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Abstract

This paper studies a dynamic model of a �nancial market with N strategic

agents. Agents receive random stock endowments at each period and trade

to share dividend risk. Endowments are the only private information in the

model. We �nd that agents trade slowly even when the time between trades

goes to 0. In fact, welfare loss due to strategic behavior increases as the time

between trades decreases. In the limit when the time between trades goes to 0,

welfare loss is of order 1=N , and not 1=N2 as in the static models of the double

auctions literature. The model is very tractable and closed-form solutions are

obtained in a special case.
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1 Introduction

Large traders, such as dealers, mutual funds, and pension funds, play an increasingly

important role in �nancial markets. These agents' trades exceed the average daily

volume of many securities and, according to a number of empirical studies, have a

signi�cant price impact.1 Recent studies have also shown that large agents strategi-

cally reduce the price impact of their trades by spreading them over several days.2

One explanation for the price impact of large trades is that they reveal inside infor-

mation. However, since large traders do not outperform the market, the majority of

their trades cannot be attributed to such information.3

In this paper we study a dynamic model of a �nancial market with large agents

who trade to share risk. We address the following questions. First, what trading

strategies do large agents employ in order to minimize their price impact? Second,

what inuences market liquidity? Third, how well does the market perform its basic

function of matching supply and demand, i.e. how small is the fraction of the gains

from trade lost because of strategic behavior?

We consider a discrete-time, in�nite-horizon economy with a consumption good

and two investment opportunities. The �rst is a riskless technology and the second

is a risky stock that pays a random dividend at each period. The only agents in the

economy are N in�nitely-lived, risk-averse large traders. For simplicity, no trades are

motivated by inside information, i.e. dividend information is public. Instead, agents

receive random stock endowments at each period, and trade to share dividend risk.

Trades have a price impact because there is a �nite number of risk-averse agents.

An agent's endowment is private information. Trade in the stock takes place at

each period and is organized as a Walrasian auction where agents submit demand

functions.

Our assumptions �t particularly well inter-dealer markets, i.e. markets where

dealers trade to share the risk of the inventories they accumulate from their customers.

Inter-dealer markets are very active for government bonds, foreign exchange, and

London Stock Exchange and Nasdaq stocks.4 Dealers are large and generally are the

only participants in these markets. Their endowments are the trades they receive from

their customers, and are private information. Finally, in many inter-dealer markets
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trade is centralized and conducted through a limit-order book

This paper is related to three di�erent literatures: the market microstructure

literature, the literature on durable goods monopoly, and the literature on double

auctions. The relation to the market microstructure literature is through the asset

trading process. Starting with Glosten and Milgrom (1985) and Kyle (1985), the

market microstructure literature has mainly focused on how inside information is re-

vealed through the trading process. The literature carefully models insiders' strategic

behavior but takes as exogenous the behavior of agents who trade for reasons other

than inside information.5 This paper focuses instead on the strategic behavior of

these agents. Our large traders are similar to insiders to some extent, since they are

trying to minimize price impact. However, the \noise" traders, who are essential for

trade in an insider model, are not present in our model.

This paper is also closely related to the literature on durable goods monopoly.6

Large traders as well as durable goods monopolists delay trades in order to practice

price discrimination. In both cases there is a welfare loss due to delaying trades: in

this paper dividend risk is not optimally shared while in the durable goods monopoly

literature future gains are discounted. The main di�erence from most of this litera-

ture, where the monopolist's cost is public information, is that agents' endowments

are private information.7 Moreover, by assuming that private information is contin-

uously generated over time (since agents receive endowments at each period), this

paper di�ers from previous models with private information.8

Finally, this paper is related to the double auctions literature since it studies how

strategic behavior and welfare loss depend on the size of the market. Most of this

literature considers static models with risk-neutral agents who have 0-1 demands.9

Instead, we consider a more realistic (in a �nancial market framework) dynamic model

where agents are risk-averse and have multi-unit demands.

Our results are the following. First, agents trade slowly even when the time

between trades, h, goes to 0, i.e. even when there are many trading opportunities.

The increase in trading opportunities has a direct and an indirect e�ect on agents'

behavior. To determine the direct e�ect, we assume that price impact stays constant.

With more trading opportunities, agents have more exibility. They break their
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trades into many small trades and, at the same time, complete their trades very

quickly. Price impact increases, however, since a trade signals many more trades in

the same direction. The increase in price impact induces agents to trade more slowly,

which further increases price impact, and so on. Agents trade slowly because of this

indirect e�ect. Our result is contrary to the Coase conjecture studied in the durable

goods monopoly literature. To compare our result to that literature, we study the

case where agents' endowments are public information. Consistent with the Coase

conjecture, agents trade very quickly as h goes to 0.

We next study the welfare loss due to strategic behavior. Our second result is that

welfare loss increases as the time between trades, h, decreases. Therefore, welfare loss

is maximum in the limit when h goes to 0. Our result implies that in the presence

of private information, dynamic competitive and non-competitive models di�er more

than their static counterparts.

We �nally study how quickly the market becomes competitive, i.e. how quickly

welfare loss goes to 0, as the number of agents, N , grows. Our third result is that

welfare loss is of order 1=N2 for a �xed h, but of order 1=N in the limit when h goes to

0. Therefore, in the presence of private information, dynamic non-competitive models

become competitive more slowly than their static counterparts. The 1=N2 result was

also obtained in the static models of the double auctions literature.

A practical implication of our results is that a switch from a discrete call market

to a continuous market may reduce liquidity and not substantially increase welfare.10

Our results also suggest that if dealers' trades in the customer market are disclosed

immediately, trading in the inter-dealer market will be more e�cient.

The rest of the paper is structured as follows. In section 2 we present the model.

In section 3 we study the benchmark case where agents behave competitively and

take prices as given. In sections 4 and 5 we assume that agents behave strategically.

In section 4 we study the case where agents' endowments are private information,

and in section 5 we study the case where endowments are public information. Section

6 presents the welfare analysis and section 7 contains some concluding remarks. All

proofs are in the appendix.
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2 The Model

Time is continuous and goes from 0 to 1. Activity takes place at times `h, where

` = 0; 1; 2; :: and h > 0. We refer to time `h as period `. There is a consumption

good and two investment opportunities. The �rst investment opportunity is a riskless

technology with a continuously compounded rate of return r. One unit of the con-

sumption good invested in this technology at period `� 1 returns erh units at period

`. The second investment opportunity is a risky stock that pays a dividend d`h at

period `. We set d0 = d and

d` = d`�1 + �`: (2.1)

The dividend shock �` is independent of �`0 for ` 6= `0, i.e. dividends follow a random

walk, and is normal with mean 0 and variance �2h. All agents learn �` at period `,

i.e. dividend information is public.

There are N in�nitely-lived agents. Agent i consumes ci;`h at period `. His

utility over consumption is exponential with coe�cient of absolute risk-aversion �

and discount rate �, i.e.

�h
1X
`=0

exp(��ci;` � �`h): (2.2)

Agent i is endowed with M units of the consumption good and e shares of the stock

at period 0. At period `, ` � 1, he is endowed with �i;` shares of the stock and

�d`
h

1� e�rh
�i;`

units of the consumption good. The consumption good endowment is the negative of

the present value of expected dividends, d`h=(1� e�rh), times the stock endowment,

�i;`.
11 The stock endowment, �i;`, is independent of �i0;`0 for i 6= i0 or ` 6= `0, independent

of �`0 , and normal with mean 0 and variance �2
e
h. We generally assume that �i;` is

private information to agent i and is revealed to him at period `. In section 5 we

study the public information case where all agents learn �i;` at period `.

Trade in the stock takes place at each period ` � 1. The trading mechanism is

a Walrasian auction as in Kyle (1989). Agents submit demands that are continuous

functions of the price p`. The market-clearing price is then found and all trades take

place at this price. If there are many market-clearing prices, the price with minimum
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absolute value is selected (if there are ties, the positive price is selected). If there is no

market-clearing price, there is either positive excess demand at all prices or negative

excess demand at all prices, since demands are continuous. In the former case the

price is 1 and all buyers receive negatively in�nite utility, while in the latter case

the price is �1 and all sellers receive negatively in�nite utility.

The sequence of events at period ` is as follows. First, agents receive their endow-

ments and learn the dividend shock, �`. Next, trade takes place. Then, the stock pays

the dividend, d`h, and �nally agents consume ci;`h. We denote by Mi;` and ei;` the

units of the consumption good and shares of the stock that agent i holds at period

`, after trade takes place and before the dividend is paid. We allow Mi;` and ei;` to

negative, interpreting them as short positions. We denote by xi;`(p`) the demand of

agent i at period `. We only make explicit the dependence of xi;`(p`) on the period `

price, p`. However, xi;`(p`) can depend on all other information available to agent i at

period `, i.e. �`0 for `
0 � `, p`0 for `

0 < `, �i;`0 for `
0 � `, and, in the public information

case, �j;`0 for j 6= i and `0 � `.
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3 The Competitive Case

In this section we study the benchmark case where agents behave competitively and

take prices as given. We �rst de�ne candidate demands and deduce market-clearing

prices. We then provide conditions for demands to be optimal given the prices.

3.1 Candidate Demands and Prices

The demand of agent i at period ` is

xi;`(p`) = Ad` �Bp` � a(ei;`�1 + �i;`): (3.1)

Demand, xi;`(p`), is a linear function of the dividend, d`, the price, p`, and agent i's

stock holdings before trade at period `. Stock holdings are the sum of stock holdings

after trade at period ` � 1, ei;`�1, and of the stock endowment at period `, �i;`. The

parameters A, B, and a are determined in section 3.2. The market-clearing condition,

NX
i=1

xi;`(p`) = 0; (3.2)

and the de�nition of xi;`(p`) imply that the price at period ` is

p` =
A

B
d` �

a

B

P
N

i=1(ei;`�1 + �i;`)

N
: (3.3)

The price, p`, is a linear function of the dividend, d`, and of average stock holdings,P
N

i=1(ei;`�1 + �i;`)=N .

The stock holdings of agent i after trade at period ` are

ei;` = (ei;`�1 + �i;`) + xi;`(p`); (3.4)

i.e. are the sum of stock holdings before trade, ei;`�1 + �i;`, and of the trade, xi;`(p`).

(p` now denotes the market-clearing price, 3.3.) To determine xi;`(p`), we plug p`

back in the demand 3.1 and get

xi;`(p`) = a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
: (3.5)

Equations 3.4 and 3.5 imply that

ei;` = (1� a)(ei;`�1 + �i;`) + a

P
N

j=1(ej;`�1 + �j;`)

N
: (3.6)
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Stock holdings after trade are a weighted average of stock holdings before trade and

average stock holdings. Trade thus reduces the dispersion in stock holdings. The

parameter a measures the speed at which disperse stock holdings become identical,

and dividend risk is optimally shared. In section 3.2 we show that a is equal to 1. In

the competitive case stock holdings become identical after one trading round.

3.2 Demands are Optimal

Our candidate demands and prices were de�ned as to satisfy the market-clearing con-

dition. To show that they constitute a competitive equilibrium, we only need to show

that demands are optimal given the prices. In this section we study agents' optimiza-

tion problem and provide conditions for demands to be optimal. The conditions are

on the parameters A, B, and a.

We formulate agent i's optimization problem as a dynamic programming problem.

The \state" at period ` is evaluated after trade takes place and before the stock pays

the dividend. There are four state variables: the agent's consumption good holdings,

Mi;`, the dividend, d`, the agent's stock holdings, ei;`, and the average stock holdings,P
N

j=1 ej;`=N . There are two control variables chosen between the state at period `� 1

and the state at period `: the consumption, ci;`�1, and the demand, xi;`(p`). The

dynamics of Mi;` are given by the budget constraint

Mi;` = erh(Mi;`�1 + d`�1ei;`�1h� ci;`�1h)� d`
h

1� e�rh
�i;` � p`xi;`(p`): (3.7)

The agent behaves competitively and takes prices as given. Therefore the price, p`,

in the budget constraint is independent of the agent's demand and given by equation

3.3. The dynamics of d` and ei;` are given by equations 2.1 and 3.4, respectively.

(Equation 3.6 gives the dynamics of ei;` only when the agent submits his equilibrium

demand.) Finally, the dynamics of
P

N

j=1 ej;`=N are given by

P
N

j=1 ej;`

N
=

P
N

j=1(ej;`�1 + �j;`)

N
; (3.8)

since average stock holdings are equal before and after trade. Note that the agent

does not observe other agents' stock holdings directly. However he can infer average

stock holdings from the price, p`, using equation 3.3.
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Summarizing, agent i's optimization problem, (Pc), is

sup
ci;`;xi;`(p`)

�E0(h
1X
`=0

exp(��ci;` � �`h))

subject to

p` =
A

B
d` �

a

B

P
N

i=1(ei;`�1 + �i;`)

N
;

Mi;` = erh(Mi;`�1 + d`�1ei;`�1h� ci;`�1h)� d`
h

1� e�rh
�i;` � p`xi;`(p`);

d` = d`�1 + �`;

ei;` = (ei;`�1 + �i;`) + xi;`(p`);P
N

j=1 ej;`

N
=

P
N

j=1(ej;`�1 + �j;`)

N
;

and the transversality condition

lim
`!1

E0Vc

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
exp(��`h) = 0; (3.9)

where Vc is the value function.
12 Our candidate value function is

Vc

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
= �exp(��(1� e�rh

h
Mi;`+d`ei;`+F (Q;

0
B@ ei;`PN

j=1
ej;`

N

1
CA)+q)):
(3.10)

In expression 3.10, F (Q;v) = (1=2)vtQv for a matrix Q and a vector v (vt is the

transpose of v), Q is a symmetric 2� 2 matrix, and q is a constant.

In proposition A.1, proven in appendix A, we provide su�cient conditions for the

demand 3.1 to solve (Pc), and for the function 3.10 to be the value function. The

conditions are on the parameters A, B, a, Q, and q, and are derived from the Bellman

equation

Vc

 
Mi;`�1; d`�1; ei;`�1;

P
N

j=1 ej;`�1

N

!
=

sup
ci;`�1;xi;`(p`)

(
�exp(��ci;`�1)h+ E`�1Vc

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
exp(��h)

)
: (3.11)

There are two sets of conditions, the \optimality conditions" and the \Bellman condi-

tions". To derive the optimality conditions, we write that the demand 3.1 maximizes

the RHS of the Bellman equation. To derive the Bellman conditions, we write that

the value function 3.10 solves the Bellman equation.
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We now derive heuristically the optimality conditions and later use them to com-

pare the competitive case to the private and public information cases. There are

3 optimality conditions. The �rst optimality condition concerns A=B, the sensi-

tivity of price to the dividend. To derive this condition, we set ei;`�1 + �i;` andP
N

j=1(ej;`�1 + �j;`)=N to 0, and d` to 1. If agent i submits the demand 3.1, his trade

is 0 by equation 3.5. Suppose that he modi�es his demand and buys �x shares. His

holdings of the consumption good decrease by p`�x, which is (A=B)�x by equation

3.3. His stock holdings become �x, while average stock holdings remain equal to 0.

Equation 3.10 implies that the value function does not change in the �rst-order in

�x if

�1� e�rh

h

A

B
+ 1 = 0: (3.12)

Therefore, A=B, the sensitivity of price to the dividend, is h=(1� e�rh), the present

value of expected dividends.

The second optimality condition concerns a=B, the sensitivity of price to aver-

age stock holdings. To derive this condition, we set d` to 0, and ei;`�1 + �i;` andP
N

j=1(ej;`�1 + �j;`)=N to 1. If agent i submits the demand 3.1, his trade is 0 by equa-

tion 3.5. Suppose that he modi�es his demand and buys �x shares. His holdings of

the consumption good decrease by p`�x, which is �(a=B)�x by equation 3.3. His

stock holdings become �x, while average stock holdings remain equal to 1. The value

function does not change in the �rst-order if

1� e�rh

h

a

B
+Q1;1 +Q1;2 = 0: (3.13)

(Qi;j denotes the i; j'th element of the matrix Q.)

The third optimality condition concerns the speed of trade, a. To derive this

condition, we set d` and
P

N

j=1(ej;`�1+ �j;`)=N to 0, and ei;`�1+ �i;` to 1. Agent i thus

needs to sell one share to the other agents. If he submits the demand 3.1, he sells a

shares. Suppose that he modi�es his demand and sells �x fewer shares. His holdings

of the consumption good do not change since p` = 0. His stock holdings become

1� a+�x, while average stock holdings remain equal to 0. The value function does

not change in the �rst-order if

(1� a)Q1;1 = 0: (3.14)
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Equation 3.14 implies that a = 1. In the competitive case the agent equates his

marginal valuation to the price, and sells the one share immediately. His stock hold-

ings become equal to average stock holdings, and dividend risk is optimally shared.

To derive the Bellman conditions we need to compute the expectation of the value

function. The value function is the exponential of a quadratic function of a normal

vector, and its expectation is complicated. Therefore, the Bellman conditions are

complicated as well. In appendix A we show that the optimality conditions and the

Bellman conditions can be reduced to a system of 3 non-linear equations in the 3

elements of the symmetric 2� 2 matrix Q.

The Bellman conditions simplify dramatically in the limit when endowment risk,

�2
e
, goes to 0. In proposition A.2, proven in appendix A, we solve the non-linear

system in closed-form for �2
e
= 0 and use the implicit function theorem to extend the

solution for small �2
e
. The Bellman conditions have a very intuitive interpretation for

�2
e
= 0. To illustrate this interpretation, we determine Q1;1 +Q1;2 and Q1;1 using the

Bellman conditions. The expressions for Q1;1 +Q1;2 and Q1;1 will also be valid in the

private and public information cases. In the next two sections we will combine these

expressions with the optimality conditions, to study market liquidity and the speed

of trade.

Adding up the Bellman conditions for Q1;1 and Q1;2, i.e. equations A.23 and A.25,

we get

Q1;1 +Q1;2 = (���2h+ (Q1;1 +Q1;2))e
�rh: (3.15)

The LHS, Q1;1 + Q1;2, represents agent i's marginal bene�t of holding �x shares

at period `, when d` = 0 and ei;` =
P

N

j=1 ej;` = 1. This marginal bene�t is the

sum of two terms. The �rst term, ���2he�rh, represents the marginal bene�t of

holding �x shares between periods ` and `+ 1. This term is in fact a marginal cost,

due to dividend risk. The marginal cost is increasing in the coe�cient of absolute

risk-aversion, �, and in the dividend risk, �2. The second term, (Q1;1 + Q1;2)e
�rh,

represents the marginal bene�t of holding �x shares at period ` + 1. It is the same

as the marginal bene�t at period ` (except for discounting) because d`+1, ei;`+1, andP
N

j=1 ej;`+1 are equal in expectation to their period ` values. The Bellman conditions

simplify for �2
e
= 0 because the marginal bene�t between periods ` and ` + 1 is only
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due to dividend risk. For �2
e
> 0, the marginal bene�t is also due to endowment risk

and is a complicated function of Q. Equation 3.15 implies that

Q1;1 +Q1;2 = ���2he�rh

1� e�rh
: (3.16)

Therefore, Q1;1+Q1;2 is simply a present value of marginal costs due to dividend risk.

The Bellman equation for Q1;1 is equation A.23, i.e.

Q1;1 = (���2h + (1� a)2Q1;1)e
�rh: (3.17)

The LHS, Q1;1, represents the marginal bene�t of holding �x shares at period `, when

d` =
P

N

j=1 ej;` = 0 and ei;` = 1. This marginal bene�t is the sum of two terms. The

�rst term represents the marginal bene�t of holding �x shares between periods ` and

`+1. The second term represents the marginal bene�t of holding (1�a)�x shares at

period `+ 1.13 This marginal bene�t is obtained from the marginal bene�t at period

` by discounting and multiplying by (1� a)2. The \�rst" 1� a comes because ei;`+1

is 1�a instead of 1 (in expectation) and the \second" because we consider (1�a)�x

shares instead of �x. Equation 3.17 implies that

Q1;1 = � ��2he�rh

1� (1� a)2e�rh
: (3.18)

Therefore, Q1;1 is a present value of marginal costs due to dividend risk, exactly

as Q1;1 + Q1;1. However, the discount rate is higher than r, and incorporates the

parameter a that measures the speed of trade. This is because for Q1;1 + Q1;2 the

agent expects to hold one share forever, while for Q1;1 the agent expects to sell the

share over time.
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4 The Private Information Case

In this section we study the case where agents behave strategically. We refer to this

case as the private information case in order to contrast it to the case studied in

the next section, where agents behave strategically and where endowments are public

information. We �rst construct candidate demands, and provide conditions for these

demands to constitute a Nash equilibrium. We then study market liquidity and the

speed of trade.

4.1 Demands

The demand of agent i at period ` is

xi;`(p`) = Ad` �Bp` � a(ei;`�1 + �i;`): (4.1)

Demand is given by the same expression as in the competitive case. Therefore the

price, the trade, and stock holdings after trade are also given by the same expressions.

The parameters A, B, and a will however be di�erent. In particular, the parameter

a, that measures the speed of trade, will be smaller than 1. Note that agent i's

demand does not depend on his expectation of other agents' stock holdings, which isP
j 6=i ej;`�1 since stock holdings are

P
j 6=i(ej;`�1+ �j;`).

14 In fact, if we introduce a term

in
P

j 6=i ej;`�1 in the demand 4.1, we will �nd that its coe�cient is 0. This is surprising:

if
P

j 6=i ej;`�1 increases, agent i expects larger future sales from the other agents. His

demand at period ` should thus decrease, holding price constant. Demand does not

change because \holding price constant" means that the period ` stock endowments,P
j 6=i �j;`, are such that stock holdings,

P
j 6=i(ej;`�1 + �j;`), remain constant.

Our candidate demands constitute a Nash equilibrium if it is optimal for agent i to

submit his candidate demand when all other agents submit their candidate demands.15

We now study agent i's optimization problem and provide conditions for the demand

4.1 to be optimal. The only di�erence between this optimization problem and the

optimization problem in the competitive case, concerns the price, p`. In the compet-

itive case p` is independent of the agent's demand and given by equation 3.3. In the
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private information case p` is given by the market-clearing condition

X
j 6=i

(Ad` �Bp` � a(ej;`�1 + �j;`)) + xi;`(p`) = 0: (4.2)

The price in the private information case coincides with the price in the competitive

case only when agent i submits his equilibrium demand.

Agent i's optimization problem, (Ppr), is

sup
ci;`;xi;`(p`)

�E0(h
1X
`=0

exp(��ci;` � �`h))

subject to X
j 6=i

(Ad` �Bp` � a(ej;`�1 + �j;`)) + xi;`(p`) = 0;

Mi;` = erh(Mi;`�1 + d`�1ei;`�1h� ci;`�1h)� d`
h

1� e�rh
�i;` � p`xi;`(p`);

d` = d`�1 + �`;

ei;` = (ei;`�1 + �i;`) + xi;`(p`);P
N

j=1 ej;`

N
=

P
N

j=1(ej;`�1 + �j;`)

N
;

and the transversality condition

lim
`!1

E0Vpr

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
exp(��`h) = 0;

where Vpr is the value function. Our candidate value function is

Vpr

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
= �exp(��(1� e�rh

h
Mi;`+d`ei;`+F (Q;

0
B@ ei;`PN

j=1
ej;`

N

1
CA)+q)):
(4.3)

The value function is given by the same expression as in the competitive case. The

parameters Q and q will however be di�erent. In proposition B.1, proven in appendix

B, we provide su�cient conditions for the demand 4.1 to solve (Ppr), and for the

function 4.3 to be the value function. These conditions are the optimality conditions

and the Bellman conditions.

The �rst two optimality conditions are the same as in the competitive case, namely

�1� e�rh

h

A

B
+ 1 = 0 (4.4)
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and
1� e�rh

h

a

B
+Q1;1 +Q1;2 = 0: (4.5)

The conditions are the same as in the competitive case because they are derived for

ei;`�1+�i;` equal to
P

N

j=1(ej;`�1+�j;`)=N , and equal to 0 or 1. In both cases agent i does

not trade if he submits the demand 4.1. Therefore, if he modi�es his demand, the �rst-

order change in the value function will be independent of whether the price changes

or not. To derive the third optimality condition, we set d` and
P

N

j=1(ej;`�1+�j;`)=N to

0, and ei;`�1+ �i;` to 1. Agent i thus needs to sell one share to the other agents. If he

submits the demand 4.1, he sells a shares. Suppose that he modi�es his demand and

sells �x fewer shares. The market-clearing condition 4.2 implies that p` increases by

�x=(N � 1)B, and thus becomes �x=(N � 1)B instead of 0. Therefore the agent's

holdings of the consumption good increase by (�x=(N � 1)B)(a � �x). His stock

holdings become 1 � a + �x, while average stock holdings remain equal to 0. The

value function does not change in the �rst-order if

1� e�rh

h

a

(N � 1)B
+ (1� a)Q1;1 = 0: (4.6)

Condition 4.6 di�ers from condition 3.14 in the competitive case, because of the �rst

term. This term represents the price improvement from trading more slowly. Because

of this term, a will be smaller than 1.

The Bellman conditions are the same as in the competitive case. In appendix B

we show that the optimality conditions and the Bellman conditions can be reduced

to a system of 4 non-linear equations in a and in the 3 elements of the symmetric

2 � 2 matrix Q. In proposition B.2, proven in appendix B, we solve the non-linear

system in closed-form for �2
e
= 0 and use the implicit function theorem to extend the

solution for small �2
e
.

4.2 Market Liquidity and the Speed of Trade

4.2.1 Market Liquidity

Before de�ning market liquidity, we study a=B, the sensitivity of price to average

stock holdings. Combining the optimality condition 4.5 with the Bellman condition

14



3.16, we get
1� e�rh

h

a

B
=

��2he�rh

1� e�rh
: (4.7)

To provide some intuition for equation 4.7, we set d` to 0, and ei;`�1 + �i;` andP
N

j=1(ej;`�1 + �j;`)=N to 1. Agent i thus does not trade, and expects to hold one

share forever. Since he does not trade, the price is equal to his marginal valuation.

The LHS of equation 4.7 corresponds to the price, which is �a=B. The RHS corre-

sponds to the marginal valuation, which is ���2he�rh=(1 � e�rh), i.e. is a present

value of marginal costs due to dividend risk.

To de�ne market liquidity, we assume that an agent deviates from his equilibrium

strategy and sells one more share. Market liquidity is the inverse of the price impact,

i.e. of the change in price. The market-clearing condition 4.2 implies that if agent

i sells one more share, the price decreases by 1=(N � 1)B. Therefore, price impact

is 1=(N � 1)B. Note that price impact is equal to the sensitivity of price to average

stock holdings, a=B, divided by a(N�1). This is because when agent i deviates from

his equilibrium strategy and sells one more share, the other agents incorrectly infer

that he did not deviate but received an endowment shock higher by N=(a(N � 1)).

Indeed, they do not observe agent i's endowment and buy 1=(N � 1) shares in both

cases. In the second case, price impact is the product of the increase in average stock

holdings, 1=(a(N � 1)), times the price sensitivity, a=B. Equation 4.7 implies that

price impact is
1

(N � 1)B
=

1

a(N � 1)

��2h2e�rh

(1� e�rh)2
: (4.8)

Note that price impact is large when a is small, since a sale of one share signals that

many more shares will follow. As the time between trades, h, goes to 0, a will go to

0. Since price sensitivity goes to a strictly positive limit, price impact will go to 1
and market liquidity to 0.

4.2.2 Speed of Trade

We now study the parameter a that measures the speed of trade. Combining the

optimality condition 4.6 with the Bellman condition 3.18, we get

1� e�rh

h

a

(N � 1)B
= (1� a)

��2he�rh

1� (1� a)2e�rh
: (4.9)
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To provide some intuition for equation 4.9, we set d` and
P

N

j=1(ej;`�1 + �j;`)=N to 0

and ei;`�1 + �i;` to 1. Agent i thus needs to sell one share to the other agents. At

period ` he sells a shares. If he sells fewer shares, he trades o� an increase in the

price at period ` with an increase in dividend risk at future periods. The LHS of

equation 4.9 represents the price improvement. It is proportional to the price impact,

1=(N � 1)B, and the trade, a. The RHS represents the increase in dividend risk and

is a present value of marginal costs. Using equation 4.7 to eliminate B, we get

a2e�rh � a(2e�rh + (N � 1)(1� e�rh)) + (N � 2)(1� e�rh) = 0: (4.10)

Equation 4.10 gives a as a function of the number of agents, N , and the time between

trades, h, for �2
e
= 0. To study how a depends on N and h, we use equation 4.10 for

�2
e
= 0 and extend our results by continuity for small �2

e
. In proposition 4.1, proven

in appendix B, we study how a depends on N and h.

Proposition 4.1 For small �2
e
, a increases in N and h.

The intuition for proposition 4.1 is the following. If N is large, the price im-

provement obtained by delaying trades is small. If h is large, there are few trading

opportunities. Therefore, the increase in dividend risk from delaying trades is large.

We �nally study a for two limit values of h. The �rst value is 1 and corresponds

to the benchmark static case. In the static case a is (N � 2)=(N � 1).16 The second

value is 0 and corresponds to the continuous-time case. In proposition 4.2 we show

that a is of order h and thus goes to 0 as h goes to 0. Proposition 4.2 is proven in

appendix B.

Proposition 4.2 For small �2
e
, a=h goes to �a > 0 as h goes to 0.

To understand the implications of proposition 4.2 for the speed of trade, assume

that at calendar time t agent i holds one share and average stock holdings are 0. The

agent thus needs to sell one share, and sells a shares at time t. At time t+h he needs

to sell 1� a shares, and sells a(1� a) shares. At time t+2h he needs to sell (1� a)2

shares, and so on. Therefore, at calendar time t0 such that t0 � t is a multiple of h,

the agent needs to sell (1 � a)
t0�t
h shares. Since a=h goes to �a > 0 as h goes to 0,

(1� a)
t0�t
h goes to e��a(t

0
�t) 2 (0; 1). The agent thus sells slowly.
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The result of proposition 4.2 is somewhat surprising since it implies that agents

trade slowly even when there are many trading opportunities. To provide some intu-

ition for this result, we assume that h goes to 0, and proceed in two steps. First, we

assume that price impact, 1=(N�1)B, stays constant, and determine the direct e�ect
of h on a. Second, we take into account the change in price impact, and determine

the indirect e�ect.

Equation 4.9 implies that if price impact stays constant, a is of order
p
h. There-

fore, both a and (1 � a)
t0�t
h go to 0 as h goes to 0. Since a goes to 0, agents break

their trades into many small trades. At the same time, since (1 � a)
t0�t
h goes to 0,

agents complete their trades very quickly. The intuition is that with constant price

impact, agents' problem is similar to trading against an exogenous, downward-sloping

demand curve. As h goes to 0, agents can \go down" the demand curve very quickly,

achieving perfect price-discrimination and bearing little dividend risk. Note that both

the LHS and the RHS of equation 4.9 are of order
p
h, and thus go to 0 as h goes

to 0. The LHS represents the price improvement obtained by delaying. Since agents

break their trades into many small trades, the price improvement concerns a small

trade and goes to 0. The RHS represents the increase in dividend risk from delaying.

It goes to 0 since agents complete their trades very quickly and bear little dividend

risk.

Equation 4.8 implies that as h and a go to 0, price impact does not stay constant,

but goes to 1. The intuition is that a trade signals many more trades in the same

direction. The increase in price impact implies a decrease in a, which implies a further

increase in price impact, and so on. To determine this indirect e�ect of h on a, we

note that the LHS of equation 4.9 does not go to 0 as h goes to 0. Indeed, the price

improvement obtained by delaying is proportional to the trade, a, which is small,

and the price impact, 1=(N � 1)B, which is large. The product of the trade and the

price impact is in turn proportional to the price sensitivity, a=B, which goes to a

strictly positive limit. Since the LHS does not go to 0, the RHS does not go to 0.

The increase in dividend risk from delaying does not go to 0 only when agents trade

slowly and a is of order h.
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The result of proposition 4.2 is contrary to the Coase conjecture studied in the

durable goods monopoly literature. According to the Coase conjecture, a durable

goods monopolist sells very quickly as the time between trades goes to 0. Our result is

contrary to the Coase conjecture because endowments are private information. With

private information, price impact is larger than with public information, and agents

have an incentive to trade slowly. Price impact is larger because if an agent sells

more shares, the other agents incorrectly infer that he received a higher endowment

shock. Therefore, they expect larger sales in the future. In next section we study the

case where endowments are public information. We show that, as h goes to 0, price

impact goes to 0 and agents trade very quickly.
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5 The Public Information Case

In this section we study the case where agents behave strategically and where en-

dowments are public information. This case serves as a useful benchmark, allowing

us to compare our results to the durable goods monopoly literature. In the inter-

dealer market interpretation of the model, the public information case corresponds to

mandatory disclosure of trades that the dealers receive from their customers. We �rst

construct candidate demands and provide conditions for these demands to constitute

a Nash equilibrium. We show that there exists a continuum of Nash equilibria and

select one using a trembling-hand type re�nement. We then study market liquidity

and the speed of trade.

5.1 Demands

The demand of agent i at period ` is

xi;`(p`) = Ad` � Bp` � Ae

P
N

j=1(ej;`�1 + �j;`)

N
� a(ei;`�1 + �i;`): (5.1)

The only di�erence with the private information case is that agent i's demand depends

on other agents' stock holdings. We will give some intuition for this result later. The

price at period ` is

p` =
A

B
d` �

Ae + a

B

P
N

i=1(ei;`�1 + �i;`)

N
: (5.2)

The only di�erence with the private information case is that the sensitivity of price to

average stock holdings is (Ae+a)=B and not a=B. Agent i's trade and stock holdings

after trade are given by the same expressions as in the private information case.

Our candidate demands constitute a Nash equilibrium if it is optimal for agent i to

submit his candidate demand when all other agents submit their candidate demands.

We now study agent i's optimization problem and provide conditions for the demand

5.1 to be optimal. There are two di�erences between this optimization problem and

the optimization problem in the private information case. First, agent i's demand,

xi;`(p`), can depend on other agents' stock holdings, ej;`�1 + �j;` for j 6= i, since these

are public information. Second, the market-clearing condition is

X
j 6=i

(Ad` �Bp` � Ae

P
N

k=1(ek;`�1 + �k;`)

N
� a(ej;`�1 + �j;`)) + xi;`(p`) = 0; (5.3)
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instead of 4.2, since demands depend on average stock holdings.

Agent i's optimization problem, (Pp), is

sup
ci;`;xi;`(p`)

�E0(h
1X
`=0

exp(��ci;` � �`h))

subject to

X
j 6=i

(Ad` � Bp` � Ae

P
N

k=1(ek;`�1 + �k;`)

N
� a(ej;`�1 + �j;`)) + xi;`(p`) = 0;

Mi;` = erh(Mi;`�1 + d`�1ei;`�1h� ci;`�1h)� d`
h

1� e�rh
�i;` � p`xi;`(p`);

d` = d`�1 + �`;

ei;` = (ei;`�1 + �i;`) + xi;`(p`);P
N

j=1 ej;`

N
=

P
N

j=1(ej;`�1 + �j;`)

N
;

and the transversality condition

lim
`!1

E0Vp

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
exp(��`h) = 0;

where Vp is the value function. Our candidate value function is

Vp

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
= �exp(��(1� e�rh

h
Mi;`+d`ei;`+F (Q;

0
B@ ei;`PN

j=1
ej;`

N

1
CA)+q)):
(5.4)

The value function is given by the same expression as in the private information case.

In proposition C.1, proven in appendix C, we provide su�cient conditions for the

demand 5.1 to solve (Pp), and for the function 5.4 to be the value function. These

conditions are the optimality conditions and the Bellman conditions. The optimality

conditions are

�1� e�rh

h

A

B
+ 1 = 0; (5.5)

1� e�rh

h

Ae + a

B
+Q1;1 +Q1;2 = 0; (5.6)

and
1� e�rh

h

a

(N � 1)B
+ (1� a)Q1;1 = 0: (5.7)
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Conditions 5.5 and 5.7 are the same as in the private information case. Condition 5.6

is di�erent, since the sensitivity of price to average stock holdings is (Ae + a)=B and

not a=B. The Bellman conditions are the same as in the private information case.

Since there are as many conditions as in the private information case, but there

is the additional parameter Ae, there exists a continuum of Nash equilibria. The

intuition for the indeterminacy is that in the public information case agents know

the market-clearing price, and are indi�erent as to the demand they submit for all

other prices. Therefore the slope of the demand function, B, is indeterminate.17 This

intuition is the same as in Wilson (1979), Klemperer and Meyer (1989), and Back

and Zender (1993).

To select one Nash equilibrium, we use a re�nement that has the avor of trembling-

hand perfection in the agent-strategic form.18 We consider the following \perturbed"

game. Each consumption and demand choice of agent i is made by a di�erent \in-

carnation" of this agent. All incarnations maximize the same utility. They take

the choices of the other incarnations, and of the incarnations of the other agents, as

given. Consumption is optimally chosen, but demand is xi;`(p`) + ui;`, where xi;`(p`)

is the optimal demand and ui;` is a \tremble". For tractability, ui;` is independent

of ui0;`0 for i 6= i0 or ` 6= `0. Trembles are thus independent over agents. Trembles

are also independent over time, i.e. over incarnations of an agent, and this is why we

need to consider trembling-hand perfection in the agent-strategic form (that involves

incarnations) rather than trembling-hand perfection. For tractability, ui;` is normal

with mean 0 and variance �2
u
. Since the normal is a continuous distribution, agent i

trembles with probability 1. However, behavior has a rational avor since expected

demand is xi;`(p`), the optimal demand. A Nash equilibrium of the original game

satis�es our re�nement if and only if it is the limit of Nash equilibria of the perturbed

games as �2
u
goes to 0.

In appendix C we show that our re�nement selects one Nash equilibrium. The

intuition is that an agent does not know the market-clearing price, because of the

trembles of the other agents. Therefore, he is not indi�erent as to the demand he

submits for each price, and the slope of the demand function can be determined. More

precisely, our re�nement implies an additional optimality condition, that concerns
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the slope of the demand function. To derive heuristically this condition, we set d`,

ei;`�1 + �i;`, and
P

N

j=1(ej;`�1 + �j;`)=N to 0. We also assume that ui;` = 0, i.e. agent

i does not tremble, and that
P

N

j=1 uj;`=N = 1. If agent i submits his equilibrium

demand 5.1, he sells one share to the other agents at price 1=B. This follows from

the market-clearing condition

X
j 6=i

(Ad` � Bp` � Ae

P
N

k=1(ek;`�1 + �k;`)

N
� a(ej;`�1 + �j;`) + uj;`) + xi;`(p`) = 0; (5.8)

i.e. condition 5.3 adjusted for the trembles. If agent i modi�es his demand and sells

�x fewer shares, the price becomes 1=B + �x=(N � 1)B. The agent's holdings of

the consumption good increase by (1=B +�x=(N � 1)B)(1��x)� 1=B. His stock

holdings become �(1 � �x), while average stock holdings remain equal to 0. The

value function does not change in the �rst-order if

1� e�rh

h

N � 2

(N � 1)B
+Q1;1 = 0: (5.9)

In appendix C we show that the optimality conditions and the Bellman conditions

can be reduced to a system of 3 non-linear equations in the 3 elements of the symmetric

2 � 2 matrix Q. In proposition C.3, proven in appendix C, we solve the non-linear

system in closed-form for �2
e
= 0 and use the implicit function theorem to extend the

solution for small �2
e
.

In the public information case, agent i's demand depends on other agents' stock

holdings,
P

j 6=i(ej;`�1+�j;`). By contrast, in the private information case, agent i's de-

mand does not depend on his expectation of other agents' stock holdings,
P

j 6=i ej;`�1.

The intuition for the di�erence is the following. Suppose that in the private in-

formation case
P

j 6=i ej;`�1 increases, holding price constant. Holding price constant

means that the period ` stock endowments,
P

j 6=i �j;`, are such that stock holdings,P
j 6=i(ej;`�1 + �j;`), remain constant. Therefore, agent i does not expect larger future

sales from the other agents, and his demand remains constant. By contrast, suppose

that in the public information case
P

j 6=i(ej;`�1 + �j;`) increases, holding price con-

stant. Holding price constant now means that the other agents \trembled" and by

mistake sold less at period `. Therefore, agent i still expects larger future sales, and

his demand decreases.
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5.2 Market Liquidity and the Speed of Trade

5.2.1 Market Liquidity

The market-clearing condition 5.8 implies that if agent i deviates from his equilibrium

strategy and sells one more share, the price decreases by 1=(N�1)B. Therefore, price
impact is 1=(N � 1)B. Combining the optimality condition 5.9 with the Bellman

condition 3.18, we get

1

(N � 1)B
=

��2h2e�rh

(N � 2)(1� e�rh)(1� (1� a)2e�rh)
: (5.10)

Price impact is thus di�erent than in the private information case. In fact, it is easy

to check that for any a 2 [0; (N � 2)=(N � 1)], price impact is smaller than in the

private information case. The intuition is that if in the private information case agent

i deviates and sells more shares, the other agents incorrectly infer that he received

a higher endowment shock. Therefore, they expect larger sales in the future. By

contrast, if in the public information case agent i deviates and sells more shares, the

other agents correctly infer that he deviated (or \trembled"). Therefore, they expect

smaller sales in the future, and the price does not decrease by as much.

Note that price impact is small when a is large, i.e. when dividend risk is shared

quickly. To provide some intuition for this result, we suppose that agent i deviates

and sells more shares. The other agents correctly infer that i deviated and that total

stock holdings remain constant. The deviation increases their stock holdings only for

a short period, since dividend risk is shared quickly. Therefore, the price decrease is

small. As the time between trades, h, goes to 0, a will go to a strictly positive limit,

i.e. agents will trade very quickly. Equation 5.10 implies that price impact will go to

0, and market liquidity to 1.

5.2.2 Speed of Trade

Combining the optimality condition 5.7 with the Bellman condition 3.18, we get

1� e�rh

h

a

(N � 1)B
= (1� a)

��2he�rh

1� (1� a)2e�rh
: (5.11)

Equation 5.11 determines a, and is the same as in the private information case. The

LHS represents the price improvement obtained by delaying. The RHS represents the
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increase in dividend risk. Using equation 5.10 to eliminate B, we get

a =
N � 2

N � 1
: (5.12)

Equation 5.12 is valid not only for �2
e
= 0 but for any �2

e
, since it can be derived

directly from equations 5.7 and 5.9.

The main implication of equation 5.12 is that a is independent of the time between

trades, h. Therefore, agents trade very quickly as h goes to 0. Indeed, assume that at

calendar time t agent i holds one share and average stock holdings are 0. At calendar

time t0 such that t0 � t is a multiple of h, the agent holds (1� a)
t0�t
h shares. Since a

is independent of h, (1 � a)
t0�t
h goes to 0 as h goes to 0. The agent thus sells very

quickly.

To provide an intuition for why agents trade very quickly, we assume that h goes

to 0, and proceed as in the private information case. First, we assume that price

impact stays constant, and determine the direct e�ect of h on a. Second, we take

into account the change in price impact, and determine the indirect e�ect. Equation

5.11 implies that if price impact stays constant, a is of order
p
h, and thus agents

trade very quickly. This direct e�ect is the same as in the private information case.

Price impact does not stay constant, however. Equation 5.10 implies that if a is

of order
p
h, price impact goes to 0 as h goes to 0. The decrease in price impact

implies an increase in a, which implies a further decrease in price impact, and so on.

This indirect e�ect reinforces the result that agents trade very quickly. Note that the

indirect e�ect works in the opposite direction relative to the private information case.
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6 Welfare Analysis

In the private and public information cases, stock holdings do not become identical

after one trading round. Therefore, dividend risk is not optimally shared. This entails

a welfare loss. In this section we de�ne welfare loss and study two questions. First,

how does welfare loss depend on the time between trades, h? In particular, how does

welfare loss change when we move from a static to a dynamic model? Second, how

quickly does the market become competitive as the number of agents, N , grows, i.e.

how quickly does welfare loss go to 0 as N grows?

6.1 De�nition of Welfare Loss

To de�ne welfare loss, we introduce some notation. We denote the time 0 certainty

equivalents of an agent in the competitive, private information, and public informa-

tion cases by CEQc, CEQpr, and CEQp, respectively. (Since agents are symmetric,

certainty equivalents do not depend on i.) We also denote the time 0 certainty equiv-

alent of an agent in the case where trade is not allowed by CEQn. The \no-trade"

case is studied in appendix D. Welfare loss, L, is

L =
CEQc � CEQpr

CEQc � CEQn

(6.1)

in the private information case and

L =
CEQc � CEQp

CEQc � CEQn

(6.2)

in the public information case. The numerators of expressions 6.1 and 6.2 represent

the welfare loss in the private and public information cases, respectively, relative to the

competitive case. We normalize this welfare loss, dividing by the maximum welfare

loss, i.e. the welfare loss in the no-trade case relative to the competitive case. This

de�nition of welfare loss is the same as in the double auctions literature. Proposition

6.1 shows that in the limit when �2
e
goes to 0, L is given by a very simple expression.

The proposition is proven in appendix E.

Proposition 6.1 In both the private and public information cases

lim
�2e!0

L =
(1� a)2(1� e�rh)

1� (1� a)2e�rh
: (6.3)
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To provide some intuition for expression 6.3, we rewrite it as

((1� a)2 + (1� a)4e�rh + ::+ (1� a)2(`+1)e�r`h + ::)(1� e�rh):

We also assume that at time t agent i holds one share and average stock holdings

are 0. The agent thus needs to sell one share, but only sells a shares at time t. The

welfare loss of not selling (1 � a) shares corresponds to the term (1 � a)2. At time

t+ h the agent needs to sell (1� a) shares but only sells a(1� a) shares. The welfare

loss of not selling (1 � a)2 shares, discounted at time t, is (1 � a)4e�rh, and so on.

Note that expression 6.3 goes from 0 to 1 as a goes from 1 to 0.

6.2 Welfare Loss and h

We now study how welfare loss, L, depends on the time between trades, h. In

particular, we study how welfare loss changes when we move from a static model

(h = 1) to a dynamic model. This exercise allows us to compare our results to the

double auctions literature that mainly considers static models. Corollary 6.1 follows

easily from proposition 6.1 and is proven in appendix E.

Corollary 6.1 Suppose that �2
e
is small. In the public information case L increases

in h, but in the private information case L decreases in h.

In the public information case, welfare loss decreases as the time between trades,

h, decreases. This result is consistent with our results on the speed of trade. Indeed,

in the public information case, agents trade very quickly as h goes to 0. Therefore,

welfare loss goes to 0 as h goes to 0. In the private information case, welfare loss

increases as h decreases. This result is not a simple consequence of our earlier results.

Indeed, proposition 4.2 implies that agents trade slowly as h goes to 0. This means

only that welfare loss goes to a strictly positive limit as h goes to 0.

To provide some intuition for why welfare loss increases as h decreases, we assume

that at time t agent i holds one share and average stock holdings are 0. Equation

4.9, that we reproduce below, decribes the agent's trade-o�.

1� e�rh

h

a

(N � 1)B
= (1� a)

��2he�rh

1� (1� a)2e�rh
: (6.4)
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The LHS represents the price improvement obtained by selling fewer shares at time

t, while the RHS represents the increase in dividend risk. The increase in dividend

risk corresponds to the marginal welfare loss. Total welfare loss is proportional to

marginal welfare loss and to 1� a, the number of shares that agent i does not sell at

time t. As h decreases, a decreases. If marginal welfare loss does not change, total

welfare loss increases, since agent i sells fewer shares at time t. The change in marginal

welfare loss is equal to the change in price improvement. Price improvement changes

only slightly, since the increase in price impact, 1=(N � 1)B, o�sets the decrease in

the trade, a.

Corollary 6.1 does not imply that welfare in the private information case, CEQpr,

decreases as h decreases. Indeed, as h decreases, there are more trading opportuni-

ties, and welfare in the competitive case, CEQc, increases. Therefore, CEQpr may

increase.19 Corollary 6.1 rather implies that in the presence of private information,

dynamic competitive and non-competitive models di�er more than their static coun-

teparts.

6.3 Convergence to a Competitive Market

Finally, we study how quickly the market becomes competitive, i.e. how quickly

welfare loss goes to 0, as the number of agents, N , grows. Corollary 6.2 answers this

question in the limit when �2
e
goes to 0. The corollary follows easily from proposition

6.1 and is proven in appendix E.

Corollary 6.2 In the public information case,

lim
�e!0

L =
1

(N � 1)2
1� e�rh

1� 1
(N�1)2

e�rh
: (6.5)

In the private information case

lim
�e!0

L =
1

(N � 1)2(1� e�rh)
+ o(

1

N2
) (6.6)

and

lim
h!0

lim
�e!0

L =
1

N � 1
: (6.7)
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In the public information case, welfare loss is of order 1=N2. In the private infor-

mation case, welfare loss is of order 1=N2, for a �xed h. However, in the limit when

h goes to 0, welfare loss is of order 1=N . The two results are consistent: for a �xed

small h, welfare loss is \of order" 1=N , except when N is very large in which case

welfare loss is of order 1=N2. The 1=N2 result was also obtained in the static models

of the double auctions literature.

Corollary 6.2 implies that in the presence of private information, dynamic non-

competitive models become competitive more slowly than their static counterparts.

To provide some intuition for this result, we assume that at time t agent i holds one

share and average stock holdings are 0. Equation 6.4 implies that price improvement

is of order 1=N . Therefore, marginal welfare loss is also of order 1=N . Total welfare

loss is proportional to marginal welfare loss and to 1� a, the number of shares that

agent i does not sell at time t. In the static case, agent i keeps the 1�a shares forever.
Therefore, marginal welfare loss is proportional to 1� a. Since marginal welfare loss

is of order 1=N , 1 � a is of order 1=N , and total welfare loss is of order 1=N2. (In

fact, 1� a = 1=(N � 1) since in the static case a = (N � 2)=(N � 1).) As h goes to 0,

a goes to 0 and 1� a goes to 1. Therefore, total welfare loss is of order 1=N . For a

�xed small h, 1� a is close to 1, except when N is very large. When N is very large,

the bene�t of delaying is small and 1� a is of order 1=N as in the static case.
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7 Concluding Remarks

This paper studies a dynamic model of a �nancial market with N strategic agents.

Agents receive random stock endowments at each period and trade to share dividend

risk. Endowments are the only private information in the model. We �nd that agents

trade slowly even when the time between trades goes to 0. In fact, welfare loss due to

strategic behavior increases as the time between trades decreases. In the limit when

the time between trades goes to 0, welfare loss is of order 1=N , and not 1=N2 as in

the static models of the double auctions literature. The model is very tractable and

closed-form solutions are obtained in a special case.

We made two important simplifying assumptions. The �rst assumption is that

the only agents in the market are large and strategic. This assumption implies that

the equilibrium price fully reveals their endowments. If small \noise" traders were

present in the market, price would not be fully revealing and large agents would not

be identi�ed immediately. However, if we introduce noise traders in this model, we

run into the in�nite regress problem, i.e. into an in�nite number of state variables.

The intuition is that since price is not fully revealing, an agent uses his expectation of

other agents' stock holdings when forming his demand. To form this expectation, he

uses past prices and his own past stock holdings. Since other agents are forming their

expectations in the same way, the agent needs to form expectations of other agents'

past stock holdings, and so on. Vayanos (1998) studies a model with one large trader

who receives random stock endowments, a competitive risk-averse market-maker, and

noise traders. Since the large trader has better information than the market-maker,

there is no in�nite regress problem. When the time between trades goes to 0, the

trading process consists of two phases. During the �rst phase, the large trader sells

very quickly a fraction of his endowment and is identi�ed by the market-maker. He

completes slowly his trades during the second phase. If there are many noise traders,

the large trader may \manipulate" the market, overselling during the �rst phase and

buying during the second phase.

The second assumption is that dividend information is public. This assumption

rules out trades motivated by inside information. Chau (1998) studies a model with

one large trader who receives both inside information and random stock endowments,
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a competitive market-maker, and noise traders. He also �nds that the large trader

may manipulate the market.
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Appendix

A The Competitive Case

We �rst provide conditions for the demand 3.1 to solve (Pc), in proposition A.1. We

then show that the conditions can be reduced to a system of 3 non-linear equations.

Finally, we solve the system in closed-form for �2
e
= 0 and extend the solution for

small �2
e
, in proposition A.2.

A.1 The Conditions

To state proposition A.1, we de�ne the following symmetric 2� 2 matrices. First, we

de�ne Q0 by

Q01;1 = (1� a)2Q1;1; (A.1)

Q01;2 = �1� e�rh

h

a2

B
+ a(1� a)Q1;1 + (1� a)Q1;2; (A.2)

and

Q02;2 =
1� e�rh

h

2a2

B
+ a2Q1;1 + 2aQ1;2 +Q2;2: (A.3)

Next, we de�ne �2, the variance-covariance matrix of the vector (�i;`;
P

N

j=1 �j;`=N).

This matrix is

�2 = �2
e
h

0
B@ 1 1

N

1
N

1
N

1
CA (A.4)

Finally, we de�ne R, R0, and P by

R = I + �Q0�2; (A.5)

R0 = �Q0�2R�1Q0; (A.6)

and

P = (Q0 � R0 � ��2h�)e�rh: (A.7)

In equation A.7, � is a 2 � 2 matrix whose elements are 1 for (i; j) = (1; 1) and 0

otherwise.
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Proposition A.1 The demand 3.1 solves (Pc) and the function 3.10 is the value

function, if the following conditions hold. First, the optimality conditions 3.12, 3.13,

3.14, and the inequality Q1;1 < 0. Second, the Bellman conditions

Q = P (A.8)

and

q =
log(jRj)e�rh
2�(1� e�rh)

+
(�e�rh � r)h

�(1� e�rh)
� 1

�
log(

h

erh � 1
): (A.9)

In equation A.9, jRj denotes the determinant of the matrix R.

Proof: The demand 3.1 solves (Pc) and the function 3.10 is the value function,

if the following are true. First, the function 3.10 solves the Bellman equation 3.11,

for the demand 3.1 and the optimal consumption. Second, the demand 3.1 and

the optimal consumption satisfy the transversality condition 3.9. We will show that

conditions 3.12, 3.13, 3.14, Q1;1 < 0, A.8, and A.9 are su�cient for the Bellman

equation and the transversality condition.

Bellman Equation

We proceed in 3 steps. First, we show that the optimality conditions 3.12, 3.13,

3.14, and Q1;1 < 0 are su�cient for the demand 3.1 to maximize the RHS of the

Bellman equation. Second, we compute the expectation of the RHS w.r.t. period

` � 1 information. Finally, we show that the Bellman conditions A.8 and A.9 are

su�cient for the function 3.10 to satisfy the Bellman equation.

Step 1: Optimal Demand

Before trade at period `, agent i knows �` and �i;`, but not �j;` for j 6= i. He thus

chooses his demand, xi;`(p`), to maximize

�E�j;`;j 6=iexp(��(
1� e�rh

h

 
�d`

h

1� e�rh
�i;` � p`xi;`(p`)

!

+d`(ei;`�1 + �i;` + xi;`(p`)) + F (Q;

0
B@ ei;`�1 + �i;` + xi;`(p`)PN

j=1
(ej;`�1+�j;`)

N

1
CA)));

where the price, p`, is given by equation 3.3. The agent can infer
P

j 6=i �j;` from the

price. Therefore his problem is the same as knowing
P

j 6=i �j;` and choosing a trade,
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x, to maximize

�1� e�rh

h

 
A

B
d` �

a

B

P
N

j=1(ej;`�1 + �j;`)

N

!
x� d`�i;`

+d`(ei;`�1 + �i;` + x) + F (Q;

0
B@ ei;`�1 + �i;` + xPN

j=1
(ej;`�1+�j;`)

N

1
CA):

If the trade 3.5 is optimal, then the demand 3.1 is optimal, since it produces this

trade. Setting

x = a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
+�x;

the demand 3.1 is optimal if �x = 0 maximizes

�1� e�rh

h

 
A

B
d` �

a

B

P
N

j=1(ej;`�1 + �j;`)

N

!
(a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
+�x)

�d`�i;` + d`

 
(1� a)(ei;`�1 + �i;`) + a

P
N

j=1(ej;`�1 + �j;`)

N
+�x

!

+F (Q;

0
B@ (1� a)(ei;`�1 + �i;`) + a

PN

j=1
(ej;`�1+�j;`)

N
+�xPN

j=1
(ej;`�1+�j;`)

N

1
CA): (A.10)

Conditions 3.12, 3.13, and 3.14 ensure that the �rst-order condition is satis�ed for

�x = 0. Condition Q1;1 < 0 ensures that expression A.10 is concave.

Using the de�nition of the matrix Q0, we can write expression A.10 for �x = 0 as

d`ei;`�1 + F (Q0;

0
B@ ei;`�1 + �i;`PN

j=1
(ej;`�1+�j;`)

N

1
CA): (A.11)

Step 2: Computing the Expectation

We have to compute the expectation of the period ` value function w.r.t. period

`�1 information, i.e. w.r.t. �` and �j;`. Using the budget constraint 3.7 and expression
A.11, we have to compute

E`�1exp(��(
1� e�rh

h
erh(Mi;`�1 + d`�1ei;`�1h� ci;`�1h) + (d`�1 + �`)ei;`�1

+F (Q0;

0
B@ ei;`�1 + �i;`PN

j=1
(ej;`�1+�j;`)

N

1
CA) + q)� �h): (A.12)
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Computing expectations w.r.t �` is straightforward. We get

E�j;`
exp(��(1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1 �

1

2
��2he2

i;`�1

+F (Q0;

0
B@ ei;`�1 + �i;`PN

j=1
(ej;`�1+�j;`)

N

1
CA) + q)� �h): (A.13)

To compute expectations w.r.t. �j;`, we use the formula

E(exp(��(a+btx+
1

2
xtcx))) = exp(��(a� 1

2
�bt�2(I+�c�2)�1b+

1

2�
logjI+�c�2j));

(A.14)

where x is a n� 1 normal vector with mean 0 and variance-covariance matrix �2, I

the n� n identity matrix, a a number, b an n� 1 vector, and c an n� n symmetric

matrix. (Formula A.14 gives simply the moment generating function of the normal

distribution for c = 0. We can always assume c = 0 by also assuming that x is a

normal vector with mean 0 and variance-covariance matrix �2(I + �c�2)�1.)

We set

x =

0
B@ �i;`PN

j=1
�j;`

N

1
CA ;

�2 the matrix de�ned by equation A.4,

a =
1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1 �

1

2
��2he2

i;`�1

+F (Q0;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA) + q +

�h

�
;

b = Q0

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA ;

and c = Q0. Using the de�nitions of R and R0, we can write expression A.12 as

exp(��(1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1 �

1

2
��2he2

i;`�1

+F (Q0 � R0;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA) + 1

2�
logjRj+ q)� �h):

Finally, using the de�nition of P , we can rewrite this expression as

exp(��(1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1
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+erhF (P;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA) + 1

2�
logjRj+ q)� �h): (A.15)

Step 3: Bellman Equation

To compute the RHS of the Bellman equation, we have to maximize w.r.t. ci;`�1

�exp(��ci;`�1)h� exp(��(1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1

+erhF (P;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA) + 1

2�
logjRj+ q)� �h): (A.16)

Simple calculations show that the maximum is

�exp(��(1� e�rh

h
Mi;`�1 + d`�1ei;`�1 + F (P;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA)

+
1

2�
logjRje�rh + qe�rh +

(�e�rh � r)h

�
� 1

�
(1� e�rh)log(

h

erh � 1
))): (A.17)

This is equal to the period `� 1 value function if conditions A.8 and A.9 hold.

Transversality condition

It is easy to check that, by substituting the optimal ci;`�1 in the second term of

expression A.16, we �nd expression A.17 times e�rh. Therefore the expectation of the

period ` value function at period `� 1, is the period `� 1 value function times e�rh.

Recursive use of this equation implies equation 3.9. Q.E.D.

A.2 The System

The system will follow from the Bellman condition A.8. In this condition, the matrix

P is indirectly a function of Q0, which is in turn a function of B, a, and Q. To have

Q as the only unknown, we eliminate �rst B and then a in the de�nition of Q0. Using

condition 3.13, we can write Q0 as a function of a and Q, as follows

Q01;1 = (1� a)2Q1;1; (A.18)

Q01;2 = a(2� a)Q1;1 +Q1;2 (A.19)
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and

Q02;2 = �a(2� a)Q1;1 +Q2;2: (A.20)

Since a = 1 from condition 3.14, Q0 becomes a function of Q only. Therefore, the

system is the Bellman condition A.8, where P , R0, and R are given by equations A.7,

A.6, and A.5, respectively, Q0 by equations A.18, A.19, and A.20, and a = 1. Having

solved this system, we can solve for A, B, and q, using equations 3.12, 3.13, and A.9,

respectively. We also have to check that inequality Q1;1 < 0 is satis�ed.

A.3 The Solution

Proposition A.2 The system has a solution for small �2
e
. For �2

e
= 0 the solution

is

Q1;1 = ���2he�rh < 0; Q1;2 = �Q2;2 = ���2he�2rh

1� e�rh
: (A.21)

Proof: We �rst solve the system for �2
e
= 0. We then use the implicit function

theorem to extend the solution for small �2
e
.

The Solution for �2
e
=0

For �2
e
= 0, R0 = 0 and

Q = P = (Q0 � ��2h�)e�rh: (A.22)

To solve the system, we use equations A.18 to A.20 and A.22. We treat a as a

parameter in equations A.18 to A.20, obtain Q as a function of a, and then set a = 1

to obtain the Q of the proposition. We treat a as a parameter because the expression

of Q as a function of a will also be valid in the private and public information cases.

The equation for Q1;1 is

Q1;1 = ((1� a)2Q1;1 � ��2h)e�rh; (A.23)

and is satis�ed for

Q1;1 = � ��2he�rh

1� (1� a)2e�rh
: (A.24)

The equation for Q1;2 is

Q1;2 = (a(2� a)Q1;1 +Q1;2)e
�rh; (A.25)
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and is satis�ed for

Q1;2 =
a(2� a)Q1;1e

�rh

1� e�rh
: (A.26)

Finally, the equation for Q2;2 is

Q2;2 = (�a(2� a)Q1;1 +Q2;2)e
�rh; (A.27)

and is satis�ed for

Q2;2 = �a(2� a)Q1;1e
�rh

1� e�rh
: (A.28)

Setting a = 1, we obtain the Q of the proposition.

Small �2
e

To extend the solution for small �2
e
, we consider the function

G(Q1;1; Q1;2; Q2;2; �
2; �2

e
; h; N) =

1

h

0
BBBB@

Q1;1h� P1;1

Q1;2 � P1;2

Q2;2 � P2;2

1
CCCCA :

The matrices P , R0, R, and Q0 are de�ned by equations A.7, A.6, A.5, A.18, A.19, and

A.20, for a = 1 and Q1;1 = Q1;1h. We use Q1;1 instead of Q1;1 to deal with the case

h = 0. We apply the implicit function theorem to G at the point A, where �2
e
= 0,

Q1;1 = ���2e�rh, and Q1;2 and Q2;2 are given by expressions A.21 for Q1;1 = Q1;1h.

h can be 0, in which case we extend G, Q1;2, and Q2;2 by continuity. The function G

is equal to 0 at A, since Q solves the system. To apply the implicit function theorem,

we only need to show that the Jacobian matrix of G w.r.t. Q1;1, Q1;2, and Q2;2 is

invertible. Using equation A.22 (which is valid since we compute partial derivatives

for �2
e
= 0) it is easy to check the following. First, the partial derivatives of G1;1

w.r.t. Q1;1, G1;2 w.r.t. Q1;2, and G2;2 w.r.t. Q2;2, are strictly positive. Second, the

partial derivatives of G1;1 w.r.t. Q1;2, Q2;2, and G1;2 w.r.t. Q2;2 are 0. Therefore, the

Jacobian matrix is invertible. Since Q1;1 < 0 at A, Q1;1 < 0 and Q1;1 < 0 for small

�2
e
. Q.E.D.
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B The Private Information Case

We �rst provide conditions for the demand 4.1 to solve (Ppr), in proposition B.1. We

then show that the conditions can be reduced to a system of 4 non-linear equations.

We solve the system in closed-form for �2
e
= 0 and extend the solution for small �2

e
,

in proposition B.2. Finally, we prove propositions 4.1 and 4.2.

B.1 The Conditions

To state proposition B.1, we use the matrices Q0, �2, R, R0, and P , de�ned in

appendix A.

Proposition B.1 The demand 4.1 solves (Ppr) and the function 4.3 is the value

function, if the following conditions hold. First, the optimality conditions 4.4, 4.5,

4.6, and the inequality

�1� e�rh

h

2

(N � 1)B
+Q1;1 < 0: (B.1)

Second, the Bellman conditions

Q = P (B.2)

and

q =
log(jRj)e�rh
2�(1� e�rh)

+
(�e�rh � r)h

�(1� e�rh)
� 1

�
log(

h

erh � 1
): (B.3)

Proof: We will show that the optimality conditions 4.4, 4.5, 4.6, and B.1 are

su�cient for the demand 4.1 to maximize the RHS of the Bellman equation. The rest

of the proof is as in the competitive case.

Before trade at period `, agent i knows �` and �i;`, but not �j;` for j 6= i. He thus

chooses his demand, xi;`(p`), to maximize

�E�j;`;j 6=iexp(��(
1� e�rh

h

 
�d`

h

1� e�rh
�i;` � p`xi;`(p`)

!

+d`(ei;`�1 + �i;` + xi;`(p`)) + F (Q;

0
B@ ei;`�1 + �i;` + xi;`(p`)PN

j=1
(ej;`�1+�j;`)

N

1
CA)));

where the price, p`, is given by equation 4.2 and depends on xi;`(p`). Instead of

solving this problem, we proceed as in Kyle (1989) and solve a simpler problem.
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We assume that the agent knows the residual demand of the other agents (i.e. knowsP
j 6=i �j;`) and simply chooses a trade, x, on this residual demand. The market-clearing

condition 4.2 implies that the price, p`, is

A

B
d` �

a

B

P
j 6=i(ej;`�1 + �j;`)

N � 1
+

x

(N � 1)B
:

Therefore, the agent's problem is to maximize w.r.t. x

�1� e�rh

h

 
A

B
d` �

a

B

P
j 6=i(ej;`�1 + �j;`)

N � 1
+

x

(N � 1)B

!
x� d`�i;`

+d`(ei;`�1 + �i;` + x) + F (Q;

0
B@ ei;`�1 + �i;` + xPN

j=1
(ej;`�1+�j;`)

N

1
CA):

If the trade 3.5 solves this problem, then the demand 4.1 is optimal since it produces

this trade for all values of
P

j 6=i �j;`. De�ning �x as in the competitive case, the

demand 4.1 is optimal if �x = 0 maximizes

�1� e�rh

h

 
A

B
d` �

a

B

P
N

j=1(ej;`�1 + �j;`)

N
+

�x

(N � 1)B

!

(a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
+�x)

�d`�i;` + d`

 
(1� a)(ei;`�1 + �i;`) + a

P
N

j=1(ej;`�1 + �j;`)

N
+�x

!

+F (Q;

0
B@ (1� a)(ei;`�1 + �i;`) + a

PN

j=1
(ej;`�1+�j;`)

N
+�xPN

j=1
(ej;`�1+�j;`)

N

1
CA): (B.4)

Conditions 4.4, 4.5, and 4.6 ensure that the �rst-order condition is satis�ed for

�x = 0. Condition B.1 ensures that expression B.4 is concave. Proceeding as in

the competitive case, we can rewrite expression B.4 for �x = 0 as

d`ei;`�1 + F (Q0;

0
B@ ei;`�1 + �i;`PN

j=1
(ej;`�1+�j;`)

N

1
CA):

Q.E.D.
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B.2 The System and the Solution

The �rst 3 equations follow from the Bellman condition B.2, where P , R0, and R are

given by equations A.7, A.6, and A.5, respectively, and Q0 by equations A.18, A.19,

and A.20. The last equation is

1

N � 1
(Q1;1 +Q1;2) = (1� a)Q1;1: (B.5)

This equation follows from conditions 4.5 and 4.6 by eliminating B.

Proposition B.2 The system has a solution for small �2
e
. For �2

e
= 0 the matrix Q

is given by

Q1;1 = � ��2he�rh

1� (1� a)2e�rh
; Q1;2 = �Q2;2 =

a(2� a)Q1;1e
�rh

1� e�rh
; (B.6)

and a is the unique solution in [0; (N � 2)=(N � 1)] of

a2e�rh � a(2e�rh + (N � 1)(1� e�rh)) + (N � 2)(1� e�rh) = 0: (B.7)

Proof: We �rst solve the system for �2
e
= 0. To obtain Q as a function of a, we

proceed exactly as in the competitive case. To obtain equation B.7, we eliminate Q1;1

and Q1;2 in equation B.5. Finally, we check that inequality B.1 is satis�ed. Using

equation 4.5, we can write inequality B.1 as

2

N � 1

Q1;1 +Q1;2

a
+Q1;1 < 0:

Since 0 < a < 1, Q1;1 < 0. Since in addition Q1;1+Q1;2 = ���2he�rh=(1� e�rh) < 0,

the inequality is satis�ed.

To extend the solution for small �2
e
, we consider the function

G(Q1;1; Q1;2; Q2;2; �a; �
2; �2

e
; h; N) =

1

h

0
BBBBBBBB@

Q1;1 � P1;1

Q1;2 � P1;2

Q2;2 � P2;2

h
�

1
N�1

(Q1;1 +Q1;2)� (1� �ah)Q1;1

�

1
CCCCCCCCA
:

The matrices P , R0, R, and Q0 are de�ned by equations A.7, A.6, A.5, A.18, A.19,

and A.20, for a = �ah. We use �a instead of a to deal with the case h = 0. We
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apply the implicit function theorem to G at the point A, where �2
e
= 0, Q is given

by expressions B.6 of the proposition for a = �ah, and �a is the unique solution in

(0; (N � 2)=(N � 1)h) of

(�ah)2e�rh � �ah(2e�rh + (N � 1)(1� e�rh)) + (N � 2)(1� e�rh) = 0; (B.8)

i.e. of equation B.7 for a = �ah. h can be 0, in which case we extend G, Q, and �a by

continuity. The function G is equal to 0 at A, since Q and a = �ah solve the system.

To apply the implicit function theorem, we only need to show that the Jacobian

matrix of G w.r.t. the Qi;j's and �a is invertible. It is easy to check that the partial

derivative of a component of G, other than G2;2, w.r.t. Q2;2 is 0, and that the partial

derivative of G2;2 w.r.t. Q2;2 is strictly positive. Therefore, the Jacobian matrix of G

is invertible if and only if the Jacobian matrix of G1;1, G1;2, and G�a w.r.t. Q1;1, Q1;2,

and �a is invertible. This matrix is

0
BBBB@

1�(1��ah)2e�rh

h
0 2Q1;1(1� �ah)e�rh

��a(2� �ah)e�rh 1�e�rh

h
�2Q1;1(1� �ah)e�rh

�ah� N�2
N�1

1
N�1

Q1;1h

1
CCCCA :

To compute the determinant, we add the �rst row to the second and factor out

Q1;1(1� e�rh)=h. We get

Q1;1

1� e�rh

h

����������

1�(1��ah)2e�rh

h
0 2(1� �ah)e�rh

1 1 0

�ah� N�2
N�1

1
N�1

h

����������
:

Subtracting the second column from the �rst and expanding the determinant we get

Q1;1

1� e�rh

h

 
1� (1� �ah)2e�rh

h
h+ 2(1� �ah)2e�rh

!
;

which is strictly negative. Q.E.D.

We now prove proposition 4.1.

Proof: Equation B.8 implies that a = �ah is increasing in N and decreasing in

e�rh, i.e. increasing in h. By continuity it is increasing in N and h for �2
e
small.

Q.E.D.
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Finally, we prove proposition 4.2.

Proof: Proposition B.2 implies that �a = a=h is a continuous function of h and

�2
e
. Equation B.8 implies that �a = (N � 2)r=2 for h = 0 and �2

e
= 0. By continuity

�a > 0 for h = 0 and �2
e
small. Q.E.D.
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C The Public Information Case

We �rst provide conditions for the demand 5.1 to solve (Pp), in proposition C.1. We

then study the perturbed game, and show that our re�nement implies an additional

optimality condition. We next show that the optimality conditions and the Bellman

conditions can be reduced to a system of 3 non-linear equations. Finally, we solve the

system in closed-form for �2
e
= 0 and extend the solution for small �2

e
, in proposition

C.3.

C.1 The Conditions for (Pp)

To state proposition C.1, we use the matrices Q0, �2, R, R0, and P , de�ned in

appendix A. However, we change the de�nitions of Q01;2 and Q02;2 to

Q01;2 = �1� e�rh

h

a(Ae + a)

B
+ a(1� a)Q1;1 + (1� a)Q1;2; (C.1)

and

Q02;2 =
1� e�rh

h

2a(Ae + a)

B
+ a2Q1;1 + 2aQ1;2 +Q2;2: (C.2)

Proposition C.1 The demand 5.1 solves (Pp) and the function 5.4 is the value func-

tion, if the following conditions hold. First, the optimality conditions 5.5, 5.6, 5.7,

and the inequality

�1� e�rh

h

2

(N � 1)B
+Q1;1 < 0: (C.3)

Second, the Bellman conditions

Q = P (C.4)

and

q =
log(jRj)e�rh
2�(1� e�rh)

+
(�e�rh � r)h

�(1� e�rh)
� 1

�
log(

h

erh � 1
): (C.5)

Proof: We will show that the optimality conditions 5.5, 5.6, 5.7, and C.3 are

su�cient for the demand 5.1 to maximize the RHS of the Bellman equation. The rest

of the proof is as in the competitive case.

Before trade at period `, agent i knows �` and �j;`, 8j. He thus chooses his demand,
xi;`(p`), to maximize

�exp(��(1� e�rh

h

 
�d`

h

1� e�rh
�i;` � p`xi;`(p`)

!
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+d`(ei;`�1 + �i;` + xi;`(p`)) + F (Q;

0
B@ ei;`�1 + �i;` + xi;`(p`)PN

j=1
(ej;`�1+�j;`)

N

1
CA)));

where the price, p`, is given by equation 5.3 and depends on xi;`(p`). The agent

knows the residual demand of the other agents. Therefore his problem is the same

as choosing a trade, x, on this residual demand. The market-clearing condition 5.3

implies that the agent's problem is to maximize w.r.t. x

�1� e�rh

h

 
A

B
d` �

Ae

B

P
N

k=1(ek;`�1 + �k;`)

N
� a

B

P
j 6=i(ej;`�1 + �j;`)

N � 1
+

x

(N � 1)B

!
x

�d`�i;` + d`(ei;`�1 + �i;` + x) + F (Q;

0
B@ ei;`�1 + �i;` + xPN

j=1
(ej;`�1+�j;`)

N

1
CA):

If the trade 3.5 solves this problem, then the demand 5.1 is optimal since it produces

this trade. De�ning �x as in the competitive case, the demand 4.1 is optimal if

�x = 0 maximizes

�1� e�rh

h

 
A

B
d` �

Ae + a

B

P
N

j=1(ej;`�1 + �j;`)

N
+

�x

(N � 1)B

!

(a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
+�x)

�d`�i;` + d`

 
(1� a)(ei;`�1 + �i;`) + a

P
N

j=1(ej;`�1 + �j;`)

N
+�x

!

+F (Q;

0
B@ (1� a)(ei;`�1 + �i;`) + a

PN

j=1
(ej;`�1+�j;`)

N
+�xPN

j=1
(ej;`�1+�j;`)

N

1
CA): (C.6)

Conditions 5.5, 5.6, and 5.7 ensure that the �rst-order condition is satis�ed for

�x = 0. Condition C.3 ensures that expression C.6 is concave. Proceeding as in

the competitive case, we can rewrite expression C.6 for �x = 0 as

d`ei;`�1 + F (Q0;

0
B@ ei;`�1 + �i;`PN

j=1
(ej;`�1+�j;`)

N

1
CA):

Q.E.D.
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C.2 The Perturbed Game

We �rst provide conditions for the demands 5.1 to constitute a Nash equilibrium of

the perturbed game. We then study the limit of these conditions as �2
u
goes to 0, and

show that our re�nement implies an additional optimality condition.

The demands 5.1 constitute a Nash equilibrium of the perturbed game if there

exist consumption choices, ci;`, such that the following are true. First, the demand 5.1

maximizes the utility of the incarnation of agent i that chooses demand at period `

(the \(i; `) demand" incarnation). Second, the consumption ci;` maximizes the utility

of the incarnation of agent i that chooses consumption at period ` (the \(i; `) con-

sumption" incarnation). Both incarnations take the choices of the other incarnations

as given, i.e. assume that the (j; `0) demand incarnation chooses the demand 5.1 plus

the noise uj;`0, and that the (j; `0) consumption incarnation chooses cj;`0.

In proposition C.2 we provide su�cient conditions for the demands 5.1 to consti-

tute a Nash equilibrium of the perturbed game. These conditions are on the parame-

ters A, B, Ae, a, Q, and q. The parameters Q and q correspond to the value function,

which is still given by expression 5.4. To state proposition C.2, we de�ne the following

matrices. First, the symmetric 4 � 4 matrix Q̂0. The top left 2 � 2 submatrix of Q̂0

is the matrix Q0 de�ned at the beginning of appendix C. The remaining elements of

Q̂0 are

Q̂01;3 = (1� a)Q1;1; Q̂01;4 =
1� e�rh

h

a

B
� (1� a)Q1;1;

Q̂02;3 =
1� e�rh

h

Ae + a

B
+ aQ1;1 +Q1;2; Q̂02;4 = �1� e�rh

h

Ae + 2a

B
� aQ1;1 �Q1;2;

Q̂03;3 = Q1;1; Q̂03;4 = �1� e�rh

h

1

B
�Q1;1; Q̂04;4 =

1� e�rh

h

2

B
+Q1;1:

We next de�ne �̂2, the variance-covariance matrix of the vector (�i;`;
P

N

j=1 �j;`=N; ui;`;P
N

j=1 uj;`), and R̂ and R̂0 by

R̂ = I + �Q̂0�̂2

and

R̂0 = �Q̂0�̂2R̂�1Q̂0:

Finally, we de�ne P by equation A.7, where R0 now denotes the top left 2�2 submatrix
of R̂0.
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Proposition C.2 The demands 5.1 constitute a Nash equilibrium of the perturbed

game, if the following conditions hold. First, the optimality conditions 5.5, 5.6, 5.7,

5.9, and the inequality C.3. Second, the Bellman conditions

Q = P (C.7)

and

q =
log(jR̂j)e�rh
2�(1� e�rh)

+
(�e�rh � r)h

�(1� e�rh)
� 1

�
log(

h

erh � 1
): (C.8)

Proof: We assume that the value function after trade at period ` is given by

expression 5.4. We �rst show that the demand 5.1 maximizes the utility of the

(i; `) demand incarnation. We then study the optimization problem of the (i; ` � 1)

consumption incarnation and determine ci;`�1. We also show that the function 5.4

satis�es the Bellman equation, i.e. that the value function after trade at period `� 1

is given by expression 5.4. The transversality condition follows as in the competitive

case. Therefore, the value function is indeed given by expression 5.4.

Step 1: Optimal Demand

The optimal demand maximizes

�Euj;`;j 6=iexp(��(
1� e�rh

h

 
�d`

h

1� e�rh
�i;` � p`xi;`(p`)

!

+d`(ei;`�1 + �i;` + xi;`(p`)) + F (Q;

0
B@ ei;`�1 + �i;` + xi;`(p`)PN

j=1
(ej;`�1+�j;`)

N

1
CA)));

where the price, p`, is given by equation 5.8 and depends on xi;`(p`). Instead of

solving this problem, we proceed as in the private information case, and solve a

simpler problem. We assume that the residual demand of the incarnations of the

other agents is known (i.e.
P

j 6=i uj;` is known) and choose a trade, x, on this residual

demand. The market-clearing condition 5.3 implies that x maximizes

�1� e�rh

h

 
A

B
d` �

Ae

B

P
N

k=1(ek;`�1 + �k;`)

N
� a

B

P
j 6=i(ej;`�1 + �j;`)

N � 1
+

1

B

P
j 6=i uj;`

N � 1

+
x

(N � 1)B

!
x� d`�i;` + d`(ei;`�1 + �i;` + x) + F (Q;

0
B@ ei;`�1 + �i;` + xPN

j=1
(ej;`�1+�j;`)

N

1
CA):
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If the trade

a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
�
P

j 6=i uj;`

N

solves this problem, then the demand 5.1 is optimal since it produces this trade for

all values of
P

j 6=i uj;`. Setting

x = a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
�
P

j 6=i uj;`

N
+�x;

the demand 5.1 is optimal if �x = 0 maximizes

�1� e�rh

h

 
A

B
d` �

Ae + a

B

P
N

j=1(ej;`�1 + �j;`)

N
+

1

B

P
j 6=i uj;`

N
+

�x

(N � 1)B

!

(a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
�
P

j 6=i uj;`

N
+�x)

�d`�i;` + d`

 
(1� a)(ei;`�1 + �i;`) + a

P
N

j=1(ej;`�1 + �j;`)

N
�
P

j 6=i uj;`

N
+�x

!

+F (Q;

0
B@ (1� a)(ei;`�1 + �i;`) + a

PN

j=1
(ej;`�1+�j;`)

N
�
P

j 6=i
uj;`

N
+�xPN

j=1
(ej;`�1+�j;`)

N

1
CA): (C.9)

Conditions 5.5, 5.6, 5.7, and 5.9 ensure that the �rst-order condition is satis�ed for

�x = 0. Condition C.3 ensures that expression C.9 is concave.

Expression C.9, evaluated for �x = 0, corresponds to the case where the (i; `)

demand incarnation submits the demand 5.1. Since it submits the demand 5.1 plus

the noise ui;`, expression C.9 becomes

�1� e�rh

h

 
A

B
d` �

Ae + a

B

P
N

j=1(ej;`�1 + �j;`)

N
+

1

B

P
N

j=1 uj;`

N

!

(a

 P
N

j=1(ej;`�1 + �j;`)

N
� (ei;`�1 + �i;`)

!
+ ui;` �

P
N

j=1 uj;`

N
)

�d`�i;` + d`

 
(1� a)(ei;`�1 + �i;`) + a

P
N

j=1(ej;`�1 + �j;`)

N
+ ui;` �

P
N

j=1 uj;`

N

!

+F (Q;

0
B@ (1� a)(ei;`�1 + �i;`) + a

PN

j=1
(ej;`�1+�j;`)

N
+ ui;` �

PN

j=1
uj;`

NPN

j=1
(ej;`�1+�j;`)

N

1
CA):
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Proceeding as in the competitive case, we can rewrite this expression as

d`ei;`�1 + F (Q̂0;

0
BBBBBBBB@

(ei;`�1 + �i;`)PN

j=1
(ej;`�1+�j;`)

N

ui;`PN

j=1
uj;`

N

1
CCCCCCCCA
): (C.10)

Step 2: Bellman Equation

We �rst compute the expectation of the period ` value function w.r.t. period

` � 1 information, i.e. w.r.t. �`, �j;`, and uj;`. Using the budget constraint 3.7 and

expression C.10, we have to compute

E`�1exp(��(
1� e�rh

h
erh(Mi;`�1 + d`�1ei;`�1h� ci;`�1h) + (d`�1 + �`)ei;`�1

+F (Q̂0;

0
BBBBBBBB@

(ei;`�1 + �i;`)PN

j=1
(ej;`�1+�j;`)

N

ui;`PN

j=1
uj;`

N

1
CCCCCCCCA
) + q)� �h):

Proceeding as in the competitive case, we get

exp(��(1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1 �

1

2
��2he2

i;`�1

+F (Q̂0 � R̂0;

0
BBBBBBBB@

ei;`�1PN

j=1
ej;`�1

N

0

0

1
CCCCCCCCA
) +

1

2�
logjR̂j+ q)� �h):

Finally, using the de�nition of P , we can rewrite this expression as

exp(��(1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1

erhF (P;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA) + 1

2�
logjR̂j+ q)� �h): (C.11)

The (i; `� 1) consumption incarnation chooses consumption, ci;`�1, to maximize

�exp(��ci;`�1)h� exp(��(1� e�rh

h
erh(Mi;`�1 � ci;`�1h) + erhd`�1ei;`�1
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+erhF (P;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA) + 1

2�
logjR̂j+ q)� �h):

As in the competitive case, the maximum is

�exp(��(1� e�rh

h
Mi;`�1 + d`�1ei;`�1 + F (P;

0
B@ ei;`�1PN

j=1
ej;`�1

N

1
CA)

+
1

2�
logjR̂je�rh + qe�rh +

(�e�rh � r)h

�
� 1

�
(1� e�rh)log(

h

erh � 1
))):

This is equal to the period `�1 value function if conditions C.7 and C.8 hold. Q.E.D.

The optimality conditions of proposition C.2 are those of proposition C.1, plus

condition 5.9. The Bellman conditions are di�erent than in proposition C.1, since the

matrices R0 and P are di�erent, and jR̂j 6= jRj. However, it is easy to check that for

�2
u
= 0 the Bellman conditions are the same. Therefore, our re�nement implies the

additional optimality condition 5.9.

C.3 The System and the Solution

The system is the Bellman condition C.4, where P , R0, and R are given by equations

A.7, A.6, and A.5, respectively, Q0 by equations A.18, A.19, and A.20, and a =

(N � 2)=(N � 1). In the public information case, equations A.19 and A.20 follow

from equations C.1, C.2, and 5.6. The fact that a = (N � 2)=(N � 1) follows from

equations 5.7 and 5.9.

Proposition C.3 The system has a solution for small �2
e
. For �2

e
= 0 the matrix Q

is given by

Q1;1 = � ��2he�rh

1� 1
(N�1)2

e�rh
; Q1;2 = �Q2;2 =

N(N�2)

(N�1)2
Q1;1e

�rh

1� e�rh
: (C.12)

Proof: We proceed exactly as in the competitive case, but with a = (N�2)=(N�
1) instead of a = 1. Q.E.D.
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D The No-Trade Case

We �rst study agents' optimization problem and, in proposition D.1, provide a set

of su�cient conditions. The conditions can be reduced to a non-linear equation. We

solve the equation in closed-form for �2
e
= 0 and extend the solution for small �2

e
, in

proposition D.2.

D.1 The Optimization Problem

We formulate agent i's optimization problem as a dynamic programming problem.

The state variables are the consumption good holdings, Mi;`, the dividend, d`, the

stock holdings, ei;`, and the average stock holdings,
P

N

j=1 ej;`=N . Average stock hold-

ings will, of course, be irrelevant. We include them to facilitate the comparison of the

no-trade case to the competitive, private information, and public information cases.

The only control variable is the consumption, ci;`�1. The dynamics of Mi;`, d`, andP
N

j=1 ej;`=N are given by equations 3.7, 2.1, and 3.8, respectively. The dynamics of

ei;` are simply

ei;` = ei;`�1 + �i;`:

Agent i's optimization problem, (Pn), is

sup
ci;`

�E0(h
1X
`=0

exp(��ci;` � �`h))

subject to

Mi;` = erh(Mi;`�1 + d`�1ei;`�1h� ci;`�1h)� d`
h

1� e�rh
�i;`;

d` = d`�1 + �`;

ei;` = (ei;`�1 + �i;`);P
N

j=1 ej;`

N
=

P
N

j=1(ej;`�1 + �j;`)

N
;

and the transversality condition

lim
`!1

E0Vn

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
exp(��`h) = 0;
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where Vn is the value function. Our candidate value function is

Vn

 
Mi;`; d`; ei;`;

P
N

j=1 ej;`

N

!
= �exp(��(1� e�rh

h
Mi;`+d`ei;`+F (Q;

0
B@ ei;`PN

j=1
ej;`

N

1
CA)+q)):
(D.1)

In proposition D.1 we provide su�cient conditions for the function D.1 to be the

value function. To state the proposition, we set Q0 = Q, and use the matrices �2, R,

R0, and P , de�ned in appendix A.

Proposition D.1 The function D.1 is the value function, if the Bellman conditions

Q = P (D.2)

and

q =
log(jRj)e�rh
2�(1� e�rh)

+
(�e�rh � r)h

�(1� e�rh)
� 1

�
log(

h

erh � 1
) (D.3)

hold.

Proof: To show the Bellman equation, we proceed in two steps. First, we compute

the expectation of the RHS w.r.t. period ` � 1 information. Second, we show that

the Bellman conditions D.2 and D.3 are su�cient for the function D.1 to satisfy the

Bellman equation. The proof, and the proof of the transversality condition, are as in

the competitive case. Q.E.D.

D.2 The Equation and the Solution

The equation follows from the Bellman condition D.2, where P , R0, and R are given

by equations A.7, A.6, and A.5, respectively, and Q0 = Q. Setting Q1;2 = Q2;2 = 0, it

is easy to check that the equations corresponding to Q1;2 and Q2;2 are satis�ed. We

are left with the equation corresponding to Q1;1.

Proposition D.2 The equation has a solution for small �2
e
. For �2

e
= 0 the solution

is

Q1;1 = ���2he�rh

1� e�rh
: (D.4)
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Proof: To solve the equation for �2
e
= 0 we proceed as in the competitive case.

To extend the solution for small �2
e
, we apply the implicit function theorem to the

function

G(Q1;1; �
2; �2

e
; h; N) =

Q1;1 � P1;1

h
;

at the point A, where �2
e
= 0 and Q1;1 is given by expression D.4 of the proposition.

It is easy to check that the partial derivative of G w.r.t. Q1;1 is strictly positive.

Q.E.D.
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E Welfare Analysis

We �rst prove proposition 6.1.

Proof: Noting that d0 = d, Mi;0 = M , and ei;0 = e, each CEQ is

1� e�rh

h
M + de+ (Q1;1 + 2Q1;2 +Q2;2)e

2 + q:

The 4 CEQ's are equal for �2
e
= 0. Indeed, propositions A.2, B.2, C.3, and D.2 imply

that

Q1;1 +Q1;2 = ���2he�rh

1� e�rh
; Q1;2 +Q2;2 = 0: (E.1)

Therefore, Q1;1 + 2Q1;2 + Q2;2 is the same in the competitive, private information,

public information, and no-trade cases. To show that q is also the same, we need to

show that R is the same. Indeed, in all 4 cases R = I. Since the 4 CEQ's are equal,

we need to use l'Hospital's rule and replace them by their partial derivatives w.r.t.

�2
e
at �2

e
= 0. We �rst show that the partial derivative of Q1;1 + 2Q1;2 + Q2;2 is the

same in all 4 cases. We then compute the partial derivative of q.

Partial Derivative of Q1;1 + 2Q1;2 +Q2;2

We di�erentiate implicitly the Bellman condition Q = P w.r.t. �2
e
at �2

e
= 0.

Noting that �2 = 0 and R = I, we get

dQ = dP = (dQ0 � �Q0d�2Q0)e�rh:

From this matrix equation, we \extract" one scalar equation (equation S), multiplying
from the left by xt = (1; 1) and from the right by x. To show that the partial

derivative of Q1;1 + 2Q1;2 +Q2;2 is the same in the competitive, private information,

public information, and no-trade cases, we will show that (i) equation S is the same in

all 4 cases, and (ii) the terms in dQi;j in equation S are only in d(Q1;1+2Q1;2+Q2;2).

Since the terms obtained from �Q0d�2Q0 are in Q01;1+Q01;2 and Q01;2+Q02;2, and since,

by equations A.18, A.19, A.20, and E.1, these are the same in all 4 cases, equation S
is the same in all 4 cases. Moreover since, by equations A.18, A.19, and A.20,

d(Q01;1 + 2Q01;2 +Q02;2) = d(Q1;1 + 2Q1;2 +Q2;2);

the terms in dQi;j in equation S are only in d(Q1;1 + 2Q1;2 +Q2;2).
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Partial Derivative of q

We di�erentiate the Bellman condition

q =
log(jRj)e�rh
2�(1� e�rh)

+
(�e�rh � r)h

�(1� e�rh)
� 1

�
log(

h

erh � 1
)

w.r.t. �2
e
at �2

e
= 0. Noting that djRj = dR1;1 + dR2;2 and dR = �Q0d�2, we get

@q

@�2
e

=
he�rh

2(1� e�rh)
(Q01;1 +

2Q01;2 +Q02;2

N
):

Since Q01;1 +Q01;2 and Q01;2 +Q02;2 are the same in all 4 cases, l'Hospital's rule implies

that

L =
(Q01;1)c � (Q01;1)pr

(Q01;1)c � (Q01;1)n
;

in the private information case and

L =
(Q01;1)c � (Q01;1)p

(Q01;1)c � (Q01;1)n
;

in the public information case, where (Q01;1)c, (Q
0

1;1)pr, (Q
0

1;1)p, and (Q01;1)n denote

Q01;1 in the competitive, private information, public information, and no-trade cases,

respectively. Using equation A.18 and propositions A.2, B.2, C.3, and D.2, we get

equation 6.3. Q.E.D.

We now prove corollary 6.1.

Proof: We use equation 6.3 for �2
e
= 0. We then use continuity of @L=@h to extend

our results for small �2
e
. In the public information case, we set a = (N � 2)=(N � 1)

in equation 6.3. In the private information case, we combine equations 4.9 and 6.3

into

L = (1� a)
(1� e�rh)2

��2h2e�rh
a

(N � 1)B
:

Using equation 4.8, we can write this equation as

L =
1� a

N � 1
: (E.2)

Since a increases in h, L decreases in h. Q.E.D.

We �nally prove corollary 6.2.
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Proof: In the public information case, we set a = (N � 2)=(N � 1) in equation

6.3. In the private information case, equation 6.6 follows from equation E.2 and

a = 1� 1

(N � 1)(1� e�rh)
+ o(

1

N � 1
):

To prove this fact, we set x = 1=(N � 1), write equation 4.10 as

xa2e�rh � a(2xe�rh + (1� e�rh))� (x� 1)(1� e�rh) = 0;

and di�erentiate implicitly w.r.t. x at x = 0, a = 1. Equation 6.7 follows from

equation E.2 and the fact that a goes to 0 as h goes to 0. Q.E.D.
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Notes

1See, for instance, Kraus and Stoll (1972), Holthausen, Leftwich and Mayers (1987,

1990), Hausman, Lo, and McKinlay (1992), Chan and Lakonishok (1993), and Keim

and Madhavan (1996).

2See, for instance, Chan and Lakonishok (1995) and Keim and Madhavan (1995,1996,1998).

3For instance, the growth and growth and income funds in the 1994 Morningstar

CD turn over 76.8% of their portfolios every year. However, they underperform the

market by .5%. See Chevalier and Ellison (1998).

4In the foreign exchange market, inter-dealer trading is 80% of total volume (Lyons

(1996)). In the London Stock Exchange and the Nasdaq the numbers are 35% and

15% (Reiss and Werner (1995) and Gould and Kleidon (1994)).

5For surveys of the market microstructure literature, see Admati (1991) and

O'Hara (1995). Admati and Peiderer (1988) endogenize the behavior of uninformed

agents in a limited way. Bertsimas and Lo (1998) study the behavior of a large agent

who may or may not be informed. However, they do not endogenize prices.

6See, for instance, Stokey (1981), Bulow (1982), and Gul, Sonnenschein, and Wil-

son (1986).

7Another di�erence is that this paper introduces risk aversion and a di�erent

trading mechanism. The closest paper in that respect is DeMarzo and Bizer (1998)

which allows for increasing marginal costs and a similar trading mechanism.

8Cramton (1984), Cho (1990), and Ausubel and Deneckere (1992) assume that the

monopolist's cost is private information.

9See, for instance Gresik and Satterthwaite (1989), Satterthwaite and Williams

(1989), and Rustichini, Satterthwaite, and Williams (1994). Wilson (1986) considers

a dynamic model with risk-neutral agents who have 0-1 demands.

10Economides and Schwartz (1995) suggest this as one of the reasons why the NYSE
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should incorprorate a call market into its continuous trading system.

11We introduce the consumption good endowment for tractability. With this en-

dowment, the risk represented by the stock endowment is independent of the dividend

level. The model without the consumption good endowment is somewhat more com-

plicated but produces the same results. The consumption good endowment is consis-

tent with the inter-dealer market interpretation of the model. If a dealer receives a

positive endowment shock, i.e. buys stock from a customer, he pays the customer in

return.

12The transversality condition 3.9 is standard for optimal consumption-investment

problems. See, for instance, Merton (1969) and Wang (1994).

13We assume that the agent sells a�x shares at period `+ 1, while for Q1;1 +Q1;2

we assumed that the agent keeps all �x shares. By the envelope theorem, the two

assumptions are equivalent. In the private and public information cases, it is easier

to determine Q1;1 making the �rst assumption. Indeed, if the agent sells a�x shares,

p`+1 is independent of �x and equal to 0. If the agent keeps all �x shares, we have

to take into account the change in p`+1. For Q1;1 +Q1;2 the change does not matter

because the agent does not trade in expectation at period `+ 1.

14Agent i can infer
P

j 6=i ej;`�1 from the period `� 1 price, p`�1.

15Note that there may exist other Nash equilibria in which demands are non-linear

or depend on more variables than p`, d`, and ei;`�1 + �i;` (such as \trigger-strategy"

equilibria). Studying these equilibria is beyond the scope of this paper.

16For �2
e
= 0, the result follows from equation 4.10. For �2

e
> 0 (and not necessarily

small) the proof is available upon request.

17It might seem that we get indeterminacy only because we allow agent i's demand

to depend on other agents' stock holdings, thus introducing the additional parameter

Ae. This is incorrect. If in the private information case we allow agent i's demand

to depend on his expectations of other agents' stock holdings, we will obtain an

additional optimality condition. This condition will imply that Ae = 0.
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18See Selten (1975) and chapter 8 in Fudenberg and Tirole (1991).

19We do not study how CEQpr depends on h because when h changes, the dividend

process and preferences change. This problem can be avoided by considering a \con-

tinuous" model where dividends follow a Brownian motion and preferences are over

consumption ow. We do not present the continuous model because it is complicated.

(The Bellman conditions are di�erential rather than algebraic equations.) We should

note that the continuous model produces the same welfare loss, L, as the discrete

model.
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