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Abstract

We examine how liquidity and asset prices are affected by the following market imper-

fections: asymmetric information, participation costs, transaction costs, leverage constraints,

non-competitive behavior and search. Our model has three periods: agents are identical in the

first, become heterogeneous and trade in the second, and consume asset payoffs in the third.

We examine how imperfections in the second period affect different measures of illiquidity, as

well as asset prices in the first period. Besides nesting multiple imperfections in a single model,

we derive new results on the effects of each imperfection. Our results imply, in particular,

that imperfections do not always raise expected returns, and can influence common measures

of illiquidity in opposite directions.
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1 Introduction

Financial markets deviate, to varying degrees, from the perfect-market ideal in which there are no

impediments to trade. A large and growing body of work has identified a variety of market im-

perfections, ranging from information asymmetries, to different forms of trading costs, to financial

constraints. Most papers focus on a specific imperfection, relying on simplifications that are conve-

nient in the context of that imperfection but vary substantially across imperfections. For example,

models of trading costs typically assume life-cycle or risk-sharing motives to trade, while models of

asymmetric information often rely on noise traders. Some asymmetric-information models further

assume risk-neutral market makers who can take unlimited positions, while papers on other imper-

fections typically assume risk aversion or position limits. Missing from the literature is a systematic

analysis of different imperfections within a single, unified framework. Beyond the obvious pedagog-

ical advantages, such a framework could yield a better and more comprehensive understanding of

how imperfections affect market behavior. Indeed, effects could be compared across imperfections,

holding constant other assumptions such as trading motives and risk attitudes.

An additional limitation of the literature on market imperfections concerns the link with asset

pricing. While the effects of imperfections on market liquidity have received much attention, the

analysis of how imperfections affect expected asset returns has been more incomplete. This is partly

because simplifications that are convenient for studying liquidity are not always suitable for pricing

analysis. For example, in models with risk-neutral market-makers, expected returns are equal to

the riskless rate regardless of the imperfection’s severity. Likewise, models with exogenous noise

traders cannot address how imperfections affect noise traders’ willingness to invest. Links between

imperfections and expected returns have been drawn in some cases. Yet, this has not been done

systematically across imperfections, and not in a way that their effects can be compared.

In this paper, we develop a unified model to analyze how different imperfections affect market

behavior. We consider the following imperfections: (1) asymmetric information, (2) participation

costs, (3) transaction costs, (4) leverage constraints, (5) non-competitive behavior, and (6) search.

We determine the effect of each imperfection on liquidity, price dynamics, and expected asset

returns. We also compare effects across imperfections, and draw empirical implications for the

measurement of liquidity, its link with expected returns, and its variation across assets and markets.

Since the imperfections that we consider have been studied in the literature, some of our results are

related to existing results. At the same time, because the effects of each imperfection on liquidity,

price dynamics, and expected returns have not been fully addressed before—and not at all in some

cases—most of our results are new.
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Our model has three periods, t = 0, 1, 2. In Periods 0 and 1, risk-averse agents can trade a

riskless and a risky asset that pay off in Period 2. In Period 0, agents are identical so no trade

occurs. In Period 1, agents can be one of two types. Liquidity demanders receive an endowment

correlated with the risky asset’s payoff. They can hedge their endowment by trading with liquidity

suppliers, who receive no endowment. Imperfections concern trade in Period 1. In the case of

asymmetric information, liquidity demanders observe a private signal about the payoff of the risky

asset. In the case of participation costs, agents must pay a cost to participate in the market. In

the case of transaction costs, agents must pay a cost to trade (and the difference with participation

costs is that the decision can be made conditional on trade size). In the case of leverage constraints,

agents cannot fully commit to cover losses on their loans, and this limits leverage as a function

of capital. In the case of non-competitive behavior, liquidity demanders take price impact into

account, and can possibly also observe a private signal about asset payoff. In the case of search,

agents are matched randomly with counterparties and bargain bilaterally over the price.1

We consider two measures of illiquidity, both commonly used in empirical studies. The first

measure is lambda, defined as the regression coefficient of the price change between Periods 0 and 1

on liquidity demanders’ signed volume in Period 1. This measure characterizes the price impact of

volume, which has a transitory and a permanent component. The second measure is price reversal,

defined as minus the autocovariance of price changes. This measure characterizes the importance of

the transitory component in price, which in our model is entirely driven by volume. Both measures

are positive even in the absence of imperfections. Indeed, because agents are risk-averse, liquidity

demanders’ trades move the price in Period 1 (implying that lambda is positive), and the movement

is away from fundamental value (implying that price reversal is positive). We examine how each

imperfection impacts the two measures of illiquidity and the expected return of the risky asset. To

determine the effect on expected return, we examine how the price in Period 0 is influenced by the

anticipation of imperfections in Period 1.

Table 1 summarizes the effects of each imperfection on market behavior. Results in dark (black)

color are new, in the sense that either the question has not been asked in the literature, or the

result is different than in previous papers. References to relevant papers are at the beginning of

the section covering each imperfection.

A first observation from Table 1 is that imperfections do not always raise expected return.

Consistent with previous papers, we find that expected return increases under participation costs

1Our list of imperfections does not include inventory costs, arising from the risk aversion of market makers (e.g.,
Stoll (1978)). Indeed, since our liquidity suppliers are risk averse, inventory costs are present even in the absence of
the imperfections that we consider. Inventory costs increase, however, with imperfections such as participation costs,
which reduce the measure of participating suppliers and raise their aggregate risk aversion.
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Impact of Imperfection

Type of Imperfection Lambda Price Reversal Expected Return

Asymmetric information + +/− +

Participation costs + + +

Transaction costs + + +

Leverage constraints + + +

Non-comp. behavior/Sym. info. 0 − −

Non-comp. behavior/Asym. info. + − +/−

Search +/− +/− +/−

Table 1: Impact of imperfections on illiquidity and expected returns. “Lambda” is the regression
coefficient of the price change between Periods 0 and 1 on the signed volume of liquidity demanders in Period
1; “Price Reversal” is minus the autocovariance of price changes; and “Expected Return” is the expected
return of the risky asset between Periods 0 and 2. Results in dark (black) color are new; results in light
(green) color are related to existing results.

and transaction costs. We further show that it increases under asymmetric information, comparing

both to the case where the signal is public and the case where no agent observes the signal. Expected

return also increases under leverage constraints. The intuition for these results is that agents are

concerned that an endowment they receive in Period 1 increases the risk exposure they carry from

Period 0. Because imperfections hamper agents’ ability to modify their risk exposure, they reduce

their willingness to hold the risky asset in Period 0, resulting in a low price and a high expected

return. The effect can, however, reverse under non-competitive behavior. Indeed, since liquidity

demanders can extract better terms of trade in Period 1, they are less concerned with the event

where their risk exposure increases, and are therefore less averse to holding the asset in Period 0.

The same is true under search if liquidity demanders hold most of the bargaining power in their

bilateral meetings with suppliers.

A second observation from Table 1 is that imperfections can affect the two illiquidity measures

in opposite directions. The effect on lambda is positive, except possibly under search. At the same

time, the effect on price reversal is unambiguously positive only under participation costs, trans-

action costs and leverage constraints. The intuition for the discrepancy is that lambda measures

the price impact per unit trade, while price reversal concerns the impact of the entire trade. Im-

perfections generally raise the price impact per unit trade, but because they also reduce trade size,

the price impact of the entire trade can decrease. The second effect dominates under asymmetric

information and non-competitive behavior.
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The above results have a number of empirical implications. For example, many empirical studies

seek to establish a link between illiquidity and expected asset returns. We show that the nature

of this link depends crucially on the underlying cause of illiquidity: illiquidity caused by different

imperfections can have opposite effects on expected returns. Furthermore, common measures of

illiquidity do not always reflect the underlying imperfection: our results suggest that while lambda

is generally a valid proxy, price reversal is valid only for certain imperfections.

Further implications follow by examining how changes in exogenous parameters, other than the

imperfections themselves, affect the illiquidity measures and the expected return. We show that

when the variance of liquidity demanders’ hedging shock increases, price reversal and expected

return increase, but lambda can increase or decrease depending on the imperfection. Our results

suggest that the cross-sectional relationship between illiquidity and expected returns depends not

only on the underlying imperfection but also on other sources of cross-sectional variation. Suppose,

for example, that asymmetric information is the only imperfection. If it is also the main source of

cross-sectional variation, then expected returns should be positively related to lambda. If, however,

assets differ because of liquidity demanders’ hedging needs and not because of asymmetric infor-

mation, then expected returns should be negatively related to lambda because lambda decreases in

the variance of the hedging shock. It is therefore important to control for sources of cross-sectional

variation other than the imperfections themselves when linking illiquidity to expected returns.

Given the scope of this paper, the related literature is vast. Since our purpose here is not to

survey the literature, but present a unified model and derive new results, we reference only the

papers closest to our analysis. A more extensive and thorough review of the literature is left to a

companion survey (Vayanos and Wang (2009)). Interested readers can also refer to existing surveys

on liquidity, e.g., Amihud, Mendelson and Pedersen (2005), Biais, Glosten and Spatt (2005), and

Cochrane (2005).

The rest of this paper is organized as follows. Section 2 presents the model and describes

each imperfection. Section 3 treats the perfect-market benchmark, and Sections 4, 5, 6, 7, 8

and 9 treat asymmetric information, participation costs, transaction costs, leverage constraints,

non-competitive behavior and search, respectively. Section 10 discusses empirical implications and

Section 11 concludes.

2 Model

There are three periods, t = 0, 1, 2. The financial market consists of a riskless and a risky asset

that pay off in terms of a consumption good in Period 2. The riskless asset is in supply of B shares
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and pays off one unit with certainty. The risky asset is in supply of θ̄ shares and pays off D units,

where D has mean D̄ and variance σ2. Using the riskless asset as the numeraire, we denote by St

the risky asset’s price in Period t, where S2 = D.

There is a measure one of agents, who derive utility from consumption in Period 2. Utility is

exponential,

− exp(−αC2), (2.1)

where C2 is consumption in Period 2, and α > 0 is the coefficient of absolute risk aversion. Agents

are identical in Period 0, and are endowed with the per capita supply of the riskless and the risky

asset. They become heterogeneous in Period 1, and this generates trade. Because all agents have the

same exponential utility, there is no preference heterogeneity. We instead introduce heterogeneity

through agents’ endowments and information.

A fraction π of agents receive an endowment z(D − D̄) of the consumption good in Period

2, and the remaining fraction 1 − π receive no endowment.2 The variable z has mean zero and

variance σ2
z , and is independent of D. While the endowment is received in Period 2, agents learn

whether or not they will receive it before trade in Period 1, in an interim period t = 1/2. Only those

agents who receive the endowment observe z, and they do so in Period 1. Since the endowment is

correlated with D, it generates a hedging demand. When, for example, z > 0, the correlation is

positive, and agents can hedge their endowment by reducing their holdings of the risky asset. We

denote by Wt the wealth of an agent in Period t. Wealth in Period 2 is equal to consumption, i.e.,

W2 = C2.

For tractability, we assume that D and z are normal, and relax or modify this assumption only

in Sections 6 (transaction costs) and 7 (leverage constraints). Under normality, the endowment

z(D − D̄) can take large negative values, and this can generate an infinitely negative expected

utility. To guarantee that utility is finite, we assume that the variances of D and z satisfy the

condition

α2σ2σ2
z < 1. (2.2)

In equilibrium, agents receiving an endowment initiate trades with others to share risk. Because

the agents initiating trades can be thought of as consuming market liquidity, we refer to them as

liquidity demanders and denote them by the subscript d. Moreover, we refer to z as the liquidity

2We assume that the endowment is perfectly correlated with D for simplicity; what matters for our analysis is
that the correlation is non-zero.
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shock. The agents who receive no endowment accommodate the trades of liquidity demanders, thus

supplying liquidity. We refer to them as liquidity suppliers and denote them by the subscript s.

Because liquidity suppliers require compensation to absorb risk, the trades of liquidity deman-

ders affect prices. Therefore, the price in Period 1 is influenced not only by the asset payoff, but

also by the liquidity demanders’ trades. Our measures of liquidity, defined in Section 3, are based

on the price impact of these trades.

Liquidity is influenced by market imperfections. We define imperfections in reference to a

perfect-market benchmark in which information is symmetric, participation and trade are costless,

agents are competitive, and the market is centralized.3 We consider six types of imperfections,

all pertaining to trade in Period 1. We maintain the perfect-market assumption in Period 0 when

determining the ex-ante effect of the imperfections, i.e., how the anticipation of imperfections in

Period 1 impacts the Period 0 price.4

Asymmetric Information

In the perfect-market benchmark, all agents have the same information about the payoff of

the risky asset. In practice, however, agents have access to different information sources, and can

differ in their ability to process information. Such differences give rise to asymmetric information

(Section 4). We assume that asymmetric information takes a simple form, where some agents

observe a private signal s about the asset payoff D in Period 1. The signal is

s = D + ϵ (2.3)

where ϵ is normal with mean zero and variance σ2
ϵ , and is independent of (D, z). We assume that

only those agents who receive an endowment observe the signal, i.e., the set of informed agents

coincides with that of liquidity demanders. Assuming that all liquidity demanders are informed is

without loss of generality: even if they do not observe the signal, they can infer it perfectly from the

price because they observe the liquidity shock. Asymmetric information can therefore exist only if

some liquidity suppliers are uninformed. We assume that they are all uninformed for simplicity.

Participation Costs

In the perfect-market benchmark, all agents are present in the market in all periods. Thus,

3Our perfect-market benchmark has one market imperfection built in: agents cannot write contracts in Period
0 contingent on whether they are a liquidity demander or supplier in Period 1. Thus, the market in Period 0 is
incomplete in the Arrow-Debreu sense. If agents could write complete contracts in Period 0, they would not need to
trade in Period 1, in which case liquidity would not matter. In our model, complete contracts are infeasible because
whether an agent is a liquidity demander or supplier is private information.

4Imperfections in Period 0 are not relevant in our model because agents are identical in that period and there is
no trade.
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a seller, for example, can have immediate access to the entire population of buyers. In practice,

however, agents face costs of market participation. Such costs include buying trading infrastructure

or membership of a financial exchange, having capital available on short notice, monitoring market

movements, etc. To model costly participation (Section 5), we assume that agents must incur a

cost c to trade in Period 1. Consistent with the notion that participation is an ex-ante decision,

we assume that agents must decide whether or not to incur c in Period 1/2, after learning whether

or not they will receive an endowment but before observing the price in Period 1. If the decision

can be made contingent on the price in Period 1, then c is a fixed transaction cost rather than a

participation cost. We consider transaction costs as a separate market imperfection.5

Transaction Costs

In addition to costs of market participation, agents typically pay costs when executing transac-

tions. Transaction costs drive a wedge between the buying and selling price of an asset. They come

in many types, e.g., brokerage commissions, exchange fees, transaction taxes, bid-ask spreads, price

impact. Some types of transaction costs can be viewed as a consequence of other market imperfec-

tions: for example, Section 5 shows that costly participation can generate price-impact costs. Other

types of costs, such as transaction taxes, can be viewed as more primitive. We assume (Section

6) that transaction costs concern trade in Period 1, and can be proportional or fixed. Propor-

tional costs are proportional to transaction size, and for simplicity we assume that proportionality

concerns the number of shares rather than the dollar value. Denoting by κ the cost per unit of

shares traded and by θt the number of shares that an agent holds in Period t = 0, 1, proportional

costs take the form κ |θ1 − θ0|. Fixed costs are independent of transaction size and take the form

κ1{θ1 ̸=θ0}, i.e., the agent pays κ > 0 when trading in Period 1.

Leverage Constraints

Agents’ portfolios often involve leverage, i.e., borrow cash to establish a long position in a risky

asset, or borrow a risky asset to sell it short. In the perfect-market benchmark, agents can borrow

freely provided that they have enough resources to repay the loan. But as the Corporate Finance

literature emphasizes, various frictions can limit agents’ ability to borrow.

Since in our model consumption is allowed to be negative and unbounded from below, agents

can repay a loan of any size by reducing consumption. Negative consumption can be interpreted as

a costly activity that agents undertake in Period 2 to repay a loan. We derive a leverage constraint

5Our analysis can be extended to the case where participation is costly not only in Period 1 but also in Period
0. The cost to participate in Period 0 can be interpreted as an entry cost, e.g., learning about an asset. Entry costs
reduce the measure of agents buying the asset in Period 0, and therefore lower the price. See, for example, Huang
and Wang (2008a,b).
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by assuming that agents cannot commit to reduce their consumption below a level −A ≤ 0. This

nests the case of full commitment assumed in the rest of this paper (A = ∞), and the case where

agents can walk away from a loan rather than engaging in negative consumption (A = 0). Note that

the same leverage constraint would arise if consumption below −A is not feasible. Under the latter

interpretation, however, the constraint would not constitute an imperfection: it would amount to

redefining the utility function (2.1) as −∞ when consumption is below −A. The two interpretations

yield the same constraint and pricing implications, but differ in their welfare implications.6

Non-Competitive Behavior

In the perfect-market benchmark, all agents are competitive and have no effect on prices.

In many markets, however, some agents are large relative to others and can influence prices. To

model non-competitive behavior (Section 8), we assume that liquidity demanders behave as a single

monopolist in Period 1. We consider both the case where liquidity demanders have no private

information on asset payoffs, and the case where they observe the private signal (2.3).

Search

Both in the perfect-market benchmark and under the imperfections described so far, the market

is organized as a centralized exchange. Many markets, however, have a more decentralized form

of organization. For example, in over-the-counter markets, investors negotiate prices bilaterally

with dealers. Locating suitable counter-parties in these markets can take time and involve search.

To model decentralized markets (Section 9), we assume that agents do not meet in a centralized

exchange in Period 1, but instead must search for counterparties. With some probability they meet

a counterparty and bargain bilaterally over the price.

3 Perfect-Market Benchmark

In this section we solve the basic model described in Section 2, assuming no market imperfections.

We first compute the equilibrium, going backwards from Period 1 to Period 0. We next construct

measures of market liquidity in Period 1, and study how liquidity impacts the price dynamics and

the price level in Period 0.

6While the leverage constraint in our model is linked to negative consumption, this is not the case in other
settings. For example, in Gromb and Vayanos (2002) a leverage constraint arises because liquidity suppliers exploit
price discrepancies between two correlated assets and cannot commit to use gains in one position to cover losses in
the other.
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3.1 Equilibrium

In Period 1, a liquidity demander chooses holdings θd1 of the risky asset to maximize the expected

utility (2.1). Consumption in Period 2 is

Cd
2 = W1 + θd1(D − S1) + z(D − D̄),

i.e., wealth in Period 1, plus capital gains from the risky asset, plus the endowment. Therefore,

expected utility is

−Eexp
{
−α

[
W1 + θd1(D − S1) + z(D − D̄)

]}
, (3.4)

where the expectation is over D. Because D is normal, the expectation is equal to

− exp
{
−α

[
W1 + θd1(D̄ − S1)− 1

2ασ
2(θd1 + z)2

]}
. (3.5)

A liquidity supplier chooses holdings θs1 of the risky asset to maximize the expected utility

− exp
{
−α

[
W1 + θs1(D̄ − S1)− 1

2ασ
2(θs1)

2
]}

, (3.6)

which can be derived from (3.5) by setting z = 0. The solution to the optimization problems is

straightforward and summarized in Proposition 3.1.

Proposition 3.1 Agents’ demand functions for the risky asset in Period 1 are

θs1 =
D̄ − S1

ασ2
, (3.7a)

θd1 =
D̄ − S1

ασ2
− z. (3.7b)

Liquidity suppliers are willing to buy the risky asset as long as it trades below its expected

payoff D̄, and are willing to sell otherwise. Liquidity demanders have a similar price-elastic demand

function, but are influenced by the liquidity shock z. When, for example, z is positive, liquidity

demanders are willing to sell because their endowment is positively correlated with the asset.

Market clearing requires that the aggregate demand equals the asset supply θ̄:

(1− π)θs1 + πθd1 = θ̄. (3.8)

Substituting (3.7a) and (3.7b) into (3.8), we find

S1 = D̄ − ασ2
(
θ̄ + πz

)
. (3.9)
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The price S1 decreases in the liquidity shock z. When, for example, z is positive, liquidity demanders

are willing to sell, and the price must drop so that the risk-averse liquidity suppliers are willing to

buy.

In Period 0, all agents are identical. An agent choosing holdings θ0 of the risky asset has wealth

W1 = W0 + θ0(S1 − S0) (3.10)

in Period 1. The agent can be a liquidity supplier in Period 1 with probability 1− π, or liquidity

demander with probability π. Substituting θs1 from (3.7a), S1 from (3.9), and W1 from (3.10), we

can write the expected utility (3.6) of a liquidity supplier in Period 1 as

− exp
{
−α

[
W0 + θ0(D̄ − S0)− ασ2θ0(θ̄ + πz) + 1

2ασ
2(θ̄ + πz)2

]}
. (3.11)

The expected utility depends on the liquidity shock z since z affects the price S1. We denote by

U s the expectation of (3.11) over z, and by Ud the analogous expectation for a liquidity demander.

These expectations are agents’ interim utilities in Period 1/2. An agent’s expected utility in Period

0 is

U ≡ (1− π)U s + πUd. (3.12)

Agents choose θ0 to maximize U . The solution to this maximization problem coincides with the

aggregate demand in Period 0, since all agents are identical in that period and are in measure one.

In equilibrium, aggregate demand has to equal the asset supply θ̄, and this determines the price S0

in Period 0.

Proposition 3.2 The price in Period 0 is

S0 = D̄ − ασ2θ̄ − πM

1− π + πM
∆1θ̄, (3.13)

where

M = exp
(
1
2α∆2θ̄

2
)√ 1 + ∆0π2

1 + ∆0(1− π)2 − α2σ2σ2
z

, (3.14)

∆0 = α2σ2σ2
z , (3.15a)

∆1 =
ασ2∆0π

1 + ∆0(1− π)2 − α2σ2σ2
z

, (3.15b)

∆2 =
ασ2∆0

1 + ∆0(1− π)2 − α2σ2σ2
z

. (3.15c)
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The first term in (3.13) is the asset’s expected payoff in Period 2, the second term is a discount

arising because the payoff is risky, and the third term is a discount due to illiquidity (i.e., low

liquidity). In the next section we explain why illiquidity in Period 1 lowers the price in Period 0.

3.2 Illiquidity and its Effect on Price

We construct two measures of illiquidity, both based on the price impact of the liquidity demanders’

trades in Period 1. The first measure is the coefficient of a regression of the price change between

Periods 0 and 1 on the signed volume of liquidity demanders in Period 1:

λ ≡
Cov

[
S1 − S0, π(θ

d
1 − θ̄)

]
Var

[
π(θd1 − θ̄)

] . (3.16)

Intuitively, when λ is large, trades have large price impact and the market is illiquid. Eq. (3.9)

implies that the price change between Periods 0 and 1 is

S1 − S0 = D̄ − ασ2
(
θ̄ + πz

)
− S0. (3.17)

Eqs. (3.7b) and (3.9) imply that the signed volume of liquidity demanders is

π(θd1 − θ̄) = −π(1− π)z. (3.18)

Eqs. (3.16)-(3.18) imply that

λ =
ασ2

1− π
. (3.19)

Illiquidity λ is higher when agents are more risk-averse (α large), the asset is riskier (σ2 large), or

liquidity suppliers are less numerous (1− π small).

The second measure is based on the autocovariance of price changes. The liquidity demanders’

trades in Period 1 cause the price to deviate from fundamental value, while the two coincide in

Period 2. Therefore, price changes exhibit negative autocovariance, and more so when trades have

large price impact. We use minus autocovariance

γ ≡ −Cov (S2 − S1, S1 − S0) , (3.20)

as a measure of illiquidity, and refer to it as price reversal, reserving the term illiquidity for λ. Eqs.

(3.9), (3.17), (3.20) and S2 = D imply that

γ = −Cov
[
D − D̄ + ασ2

(
θ̄ + πz

)
, D̄ − ασ2

(
θ̄ + πz

)
− S0

]
= α2σ4σ2

zπ
2. (3.21)

11



Price reversal γ is higher when agents are more risk-averse, the asset is riskier, liquidity demanders

are more numerous (π large), and liquidity shocks are larger (σ2
z large).7

The measures λ and γ have been derived within models focusing on specific imperfections,

and have been widely used in empirical work ever since. Using our unified model, we examine the

behavior of these measures across a variety of imperfections, and provide a broader perspective

on their properties. We emphasize basic properties below, leaving a more detailed discussion and

empirical implications to Section 10.

Kyle (1985) links λ to the degree of information asymmetry between an informed insider and

uninformed market makers. In Kyle, market makers are risk neutral, and trades affect prices only

because they contain information. Thus, the price impact, as measured by λ, reflects the amount

of information that trades convey, and is permanent because the risk-neutral market makers set

the price equal to their expectation of fundamental value. In general, as in our model, λ has both

a transitory and a permanent component. The transitory component, present even in our perfect-

market benchmark, arises because liquidity suppliers are risk averse and require a price movement

away from fundamental value to absorb a liquidity shock. The permanent component arises only

when information is asymmetric (Sections 4 and 8) for the same reasons as in Kyle.8

Roll (1984) links γ to the bid-ask spread, in a model where market orders cause the price to

bounce between the bid and the ask. Grossman and Miller (1988) link γ to the price impact of

liquidity shocks, in a model where risk-averse liquidity suppliers must incur a cost to participate in

the market. In both models, price impact is transitory because information is symmetric. In our

model, price impact has both a transitory and a permanent component, and γ isolates the effects

of the transitory component. Note that besides being a measure of imperfections, γ provides a

useful characterization of price dynamics: it measures the importance of the transitory component

in price arising from temporary liquidity shocks, relative to the random-walk component arising

from fundamentals.

Illiquidity in Period 1 lowers the price in Period 0 through the illiquidity discount, which is the

third term in (3.13). To explain why the discount arises, consider the extreme case where trade

in Period 1 is not allowed. In Period 0, agents know that with probability π they will receive an

endowment in Period 2. The endowment amounts to a risky position in Period 1, the size of which

is uncertain because it depends on z. Uncertainty about position size is costly (in utility terms) to

7The comparative statics of autocorrelation are similar to those of autocovariance. We use autocovariance rather
than autocorrelation because normalizing by variance adds unnecessary complexity.

8An alternative definition of λ, which isolates the permanent component, involves the price change between Periods
0 and 2 rather than between Periods 0 and 1. This is because the transitory deviation between price and fundamental
value in Period 1 disappears in Period 2.
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risk-averse agents. Moreover, the effect is stronger when agents carry a large position from Period

0 because the cost of holding a position in Period 1 is convex in the overall size of the position.

(The cost is the quadratic term in (3.5) and (3.6).) Therefore, uncertainty about z reduces agents’

willingness to buy the asset in Period 0.

The intuition is similar when agents can trade in Period 1. Indeed, in the extreme case where

trade is not allowed, the shadow price faced by liquidity demanders moves in response to z to the

point where these agents are not willing to trade. When trade is allowed, the price movement

is smaller, but non-zero. Therefore, uncertainty about z still reduces agents’ willingness to buy

the asset in Period 0. Moreover, the effect is weaker when trade is allowed in Period 1 than

when it is not, and therefore corresponds to a discount driven by illiquidity.9 Because the market

imperfections studied in the following sections hinder trade in Period 1, they tend to raise the

illiquidity discount in Period 0.

The illiquidity discount is the product of two terms. The first term, πM
1−π+πM , can be interpreted

as the risk-neutral probability of being a liquidity demander: π is the true probability, and M is

the ratio of marginal utilities of demanders and suppliers. The second term, ∆1θ̄, is the discount

that an agent would require in Period 0 if he were certain to be a demander.

The illiquidity discount is higher when liquidity shocks are larger (σ2
z large) and occur with

higher probability (π large). It is also higher when agents are more risk averse (α large), the asset

is riskier (σ2 large), and in larger supply (θ̄ large). Same comparative statics hold for the ratio

of the illiquidity discount to the discount ασ2θ̄ driven by payoff risk. Thus, while risk aversion α,

payoff risk σ2, or asset supply θ̄ raise the risk discount, they have an even stronger impact on the

illiquidity discount. For example, an increase in α raises not only the aversion of agents to the risk

of receiving a liquidity shock, but also the shock’s impact on price.

The parameter σ2
z , which measures the magnitude of liquidity shocks, has different effects on

the illiquidity measures and the illiquidity discount: it has no effect on λ, while it raises γ and the

discount. The intuition is that λ measures the price impact per unit trade, while γ and S0 concern

the impact of the entire liquidity shock.

Proposition 3.3 An increase in the variance σ2
z of liquidity shocks leaves illiquidity λ unchanged,

raises price reversal γ, and lowers the price in Period 0.

9The comparison of illiquidity discounts under trade and no trade follows from Proposition 4.6. See Footnote 12.
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4 Asymmetric Information

In this section we assume that liquidity demanders observe the private signal (2.3) before trading

in Period 1. Our analysis of equilibrium in Period 1 is closely related to Grossman and Stiglitz

(1980) because we assume continua of informed and uninformed agents, and endow all informed

agents with the same signal.10 Our analysis of equilibrium in Period 0 is new, and so are the results

on how asymmetric information affects the illiquidity discount and the price reversal γ.11

4.1 Equilibrium

The price in Period 1 incorporates the signal of liquidity demanders, and therefore reveals in-

formation to liquidity suppliers. To solve for equilibrium, we conjecture a price function (i.e., a

relationship between the price and the signal), then determine how agents use their knowledge of

the price function to learn about the signal and formulate demand functions, and finally confirm

that the conjectured price function clears the market.

We conjecture a price function that is affine in the signal s and the liquidity shock z, i.e.,

S1 = a+ b(s− D̄ − cz) (4.1)

for three constants (a, b, c). For expositional convenience, we set ξ ≡ s− D̄ − cz. We also refer to

the price function as simply the price.

Agents use the price and their private information to form a posterior distribution about the

asset payoff D. For a liquidity demander, the price conveys no additional information relative

10Grossman and Stiglitz model non-informational trading through exogenous shocks to the asset supply, while
we model it through an endowment received by the informed. Modeling non-informational trading through random
endowments dates back to Diamond and Verrecchia (1981), who solve a one-period model with a different information
structure than Grossman and Stiglitz. (Agents receive conditionally independent signals with the same precision.)
Wang (1994) solves an infinite-horizon model with continua of informed and uninformed agents, and models non-
informational trading through a risky production opportunity available only to the informed.

11O’Hara (2003) and Easley and O’Hara (2004) study the effect of asymmetric information on expected returns in
a multi-asset extension of Grossman and Stiglitz. They show that prices are lower and expected returns are higher
when agents receive private signals than when signals are public. This comparison concerns prices in our Period 1.
Moreover, it is driven not by asymmetric information per se but by the total amount of information agents have.
Indeed, while prices in Period 1 are lower under asymmetric information than when signals are public (maximum
total information), they are higher than under the alternative symmetric-information benchmark where no signals
are observed (minimum total information). We instead compare prices in Period 0, to determine the ex-ante effect
of the imperfection. This comparison is driven only by asymmetric information because prices are lower under
asymmetric information than under either symmetric-information benchmark. Garleanu and Pedersen (2004) study
the effect of asymmetric information on expected returns in a multi-period model with risk-neutral agents and unit
demands. When probability distributions are symmetric (as they are in our model), they find no effect of asymmetric
information on expected returns. Ellul and Pagano (2006) show that asymmetric information in the post-IPO stage
can reduce the IPO price. The post-IPO stage, however, involves exogenous noise traders and an insider who is
precluded from bidding for the IPO.
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to observing the signal s. Given the joint normality of (D, ϵ), D remains normal conditional on

s = D + ϵ, with mean and variance

E[D|s] = D̄ + βs(s− D̄), (4.2a)

σ2[D|s] = βsσ
2
ϵ , (4.2b)

where βs ≡ σ2/(σ2 + σ2
ϵ ). For a liquidity supplier, the only information is the price S1, which is

equivalent to observing ξ. Conditional on ξ (or S1), D is normal with mean and variance

E[D|S1] = D̄ + βξξ = D̄ +
βξ
b
(S1 − a), (4.3a)

σ2[D|S1] = βξ(σ
2
ϵ + c2σ2

z), (4.3b)

where βξ ≡ σ2/σ2
ξ and σ2

ξ ≡ σ2+σ2
ϵ +c2σ2

z . Agents’ optimization problems are as in Section 3, with

the conditional distributions of D replacing the unconditional one. Proposition 4.1 summarizes the

solution to these problems.

Proposition 4.1 Agents’ demand functions for the risky asset in Period 1 are

θs1 =
E[D|S1]− S1

ασ2[D|S1]
, (4.4a)

θd1 =
E[D|s]− S1

ασ2[D|s]
− z. (4.4b)

Substituting (4.4a) and (4.4b) into the market-clearing equation (3.8), we find

(1− π)
E[D|S1]− S1

ασ2[D|S1]
+ π

(
E[D|s]− S1

ασ2[D|s]
− z

)
= θ̄. (4.5)

The price (4.1) clears the market if (4.5) is satisfied for all values of (s, z). Substituting S1,

E[D|s], and E[D|S1] from (4.1), (4.2a) and (4.3a), we can write (4.5) as an affine equation in (s, z).

Therefore, (4.5) is satisfied for all values of (s, z) if the coefficients of (s, z) and of the constant term

are equal to zero. This yields a system of three equations in (a, b, c), solved in Proposition 4.2.

Proposition 4.2 The price in Period 1 is given by (4.1), where

a = D̄ − α(1− b)σ2θ̄, (4.6a)

b =
πβsσ

2[D|S1] + (1− π)βξσ
2[D|s]

πσ2[D|S1] + (1− π)σ2[D|s]
, (4.6b)

c = ασ2
ϵ . (4.6c)
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To determine the price in Period 0, we follow the same steps as in Section 3. The calculations

are more complicated because expected utilities in Period 1 are influenced by two random variables

(s, z) rather than only z. The price in Period 0, however, takes the same general form as in the

perfect-market benchmark.

Proposition 4.3 The price in Period 0 is given by (3.13), where M is given by (3.14),

∆0 =
(b− βξ)

2(σ2 + σ2
ϵ + c2σ2

z)

σ2[D|S1]π2
, (4.7a)

∆1 =
α3bσ2(σ2 + σ2

ϵ )σ
2
z

1 + ∆0(1− π)2 − α2σ2σ2
z

, (4.7b)

∆2 =
α3σ4σ2

z

[
1 + (βs−b)2(σ2+σ2

ϵ )
σ2[D|s]

]
1 + ∆0(1− π)2 − α2σ2σ2

z

. (4.7c)

4.2 Asymmetric Information and Illiquidity

We next examine how asymmetric information impacts the illiquidity measures and the illiquidity

discount. We consider two symmetric-information benchmarks: the no-information case, where

information is symmetric because no agent observes s, and the full-information case, where all

agents observe s. The analysis in Section 3 concerns the no-information case, but can easily be

extended to the full-information case (Appendix, Proposition A.1). Illiquidity λ and price reversal γ

under full information are given by (3.19) and (3.21), respectively, where σ2 is replaced by σ2[D|s].

Proposition 4.4 Illiquidity λ under asymmetric information is

λ =
ασ2[D|S1]

(1− π)
(
1− βξ

b

) . (4.8)

Illiquidity is highest under asymmetric information and lowest under full information. Moreover,

illiquidity under asymmetric information increases when the private signal (2.3) becomes more

precise, i.e., when σ2
ϵ decreases.

Under both symmetric and asymmetric information, illiquidity increases in the uncertainty

faced by liquidity suppliers, measured by their conditional variance of the asset payoff. In addition

to this uncertainty effect, a learning effect appears under asymmetric information: Because, for

example, liquidity suppliers attribute selling pressure partly to a low signal, they require a larger
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price drop to buy. The learning effect corresponds to the term βξ/b in (4.8), which lowers the

denominator and raises λ.

Because of the uncertainty effect, illiquidity under full information is lower than under no infor-

mation, and illiquidity under asymmetric information tends to lie in-between. The learning effect

raises illiquidity under asymmetric information, and works in the same direction as the uncertainty

effect when comparing asymmetric to full information. The two effects work in opposite directions

when comparing asymmetric to no information, but the learning effect dominates. Illiquidity is

thus highest under asymmetric information.

Price reversal is not unambiguously highest under asymmetric information. Indeed, consider

two extreme cases. If π ≈ 1, i.e., almost all agents are liquidity demanders (informed), then the

price processes under asymmetric and full information approximately coincide, and so do the price

reversals. Since, in addition, liquidity suppliers face more uncertainty under no information than

under full information, price reversal is highest under no information.

If instead π ≈ 0, i.e., almost all agents are liquidity suppliers (uninformed), then illiquidity

λ converges to infinity (order 1/π) under asymmetric information. This is because the trading

volume of liquidity demanders converges to zero, but the volume’s informational content remains

unchanged. Because of the high illiquidity, price reversal is highest under asymmetric information.

Proposition 4.5 Price reversal γ under asymmetric information is

γ = b(b− βξ)(σ
2 + σ2

ϵ + c2σ2
z). (4.9)

Price reversal is lowest under full information. It is highest under asymmetric information if π ≈ 0,

and under no information if π ≈ 1.

While illiquidity and price reversal are lower under full information than under no information,

the comparison reverses for the illiquidity discount. This is because information reduces the scope

for risk sharing, an effect originally shown in Hirshleifer (1971). Since risk sharing is better under

no information, trade achieves larger gains, and the illiquidity discount is smaller.

Because of the Hirshleifer effect, the illiquidity discount under asymmetric information tends to

lie between the full- and no-information discounts. At the same time, asymmetric information raises

illiquidity in Period 1 because of the learning effect. The learning effect raises the discount and

works in the same direction as the Hirshleifer effect when comparing asymmetric to no information.

The two effects work in opposite directions when comparing asymmetric to full information, but the
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learning effect dominates. The illiquidity discount is thus highest under asymmetric information.12

Proposition 4.6 The price in Period 0 is lowest under asymmetric information and highest under

no information.

The comparative statics with respect to the variance σ2
z of liquidity shocks are the same as in

the perfect-market benchmark case, except for the illiquidity λ. Under asymmetric information, an

increase in σ2
z lowers λ because liquidity shocks make prices less informative and attenuate learning.

Proposition 4.7 An increase in the variance σ2
z of liquidity shocks lowers illiquidity λ, raises price

reversal γ, and lowers the price in Period 0.

5 Participation Costs

In this section we assume that agents must incur a cost c to participate in the market in Period 1.

Our analysis of participation decisions and equilibrium in Period 1 is closely related to Grossman

and Miller (1988), and of equilibrium in Period 0 to Huang and Wang (2008a,b).13 Our result on

how participation costs affect the illiquidity λ is new.

5.1 Equilibrium

The price in Period 1 is determined by the participating agents. We look for an equilibrium where

all liquidity demanders participate, but only a fraction µ > 0 of liquidity suppliers do. Market

clearing requires that the aggregate demand of participating agents equals the asset supply held by

these agents. Since in equilibrium agents enter Period 1 holding θ̄ shares of the risky asset, market

clearing takes the form

(1− π)µθs1 + πθd1 = [(1− π)µ+ π] θ̄. (5.1)

12Proposition 4.6 implies that the illiquidity discount under no trade is larger than in the perfect-market benchmark.
Indeed, the perfect-market benchmark corresponds to the no-information case. On the other hand, no trade occurs
in the full-information case if the signal (2.3) is perfect (σ2

ϵ = 0) because there is no scope for risk sharing.

13Grossman and Miller assume participation costs for liquidity suppliers only, while we assume such costs for all
agents. Huang and Wang’s analysis is more general than ours in two respects. First, they assume no aggregate
liquidity shocks and derive aggregate order imbalances as a consequence of participation costs. We assume instead
an aggregate liquidity shock, in a spirit similar to Pagano (1989) and Allen and Gale (1994). Second, they consider
general parameter values, while we limit attention to values under which liquidity demanders always participate.
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Agents’ demand functions are as in Section 3. Substituting (3.7a) and (3.7b) into (5.1), we find

that the price in Period 1 is

S1 = D̄ − ασ2

[
θ̄ +

π

(1− π)µ+ π
z

]
. (5.2)

We next determine the measure µ of participating liquidity suppliers, assuming that all liquidity

demanders participate. If a supplier participates, he submits the demand function (3.7a) in Period

1. Since participation entails a cost c, wealth in Period 1 is

W1 = W0 + θ0(S1 − S0)− c. (5.3)

Using (3.7a), (5.2) and (5.3), we can compute the interim utility U s of a participating supplier in

Period 1/2. If the supplier does not participate, holdings in Period 1 are the same as in Period 0

(θs1 = θ0), and wealth in Period 1 is given by (3.10). We denote by U sn the interim utility of a

non-participating supplier in Period 1/2.

The participation decision is derived by comparing U s to U sn for the equilibrium choice of

θ0, which is θ̄. If the participation cost c is below a threshold c, then all suppliers participate

(µ = 1). If c is above c and below a larger threshold c̄, then suppliers are indifferent between

participating or not (U s = U sn), and only some participate (0 < µ < 1). Increasing c within

that region reduces the fraction µ of participating suppliers, while maintaining the indifference

condition. This is because with fewer participating suppliers, competition becomes less intense,

enabling the remaining suppliers to cover their increased participation cost. Finally, if c is above

c̄, then no suppliers participate (µ = 0).

Proposition 5.1 Suppose that all liquidity demanders participate. Then, the fraction of partici-

pating liquidity suppliers is

µ = 1, if c ≤ c ≡
log
(
1 + α2σ2σ2

zπ
2
)

2α
, (5.4a)

µ =
π

1− π

(
ασσz√
e2αc − 1

− 1

)
, if c < c < c̄ ≡

log
(
1 + α2σ2σ2

z

)
2α

, (5.4b)

µ = 0, if c ≥ c̄. (5.4c)

We next determine the participation decisions of liquidity demanders, taking those of liquidity

suppliers as given.
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Proposition 5.2 Suppose that a fraction µ > 0 of liquidity suppliers participate. Then, a sufficient

condition for all liquidity demanders to participate is

(1− π)µ ≥ π. (5.5)

Eq. (5.5) requires that the measure π of liquidity demanders does not exceed the measure

(1 − π)µ of participating suppliers. Intuitively, when demanders are the short side of the market,

they stand to gain more from participation, and can therefore cover the participation cost (since

suppliers do). Combining Propositions 5.1 and 5.2, we find:

Corollary 5.1 An equilibrium where all liquidity demanders and a fraction µ > 0 of liquidity

suppliers participate exists under the sufficient conditions π ≤ 1/2 and c ≤ ĉ ≡
log

(
1+ 1

4α
2σ2σ2

z

)
2α .

For π ≤ 1/2 and c ≤ ĉ, only two equilibria exist: the one in the corollary and the one where

no agent participates. The same is true for π larger but close to 1/2, and for c larger but close to

ĉ.14 When, however, c exceeds a threshold in (ĉ, c̄), the equilibrium in the corollary ceases to exist,

and no-participation becomes the unique equilibrium.

To determine the price in Period 0, we follow the same steps as in Section 3. The price takes

a form similar to that in the perfect-market benchmark.

Proposition 5.3 The price in Period 0 is given by (3.13), where

M = exp
(
1
2α∆2θ̄

2
)√√√√√ 1 + ∆0

π2

[(1−π)µ+π]2

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (5.6)

∆1 =
ασ2∆0

π
(1−π)µ+π

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (5.7a)

∆2 =
ασ2∆0

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (5.7b)

and ∆0 is given by (3.15a).

14Other equilibria are ruled out by the following argument. Prices and trading profits in Period 1 depend only the
relative measures of participating suppliers and demanders. Therefore, if participation occurs, the fraction of either
suppliers or demanders must (generically) equal one. If the fraction of demanders is less than one, then the fraction
of suppliers must equal one. This is a contradiction for π ≤ 1/2 because of (5.5). It is also a contradiction for π
larger but close to 1/2 because (5.5) is a sufficient condition: because liquidity demanders face the risk of liquidity
shocks, they can benefit from participation more than suppliers even when they are the long side of the market. See
Huang and Wang for a more detailed discussion of the nature of equilibrium under costly participation.
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5.2 Participation Costs and Illiquidity

We next examine how participation costs impact the illiquidity measures and the illiquidity dis-

count. Proceeding as in Section 3, we can compute the illiquidity λ and price reversal γ:

λ =
ασ2

(1− π)µ
, (5.8)

γ =
α2σ4σ2

zπ
2

[(1− π)µ+ π]2
. (5.9)

Both measures are inversely related to the fraction µ of participating liquidity suppliers. Proposition

5.3 implies that the illiquidity discount is also inversely related to µ.

We derive comparative statics for the equilibrium in Corollary 5.1, and consider only the

region c > c, where the measure µ of participating suppliers is less than one. This is without

loss of generality: in the region c ≤ c, where all suppliers participate, prices are not affected by

the participation cost and are as in the perfect-market benchmark. When c > c, an increase in

the participation cost lowers µ, and therefore raises illiquidity, price reversal and the illiquidity

discount.

Proposition 5.4 An increase in the participation cost c raises illiquidity λ and price reversal γ,

and lowers the price in Period 0.

Consider next an increase in the variance σ2
z of liquidity shocks. Since liquidity supply becomes

more profitable, there is more participation by suppliers and illiquidity λ decreases. Price reversal

remains unchanged, however, because of two offsetting effects. Holding the measure of participating

suppliers constant, an increase in σ2
z raises price reversal for the same reasons as in the perfect-

market benchmark. At the same time, increased participation lowers price reversal. The effects

exactly offset because the profits of participating suppliers depend on σ2
z only through the price

reversal. Since profits in equilibrium must equal the participation cost, price reversal is independent

of σ2
z .

Proposition 5.5 An increase in the variance σ2
z of liquidity shocks lowers illiquidity λ, leaves price

reversal γ unchanged, and lowers the price in Period 0.
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6 Transaction Costs

In this section we assume that agents incur a transaction cost when trading in Period 1. The

difference with the participation cost of the previous section is that the decision whether or not to

incur the transaction cost is contingent on the price in Period 1. We mainly focus on the case where

the transaction cost is proportional to transaction size, as measured by the number of shares, and

consider the more complicated case of fixed costs at the end of this section. We assume that the

liquidity shock z is drawn from a general distribution that is symmetric around zero with density

f(z); specializing to a normal distribution does not simplify the analysis. Our analysis is closest

to Lo, Mamaysky and Wang (2004) because we examine how transaction costs affect prices in a

setting where agents trade to share risk. Lo, Mamaysky and Wang assume fixed costs, while we

focus on proportional costs.15 Our results on how transaction costs affect the illiquidity λ and price

reversal γ are new.

6.1 Equilibrium

Transaction costs generate a bid-ask spread in Period 1. An agent buying one share pays the price

S1 plus the transaction cost κ, and so faces an effective ask price S1 + κ. Conversely, an agent

selling one share receives S1 but pays κ, and so faces an effective bid price S1 − κ. The bid-ask

spread is independent of transaction size because transaction costs are proportional. Because of the

spread, trade occurs only if the liquidity shock z is sufficiently large. Suppose, for example, that

z > 0, in which case liquidity demanders value the asset less than liquidity suppliers. If liquidity

suppliers buy, their demand function is as in Section 3 (Eq. (3.7a)), but with S1 + κ taking the

place of S1, i.e.,

θs1 =
D̄ − S1 − κ

ασ2
. (6.1)

Conversely, if liquidity demanders sell, their demand function is as in Section 3 (Eq. (3.7b)), but

with S1 − κ taking the place of S1, i.e.,

θd1 =
D̄ − S1 + κ

ασ2
− z. (6.2)

15Equilibrium with proportional costs has mainly been studied in settings where agents trade because of life-cycle
or consumption-smoothing motives, rather than risk sharing. See, for example, Amihud and Mendelson (1986),
Vayanos (1998, 2004), Vayanos and Vila (1999), Huang (2002), and Acharya and Pedersen (2005) for life-cycle
motives, and Aiyagari and Gertler (1991) and Heaton and Lucas (1996) for consumption-smoothing motives. See also
Constantinides (1986) who derives general-equilibrium implications of transaction costs from a partial-equilibrium
setting where an agent engages in dynamic portfolio rebalancing. The trading frequencies implied by the various
motives differ: they are low for life cycle and consumption smoothing and higher for portfolio rebalancing and risk
sharing.
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Since in equilibrium agents enter Period 1 holding θ̄ shares of the risky asset, trade occurs if there

exists a price S1 such that θs1 > θ̄ and θd1 < θ̄. Using (6.1) and (6.2), we can write these conditions

as

κ < D̄ − S1 − ασ2θ̄ < ασ2z − κ.

Therefore, trade occurs if z > 2κ
ασ2 ≡ κ̂, i.e., the liquidity shock z is large relative to the transaction

cost κ. The price can be determined by substituting (6.1) and (6.2) into the market-clearing

equation (3.8). Repeating the analysis for z < 0, we can derive the following proposition.

Proposition 6.1 The equilibrium in Period 1 is as follows:

• |z| ≤ κ̂: Agents do not trade;

• |z| > κ̂: All agents trade and the price is

S1 = D̄ − ασ2
[
θ̄ + πz + κ̂

(
1
2 − π

)
sign(z)

]
. (6.3)

The effect of transaction costs on the price depends on the relative measures of liquidity suppli-

ers and demanders. Suppose, for example, that z > 0. In the absence of transaction costs, liquidity

demanders sell and the price drops. Because transaction costs deter liquidity suppliers from buying,

they tend to depress the price, amplifying the effect of z. At the same time, transaction costs deter

liquidity demanders from selling, and this tends to raise the price, dampening the effect of z. The

overall effect depends on agents’ relative measures. If π < 1/2 (more suppliers than demanders),

the impact on suppliers dominates, and transaction costs amplify the effect of z. The converse holds

if π > 1/2. The price in Period 0 takes a form similar to that in the perfect-market benchmark.16

Proposition 6.2 The price in Period 0 is given by (3.13), where

M =

∫ κ̂
0 exp

(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz +

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz∫ κ̂

0 f(z)dz +
∫∞
κ̂ exp

[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz

, (6.4)

16Extending our analysis to fixed costs is more complicated because agents’ optimization problems become non-
convex. Non-convexity can give rise to multiple solutions, meaning that agents of the same type (suppliers or
demanders) can fail to take the same action. Suppose, for example, that all agents start with the same position
θ0 = θ̄ in Period 0. As with proportional costs, all agents trade in Period 1 if the liquidity shock z is large, while
no agent trades if z is small. For intermediate values of z, however, some agents pay the fixed cost and trade, while
others of the same type do not trade.

A further complication arising from non-convexity is that θ0 = θ̄ is not an equilibrium. Indeed, consider a deviation
from θ0 = θ̄ in either direction. The trades that become profitable in the margin are those whose surplus equals the
fixed cost. But while the net surplus of these trades is zero, the marginal surplus (i.e., the derivative with respect to
θ0) is non-zero. Thus, expected utility at θ0 = θ̄ has a local minimum and a kink, implying that identical agents in
Period 0 choose different positions in equilibrium.

23



∆1 =
ασ2

[∫ κ̂
0 exp

(
1
2α

2σ2z2
)
sh
(
α2σ2θ̄z

)
zf(z)dz +

∫∞
κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂]f(z)dz

]
θ̄
[∫ κ̂

0 exp
(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz +

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz

] ,

(6.5)

Γ(z) = exp
[
1
2α

2σ2z2 − 1
2α

2σ2(1− π)2(z − κ̂)2
]
. (6.6)

6.2 Transaction Costs and Illiquidity

We next examine how transaction costs impact the illiquidity measures and the illiquidity discount.

Because transaction costs deter liquidity suppliers from trading, they raise illiquidity λ. Note that

λ rises even when transaction costs dampen the effect of the liquidity shock z on the price. Indeed,

dampening occurs not because of enhanced liquidity supply, but because liquidity demanders scale

back their trades.

Proposition 6.3 Illiquidity λ is

λ =
ασ2

1− π

[
1 +

κ̂

2π

∫∞
κ̂ (z − κ̂) f(z)dz∫∞
κ̂ (z − κ̂)2 f(z)dz

]
, (6.7)

and is higher than without transaction costs (κ = 0).

Defining price reversal γ involves a slight complication because for small values of z there is

no trade in Period 1, and therefore the price S1 is not uniquely defined. We define price reversal

conditional on trade in Period 1. The empirical counterpart of our definition is that no-trade

observations are dropped from the sample. Transaction costs affect price reversal both because

they limit trade to large values of z, and because they impact the price conditional on trade

occuring. The first effect raises price reversal. The second effect works in the same direction when

transaction costs amplify the effect of z on the price, i.e., when π < 1/2.

Proposition 6.4 Price reversal γ is

γ = α2σ4

∫∞
κ̂

[
πz +

(
1
2 − π

)
κ̂
]2

f(z)dz∫∞
κ̂ f(z)dz

. (6.8)

It is increasing in the transaction cost coefficient κ if π ≤ 1/2.
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Because transaction costs hinder trade in Period 1, a natural conjecture is that they raise the

illiquidity discount. When, however, π ≈ 1, transaction costs can lower the discount. The intuition

is that for π ≈ 1 liquidity suppliers are the short side of the market and stand to gain the most

from trade. Therefore, transaction costs hurt them the most, and reduce the utility differential

between suppliers and demanders. This lowers the risk-neutral probability of being a demander,

and can lower the discount. Transaction costs always raise the discount when π ≤ 1/2.

Proposition 6.5 The price in Period 0 is decreasing in the transaction cost coefficient κ if π ≤ 1/2.

We can sharpen the results of Propositions 6.4 and 6.5 by assuming specific distributions for

the liquidity shock z. When z is drawn from a two-point distribution, transaction costs raise price

reversal γ for all values of π, but lower the illiquidity discount for π ≈ 1. When z is normal,

transaction costs raise γ for all values of π, and numerical calculations suggest that they also raise

the discount for all values of π.

To derive comparative statics with respect to the variance σ2
z of z, we assume again specific

distributions. When z is drawn from a two-point distribution, an increase in σ2
z lowers λ, while the

effects on γ and the discount are as in the perfect-market benchmark. Same comparative statics

on (λ, γ) hold when z is normal, and numerical calculations suggest same comparative statics on

the discount. The intuition why λ decreases in σ2
z is that when liquidity shocks are large, the main

determinant of λ is not the bid-ask spread, which is affected by transaction costs, but the suppliers’

risk aversion. Since the relative importance of the bid-ask spread decreases when σ2
z increases, λ

decreases. Proposition 6.6 summarizes the results in the case of a two-point distribution.

Proposition 6.6 Suppose that z is drawn from a two-point distribution, and trade occurs in Period

1 (σz > κ̂). Illiquidity λ and price reversal γ are increasing in the transaction cost coefficient κ.

An increase in the variance σ2
z of liquidity shocks lowers illiquidity λ, raises price reversal γ, and

lowers the price in Period 0.

7 Leverage Constraints

In this section we assume that agents’ leverage is limited as a function of their capital. We derive

a leverage constraint from agents’ inability to commit to cover losses on levered positions solely by

reducing consumption. For simplicity, we assume that agents must be able to cover losses in full.

To ensure that such commitment is possible despite the lower bound on consumption, we replace
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normal distributions by distributions with bounded support.17 We denote the support of the asset

payoff D by [D̄− bD, D̄+ bD] and that of the liquidity shock z by [−bz, bz]. We assume that D and

z are distributed symmetrically around their respective means, D is positive (i.e., D̄−bD ≥ 0), and

agents receive a positive endowment B of the riskless asset in Period 0. Because our focus is on

how the leverage constraint influences the supply of liquidity, we impose it on liquidity suppliers

only. Our analysis is closest to Gromb and Vayanos (2002), who study the supply of liquidity by

leverage-constrained agents.18 In Gromb and Vayanos, liquidity is supplied by arbitrageurs who

trade two correlated zero-supply assets across segmented markets. We assume instead one risky

asset in positive supply, and add an ex-ante stage (Period 0) where all agents are identical. Our

analysis of how leverage constraints affect the illiquidity discount (computed in the ex-ante stage

before liquidity shocks occur) is new.

7.1 Equilibrium

In Period 1, a liquidity demander chooses holdings θd1 of the risky asset to maximize the expected

utility (3.4). The expectation over D is

− exp
{
−α

[
W1 + θd1(D̄ − S1)− f(θd1 + z)

]}
, (7.1)

where

f(θ) ≡
log E exp

[
−αθ(D − D̄)

]
α

. (7.2)

Eq. (7.1) generalizes (3.5), derived under normality, to any symmetric distribution. The func-

tion f(θ), equal to 1
2αθ

2 under normality, is positive, symmetric around the y-axis, and convex.19

Maximizing (7.1) over θd1 yields the demand function

θd1 =
(
f ′)−1

(D̄ − S1)− z. (7.3)

17The assumption that losses must be covered in full is also implicit in the perfect-market benchmark. Dropping
this assumption and allowing for default would expand the set of payoffs beyond those achieved by the traded assets.
Suppose, for example, that an agent borrows cash to buy the risky asset. If the agent can default, his payoff is that
of a call option on the risky asset. See Geanakoplos (2003) for a general analysis of margin contracts and an example
where allowing for default entails no loss of generality.

18See also Geanakoplos (2003) and Geanakoplos and Zame (2009) for a general formulation of equilibrium with
collateral and margin contracts. Kyle and Xiong (2001) and Xiong (2001) consider settings where liquidity suppliers
face no leverage constraints but have logarithmic preferences. Logarithmic preferences require that consumption is
non-negative. At the same time, because the marginal utility at zero consumption is infinite, the leverage constraint
implied by non-negative consumption never binds.

19The function αf(θ) is the cumulant-generating function of −α(D−D̄). Cumulant-generating functions are convex.
Symmetry follows because D is distributed symmetrically around D̄. Positivity follows from f(0) = 0, symmetry and
convexity.
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Since f(θ) is convex, the demand θd1 is a decreasing function of the price S1.

A liquidity supplier chooses holdings θs1 of the risky asset to maximize the expected utility

− exp
{
−α

[
W1 + θs1(D̄ − S1)− f(θs1)

]}
, (7.4)

which can be derived from (7.1) by setting z = 0. The optimization is subject to a leverage

constraint. Indeed, losses from investing in the risky asset can be covered by wealth W1 or negative

consumption. Since suppliers must be able to cover losses in full, and cannot commit to consume

less than −A, losses cannot exceed W1 +A, i.e.,

θs1(S1 −D) ≤ W1 +A for all D.

This yields the constraint

m|θs1| ≤ W1 +A, (7.5)

where

m ≡ S1 −min
D

D if θs1 > 0, (7.6a)

m ≡ max
D

D − S1 if θs1 < 0. (7.6b)

The constraint (7.5) requires that a position of θs1 shares is backed by capital m|θs1|. This limits the

size of the position as a function of the capital W1+A available to suppliers in Period 1. Suppliers’

capital is the sum of the capital W1 that they physically own in Period 1, and the capital A that

they can access through their commitment to consume −A in Period 2. The parameter m is the

required capital per share of levered position, and can be interpreted as a margin or haircut. The

margin is equal to the maximum possible loss per share. For example, the margin (7.6a) for a

long position does not exceed the asset price S1, and is strictly smaller if the asset payoff D has a

positive lower bound (i.e., minD D = D̄ − bD > 0).20

Intuitively, the constraint (7.5) can bind when there is a large discrepancy between the price

S1 and the expected payoff D̄, since this is when liquidity suppliers want to hold large positions.

There is, however, a countervailing effect because of a decrease in the margin. When, for example,

S1 is low, suppliers want to hold large long positions, but the margin is small because the maximum

possible loss is small. The required capital (position size times margin) increases in the discrepancy

between S1 and D̄ under the sufficient condition

2απbDbz < 1, (7.7)

20The margins (7.6a) for a long position and (7.6b) for a short position are finite because D has bounded support.
Our analysis can accommodate short-sale constraints, i.e., infinite margins for short positions, by setting the upper
bound of D to infinity.
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which for simplicity we assume from now on.

Proposition 7.1 The equilibrium in Period 1 has the following properties:

• The leverage constraint (7.5) never binds if

B +A+ θ̄(D̄ − bD)− πbz
[
bD − f ′(θ̄ + πbz)

]
≥ 0. (7.8)

Otherwise, (7.5) binds for z ∈ [−bz,−z) ∪ (z, bz], where 0 < z < z ≤ bz.

• An increase in z lowers the price S1 and raises the liquidity suppliers’ position θs1. When

(7.5) does not bind, θs1 = θ̄ + πz and

S1 = D̄ − f ′(θ̄ + πz). (7.9)

The leverage constraint never binds if agents receive a large endowment B of the riskless asset

in Period 0, or if they can commit to a large negative consumption −A in Period 2. In both cases,

the capital that they can access in Period 1 is large. If instead B and A are small, the constraint

binds for large positive and possibly large negative values of the liquidity shock z. For example,

when z is large and positive, the price S1 is low and liquidity suppliers are constrained because

they want to hold large long positions. Setting

K∗ ≡ πbz
[
bD − f ′(θ̄ + πbz)

]
− θ̄(D̄ − bD),

we refer to the region B+A > K∗, where liquidity suppliers are well-capitalized and the constraint

never binds, as the abundant-capital region, and to the region B + A < K∗, where the constraint

binds for some values of z, as the scarce-capital region. Note that in both regions, the constraint

does not bind for z = 0. Indeed, the unconstrained outcome for z = 0 is that liquidity suppliers

maintain their endowments θ̄ of the risky asset and B of the riskless asset. Since this yields positive

consumption, the constraint is met.

An increase in the liquidity shock z lowers the price S1 and raises the liquidity suppliers’

position θs1. These results are the same as in the perfect-market benchmark of Section 3, but the

intuition is more complicated when the leverage constraint binds. Suppose that capital is scarce

(i.e., B + A < K∗), and z is large and positive, in which case suppliers hold long positions and

are constrained. The intuition why they can buy more, despite the constraint, when z increases

is as follows. Since the price S1 decreases, suppliers realize a capital loss on the θ̄ shares of the

risky asset that they carry from Period 0. This reduces their wealth in Period 1 and tightens the

constraint. At the same time, a decrease in S1 triggers an equal decrease in the margin (7.6a)
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for long positions, and loosens the constraint. This effect is equivalent to a capital gain on the θs1

shares that suppliers hold in Period 1. Because suppliers are net buyers for z > 0 (i.e., θs1 > θ̄), the

latter effect dominates, and suppliers can buy more in response to an increase in z.

To determine the price in Period 0, we make the simplifying assumption that the risk-aversion

coefficient α is small. We denote by (σ2, σ2
z) the variances of (D, z), by k ≡ E[D−D̄]4

σ4 −3 the curtosis

of D, by F (z) the cumulative distribution function of z, and by o(αn) terms smaller than αn.

Proposition 7.2 Suppose that α is small. The price in Period 0 is

S0 = D̄ − ασ2θ̄ − α3σ4
[(
1 + 1

2k
)
σ2
zπ

2 + 1
6kθ̄

2
]
θ̄ + o(α3) (7.10)

when capital is abundant, and

S0 = D̄ − ασ2θ̄ − ασ2(1− π)

[∫ z

z
(z − z)dF (z) +

∫ bz

z
(z − z)dF (z)

]
+ o(α) (7.11)

when capital is scarce.

7.2 Leverage Constraints and Illiquidity

We next examine how the leverage constraint impacts the illiquidity measures and the illiquidity

discount. We compute these variables in the abundant-capital region (liquidity suppliers are well-

capitalized and unconstrained by leverage for all values of the liquidity shock z), and compare with

the scarce-capital region.

Proposition 7.3 Suppose that α is small or z is drawn from a two-point distribution. Illiquidity

λ is higher when capital is scarce than when it is abundant.

Proposition 7.4 Price reversal γ is higher when capital is scarce than when it is abundant.

The intuition is as follows. When the liquidity shock z is close to zero, the constraint does not

bind in both the abundant- and scarce-capital regions, and therefore price and volume are identical

in the two regions. For larger values of z, the constraint binds when capital is scarce, impairing

suppliers’ ability to accommodate an increase in z. As a result, an increase in z has a larger

effect on price and a smaller effect on volume. Since the effect on price is larger, so is the price

reversal γ. Illiquidity λ is also larger because it measures the price impact per unit of volume. Note
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that λ measures an average price impact, i.e., the average slope of the relationship between price

change and signed volume. This relationship exhibits an important non-linearity when capital is

scarce: the slope increases for large values of z, which is when the constraint binds. This property

distinguishes leverage constraints from other imperfections.

The illiquidity discount is higher when capital is scarce. This is because the leverage constraint

binds asymmetrically: it is more likely to bind when liquidity demanders sell (z > 0) than when

they buy (z < 0). Indeed, the constraint binds when the suppliers’ position is large in absolute

value—and a large position is more likely when suppliers buy in Period 1 because this adds to the

long position θ̄ that they carry from Period 0. Since price movements in Period 1 are exacerbated

when the constraint binds, and the constraint is more likely to bind when demanders sell, the

average price in Period 1 is lower when capital is scarce. This yields a lower price in Period 0.

Proposition 7.5 Suppose that α is small. The price in Period 0 is lower when capital is scarce

than when it is abundant.

We next consider an increase in the magnitude of liquidity shocks. We scale up all shocks

uniformly, replacing z by ωz for a scalar ω > 1.21

Proposition 7.6 Suppose that α is small, and all liquidity shocks are multiplied by ω > 1.

• If under the new distribution capital is abundant, then illiquidity λ remains the same (to the

highest order in α), price reversal γ increases, and the price in Period 0 decreases.

• If under the new distribution capital is scarce, then illiquidity λ increases, price reversal γ

increases, and the price in Period 0 decreases.

The comparative statics when capital is abundant are the same as for the perfect-market

benchmark of Section 3. When instead capital is scarce, an increase in the shocks’ magnitude

increases illiquidity. This result is different than for other imperfections, and is due to the non-

linearity of the relationship between price change and signed volume: the relationship becomes

stronger when the constraint binds, and the constraint is more likely to bind when shocks are

larger.

Our analysis can be extended to the case where the leverage constraint (7.5) holds with a

margin m that is constant, rather than a function of price as in (7.6a)-(7.6b). A constant margin

21Other sections consider an increase in the variance σ2
z of liquidity shocks, assuming a normal or a two-point

distribution. This is equivalent to scaling up all shocks uniformly.
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yields different implications for how liquidity suppliers respond to an increase in the liquidity shock

z: while their position θs1 increases under the margin (7.6a)-(7.6b), it can decrease under a constant

margin. Indeed, suppose that suppliers hold long positions and are constrained. An increase in z

lowers S1, triggering a capital loss and a tightening of the constraint. Under the margin (7.6a)-

(7.6b), there is the countervailing and dominant effect that the margin decreases. This effect does

not exist under a constant margin, and therefore suppliers are forced to sell. Liquidity suppliers

thus consume liquidity: in response to selling pressure by demanders, they sell (to demanders).

This yields amplification: following an increase in the liquidity shock z, the price drops, triggering

sales by suppliers, amplifying the price drop, triggering more sales, etc. In particular, the price

drop is larger than in the suppliers’ absence.22

8 Non-Competitive Behavior

In this section we assume that liquidity demanders behave as a single monopolist in Period 1. We

consider both the case where liquidity demanders have no private information on asset payoffs,

and so information is symmetric, and the case where they observe the private signal (2.3), and so

information is asymmetric. (The second case nests the first by setting the variance σ2
ϵ of the signal

noise to infinity.) We show that strategic behavior by liquidity demanders influences the supply of

liquidity, even though liquidity suppliers are competitive. The trading mechanism in Period 1 is

that liquidity suppliers submit a demand function and liquidity demanders submit a market order,

i.e., a price-inelastic demand function. Restricting liquidity demanders to trade by market order

is without loss of generality: since they know all available information in Period 1, they know the

demand function of liquidity suppliers. Our analysis of equilibrium in Period 1 is closely related to

Bhattacharya and Spiegel (1991) because we assume that an informed monopolist with a hedging

motive trades with competitive risk-averse agents.23 Our analysis of equilibrium in Period 0 is new,

and so are the results on how non-competitive behavior affects the illiquidity discount and the price

reversal γ.

22Amplification can arise even in the presence of countervailing variation in margins, and for constraints derived
endogenously in the spirit of (7.5). See, for example, Gromb and Vayanos (2002) and Geanakoplos (2003).

23Strategic behavior under asymmetric information has mainly been studied in a setting introduced by Kyle (1985),
where strategic informed traders trade with competitive risk-neutral market makers and noise traders. Risk neutrality
simplifies the derivations, but also eliminates any effect of illiquidity on expected returns. Indeed, expected returns
are equal to the riskless rate because market makers are competitive and risk-neutral. See also Glosten and Milgrom
(1985), Easley and O’Hara (1987) and Admati and Pfleiderer (1988) for other settings with competitive risk-neutral
market makers and noise traders.
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8.1 Equilibrium

We conjecture that the price in Period 1 has the same affine form (4.1) as in the competitive case,

with possibly different constants (a, b, c). Given (4.1), the demand function of liquidity suppliers is

(4.4a) as in the competitive case. Substituting (4.4a) into the market-clearing equation (3.8), and

using (4.3a), yields the price in Period 1 as a function of the liquidity demanders’ market order θd1 :

S1(θ
d
1) =

D̄ − βξ

b a+ ασ2[D|S1]
1−π (πθd1 − θ̄)

1− βξ

b

. (8.1)

Liquidity demanders choose θd1 to maximize the expected utility

−Eexp
{
−α

[
W1 + θd1

(
D − S1(θ

d
1)
)
+ z(D − D̄)

]}
. (8.2)

The difference with the competitive case is that liquidity demanders behave as a single monopolist

and take into account the impact of their order θd1 on the price S1. Proposition 8.1 characterizes

the solution to the liquidity demanders’ optimization problem.

Proposition 8.1 The liquidity demanders’ market order in Period 1 satisfies

θd1 =
E[D|s]− S1(θ

d
1)− ασ2[D|s]z + λ̂θ̄

ασ2[D|s] + λ̂
, (8.3)

where λ̂ ≡ dS1(θd1)

dθd1
= απσ2[D|S1]

(1−π)
(
1−

βξ
b

) .

Eq. (8.3) determines θd1 implicitly because it includes θd1 in both the left- and the right-hand side.

We write θd1 in the form (8.3) to facilitate the comparison with the competitive case. Indeed, the

competitive counterpart of (8.3) is (4.4b), and can be derived by setting λ̂ to zero. The parameter λ̂

measures the price impact of liquidity demanders, and is closely related to the illiquidity λ. Because

in equilibrium λ̂ > 0, the denominator of (8.3) is larger than that of (4.4b), and therefore θd1 is less

sensitive to changes in E[D|s]−S1 and z than in the competitive case. Intuitively, because liquidity

demanders take price impact into account, they trade less aggressively in response to their signal

and their liquidity shock.

Substituting (4.4a) and (8.3) into the market-clearing equation (3.8), and proceeding as in

Section 4, we find a system of three equations in (a, b, c). Proposition 8.2 solves this system.
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Proposition 8.2 The price in Period 1 is given by (4.1), where

b =
πβsσ

2[D|S1] + (1− π)βξσ
2[D|s]

2πσ2[D|S1] + (1− π)σ2[D|s]
, (8.4)

and (a, c) are given by (4.6a) and (4.6c), respectively. The linear equilibrium exists if σ2
ϵ > σ̂2

ϵ ,

where σ̂2
ϵ is the positive solution of

α2σ̂4
ϵσ

2
z = σ2 + σ̂2

ϵ . (8.5)

The price in the competitive market in Period 0 can be determined through similar steps as in

previous sections.

Proposition 8.3 The price in Period 0 is given by (3.13), where

M = exp
(
1
2α∆2θ̄

2
)√√√√ 1 + ∆0π2

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]

)
(1− π)2 − α2σ2σ2

z

, (8.6)

∆1 =
α3bσ2(σ2 + σ2

ϵ )σ
2
z

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]

)
(1− π)2 − α2σ2σ2

z

, (8.7a)

∆2 =

α3σ4σ2
z

[
1 +

α(βs−b)2(σ2+σ2
ϵ )(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)
2

]
1 + ∆0

(
1 + 2λ̂

ασ2[D|s]

)
(1− π)2 − α2σ2σ2

z

, (8.7b)

and ∆0 is given by (4.7a).

8.2 Non-Competitive Behavior and Illiquidity

We next examine how non-competitive behavior impacts the illiquidity measures and the illiquidity

discount.

Proposition 8.4 Illiquidity λ is given by (4.8). It is the same as under competitive behavior when

information is symmetric, and higher when information is asymmetric.

Although illiquidity is given by the same equation as under competitive behavior, it is higher

when behavior is non-competitive because the coefficient b is smaller. Intuitively, when liquidity
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demanders take price impact into account, they trade less aggressively in response to their signal

and their liquidity shock. This reduces the size of both information- and liquidity-generated trades.

The relative size of the two types of trades remains the same, and so does price informativeness,

measured by the signal-to-noise ratio. Monopoly trades thus have the same informational content

as competitive trades, but are smaller in size. As a result, the signal per trade size is higher, and

so is the price impact of trades and the illiquidity λ. Non-competitive behavior has no effect on

illiquidity when information is symmetric because trades have no informational content.

An increase in information asymmetry, through a reduction in the variance σ2
ϵ of the signal

noise, generates an illiquidity spiral. Because illiquidity increases, liquidity demanders scale back

their trades. This raises the signal per trade size, further increasing illiquidity. When information

asymmetry becomes severe, illiquidity becomes infinite and trade ceases, leading to a market break-

down. This occurs when σ2
ϵ ≤ σ̂2

ϵ , i.e., for values of σ
2
ϵ such that the equilibrium of Proposition 8.2

does not exist. Non-competitive behavior is essential for the non-existence of an equilibrium with

trade because such an equilibrium always exists under competitive behavior.24

Proposition 8.5 Price reversal γ is given by (4.9), and is lower than under competitive behavior.

Although price reversal is given by the same equation as under competitive behavior, it is

lower when behavior is non-competitive because the coefficient b is smaller. Intuitively, price re-

versal arises because the liquidity demanders’ trades in Period 1 cause the price to deviate from

fundamental value. Under non-competitive behavior, these trades are smaller and so is price re-

versal. Note that non-competitive behavior has opposite effects on the two illiquidity measures:

illiquidity λ increases but price reversal γ decreases.

While illiquidity λ is higher under non-competitive behavior, the illiquidity discount can be

lower. This is because liquidity demanders scale back their trades, rendering the price less responsive

to their liquidity shock and obtaining better insurance against the shock. This effect drives the

illiquidity discount below the competitive value when information is symmetric. When information

is asymmetric, the comparison can reverse. This is because the scaling back of trades generates the

spiral of increasing illiquidity, and this reduces the insurance received by liquidity demanders.

Proposition 8.6 The price in Period 0 is higher than under competitive behavior when information

is symmetric, but can be lower when information is asymmetric.

24There exist settings, however, where asymmetric information leads to market breakdowns even with competitive
agents. See Akerlof (1970) for a setting where agents trade heterogeneous goods of different qualities, and Glosten
and Milgrom (1985) for an asset-market setting.
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The comparative statics with respect to the variance σ2
z of liquidity shocks are the same as

under competitive behavior.

Proposition 8.7 An increase in the variance σ2
z of liquidity shocks leaves illiquidity λ unchanged

under symmetric information but lowers it under asymmetric information. It raises price reversal

and lowers the price in Period 0.

9 Search

In this section we assume that agents do not meet in a centralized exchange in Period 1, but

instead must search for counterparties. When a liquidity demander meets a supplier, they bargain

bilaterally over the terms of trade, i.e., the number of shares traded and the share price. We assume

that bargaining leads to an efficient outcome, and denote by ϕ ∈ [0, 1] the fraction of transaction

surplus appropriated by suppliers. We denote by N the measure of bilateral meetings between

demanders and suppliers. This parameter characterizes the efficiency of the search process, and

is bounded by min{π, 1 − π} since there cannot be more meetings than demanders or suppliers.

Assuming that all meetings are equally likely, the probability of a demander meeting a supplier

is πd ≡ N/π, and of a supplier meeting a demander is πs ≡ N/(1 − π). Our analysis is closest

to Lagos, Rocheteau and Weill (2009), who study asset-market search in a continuous-time model

where agents can hold arbitrary positions and there are aggregate liquidity shocks.25 Our results

on how the search friction affects the illiquidity λ and price reversal γ are new.26

9.1 Equilibrium

Prices in Period 1 are determined through pairwise bargaining between liquidity demanders and

suppliers. Agents’ outside option is not to trade and retain their positions from Period 0, which in

equilibrium are equal to θ̄. The consumption in Period 2 of a liquidity supplier who does not trade

in Period 1 is Csn
2 = W0 + θ̄(D − S0). This generates a certainty equivalent

CEQsn = W0 + θ̄(D̄ − S0)− 1
2ασ

2θ̄2, (9.1)

25See also Duffie, Garleanu and Pedersen (2008) and Weill (2007), who study aggregate shocks under the assumption
that the positions of some agents can take one of two values. Most search models of asset markets assume deterministic
steady states and no aggregate shocks, following Duffie, Garleanu and Pedersen (2005).

26Duffie, Garleanu and Pedersen (2008) and Weill (2007) show in the context of numerical examples that prices
recover more slowly from shocks in a search market than in a centralized market. Lagos, Rocheteau and Weill (2009)
show that the speed of recovery is non-monotonic in the search friction. None of these papers, however, relates the
speed of recovery to λ or γ.
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where the first two terms are the expected consumption, and the third a risk adjustment quadratic

in position size. If the supplier buys x shares at price S1, the certainty equivalent becomes

CEQs = W0 + θ̄(D̄ − S0) + x(D̄ − S1)− 1
2ασ

2(θ̄ + x)2 (9.2)

because the position becomes θ̄+x. Likewise, the certainty equivalent of a liquidity demander who

does not trade in Period 1 is

CEQdn = W0 + θ̄(D̄ − S0)− 1
2ασ

2(θ̄ + z)2, (9.3)

and if the demander sells x shares at price S1, the certainty equivalent becomes

CEQd = W0 + θ̄(D̄ − S0)− x(D̄ − S1)− 1
2ασ

2(θ̄ + z − x)2. (9.4)

Under efficient bargaining, x maximizes the sum of certainty equivalents CEQs + CEQd. The

maximization yields x = z/2, i.e., the liquidity shock is shared equally between the two agents.

The price S1 is such that the supplier receives a fraction ϕ of the transaction surplus, i.e.,

CEQs − CEQsn = ϕ
(
CEQs + CEQd − CEQsn − CEQdn

)
. (9.5)

Proposition 9.1 When a supplier and a demander meet in Period 1, the supplier buys z/2 shares

at the price

S1 = D̄ − ασ2
[
θ̄ + 1

4z(1 + 2ϕ)
]
. (9.6)

Eq. (9.6) implies that the impact of the liquidity shock z on the price in Period 1 increases in

the liquidity suppliers’ bargaining power ϕ. When, for example, z > 0, liquidity demanders need

to sell, and greater bargaining power by suppliers results in a lower price. Comparing (9.6) to its

centralized-market counterpart (3.9) reveals an important difference: price impact in the search

market depends on the distribution of bargaining power within a meeting, characterized by the

parameter ϕ, while price impact in the centralized market depends on aggregate demand-supply

conditions, characterized by the measures (π, 1−π) of demanders and suppliers.27 The price in the

centralized market in Period 0 can be determined through similar steps as in previous sections.

27That ϕ is the sole determinant of price impact in the search market is a special feature of our model, where search
occurs only within one period. When instead agents’ outside option is to search again (as in, e.g., Duffie, Garleanu
and Pedersen (2005, 2008)), price impact is influenced not only by ϕ, but also by the measures of liquidity demanders
and suppliers and the efficiency of the search process.
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Proposition 9.2 The price in Period 0 is

S0 = D̄−ασ2θ̄−

N(1+ϕ)

2G
3
2
2

exp
(
α4σ4σ2

z θ̄
2

2G2

)
+ π−N

G
3
2
3

exp
(
α4σ4σ2

z θ̄
2

2G3

)
N√
G1

+ 1− π −N + N√
G2

exp
(
α4σ4σ2

z θ̄
2

2G2

)
+ π−N√

G3
exp

(
α4σ4σ2

z θ̄
2

2G3

)α3σ4σ2
z θ̄, (9.7)

where

G1 = 1 + 1
2ϕα

2σ2σ2
z ,

G2 = 1− 1
2(1 + ϕ)α2σ2σ2

z ,

G3 = 1− α2σ2σ2
z .

9.2 Search and Illiquidity

We next examine how the search friction impacts the illiquidity measures and the illiquidity dis-

count. We perform two related but distinct exercises: compare the search market with the central-

ized market of Section 3, and vary the measure N of meetings between liquidity demanders and

suppliers.

When N decreases, the search process becomes less efficient and trading volume decreases.

At the same time, the price in each meeting remains the same because it depends only on the

distribution of bargaining power within the meeting. Since illiquidity λmeasures the price impact of

volume, it increases. One would expect that λ in the search market is higher than in the centralized

market because only a fraction of suppliers are involved in bilateral meetings and provide liquidity

(N ≤ 1− π). Proposition 9.3 confirms this result when bargaining power is symmetric (ϕ = 1/2).

The result is also true when suppliers have more bargaining power than demanders (ϕ > 1/2)

because the liquidity shock has then larger price impact. Moreover, the result extends to all values

of ϕ when less than half of suppliers are involved in meetings (N ≤ (1− π)/2).

Proposition 9.3 Illiquidity λ is

λ =
ασ2(1 + 2ϕ)

2N
, (9.8)

and increases when the measure N of meetings decreases. It is higher than in the centralized market

if ϕ+ 1/2 ≥ N/(1− π).

Because the price in the search market is independent of N , so is the price reversal γ. Moreover,

γ in the search market is higher than in the centralized market if ϕ is large relative to π.
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Proposition 9.4 Price reversal γ is

γ =
α2σ4σ2

z(1 + 2ϕ)2

16
, (9.9)

and is independent of the measure N of meetings. It is higher than in the centralized market if

ϕ+ 1/2 ≥ 2π.

When the measure N of meetings decreases, agents are less likely to trade in Period 1, and a

natural conjecture is that the illiquidity discount increases. Proposition 9.5 confirms this conjecture

under the sufficient condition ϕ ≤ 1/2. Intuitively, if ϕ ≈ 1, a decrease in the measure of meetings

does not affect liquidity demanders because they extract no surplus from a meeting. Since, however,

liquidity suppliers become worse off, the risk-neutral probability of being a demander decreases,

and the price can increase.28

Proposition 9.5 A decrease in the measure N of meetings lowers the price in Period 0 if ϕ ≤ 1/2.

The comparative statics with respect to the variance σ2
z of liquidity shocks are as in the case

of a centralized market.

Proposition 9.6 An increase in the variance σ2
z of liquidity shocks leaves illiquidity λ unchanged,

raises price reversal γ, and lowers the price in Period 0.

10 Empirical Implications

In this section we explore implications of our model for empirical studies of liquidity.

10.1 Liquidity and Expected Returns

The concept of liquidity is central to certain areas of finance such as market microstructure or

optimal trade execution. Yet, its importance for asset valuation remains unclear. Many empirical

studies seek to establish a link between liquidity and expected asset returns.29 The basic premise

in these studies is that illiquidity is positively related to expected returns. Our analysis shows that

28The illiquidity discount in the search market is higher than in the centralized market if ϕ is large relative to π.
This property is the same as for λ and γ, but the calculations are more complicated.

29The survey by Amihud, Mendelson and Pedersen (2006) includes detailed references.
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the nature of this relationship depends crucially on the underlying cause of illiquidity. Indeed, while

imperfections such as asymmetric information, participation costs, transaction costs, and leverage

constraints raise expected returns, other imperfections such as non-competitive behavior and search

can have the opposite effect. Since many imperfections can exist simultaneously in the market, the

relationship between illiquidity and expected returns can become ambiguous. Identifying the main

imperfection in specific contexts could help better estimate this relationship.

Impact of Variance of Liquidity Shocks

Type of Imperfection Lambda Price Reversal Expected Return

Perfect-market benchmark 0 + +

Asymmetric information − + +

Participation costs − 0 +

Transaction costs − + +

Leverage constraints + + +

Non-comp. behavior/Sym. info. 0 + +

Non-comp. behavior/Asym. info. − + +

Search 0 + +

Table 2: Impact of the variance of liquidity shocks on illiquidity and expected returns. “Lambda”
is the regression coefficient of the price change between Periods 0 and 1 on the signed volume of liquidity
demanders in Period 1; “Price Reversal” is minus the autocovariance of price changes; and “Expected
Return” is the expected return of the risky asset between Periods 0 and 2.

Even when the theoretical relationship between illiquidity and expected returns is unambiguous,

confirming this relationship empirically in a cross-section of assets can be challenging. This is

because cross-sectional variation can be driven by factors other than the imperfections themselves.

For example, Table 2 summarizes how the variance σ2
z of liquidity shocks influences illiquidity

and expected returns. Under all six imperfections, larger σ2
z leads to higher expected returns.

The impact on lambda, however, is negative under asymmetric information, participation costs,

transaction costs and non-competitive behavior. To explain why this might complicate cross-

sectional tests, suppose, for example, that asymmetric information is the only imperfection. If it is

also the main source of cross-sectional variation, then Table 1 implies a positive relationship between

lambda and expected returns. If, however, asymmetric information is the same across assets and

differences arise because of σ2
z , then Table 2 implies a negative relationship. The same is true

under participation costs, transaction costs, and non-competitive behavior. Therefore, our results

on how factors other than the imperfections affect illiquidity and expected returns are relevant for
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cross-sectional tests. Knowing the effects of these factors, and finding suitable empirical controls,

could help identify more precisely the effects of illiquidity.

10.2 Measures of Liquidity

A key question when studying liquidity is how to measure it empirically. We consider two widely

used measures. The first is λ, defined as the regression coefficient of price changes on signed volume,

and based on the idea that trades in illiquid markets should have large price impact. The second is

γ, defined as minus the autocovariance of price changes, and based on the idea that trades in illiquid

markets should generate large transitory deviations between price and fundamental value.30 The

measures λ and γ have been linked to illiquidity within models focusing on specific imperfections:

λ in Kyle (1985), and γ in Roll (1984) and Grossman and Miller (1988). Using our unified model,

we examine the behavior of these measures across a variety of imperfections.

In our analysis, λ captures not only the permanent component of price impact, driven by the

information that trades convey (as in Kyle), but also the transitory component, driven by the

risk aversion of liquidity suppliers. In this sense, λ overlaps with γ, which isolates the transitory

component.31 We further show that λ reflects the underlying imperfections more accurately than

γ. Indeed, λ increases in the imperfections’ presence, except possibly under search, while γ can

decrease under asymmetric information, non-competitive behavior and search.

The benefits of λ relative to γ must be set against some drawbacks. First, λ might not reflect

a causal effect of volume on prices. For example, if public news cause both volume and prices, λ

can be positive even in the absence of a causal effect of volume on prices.32 Second, estimating

λ requires information on signed trades that might not be available, while estimating γ requires

information only on transaction prices. Putting these issues aside, a broad implication of our

analysis is that the validity of a measure of illiquidity can depend of the underlying imperfection.

Both λ and γ are unconditional measures: λ measures the average slope of the relationship

between price change and signed volume, and γ measures the unconditional autocovariance. Our

30Measures closely related to λ are, for example, the regression-based measure of Glosten and Harris (1988) and
Sadka (2006), and the ratio of average absolute returns to trading volume of Amihud (2002). Measures closely related
to γ, are, for example, the bid-ask spread measure of Roll (1984), the Gibbs estimate of Hasbrouck (2006), the price
reversal measure of Bao, Pan and Wang (2008), and the price reversal conditional on signed volume of Campbell,
Grossman and Wang (1993).

31The overlap is larger between λ and the conditional price reversal of Campbell, Grossman and Wang (1993)
because both measures condition on signed volume.

32The causality problem does not arise in our model. Indeed, volume is generated by shocks observable only to
liquidity demanders, such as the liquidity shock z and the signal s. Since these shocks can affect prices only through
the liquidity demanders’ trades, λ measures correctly the price impact of these trades.
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analysis has further implications for conditional measures. Consider, for example, the conditional λ,

defined as the sensitivity of price to signed volume conditional on signed volume. Under asymmetric

information, participation costs, non-competitive behavior and search, the relationship between

price and signed volume is linear, and therefore conditional and unconditional λ’s coincide. Under

leverage constraints, however, the price is more sensitive to signed volume for large values of volume

because this is when constraints bind. The opposite is true under transaction costs. Indeed, taking

the price for zero volume to be the mid-point of the bid-ask spread, the price jumps discontinuously

to the ask following arbitrarily small buy volume, and then increases continuously (thus becoming

less sensitive to volume). Therefore, λ conditional on large volume is larger than unconditional

λ under leverage constraints and smaller under transaction costs. These properties could help

test for the presence of specific imperfections, or could themselves be tested in contexts where the

imperfections can be identified.

10.3 Liquidity Across Assets and Markets

Liquidity varies considerably across assets and markets. For example, large stocks are more liquid

than small stocks, on-the-run (i.e., newly issued) government bonds are more liquid than off-the-

run bonds, highly rated corporate bonds are more liquid than lower rated bonds, and government

bonds are more liquid than stocks, which are in turn more liquid than corporate bonds. Spiegel

(2008) summarizes this evidence and argues that it poses a challenge to existing theories. For

example, why are on-the-run bonds more liquid than off-the-run bonds with similar payoffs? And

if stocks are less liquid than government bonds because they are riskier or more prone to asymmetric

information, why are they more liquid than corporate bonds, where the same comparisons apply?

The variation in liquidity across assets and markets is hard to explain based on a single im-

perfection; multiple imperfections are likely to be at work, with their relative significance differing

across markets. Because our model incorporates multiple imperfections, it has the potential to

explain the variation in liquidity within a single framework. Consistent with previous work, we find

that riskier assets are less liquid, and so are assets more prone to asymmetric information.33 This

helps explain why large stocks are more liquid than small stocks, highly rated corporate bonds are

more liquid than lower rated bonds, and government bonds are more liquid than stocks: in each

case the less liquid asset is riskier and more prone to asymmetric information.

The higher liquidity of on- relative to off-the-run bonds could be traced to a larger pool of

33Illiquidity λ increases in the variance σ2 of asset payoffs even in the perfect-market benchmark (Eq. (3.19)). It
also increases in the degree of information asymmetry, as measured by the precision of the private signal (Proposition
4.4).
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liquidity suppliers. Indeed, as time from issuance increases, a bond migrates from the portfolios of

dealers to those of end-investors. Since costs of market participation are larger for end-investors

than for dealers, off-the-run bonds have a smaller pool of liquidity suppliers and are therefore less

liquid (Proposition 6.3).34

The lower liquidity of corporate bonds relative to stocks might be because they are traded in

a less competitive market. Indeed, while participation by individual investors in the stock market

is significant, the corporate-bond market is dominated by large institutions. As a consequence,

market power is more important for corporate bonds, implying lower liquidity (Proposition 8.4).35

11 Conclusion

We develop a unified model to examine how market imperfections affect liquidity and expected asset

returns. Our model encompasses the following imperfections: asymmetric information, participa-

tion costs, transaction costs, leverage constraints, non-competitive behavior and search. Besides

nesting these imperfections in a single model, we derive new results on the effects of each imper-

fection. Our results imply, in particular, that imperfections do not always raise expected returns,

and can influence common measures of illiquidity in opposite directions.

One extension of our analysis is to consider interactions between imperfections. A natural

interaction, studied in this paper, is between non-competitive behavior and asymmetric information.

Other interactions, e.g., between asymmetric information and participation costs, could be studied

as well. A related and more fundamental extension is to explore the economic links between

imperfections. For example, if participation costs are costs to monitor market information, can

costly participation be linked to asymmetric information? Such an extension could provide more

guidance on the nature of different imperfections and their relative significance.

Another extension is to allow for multiple risky assets and additional trading periods. By

introducing multiple assets, we can study more explicitly the cross-sectional relationship between

liquidity and expected returns. By introducing additional trading periods, we can further study

how liquidity changes over time and liquidity risk is priced.36

34Vayanos and Weill (2008) flesh out a related explanation that emphasizes search rather than participation costs.

35The low participation by individual investors in the corporate-bond market could be explained partly by that mar-
ket’s low liquidity. At the same time, there are corporate-finance benefits to holding concentrated stakes in corporate
bonds, e.g., bargaining power relative to holders of other bond issues of the same company during bankruptcy.

Note that our analysis focuses on non-competitive behavior by liquidity demanders. Non-competitive behavior by
liquidity suppliers (e.g., dealers) could also be an important driver of the low liquidity of corporate bonds.

36See Acharya and Pedersen (2005) for a model of liquidity risk, in which the market imperfection is transaction
costs that vary exogenously over time.
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Appendix

A Perfect-Market Benchmark

We start with a useful lemma.

Lemma A.1 Let x be an n × 1 normal vector with mean zero and covariance matrix Σ, A a

scalar, B an n× 1 vector, C an n× n symmetric matrix, I the n× n identity matrix, and |M | the

determinant of a matrix M . Then,

Ex exp
{
−α

[
A+B′x+ 1

2x
′Cx

]}
= exp

{
−α

[
A− 1

2αB
′Σ(I + αCΣ)−1B

]} 1√
|I + αCΣ|

. (A.1)

Proof: When C = 0, (A.1) gives the moment-generating function of the normal distribution. We

can always assume C = 0 by also assuming that x is a normal vector with mean 0 and covariance

matrix Σ(I + αCΣ)−1.

Proof of Proposition 3.1: Eqs. (3.7a) and (3.7b) follow by maximizing the term inside the

exponential in (3.6) and (3.5), respectively.

Proof of Proposition 3.2: We first compute the interim utilities U s and Ud of liquidity suppliers

and demanders in Period 1/2. The utility U s is the expectation of (3.11) over z. To compute this

expectation, we use Lemma A.1 and set

x ≡ z,

Σ ≡ σ2
z ,

A ≡ W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2,

B ≡ ασ2π(θ̄ − θ0),

C ≡ ασ2π2.

Eq. (A.1) implies that

U s = − exp (−αF s)
1√

1 + α2σ2σ2
zπ

2

= − exp (−αF s)
1√

1 + ∆0π2
, (A.2)

47



where ∆0 is given by (3.15a) and

F s = W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2 − α3σ4σ2
zπ

2(θ0 − θ̄)2

2 (1 + α2σ2σ2
zπ

2)

= W0 + θ0(D̄ − S0)− 1
2ασ

2θ20 +
ασ2(θ0 − θ̄)2

2 (1 + α2σ2σ2
zπ

2)
. (A.3)

To compute Ud, we derive the counterpart of (3.11) for a liquidity demander. Substituting θd1 from

(3.7b), S1 from (3.9), and W1 from (3.10), we can write the expected utility (3.5) of a liquidity

demander in Period 1 as

− exp
{
−α

[
W0 + θ0(D̄ − S0)− ασ2(θ0 + z)(θ̄ + πz) + 1

2ασ
2(θ̄ + πz)2

]}
. (A.4)

The utility Ud is the expectation of (A.4) over z. To compute this expectation, we use Lemma A.1

and set

x ≡ z,

Σ ≡ σ2
z ,

A ≡ W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2,

B ≡ −ασ2
[
πθ0 + (1− π)θ̄

]
,

C ≡ −ασ2(2π − π2).

Eq. (A.1) implies that

Ud = − exp
(
−αF d

) 1√
1− α2σ2σ2

z(2π − π2)

= − exp
(
−αF d

) 1√
1 + ∆0(1− π)2 − α2σ2σ2

z

, (A.5)

where

F d = W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2 −
α3σ4σ2

z

[
πθ0 + (1− π)θ̄

]2
2 [1− α2σ2σ2

z(2π − π2)]
. (A.6)

An agent in Period 0 chooses θ0 to maximize

U = (1− π)U s + πUd.

The first-order condition is

(1−π) exp (−αF s)
dF s

dθ0

1√
1 + ∆0π2

+π exp
(
−αF d

) dF d

dθ0

1√
1 + ∆0(1− π)2 − α2σ2σ2

z

= 0, (A.7)
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and characterizes a maximum since U is concave. In equilibrium, (A.7) is satisfied for θ0 = θ̄.

Moreover, (A.23) and (A.27) imply that when θ0 = θ̄,

dF s

dθ0
= D̄ − S0 − ασ2θ̄, (A.8)

F s = W0 + θ̄(D̄ − S0)− 1
2ασ

2θ̄2, (A.9)

dF d

dθ0
=

dF s

dθ0
−∆1θ̄, (A.10)

F d = F s − 1
2∆2θ̄

2, (A.11)

where ∆1 is given by (3.15b) and ∆2 by (3.15c). Substituting (A.8)-(A.11) into (A.7), and solving

for S0, we find (3.13).

Proof of Proposition 3.3: Eq. (3.19) implies that λ is independent of σ2
z . Eq. (3.21) implies

that γ is increasing in σ2
z . Eqs. (3.14), (3.15a), (3.15b) and (3.15c) imply that (M,∆1,∆2) are

increasing in σ2
z . Therefore, (3.13) implies that S0 is decreasing in σ2

z .

Proposition A.1 determines the equilibrium in the full-information case.

Proposition A.1 In the full-information case, agents’ demand functions in Period 1 are

θs1 =
E[D|s]− S1

ασ2[D|s]
, (A.12)

θd1 =
E[D|s]− S1

ασ2[D|s]
− z, (A.13)

the price in Period 1 is

S1 = E[D|s]− ασ2[D|s]
(
θ̄ + πz

)
, (A.14)

and the price in Period 0 is given by (3.13), where M is given by (3.14) and

∆0 = α2σ2[D|s]σ2
z , (A.15)

∆1 =
α3σ4σ2

z

[
1− σ2

ϵ
σ2+σ2

ϵ
(1− π)

]
1 + ∆0(1− π)2 − α2σ2σ2

z

, (A.16)

∆2 =
α3σ4σ2

z

1 + ∆0(1− π)2 − α2σ2σ2
z

. (A.17)

Proof: In Period 1, a liquidity demander chooses holdings θd1 of the risky asset to maximize the

expected utility

−Eexp
{
−α

[
W1 + θd1(D − S1) + z(D − D̄)

]}
,
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where the expectation is over D and conditional on s. Because of normality, the expectation is

equal to

− exp
{
−α

[
W1 + θd1 (E[D|s]− S1) + z

(
E[D|s]− D̄

)
− 1

2ασ
2[D|s](θd1 + z)2

]}
. (A.18)

A liquidity supplier chooses holdings θs1 of the risky asset to maximize the expected utility

− exp
{
−α

[
W1 + θs1 (E[D|s]− S1)− 1

2ασ
2[D|s](θs1)2

]}
. (A.19)

which can be derived from (A.18) by setting z = 0. The solution to the optimization problems

is straightforward and yields the demand functions (A.12) and (A.13). Substituting (A.12) and

(A.13) into the market-clearing equation (3.8), we find that the price in Period 1 is given by (A.14).

Substituting W1 from (3.10), θs1 from (A.12), S1 from (A.14), and E[D|s] from (4.3a), we can

write the expected utility (A.19) of a liquidity supplier in Period 1 as

− exp
{
−α

[
W0 + θ0(D̄ − S0) + θ0

[
βs(s− D̄)− ασ2[D|s](θ̄ + πz)

]
+ 1

2ασ
2[D|s](θ̄ + πz)2

]}
.

(A.20)

Substituting W1 from (3.10), θd1 from (A.13), S1 from (A.14), and E[D|s] from (4.3a), we can write

the expected utility (A.18) of a liquidity demander in Period 1 as

− exp
{
−α

[
W0 + θ0(D̄ − S0) + (θ0 + z)

[
βs(s− D̄)− ασ2[D|s](θ̄ + πz)

]
+ 1

2ασ
2[D|s](θ̄ + πz)2

]}
.

(A.21)

We next compute the expectations of (A.20) and (A.21) over (s, z), i.e., the interim utilities U s and

Ud of liquidity suppliers and demanders in Period 1/2. To compute U s, we use Lemma A.1 and set

x ≡
[
s− D̄

z

]

Σ ≡
[
σ2 + σ2

ϵ 0
0 σ2

z

]
A ≡ W0 + θ0(D̄ − S0)− ασ2[D|s]θ0θ̄ + 1

2ασ
2[D|s]θ̄2

B ≡
[

βsθ0
ασ2[D|s]π(θ̄ − θ0)

]

C ≡
[
0 0
0 ασ2[D|s]π2

]
.
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Since

I + αCΣ =

[
1 0
0 1 + α2σ2[D|s]σ2

zπ
2

]
,

(A.1) implies that

U s = − exp (−αF s)
1√

1 + α2σ2[D|s]σ2
zπ

2
, (A.22)

where

F s = W0+θ0(D̄−S0)−ασ2[D|s]θ0θ̄+ 1
2ασ

2[D|s]θ̄2− 1
2αβ

2
s (σ

2+σ2
ϵ )θ

2
0−

α3σ4[D|s]σ2
zπ

2(θ0 − θ̄)2

2 [1 + α2σ2[D|s]σ2
zπ

2]
.

Noting that

−ασ2[D|s]θ0θ̄ + 1
2ασ

2[D|s]θ̄2 − 1
2αβ

2
s (σ

2 + σ2
ϵ )θ

2
0 = − 1

2ασ
2θ20 +

1
2ασ

2[D|s](θ0 − θ̄)2,

we can write F s as

F s = W0 + θ0(D̄ − S0)− 1
2ασ

2θ20 +
ασ2[D|s](θ0 − θ̄)2

2 [1 + α2σ2[D|s]σ2
zπ

2]
. (A.23)

To compute Ud, we use Lemma A.1 and set

x ≡
[
s− D̄

z

]

Σ ≡
[
σ2 + σ2

ϵ 0
0 σ2

z

]
A ≡ W0 + θ0(D̄ − S0)− ασ2[D|s]θ0θ̄ + 1

2ασ
2[D|s]θ̄2

B ≡
[

βsθ0
−ασ2[D|s]

[
πθ0 + (1− π)θ̄

] ]

C ≡
[

0 βs
βs −ασ2[D|s](2π − π2)

]
.

Using (4.2b) and the definition of βs, we find

I + αCΣ =

[
1 αβsσ

2
z

ασ2 1− α2σ2[D|s]σ2
z(2π − π2)

]
,

|I + αCΣ| = 1 + α2σ2[D|s]σ2
z(1− π)2 − α2σ2σ2

z , (A.24)

Σ(I + αCΣ)−1 =
1

|I + αCΣ|

[ [
1− α2σ2[D|s]σ2

z(2π − π2)
]
(σ2 + σ2

ϵ ) −ασ2σ2
z

−ασ2σ2
z σ2

z

]
. (A.25)
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Eqs. (A.1), (A.24) and (A.25) imply that

Ud = − exp
(
−αF d

) 1√
1 + α2σ2[D|s]σ2

z(1− π)2 − α2σ2σ2
z

, (A.26)

where

F d =W0 + θ0(D̄ − S0)− ασ2[D|s]θ0θ̄ + 1
2ασ

2[D|s]θ̄2

− α

2 [1 + α2σ2[D|s]σ2
z(1− π)2 − α2σ2σ2

z ]

{
β2
s

[
1− α2σ2[D|s]σ2

z(2π − π2)
]
(σ2 + σ2

ϵ )θ
2
0

+2α2βsσ
2[D|s]σ2σ2

z

[
πθ0 + (1− π)θ̄

]
θ0 + α2σ4[D|s]σ2

z

[
πθ0 + (1− π)θ̄

]2}
.

Noting that

−ασ2[D|s]θ0θ̄ + 1
2ασ

2[D|s]θ̄2 = −ασ2θ0θ̄ +
1
2ασ

2θ̄2 + αβsσ
2θ0θ̄ − 1

2αβsσ
2θ̄2,

we can write F d as

F d =W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2

−
α
[
βsσ

2(1− α2σ2σ2
z)(θ0 − θ̄)2 + α2βsσ

4σ2
zθ

2
0 + α2σ2σ2[D|s]σ2

z

[
πθ0 + (1− π)θ̄

]2]
2 [1 + α2σ2[D|s]σ2

z(1− π)2 − α2σ2σ2
z ]

.

(A.27)

Eqs. (A.22) and (A.26) take the form (A.2) and (A.5), with ∆0 given by (A.15). Moreover,

(A.23) and (A.27) imply that when θ0 = θ̄, (dF s/dθ0, F
s, dF d/dθ0, F

d) are given by (A.8)-(A.11),

with (∆1,∆2) given by (A.16) and (A.17). Since the equations for (U s, Ud, dF s/dθ0, F
s, dF d/dθ0, F

d)

take the same form as in Proposition 3.2, the same applies to S0.

B Asymmetric Information

Proof of Proposition 4.1: Same arguments as in the proof of Proposition A.1 imply that a

liquidity demander chooses holdings θd1 to maximize (A.18), and a liquidity supplier chooses holdings

θs1 to maximize

− exp
{
−α

[
W1 + θs1 (E[D|S1]− S1)− 1

2ασ
2[D|S1](θ

s
1)

2
]}

. (B.1)

The solution to the optimization problems is straightforward and yields the demand functions (4.4a)

and (4.4b).
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Proof of Proposition 4.2: Substituting E[D|s] from (4.2a) and E[D|S1] from (4.3a), we can write

(4.5) as

(1− π)
D̄ +

βξ

b (S1 − a)− S1

ασ2[D|S1]
+ π

[
D̄ + βs(s− D̄)− S1

ασ2[D|s]
− z

]
= θ̄

⇔(1− π)
D̄ +

βξ

b (S1 − a)− S1

ασ2[D|S1]
+ π

[
D̄ + βs

b (S1 − a) + βscz − S1

ασ2[D|s]
− z

]
= θ̄, (B.2)

where the second step follows from (4.1). Eq. (B.2) can be viewed as an affine equation in the

variables (S1 − a, z). Setting terms in S1 − a to zero, we find

(1− π)

βξ

b − 1

ασ2[D|S1]
+ π

βs

b − 1

ασ2[D|s]
= 0, (B.3)

which yields (4.6b). Setting terms in z to zero, and using (4.2b), we find (4.6c). Setting constant

terms to zero, we find

(1− π)
D̄ − a

ασ2[D|S1]
+ π

D̄ − a

ασ2[D|s]
= θ̄

⇔(1− π)
D̄ − a

ασ2[D|S1]
+ π

[
θ̄ +

D̄ − a− ασ2[D|s]θ̄
ασ2[D|s]

]
= θ̄. (B.4)

Using (B.3), we can write (B.4) as

(1− π)
D̄ − a

ασ2[D|S1]
+ πθ̄ − (1− π)

βξ

b − 1
βs

b − 1

D̄ − a− ασ2[D|s]θ̄
ασ2[D|S1]

= θ̄

⇔D̄ − a = α
σ2[D|S1](βs − b) + σ2[D|s](b− βξ)

βs − βξ
θ̄. (B.5)

Using (4.2b), (4.3b) and the definitions of (βs, βξ), we can write (B.5) as (4.6a).

Proof of Proposition 4.3: We first compute the expected utilities of liquidity suppliers and

demanders in Period 1. Substituting W1 from (3.10), θs1 from (4.4a), S1 from (4.1), and E(D|S1)

from (4.3a), we can write the expected utility (B.1) of a liquidity supplier as

− exp

{
−α

[
W0 + θ0(a+ bξ − S0) +

[
D̄ + βξξ − (a+ bξ)

]2
2ασ2[D|S1]

]}
. (B.6)

Substituting E[D|s]−S1 from (4.4b), we can write the expected utility (A.18) of a liquidity demander

as

− exp
{
−α

[
W1 + z

(
E[D|s]− D̄

)
+ 1

2ασ
2[D|s]

[
(θd1)

2 − z2
]]}

=− exp
{
−α

[
W1 + βsξz +

1
2ασ

2[D|s]
[
(θd1)

2 + z2
]]}

, (B.7)
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where the second step follows from (4.2a), (4.2b), (4.6c) and the definition of ξ. Using (4.2a),

(4.2b), (4.6c) and the definition of ξ, we can write (4.4b) as

θd1 =
D̄ + βsξ − S1

ασ2[D|s]
. (B.8)

Substituting W1 from (3.10), θd1 from (B.8), and S1 from (4.1), we can write (B.7) as

− exp

{
−α

[
W0 + θ0(a+ bξ − S0) + βsξz +

[
D̄ + βsξ − (a+ bξ)

]2
2ασ2[D|s]

+ 1
2ασ

2[D|s]z2
]}

. (B.9)

We next compute the expectations of (B.6) and (B.9) over (s, z), i.e., the interim utilities U s

and Ud of liquidity suppliers and demanders in Period 1/2. To compute U s, we use Lemma A.1

and set

x ≡ ξ

Σ ≡ σ2 + σ2
ϵ + c2σ2

z

A ≡ W0 + θ0(a− S0) +
(D̄ − a)2

2ασ2[D|S1]

B ≡ bθ0 −
(D̄ − a)(b− βξ)

ασ2[D|S1]

C ≡
(b− βξ)

2

ασ2[D|S1]
.

Eq. (A.1) implies that

U s = − exp (−αF s)
1√

1 +
(b−βξ)2

σ2[D|S1]
(σ2 + σ2

ϵ + c2σ2
z)
, (B.10)

where

F s = W0 + θ0(a− S0) +
(D̄ − a)2

2ασ2[D|S1]
−

α
[
bθ0 −

(D̄−a)(b−βξ)

ασ2[D|S1]

]2
(σ2 + σ2

ϵ + c2σ2
z)

2
[
1 +

(b−βξ)2

σ2[D|S1]
(σ2 + σ2

ϵ + c2σ2
z)
]

= θ0(D̄ − S0)−
αb2(σ2 + σ2

ϵ + c2σ2
z)θ

2
0 + 2(D̄ − a)

[
1− βξ(b−βξ)

σ2[D|S1]
(σ2 + σ2

ϵ + c2σ2
z)
]
θ0 − (D̄−a)2

ασ2[D|S1]

2
[
1 +

(b−βξ)2

σ2[D|S1]
(σ2 + σ2

ϵ + c2σ2
z)
] .

(B.11)
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Substituting D̄ − a from (4.6a) into (B.11), and using (4.3b) and the definition of βξ, we find

F s = W0 + θ0(D̄ − S0)−
α
[
b2(σ2 + σ2

ϵ + c2σ2
z)θ

2
0 +

(1−b)2σ4

σ2[D|S1]
(2θ0 − θ̄)θ̄

]
2
[
1 +

(b−βξ)2

σ2[D|S1]
(σ2 + σ2

ϵ + c2σ2
z)
] . (B.12)

Eq. (4.3b) and the definition of βξ imply that for all b,

(1− b)2σ4

σ2[D|S1]
+ b2(σ2 + σ2

ϵ + c2σ2
z) = σ2 +

(b− βξ)
2σ2

σ2[D|S1]
(σ2 + σ2

ϵ + c2σ2
z). (B.13)

Using (B.13), we can write (B.12) as

F s = W0 + θ0(D̄ − S0)− 1
2ασ

2θ20 +
α (1−b)2σ4

σ2[D|S1]
(θ0 − θ̄)2

2
[
1 +

(b−βξ)2

σ2[D|S1]
(σ2 + σ2

ϵ + c2σ2
z)
] . (B.14)

To compute Ud, we use Lemma A.1 and set

x ≡
[
ξ
z

]

Σ ≡
[
σ2 + σ2

ϵ + c2σ2
z −cσ2

z

−cσ2
z σ2

z

]

A ≡ W0 + θ0(a− S0) +
(D̄ − a)2

2ασ2[D|s]

B ≡

[
bθ0 +

(D̄−a)(βs−b)
ασ2[D|s]
0

]

C ≡

[
(βs−b)2

ασ2[D|s] βs

βs ασ2[D|s]

]
.

Using (4.2b), (4.6c) and the definition of βs, we find

I + αCΣ =

[
1 + (βs−b)2

σ2[D|s] (σ
2 + σ2

ϵ + c2σ2
z)− αβscσ

2
z − (βs−b)2

σ2[D|s] cσ
2
z + αβsσ

2
z

ασ2 1

]
,

|I + αCΣ| = 1 +
(βs − b)2

σ2[D|s]
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z , (B.15)

[
Σ(I + αCΣ)−1

]
(1,1)

=
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

|I + αCΣ|
, (B.16)
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where the subscript (1,1) refers to the term in the first row and column of a matrix. Eqs. (A.1),

(B.15), and (B.16) imply that

Ud = − exp
(
−αF d

) 1√
1 + (βs−b)2

σ2[D|s] (σ
2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

, (B.17)

where

F d = W0 + θ0(a− S0) +
(D̄ − a)2

2ασ2[D|s]
−

α
[
bθ0 +

(D̄−a)(βs−b)
ασ2[D|s]

]2
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

2
[
1 + (βs−b)2

σ2[D|s] (σ
2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

] . (B.18)

Substituting D̄ − a from (4.6a) into (B.18), we find

F d =W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2

+ α

bσ2θ0θ̄ − 1
2σ

2θ̄2 +
(1− b)2σ4

2σ2[D|s]
θ̄2 −

[
bθ0 +

(1−b)(βs−b)σ2

σ2[D|s]

]2
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

2
[
1 + (βs−b)2

σ2[D|s] (σ
2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

]
 .

(B.19)

Using (4.2b) and the definition of βs, we can write (B.19) as

F d =W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2

−
α
{
b2(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)θ

2
0 + 2b(σ2 + σ2

ϵ )
[
α2σ2σ2

z − b(1 + α2σ2
ϵσ

2
z)
]
θ0θ̄ +Xθ̄2

}
2
[
1 + (βs−b)2

σ2[D|s] (σ
2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

] ,

(B.20)

where

X ≡
[
σ2 − (1− b)2σ4

σ2[D|s]

]
(1− α2σ2σ2

z) +
(βs − b)2σ2

σ2[D|s]
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z).

Eq. (4.2b) and the definition of βs imply that for all b,

(1− b)2σ4

σ2[D|s]
+ b2(σ2 + σ2

ϵ ) = σ2 +
(βs − b)2σ2

σ2[D|s]
(σ2 + σ2

ϵ ). (B.21)

Using (B.21) to eliminate the term in σ2 − (1−b)2σ4

σ2[D|s] in the definition of X, and substituting X into

(B.20), we find

F d =W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2

−
α
{
b2(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)(θ0 − θ̄)2 + α2(σ2 + σ2

ϵ )
2σ2

z

[
2bσ2θ0θ̄
σ2+σ2

ϵ
+
[
(βs−b)2σ2

σ2[D|s] − b2
]
θ̄2
]}

2
[
1 + (βs−b)2

σ2[D|s] (σ
2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

] .

(B.22)
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Eqs. (B.10) and (B.17) take the form (A.2) and (A.5), with ∆0 given by (4.7a). In the case of

(B.10), this follows directly from (4.7a). In the case of (B.17), this is because

(βs − b)2

σ2[D|s]
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

=
(b− βξ)

2σ2[D|s](1− π)2

σ4[D|S1]π2
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

=
(b− βξ)

2σ2[D|s](σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

z)(1− π)2

σ4[D|S1]σ2
ϵπ

2

=
(b− βξ)

2(σ2 + σ2
ϵ + c2σ2

z)(1− π)2

σ2[D|S1]π2
= ∆0(1− π)2, (B.23)

where the first step follows from (B.3), the second from (4.6c), the third from (4.2b), (4.3b) and

the definitions of (βs, βξ), and the fourth from (4.7a). Eqs. (B.14), (B.22) and (B.23) imply that

when θ0 = θ̄, (dF s/dθ0, F
s, dF d/dθ0, F

d) are given by (A.8)-(A.11), with (∆1,∆2) given by (4.7b)

and (4.7c). Since the equations for (U s, Ud, dF s/dθ0, F
s, dF d/dθ0, F

d) take the same form as in

Proposition 3.2, the same applies to S0.

Proof of Proposition 4.4: The price change between Periods 0 and 1 is S1 − S0. The signed

volume of liquidity demanders is

π(θd1 − θ̄) = −(1− π)(θs1 − θ̄)

= −(1− π)

(
E[D|S1]− S1

ασ2[D|S1]
− θ̄

)

= −(1− π)

[
D̄ +

βξ

b (S1 − a)− S1

ασ2[D|S1]
− θ̄

]
,

where the first step follows from (3.8), the second from (4.4a), and the third from (4.3a). Substi-

tuting into (3.16), and noting that variation in the numerator and denominator arises because of

S1, we find (4.8).

Illiquidity under no information is given by (3.19), under full information by

λ =
ασ2[D|s]
1− π

, (B.24)
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and under asymmetric information by (4.8). We can write (4.8) as

λ =
α
(
πβsσ

2[D|S1] + (1− π)βξσ
2[D|s]

)
(βs − βξ)π(1− π)

=
ασ2(σ2

ϵ + c2σ2
zπ)

c2σ2
zπ(1− π)

, (B.25)

where the first step follows from (4.6b), and the second from (4.2b), (4.3b), and the definitions

of (βs, βξ). Eqs. (3.19), (B.24) and (B.25) imply that illiquidity is highest under asymmetric

information and lowest under full information. Moreover, (4.6c) and (B.25) imply that illiquidity

under asymmetric information increases when σ2
ϵ decreases.

Proof of Proposition 4.5: Eqs. (3.20) and (4.1) imply that

γ = −Cov
[
D − a− b(s− D̄ − cz), a+ b(s− D̄ − cz)− S0

]
= −Cov

[
(1− b)(D − D̄)− bϵ+ bcz, b(D − D̄) + bϵ− bcz

]
= −b

[
σ2 − b(σ2 + σ2

ϵ + c2σ2
z)
]
. (B.26)

Using the definition of βξ, we can write (B.26) as (4.9).

Price reversal under no information is given by (3.21), under full information by

γ = α2σ4[D|s]σ2
zπ

2, (B.27)

and under asymmetric information by (4.9). Substituting b from (4.6b), σ2[D|s] from (4.2b),

σ2[D|S1] from (4.3b), and using the definitions of (βs, βξ), we can write (4.9) as

γ =
σ4(σ2

ϵ + c2σ2
z)(σ

2
ϵ + c2σ2

zπ)c
2σ2

zπ

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2 . (B.28)

Price reversal under full information is lower than under no information because σ2 > σ2[D|s], and

lower than under asymmetric information if

σ4(σ2
ϵ + c2σ2

z)(σ
2
ϵ + c2σ2

zπ)c
2σ2

zπ

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2 >
α2σ4σ4

ϵσ
2
zπ

2

(σ2 + σ2
ϵ )

2

⇔1 >

[
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ
]2

π

(σ2 + σ2
ϵ )

2(σ2
ϵ + c2σ2

z)(σ
2
ϵ + c2σ2

zπ)
, (B.29)

where the second step follows from (4.6c). Eq. (B.29) holds because the right-hand side is increasing

in π and equal to one for π = 1. Since for π = 1, price reversals under asymmetric and full

58



information coincide, they are lower than under no information. For π ≈ 0, price reversal is of

order π2 under no information and of order π under asymmetric information.

Lemma B.1 compares the parameters (∆0,∆2) under symmetric and asymmetric information.

For expositional convenience, we use the following superscripts for {∆j}j=0,1,2 and M : ni under no

information, fi under full information, and ai under asymmetric information.

Lemma B.1 ∆ni
0 > ∆fi

0 > ∆ai
0 and ∆ni

2 < ∆fi
2 < ∆ai

2 .

Proof: Substituting b from (4.6b), σ2[D|s] from (4.2b), σ2[D|S1] from (4.3b), and using the defi-

nitions of (βs, βξ), we can write (4.7a) as

∆ai
0 =

σ2c4σ4
z(σ

2
ϵ + c2σ2

z)

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2 . (B.30)

Eqs. (3.15a) and (A.15) imply that ∆ni
0 > ∆fi

0 . Eqs. (A.15) and (B.30) imply that ∆fi
0 > ∆ai

0 if

α2σ2[D|s]σ2
z >

σ2c4σ4
z(σ

2
ϵ + c2σ2

z)

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2

⇔1 >
σ2
ϵ c

2σ2
z(σ

2 + σ2
ϵ )(σ

2
ϵ + c2σ2

z)

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2 , (B.31)

where the second step follows from (4.2b) and (4.6c). Eq. (B.31) holds for all π ∈ [0, 1] if it holds

for π = 0, i.e.,

σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z)
2 > c2σ2

z(σ
2 + σ2

ϵ )(σ
2
ϵ + c2σ2

z)

⇔σ2
ϵσ

4 + 2σ2
ϵσ

2(σ2
ϵ + c2σ2

z) + σ2
ϵ (σ

2
ϵ + c2σ2

z)
2 − c2σ2

z(σ
2 + σ2

ϵ )(σ
2
ϵ + c2σ2

z) > 0

⇔σ2
ϵσ

4 + (σ2
ϵ + c2σ2

z)
[
2σ2

ϵσ
2 + σ4

ϵ (1− α2σ2σ2
z)
]
> 0, (B.32)

where the last step follows from (4.6c). Eq. (B.32) holds because of (2.2).

Eq. (3.15c) implies that[
1 + ∆ni

0 (1− π)2 − α2σ2σ2
z

]
∆ni

2 = α3σ4σ2
z . (B.33)

Eq. (A.17) implies that[
1 + ∆fi

0 (1− π)2 − α2σ2σ2
z

]
∆fi

2 = α3σ4σ2
z . (B.34)

Eq. (4.7c) implies that

[
1 + ∆ai

0 (1− π)2 − α2σ2σ2
z

]
∆ai

2 = α3σ4σ2
z

[
1 +

(βs − b)2

σ2[D|s]
(σ2 + σ2

ϵ )

]
. (B.35)
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Since ∆ni
0 > ∆fi

0 , (B.33) and (B.34) imply that ∆ni
2 < ∆fi

2 . Since ∆fi
0 > ∆ai

0 , (B.34) and (B.35)

imply that ∆fi
2 < ∆ai

2 .

Proof of Proposition 4.6: To show the ranking for S0, we must show the reverse ranking for the

illiquidity discount in (3.13), i.e.,

πMni

1− π + πMni
∆ni

1 <
πMfi

1− π + πMfi
∆fi

1 <
πMai

1− π + πMai
∆ai

1 . (B.36)

Since ∆ni
2 < ∆fi

2 < ∆ai
2 , (B.36) holds if it does so when {∆j

2}j=ni,fi,ai are replaced by zero. Using

(3.14), we can write the latter condition as

(
1− π

πM̂ni
+ 1

)
1

∆ni
1

>

(
1− π

πM̂fi
+ 1

)
1

∆fi
1

>

(
1− π

πM̂ai
+ 1

)
1

∆ai
1

. (B.37)

where

M̂ j ≡

√
1 + ∆j

0π
2

1 + ∆j
0(1− π)2 − α2σ2σ2

z

,

for j = ni, fi, ai. Eq. (3.15b) implies that

[
1 + ∆ni

0 (1− π)2 − α2σ2σ2
z

]
∆ni

1 = α3σ4σ2
zπ. (B.38)

Eq. (A.16) implies that

[
1 + ∆fi

0 (1− π)2 − α2σ2σ2
z

]
∆fi

1 = α3σ4σ2
z

[
1− σ2

ϵ

σ2 + σ2
ϵ

(1− π)

]
. (B.39)

Eq. (4.7b) implies that[
1 + ∆ai

0 (1− π)2 − α2σ2σ2
z

]
∆ai

1 = α3bσ2(σ2 + σ2
ϵ )σ

2
z

=
α3σ4σ2

z(σ
2 + σ2

ϵ )(σ
2
ϵ + c2σ2

zπ)

σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ

, (B.40)

where the second step follows from (4.2b), (4.3b), (4.6b) and the definitions of (βs, βξ). Eqs.

(B.38)-(B.40) and ∆ni
0 > ∆fi

0 > ∆ai
0 imply that a sufficient condition for (B.37) is

(
1− π

πM̂ni
+ 1

)
1

π
>

(
1− π

πM̂fi
+ 1

)
1

1− σ2
ϵ

σ2+σ2
ϵ
(1− π)

>

(
1− π

πM̂ai
+ 1

)
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ

(σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

zπ)
.
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(B.41)

We can write the first inequality in (B.41) as

1− σ2
ϵ

σ2+σ2
ϵ
(1− π)

π

(
1− π

πM̂ni
+ 1

)
>

1− π

πM̂fi
+ 1

⇔
(
1 +

σ2

σ2 + σ2
ϵ

1− π

π

)(
1− π

πM̂ni
+ 1

)
>

1− π

πM̂fi
+ 1. (B.42)

A sufficient condition for (B.42) is

σ2

σ2 + σ2
ϵ

+
1

M̂ni
>

1

M̂fi

⇔ σ2

σ2 + σ2
ϵ

>

√√√√1 + ∆fi
0 (1− π)2 − α2σ2σ2

z

1 + ∆fi
0 π2

−

√
1 + ∆ni

0 (1− π)2 − α2σ2σ2
z

1 + ∆ni
0 π2

⇔ σ2

σ2 + σ2
ϵ

>

1+∆fi
0 (1−π)2−α2σ2σ2

z

1+∆fi
0 π2

− 1+∆ni
0 (1−π)2−α2σ2σ2

z

1+∆ni
0 π2√

1+∆fi
0 (1−π)2−α2σ2σ2

z

1+∆fi
0 π2

+

√
1+∆ni

0 (1−π)2−α2σ2σ2
z

1+∆ni
0 π2

⇔ σ2

σ2 + σ2
ϵ

>
(∆ni

0 −∆fi
0 )
[
(1− α2σ2σ2

z)π
2 − (1− π)2

][√
1+∆fi

0 (1−π)2−α2σ2σ2
z

1+∆fi
0 π2

+

√
1+∆ni

0 (1−π)2−α2σ2σ2
z

1+∆ni
0 π2

](
1 + ∆fi

0 π2
) (

1 + ∆ni
0 π2

) .
(B.43)

Eqs. (3.15a), (A.15) and the non-negativity of (∆ni
0 ,∆fi

0 ) imply that a sufficient condition for (B.43)

is

σ2

σ2 + σ2
ϵ

>
α2σ2σ2

z
σ2

σ2+σ2
ϵ
(1− α2σ2σ2

z)π
2

2
√

1− α2σ2σ2
z

. (B.44)

Eq. (B.44) holds because of (2.2).

We can write the second inequality in (B.41) as

(σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

zπ)

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]
[
1− σ2

ϵ
σ2+σ2

ϵ
(1− π)

] ( 1− π

πM̂fi
+ 1

)
>

1− π

πM̂ai
+ 1

⇔

{
1 +

σ2
ϵ

[
σ2
ϵ (σ

2 + σ2
ϵ )− σ2c2σ2

z(1− π)
]
(1− π)

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + πσ2c2σ2
z ] (σ

2 + πσ2
ϵ )

}(
1− π

πM̂fi
+ 1

)
>

1− π

πM̂ai
+ 1. (B.45)
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A sufficient condition for (B.45) is

σ2
ϵ

[
σ2
ϵ (σ

2 + σ2
ϵ )− σ2c2σ2

z(1− π)
]
π

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ] (σ

2 + σ2
ϵπ)

+
1

M̂fi
>

1

M̂ai

⇔
σ2
ϵ

[
σ2
ϵ (σ

2 + σ2
ϵ )− σ2c2σ2

z(1− π)
]
π

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ] (σ

2 + σ2
ϵπ)

>
(∆fi

0 −∆ai
0 )
[
(1− α2σ2σ2

z)π
2 − (1− π)2

][√
1+∆ai

0 (1−π)2−α2σ2σ2
z

1+∆ai
0 π2 +

√
1+∆fi

0 (1−π)2−α2σ2σ2
z

1+∆fi
0 π2

] (
1 + ∆ai

0 π2
) (

1 + ∆fi
0 π2

) , (B.46)

where the intermediate steps are as for (B.43). Eqs. (4.6c), (4.7a), (A.15) and the non-negativity

of (∆fi
0 ,∆ai

0 ) imply that a sufficient condition for (B.46) is

σ2
ϵ

[
σ2
ϵ (σ

2 + σ2
ϵ )− σ2c2σ2

z(1− π)
]
π

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ] (σ

2 + σ2
ϵπ)

>
α2σ2σ2

z(1− α2σ2σ2
z)π

2

2
√

1− α2σ2σ2
z

[
σ2
ϵ

σ2 + σ2
ϵ

− σ4
ϵ c

2σ2
z(σ

2
ϵ + c2σ2

z)

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2

]
. (B.47)

A sufficient condition for (B.47) is

2
[
σ2
ϵ (σ

2 + σ2
ϵ )− σ2c2σ2

z(1− π)
]

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ] (σ

2 + σ2
ϵ )

>

[
1

σ2 + σ2
ϵ

− σ2
ϵ c

2σ2
z(σ

2
ϵ + c2σ2

z)

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2

]
π,

(B.48)

which is derived from (B.47) by using (2.2) and replacing the term σ2 + σ2
ϵπ in the denominator

of the left-hand side by σ2 + σ2
ϵ . Multiplying by the smallest common denominator, we can write

(B.48) as

σ2
ϵ (σ

2 + σ2
ϵ )
[
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ
]
(2− π)

> σ2c2σ2
z

{
2
[
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ
]
(1− π)

+(σ2
ϵ + σ2π)(σ2

ϵ + c2σ2
zπ)π − σ2

ϵ (σ
2
ϵ + c2σ2

z)π(1− π)
}
. (B.49)

A sufficient condition for (B.49) is

σ4
ϵ

[
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ
]
(2− π)

> σ2c2σ2
z

{
2
[
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ
]
(1− π) + (σ2

ϵ + σ2π)(σ2
ϵ + c2σ2

zπ)π
}
. (B.50)

Eqs. (2.2) and (4.6c) imply that a sufficient condition for (B.50) is[
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ
]
(2− π)

>
{
2
[
σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ
]
(1− π) + (σ2

ϵ + σ2π)(σ2
ϵ + c2σ2

zπ)π
}
,
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which obviously holds.

Proof of Proposition 4.7: Eq. (B.25) implies that λ is decreasing in σ2
z . Eq. (B.28) implies that

γ is increasing in σ2
z . Eq. (B.30) implies that ∆0 is increasing in σ2

z , and

1 + ∆0(1− π)2 − α2σ2σ2
z

is decreasing in σ2
z . Since the left-hand side of (B.40) is increasing in σ2

z , so is ∆1. Eqs. (B.23) and

(B.30) imply that

(βs − b)2

σ2[D|s]
(σ2 + σ2

ϵ ) =
σ2σ2

ϵ c
4σ4

z(1− π)2

[σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z) + σ2c2σ2
zπ]

2 . (B.51)

Since the left-hand side of (B.51) is increasing in σ2
z , so are the left-hand side of (B.35), ∆2 and

M . Therefore, (3.13) implies that S0 is decreasing in σ2
z .

C Participation Costs

Proof of Proposition 5.1: Since the price S1 is as in Section 3, with π
(1−π)µ+π taking the place of

π, the interim utility U s of a participating supplier can be derived from (A.2) by making the same

substitution and subtracting c. That is,

U s = − exp (−αF s)
1√

1 + α2σ2σ2
zπ

2

[(1−π)µ+π]2

, (C.1)

where

F s = W0 + θ0(D̄ − S0)− 1
2ασ

2θ20 +
ασ2(θ0 − θ̄)2

2
[
1 + α2σ2σ2

zπ
2

[(1−π)µ+π]2

] − c.

The interim utility U sn of a non-participating supplier can be derived from (C.1) by noting that

non-participation is equivalent to participation in a fictitious market where all agents choose θ0

in Period 0, receive no endowment, and pay no cost to participate. Setting (π, θ̄, c) = (0, θ0, 0) in

(C.1), we find

U sn = − exp
{
−α

[
W0 + θ0(D̄ − S0)− 1

2ασ
2θ20
]}

. (C.2)

63



In equilibrium, suppliers enter Period 1/2 holding θ0 = θ̄ shares, and are willing to participate if

U s ≥ U sn. Setting θ0 = θ̄ in (C.1) and (C.2), we can write condition U s ≥ U sn as

exp(2αc) ≤ 1 +
α2σ2σ2

zπ
2

[(1− π)µ+ π]2
. (C.3)

If c ≤ c, (C.3) holds for µ = 1, and all suppliers participate. If c < c < c̄, (C.3) holds as an equality

for µ given in (5.4b). This value of µ is in (0, 1) and coincides with the measure of participating

suppliers. If c ≥ c̄, (C.3) does not hold for any µ ∈ [0, 1], and no suppliers participate.

Proof of Proposition 5.2: The interim utility Ud of a participating demander can be derived

from (A.5) by replacing π by π
(1−π)µ+π and subtracting c. That is,

Ud = − exp
(
−αF d

) 1√
1− α2σ2σ2

z
2π(1−π)µ+π2

[(1−π)µ+π]2

, (C.4)

where

F d = W0+θ0(D̄−S0)−ασ2
α2σ2σ2

z
π2

[(1−π)µ+π]2
θ20 + 2

[
1− α2σ2σ2

z
π

(1−π)µ+π

]
θ0θ̄ − (1− α2σ2σ2

z)θ̄
2

2
[
1− α2σ2σ2

z
2π(1−π)µ+π2

[(1−π)µ+π]2

] −c.

The interim utility Udn of a non-participating demander can be derived from (C.4) by noting that

non-participation is equivalent to participation in a fictitious market where all agents choose θ0

in Period 0, receive an endowment, and pay no cost to participate. Setting (π, θ̄, c) = (1, θ0, 0) in

(C.4), we find

Udn = − exp

{
−α

[
W0 + θ0(D̄ − S0)−

ασ2θ20
2(1− α2σ2σ2

z)

]}
1√

1− α2σ2σ2
z

. (C.5)

In equilibrium, demanders enter Period 1/2 holding θ0 = θ̄ shares, and are willing to participate if

Ud ≥ Udn. We next show that (5.5) ensures Ud > Udn for all θ0 (and not only for θ0 = θ̄). Using

(C.4) and (C.5), we can write Ud > Udn as

exp

{
2α

[
θ0(D̄ − S0)−

ασ2θ20
2(1− α2σ2σ2

z)
− F d

]}
<

1− α2σ2σ2
z
2π(1−π)µ+π2

[(1−π)µ+π]2

1− α2σ2σ2
z

. (C.6)

Since a fraction µ > 0 of suppliers participate, (C.3) holds, and a sufficient condition for (C.6) is

exp

{
2α

[
θ0(D̄ − S0)−

ασ2θ20
2(1− α2σ2σ2

z)
− F d − c

]}
<

1− α2σ2σ2
z
2π(1−π)µ+π2

[(1−π)µ+π]2

(1− α2σ2σ2
z)
[
1 + α2σ2σ2

zπ
2

[(1−π)µ+π]2

] . (C.7)

64



Since

θ0(D̄ − S0)−
ασ2θ20

2(1− α2σ2σ2
z)

− F d − c = −
α2σ2

{[
1− α2σ2σ2

z

]
θ̄ −

[
1− α2σ2σ2

zπ
(1−π)µ+π

]
θ0

}2

2 (1− α2σ2σ2
z)
[
1− α2σ2σ2

z
2π(1−π)µ+π2

[(1−π)µ+π]2

] ≤ 0,

a sufficient condition for (C.7) is

1− α2σ2σ2
z
2π(1−π)µ+π2

[(1−π)µ+π]2

(1− α2σ2σ2
z)
[
1 + α2σ2σ2

zπ
2

[(1−π)µ+π]2

] > 1

⇔1− α2σ2σ2
z

[
1− (1− π)2µ2

[(1− π)µ+ π]2

]
>
(
1− α2σ2σ2

z

) [
1 +

α2σ2σ2
zπ

2

[(1− π)µ+ π]2

]

⇔ (1− π)2µ2

[(1− π)µ+ π]2
>

(
1− α2σ2σ2

z

)
π2

[(1− π)µ+ π]2
. (C.8)

Eq. (C.8) holds because of (5.5).

Proof of Corollary 5.1: Since π ≤ 1/2, c ≤ ĉ < c̄. If c < c ≤ ĉ, and all liquidity demanders

participate, then the fraction µ ∈ (0, 1) of participating suppliers is given by (5.4b). Conversely,

(5.5) holds for that µ because c ≤ ĉ, and therefore all liquidity demanders participate. If instead

c ≤ c, and all liquidity demanders participate, then all liquidity suppliers do. Conversely, (5.5)

holds for µ = 1 because π ≤ 1/2, and therefore all liquidity demanders participate.

Proof of Proposition 5.3: An agent in Period 0 chooses θ0 to maximize

U = (1− π)max{U s, U sn}+ πmax{Ud, Udn}.

Proposition 5.2 implies that Ud > Udn for all θ0. Moreover, (C.1) and (C.2) imply that if U s ≥ U sn

for θ0 = θ̄, then U s > U sn for all θ0 ̸= θ̄. Therefore, the agent maximizes

U = (1− π)U s + πUd.

The function U is concave in θ0 and the first-order condition characterizes a maximum. The price

S0 can be derived as in Proposition 3.2. It given by (3.13), but with π/[(1 − π)µ + π] taking the

place of π when evaluating (∆1,∆2,M).

Proof of Proposition 5.4: Eqs. (5.8) and (5.9) imply that a decrease in µ raises λ and γ. Eqs.

(5.6), (5.7a) and (5.7b) imply that a decrease in µ raises (∆1,M), and therefore lowers S0 from

(3.13). When c > c, Proposition 5.1 implies that an increase in c lowers µ.
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Proof of Proposition 5.5: When c > c, Proposition 5.1 implies that an increase in σ2
z raises µ.

Eq. (5.8) implies that this lowers λ. Eq. (5.4b) implies that when c > c,

(1− π)µ+ π =
ασσz√
e2αc − 1

. (C.9)

Eqs. (5.9) and (C.9) imply that γ is independent of σ2
z . Eqs. (5.6), (5.7a), (5.7b) and (C.9) imply

that (∆1,∆2,M) are increasing in σ2
z . Therefore, (3.13) implies that S0 is decreasing in σ2

z .

D Transaction Costs

Proof of Proposition 6.1: The results for z > 0 follow from the arguments prior to the propo-

sition’s statement. Suppose next that z < 0. If liquidity suppliers sell, their demand function

is

θs1 =
D̄ − S1 + κ

ασ2
, (D.1)

and if liquidity demanders buy, their demand function is

θd1 =
D̄ − S1 − κ

ασ2
− z. (D.2)

Since in equilibrium agents enter Period 1 holding θ̄ shares of the risky asset, trade occurs if there

exists a price S1 such that θs1 < θ̄ and θd1 > θ̄. Using (D.1) and (D.2), we can write these conditions

as

ασ2z + κ < D̄ − S1 − ασ2θ̄ < −κ.

Therefore, trade occurs if z < − 2κ
ασ2 . Substituting (D.1) and (D.2) into (3.8), we find (6.3).

Proof of Proposition 6.2: We first compute the expected utility of a liquidity supplier in Period

1, assuming that the agent enters that period holding θ0 shares. If |z| ≤ κ̂, there is no trade in

Period 1, and expected utility is

− exp
{
−α

[
W0 + θ0(D̄ − S0)− 1

2ασ
2θ20
]}

.

Suppose next that z > κ̂. Eqs. (6.1) and (6.3) imply that if the supplier buys, he establishes a

position

θsb+1 =
D̄ − S1 − κ

ασ2
= θ̄ + π(z − κ̂) (D.3)
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and receives expected utility

− exp
{
−α

[
W0 − θ0S0 − (θsb+1 − θ0)(S1 + κ) + θsb+1 D̄ − 1

2ασ
2(θsb+1 )2

]}
=− exp

{
−α

[
W0 + θ0(D̄ − S0)− 1

2ασ
2θ20 +

1
2ασ

2(θ0 − θsb+1 )2
]}

,

where the second step follows from (D.3). Conversely, (6.3) and (D.1) imply that if the supplier

sells, he establishes a position

θss+1 =
D̄ − S1 + κ

ασ2
= θ̄ + πz + (1− π)κ̂ (D.4)

and receives expected utility

− exp
{
−α

[
W0 − θ0S0 − (θss+1 − θ0)(S1 − κ) + θss+1 D̄ − 1

2ασ
2(θss+1 )2

]}
=− exp

{
−α

[
W0 + θ0(D̄ − S0)− 1

2ασ
2θ20 +

1
2ασ

2(θ0 − θss+1 )2
]}

,

where the second step follows from (D.4). To nest the two cases, as well as the case where the

supplier decides not to trade, we can write expected utility as

− exp
{
−α

[
W0 + θ0(D̄ − S0)− 1

2ασ
2θ20
]}

G+

where

G+ = exp
[
− 1

2α
2σ2(θ0 − θsb+1 )2

]
if θ0 < θsb+1 ,

G+ = 1 if θsb+1 ≤ θ0 ≤ θss+1 ,

G+ = exp
[
− 1

2α
2σ2(θ0 − θss+1 )2

]
if θ0 > θss+1 .

Similar calculations imply that expected utility when z < −κ̂ is

− exp
{
−α

[
W0 + θ0(D̄ − S0)− 1

2ασ
2θ20
]}

G−,

where

G− = exp
[
− 1

2α
2σ2(θ0 − θsb−1 )2

]
if θ0 < θsb−1 ,

G− = 1 if θsb−1 ≤ θ0 ≤ θss−1 ,

G− = exp
[
− 1

2α
2σ2(θ0 − θss−1 )2

]
if θ0 > θss−1 ,

and

θsb−1 = θ̄ + πz − (1− π)κ̂,

θss−1 = θ̄ + π(z + κ̂).
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The supplier’s interim utility in Period 1/2 is

U s = − exp
{
−α

[
W0 + θ0(D̄ − S0)− 1

2ασ
2θ20
]} [∫ κ̂

−κ̂
f(z)dz +

∫ ∞

κ̂
G+f(z)dz +

∫ −κ̂

−∞
G−f(z)dz

]
.

To compute the equilibrium price S0, we need to evaluate the derivative dU s/dθ0 at θ0 = θ̄. Using

the symmetry of z around zero, and noting that θss−1 < θ̄ < θsb+1 (i.e., a supplier holding θ0 = θ̄

shares buys if z > κ̂ and sells if z < −κ̂), we find

dU s

dθ0

∣∣∣∣
θ0=θ̄

= 2α exp
{
−α

[
W0 + θ̄(D̄ − S0)− 1

2ασ
2θ̄2
]} (

D̄ − S0 − ασ2θ̄
)
N1, (D.5)

where

N1 =

∫ κ̂

0
f(z)dz +

∫ ∞

κ̂
exp

[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz.

Similar calculations for a liquidity demander yield

dUd

dθ0

∣∣∣∣
θ0=θ̄

= 2α exp
{
−α

[
W0 + θ̄(D̄ − S0)− 1

2ασ
2θ̄2
]} [(

D̄ − S0 − ασ2θ̄
)
N2 −N3

]
, (D.6)

where

N2 =

∫ κ̂

0
exp

(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz +

∫ ∞

κ̂
Γ(z)ch(α2σ2θ̄z)f(z)dz,

N3 = ασ2

[∫ κ̂

0
exp

(
1
2α

2σ2z2
)
sh
(
α2σ2θ̄z

)
zf(z)dz +

∫ ∞

κ̂
Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂]f(z)dz

]
.

The first-order condition in Period 0 is

dU

dθ0

∣∣∣∣
θ0=θ̄

= (1− π)
dU s

dθ0

∣∣∣∣
θ0=θ̄

+ π
dUd

dθ0

∣∣∣∣
θ0=θ̄

= 0, (D.7)

and characterizes a maximum because (U s, Ud) are concave in θ0. Substituting (D.5) and (D.6)

into (D.7), we find (3.13) with M = N2/N1 and ∆1θ̄ = N3/N2.

Proof of Proposition 6.3: Eqs. (6.2) and (6.3) imply that the signed volume of liquidity deman-

ders is

π(θd1 − θ̄) = −π(1− π)(z − κ̂)
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when z > κ̂ > 0, and

π(θd1 − θ̄) = −π(1− π)(z + κ̂)

when z < −κ̂ < 0. Since signed volume is distributed symmetrically around zero, its variance is

Var
[
π(θd1 − θ̄)

]
= E

[
π2(θd1 − θ̄)2

]
= 2π2(1− π)2

∫ ∞

κ̂
(z − κ̂)2f(z)dz (D.8)

and its covariance with the price change is

Cov
[
S1 − S0, π(θ

d
1 − θ̄)

]
= E

[
S1π(θ

d
1 − θ̄)

]
. (D.9)

Since S1 is distributed symmetrically around its mean and takes the form (6.3), (D.9) becomes

2ασ2π(1− π)

∫ ∞

κ̂

[
πz +

(
1
2 − π

)
κ̂
]
(z − κ̂)f(z)dz. (D.10)

Dividing (D.9) by (D.8), we find (6.7). Since the integrals in (6.7) are positive, illiquidity is higher

than when κ̂ = 0.

Proof of Proposition 6.4: Eqs. (3.20) and (6.3) imply that

γ = −Cov
{
D − D̄ + ασ2

[
θ̄ + πz +

(
1
2 − π

)
κ̂ sign(z)

]
, D̄ − ασ2

[
θ̄ + πz +

(
1
2 − π

)
κ̂ sign(z)

]
− S0

}
= Var

{
ασ2

[
πz +

(
1
2 − π

)
κ̂ sign(z)

]}
= α2σ4E

[
πz +

(
1
2 − π

)
κ̂ sign(z)

]2
, (D.11)

where the last step uses the symmetry of the distribution of z. The expectation (D.11) is conditional

on trade in Period 1, i.e., |z| > κ̂. Using this fact and the symmetry of the distribution of z, we

find (6.8). The derivative of (6.8) with respect to κ̂ has the same sign as

f(κ̂)

[∫∞
κ̂

[
πz +

(
1
2 − π

)
κ̂
]2

f(z)dz∫∞
κ̂ f(z)dz

− 1
4 κ̂

2

]
+ (1− 2π)

∫ ∞

κ̂

[
πz +

(
1
2 − π

)
κ̂
]
f(z)dz. (D.12)

Since

πz +
(
1
2 − π

)
κ̂ > 1

2 κ̂

for z > κ̂, the first term in (D.12) is positive. Therefore, (D.12) is positive if π ≤ 1/2.
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Proof of Proposition 6.5: The price S0 is decreasing in κ̂ if (M,∆1) are increasing in κ̂. The

parameter M is increasing in κ̂ if d log(N2)/dκ̂ > d log(N1)/dκ̂. Using the definitions of (N1, N2),

we can write this equation as

α2σ2(1− π)2
∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)(z − κ̂)f(z)dz∫ κ̂

0 exp
(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz +

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz

>
α2σ2π2

∫∞
κ̂

[
− 1

2α
2σ2π2(z − κ̂)2

]
(z − κ̂)f(z)dz∫ κ̂

0 f(z)dz +
∫∞
κ̂ exp

[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz

. (D.13)

When π ≤ 1/2, a sufficient condition for (D.13) is

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)(z − κ̂)f(z)dz∫∞

κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz
>

∫∞
κ̂

[
− 1

2α
2σ2π2(z − κ̂)2

]
(z − κ̂)f(z)dz∫∞

κ̂ exp
[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz

(D.14)

and

∫ κ̂
0 exp

(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz∫∞

κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz
<

∫ κ̂
0 f(z)dz∫∞

κ̂ exp
[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz

. (D.15)

Eq. (D.14) can be written as

Eg1(z − κ̂) > Eg2(z − κ̂), (D.16)

where (Eg1 , Eg2) refer to expectation under the probability densities

g1(z) =
Γ(z)ch(α2σ2θ̄z)f(z)∫∞

κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz

g2(z) =
exp

[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)∫∞

κ̂ exp
[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz

,

defined in [κ̂,∞). Since the likelihood ratio

g1(z)

g2(z)
= exp

{
1
2α

2σ2
[
z2 − (z − κ̂)2 + 2π(z − κ̂)2

]}
ch(α2σ2θ̄z)

∫∞
κ̂ exp

[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz∫∞

κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz

is increasing in z, the distribution associated to g1 first-order stochastically dominates that associ-

ated to g2, and (D.16) holds. Eq. (D.15) can be written as∫ κ̂
0 exp

(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz∫ κ̂

0 f(z)dz
<

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz∫∞

κ̂ exp
[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz

⇔Eh1K1(z) < Eh2K2(z), (D.17)
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where (Eh1 , Eh2) refer to expectation under the probability densities

h1(z) =
f(z)∫ κ̂

0 f(z)dz
,

h2(z) =
exp

[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)∫∞

κ̂ exp
[
− 1

2α
2σ2π2(z − κ̂)2

]
f(z)dz

,

defined in [0, κ̂] and [κ̂,∞), respectively, and

K1(z) = exp
(
1
2α

2σ2z2
)
ch(α2σ2θ̄z),

K2(z) =
Γ(z)ch(α2σ2θ̄z)

exp
[
− 1

2α
2σ2π2(z − κ̂)2

] = exp
{

1
2α

2σ2
[
z2 − (z − κ̂)2 + 2π(z − κ̂)2

]}
ch(α2σ2θ̄z).

Since the functions K1(z) and K2(z) are increasing in z, a sufficient condition for (D.17) is K1(κ̂) ≤

K2(κ̂), which holds.

The parameter ∆1 is increasing in κ̂ if d log(N3)/dκ̂ > d log(N2)/dκ̂. Using the definitions of

(N2, N3), we can write this equation as

(1− π)
∫∞
κ̂ Γ(z)sh(α2σ2θ̄z)f(z)dz + α2σ2(1− π)2

∫∞
κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂](z − κ̂)f(z)dz∫ κ̂

0 exp
(
1
2α

2σ2z2
)
sh
(
α2σ2θ̄z

)
zf(z)dz +

∫∞
κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂]f(z)dz

>
α2σ2(1− π)2

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)(z − κ̂)f(z)dz∫ κ̂

0 exp
(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz +

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz

. (D.18)

A sufficient condition for (D.18) is

∫∞
κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂](z − κ̂)f(z)dz∫∞

κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂]f(z)dz
>

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)(z − κ̂)f(z)dz∫∞

κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz
(D.19)

and

∫ κ̂
0 exp

(
1
2α

2σ2z2
)
sh
(
α2σ2θ̄z

)
zf(z)dz∫∞

κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂]f(z)dz
<

∫ κ̂
0 exp

(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz∫∞

κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz
. (D.20)

The proof for (D.19) and (D.20) is as for (D.14) and (D.15).

Proof of Proposition 6.6: When z is drawn from a two-point distribution, it takes the two values

±σz. Eq. (6.7) implies that illiquidity is

ασ2

1− π

[
1 +

κ̂

2π(σz − κ̂)

]
,
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and is increasing in κ̂ and decreasing in σ2
z . Eq. (6.8) implies that price reversal is

γ = α2σ4
[
πσz +

(
1
2 − π

)
κ̂
]2

,

and is increasing in κ̂ and σ2
z . Eqs. (6.4)-(6.6) imply that

M = exp
[
1
2α

2σ2σ2
z − 1

2α
2σ2(1− 2π)(σz − κ̂)2

]
ch(α2σ2θ̄σz),

∆1 =
ασ2

θ̄
th(α2σ2θ̄σz)[πσz + (1− π)κ̂].

Since (M,∆1) are increasing in σ2
z , (3.13) implies that S0 is decreasing in σ2

z .

E Leverage Constraints

Proof of Proposition 7.1: When (7.5) does not bind, the demand function of a liquidity supplier

is

θs1 = (f ′)−1(D̄ − S1). (E.1)

Eqs. (7.3) and (E.1) imply that θs1 = θd1 + z. Combining with the market-clearing equation (3.8),

we find θs1 = θ̄ + πz and (7.9). To determine whether or not (7.5) binds, we examine whether the

unconstrained solution meets (7.5). In the case θ̄ + πz ≥ 0, (7.5) is met if

W0 + θ̄(S1 − S0) +A > (θ̄ + πz)
(
S1 − D̄ + bD

)
⇔B +A+ θ̄S1 > (θ̄ + πz)

(
S1 − D̄ + bD

)
⇔G+(z) ≡ B +A+ θ̄(D̄ − bD)− πz

[
bD − f ′(θ̄ + πz)

]
> 0,

where the first step follows from (3.10) and because in equilibrium θ0 = θ̄, and the third step follows

from (7.9). Similar calculations imply that in the case θ̄ + πz < 0, (7.5) is met if

G−(z) ≡ B +A+ θ̄(D̄ + bD) + πz
[
bD + f ′(θ̄ + πz)

]
> 0.

To show the first bullet point in the proposition, it suffices to show that (i) G+(z) is decreasing

in z, (ii) G−(z) is increasing in z, and (iii) G−(−z) > G+(z) for z > θ̄/π. We next explain why

(i)-(iii) are sufficient conditions, distinguishing between the case θ̄ − πbz ≥ 0, where suppliers hold

long positions for all values of z, and the case θ̄−πbz < 0, where they hold short positions for large

negative values of z.
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Case θ̄−πbz ≥ 0: If (7.8) is met, i.e., G+(bz) ≥ 0, then G+(z) > 0 for all z ∈ [−bz, bz) because

of (i). Thus, the unconstrained solution meets (7.5). If instead (7.8) is not met, i.e., G+(bz) < 0,

then G+(0) > 0 implies that there exists z ∈ (0, bz) such that G+(z) = 0. Moreover, (i) implies

that G+(z) > 0 for z ∈ [−bz, z) and G+(z) < 0 for z ∈ (z, bz]. Thus, the unconstrained solution

meets (7.5) for z ∈ [−bz, z].

Case θ̄ − πbz < 0: If (7.8) is met, then G+(z) > 0 for all z ∈ [−θ̄/π, bz) because of (i), and

G−(z) > 0 for all z ∈ [−bz,−θ̄/π) because of (iii). Thus, the unconstrained solution meets (7.5).

If instead (7.8) is not met, then there exists z ∈ (0, bz) such that G+(z) = 0. Moreover, (i) implies

that G+(z) > 0 for z ∈ [−θ̄/π, z) and G+(z) < 0 for z ∈ (z, bz]. If, in addition, G−(−bz) < 0, then

there exists z ∈ (θ̄/π, bz) such that G−(−z) = 0. If instead G−(−bz) ≥ 0, we set z ≡ bz. In both

cases, (ii) implies that G−(z) < 0 for z ∈ [−bz,−z) and G−(z) > 0 for z ∈ (−z,−θ̄/π). Thus, the

unconstrained solution meets (7.5) for z ∈ [−z, z]. If z = bz, then z > z, and if z < bz, then z > z

because (iii) implies that 0 = G−(−z) > G+(z).

To show (i)-(iii), we establish some properties of the function f(θ). Symmetry around the

y-axis implies that

f(θ) =
log E exp

[
αθ(D − D̄)

]
α

. (E.2)

Using (E.2), we find

f ′(θ) =
E
{
(D − D̄) exp

[
αθ(D − D̄)

]}
Eexp

[
αθ(D − D̄)

] = Eθ(D − D̄), (E.3)

f ′′(θ) = α
E
{
(D − D̄)2 exp

[
αθ(D − D̄)

]}
Eexp

[
αθ(D − D̄)

] − α

(
E
{
(D − D̄) exp

[
αθ(D − D̄)

]}
Eexp

[
αθ(D − D̄)

] )2

= αEθ(D − D̄)2 − α
[
Eθ(D − D̄)

]2
, (E.4)

where Eθ denotes expectation with respect to a measure with Radon-Nikodym derivative

exp
[
αθ(D − D̄)

]
E
{
exp

[
αθ(D − D̄)

]}
relative to the true measure. Eq. (E.3) implies that

|f ′(θ)| < bD. (E.5)

Symmetry around the y-axis and convexity imply that f ′(θ) has the same sign as θ.
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We next show (i)-(iii). The function G+(z) is decreasing in z if

bD − f ′(θ̄ + πz)− πzf ′′(θ̄ + πz) > 0. (E.6)

To show (E.6), we will show more generally that

bD − f ′(θ)− πzf ′′(θ) > 0. (E.7)

Using (E.3) and (E.4), we can write (E.7) as

bD − Eθ(D − D̄)− απz
{
Eθ(D − D̄)2 −

[
Eθ(D − D̄)

]2}
> 0

⇔bD −
√

Eθ(D − D̄)2

+

[√
Eθ(D − D̄)2 − Eθ(D − D̄)

]{
1− απz

[√
Eθ(D − D̄)2 + Eθ(D − D̄)

]}
> 0. (E.8)

Since

∣∣Eθ(D − D̄)
∣∣ <√Eθ(D − D̄)2 ≤ bD,

(E.8) holds under the sufficient condition 2απbDz < 1, which in turn holds for z ∈ [−bz, bz] because

of (7.7). The function G−(z) is increasing in z if

bD + f ′(θ̄ + πz) + πzf ′′(θ̄ + πz) > 0. (E.9)

Eq. (E.9) follows from (E.7) by replacing θ̄ + πz by its opposite and using the symmetry of f(θ)

around the y-axis. Finally,

G−(−z)−G+(z) = 2θ̄bD − πz
[
f ′(θ̄ + πz) + f ′(θ̄ − πz)

]
= 2θ̄bD − πz

[
f ′(θ̄ + πz)− f ′(−θ̄ + πz)

]
= 2θ̄

[
bD − πzf ′′(θ̂)

]
> 0,

where the second step follows from the symmetry of f(θ) around the y-axis, the third from the

intermediate-value theorem, and the fourth from (E.7) and θ̂ > 0.

To show the second bullet point in the proposition, it suffices to show the comparative statics

when the constraint binds, i.e., for z ∈ [−bz,−z) ∪ (z, bz]. Consider first the case z ∈ (z, bz]. Since

(7.5) holds with equality and θs1 ≥ θ̄ + πz > θ̄ > 0,

W0 + θ̄(S1 − S0) +A = θs1
(
S1 − D̄ + bD

)
⇒B +A+ θ̄(D̄ − bD)− (θs1 − θ̄)

[
bD − f ′(θd1 + z)

]
= 0, (E.10)
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where the second step follows from (7.3). Differentiating implicitly with respect to z and using

(3.8), we find

dθs1
dz

=
(θs1 − θ̄)f ′′(θd1 + z)

bD − f ′(θd1 + z) +
(1−π)(θs1−θ̄)

π f ′′(θd1 + z)
. (E.11)

Eqs. (E.5), (E.11), f ′′(θ) > 0 and θs1 > θ̄ imply that θs1 is increasing in z. Moreover, (E.11) implies

that

dθs1
dz

< π ⇔ bD − f ′(θd1 + z)− (θs1 − θ̄)f ′′(θd1 + z) > 0. (E.12)

Since θs1 − θ̄ < πz, the second inequality in (E.12) follows from (E.7). Eq. (3.8) and the first

inequality in (E.12) imply that

d(θd1 + z)

dz
> π, (E.13)

and (7.3) implies that S1 is decreasing in z. Consider next the case z ∈ [−bz,−z). The counterpart

of (E.10) is

B +A+ θ̄(D̄ + bD) + (θs1 − θ̄)
[
bD + f ′(θd1 + z)

]
= 0, (E.14)

and of (E.11) is

dθs1
dz

=
(θ̄ − θs1)f

′′(θd1 + z)

bD + f ′(θd1 + z) +
(1−π)(θ̄−θs1)

π f ′′(θd1 + z)
. (E.15)

Using (E.15) and proceeding as in the case z ∈ (z, bz], we find that θs1 is increasing in z and S1 is

decreasing in z.

Proof of Proposition 7.2: We first determine S0 in the abundant-capital region. Substituting

S1 from (7.3) and W1 from (3.10), we can write the expected utility (7.4) of a liquidity supplier

and (7.1) of a liquidity demander in Period 1 as

− exp
{
−α

[
W0 + θ0(D̄ − S0) + (θs1 − θ0)f

′(θd1 + z)− f(θs1)
]}

, (E.16)

− exp
{
−α

[
W0 + θ0(D̄ − S0) + (θd1 − θ0)f

′(θd1 + z)− f(θd1 + z)
]}

, (E.17)

respectively. Taking expectations of (E.16) and (E.17) over z yields the interim utilities (U s, Ud) in

Period 1/2. Agents choose θ0 to maximize U = (1− π)U s + πUd. Setting θ0 = θ̄ in the first-order
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condition and solving for S0, we find

S0 = D̄ −
E
{[

(1− π)Gs + πGd
]
f ′(θd1 + z)

}
E [(1− π)Gs + πGd]

, (E.18)

where

Gs ≡ exp
{
−α

[
(θs1 − θ̄)f ′(θd1 + z)− f(θs1)

]}
,

Gd ≡ exp
{
−α

[
(θd1 − θ̄)f ′(θd1 + z)− f(θd1 + z)

]}
.

Eq. (E.2) implies that

f(θ) =
∞∑
n=1

1

n!
αn−1θnκn, (E.19)

where κn is the n’th cumulant of D − D̄. Since D is distributed symmetrically around D̄, the

cumulants for odd n are zero. Since, in addition, κ2 = σ2 and κ4 = γσ4, (E.19) implies that

f(θ) = 1
2ασ

2θ2 + 1
24α

3γσ4θ4 + o(α3). (E.20)

Because the illiquidity discount (derived below) is of order α3, we need to evaluate (Gs, Gd) up to

order α2 and f ′(θd1 + z) up to order α3. To evaluate (Gs, Gd), we use the Taylor expansion (E.20)

up to order α. Noting that θs1 = θd1 + z = θ̄ + πz because (7.5) does not bind, we find

(1− π)Gs + πGd = 1 + 1
2α

2σ2(θ̄ + πz)2 + o(α2), (E.21)

f ′(θd1 + z) = ασ2(θ̄ + πz) + 1
6α

3γσ4(θ̄ + πz)3 + o(α3). (E.22)

Substituting (E.21) and (E.22) into (E.18), we find

S0 = D̄−
E
{[

1 + 1
2α

2σ2(θ̄ + πz)2 + o(α2)
] [

ασ2(θ̄ + πz) + 1
6α

3γσ4(θ̄ + πz)3 + o(α3)
]}

E
[
1 + 1

2α
2σ2(θ̄ + πz)2 + o(α2)

] . (E.23)

Since z is distributed symmetrically around zero, E(z) = E(z3) = 0 and E(z2) = σ2
z . Substituting

into (E.23), we find

S0 = D̄ −
ασ2θ̄ + α3σ4(θ̄3 + 3θ̄σ2

zπ
2)
(
1
2 +

1
6γ
)
+ o(α3)

1 + 1
2α

2σ2(θ̄2 + σ2
zπ

2) + o(α2)
. (E.24)

Eq. (E.24) implies (7.10).
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We next determine S0 in the scarce-capital region. Eq. (E.18) holds by redefining Gs as

Gs ≡ exp
{
−α

[
(θs1 − θ̄)f ′(θd1 + z)− f(θs1)

]}{
1 + 1{z∈[−bz ,−z)∪(z,bz ]}

[
f ′(θd1 + z)− f ′(θs1)

]
sign(θs1)

m(S1, θs1)

}
,

where the last term corresponds to the fact that when (7.5) binds, changes in θ0 affect θs1 because

they affect W1. Because the illiquidity discount (derived below) is of order α, we only need to

evaluate (Gs, Gd) up to order one and f ′(θd1 + z) up to order α. Since

Gs = 1 + o(1),

Gd = 1 + o(1),

f ′(θd1 + z) = ασ2(θd1 + z) + o(α),

(E.18) implies that

S0 = D̄ − E
[
ασ2(θd1 + z) + o(α)

]
= D̄ − E

[
ασ2

(
θ̄ − 1− π

π
(θs1 − θ̄) + z

)
+ o(α)

]

= D̄ − ασ2θ̄ + ασ2 1− π

π
E
(
θs1 − θ̄

)
+ o(α), (E.25)

where the second step follows from (3.8) and the third because z is distributed symmetrically

around zero. When (7.5) does not bind, θs1 = θ̄+πz. When z ∈ (z, bz], (E.10) implies that in order

one θs1 is independent of z and equal to θ̄ + πz. When z ∈ [−bz,−z), (E.14) implies that in order

one θs1 is independent of z and equal to θ̄ − πz. Therefore,

θs1 − θ̄ = π
[
−z1z∈[−bz ,−z) + z1z∈[−z,z] + z1z∈(z,bz ]

]
+ o(1). (E.26)

Substituting into (E.25), and using the symmetry of the distribution of z around zero, we find

S0 = D̄ − ασ2θ̄ − ασ2(1− π)

[∫ bz

z
(z − z)dF (z)−

∫ bz

z
(z − z)dF (z)

]
+ o(α). (E.27)

Eq. (E.27) implies (7.11).

Proof of Proposition 7.3: The signed volume of liquidity demanders is

π(θd1 − θ̄) = −(1− π)(θs1 − θ̄) (E.28)
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and the price is

S1 = D̄ − ασ2(θd1 + z) + o(α). (E.29)

When capital is abundant, θs1 = θd1 + z = θ̄ + πz. Substituting into (E.28) and (E.29), we find

π(θd1 − θ̄) = −π(1− π)z, (E.30)

S1 = D̄ − ασ2(θ̄ + πz) + o(α). (E.31)

Substituting (E.30) and (E.31) into (3.16), we find

λ =
ασ2

1− π
+ o(α). (E.32)

When capital is scarce, θs1 is given by (E.26). Substituting into (E.28), we find

π(θd1 − θ̄) = −π(1− π)
[
−z1z∈[−bz ,−z) + z1z∈[−z,z] + z1z∈(z,bz ]

]
+ o(1). (E.33)

Using (E.29) and the symmetry of the distribution of z around zero, we find

E(θd1 − θ̄) = (1− π)E

[∫ bz

z
(z − z)dF (z)−

∫ bz

z
(z − z)dF (z)

]
+ o(1), (E.34)

E(θd1 − θ̄)2 = (1− π)2
[
σ2
z −

∫ bz

z
(z2 − z2)dF (z)−

∫ bz

z
(z2 − z2)dF (z)

]
+ o(1), (E.35)

E
[
z(θd1 − θ̄)

]
= −(1− π)

[
σ2
z −

∫ bz

z
z(z − z)dF (z)−

∫ bz

z
z(z − z)dF (z)

]
+ o(1). (E.36)

Substituting (E.29) into (3.16), we find

λ = −
ασ2

{
Var

(
θd1 − θ̄

)
+ E

[
z(θd1 − θ̄)

]}
πVar

(
θd1 − θ̄

) + o(α)

=
ασ2

1− π
−

ασ2
{
Var

(
θd1 − θ̄

)
+ (1− π)E

[
z(θd1 − θ̄)

]}
π(1− π)Var

(
θd1 − θ̄

) + o(α)

=
ασ2

1− π
+

ασ2
{
(1− π)2

[∫ bz
z z(z − z)dF (z) +

∫ bz
z z(z − z)dF (z)

]
+
[
E(θd1 − θ̄)

]2}
π(1− π)Var

(
θd1 − θ̄

) + o(α),

(E.37)

where the third step follows from (E.35) and (E.36). Since the term in curly brackets is positive, λ

in (E.37) is higher than in (E.32) for small α.
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Suppose next that z is drawn from a two-point distribution, i.e., takes the two values ±σz.

Denoting by (θs+1 , θd+1 , S+
1 ) the values of (θs1, θ

d
1 , S1) corresponding to σz, and by (θs−1 , θd−1 , S−

1 )

those corresponding to −σz,

λ =
S−
1 − S+

1

π(θd−1 − θd+1 )
=

S−
1 − S+

1

(1− π)(θs+1 − θs−1 )
.

The first inequality in (E.12) implies that θs+1 is smaller when capital is scarce than when it is

abundant, and (7.3) and (E.13) imply that S+
1 is lower. Likewise, θs−1 is larger when capital is

scarce than when it is abundant, and S−
1 is higher. Since S−

1 > S+
1 and θs+1 > θs−1 , λ is higher

when capital is scarce than when it is abundant.

Proof of Proposition 7.4: Since S1 and D are independent, γ = Var(S1). We denote by S1(z)

the price when the liquidity shock is z, and use the superscripts ac for abundant capital and sc for

scarce capital. Setting S1(ẑ) ≡ E [Ssc
1 (z)], we can write Var [Ssc

1 (z)] as

Var [Ssc
1 (z)] =

∫ bz

−bz

[Ssc
1 (z)− Ssc

1 (ẑ)]2 dF (z). (E.38)

Eqs. (7.3) and (E.13) imply that
dSsc

1 (z)
dz <

dSac
1 (z)
dz < 0 for z ∈ (z, bz]. The same holds for z ∈

[−bz,−z), while
dSsc

1 (z)
dz =

dSac
1 (z)
dz < 0 for z ∈ [−z, z]. Therefore,

∫ bz

−bz

[Ssc
1 (z)− Ssc

1 (ẑ)]2 dF (z) >

∫ bz

−bz

[Sac
1 (z)− Sac

1 (ẑ)]2 dF (z). (E.39)

Since

Var [Sac
1 (z)] = min

x

∫ bz

−bz

[Sac
1 (z)− x]2 dF (z),

(E.38) and (E.39) imply that Var [Ssc
1 (z)] > Var [Sac

1 (z)]. Therefore, γ is higher when capital is

scarce than when it is abundant.

Proof of Proposition 7.5: Since the third term in the right-hand side of (7.11) is positive, S0 in

(7.11) is lower than in (7.10) for small α.

Proof of Proposition 7.6: Eqs. (E.29) and (E.33) imply that for small α and all z1 > z2,

S1(ωz1)− S1(ωz2) < S1(z1)− S1(z2) < 0.
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This inequality and the argument in Proposition 7.4 imply that γ is higher under the new distri-

bution. To show the comparisons for (λ, S0), we distinguish cases. If capital is abundant under

the new distribution (and so abundant under both), (E.32) implies that λ is the same under both

distributions, and (7.10) implies that S0 is lower under the new distribution. If capital is scarce

under the new distribution and abundant under the old, the comparisons follow from Propositions

7.3 and 7.5. If capital is scarce under both distributions, (E.34), (E.35) and (E.37) imply that λ is

higher under the new distribution if∫ bz

z
ω

z(ωz − z)dF (z) +

∫ bz

z
ω

z(ωz − z)dF (z) >

∫ bz

z
z(z − z)dF (z) +

∫ bz

z
z(z − z)dF (z),

(E.40)∫ bz

z
ω

(ω2z2 − z2)dF (z) +

∫ bz

z
ω

(ω2z2 − z2)dF (z) >

∫ bz

z
(z2 − z2)dF (z) +

∫ bz

z
(z2 − z2)dF (z),

(E.41)∫ bz

z
ω

(ωz − z)dF (z)−
∫ bz

z
ω

(ωz − z)dF (z) >

∫ bz

z
(z − z)dF (z)−

∫ bz

z
(z − z)dF (z), (E.42)

and (7.11) implies that S0 is lower under the new distribution if

∫ z
ω

z
ω

(ωz − z)dF (z) +

∫ bz

z
ω

(z − z)dF (z) >

∫ z

z
(z − z)dF (z) +

∫ bz

z
(z − z)dF (z). (E.43)

Eqs. (E.40)-(E.43) are satisfied because the left-hand side of each is increasing in ω > 1.

F Non-Competitive Behavior

Proof of Proposition 8.1: Substituting W1 from (3.10), and using normality, we can write (8.2)

as

−Eexp
{
−α

[
W0 + θ0

(
S1(θ

d
1)− S0

)
+ θd1

(
E[D|s]− S1(θ

d
1)
)
+ z

(
E[D|s]− D̄

)
− 1

2ασ
2[D|s](θd1 + z)2

]}
.

(F.1)

Since in equilibrium θ0 = θ̄, the first-order condition with respect to θd1 is

E[D|s]− S1(θ
d
1)− λ̂(θd1 − θ̄)− ασ2[D|s](θd1 + z) = 0. (F.2)

Eq. (8.3) follows by rearranging (F.2).
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Proof of Proposition 8.2: The proof is similar to that of Proposition 4.2. Eq. (B.2) is replaced

by

(1− π)
D̄ +

βξ

b (S1 − a)− S1

ασ2[D|S1]
+ π

D̄ + βs

b (S1 − a) + βscz − S1 − ασ2[D|s]z + λ̂θ̄

ασ2[D|s] + λ̂
= θ̄. (F.3)

Eq. (F.3) can be viewed as an affine equation in the variables (S1 − a, z). Setting terms in S1 − a

to zero, we find

(1− π)

βξ

b − 1

ασ2[D|S1]
+ π

βs

b − 1

ασ2[D|s] + λ̂
= 0. (F.4)

Setting terms in z to zero, and using (4.2b), we find (4.6c). Setting constant terms to zero, we find

(1− π)
D̄ − a

ασ2[D|S1]
+ π

D̄ − a+ λ̂θ̄

ασ2[D|s] + λ̂
= θ̄

⇔(1− π)
D̄ − a

ασ2[D|S1]
+ π

[
θ̄ +

D̄ − a− ασ2[D|s]θ̄
ασ2[D|s] + λ̂

]
= θ̄. (F.5)

Using (F.4) and the definition of λ̂, we find (8.4). Using (F.4) and (F.5), and following the same

argument as in the proof of Proposition 4.2, we find (4.6a).

A linear equilibrium exists if the liquidity demanders’ second-order condition is met. Eq. (F.1)

implies that the second-order condition is

ασ2[D|s] + 2λ̂ > 0

⇔σ2[D|s] +
2
[
πβsσ

2[D|S1] + (1− π)βξσ
2[D|s]

]
(βs − 2βξ)(1− π)

> 0

⇔ σ2
ϵ

σ2 + σ2
ϵ

+
2
(
σ2
ϵ + πc2σ2

z

)
(c2σ2

z − σ2 − σ2
ϵ ) (1− π)

> 0, (F.6)

where the second step follows from (8.4) and the definition of λ̂, and the third from (4.2b), (4.3b),

and the definitions of (βs, βξ). Eq. (F.6) is satisfied if and only if c2σ2
z − σ2 − σ2

ϵ > 0, which from

(4.6c) is equivalent to σ2
ϵ > σ̂2

ϵ .

Proof of Proposition 8.3: The proof is similar to that of Proposition 4.3. The expected utility

of a liquidity supplier in Period 1 is (B.6), and the expectation over (s, z) is (B.10) for Fs given

by (B.14). Substituting E[D|s] − S1(θ
d
1) from (F.2), we can write the expected utility (F.1) of a
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liquidity demander as

− exp
{
−α

[
W0 + θ0 (S1 − S0) + βsξz +

1
2ασ

2[D|s]
[
(θd1)

2 + z2
]
+ λ̂θd1(θ

d
1 − θ̄)

]}
. (F.7)

(Eq. (F.2) holds for θ0 = θ̄ even when one agent chooses θ0 ̸= θ̄. This is because agents behave

competitively in Period 0, and therefore a non-equilibrium choice θ0 ̸= θ̄ by one agent does not

imply non-equilibrium choices by other agents.) Using (4.2a), (4.2b), (4.6c) and the definition of

ξ, we can write (8.3) as

θd1 =
D̄ + βsξ − S1 + λ̂θ̄

ασ2[D|s] + λ̂
. (F.8)

Substituting θd1 from (F.8), and S1 from (4.1), we can write (F.7) as

− exp

−α

W0 + θ0(a+ bξ − S0) + βsξz +
ασ2[D|s]

[
D̄ + βsξ − (a+ bξ) + λ̂θ̄

]2
2
(
ασ2[D|s] + λ̂

)2

+ 1
2ασ

2[D|s]z2 +
λ̂
[
D̄ + βsξ − (a+ bξ) + λ̂θ̄

] [
D̄ + βsξ − (a+ bξ)− ασ2[D|s]θ̄

]
(
ασ2[D|s] + λ̂

)2

 . (F.9)

To compute the expectation of (F.9) over (s, z), we use Lemma A.1 and set

x ≡
[
ξ
z

]

Σ ≡
[
σ2 + σ2

ϵ + c2σ2
z −cσ2

z

−cσ2
z σ2

z

]

A ≡ W0 + θ0(a− S0) +

(
D̄ − a+ λ̂θ̄

) [
(D̄ − a)

(
ασ2[D|s] + 2λ̂

)
− ασ2[D|s]λ̂θ̄

]
2
(
ασ2[D|s] + λ̂

)2
B ≡

 bθ0 +
[(D̄−a)(ασ2[D|s]+2λ̂)+λ̂2θ̄](βs−b)

(ασ2[D|s]+λ̂)
2

0



C ≡

 (βs−b)2(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)
2 βs

βs ασ2[D|s]

 .

Proceeding as in the proof of Proposition 4.3, we find

Ud = − exp
(
−αF d

) 1√
1 +

α(βs−b)2(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)
2 (σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

, (F.10)
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where

F d =W0 + θ0(a− S0) +

(
D̄ − a+ λ̂θ̄

) [
(D̄ − a)

(
ασ2[D|s] + 2λ̂

)
− ασ2[D|s]λ̂θ̄

]
2
(
ασ2[D|s] + λ̂

)2

−
α

[
bθ0 +

[(D̄−a)(ασ2[D|s]+2λ̂)+λ̂2θ̄](βs−b)

(ασ2[D|s]+λ̂)
2

]2
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

2

[
1 +

α(βs−b)2(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)
2 (σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

] . (F.11)

Substituting D̄ − a from (4.6a) into (F.11), we find

F d =W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2

+ α

bσ2θ0θ̄ − 1
2σ

2θ̄2 +

[
α(1− b)σ2 + λ̂

] [
(1− b)σ2

(
ασ2[D|s] + 2λ̂

)
− σ2[D|s]λ̂

]
2
(
ασ2[D|s] + λ̂

)2 θ̄2

−

[
bθ0 +

[α(1−b)σ2(ασ2[D|s]+2λ̂)+λ̂2](βs−b)θ̄

(ασ2[D|s]+λ̂)
2

]2
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

2

[
1 +

α(βs−b)2(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)
2 (σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

]
 . (F.12)

Using (4.2b) and the definition of βs, we can write (F.12) as

F d =W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2

−
α
{
b2(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)θ

2
0 + 2b(σ2 + σ2

ϵ )
[
α2σ2σ2

z − b(1 + α2σ2
ϵσ

2
z)
]
θ0θ̄ +Xθ̄2

}
2

[
1 +

α(βs−b)2(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)
2 (σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

] ,

(F.13)

where

X ≡
[
σ2 − (1− b)2σ4

σ2[D|s]

]
(1−α2σ2σ2

z)+
(βs − b)2σ2

σ2[D|s]
(σ2+σ2

ϵ )(1+α2σ2
ϵσ

2
z)−

α2(βs − b)2λ̂2σ4(σ2 + σ2
ϵ )σ

2
z(

ασ2[D|s] + λ̂
)2

σ2[D|s]
.

Using (B.21) to eliminate the term in σ2 − (1−b)2σ4

σ2[D|s] in the definition of X, and substituting X into

(B.20), we find

F d =W0 + θ0(D̄ − S0)− ασ2θ0θ̄ +
1
2ασ

2θ̄2

−
α
{
b2(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)(θ0 − θ̄)2 + α2(σ2 + σ2

ϵ )
2σ2

z

[
2bσ2θ0θ̄
σ2+σ2

ϵ
+ X̂θ̄2

]}
2

[
1 +

α(βs−b)2(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)
2 (σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)− α2σ2σ2

z

] , (F.14)
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where

X̂ ≡ (βs − b)2σ2

σ2[D|s]

1− λ̂2σ2(
ασ2[D|s] + λ̂

)2
(σ2 + σ2

ϵ )

− b2.

We next note that

α(βs − b)2
(
ασ2[D|s] + 2λ̂

)
(
ασ2[D|s] + λ̂

)2 (σ2 + σ2
ϵ )(1 + α2σ2

ϵσ
2
z)

=
(b− βξ)

2
(
ασ2[D|s] + 2λ̂

)
(1− π)2

ασ4[D|S1]π2
(σ2 + σ2

ϵ )(1 + α2σ2
ϵσ

2
z)

=
(b− βξ)

2
(
ασ2[D|s] + 2λ̂

)
(σ2 + σ2

ϵ + c2σ2
z)(1− π)2

ασ2[D|s]σ2[D|S1]π2

=∆0

(
1 +

λ̂

ασ2[D|s]

)
(1− π)2, (F.15)

where the first step follows from (F.4), the second from (4.2b), (4.3b), (4.6c) and the definitions of

(βs, βξ), and the third from (4.7a). Therefore, (F.10) takes the form (A.5), with ∆0 replaced by

∆0

(
1 + 2λ̂

ασ2[D|s]

)
. Eqs. (B.14), (F.14) and (F.15) imply that when θ0 = θ̄, (dF s/dθ0, F

s, dF d/dθ0, F
d)

are given by (A.8)-(A.11), with (∆1,∆2) given by (8.7a) and (8.7b). Since the equations for

(U s, Ud, dF s/dθ0, F
s, dF d/dθ0, F

d) take the same form as in Proposition 3.2, the same applies to

S0.

Proof of Proposition 8.4: The proof that λ is given by (4.8) is the same as for Proposition 4.4.

When information is asymmetric (σ2
ϵ < ∞), (4.6b) and (8.4) imply that b is smaller under non-

competitive behavior. Therefore, (4.8) implies that λ is higher. To determine λ when information

is symmetric, we consider the limit σ2
ϵ → ∞. Eqs. (4.2b), (4.3b), (4.6c), and the definitions of

(βs, βξ) imply that
βξ

βs
→ 0 and b

βs
→ π

1+π . Eq. (4.8) then implies that λ → ασ2

1−π , which coincides

with the competitive counterpart (3.19).

Proof of Proposition 8.5: The proof that γ is given by (4.8) is the same as for Proposition

4.5. When information is asymmetric (σ2
ϵ < ∞), b is smaller under non-competitive behavior, and

(4.9) implies that γ is lower. To determine γ when information is symmetric, we consider the limit

σ2
ϵ → ∞. Since

βξ

βs
→ 0 and b

βs
→ π

1+π , (4.9) implies that γ → α2σ4σ2
zπ

2

(1+π)2
, which is lower than the
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competitive counterpart (3.21).

Proof of Proposition 8.6: To determine S0 when information is symmetric, we consider the limit

σ2
ϵ → ∞. Since

βξ

βs
→ 0 and b

βs
→ π

1+π , (4.7a), (8.7a) and (8.7b) imply that

∆0 →
α2σ2σ2

z

(1 + π)2
< ∆c

0

∆0

(
1 +

2λ̂

ασ2[D|s]

)
→ α2σ2σ2

z

1− π2
> ∆c

0

∆1 →
α3σ4σ2

zπ
1+π

1 + α2σ2σ2
z(1−π)

1+π − α2σ2σ2
z

< ∆c
1

∆2 →
α3σ4σ2

z

1 + α2σ2σ2
z(1−π)

1+π − α2σ2σ2
z

< ∆c
2,

where {∆c
j}j=0,1,2 denote the competitive counterparts of {∆j}j=0,1,2, given by (3.15a)-(3.15c).

The above inequalities, together with (3.13), (3.14), and (8.6) imply that S0 is higher under non-

competitive behavior.

To show that S0 can be lower under non-competitive behavior, we consider the limit σ2
ϵ → σ̂2

ϵ

(and σ2
ϵ > σ̂2

ϵ so that the linear equilibrium exists). Eqs. (4.2b), (4.3b), (4.6c), and the definitions

of (βs, βξ) imply that
βξ

βs
→ 1

2 and b
βs

→ 1
2 . Substituting into (4.7a), (8.7a) and (8.7b), and using

the definition of λ̂, we find

∆0 → 0

∆0

(
1 +

2λ̂

ασ2[D|s]

)
→ 0

∆1 →
α3σ4σ2

z

2 (1− α2σ2σ2
z)

∆2 →
α3σ4σ2

z

1− α2σ2σ2
z

.

The competitive counterparts of {∆j}j=0,1,2 are given by (4.7a)-(4.7c). Since ∆c
0 > 0, the following

inequalities hold when α2σ2σ2
z ≈ 1: ∆j > ∆c

j for j = 1, 2, and M > M c, where M c denotes the

competitive counterpart of M . These inequalities, together with (3.13), imply that S0 is lower

under non-competitive behavior.
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Proof of Proposition 8.7: Using (4.2b), (4.3b), (4.6c), (8.4) and the definitions of (βs, βξ), we

can write (4.8) as

λ =
ασ2

(
σ2
ϵ + c2σ2

zπ
)

(c2σ2
z − σ2 − σ2

ϵ )π(1− π)
, (F.16)

(4.9) as

γ =
σ4(σ2

ϵ + c2σ2
z)(σ

2
ϵ + c2σ2

zπ)(c
2σ2

z − σ2 − σ2
ϵ )π

[2(σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

z)π + σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z)(1− π)]2
, (F.17)

(4.7a) as

∆0 =
σ2(σ2

ϵ + c2σ2
z)(c

2σ2
z − σ2 − σ2

ϵ )
2

[2(σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

z)π + σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z)(1− π)]2
, (F.18)

and the numerator in (8.7a) as

α3bσ2(σ2 + σ2
ϵ )σ

2
z =

α3σ4(σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

zπ)σ
2
z

2(σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

z)π + σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z)(1− π)
. (F.19)

Using (F.18) and the definition of λ̂, we find

∆0

(
1 +

2λ̂

ασ2[D|s]

)
=

σ2(σ2
ϵ + c2σ2

z)(c
2σ2

z − σ2 − σ2
ϵ )

σ2
ϵ [2(σ

2 + σ2
ϵ )(σ

2
ϵ + c2σ2

z)π + σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z)(1− π)] (1− π)
. (F.20)

Using (F.15) and (F.20), we find

α(βs − b)2
(
ασ2[D|s] + 2λ̂

)
(
ασ2[D|s] + λ̂

)2 (σ2 + σ2
ϵ ) =

σ2(c2σ2
z − σ2 − σ2

ϵ )(1− π)

2(σ2 + σ2
ϵ )(σ

2
ϵ + c2σ2

z)π + σ2
ϵ (σ

2 + σ2
ϵ + c2σ2

z)(1− π)
.

(F.21)

Eq. (F.16) implies that λ is decreasing in σ2
z . Eq. (F.17) implies that γ is increasing in σ2

z . Eq.

(F.18) implies that ∆0 is increasing in σ2
z . Eq. (F.20) implies that

1 + ∆0

(
1 +

2λ̂

ασ2[D|s]

)
(1− π)2 − α2σ2σ2

z

is decreasing in σ2
z . Eq. (F.19) implies that the numerator in (8.7a) is increasing in σ2

z , and so is

∆1. Eq. (F.21) implies that the numerator in (8.7b) is increasing in σ2
z , and so are ∆2 and M .

Therefore, (3.13) implies that S0 is decreasing in σ2
z .
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G Search

Proof of Proposition 9.1: The proposition follows by substituting the certainty equivalents from

(9.1)-(9.4) into (9.5), setting x = z/2, and solving for S1.

Proof of Proposition 9.2: We first compute the interim utility U s in Period 1/2 of a liquidity

supplier who buys θ0 ̸= θ̄ shares in Period 0. The certainty equivalents (9.1) and (9.2) are replaced

by

CEQsn = W0 + θ0(D̄ − S0)− 1
2ασ

2θ20,

CEQs = W0 + θ0(D̄ − S0) + x(D̄ − S1)− 1
2ασ

2(θ0 + x)2,

respectively. If the supplier does not meet a demander, he receives expected utility

U sn
1 = − exp (−αCEQsn) (G.1)

in Period 1. If the supplier meets a demander, he buys

x = 1
2(z + θ̄ − θ0) (G.2)

shares, the maximand of CEQs + CEQd. Expected utility in Period 1 is

U s
1 = − exp (−αCEQs) = − exp

[
−α

(
CEQsn + ϕασ2x2

)]
, (G.3)

where the second step follows from (9.5) because the surplus from the transaction is ασ2x2. Ex-

pected utility in Period 1/2 is

U s = πsE (U s
1 ) + (1− πs)E (U sn

1 ) = πsE (U s
1 ) + (1− πs)U sn

1 , (G.4)

where the expectation is over z, and the second step follows because U sn
1 is independent of z.

Lemma A.1 and (G.2) imply that the expectation of (G.3) is

E (U s
1 ) = − exp

{
−α

[
W0 + θ0(D − S0)− 1

2ασ
2θ20 +

ϕασ2(θ0 − θ̄)2

4G1

]}
1√
G1

. (G.5)

Using (G.1), (G.4), and (G.5), we find

dU s

dθ0

∣∣∣∣
θ0=θ̄

= α exp
{
−α

[
W0 + θ̄(D̄ − S0)− 1

2ασ
2θ̄2
]} (

D̄ − S0 − ασ2θ̄
)( πs

√
G1

+ 1− πs

)
. (G.6)
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We next compute the interim utility Ud in Period 1/2 of a liquidity demander who buys θ0 ̸= θ̄

shares in Period 0. The certainty equivalents (9.3) and (9.4) are replaced by

CEQdn = W0 + θ0(D̄ − S0)− 1
2ασ

2(θ0 + z)2,

CEQd = W0 + θ0(D̄ − S0)− x(D̄ − S1)− 1
2ασ

2(θ0 + z − x)2,

respectively. If the demander does not meet a supplier, he receives expected utility

Udn
1 = − exp

(
−αCEQdn

)
(G.7)

in Period 1. If the supplier meets a demander, he sells

x = 1
2(z + θ0 − θ̄) (G.8)

shares, the maximand of CEQs + CEQd. Expected utility in Period 1 is

U s
1 = − exp

(
−αCEQd

)
= − exp

[
−α

(
CEQdn + (1− ϕ)ασ2x2

)]
, (G.9)

and expected utility in Period 1/2 is

Ud = πdE
(
Ud
1

)
+ (1− πd)E

(
Udn
1

)
. (G.10)

The expectation of (G.7) is (C.5) because in both cases the demander does not trade in Period 1.

Lemma A.1 and (G.8) imply that the expectation of (G.9) is

E
(
Ud
1

)
= − exp

{
−α

[
W0 + θ0(D − S0)− 1

2ασ
2

1
2(1 + ϕ)θ20 + (1− ϕ)θ0θ̄ − 1

2(1− ϕ)(1− α2σ2σ2
z)θ̄

2

G2

]}
1√
G2

.

(G.11)

Using (C.5), (G.10), and (G.11), we find

dUd

dθ0

∣∣∣∣
θ0=θ̄

= α exp
{
−α

[
W0 + θ̄(D̄ − S0)− 1

2ασ
2θ̄2
]}

×
{

πd

√
G2

exp

(
θ̄2α4σ4σ2

z

2G2

)(
D̄ − S0 −

ασ2θ̄

G2

)
+

1− πd

√
G3

exp

(
θ̄2α4σ4σ2

z

2G3

)(
D̄ − S0 −

ασ2θ̄

G3

)}
.

(G.12)

Substituting (G.6), (G.12), πs = N/(1− π), and πd = N/π, into (D.7), and solving for S0, we find

(9.7).
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Proof of Proposition 9.3: The signed order flow of liquidity demanders is −Nz/2 since the

measure of meetings is N and in each meeting a demander sells z/2 shares. Eq. (9.6) implies that

λ =
Cov

(
S1 − S0,− 1

2Nz
)

Var
(
− 1

2Nz
) =

1
4ασ

2z(1 + 2ϕ)
1
2Nz

=
ασ2(1 + 2ϕ)

2N
.

Illiquidity is higher than in the centralized market if

1 + 2ϕ

2N
≥ 1

1− π
. (G.13)

Eq. (G.13) yields the condition in the proposition.

Proof of Proposition 9.4: Eq. (9.9) follows from (3.20) and (9.6). The comparison with the

centralized market follows from (3.21) and (9.9).

Proof of Proposition 9.5: The derivative of (9.7) with respect to N has the same sign as

(1− π)

1 + ϕ

2G
3
2
3

exp

(
θ̄2α4σ4σ2

z

2G3

)
− 1

G
3
2
2

exp

(
θ̄2α4σ4σ2

z

2G2

)
+

(
1√
G1

− 1

)
π

G
3
2
3

exp

(
θ̄2α4σ4σ2

z

2G3

)
+

π(1− ϕ)

2G
3
2
2G

3
2
3

exp

(
θ̄2α4σ4σ2

z

2G2

)
exp

(
θ̄2α4σ4σ2

z

2G3

)
. (G.14)

The first term in (G.14) is positive because G2 > G3. A sufficient condition for the sum of the

second and third terms to be positive is

1√
G1

− 1 +
1− ϕ

2G
3
2
2

> 0

⇔1− ϕ

2G
3
2
2

>
ϕα2σ2σ2

z

2
√
G1

(
1 +

√
G1

) . (G.15)

Eq. (G.15) holds if ϕ ≤ 1/2 because of (2.2) and G1 > 1 > G2.

Proof of Proposition 9.6: Eq. (9.8) implies that λ is independent of σ2
z , and (9.9) implies that

γ is increasing in σ2
z . To show that S0 is decreasing in σ2

z , we write the illiquidity discount in (9.7)

as

N(1+ϕ)

2G
3
2
2

exp
(
α4σ4σ2

z θ̄
2

2G2

)
+ π−N

G
3
2
3

exp
(
α4σ4σ2

z θ̄
2

2G3

)
N√
G2

exp
(
α4σ4σ2

z θ̄
2

2G2

)
+ π−N√

G3
exp

(
α4σ4σ2

z θ̄
2

2G3

) α3σ4σ2
z θ̄

N√
G1

+1−π−N

N√
G2

exp

(
α4σ4σ2

z θ̄
2

2G2

)
+π−N√

G3
exp

(
α4σ4σ2

z θ̄
2

2G3

) + 1

.
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Since G1 is increasing in σ2
z , while (G2, G3) are decreasing, the second fraction is increasing in σ2

z .

To show that the first fraction is also increasing, we write it as

1+ϕ
2G2

+ π−N
NG3

F

1 + π−N
N F

, (G.16)

where

F =

√
G2

G3
exp

[
1
2α

4σ4σ2
z θ̄

2

(
1

G3
− 1

G2

)]
.

The derivative of (G.16) with respect to σ2
z has the same sign as

 1
2(1 + ϕ)

d
(

1
G2

)
dσ2

z

+
π −N

N

d
(

1
G3

)
dσ2

z

F

(1 + π −N

N
F

)
+

π −N

N

dF

dσ2
z

(
1

G3
− 1 + ϕ

2G2

)
. (G.17)

Eq. (G.17) is positive because (G2, G3) are decreasing in σ2
z , F is increasing, and G2 ≥ G3.
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