ≥ 1, and ct = supt≥1 ‖ζ2
t − σ2

s,t‖2 for t ≥ 1.

McLeish’s LLN implies that

lim
t→∞

S0,t = lim
t→∞

1

t

t∑

t′=1

(
Ut′ + σ2

s,t′

)
= lim

t→∞

∑t
t′=1 σ

2
s,t′

t
= lim

t→∞
σ2

s,t = σ2
s (C.20)

almost surely. When k ≥ 1, (C.18) and (C.19) hold with ψm = 1 for m = 0, .., k − 1, ψm = 0 for

m ≥ k, and ct = supt≥1 ‖ζt‖2
2 for t ≥ 1. McLeish’s LLN implies that

lim
t→∞

Sk,t = lim
t→∞

1

t

t∑

t′=1

Ut′ = 0 (C.21)

almost surely. Finally, a straightforward application of McLeish’s LLN to the sequence Ut ≡ ζt

implies that

lim
t→∞

1

t

t∑

t′=1

ζt′ = 0 (C.22)

almost surely. Since N is countable, we can assume that (C.20), (C.21) for all k ≥ 1, and (C.22),

hold in the same measure-one set. In what follows, we consider histories in that set.
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To determine the limit of the second term in (C.15), we write it as

1

t

t∑

t′=1

ζ2
t′

σ2
s,t′(p̃)

︸ ︷︷ ︸

Xt

− 2

t

t∑

t′=1

ζt′ [st′(p̃) − st′ ]

σ2
s,t′(p̃)

︸ ︷︷ ︸

Yt

+
1

t

t∑

t′=1

[st′(p̃) − st′ ]
2

σ2
s,t′(p̃)

︸ ︷︷ ︸

Zt

.

Since limt→∞ σ2
s,t(p̃) = σ2

s(p̃), we have

lim
t→∞

Xt =
1

σ2
s(p̃)

lim
t→∞

1

t

t∑

t′=1

ζ2
t′ =

1

σ2
s(p̃)

lim
t→∞

S0,t =
σ2

s

σ2
s(p̃)

. (C.23)

Using (C.8), we can write Yt as

Yt = 2
∞∑

k=1

ψk,t +
2

t

t∑

t′=1

Nµ
t′

σ2
s,t′(p̃)

ζt′(µ̃− µ),

where the double sequence {ψk,t}k,t≥1 is defined by

ψk,t ≡
{

1
t

∑t
t′=k+1

et′,t′−k

σ2

s,t′
(p̃)
ζt′ζt′−k for k = 1, .., t − 1,

0 for k > t− 1.

Since limt→∞ et,t−k = ek and limt→∞Nµ
t = Nµ, we have

lim
t→∞

ψk,t =
ek

σ2
s(p̃)

lim
t→∞

1

t

t∑

t′=k+1

ζt′ζt′−k =
ek

σ2
s(p̃)

lim
t→∞

Sk,t = 0,

lim
t→∞

1

t

t∑

t′=1

Nµ
t′

σ2
s,t′(p̃)

ζt′(µ̃− µ) =
Nµ

σ2
s(p̃)

(µ̃− µ) lim
t→∞

1

t

t∑

t′=1

ζt′ = 0.

The dominated convergence theorem will imply that

lim
t→∞

Yt = 2 lim
t→∞

∞∑

k=1

ψk,t = 2
∞∑

k=1

lim
t→∞

ψk,t = 0 (C.24)

if there exists a sequence {ψk}k≥1 such that
∑∞

k=1 ψk <∞ and |ψk,t| ≤ ψk for all k, t ≥ 1. Such a

sequence can be constructed by the same argument as for φk,t (Lemma 3) since

∣
∣
∣
∣
∣

1

t

t∑

t′=k+1

ζt′ζt′−k

∣
∣
∣
∣
∣
≤ 1

t

t∑

t′=k+1

|ζt′ | |ζt′−k| ≤

√
√
√
√

1

t

t∑

t′=k+1

ζ2
t′

√
√
√
√

1

t

t∑

t′=k+1

ζ2
t′−k ≤ sup

t≥1
S0,t <∞,

where the last inequality holds because the sequence S0,t is convergent.
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Using similar arguments as for Yt, we find

lim
t→∞

Zt =
σ2

s

σ2
s(p̃)

∞∑

k=1

e2k +
(Nµ)2

σ2
s(p̃)

(µ̃− µ)2 =
e(p̃)

σ2
s(p̃)

. (C.25)

The theorem follows from (C.15), (C.17), (C.23), (C.24), and (C.25).

Proof of Lemma 1: We first show that the set m(P ) is non-empty. Eq. (C.16) implies that

when σ̃2
η or σ̃2

ω go to ∞, σ2
s(p̃) goes to ∞ and F (p̃) goes to −∞. Therefore, we can restrict the

maximization of F (p̃) to bounded values of (σ̃2
η , σ̃

2
ω). Eq. (20) implies that

Nµ = 1 − C̃(I − D̃)−1G̃ = 1 − C̃(I − Ã+ G̃C̃)−1G̃.

Replacing Ã and C̃ by their values, and denoting the components of G̃ by G̃1 and G̃2, we find

Nµ = 1 − C̃(I − Ã+ G̃C̃)−1G̃ =
(1 − ρ̃)(1 − δρ̃ + αρ̃)

[1 − ρ̃(1 − G̃1)](1 − δρ̃ + αρ̃) − αρ̃(1 − ρ̃)G̃2

. (C.26)

Since αρ̃, δρ̃ ∈ [0, 1) and ρ̃ ∈ [0, ρ], Nµ 6= 0. Therefore, when |µ̃| goes to ∞, Lemma 3 implies

that e(p̃) goes to ∞ and F (p̃) goes to −∞. This means that we can restrict the maximization of

F (p̃) to bounded values of µ̃, and thus to a compact subset of P . We can also assume that F (p̃)

is continuous in that subset since the only point of discontinuity is for σ2
s(p̃) = 0, in which case

F (p̃) = −∞. Therefore, F (p̃) has a maximum and the set m(P ) is non-empty.

To show that the measure πt converges weakly to a measure giving weight only to m(P ), it

suffices to show that for all closed sets S having zero intersection with m(P ), πt(S) goes to zero.

(Billingsley, Theorem 29.1, p.390) The maximum FS of F (p̃) over S is the same as in a compact

subset of S and is thus smaller than the value of F (p̃) in m(P ). Consider a compact neighborhood

B of a point in m(P ) such that the minimum FB of F (p̃) over B exceeds FS . Consider also two

constants (F1, F2) such that FB > F2 > F1 > FS . For large enough t,

min
p̃∈B

logLt(Ht|p̃)
t

> F2. (C.27)

Indeed, if (C.27) does not hold, there exists a convergent sequence {p̃t}t≥1 in B such that

logLt(Ht|p̃t)

t
≤ F2.

Denoting the limit of this sequence by p̃ ∈ B, Theorem 1 implies that F (p̃) ≤ F2, a contradiction.

(Theorem 1 concerns the convergence of the likelihood for a given p̃, but extending the argument

to a convergent sequence {p̃t}t≥1 is straightforward.) Likewise, we can show that for large enough
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t,

max
p̃∈S

logLt(Ht|p̃)
t

< F1. (C.28)

Bayes’ law, (C.27), and (C.28) imply that for large enough t,

πt(S) =
Eπ0

[
Lt(Ht|p̃)1{p̃∈S}

]

Eπ0
[Lt(Ht|p̃)]

<
Eπ0

[
Lt(Ht|p̃)1{p̃∈S}

]

Eπ0

[
Lt(Ht|p̃)1{p̃∈B}

] <
exp(tF1)π0(S)

exp(tF2)π0(B)
.

Since F2 > F1, πt(S) goes to zero when t goes to ∞.

Proof of Lemma 2: Consider p̃ ∈ P such that e(p̃) = e(P ) and σ2
s(p̃) = σ2

s + e(p̃). We will show

that F (p̃) ≥ F (p̂) for any p̂ = (σ̂2
η , ρ̂, σ̂

2
ω, µ̂) ∈ P . Denote by Σ̂ and Ĝ the steady-state variance and

regression coefficient for the recursive-filtering problem under p̂, and by Σ̂λ and Ĝλ those under

p̂λ ≡ (λσ̂2
η , ρ̂, λσ̂

2
ω, µ̂) for λ > 0. It is easy to check that λΣ̂ solves Equation (13) for p̂λ. Since this

equation has a unique solution, Σ̂λ = λΣ̂. Equation (12) then implies that Ĝλ = Ĝ, and Equations

(17) and (C.16) imply that e(p̂λ) = e(p̂) and σ2
s(p̂λ) = λσ2

s(p̂). Therefore,

F (p̂λ) = −1

2

[

log
[
2πλσ2

s(p̂)
]
+
σ2

s + e(p̂)

λσ2
s(p̂)

]

. (C.29)

Since this function is maximized for

λ∗ =
σ2

s + e(p̂)

σ2
s(p̂)

,

we have

F (p̂) ≤ F (p̂λ∗) = −1

2

[
log
[
2π
[
σ2

s + e(p̂)
]]

+ 1
]
≤ −1

2

[
log
[
2π
[
σ2

s + e(p̃)
]]

+ 1
]

= F (p̃).

The proof of the converse is along the same lines.

Lemma C.2 determines when a model can predict the signals equally well as the true model.

Lemma C.2 The error e(p̃) is zero if and only if

• C̃Ãk−1G̃ = CAk−1G for all k ≥ 1

• µ̃ = µ.

Proof: From Lemma 3 and Nµ 6= 0, it suffices to show that {ek}k≥1 = 0 is equivalent to C̃Ãk−1G̃ =

CAk−1G for all k ≥ 1. Setting ak ≡ C̃Ãk−1G̃− CAk−1G and

bk ≡ D̃k−1G̃+

k−1∑

k′=1

D̃k−1−k′

G̃CAk′−1G− Ãk−1G̃,
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we have ek = C̃bk + ak for k ≥ 1. Simple algebra shows that

bk = D̃bk−1 − G̃ak−1.

Iterating between k and one, and using the initial condition b1 = 0, we find

bk = −
k−1∑

k′=1

D̃k−1−k′

G̃ak′ .

Therefore,

ek = −
k−1∑

k′=1

C̃D̃k−1−k′

G̃ak′ + ak. (C.30)

Eq. (C.30) implies that {ek}k≥1 = 0 if and only if {ak}k≥1 = 0.

Proof of Proposition 3: Under rational updating, it is possible to achieve minimum error e(P0) =

0 by using the vector of true parameters p. Since e(P0) = 0, Lemmas 2 and C.2 imply that p̃ ∈ m(P0)

if and only if (i) C̃Ãk−1G̃ = CAk−1G for all k ≥ 1, (ii) µ̃ = µ, and (iii) σ2
s(p̃) = σ2

s . Since α = 0,

we can write Condition (i) as

ρ̃kG̃1 = ρkG1. (C.31)

We can also write element (1,1) of (13) as

Σ̃11 =

[

ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η

]

σ̃2
ω

ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω

, (C.32)

Σ11 =

[
ρ2Σ11 + (1 − ρ)2σ2

η

]
σ2

ω

ρ2Σ11 + (1 − ρ)2σ2
η + σ2

ω

, (C.33)

and the first element of (14) as

G̃1 =
ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2

η

ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω

, (C.34)

G1 =
ρ2Σ11 + (1 − ρ)2σ2

η

ρ2Σ11 + (1 − ρ)2σ2
η + σ2

ω

, (C.35)

where the first equation in each case is for p̃ and the second for p. Using (C.12) and (C.16), we can

write Condition (iii) as

ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω = ρ2Σ11 + (1 − ρ)2σ2
η + σ2

ω. (C.36)

Suppose that ρσ2
η > 0, and consider p̃ that satisfies Conditions (i)-(iii). Eq. (C.35) implies
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that G1 > 0. Since (C.31) must hold for all k ≥ 1, we have ρ̃ = ρ and G̃1 = G1. We next write

(C.32)-(C.35) in terms of the normalized variables s̃2η ≡ σ̃2
η/σ̃

2
ω, S̃11 ≡ Σ̃11/σ̃

2
ω, s2η ≡ σ2

η/σ
2
ω, and

S11 ≡ Σ11/σ
2
ω. Eqs. (C.32) and (C.33) imply that S̃11 = g(s̃2η) and S11 = g(s2η) for the same

function g. Eqs. (C.34), (C.35), and G̃1 = G1 then imply that s̃2η = s2η, and (C.36) implies that

σ̃2
ω = σ2

ω. Thus, p̃ = p.

Suppose next that ρσ2
η = 0, and consider p̃ that satisfies Conditions (i)-(iii). If ρ = 0, (C.31)

implies that ρ̃kG̃1 = 0, and (C.36) that ρ̃2Σ̃11 + (1 − ρ̃)2σ̃2
η + σ̃2

ω = σ2
η + σ2

ω. If σ2
η = 0, the same

implications follow because Σ = 0 and G = [0, 1]′ from (13) and (14). Eq. ρ̃kG̃1 = 0 implies that

either ρ̃ = 0, or G̃1 = 0 in which case σ̃2
η = 0. If ρ̃ = 0, then σ̃2

η + σ̃2
ω = σ2

η + σ2
ω. If σ̃2

η = 0, then

σ̃2
ω = σ2

η + σ2
ω. Therefore, p̃ is as in the proposition. Showing that all p̃ in the proposition satisfy

Conditions (i)-(iii) is obvious.

Proof of Proposition 4: We determine the parameter vectors p̃ that belong to m(P0) and satisfy

e(p̃) = 0. From Lemmas 2 and C.2, these must satisfy (i) C̃Ãk−1G̃ = CAk−1G for all k ≥ 1, (ii)

µ̃ = µ, and (iii) σ2
s(p̃) = σ2

s . Since σ2
η = 0, we can write Condition (i) as

ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)
k−1G̃2 = 0, (C.37)

and Condition (iii) as

C̃Σ̃C̃ ′ + Ṽ = σ2
ω. (C.38)

Using (αρ̃, δρ̃) = (αρ̃, δρ̃), we can write (C.37) as

ρ̃k
[

G̃1 − α(δ − α)k−1G̃2

]

= 0. (C.39)

If ρ̃ 6= 0, (C.39) implies that G̃1 − α(δ − α)k−1G̃2 = 0 for all k ≥ 1, which in turn implies that

G̃ = 0. For G̃ = 0, (13) becomes Σ̃ = ÃΣ̃Ã′ + W̃ . Solving for Σ̃, we find

Σ̃11 =
(1 − ρ̃)σ̃2

η

1 + ρ̃
,

Σ̃12 = 0,

Σ̃22 =
σ̃2

ω

1 − (δρ̃ − αρ̃)2
.

Substituting Σ̃ into (14), we find (σ̃2
η , σ̃

2
ω) = 0. But then, Σ̃ = 0, which contradicts (C.38) since

σ2
ω = σ2

ǫ > 0. Therefore, ρ̃ = 0. Eq. (C.38) then implies that σ̃2
η + σ̃2

ω = σ2
ω. Showing that all p̃ in

the proposition satisfy Conditions (i)-(iii) is obvious.

Proof of Proposition 5: Consider a sequence {αn}n∈N converging to zero, and an element
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p̃n ≡ ((σ̃2
η)n, ρ̃n, (σ̃

2
ω)n, µ̃n) from the set m(Pρ) corresponding to αn. The proposition will follow if

we show that (
(s̃2

η)n

αn
, ρ̃n, (σ̃

2
ω)n, µ̃n) converges to (z, ρ, σ2

ω, µ), where (s̃2η)n ≡ (σ̃2
η)n/(σ̃

2
ω)n. Denoting

the limits of (
(s̃2

η)n

αn
, (σ̃2

η)n, ρ̃n, (σ̃
2
ω)n, µ̃n) by (ℓs, ℓη, ℓρ, ℓω, ℓµ), the point (ℓη , ℓρ, ℓω, ℓµ) belongs to the

set m(Pρ) derived for α = σ2
η = 0. (If the sequences do not converge, we extract converging

subsequences.) All elements in that set satisfy µ̃ = µ. Proposition 3 implies that they also satisfy

σ̃2
η = 0 and σ̃2

ω = σ2
ω since ρ̃ ≥ ρ > 0. Therefore, (ℓµ, ℓη, ℓω) = (µ, 0, σ2

ω).

When v ≡ (α,
s̃2
η

α
, σ̃2

η , ρ̃, σ̃
2
ω) converges to ℓv ≡ (0, ℓs, 0, ℓρ, σ

2
ω), C̃D̃kG̃ converges to zero, G̃1

s̃2
η

to
1−ℓρ

1+ℓρ
, and G̃2 to 1. These limits follow by continuity if we show that when α = σ̃2

η = 0, C̃D̃kG̃ = 0

and G̃2 = 1, and when α = 0, limσ̃2
η→0

G̃1

s̃2
η

= 1−ρ̃
1+ρ̃

. When σ̃2
η = 0, the unique solution of (13) is

Σ̃ = 0, and (14) implies that G̃ = [0, 1]′. Therefore, when α = σ̃2
η = 0, we have C̃G̃ = 0,

C̃D̃ = C̃(Ã− G̃C̃) = C̃Ã = ρ̃C̃,

and C̃D̃kG̃ = ρ̃kC̃G̃ = 0. Moreover, if we divide both sides of (C.32) and (C.34) (derived from (13)

and (14) when α = 0) by σ̃2
ω, we find

S̃11 =
ρ̃2S̃11 + (1 − ρ̃)2s̃2η

ρ̃2S̃11 + (1 − ρ̃)2s̃2η + 1
, (C.40)

G̃1 =
ρ̃2S̃11 + (1 − ρ̃)2s̃2η

ρ̃2S̃11 + (1 − ρ̃)2s̃2η + 1
. (C.41)

When σ̃2
η converges to zero, s̃2η and S̃11 converge to zero. Eqs. (C.40) and (C.41) then imply that

S̃11

s̃2
η

and G̃1

s̃2
η

converge to 1−ρ̃
1+ρ̃

.

Using the above limits, we find

lim
v→ℓv

C̃Ãk−1G̃

α
= lim

v→ℓv

ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)
k−1G̃2

α

= lim
v→ℓv

ρ̃k

[

s̃2η
α

G̃1

s̃2η
− (δ − α)k−1G̃2

]

= ℓkρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

.

Eqs. (18), (C.30), limv→ℓv
C̃D̃kG̃ = 0, and Nk = CAkG = 0, imply that

lim
v→ℓv

ek
α

= lim
v→ℓv

Ñk

α
= lim

v→ℓv

C̃D̃k−1G̃

α
= lim

v→ℓv

ak

α
= lim

v→ℓv

C̃Ãk−1G̃

α
= ℓkρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

. (C.42)

Since p̃n minimizes e(p̃n), (17) implies that ((σ2
η)n, ρ̃n, (σ

2
ω)n) minimizes σ2

s(p̃)
∑∞

k=0 e
2
k. Since from

(C.42),

lim
v→ℓv

σ2
s(p̃)

∑∞
k=1 e

2
k

α2
= σ2

ω

∞∑

k=1

ℓ2k
ρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]2

≡ σ2
ωF (ℓs, ℓρ),
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(ℓs, ℓρ) must minimize F . Treating F as a function of
(

ℓs(1−ℓρ)
1+ℓρ

, ℓρ

)

, the minimizing value of the

second argument is clearly ℓρ = ρ. The first-order condition with respect to the first argument is

∞∑

k=1

ℓ2k
ρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

= 0. (C.43)

Substituting ℓρ = ρ into (C.43), we find ℓs = z.

Proof of Proposition 6: Eqs. (C.5) and (C.7) imply that in steady state

Ẽt−1(st) ≡ st(p̃) = µ̃+
∞∑

k=1

C̃D̃k−1G̃(st−k − µ̃). (C.44)

Therefore,

∆̃k =
k∑

k′=1

C̃D̃k′−1G̃.

Eq. (C.42) implies that

∆̃k = αgk + o(α),

where

gk ≡
k∑

k′=1

fk′ ,

fk ≡ ρk

[
z(1 − ρ)

1 + ρ
− δk−1

]

.

Using (24) to substitute z, we find

f1 = g1 =
ρ3(δ − 1)

1 − ρ2δ
< 0,

g∞ = ρ

[
z

1 + ρ
− 1

1 − ρδ

]

=
ρ2(1 − δ)

(1 − ρ2δ)(1 − ρδ)
> 0.

The function fk is negative for k = 1 and positive for large k. Since it can change sign only once,

it is negative and then positive. The function gk is negative for k = 1, then decreases (fk < 0),

then increases (fk > 0), and is eventually positive (g∞ > 0). Therefore, gk is negative and then

positive.

Proof of Proposition 7: Consider a sequence {αn}n∈N converging to zero, an element p̃n ≡
((σ̃2

η)n, ρ̃n, (σ̃
2
ω)n, µ̃n) from the set m(P0) corresponding to αn, and set (σ2

η)n ≡ ναnσ
2
ω. The propo-

sition will follow if we show that (
(s̃2

η)n

αn
, ρ̃n, (σ̃

2
ω)n, µ̃n) converges to (z, r, σ2

ω , µ). Denoting the limits
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of (
(s̃2

η)n

αn
, (σ̃2

η)n, ρ̃n, (σ̃
2
ω)n, µ̃n) by (ℓs, ℓη , ℓρ, ℓω, ℓµ), the point (ℓη, ℓρ, ℓω, ℓµ) belongs to the set m(P0)

derived for α = σ2
η = 0. Proposition 3 implies that ℓµ = µ. If ℓρ > 0, then Proposition 3 implies

also that (ℓη, ℓω) = (0, σ2
ω), and same arguments as in the proof of Proposition 5 imply that

lim
v→ℓv

σ2
s(p̃)

∑∞
k=1 e

2
k

α2
= σ2

ω

∞∑

k=1

(

ℓkρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

− ρk ν(1 − ρ)

1 + ρ

)2

≡ σ2
ωH(ℓs, ℓρ).

If ℓρ = 0, then the limit is instead

lim
v→ℓv

σ2
s(p̃)

∑∞
k=1 e

2
k

α2
= σ2

ω

([

ℓφ − ρ
ν(1 − ρ)

1 + ρ

]2

+

∞∑

k=2

[

ρk ν(1 − ρ)

1 + ρ

]2
)

≡ σ2
ωH0(ℓφ),

where ℓφ denotes the limit of ρ̃n(G̃1)n

αn
. The cases ℓρ > 0 and ℓρ = 0 can be nested by noting that

H0(ℓφ) is equal to H evaluated for ℓsℓρ = ℓφ and ℓρ = 0. Treating H as a function of
(

ℓs(1−ℓρ)
1+ℓρ

, ℓρ

)

,

the first-order condition with respect to the first argument is

∞∑

k=1

ℓkρ

(

ℓkρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

− ρk ν(1 − ρ)

1 + ρ

)

= 0, (C.45)

and the derivative with respect to the second argument is

∞∑

k=1

kℓk−1
ρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

](

ℓkρ

[
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

− ρk ν(1 − ρ)

1 + ρ

)

. (C.46)

Computing the infinite sums, we can write (C.45) as

ℓsℓρ
(1 + ℓρ)2

− ℓρ
1 − ℓ2ρδ

− νρ(1 − ρ)

(1 + ρ)(1 − ρℓρ)
= 0 (C.47)

and (C.46) as

ℓs(1 − ℓρ)

1 + ℓρ

[
ℓsℓρ

(1 + ℓρ)2(1 − ℓ2ρ)
− ℓρ

(1 − ℓ2ρδ)
2
− νρ(1 − ρ)

(1 + ρ)(1 − ρℓρ)2

]

−
[

ℓsℓρ(1 − ℓρ)

(1 + ℓρ)(1 − ℓ2ρδ)
2
− ℓρ

(1 − ℓ2ρδ
2)2

− νρ(1 − ρ)

(1 + ρ)(1 − ρℓρδ)2

]

. (C.48)

Substituting ℓs from (C.47), we can write the first square bracket in (C.48) as

− νρ(1 − ρ)ℓρ(ρ− ℓρ)

(1 + ρ)(1 − ρℓρ)2(1 − ℓ2ρ)
+

ℓ3ρ(1 − δ)

(1 − ℓ2ρ)(1 − ℓ2ρδ)
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and the second as

νρ(1 − ρ)ℓρ(ρ− ℓρ)
[
1 − 2δ + (ρ+ ℓρ)ℓρδ

2 − ρℓ3ρδ
2
]

(1 + ρ)(1 − ρℓρ)(1 − ℓ2ρδ)
2(1 − ρℓρδ)2

−
ℓ3ρ(1 − δ)

[
1 − 2δ + ℓ2ρ(1 + δ)δ2 − ℓ4ρδ

3
]

(1 − ℓ2ρδ)
3(1 − ℓ2ρδ

2)2
.

We next substitute ℓs from (C.47) into the term
ℓs(1−ℓρ)

1+ℓρ
that multiplies the first square bracket in

(C.48). Grouping terms, we can write (C.48) as

−νρ(1 − ρ)(ρ− ℓρ)

(1 + ρ)(1 − ρℓρ)2
H1(ℓρ) +

ℓ2ρ(1 − δ)

(1 − ℓ2ρδ)
2
H2(ℓρ). (C.49)

The functions H1(ℓρ) and H2(ℓρ) are positive for ℓρ ∈ [0, ρ] because

2 − ρℓρ(1 + δ) − ℓ2ρδ + ρ2ℓ4ρδ
2 > 0, (C.50)

2 − ℓ2ρδ
2 − ℓ4ρδ

3 > 0. (C.51)

(To show (C.50) and (C.51), we use ρ, δ < 1. For (C.50) we also note that the left-hand side is

decreasing in δ and positive for δ = 1.) Since H1(ℓρ),H2(ℓρ) > 0, (C.49) is negative for ℓρ = 0 and

positive for ℓρ ∈ [ρ, ρ]. Therefore, the value of ℓρ that minimizes H is in (0, ρ) and renders (C.49)

equal to zero. Comparing (26) and (C.49), we find that this value is equal to r. Substituting ℓρ = r

into (C.47), we find ℓs = z.

Proof of Proposition 8: Proceeding as in the proof of Proposition 6, we find

∆̃k − ∆k = αgk + o(α),

where

gk ≡
k∑

k′=1

fk′,

fk ≡ rk

[
z(1 − r)

1 + r
− δk−1

]

− ρk ν(1 − ρ)

1 + ρ
. (C.52)

The proposition will follow if we show that f1 = g1 < 0 and g∞ < 0. Indeed, suppose that

f1 = g1 < 0. Since r < ρ, fk is negative for large k. Moreover, (C.45) can be written for

(ℓs, ℓρ) = (z, r) as
∞∑

k=1

rkfk = 0, (C.53)

implying that fk has to be positive for some k. Since fk can change sign at most twice (because

the derivative of fk/ρ
k can change sign at most once, implying that fk/ρ

k can change sign at most
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twice), it is negative, then positive, and then negative again. The function gk is negative for k = 1,

then decreases (fk < 0), then increases (fk > 0), and then decreases again (fk < 0). If g∞ < 0,

then gk can either be (i) always negative or (ii) negative, then positive, and then negative again.

To rule out (i), we write (C.53) as

g1r +
∞∑

k=2

(gk − gk−1) r
k = 0 ⇔

∞∑

k=1

gk

(

rk − rk+1
)

= 0.

We next show that f1 = g1 < 0 and g∞ < 0. Using (25) to substitute z, we find

f1 = g1 =
ρr(ρ− r)(1 − ρ)(ν − ν1)

(1 + ρ)(1 − ρr)
,

g∞ =
zr

1 + r
− r

1 − rδ
− νρ

1 + ρ
=
ρ(ρ− r)(ν∞ − ν)

(1 + ρ)(1 − ρr)
,

where

ν1 ≡ (1 + ρ)(1 − ρr)r2(1 − δ)

ρ(ρ− r)(1 − ρ)(1 − r2δ)

ν∞ ≡ (1 + ρ)(1 − ρr)r2(1 − δ)

ρ(ρ− r)(1 − r2δ)(1 − rδ)
.

We thus need to show that ν1 > ν > ν∞. These inequalities will follow if we show that when ν is

replaced by ν1 (resp. ν∞) in (26), the LHS becomes larger (resp. smaller) than the RHS. To show

these inequalities, we make use of 0 < r < ρ < 1 and 0 ≤ δ < 1. The inequality for ν1 is

(ρ− rδ)r2

(ρ− r)(1 − ρr)(1 − r2δ)
+

Y1

(1 − ρr)(1 − ρrδ)2(1 − r2δ2)2(1 − r2δ)
> 0, (C.54)

where

Y1 = (1 − r2δ2)2
[
2 − ρr(1 + δ) − r2δ + ρ2r4δ2

]
− (1 − ρr)(1 − ρrδ)2(2 − r2δ2 − r4δ3).

Since ρ > r > rδ, (C.54) holds if Y1 > 0. Algebraic manipulations show that Y1 = (ρ − rδ)rZ1,

where

Z1 ≡ (2 − r2δ2 − r4δ3)
[
δ(1 − r2δ)(2 − r2δ2 − ρrδ) + (1 − ρrδ)2

]

−(1 − r2δ2)2
[
1 + δ − (ρ+ rδ)r3δ2

]
.

Since 2 − r2δ2 − r4δ3 > 2(1 − r2δ2), inequality Z1 > 0 follows from

2
[
δ(1 − r2δ)(2 − r2δ2 − ρrδ) + (1 − ρrδ)2

]
− (1 − r2δ2)

[
1 + δ − (ρ+ rδ)r3δ2

]
> 0. (C.55)
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To show (C.55), we break the LHS into

2δ(1 − r2δ)(1 − r2δ2) − (1 − r2δ2)(δ − r4δ3) = δ(1 − r2δ2)(1 − r2δ)2 > 0

and

2
[
δ(1 − r2δ)(1 − ρrδ) + (1 − ρrδ)2

]
− (1 − r2δ2)(1 − ρr3δ2). (C.56)

Eq. (C.56) is positive because of the inequalities

2(1 − ρrδ) > 1 − r2δ2,

δ(1 − r2δ) + 1 − ρrδ > 1 − ρr3δ2.

The inequality for ν∞ is

− (ρ− rδ)(1 − ρ)(1 − r)r

(ρ− r)(1 − ρr)(1 − r2δ)(1 − rδ)2
+

Y∞
(1 − ρr)(1 − ρrδ)2(1 − r2δ)(1 − r2δ2)2(1 − rδ)

< 0, (C.57)

where

Y∞ = (1− ρ)(1− r2δ2)
[
2 − ρr(1 + δ) − r2δ + ρ2r4δ2

]
− (1− ρr)(1− ρrδ)2(1− rδ)(2− r2δ2 − r4δ3).

Algebraic manipulations show that Y∞ = −(ρ− rδ)Z∞, where

Z∞ ≡ (2 − r2δ2 − r4δ3)
[
(1 − ρrδ)2(1 − r) − (1 − ρ)rδ(1 − r2δ)(2 − r2δ2 − ρrδ)

]

+(1 − ρ)r(1 − r2δ2)2
[
1 + δ − (ρ+ rδ)r3δ2

]
.

To show that Z∞ > 0, we break it into

(2 − r2δ2 − r4δ3)
[
(1 − ρrδ)2(1 − r) − (1 − ρ)rδ(1 − r2δ)(1 − ρrδ)

]

> (2 − r2δ2 − r4δ3)(1 − ρrδ)
[
(1 − ρrδ)(1 − r) − (1 − ρ)(1 − r2δ)

]

= (2 − r2δ2 − r4δ3)(1 − ρrδ)(ρ − r)(1 − rδ) > 0

and

(1 − ρ)r(1 − r2δ2)2
[
1 + δ − (ρ+ rδ)r3δ2

]
− (2 − r2δ2 − r4δ3)(1 − ρ)rδ(1 − r2δ)(1 − r2δ2)

= (1 − ρ)r(1 − r2δ2)
[
(1 − r2δ2)

[
1 + δ − (ρ+ rδ)r3δ2

]
− (2 − r2δ2 − r4δ3)δ(1 − r2δ)

]
.

Since 2 − r2δ2 − r4δ3 < 2 − r2δ2 − r4δ4 = (1 − r2δ2)(2 + r2δ2), the last square bracket is greater
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than

(1 − r2δ2)
[
1 + δ − (ρ+ rδ)r3δ2 − δ(1 − r2δ)(2 + r2δ2)

]

= (1 − r2δ2)
[
(1 − δ)(1 − r4δ3) + r2δ2(2 − δ − ρr)

]
> 0.

Proof of Lemma 4: Because stocks are symmetric and returns are uncorrelated, (28) takes the

form
N∑

n=1

(

wnt −
1

N

)2

Ṽ ar1 ≤ TE2. (C.58)

The Lagrangian is

L ≡
N∑

n=1

wntẼt−1(snt) + λ1

[

TE2 −
N∑

n=1

(

wnt −
1

N

)2

Ṽ ar1

]

+ λ2

(

1 −
N∑

n=1

wnt

)

.

The first-order condition with respect to wnt is

Ẽt−1(snt) − 2λ1

(

wnt −
1

N

)

Ṽ ar1 − λ2 = 0. (C.59)

Summing over n and using
∑N

n=1 wnt = 1, we find

λ2 = Ẽt−1(st). (C.60)

Substituting λ2 from (C.60) into (C.59), we find

wnt =
1

N
+
Ẽt−1(snt) − Ẽt−1(st)

2λ1Ṽ ar1
. (C.61)

Substituting wnt from (C.61) into (C.58), which holds as an equality, we find

λ1 =

√
∑N

n=1

[

Ẽt−1(snt) − Ẽt−1(st)
]2

2TE
√

Ṽ ar1
. (C.62)

Substituting wnt from (C.61) into (27), and using (C.62), we find (29).

Proof of Lemma 5: Eq. (30) implies that

k∑

k′=1

F̃t+k′ =
Ẽt+k−1(γt+k) − Ẽt−1(γt)

aṼ ar1γ

. (C.63)
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Replacing st by γt in (C.44), substituting (Ẽt−1(γt), Ẽt+k−1(γt+k)) from (C.44) into (C.63), and

noting that γt is i.i.d. with variance σ2
ǫγ , we find

Cov

(

γt,

k∑

k′=1

F̃t+k′

)

=
σ2

ǫγC̃D̃
k−1G̃

aṼ ar1γ

. (C.64)

Since γt is i.i.d., CAk′−1G = 0 for all k′ ≥ 1. Eq. (18) then implies that Ñk = C̃D̃k−1G̃, and (C.64)

becomes (31).

Proof of Proposition A.1: The parameter vectors p̃ that belong to m(P0) and satisfy e(p̃) = 0

must satisfy (C.37) for all k ≥ 1, µ̃ = µ, and (C.38). Using (αρ̃, δρ̃) = (α, δ), we can write (C.37) as

ρ̃kG̃1 − α(δ − α)k−1G̃2 = 0. (C.65)

Consider first the case where G̃2 6= 0. Eq. (C.65) implies that ρ̃ = δ − α. Multiplying (14) from

the left by an arbitrary 1 × 2 vector v, and noting that vÃ = (δ − α)v, we find

vG̃ =
(δ − α)vΣ̃C̃ ′ + vŨ

C̃Σ̃C̃ ′ + Ṽ
. (C.66)

Writing (13) as

Σ̃ = ÃΣ̃Ã′ − G̃
(

ÃΣ̃C̃ ′ + Ũ
)′

+ W̃ ,

multiplying from the left by v, and noting that vÃ = (δ − α)v, we find

vΣ̃ =

[

−vG̃
(

ÃΣ̃C̃ ′ + Ũ
)′

+ vW̃

]

[I − (δ − α)Ã′]−1. (C.67)

Substituting vΣ from (C.67) into (C.66), we find

vG̃




1 +

(δ − α)
(

ÃΣ̃C̃ ′ + Ũ
)′

[I − (δ − α)Ã′]−1C̃ ′

C̃Σ̃C̃ ′ + Ṽ




 =

(δ − α)vW̃ [I − (δ − α)Ã′]−1C̃ ′ + vŨ

C̃Σ̃C̃ ′ + Ṽ
.

(C.68)

If v satisfies vG̃ = 0, then (C.66) implies that

(δ − α)vΣ̃C̃ ′ + vŨ = 0, (C.69)

and (C.68) implies that

(δ − α)vW̃ [I − (δ − α)Ã′]−1C̃ ′ + vŨ = 0. (C.70)
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Eq. (C.65) for k = 1 implies that C̃G̃ = 0. Therefore, (C.69) and (C.70) hold for v = C̃:

(δ − α)C̃Σ̃C̃ ′ + C̃Ũ = 0, (C.71)

(δ − α)C̃W̃ [I − (δ − α)Ã′]−1C̃ ′ + C̃Ũ = 0. (C.72)

Eqs. (C.38) and (C.71) imply that

− C̃Ũ

δ − α
+ Ṽ = σ2

ω. (C.73)

Substituting for ρ̃ = δ − a and (Ã, C̃, Ṽ , W̃ , Ũ), we find that the solution (σ̃2
η , σ̃

2
ω) to the system of

(C.72) and (C.73) is as in p̃1.

Consider next the case where G̃2 = 0. Eq. (C.70) holds for v ≡ (0, 1) because vÃ = (δ−α)v and

vG̃ = 0. Solving this equation, we find σ̃2
ω = 0. The unique solution of (13) is Σ̃ = 0, and (C.38)

implies that σ̃2
η = σ2

ω. Eq. (14) implies that G1 = 1, and CG = 0 implies that ρ̃ = 0. Therefore,

p̃ = p̃2.

Showing that p̃2 satisfies (C.37) for all k ≥ 1, µ̃ = µ, and (C.38) is obvious. Showing the same

for p̃1 follows by retracing the previous steps and noting that the term in brackets in Equation

(C.68) is non-zero.

Proof of Proposition A.2: We first show a counterpart of Proposition 5, namely that when α

converges to zero, the set

{(

σ̃2
η

ασ̃2
ω

, ρ̃, σ̃2
ω, µ̃

)

:
(
σ̃2

η, ρ̃, σ̃
2
ω, µ̃

)
∈ m(Pρ)

}

converges to the point (z, ρ, σ2
ω, µ), where

z ≡
(1 + ρ)2

ρ(1 − ρδ)
. (C.74)

To show this result, we follow the same steps as in the proof of Proposition 5. The limits of (σ̃2
ω, µ̃)

are straightforward. The limits (ℓs, ℓρ) of (
σ̃2

η

ασ̃2
ω
, ρ̃) minimize the function

F (ℓs, ℓρ) ≡
∞∑

k=1

[

ℓkρ
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]2

.

Treating F as a function of
(

ℓs(1−ℓρ)
1+ℓρ

, ℓρ

)

, the first-order condition with respect to the first argument
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is
∞∑

k=1

ℓkρ

[

ℓkρ
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

= 0. (C.75)

Since ℓρ ≥ ρ > δ, the function

f̂k ≡ ℓkρ

[

ℓkρ
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1

]

is negative in an interval k ∈ {1, .., k0 − 1} and becomes positive for k ∈ {k0, ..,∞}. Using this fact

and (C.75), we find

∞∑

k0

f̂k = −
k0−1∑

k=1

f̂k ⇒
∞∑

k0

k

k0
f̂k > −

k0−1∑

k=1

k

k0
f̂k ⇒

∞∑

k=1

kf̂k > 0. (C.76)

The left-hand side of the last inequality in (C.76) has the same sign as the derivative of F with

respect to the second argument. Since that derivative is positive, F is minimized for ℓρ = ρ.

Substituting ℓρ = ρ into (C.75), we find ℓs = z.

We complete the proof of Proposition A.2 by following the same steps as in the proof of Propo-

sition 6. The function gk is defined as in that proof, while the function fk is defined as

fk ≡ ρk
z(1 − ρ)

1 + ρ
− δk−1.

Using (C.74) to substitute z, we find

f1 = g1 =
ρ(δ − ρ)

1 − ρδ
< 0,

g∞ =
zρ

1 + ρ
− 1

1 − δ
=

ρ− δ

(1 − ρδ)(1 − δ)
> 0.

The remainder of the proof is identical to the last step in the proof of Proposition 6.

Proof of Proposition A.3: We first show a counterpart of Proposition 7, namely that when α

and σ2
η converge to zero, holding ν constant, the set

{(

σ̃2
η

ασ̃2
ω

, ρ̃, σ̃2
ω, µ̃

)

:
(
σ̃2

η , ρ̃, σ̃
2
ω, µ̃

)
∈ m(P0)

}

converges to the point (z, r, σ2
ω , µ), where

z ≡ νρ(1 − ρ)(1 + r)2

r(1 + ρ)(1 − ρr)
+

(1 + r)2

r(1 − rδ)
(C.77)
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and r solves
ν(1 − ρ)ρ(ρ− r)

(1 + ρ)(1 − ρr)2
=

r − δ

(1 − rδ)2
. (C.78)

To show this result, we follow the same steps as in the proof of Proposition 7. The limit of µ̃ is

straightforward. If the limit ℓρ of ρ̃ is positive, then

lim
v→ℓv

σ2
s(p̃)

∑∞
k=1 e

2
k

α2
= σ2

ω

∞∑

k=1

[

ℓkρ
ℓs(1 − ℓρ)

1 + ℓρ
− δk−1 − ρk ν(1 − ρ)

1 + ρ

]2

≡ σ2
ωH(ℓs, ℓρ),

where ℓs denotes the limit of
σ̃2

η

ασ̃2
ω
. If ℓρ = 0, then

lim
v→ℓv

σ2
s(p̃)

∑∞
k=1 e

2
k

α2
= σ2

ω

([

ℓφ − ℓG − ρ
ν(1 − ρ)

1 + ρ

]2

+

∞∑

k=2

[

δk−1ℓG + ρk ν(1 − ρ)

1 + ρ

]2
)

≡ σ2
ωH0(ℓφ),

where (ℓφ, ℓG) denote the limits of
(

ρ̃G̃1

αn
, G̃2

)

. Because ℓG can differ from one, the cases ℓρ > 0

and ℓρ = 0 cannot be nested. To show that ℓρ > 0, we compare instead the minima of H and H0.

Since ℓG ≥ 0,

min
ℓφ

H0(ℓφ) ≥
∞∑

k=2

[

ρk ν(1 − ρ)

1 + ρ

]2

.

Since, in addition, (A.1) implies that

∞∑

k=2

[

ρk ν(1 − ρ)

1 + ρ

]2

> min
ℓs

H(ℓs, δ),

and (A.2) implies that
∞∑

k=2

[

ρk ν(1 − ρ)

1 + ρ

]2

> H(ν, ρ),

the minimum of H0 exceeds that of H, and therefore, ℓρ > 0. Since ℓρ > 0, the limit of σ̃2
ω is σ2

ω.

To minimize H, we treat it as a function of
(

ℓs(1−ℓρ)
1+ℓρ

, ℓρ

)

. The first-order condition with respect

to the first argument is

∞∑

k=1

ℓkρ

[
ℓs(1 − ℓρ)

1 + ℓρ
ℓkρ − δk−1 − ρk ν(1 − ρ)

1 + ρ

]

= 0, (C.79)

and the derivative with respect to the second argument is

∞∑

k=1

kℓk−1
ρ

[
ℓs(1 − ℓρ)

1 + ℓρ
ℓkρ − δk−1 − ρk ν(1 − ρ)

1 + ρ

]

. (C.80)
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Computing the infinite sums, we can write (C.79) as

ℓsℓρ
(1 + ℓρ)2

− 1

1 − ℓρδ
− νρ(1 − ρ)

(1 + ρ)(1 − ρℓρ)
= 0, (C.81)

and (C.80) as
ℓsℓρ

(1 + ℓρ)2(1 − ℓ2ρ)
− 1

(1 − ℓρδ)2
− νρ(1 − ρ)

(1 + ρ)(1 − ρℓρ)2
. (C.82)

Substituting ℓs from (C.81), we can write (C.82) as

− νρ(1 − ρ)ℓρ(ρ− ℓρ)

(1 + ρ)(1 − ρℓρ)2(1 − ℓ2ρ)
+

ℓρ(ℓρ − δ)

(1 − ℓρδ)2(1 − ℓ2ρ)
. (C.83)

Eq. (C.49) is negative for ℓρ ∈ [0,min{δ, ρ}] and positive for ℓρ ∈ [max{δ, ρ}, ρ]. Therefore, it is

equal to zero for a value between δ and ρ. Comparing (26) and (C.49), we find that this value is

equal to r. Substituting ℓρ = r into (C.47), we find ℓs = z.

We complete the proof of Proposition A.3 by following the same steps as in the proof of Propo-

sition 8. The function gk is defined as in that proof, while the function fk is defined as

fk ≡ rk z(1 − r)

1 + r
− δk−1 − ρk ν(1 − ρ)

1 + ρ
.

Using (C.77) to substitute z, and then (C.78) to substitute ν, we find

f1 = g1 =
r2(δ − r)(ρ− δ)

(1 − rδ)2
.

This is negative because (C.78) implies that r is between δ and ρ. We similarly find

g∞ =
zr

1 + r
− 1

1 − δ
− νρ

1 + ρ
=

(1 − r)(δ − r)(ρ− δ)

(1 − rδ)2(1 − ρ)(1 − δ)
< 0.

The remainder of the proof follows by the same argument as in the proof of Proposition 8.

Proof of Proposition B.1: The parameter vectors p̃ that belong to m(P0) and satisfy e(p̃) = 0

must satisfy (i) C̃Ãk−1G̃ = CAk−1G for all k ≥ 1, (ii) µ̃ = µ, and (iii) σ2
s(p̃) = σ2

s . Since σ2
η = 0

and

Ãk =






ρ̃k 0 −(1 − ρ̃)α ρ̃k−(δ−α)k

ρ̃−(δ−α)

0 (δρ̃ − αρ̃)
k 0

0 0 (δ − α)k




 ,

we can write Condition (i) as

ρ̃k+1G̃1 − αρ̃(δρ̃ − αρ̃)
kG̃2 − (1 − ρ̃)α

ρ̃k+1 − (δ − α)k+1

ρ̃− (δ − α)
G̃3 = 0, (C.84)
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and Condition (iii) as (C.38).

Consider first the linear specification (αρ, δρ) = (αρ, δρ). If G̃3 6= 0, then ρ̃ 6= δ − α; otherwise

(C.84) would include a term linear in k. Since δ − α /∈ {ρ̃, (δ − α)ρ̃} (the latter because ρ̃ < 1),

(C.84) implies that G̃3 = 0, a contradiction. Therefore, G̃3 = 0, and (C.84) becomes (C.37). Using

the same argument as in the proof of Proposition 4, we find ρ̃ = 0. Since vÃ = (δ−α)v and vG̃ = 0

for v ≡ (0, 0, 1), v satisfies (C.70). Solving (C.70), we find σ̃2
ζ = 0. The unique solution of (13) is

Σ̃ = 0, and (C.38) implies that σ̃2
ω = σ2

ω. Therefore, p̃ is as in the proposition.

Consider next the constant specification (αρ, δρ) = (α, δ). If G̃3 = 0, then v ≡ (0, 0, 1) satisfies

(C.70), and therefore, σ̃2
ζ = 0 and Σ̃ = 0. Eq. (14) then implies that G̃1 = 0, and (C.84) implies

that G̃2 = 0. Since vÃ = (δ − α)v and vG̃ = 0 for v ≡ (0, 1, 0), v satisfies (C.70). Solving (C.70),

we find σ̃2
ω = 0. Eqs. σ̃2

ζ = σ̃2
ω = 0 and Σ̃ = 0 contradict (C.38) since σ2

ω = σ2
ǫ > 0. Therefore,

G̃3 6= 0, which implies ρ̃ 6= δ − α. Identifying terms in ρ̃k and (δ − α)k in (C.84), we find

G = G3

(
(1 − ρ̃)α

ρ̃− (δ − α)
,
(1 − ρ̃)(δ − α)

ρ̃− (δ − α)
, 1

)′

.

We set

v1 ≡
(

0,−1,
(1 − ρ̃)(δ − α)

ρ− (δ − α)

)

,

v2 ≡
(

1, 0,− (1 − ρ̃)α

ρ− (δ − α)

)

,

and (λ1, λ2) ≡ (δ − α, ρ̃). Since viÃ = λivi and viG̃ = 0 for i = 1, 2, (C.69) generalizes to

λiviΣ̃C̃
′ + viŨ = 0, (C.85)

and (C.70) to

λiviW̃
(

I − λiÃ
′
)−1

C̃ ′ + viŨ = 0. (C.86)

Noting that C̃ =
∑

i=1,2 µivi, where (µ1, µ2) ≡ (α, ρ̃), and using (C.85), we find

C̃Σ̃C̃ ′ = −
∑

i=1,2

µi

λi
viŨ . (C.87)

Eqs. (C.38) and (C.87) imply that

−
∑

i=1,2

µi

λi
viŨ + Ṽ = σ2

ω. (C.88)

Substituting for (Ã, C̃, Ṽ , W̃ , Ũ), we find that the solution (σ̃2
η , ρ̃, σ̃

2
ω) to the system of (C.86) and

(C.88) is as in the proposition. Showing that the parameter vectors in the proposition satisfy
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Conditions (i)-(iii) follows by the same argument as for p̃1 in Proposition A.1.
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