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Abstract

We study market efficiency in an infinite-horizon model with a monopolistic insider. The

insider can trade with competitive market makers and noise traders, and observes privately

the expected growth rate of asset dividends. In the absence of the insider, this information

would be reflected in prices only after a long series of dividend observations. Thus, the insider’s

information is “long-lived.” Surprisingly, however, the monopolistic insider chooses to reveal her

information very quickly, within a time converging to zero as the market approaches continuous

trading. Although the market converges to strong-form efficiency, the insider’s profits do not

converge to zero.
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1 Introduction

How efficient are financial markets at incorporating information? This question has generated a

large body of research, both theoretical and empirical. Some studies focus on information known

to all market participants, such as earnings and macroeconomic announcements. Others consider

private information held, for example, by corporate insiders. Fama (1970) uses the concept of

strong-form efficiency to characterize a market where private information is fully reflected in prices.

Understanding how closely markets approximate the strong-form-efficiency ideal requires an

analysis of the trading strategies of privately informed agents. If, for example, these agents trade

aggressively, then their information should be reflected in prices quickly. In a seminal paper, Kyle

(1985) provides the first analysis of strategic informed trading. He considers a monopolistic insider

who can trade with competitive market makers in the presence of noise traders. When trading

is continuous, the insider reveals her information slowly at a rate which is constant over time.

Information is fully reflected in prices only at the end of the trading session, just before the time

when it is to be announced publicly.

Kyle, and much of the subsequent literature, assume that the insider receives information only

once, at the beginning of the trading session. This can be a good description of a corporate insider

who knows the content of an earnings announcement. In other cases, however, the assumption that

the insider receives information repeatedly might be more appropriate. For example, the insider

could be a proprietary-trading desk, hedge fund, or mutual fund, generating a continuous flow of

private information on a stock through their superior research.

In this paper we consider an infinite-horizon, steady-state model where a monopolistic insider

receives information in each period. The information concerns the expected growth rate of asset

dividends, and in the absence of the insider would be reflected in prices only after a long series of

dividend observations. Quite surprisingly, however, in the presence of the insider the information

is reflected very quickly, within a time converging to zero as the market approaches continuous

trading (i.e., as the time between consecutive transactions goes to zero). Thus, a market with a

monopolistic insider can be arbitrarily close to strong-form efficiency, in contrast to Kyle. We also

show that the insider’s profits do not converge to zero despite the market’s converging to efficiency.

Thus, markets can be almost efficient and yet offer sizeable returns to information acquisition.

While our results are in sharp contrast to previous literature, they are not driven by any

peculiar modelling assumptions. We consider an economy with a dividend-paying stock and an
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exogenous riskless rate. As in Kyle, the agents are a risk-neutral insider who can submit a market

order in each period, noise traders who submit i.i.d. market orders, and a risk-neutral competitive

market maker who sets a price to absorb the aggregate order. We depart from Kyle in assuming an

infinite horizon and new private information arriving in each period. To model private information

we follow Wang (1993), assuming that dividends revert to a time-varying mean observed only by

the insider. The mean can be interpreted as the firm’s underlying profitability, and reverts to a

constant long-run value.

Our model has a unique linear equilibrium that we compute in closed form when the market

approaches continuous trading. To characterize the speed of information revelation, we examine

how quickly the price adjusts to a shock in the firm’s profitability. In the absence of the insider, the

adjustment occurs slowly (i.e., at a finite rate) even in the continuous-time limit. Intuitively, the

market maker can learn about profitability only by observing the dividend. In the continuous-time

limit the dividend follows an Ito process, and since profitability enters in the drift it cannot be fully

inferred within any finite time. In the presence of the insider, however, the adjustment occurs at a

rate that converges to infinity, meaning that prices reflect private information almost instantly.

Why does the insider choose to reveal her information quickly? In general, the insider can

minimize the price impact of a large order by breaking it into small pieces and “going down” the

market maker’s demand curve. When the market approaches continuous trading, the small orders

can be placed within a short time interval without increasing the price impact. This allows the

insider to exploit her information quickly and avoid the costs linked to impatience that are (i)

the time-discounting of her profits, (ii) the revelation of her information through the dividend,

and (iii) the obsolescence of her information through the mean-reversion in the firm’s profitability.

Impatience cannot, however, provide a full explanation because the insider does not trade quickly

in Kyle.1 The additional element has to do with the time-pattern of information arrival. In Kyle,

the insider receives information only once, at the beginning of the trading session. If she trades

quickly, then the price impact of her trades will be large early on when her information is being

revealed, and small afterwards when information has become symmetric. But this cannot be an

equilibrium because the insider would prefer to wait until the price impact gets small. In our

model, by contrast, the price impact is constant over time, whether the insider trades quickly or

not, because we are in a steady state where new private information always arrives. Given the

constant price impact, impatience induces the insider to trade quickly.

Although the market converges to strong-form efficiency, the insider’s profits do not converge to

zero. Intuitively, the insider’s profit margin per share decreases as the market approaches efficiency.
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This is, however, offset by the fact that the insider can trade more as trading opportunities become

more frequent.

To assess the practical significance of our results, we calibrate the model to parameters cor-

responding to a large-cap and a small-cap stock. In both cases, the insider speeds information

revelation dramatically. As an example, suppose that the noise in the dividend process is such

that in the insider’s absence, the price adjustment to profitability shocks has a half-life of one year.

Then, the insider reduces this to 1.5 day for the large-cap stock and 24 days for the small-cap stock.

Thus, our model implies that markets can be much closer to strong-form efficiency than suggested

by previous literature. For example, if the information of Kyle’s insider is to be announced publicly

in one year, the insider takes six months to incorporate half of it into the price.

Holden and Subrahmanyam (1992), Foster and Vishwanathan (1996) and Back, Cao and

Willard (2000) introduce multiple insiders into Kyle’s model (where information is received only

once and there is a finite horizon). In Holden and Subrahmanyam all insiders receive the same

information, and reveal it almost immediately as the market approaches continuous trading. Thus,

the market becomes strong-form efficient but for a different reason from that in our model - each

insider tries to exploit her information before others do. An additional difference from our model

is that the insiders’ profits converge to zero as the market approaches efficiency. In Foster and

Vishwanathan the insiders receive imperfectly correlated signals, and information revelation slows

down because of a “waiting-game” effect, whereby each insider attempts to learn the others’ sig-

nals. Back, Cao and Willard formulate the problem directly in continuous time. They show, in

particular, that when signals are imperfectly correlated, information is not fully reflected in prices

until the end of the trading session because of the waiting-game effect.2

Back and Pedersen (1998) consider a continuous-time, finite-horizon model in which a monop-

olistic insider receives a flow of private information during the trading session. They show that the

insider reveals her information slowly, and thus the market is not strong-form efficient. To ensure

the existence of equilibrium, they endow the insider with a stock of initial information in addition

to the subsequent flow. It is because of this stock that information revelation is slow as in Kyle.

Taub, Bernhardt and Seiler (2005) consider a discrete-time, infinite-horizon model with multiple

insiders receiving information in each period. They propose a general method to compute the

equilibrium, using functional-analysis techniques. Their main focus is to solve the complicated

problem of infinite regress, and they do not characterize the equilibrium close to the continuous-

time limit. Their work differs from ours in many other respects. For example, the insiders’ private
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information concerns a liquidating dividend paid at a stochastic time when the economy ends, and

no information about the dividend is revealed publicly beforehand.

Wang (1993,1994) considers infinite-horizon models where a set of insiders receive information

on a firm’s dividends over time in steady state. In contrast to our paper (and all others mentioned in

this section), Wang’s insiders are risk-averse and competitive rather than risk-neutral and strategic.

Absent risk-aversion, competitive insiders would reveal their information instantly. Risk-aversion,

however, limits the insiders’ trading aggressiveness, ensuring that information is revealed slowly.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3 deter-

mines the equilibrium in the general discrete-time case. Section 4 considers the behavior of the

equilibrium when the market approaches continuous trading, and establishes our main results. Sec-

tion 5 calibrates the model and derives empirical implications. Section 6 concludes, and all proofs

are in the Appendix.

2 Model

Time is continuous and goes from −∞ to∞. Trading takes place at a set of discrete times {`h}`∈Z,

where h is a positive constant. We refer to time `h as period `. There is a consumption good and

two financial assets. The first asset is a riskless bond with an exogenous, continuously compounded

rate of return r. The return on the bond between two consecutive periods is erh. The second asset

is a stock that pays a dividend D`h in period `. The dividend rate D` reverts to a time-varying

mean g` according to the process

D` = D`−1 + νh(g`−1 −D`−1) + εD,`, (1)

where ν determines the reversion rate and εD,` is an i.i.d. shock. The parameter g` can be in-

terpreted as the firm’s “true” underlying profitability, and is observable only to the insider. This

parameter reverts to a constant value g according to the process

g` = g`−1 + κh(g − g`−1) + εg,`, (2)

where κ determines the reversion rate and εg,` is an i.i.d. shock. The shocks εD,` and εg,` are

independent of each other and normally distributed with mean zero and variance σ2Dh > 0 and

σ2gh > 0, respectively. We assume that νh ∈ (0, 1) and κh ∈ [0, 1), allowing in particular κ = 0 in
which case g` follows a random walk. Our specification for D` and g` ensures that when the time
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h between consecutive periods goes to zero, D` and g` converge to the Ito processes

dDt = ν(gt −Dt)dt+ σDdBD,t (3)

and

dgt = κ(g − gt)dt+ σgdBg,t, (4)

respectively, where the Brownian motions BD,t and Bg,t are independent. Equations (3) and (4)

are quite standard for modelling private information in infinite horizon, e.g., Wang (1993).

There are three types of traders: a market maker, an insider, and noise traders. The market

maker behaves competitively, while the insider is strategic.3 Both are risk-neutral, discount the

future at rate r, and have the utility function

E

[ ∞∑

`′=`

cj`′e
−r(`′−`)h

∣∣∣∣∣F
j
`

]
, (5)

where cj` denotes consumption in period `, F
j
` denotes the information set, and the superscript

j is m for the market maker and i for the insider. Under the utility function (5), agents are

indifferent as to the timing of consumption, and value a cash-flow stream according to the present

value (PV) of expected cash flows discounted at rate r. The insider’s private information consists

of the profitability g`. In period `, the insider can trade with the market maker via a market

(i.e., price-inelastic) order that we denote by x`. Noise traders also submit a market order that we

denote by u`. The noise traders’ order is independent of the dividend process, independent across

periods, and normally distributed with mean 0 and variance σ2uh > 0. We adopt the convention

that x` and u` are positive if the insider and the noise traders buy. As in Kyle, we assume that the

market maker observes only the aggregate order x` + u`, and sets a price p` at which he is willing

to take the other side of the trade.

The timing of events in period ` is as follows. First, the insider and the noise traders submit their

orders. Next, the dividend rate D` is publicly revealed, and the insider observes the profitability

g`. The market maker then sets a price p` at which he is willing to take the other side of the trade.

Finally, the asset pays the dividend D`h and agents consume.
4

INSERT FIGURE 1 SOMEWHERE HERE

Competitive behavior ensures that the market maker sets the price equal to his marginal

valuation. The latter is equal to the PV of expected dividends conditional on the market maker’s
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information. Therefore,

p` = E

[ ∞∑

`′=`

D`′he
−r(`′−`)h

∣∣∣∣∣F
m
`

]
. (6)

To evaluate this expression, we substitute {D`′}`′>` from Equations (1) and (2). In Appendix A
we show that this yields

p` = A0D` +A1E(g`|Fm
` ) +A2g (7)

for three positive constants A0, A1 and A2 that depend on h, r, ν and κ. Thus, the price is a

linear and increasing function of the current dividend level D`, the market maker’s expectation of

current profitability E(g`|Fm
` ), and the long-run mean of profitability g. From now on, we denote

the market maker’s expectation by ĝ` ≡ E(g`|Fm
` ). Note that this expectation is evaluated after

the market maker observes the dividend rate D` and order flow x` + u`.

The insider’s valuation for the asset is equal to the PV of expected dividends conditional on her

information. This PV is given by the same equation as for the market maker, with the difference

that the expectation ĝ` is replaced by true value g`. Thus, the valuation v` in period ` is

v` = A0D` +A1g` +A2g, (8)

for the constants A0, A1 and A2 in Equation (7). The insider’s optimization problem in period ` is

to choose a sequence of market orders {x`′}`′≥` to maximize the PV of expected profits. Expected
profits for the insider in period ` are equal to her order x` times the difference between valuation

and price. Therefore, the insider’s objective is

E

[ ∞∑

`′=`

x`′ (v`′ − p`′) e
−r(`′−`)h

∣∣∣∣∣F
i
`

]
. (9)

3 Equilibrium

3.1 Candidate Strategies

An equilibrium consists of a trading strategy {x`}`∈Z for the insider and a pricing strategy {p`}`∈Z

for the market maker such that
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• The insider maximizes the PV of expected profits, given the price process generated by the
market maker’s strategy.

• The market maker sets prices equal to the PV of expected dividends, where the expectation
is conditional on information revealed by the insider’s strategy.

We look for an equilibrium in which strategies are linear functions of the state variables.

Additionally, we assume that we are in a steady state where these functions are time-independent.5

The state variables in period ` are the dividend rate D`, the profitability g`, and the market maker’s

expectation of profitability ĝ`. The price quoted by the market maker is given by Equation (7),

i.e.,

p` = A0D` +A1ĝ` +A2g. (10)

We conjecture that the expectation ĝ` evolves according to

ĝ` = g + (1− κh)(ĝ`−1 − g) + λD (D` − (1− νh)D`−1 − νhĝ`−1) + λx(x` + u`), (11)

for two constants λD and λx. Intuitively, the market maker updates the expectation held in period

`− 1 because of two pieces of information learned in period `: the dividend rate D` and the order

flow x` + u`. The latter is informative provided that the insider’s order depends on profitability.

We conjecture that the insider’s order is proportional to the market maker’s error in estimating

profitability, i.e.,

x` = β(g`−1 − ĝ`−1), (12)

for a constant β. The error is evaluated as of period ` − 1 because when the insider submits her
order she only knows g`−1 and not g`.

To solve for the equilibrium, we derive a set of equations linking the coefficients λD, λx and β.

These equations follow from the market maker’s inference problem and the insider’s optimization

problem.

3.2 Market Maker’s Inference

The market maker’s inference problem consists in forming a belief about the profitability g`, given

the history of dividend rates and order flows up to period `. To solve this problem, we use recursive

(Kalman) filtering. That is, we derive the belief about g` given (i) the belief about g`−1 held in
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period ` − 1, and (ii) the new information learned in period ` consisting of the dividend rate D`

and order flow x` + u`.

Suppose that in period ` − 1 the market maker takes g`−1 to be normal with mean ĝ`−1 and
variance Σ2g. Then, we show in Appendix B that the belief about g` is also normal. The mean of

the normal distribution is given by

ĝ` = (1− κh)ĝ`−1 + κhg + λD (D` − (1− νh)D`−1 − νhĝ`−1) + λx(x` + u`),

i.e., Equation (11), with

λD =
(1− κh)Σ2gνσ

2
uh

Σ2g
(
β2σ2D + ν2σ2uh

2
)
+ σ2Dσ

2
uh
, (13)

λx =
(1− κh)βΣ2gσ

2
D

Σ2g
(
β2σ2D + ν2σ2uh

2
)
+ σ2Dσ

2
uh
. (14)

Intuitively, the market maker starts with a prior mean for g`, which is (1− κh)ĝ`−1 + κhg since

g` = (1− κh)g`−1 + κhg + εg,`.

The prior mean is then adjusted to reflect the information learned from D` and x` + u`. The

adjustment is proportional to the surprises in these signals, i.e., the differences between the signals

and their prior means. The prior mean of

D` = (1− νh)D`−1 + νhg`−1 + εD,`

is (1− νh)D`−1 + νhĝ`−1, while that of

x` + u` = β(g`−1 − ĝ`−1) + u`

is zero. In Appendix B we show that the variance of the market maker’s belief about g` is

Var(g`|Fm
` ) =

(1− κh)2Σ2gσ
2
Dσ

2
uh

Σ2g
(
β2σ2D + ν2σ2uh

2
)
+ σ2Dσ

2
uh
+ σ2gh. (15)

In steady state the variance must be constant over time, implying that Var(g`|Fm
` ) = Σ

2
g. This

yields the equation

(
Σ2g − σ2gh

) [
Σ2g

(
β2σ2D + ν2σ2uh

2
)
+ σ2Dσ

2
uh

]
− (1− κh)2Σ2gσ

2
Dσ

2
uh = 0. (16)
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3.3 Insider’s Optimization

The insider maximizes the objective in Equation (9). Using Equation (10), we can simplify this

objective to

E

[ ∞∑

`′=`

x`′ (g`′ − ĝ`′) e
−r(`′−`)h

∣∣∣∣∣F
i
`

]
. (17)

Thus, a buy order in period ` (x` > 0) is advantageous to the insider if the market maker underes-

timates the firm’s profitability (g` − ĝ` > 0). When the insider submits her order in period `, she

only knows the market maker’s estimation error up to period `−1. We conjecture that the insider’s
value function in period `, evaluated at the time of order submission, is a quadratic function of the

period `− 1 estimation error, i.e.,

V (g`−1, ĝ`−1) = B(g`−1 − ĝ`−1)
2 + C,

for two constants B and C. The Bellman equation is

V (g`−1, ĝ`−1) = max
x`

E
[
x` (g` − ĝ`) + e−rhV (g`, ĝ`)

∣∣∣F i
`

]
.

To evaluate the right-hand side, we need to compute the market maker’s estimation error as of

period `. This is

g` − ĝ` = (1− κh)g`−1 + κhg + εg,`

− [(1− κh)ĝ`−1 + κhg + λD (D` − (1− νh)D`−1 − νhĝ`−1) + λx(x` + u`)]

= [1− (κ+ νλD)h] (g`−1 − ĝ`−1)− λDεD,` − λx(x` + u`) + εg,`, (18)

where the first step follows from Equations (2) and (11), and the second from Equation (1). Sub-

stituting into the Bellman equation, we find

B(g`−1 − ĝ`−1)
2 + C = max

x`

{x` [[1− (κ+ νλD)h] (g`−1 − ĝ`−1)− λxx`]

+e−rh
[
B
[
[[1− (κ+ νλD)h] (g`−1 − ĝ`−1)− λxx`]

2 + λ2Dσ
2
Dh+ λ2xσ

2
uh+ σ2gh

]
+ C

]}
. (19)

The first-order condition yields

x` = β(g`−1 − ĝ`−1),
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i.e., Equation (12), with

β =
[1− (κ+ νλD)h]

(
1− 2e−rhBλx

)

2λx (1− e−rhBλx)
. (20)

Substituting for x` in equation (19), we can determine B and C:

B =
[1− (κ+ νλD)h]

2

4λx (1− e−rhBλx)
(21)

C =
e−rhB

(
λ2Dσ

2
D + λ2xσ

2
u + σ2g

)
h

1− e−rh
. (22)

3.4 Existence and Uniqueness

Our conjectured equilibrium is characterized by the six parameters λD, λx, Σ
2
g, β, B and C. These

are the solution to the system of six equations (13), (14), (16) and (20)-(22). In Appendix C we

show that the system has a unique solution, which in addition satisfies the insider’s second-order

condition. This implies that there exists a unique equilibrium of the conjectured form.

Proposition 1 There exists a unique equilibrium of the form conjectured in Equations (10)-(12).

4 Near-Continuous Trading

Our main results concern the behavior of the equilibrium when the market approaches continuous

trading, i.e., the time h between consecutive periods goes to zero.6 To better illustrate the results,

we start with the benchmark case where the insider is prevented from trading due to exogenous

reasons. The market maker then quotes infinite depth (i.e., price not sensitive to order flow),

but still learns about profitability by observing the dividend. Inference is characterized by the

parameters λD and Σ
2
g, and these are given by Equations (13) and (16) with the insider’s trading

intensity β set to zero. To distinguish from the case where the insider is trading, we denote λD

and Σ2g by λD and Σ
2
g, respectively. We also set ρ ≡

√
κ2 +

ν2σ2
g

σ2

D

.
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Proposition 2 When the insider is not trading, the asymptotic behavior of the equilibrium is

characterized by

lim
h→0

λD =
ρ− κ

ν
,

lim
h→0

Σ
2
g =

σ2D(ρ− κ)

ν2
.

Proposition 2 implies that in the absence of the insider, the equilibrium close to the continuous-

trading limit is qualitatively similar to that away from the limit. In particular, the market maker’s

uncertainty about profitability, characterized by Σ
2
g, remains bounded away from zero. The intuition

is that when h goes to zero the dividend follows an Ito process. Since profitability enters in the

drift, it cannot be fully inferred within any finite time.

We next consider the case where the insider is trading, and establish our main results.

Proposition 3 When the insider is trading, the asymptotic behavior of the equilibrium is charac-

terized by

lim
h→0

λD√
h
=

σ2gν

σ2D
√
r + 2κ

(23)

lim
h→0

λx =
σg
σu

(24)

lim
h→0

Σ2g√
h
=

σ2g√
r + 2κ

(25)

lim
h→0

β√
h
=
σu
√
r + 2κ

σg
(26)

lim
h→0

B =
σu
2σg

(27)

lim
h→0

C =
σgσu
r

. (28)

Proposition 3 shows that in the presence of the insider, the equilibrium close to the continuous-

trading limit and that away from the limit have very different properties. In particular, the pa-

rameter Σ2g characterizing the market maker’s uncertainty about profitability is approximately

(σ2g/
√
r + 2κ)

√
h for small h. Therefore, it converges to zero when h goes to zero, implying that

the information asymmetry between the insider and the market maker vanishes. Put differently, a
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market with a monopolistic insider can become strong-form efficient when the trading frequency is

sufficiently large.

An alternative way to characterize strong-form efficiency is through the speed at which pri-

vate information is incorporated into prices. Suppose that at time zero the insider learns that

profitability g0 is different from the market maker’s expectation ĝ0. To measure how quickly the

insider’s information is incorporated into prices, we consider the deviation between the price p`

and the insider’s valuation v`. This deviation is stochastic because of the new shocks (εD,`, εg,`, u`)

subsequent to time zero. To isolate the effect of the time-zero shock, we set the subsequent shocks

to their expected value of zero. Since our model is linear, this amounts to computing the expected

deviation conditional on the insider’s time-zero information F i
0. From Equations (8) and (10),

E
(
v` − p`| F i

0

)
is proportional to the market maker’s expected estimation error E

(
g` − ĝ`| F i

0

)
.

To evaluate the latter when trading is almost continuous, we fix a calendar time t corresponding to

period ` = t/h, and consider the limit et ≡ limh→0E
(
g t

h
− ĝ t

h

∣∣∣F i
0

)
. Proposition 4 characterizes

how et varies over time.

Proposition 4 When the insider is not trading,

et = e−ρt(ĝ0 − g0).

When the insider is trading, et = 0 for t > 0.

Proposition 4 shows that in the absence of the insider, information about profitability is incor-

porated into prices slowly. For small h, the market maker’s expected estimation error converges

to zero at the finite rate ρ. By contrast, in the insider’s presence, information about profitability

is incorporated into prices very quickly. For small h, the expected estimation error reaches zero

within any positive time t, and not only when t goes to infinity. Thus, the rate of convergence

becomes infinite. This is, of course, consistent with Proposition 3: insider trading can result in

strong-form efficiency when the trading frequency is large.

To understand the intuition for strong-form efficiency, we consider the insider’s trading strategy.

Recall that the insider submits an order proportional to the market maker’s estimation error, with

the proportionality parameter β interpreted as the trading intensity. The parameter β is a key

determinant of the speed at which prices incorporate information. In Kyle (1985), β is of order h,

and prices incorporate information within a calendar time not converging to zero. When, however, β
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is larger than order h, the insider’s trades reveal more information, and the calendar time converges

to zero. Proposition 3 implies that β in our model is of order
√
h and thus larger than h.7

Why does the insider trade quickly in our model? To answer this question, we examine the

determinants of the insider’s order size. In general, a large order is costly to the insider because it

generates an adverse price impact. To minimize the impact, the insider can trade slowly, breaking

her order into small pieces and “going down” the market maker’s demand curve. Slow trading,

however, generates costs linked to impatience: by realizing her profits quickly, the insider can avoid

(i) time-discounting, (ii) the public revelation of her information through the dividend, and (iii)

the obsolescence of her information through the mean-reversion in the firm’s profitability.

When the trading frequency is large, the trade-off between price impact and impatience disap-

pears. Indeed, the insider can squeeze all small pieces of a large order into a short time interval.

Therefore, she can can execute the order quickly without increasing the price impact and without

incurring costs linked to impatience.8

That impatience induces the insider to trade quickly can be seen formally as follows. Impatience

is eliminated when (i) there is no time-discounting, i.e., the interest rate r is zero, (ii) no information

is revealed publicly through the dividend, i.e., the noise σ2D in the dividend process is infinite, and

(iii) profitability follows a random walk, i.e., the mean-reversion κ is zero. In Appendix D we

extend our model to the case of no time-discounting, defining the insider’s objective as the long-

run average of per-period payoffs.9 We then show that if σ2D =∞ and κ = 0, the insider prefers β

to be as close to zero as possible. Thus, a patient insider prefers to trade slowly. Any of the three

sources of impatience, however, suffices for the insider to trade quickly. For example, Proposition 3

shows that when r > 0, β is of order
√
h regardless of the values of σ2D and κ. Therefore, a positive

interest rate can alone induce the insider to trade quickly. In Appendix D (where r = 0) we show

that when κ > 0, β is of order
√
h regardless of the value of σ2D, and when κ = 0 and σ

2
D < ∞, β

is of order h
2

3 . In both cases β is larger than order h, implying that mean-reverting profitability or

public revelation of information can alone induce the insider to trade quickly.

Although impatience induces the insider to trade quickly, it cannot be the full explanation.

This can be seen by contrasting our model with Kyle. Kyle assumes no impatience because there

is no time-discounting and no public revelation of information until a final period. It is possible,

however, to introduce impatience in his model and show that the insider still trades slowly.10
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The crucial difference with Kyle has to do with the time-pattern of information arrival. Kyle’s

model is non-stationary in that the insider receives information only once, at the beginning of

the trading session. If the insider trades quickly, market depth will be small early on when her

information is being revealed, and large afterwards when information has become symmetric. But

this cannot be an equilibrium because the insider would prefer to wait until depth increases. Our

model, by contrast, is stationary because the insider always receives new private information.

Stationarity ensures that market depth is constant over time, whether the insider trades quickly

or not. Given the constant depth, the insider trades quickly because of impatience (generated by

either time-discounting, or public revelation of information, or mean-reverting profitability, or a

combination of the three).

Summarizing, our strong-form efficiency result is due to the combination of impatience and

stationarity. When the insider is patient, she trades slowly. Likewise, in a non-stationary setting

(e.g., Kyle or Back and Pedersen (1998)) trading occurs slowly even with an impatient insider.

We next consider the insider’s trading profits. These are

[
B(g`−1 − ĝ`−1)

2 + C
]
A1 ≡ B′(g`−1 − ĝ`−1)

2 + C ′, (29)

i.e., the value function times the scaling factor A1 that was dropped for simplicity when writing

the insider’s objective as (17) instead of (9). When h goes to zero, (g`−1− ĝ`−1)2 converges to zero
because the market becomes strong-form efficient. From Proposition 3, however, C converges to

the positive limit σgσu/r. The parameter C
′ also converges to a positive limit since A1 converges to

ν
(r+ν)(r+κ) . Thus, the insider’s profits remain positive despite the market’s converging to strong-form

efficiency. In some sense, this is natural: since the insider chooses to incorporate her information

quickly into prices, this must guarantee her a larger payoff than trading slowly. At the same time,

the result can appear paradoxical: how can the insider realize positive profits when prices reflect

almost all of her information?

To address the paradox, we recall that the insider’s profits in period ` are x`(g`−1 − ĝ`−1)A1.

The term (g`−1− ĝ`−1) corresponds to the profit margin, and converges to zero when h goes to zero.

Asymptotically it is of order Σg, which is of order h
1

4 from Proposition 3. The term x` corresponds

to the trading volume. Since β is of order
√
h, x` = β(g`−1− ĝ`−1) is of order h

3

4 . Thus, the volume

generated by the insider within a fixed time interval is of order h
3

4 /h, and converges to infinity

when h goes to zero. This explains the paradox of positive profits: the insider’s profit margin per

share goes to zero but the number of shares traded goes to infinity.11
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Finally, note that the price impact of order flow, given by λx, remains finite even in the

continuous-time limit. This might appear surprising because the insider’s trading volume converges

to infinity, and hence order flow is much more informative in our model than in Kyle. Because the

market is close to efficient, however, the market maker faces little uncertainty, so a given amount

of information has a smaller effect on the price.

5 Calibration and Empirical Implications

The results of the previous section are asymptotic, i.e., they hold to any given degree of approx-

imation by choosing a time h between consecutive periods close enough to zero. In this section

we calibrate the model and examine how well the results hold for plausible values of h. We are

interested, in particular, in how close the market is to strong-form efficiency.

The exogenous parameters in our model are the interest rate r, the time h between consecutive

periods, the standard deviation σD of dividends, σg of profitability, and σu of noise trading, and the

mean-reversion ν of dividends and κ of profitability. Before selecting values for these parameters, we

define and compute our measure of market efficiency. It turns out that this measure is independent

of several parameters, simplifying the calibration.

We measure efficiency by the speed at which private information is incorporated into prices.

As in Proposition 4, we assume that at time zero the insider learns that profitability g0 differs

from the market maker’s expectation ĝ0. We then examine how quickly the deviation between

the insider’s valuation and the price converges to zero, in expectation conditional on the insider’s

time-zero information. From the proof of Proposition 4, the convergence dynamics for given h are

E
(
v t

h
− p t

h

∣∣∣F i
0

)
= [1− (κ+ νλD)h− λxβ]

t
h (v0 − p0). (30)

Our measure of market efficiency is the time tχ by which the deviation drops to a percentage χ of

its original value. This time is defined by

E
(
v t

h
− p t

h

∣∣∣F i
0

)
= (1− χ)(v0 − p0). (31)

Comparing Equations (30) and (31), we find

tχ =
h log(1− χ)

log [1− (κ+ νλD)h− λxβ]
. (32)

17



We next observe that tχ is independent of σu. Indeed, consider the solution (λD, λx,Σg, β, B,C) to

Equations (13), (14), (16) and (20)-(22). If σu in these equations is multiplied by z > 0, the new

solution is (λD, λx/z,Σg, zβ, zB, zC). Equation (32) then implies that tχ stays constant, meaning

that tχ is independent of σu. Intuitively, when noise trading increases, prices tend to become less

informative, but the insider trades more aggressively, restoring the same informativeness. Similarly,

tχ depends on (σD, σg, ν) only through the ratio νσg/σD. Indeed, suppose that (σD, σg, ν) is

replaced by (yzσD, yσg, zν) for y, z > 0. Then, the new solution to Equations (13), (14), (16)

and (20)-(22) is (λD/z, yλx, yΣg, β/y,B/y, yC). Equation (32) then implies that tχ stays constant,

meaning that tχ depends on (σD, σg, ν) only through νσg/σD. Thus, we can normalize (σu, σg, ν)

to one without loss of generality, and are left with the task of selecting values for (r, h, σD, κ).
12

We set the interest rate r to 2%. Larger values of r would reinforce our results because the

insider would trade faster. To calibrate the time between consecutive periods h, we use the average

time between transactions in the stock market. Since this time varies greatly across stocks, we pick

two specific stocks, one large-cap and one small-cap. In the context of these stocks, we also select

values for the remaining parameters (σD, κ).

Large-Cap Stock

Our large-cap stock is Coca-Cola, ticker symbol KO, one of the top twenty US companies in

the NYSE composite index (as of October 2005). To determine the time between transactions,

we use the TAQ database and consider the four weeks 6-31/10/2003. The average number of

transactions per day is 3963. With 252 trading days per year, this translates to one transaction

every h = 1/(252× 3963) = 0.000001 year.

One approach to calibrating (σD, κ) is through the stochastic process followed by actual div-

idends or earnings. We focus on earnings, given that they might be better described by the

stochastic process (3)-(4).13 We consider annual changes in earnings per share (EPS) and use

the method of moments, matching moments derived from the stochastic process (3)-(4) to their ac-

tual counterparts.14 The moments we select are the standard deviation of annual earnings changes

and the correlation of annual changes with each of the first five lags.15 To increase estimation

precision, we compute moments for each of the first twenty US companies in the NYSE composite

index, and use cross-sectional averages. Moreover, for each company we consider the entire EPS

history available from COMPUSTAT. The estimation results are σD = 1.06, σg = 0.62, ν = 1.47,

κ = 0. Thus, when (σg, ν) are normalized to one, σD is set equal to 1.06/(0.62× 1.47) = 1.17.
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To interpret the magnitudes of σD and κ, we map them into the speed at which the market

maker learns about shocks to profitability in the insider’s absence. We examine, in particular, how

quickly a time-zero estimation error converges to zero, in expectation over the subsequent shocks.

Convergence is faster the smaller σD is because the dividend process contains less noise and is thus

more informative about profitability. Convergence is also faster the larger κ is because profitability

decays faster to its long-run mean. We characterize convergence by the time tχ by which the market

maker’s estimation error drops to a percentage χ of its original value. From the proof of Proposition

4, this is

tχ =
h log(1− χ)

log(1− νλDh)
. (33)

We focus on the time t0.5 that corresponds to the half-life of the convergence dynamics. For

(σD, σg, ν, κ) = (1.17, 1, 1, 0), learning in the insider’s absence has a half-life of t0.5 = 0.81 year.
16

While such a half-life seems reasonable, we show in our tables results for half-lives ranging from

fifteen days to two years. This is both because of the noise in estimating moments, and because

the actual half-life could be shorter than implied by our model. Indeed, investors can receive more

information about a company than just earnings (e.g., from analysts’ forecasts). In generating the

values of t0.5, we vary σD but keep κ to zero for simplicity.

Table 1 compares the half-life t0.5 in the insider’s absence to the half-life t0.5 in her presence.

The table shows that the insider speeds information revelation dramatically. Suppose, for example,

that the half-life in the insider’s absence is one year. The insider reduces this to 1.57 days, a factor

of 365/1.57=232. We should emphasize that the insider can choose to reveal her information slowly,

stretching the half-life closer to one year. Our main result, however, is that she prefers to reveal it

quickly. Indeed, a half-life of 1.57 days ensures a minimal price impact, while allowing the insider

to reap the benefits associated with impatience.

INSERT TABLE 1 SOMEWHERE HERE

The results of Table 1 stand in sharp contrast to Kyle (1985). Indeed, in Kyle the insider

reveals her information at a constant rate over time. Thus, the half-life of information revelation

in the insider’s presence is one-half of the time it would take for the information to be announced

publicly. For example, if the information is to be announced in one year, the insider will take six

months to incorporate half of it into the price.
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Small-Cap Stock

Our small-cap stock is Bairnco, ticker symbol BZ, which is traded in the NYSE but is not part

of the NYSE composite index. The average number of transactions per day over the four weeks

6-31/10/2003 is four. With 252 trading days per year, this translates to one transaction every

h = 1/(252 × 4) = 0.000992 year. We set κ = 0, and choose σD to obtain the same values of the
half-life t0.5 as for the large-cap stock. The results are in Table 2.

INSERT TABLE 2 SOMEWHERE HERE

Table 2 shows that the insider speeds information revelation substantially, even for very in-

frequently traded stocks. For example, when the half-life in the insider’s absence is one year, the

insider reduces this to 23.98 days, a factor of 365/23.98=15. Of course, the lower trading frequency

has an important effect since for the large-cap stock the factor is 232. Nevertheless, the factor is

still much larger than Kyle’s factor of two.

Empirical Implications

To translate Tables 1 and 2 into empirically measurable quantities, we consider the correlation

between the change in insider holdings over two consecutive intervals [t− s, t] and [t, t+ s]. Since

the change in holdings over an interval equals the net amount of shares bought during that interval,

the correlation is

Corr




s
h∑

i=1

x t−s
h
+i,

s
h∑

i=1

x t
h
+i


 .

This quantity is measurable: for example if the insider is a mutual fund, then s is a quarter, the

frequency at which mutual funds disclose their holdings. Using our model, we can compute the

quarterly correlation, and we report it in Table 3 for the selected large-cap and small-cap stocks:17

INSERT TABLE 3 SOMEWHERE HERE

Table 3 shows that the correlation is closely related to the half-life of information revelation.

Consider, for example, the large-cap stock, where the insider reveals her information with a half-life

not exceeding two days. Since each piece of information is exploited over a very short interval, the

correlation in insider trades over consecutive quarters is very small. For the small-cap stock, the
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correlation can be more substantial, reaching 0.361 when the insider reveals her information with

a half-life of 34.71 days.

From Table 3, an implication of our model is that changes in mutual-fund holdings over con-

secutive quarters should be uncorrelated for large stocks, but might exhibit positive correlation for

small stocks. Our model also implies that changes in fund holdings of large stocks over one quarter

should be uncorrelated with stock returns over the next quarters. This is because the informa-

tion on which the insider trades is incorporated very quickly into the price. For small stocks, the

correlation might be positive and larger.18

6 Conclusion

In this paper we consider a discrete-time, infinite-horizon model with a monopolistic insider. The

insider observes privately the expected growth rate of asset dividends in each period, and can trade

with competitive market makers in the presence of noise traders. We find that when the market

approaches continuous trading, the insider’s information is reflected in prices almost immediately.

This is especially surprising given that in the absence of the insider, the information would be

reflected only after a long series of dividend observations. We also show that although the market

converges to strong-form efficiency, the insider’s profits do not converge to zero.

Our results have two important implications. First, markets can be close to strong-form ef-

ficiency even in the presence of monopolistic insiders. Second, despite being close to efficiency,

markets can offer significant returns to information acquisition. These implications are in sharp

contrast to previous literature, and are not driven by any peculiar assumptions in our model. In-

deed, the main difference with Kyle (1985) is that we assume an infinite horizon, with new private

information generated in each period. To model private information in an infinite horizon, we adopt

the information structure in Wang (1993).

The insider in our model can be best interpreted as a proprietary-trading desk, hedge fund, or

mutual fund, generating a continuous flow of private information through their superior research.

Given that there are many such agents, one might question the assumption of a monopolistic insider.

The work of Holden and Subrahmanyam (1992), Foster and Vishwanathan (1996) and Back, Cao

and Willard (2000) shows, however, that competing insiders generally reveal their information faster

than monopolists do. Thus, our strong-form efficiency result is likely to carry through with multiple

insiders. Of course, this conjecture needs to be verified, and this could be an interesting extension
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of our research. The main technical difficulty is that combining multiple insiders with repeated

information arrival generates an infinite-regress problem when the insiders’ signals are imperfectly

correlated. Taub, Bernhardt and Seiler (2005) develop a technique for dealing with this problem,

and one could possibly use it to study the continuous-time limit.
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A Price

Defining the parameter n by e−nh ≡ 1− νh, we can write Equation (1) as

D` = e−nhD`−1 + (1− e−nh)g`−1 + εD,`.

Therefore,

D`′ = e−n(`
′−`)hD` + (1− e−nh)

`′−1∑

z=`

e−n(`
′−1−z)hgz +

`′∑

z=`+1

e−n(`
′−z)hεD,z. (A.1)

Likewise, defining the parameter k by e−kh ≡ 1− κh, we can write Equation (2) as

g` = e−khg`−1 + (1− e−kh)g + εg,`.

Therefore,

g`′ = e−k(`
′−`)hg` + (1− e−k(`

′−`)h)g +
`′∑

z=`+1

e−k(`
′−z)hεg,z. (A.2)

Taking expectations in Equation (A.1), we find

E(D`′ |Fm
` ) = e−n(`

′−`)hD` + (1− e−nh)
`′−1∑

z=`

e−n(`
′−1−z)hE(gz|Fm

` ).

Combining with Equation (A.2), we find

E(D`′ |Fm
` ) = e−n(`

′−`)hD` + (1− e−nh)
`′−1∑

z=`

e−n(`
′−1−z)hE(e−k(z−`)h(g` − g) + g|Fm

` )

= e−n(`
′−`)hD` + (1− e−nh)

e−n(`
′−`)h − e−k(`

′−`)h

e−nh − e−kh
[E(g`|Fm

` )− g] +
[
1− e−n(`

′−`)h
]
g.

Substituting into Equation (6), the price is equal to

p` =
∞∑

`′=`

E(D`′ |Fm
` )he

−r(`′−`)h

=
h

1− e−(r+n)h

[
D` +

(1− e−nh)e−rh

1− e−(r+k)h
[E(g`|Fm

` )− g] +
(1− e−nh)e−rh

1− e−rh
g

]
.
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This is as in Equation (7) with

A0 ≡
h

1− e−(r+n)h
,

A1 ≡ A0
(1− e−nh)e−rh

1− e−(r+k)h
,

A2 ≡ A0
(1− e−nh)(1− e−kh)e−2rh

(1− e−rh)(1− e−(r+k)h)
.

B Market-Maker’s Inference

Suppose that conditional on information up to period ` − 1, the market maker believes that g`−1
is normal with mean ĝ`−1 = E(g`−1|Fm

`−1) and variance Σ
2
g = Var(g`−1|Fm

`−1). For notational

simplicity, we drop the conditioning set Fm
`−1 for now on, except for moments that are conditional

on other information. The signals observed by the market maker in period ` are

D` = (1− νh)D`−1 + νhg`−1 + εD,`

and

x` + u` = β(g`−1 − ĝ`−1) + u`.

Because all variables are jointly normal, the market maker’s posterior belief about g`−1 is of the

form

g`−1 = E(g`−1) +
λD
1− κh

(D` − E (D`)) +
λx

1− κh
(x` + u` − E (x` + u`)) + η`

= ĝ`−1 +
λD
1− κh

(D` − (1− νh)D`−1 − νhĝ`−1) +
λx

1− κh
(x` + u`) + η`, (B.1)

where λD and λx are two constants, and η` is a normal random variable with mean zero and

independent of D` and x` + u`. The posterior belief about

g` = (1− κh)g`−1 + κhg + εg,`

thus is

g` = (1− κh)ĝ`−1+ κhg+ λD (D` − (1− νh)D`−1 − νhĝ`−1) + λx (x` + u`) + (1− κh)η`+ εg,`.
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To compute λD and λx, we take the covariance of both sides of Equation (B.1) with D` and

x` + u`:

Cov (D`, g`−1) =
1

1− κh
Cov (D`, λDD` + λx (x` + u`)) , (B.2)

Cov (x` + u`, g`−1) =
1

1− κh
Cov (x` + u`, λDD` + λx (x` + u`)) . (B.3)

Since

Cov (D`, g`−1) = Cov ((1− νh)D`−1 + νhg`−1 + εD,`, g`−1) = Var (g`−1) νh = Σ
2
gνh,

(B.4)

Cov (x` + u`, g`−1) = Cov (β(g`−1 − ĝ`−1) + u`, g`−1) = βVar (g`−1) = βΣ2g, (B.5)

Var (D`) = Var ((1− νh)D`−1 + νhg`−1 + εD,`)

= Var (g`−1) ν
2h2 +Var (εD,`) = Σ

2
gν
2h2 + σ2Dh,

Cov (D`, x` + u`) = Cov ((1− νh)D`−1 + νhg`−1 + εD,`, β(g`−1 − ĝ`−1) + u`)

= βVar (g`−1) νh = βΣ2gνh,

Var (x` + u`) = Var (β(g`−1 − ĝ`−1) + u`) = β2Var (g`−1) + Var (u`) = β2Σ2g + σ2uh,

we can write Equations (B.2) and (B.3) as

Σ2gνh =
1

1− κh

[
λD(Σ

2
gν
2h2 + σ2Dh) + λxβΣ

2
gνh

]
,

βΣ2g =
1

1− κh

[
λDβΣ

2
gνh+ λx(β

2Σ2g + σ2uh)
]
.

The solution to this linear system is given by Equations (13) and (14). Therefore, the posterior

expectation of g` is as in Equation (11).

The posterior variance of g` is

Var(g`|Fm
` ) = Var((1− κh)η` + εg,`) = (1− κh)2Var(η`) + σ2gh. (B.6)

To compute the variance of η`, we take the variance of both sides of Equation (B.1). Since η` is
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independent of D` and x` + u`, we have

Var(η`) = Var(g`−1)−
1

(1− κh)2
Var (λDD` + λx (x` + u`))

= Var(g`−1)−
λD

(1− κh)2
Cov (D`, λDD` + λx (x` + u`))

− λx
(1− κh)2

Cov (x` + u`, λDD` + λx (x` + u`))

= Var(g`−1)−
λD
1− κh

Cov (D`, g`−1)−
λx

1− κh
Cov (x` + u`, g`−1)

= Σ2g −
λD
1− κh

Σ2gνh−
λx

1− κh
βΣ2g,

where the third step follows from (B.2) and (B.3), and the fourth from (B.4) and (B.5). Using (13)

and (14) to substitute for λD and λx, and plugging Var(η`) back into (B.6), we find (15).

C Proof of Propositions 1-4

Proof of Proposition 1: We will show that the system of Equations (13), (14), (16) and (20)-(22)

has a unique solution, which also satisfies the insider’s second-order condition. We will reduce the

system to a single equation in β. Equation (21) can be written as

B2 − erh

λx
B +

erh [1− (κ+ νλD)h]
2

4λ2x
= 0.

This quadratic equation in B has the two solutions

B =
erh

2λx

[
1±

√
1− e−rh [1− (κ+ νλD)h]

2

]
.

The solution with the plus sign cannot be part of a solution to the overall system. Indeed, Equation

(14) implies that λxβ > 0, which from Equations (13) and (20) means that

1− 2e−rhBλx
1− e−rhBλx

> 0.

This is violated by the solution with the plus sign. Therefore, the only possible solution for B is

B =
erh

2λx

[
1−

√
1− e−rh [1− (κ+ νλD)h]

2

]
. (C.1)
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Plugging into Equation (20), we find

λxβ

1− (κ+ νλD)h
=

√
1− e−rh [1− (κ+ νλD)h]

2

1 +
√
1− e−rh [1− (κ+ νλD)h]

2
. (C.2)

Substituting for λD and λx using Equations (13) and (14), we can write Equation (C.2) as

Σ2gβ
2

Σ2gβ
2 + σ2uh

=

√
1− e−rh

[
(1−κh)(Σ2

gβ
2σ2

D
+σ2

D
σ2

uh)
Σ2

g(β2σ2

D
+ν2σ2

uh
2)+σ2

D
σ2

uh

]2

1 +

√
1− e−rh

[
(1−κh)(Σ2

gβ
2σ2

D
+σ2

D
σ2

uh)
Σ2

g(β2σ2

D
+ν2σ2

uh
2)+σ2

D
σ2

uh

]2 . (C.3)

We can reduce Equation (C.3) to one in the single unknown β by substituting for Σ2g as a function

of β. This can be done using Equation (16), which is quadratic in Σ2g and has a unique positive

solution. The solution is a decreasing function of β, converges to σ2gh when β goes to ∞, and to a

value Σ
2
g > σ2gh when β goes to zero.

To show that the system of Equations (13), (14), (16) and (20)-(22) has a solution, we note

that the left-hand side (LHS) of Equation (C.3) (in which Σ2g is an implicit function of β) converges

to one when β goes to∞, and to zero when β goes to zero. By contrast, the right-hand side (RHS)
converges to values strictly between zero and one in both cases. Therefore, Equation (C.3) has a

solution β ∈ (0,∞). From this solution, we can deduce Σ2g, λD, λx, B and C using Equations (16),

(13), (14), (C.1) and (22), respectively. The insider’s second-order condition is the requirement

that the problem (19) be concave, i.e., 1 − e−rhBλx > 0. This inequality is satisfied because of

Equation (C.1).

To show that the solution is unique, we will show that the LHS of Equation (C.3) is increasing

in β, while the RHS is decreasing. The LHS is increasing in β if Σ2gβ
2 is increasing. Equation (16)

implies that

Σ2gβ
2σ2D =

(1− κh)2Σ2gσ
2
Dσ

2
uh

Σ2g − σ2gh
− Σ2gν2σ2uh2 − σ2Dσ

2
uh. (C.4)

Since Σ2g is decreasing in β, Σ
2
gβ
2 is increasing. The RHS of Equation (C.3) is decreasing in β if

Z ≡
Σ2gβ

2σ2D + σ2Dσ
2
uh

Σ2g
(
β2σ2D + ν2σ2uh

2
)
+ σ2Dσ

2
uh
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is increasing. Using Equation (C.4) to eliminate β, we find

Z = 1−
ν2h(Σ2g − σ2gh)

(1− κh)2σ2D
.

Since Σ2g is decreasing in β, Z is increasing.

Proof of Proposition 2: When β = 0, Equations (13) and (16) become

λD =
(1− κh)Σ

2
gν

Σ
2
gν
2h+ σ2D

(C.5)

and

(
Σ
2
g − σ2gh

)(
Σ
2
gν
2h+ σ2D

)
− (1− κh)2Σ

2
gσ
2
D = 0, (C.6)

respectively. To study the system of (C.5) and (C.6) for small h, we divide Equation (C.6) by h:

(Σ
2
g − σ2gh)Σ

2
gν
2 +

1− (1− κh)2

h
Σ
2
gσ
2
D − σ2gσ

2
D = 0. (C.7)

For h = 0, Equation (C.7) becomes

Σ
4
gν
2 + 2κΣ

2
gσ
2
D − σ2gσ

2
D = 0,

and has the unique positive solution

Σ
2
g =

σ2D(ρ− κ)

ν2
,

where ρ ≡
√
κ2 +

ν2σ2
g

σ2

D

. Substituting into Equation (C.5), we find

λD =
Σ
2
gν

σ2D
=
ρ− κ

ν
.

By continuity, this is also the limit of the solution when h goes to zero.19

Proof of Proposition 3: We first solve the system of Equations (16) and (C.3) in the unknowns

Σ2g and β. To study this system for small h, we set Σ
2
g ≡ S2g

√
h and β ≡ b

√
h, and divide Equation

(16) by h2. This results in the system

(
S2g − σ2g

√
h
)
S2g (b

2σ2D + ν2σ2uh) +
1− (1− κh)2√

h
S2gσ

2
Dσ

2
u − σ2gσ

2
Dσ

2
u = 0
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and

S2gb
2

S2gb
2
√
h+ σ2u

=

√√√√ 1
h

[
1− e−rh(1− κh)2

[
1 +

S2
gν

2σ2
uh

3
2

σ2

D
σ2

u+S
2
gb

2σ2

D

√
h

]−2]

1 +

√

1− e−rh(1− κh)2
[
1 +

S2
gν

2σ2
uh

3
2

σ2

D
σ2

u+S
2
gb

2σ2

D

√
h

]−2 .

For h = 0, the system becomes

S4gb
2 − σ2gσ

2
u = 0

and

S2gb
2

σ2u
=
√
r + 2κ,

and has the solution S2g = σ2g/
√
r + 2κ and b = σu

√
r + 2κ/σg. By continuity, this is also the limit

of the solution when h goes to zero. This establishes the limits (25) and (26) since

lim
h→0

Σ2g√
h
= lim

h→0
S2g =

σ2g√
r + 2κ

and

lim
h→0

β√
h
= lim

h→0
b =

σu
√
r + 2κ

σg
.

To prove the limits (23), (24), (27), and (28), we write Equations (13), (14), (22), and (C.1) in

terms of S2g and b, and use the limits of S
2
g and b.

Proof of Proposition 4: Plugging x` from Equation (12) into (18), we find

g` − ĝ` = [1− (κ+ νλD)h− λxβ] (g`−1 − ĝ`−1)− λDεD,` − λxu` + εg,`.

We next take expectations conditional on the insider’s time-zero information:

E
(
g` − ĝ`| F i

0

)
= [1− (κ+ νλD)h− λxβ]E

(
g`−1 − ĝ`−1| F i

0

)
,

and iterate from period 0 to `:

E
(
g` − ĝ`| F i

0

)
= [1− (κ+ νλD)h− λxβ]

` (g0 − ĝ0).

To prove the proposition, we need to determine the limit of [1− (κ+ νλD)h− λxβ]
t
h when h goes

to zero. When the insider is not trading, the limit is e−ρt because λD converges to (ρ − κ)/ν and

β = 0. When the insider is trading, the limit is zero because β is of order
√
h and λx of order 1.
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D No Time-Discounting

For r = 0, we define the insider’s objective as the long-run average of the normalized per-period

payoffs x`(g` − ĝ`). The average payoff over the L periods starting from ` is

ΠL ≡
1

L
E

[
`+L−1∑

`′=`

x`′ (g`′ − ĝ`′)

∣∣∣∣∣F
i
`

]
,

and the long-run average is

Π ≡ lim
L→∞

ΠL.

To compute the equilibrium, we assume that the insider follows the linear strategy (12) for some

constant β. Then, λD, λx and Σg are given as a function of β by Equations (13), (14) and (16),

respectively. Moreover, the insider chooses β to maximize Π, taking λD and λx as given.

To determine Π, we first compute ΠL. We conjecture that

ΠL = BL(g`−1 − ĝ`−1)
2 + CL,

for two constants BL and CL. These constants satisfy the equation

BL(g`−1 − ĝ`−1)
2 + CL =

1

L
E
[
x` (g` − ĝ`) + (L− 1)

[
BL−1(g` − ĝ`)

2 + CL−1
]∣∣F i

`

]
,

where g` − ĝ` is given by Equation (18), and x` = β(g`−1 − ĝ`−1). Substituting for g` − ĝ` and x`,

we find

BL =
β [1− (κ+ νλD)h− λxβ] + (L− 1)BL−1 [1− (κ+ νλD)h− λxβ]

2

L

CL =
(L− 1)

[
BL−1

(
λ2Dσ

2
D + λ2xσ

2
u + σ2g

)
h+ CL−1

]

L
.

It is easy to check by induction, starting from L = 1, that

BL =
β
∑L−1

k=0 [1− (κ+ νλD)h− λxβ]
2k+1

L
(D.1)

CL =
β
(
λ2Dσ

2
D + λ2xσ

2
u + σ2g

)
h
∑L−2

k=0 (L− 1− k) [1− (κ+ νλD)h− λxβ]
2k+1

L
. (D.2)
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Suppose that σD =∞ and κ = 0. Equations (13) and (14) imply that λD = 0 and

1− λxβ =
σ2uh

Σ2gβ
2 + σ2uh

.

When β > 0, we have 0 < 1−λxβ < 1. Equations (D.1) and (D.2) then imply that limL→∞BL = 0

and

Π = lim
L→∞

CL = β
(
λ2xσ

2
u + σ2g

)
h
∞∑

k=0

(1− λxβ)
2k+1

=
β (1− λxβ)

1− (1− λxβ)
2

(
λ2xσ

2
u + σ2g

)
h.

When β = 0, we have Π = 0 since the insider is not trading. Therefore, maximizing Π is equivalent

to maximizing a function that is equal to (1 − λxβ)/(2 − λxβ) if β > 0 and zero if β = 0. This

function increases as β decreases to zero, and drops discontinuously to zero for β = 0. Therefore,

the insider prefers to set β as close to zero as possible. Intuitively, since the insider is infinitely

patient, she chooses to minimize price impact by spreading her trades maximally over time.

Suppose next that κ > 0 or σ2D <∞. Equations (13) and (14) imply that

1− (κ+ νλD)h− λxβ =
(1− κh)σ2Dσ

2
uh

Σ2g
(
β2σ2D + ν2σ2uh

2
)
+ σ2Dσ

2
uh
.

Since κ > 0 or σ2D <∞, we have 0 < 1− (κ+ νλD)h− λxβ < 1. Equations (D.1) and (D.2) then

imply that limL→∞BL = 0 and

Π = lim
L→∞

CL = β
(
λ2Dσ

2
D + λ2xσ

2
u + σ2g

)
h
∞∑

k=0

[1− (κ+ νλD)h− λxβ]
2k+1

=
β [1− (κ+ νλD)h− λxβ]

1− [1− (κ+ νλD)h− λxβ]
2

(
λ2Dσ

2
D + λ2xσ

2
u + σ2g

)
h.

Therefore, maximizing Π is equivalent to maximizing

β [1− (κ+ νλD)h− λxβ]

1− [1− (κ+ νλD)h− λxβ]
2 .

The first-order condition is

1− (κ+ νλD)h− 2λxβ − [1− (κ+ νλD)h] [1− (κ+ νλD)h− λxβ]
2 = 0

⇔ (1− κh)(λxβ)
2 = νλDh

[
[1− (κ+ νλD)h− λxβ]

2 + (1− κh) [2(1− κh)− νλDh− 2λxβ]− 1
]

+
[
1− (1− κh)2

]
(1− κh− 2λxβ) . (D.3)
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In equilibrium, λD, λx, Σg and β are the solution to the system of Equations (13), (14), (16) and

(D.3). To determine the solution for small h, we distinguish between the cases κ > 0 and κ = 0.

When κ > 0, we set λD = ld
√
h, Σ2g ≡ S2g

√
h and β ≡ b

√
h. We can then check that the resulting

system in ld, λx, Sg and b has the solution

b =
σu
√
2κ

σg

S2g =
σ2g√
2κ

λx =
σg
σu

ld =
σ2gν

σ2D
√
2κ

for h = 0. Continuity implies that a solution for small h exists, and

lim
h→0

β√
h
= lim

h→0
b =

σu
√
2κ

σg
.

Therefore, β is of order
√
h. When κ = 0 and σ2D <∞, we set λD = ldh

1

3 , Σ2g ≡ S2gh
1

3 and β ≡ bh
2

3 .

We can then check that the resulting system in ld, λx, Sg and b has the solution

b =
2

1

3 ν
2

3σu

σ
2

3

Dσ
1

3
g

S2g =
σ

2

3

Dσ
4

3
g

2
1

3 ν
2

3

λx =
σg
σu

ld =
ν

1

3σ
4

3
g

2
1

3σ
4

3

D

for h = 0. Continuity implies that a solution for small h exists, and

lim
h→0

β

h
2

3

= lim
h→0

b =
2

1

3 ν
2

3σu

σ
2

3

Dσ
1

3
g

.

Therefore, β is of order h
2

3 .
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Notes

1Kyle assumes no impatience, but it is possible to introduce impatience in his model and show

that the insider still trades slowly. For example, Back and Baruch (2004) assume that the insider’s

information is announced publicly at a Poisson rather than a deterministic time. The insider then

becomes impatient because she can lose her informational advantage at any time, but is shown to

still trade slowly.

2See also Back (1992) for a general continuous-time formulation of the single-insider problem.

3As in Kyle (1985), the assumption of a competitive market maker can be viewed as a reduced

form for multiple market makers competing in a Bertrand fashion.

4Alternatively, we could assume thatD` and g` are observed first, and then orders are submitted.

This would complicate the notation without changing the results.

5In assuming that time goes from −∞ to ∞, we are implicitly assuming convergence to the
steady state. To show convergence, we can start the economy at a finite time and endow the

market maker with a normal prior on profitability. We can then examine the limit of the coefficients

that characterize the linear equilibrium when time goes to ∞. While a comprehensive analysis of
convergence is beyond the scope of this paper, we have established numerically local convergence,

i.e., when the initial condition (the variance of the market maker’s prior) is close to its steady-state

value.

6Although our main results concern the continuous-time limit, we avoid formulating the model

directly in continuous time. Starting with discrete time and then taking the limit has the advantage

of illustrating how the equilibrium changes with the trading frequency. Discrete time is also impor-

tant when we calibrate the model. Finally, in continuous-time formulations (e.g., Kyle (1985) and

Back (1992)) insider trading is a flow, i.e., proportional to dt. In our model, by contrast, insider

trading is of order larger than dt, and this is central to our strong-form efficiency result.

7Other properties of β are as in Kyle. For example, the insider trades more aggressively when

there is more noise trading (σu large), or when the market maker expects her to have less private

information (σg small).

8See, however, Vayanos (1999,2001) where a strategic hedger goes down the demand curve slowly,

even in the continuous-time limit. Suppose, for example, that the market expects the hedger to sell
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100 shares over ten hours, at a rate of ten shares per hour. If the hedger sells all 100 shares over

the first hour, this will exceed the market’s expectation of ten shares. Therefore, the market will

increase its estimate of the hedger’s inventory, expect more future sales from the hedger, and set a

lower price for the 100 shares. By contrast, an insider can sell 100 shares over one hour at the same

price as over ten hours. The difference with the hedger is that the market expects a zero average

order from the insider, both over one and over ten hours. Therefore, the updating generated by

the 100-share order is independent of the time it takes to complete the order. See also Spiegel and

Subrahmanyam (1995) where the market expects non-zero orders from rational liquidity traders.

9This type of objective is standard in the literature on repeated games with no discounting.

See, for example, Fudenberg and Tirole (1991). In addition to assuming the long-run average, we

re-normalize per-period payoffs to x`(g` − ĝ`) rather than x`(v` − p`).

10See, for example, Back and Baruch (2004) who assume that the insider’s information is an-

nounced publicly at a Poisson rather than a deterministic time.

11That trading volume converges to infinity in the continuous-time limit is not pathological. For

example, volume is infinite in the basic Merton (1971) model, where a CRRA investor keeps a

constant fraction of wealth in a risky asset and needs to rebalance continuously. Mathematically,

the investor’s volume is infinite because the Brownian motion has infinite variation.

Note that while the number of shares traded by the insider goes to infinity, the insider generates

a negligible fraction of total trading volume. Indeed, the volume u` generated by noise traders in

period ` is of order
√
h. Since x` is of order h

3

4 , the ratio x`/u` converges to zero when h goes to

zero.

12The parameters (σu, σg) can be calibrated through the aggregate trading volume and the bid-

ask spread. See Chau (2003) for an example of such a calibration.

13In particular, there is substantial evidence that earnings exhibit mean-reversion. See, for

example, the survey by Kothari (2001).

14Brennan and Xia (2001) follow a similar approach when calibrating a dividend process with

unobservable time-varying drift. In calculating the model-implied moments, we assume for consis-

tency that annual earnings are not the realization of D` at year-end, but a capitalized sum of all

values of D` over the year. The calculations are available upon request.

15We consider more moments than parameters to increase estimation accuracy. We select the
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parameters that minimize the sum of squared deviations between the model-implied and the actual

moments.

16As with tχ, the time tχ depends on (σD, σg, ν) only through the ratio νσg/σD. It is thus the

same whether (σD, σg, ν, κ) equals (1.17,1,1,0) or (1.06,0.62,1.47,0).

17The correlation is given by

a
(
1− a

s
h

)2

s
h
(1− a)2 + 2a

(
s
h
− 1 + a

s
h − s

h
a
) ,

where a ≡ 1− (κ+νλD)h−λxβ and s/h is an integer. The calculations are available upon request.

18An alternative hypothesis is that funds trade for non-informational reasons (e.g., liquidity,

hedging), and do so more slowly for small stocks because of the larger price impact. For exam-

ple, Vayanos (2001) shows that a strategic hedger trades more slowly if he faces more risk-averse

market makers. Under this hypothesis, however, the correlation between changes in holdings and

subsequent returns should eventually turn negative, as fund trading would impact the stock price

but not the fundamental value.

19Continuity follows from the implicit function theorem. We divide Equation (C.6) by h so that

the resulting system is well-behaved for h = 0.
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t0.5 t0.5 t0.5/t0.5

15 days 0.30 days 2.02%

60 days 0.72 days 1.21%

0.5 year 1.27 days 0.70%

1 year 1.57 days 0.43%

2 years 1.72 days 0.24%

Table 1: Speed of information revelation for a large-cap stock.
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t0.5 t0.5 t0.5/t0.5

15 days 3.08 days 20.51%

60 days 7.67 days 12.78%

0.5 year 15.70 days 8.63%

1 year 23.98 days 6.57%

2 years 34.71 days 4.76%

Table 2: Speed of information revelation for a small-cap stock.
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Large-cap Small-cap
t0.5 t0.5 Correlation t0.5 Correlation

15 days 0.30 days 0.002 3.08 days 0.026

60 days 0.72 days 0.006 7.67 days 0.070

0.5 year 1.27 days 0.010 15.70 days 0.161

1 year 1.57 days 0.013 23.98 days 0.256

2 years 1.72 days 0.014 34.71 days 0.361

Table 3: Correlation between changes in insider holdings over consecutive quarters.
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Figure 1: Timing of events in period `.
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