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Abstract

We survey the theoretical literature on market liquidity. The literature
traces illiquidity, i.e., the lack of liquidity, to underlying market imper-
fections. We consider six main imperfections: participation costs, trans-
action costs, asymmetric information, imperfect competition, funding
constraints, and search. We address three questions in the context of
each imperfection: (a) how to measure illiquidity, (b) how illiquidity
relates to underlying market imperfections and other asset characteris-
tics, and (c) how illiquidity affects expected asset returns. We nest all
six imperfections within a common, unified model, and use that model
to organize the literature.



1
Introduction

Under the standard Arrow–Debreu paradigm, trading in financial
markets involves no frictions and liquidity is perfect. In practice,
however, frictions of varying importance are present in all markets and
reduce liquidity. A large and growing theoretical literature traces illiq-
uidity, i.e., the lack of liquidity, to underlying market imperfections
such as asymmetric information, different forms of trading costs, and
funding constraints. It also studies how imperfections affect expected
asset returns through their influence on liquidity. This literature is com-
plemented by a large and growing empirical literature that estimates
measures of illiquidity and relates them to asset characteristics and
asset returns.

In this paper, we survey the theoretical literature on market
liquidity. We focus on six main imperfections studied in the literature:
participation costs, transaction costs, asymmetric information, imper-
fect competition, funding constraints, and search. These imperfections
map into six different theories of illiquidity. We address three basic
questions in the context of each imperfection: (a) how to measure illiq-
uidity, (b) how illiquidity relates to underlying market imperfections
and other asset characteristics, and (c) how illiquidity affects expected
asset returns.
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The theoretical literature on market liquidity often employs differ-
ent modeling assumptions when studying different imperfections. For
example, papers on trading costs typically assume life-cycle or risk-
sharing motives to trade, while papers on asymmetric information often
rely on noise traders. Some papers on asymmetric information further
assume risk-neutral market makers who can take unlimited positions,
while papers on other imperfections typically assume risk aversion or
position limits. Instead of surveying this literature in a descriptive man-
ner, we use a common, unified model to study all six imperfections that
we consider, and for each imperfection we address the three basic ques-
tions within that model. Our model generates many of the key results
shown in the literature, and serves as a point of reference for survey-
ing other results derived in different or more complicated settings. We
use the same model in Vayanos and Wang (2012b), where we survey
both the theoretical and the empirical literature on market liquidity.
This paper focuses on the theoretical literature only, surveys it more
extensively, and analyzes the model in greater depth.

Our model has three periods, t = 0,1,2. In Periods 0 and 1, risk-
averse agents can trade a riskless and a risky asset that pay off in
Period 2. In Period 0, agents are identical so no trade occurs. In
Period 1, agents can be one of two types. Liquidity demanders receive
an endowment correlated with the risky asset’s payoff, and need to
trade to share risk. They can trade with liquidity suppliers, who receive
no endowment. Agents learn whether or not they will receive the
endowment in an interim period t = 1/2. While we model heterogeneity
through endowments, our analysis would be similar for other types of
heterogeneity, e.g., different beliefs or investment opportunities. Market
imperfections concern trade in Period 1. We consider six imperfections,
studied extensively in the theoretical literature:

1. Participation costs: In the perfect-market benchmark, all
agents are present in the market in all periods. Thus, a seller,
for example, can have immediate access to the entire pop-
ulation of buyers. In practice, however, agents face costs of
market participation, e.g., to monitor market movements and
have ready access to a financial exchange. To model costly
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participation, we assume that agents must incur a cost to
trade in Period 1. Consistent with the notion that partici-
pation is an ex-ante decision, we assume that agents must
decide whether or not to incur the cost in Period 1/2, i.e.,
after learning whether or not they will receive an endowment
but before observing the price in Period 1. A related imper-
fection is that of entry costs, e.g., learning about an asset.
The cost would then concern buying the asset in Period 0.

2. Transaction costs: In addition to costs of market participa-
tion, agents typically pay costs when executing transactions.
Transaction costs drive a wedge between the buying and
selling price of an asset. They come in many types, e.g., bro-
kerage commissions, exchange fees, transaction taxes, bid-ask
spreads, and price impact. Some types of transaction costs,
such as price impact, can be viewed as a consequence of
other market imperfections, while other types, such as trans-
action taxes, can be viewed as more primitive. We assume
that transaction costs concern trade in Period 1. The differ-
ence with participation costs is that the decision whether or
not to incur the transaction costs is contingent on the price
in Period 1.

3. Asymmetric information: In the perfect-market benchmark,
all agents have the same information about the payoff of the
risky asset. In practice, however, agents can have different
information because they have access to different sources of
information or have different abilities to process information
from the same source. To model asymmetric information,
we assume that some agents observe in Period 1 a private
signal about the asset payoff. We assume that these agents
are the liquidity demanders. This assumption is without loss
of generality in our model. It allows us to determine how the
supply of liquidity is influenced by the concern of liquidity
suppliers about trading against better-informed agents.

4. Imperfect competition: In the perfect-market benchmark,
agents are competitive and have no effect on prices. In many
markets, however, some agents are large relative to others
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in the sense that they can influence prices, either because
of their size or because of their information advantage. We
model imperfect competition by assuming that some agents
can exert market power in Period 1. We mainly focus on the
case where liquidity demanders behave as a single monopo-
list, and consider, more briefly, monopolistic behavior by liq-
uidity suppliers. We consider both the cases where liquidity
demanders have no private information on asset payoffs, and
so information is symmetric, and where they observe a pri-
vate signal.

5. Funding constraints: Agents’ portfolios often involve lever-
age, i.e., borrow cash to establish a long position in a risky
asset, or borrow a risky asset to sell it short. In the perfect-
market benchmark, agents can borrow freely provided that
they have enough resources to repay the loan. But as the Cor-
porate Finance literature emphasizes, various frictions can
limit agents’ ability to borrow and fund their positions. We
derive a funding constraint by assuming that agents cannot
pledge some of their future income. Because our focus is on
how the funding constraint influences the supply of liquidity,
we impose it on liquidity suppliers only, i.e., assume that only
they are unable to pledge their income.

6. Search: In the perfect-market benchmark, the market is
organized as a centralized exchange. Many markets, how-
ever, have a more decentralized form of organization. For
example, in over-the-counter markets, investors negotiate
prices bilaterally with dealers. Locating suitable counter-
parties in these markets can take time and involve search.
To model decentralized markets, we assume that agents do
not meet in a centralized exchange in Period 1, but instead
must search for counterparties. When a liquidity demander
meets a supplier, they bargain bilaterally over the terms of
trade.

We determine how each imperfection affects measures of illiquidity
in Period 1. We consider two such measures. The first is lambda, defined
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as the regression coefficient of the return between Periods 0 and 1 on
liquidity demanders’ signed volume in Period 1. This measure charac-
terizes the price impact of volume, which has a transitory and a per-
manent component. The second is price reversal, defined as minus the
autocovariance of returns. This measure characterizes the importance
of the transitory component in price, which in our model is entirely
driven by volume. Lambda and price reversal have been derived in
theoretical models focusing on specific market imperfections, and have
been widely used in empirical work ever since.

In addition to the effect of imperfections on illiquidity in Period 1,
we determine their effect on the ex-ante expected return as of Period 0,
i.e., how does the expected return that agents require to buy the risky
asset in Period 0 depend on the imperfections that they anticipate to
face in Period 1. Many of the effects of imperfections that we derive
within our model have been derived in the literature, albeit in a less
systematic and unified manner. We highlight the links with the liter-
ature, and use more generally our model to organize and survey it.
Many models in the literature can be viewed as enrichments of our
model in terms of, e.g., information structure, agent characteristics,
and dynamics.

Deriving the effects of the imperfections in a systematic manner
within a unified model delivers new insights. We show, for example, that
most imperfections raise lambda, but fewer raise price reversal. Thus,
lambda is a more accurate measure of the imperfections. Intuitively,
lambda measures the price impact per unit trade, while price reversal
concerns the impact of the entire trade. Market imperfections generally
raise the price impact per unit trade, but because they also reduce
trade size, the price impact of the entire trade can decrease. We show
additionally that imperfections do not always raise expected returns.
The literature has shown this result for some imperfections; we examine
its validity across all imperfections and identify those under which it is
more likely to hold.

Our survey does not cover some important issues, either because
they represent open questions on which research so far has been lim-
ited, or because covering them would detract from our main focus.
Nevertheless, it is important to recognize these issues, both to put
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our survey in perspective and to outline promising areas for future
research.

A first issue concerns the horizon of liquidity effects. The market
microstructure literature focuses on liquidity effects that manifest
themselves over short horizons, from minutes or hours to days or weeks.
At the same time, recent work on the limits of arbitrage finds that flows
can affect returns even at the longer horizons used in asset-pricing anal-
ysis, e.g., months, quarters or years. We view both horizons as relevant
for the purposes of our survey — provided that the price movements
under consideration are temporary departures from fundamental value
caused by flows. Our model can accommodate both horizons simply
by changing the length of a “period.” At the same time, that length
is exogenous in our model and should be derived endogenously. That
would require a more detailed description of market imperfections and
agents’ trading needs, as well as an extension of the model along the
inter-temporal dimension. Such an extension would also allow for a
more complete analysis of the joint dynamics of liquidity and asset
returns.

A second issue concerns the interactions between market imperfec-
tions. Most of the theoretical literature considers one imperfection at
a time and does not allow for interactions. Our model also does not
cover interactions, except between imperfect competition and asym-
metric information. Other interactions, such as between funding con-
straints and asymmetric information, are interesting and have received
some attention in the literature.

A related but more fundamental issue concerns the underlying eco-
nomic causes of the imperfections and the ways in which imperfections
are linked. Following much of the literature, we treat each imperfec-
tion as primitive. Yet, some imperfections could be the consequence
of other more fundamental ones. For example, some types of transac-
tion costs, such as price impact, can be viewed as a consequence of
other imperfections, such as participation costs or asymmetric infor-
mation. Moreover, if participation costs are costs to monitor market
information, then costly participation could be linked to asymmetric
information. Asymmetric information could also underlie the contract-
ing frictions that give rise to funding constraints. Endogenizing some
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market imperfections from more fundamental frictions could further
streamline, clarify and deepen the study of market liquidity. In partic-
ular, various forms of informational problems could be the underlying
economic cause for various forms of imperfections.

An additional imperfection implicit in our model is that agents can-
not contract ex-ante on whether they are liquidity demanders or sup-
pliers ex-post. If they could write contracts conditional on their future
trading needs, then there would be no trade ex-post and the other
imperfections would not matter. Understanding the origin of this addi-
tional imperfection, and of trade more generally, is important.

A fourth issue concerns the design of the market. While we consider
ways in which markets deviate from the Walrasian ideal, we do not
study market design in depth. The market microstructure literature
studies various dimensions of market design and shows that they can
affect market performance. Such dimensions include whether liquidity
is supplied by dedicated market makers or an open limit-order book,
whether limit orders are visible to all traders, whether transactions are
disclosed to all traders after they are executed, etc. While we survey
some of that work, we conduct our analysis at a more aggregate level
with less market detail, so that we can derive some key effects within
a tractable unified model. The downside is that our model is not well
suited for very short horizons of seconds or minutes. Our model is also
not well suited for addressing the benefits of different market designs.

Related to market design is the broader institutional context.
A large fraction of trading activity in financial markets is gener-
ated by specialized financial institutions, and these institutions can
be important suppliers or demanders of liquidity. Following much of
the literature, we model instead liquidity suppliers and demanders as
individuals, thus ignoring contracting frictions and other institutional
complexities. (We only consider such frictions briefly in the context of
funding constraints.) The liquidity shock in our model could result from
institutional frictions, but only in reduced form. The importance of
financial institutions in affecting asset prices is emphasized in a rapidly
growing literature on the limits of arbitrage.

Finally, we do not perform any analysis of welfare or policy (even
though our model could be used for that purpose as well). For example,
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we do not examine how imperfections affect the welfare of different
agents and what policy actions could mitigate these effects. We survey,
however, some papers that consider welfare and policy issues.

Our survey is related to both market microstructure and asset pric-
ing. We emphasize fundamental market imperfections covered in the
market microstructure literature, but abstract away from the level of
market detail often adopted in that literature. At the same time, we
study how market imperfections affect expected asset returns — an
asset-pricing exercise. Surveys with greater focus on market microstruc-
ture include the book by O’Hara (1995) for the theory, the article
by Hasbrouck (2007) for the empirics, and the articles by Madhavan
(2000), Biais et al. (2005), and Parlour and Seppi (2008) for both theory
and empirics. Amihud et al. (2005) survey theoretical and empirical
work on market liquidity and asset-pricing effects. They mainly focus
on transaction costs and not on other market imperfections. We con-
sider instead six imperfections including transaction costs, both in this
survey which focuses on the theory and in Vayanos and Wang (2012b)
which also surveys empirical work. Gromb and Vayanos (2010) survey
the theoretical literature on the limits of arbitrage.



2
Model

There are three periods, t = 0,1,2. The financial market consists of a
riskless and a risky asset that pay off in Period 2. The riskless asset is
in supply of B shares and pays off one unit of a consumption good per
share with certainty. The risky asset is in supply of θ̄ shares and pays
off D units per share, where D has mean D̄ and variance σ2. Using the
riskless asset as the numeraire, we denote by St the risky asset’s price
in Period t, where S2 = D.

There is a measure one of agents, who derive utility from consump-
tion in Period 2. Utility is exponential,

−exp(−αC2), (2.1)

where C2 is consumption in Period 2, and α > 0 is the coefficient of
absolute risk aversion. We denote agents’ wealth in Period t by Wt.
Wealth in Period 2 is equal to consumption, i.e., W2 = C2. Agents are
identical in Period 0, and are endowed with the per capita supply of the
riskless and the risky asset. They become heterogeneous in Period 1,
and this generates trade. Because all agents have the same exponen-
tial utility, there is no preference heterogeneity. We instead introduce
heterogeneity through agents’ endowments.
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A fraction π of agents receive an endowment of the consump-
tion good in Period 2, and the remaining fraction 1 − π receive no
endowment. The endowment is z(D − D̄) per receiving agent, where z

has mean zero and variance σ2
z and is independent of D. Since the

endowment is correlated with D, it generates a hedging demand.
When, for example, z > 0, the endowment exposes agents to the risk
that D will be low, and agents hedge against that risk by selling
the risky asset. Agents learn whether or not they will receive the
endowment in an interim period t = 1/2, and those who will receive the
endowment observe z in Period 1. Thus, agents learn whether or not
they will need to trade before learning the exact size of their desired
trade. We assume that the endowment is perfectly correlated with D

for simplicity; what matters for our analysis is that the correlation
is non-zero. While we model heterogeneity through endowments, our
analysis would be similar for other types of heterogeneity, e.g., different
beliefs or investment opportunities.

For tractability, we assume that D and z are normal. Under nor-
mality, the endowment z(D − D̄) can take large negative values, and
this can generate an infinitely negative expected utility. To guarantee
that utility is finite, we assume that the variances of D and z satisfy
the condition

α2σ2σ2
z < 1. (2.2)

In equilibrium, agents receiving an endowment initiate trades with
others to share risk. Because the agents initiating trades can be thought
of as consuming market liquidity, we refer to them as liquidity deman-
ders and denote them by the subscript d. Moreover, we refer to z as the
liquidity shock. The agents who receive no endowment accommodate
the trades of liquidity demanders, thus supplying liquidity. We refer to
them as liquidity suppliers and denote them by the subscript s.

Because liquidity suppliers require compensation to absorb risk,
the trades of liquidity demanders affect prices. Therefore, the price
in Period 1 is influenced not only by the asset payoff, but also by
the liquidity demanders’ trades. Our measures of liquidity, defined in
Section 3, are based on the price impact of these trades.
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The assumptions introduced so far describe our model’s
perfect-market benchmark, to which we subsequently add market
imperfections. We maintain the perfect-market assumption in Period 0
when determining the ex-ante effect of the imperfections, i.e., how
does the expected return that agents require to buy the risky asset
in Period 0 depend on the imperfections that they anticipate to face
in Period 1. Imperfections in Period 0 are, in fact, not relevant in our
model because agents are identical in that period and there is no trade.

We can give two interpretations to our model. Under the first inter-
pretation, the set of agents in the model is the entire set of households in
an economy. The only liquidity shocks that can then have non-trivial
price impact are those large enough to be comparable to the size of
the economy. Under the second interpretation, the set of agents in the
model is the subset of households who participate in a specific market.
Liquidity shocks can then have non-trivial price impact even when they
are small relative to the size of the economy; all that is needed is that
they are comparable to the size of the set of households participating
in that market. That set can be smaller than the entire set of house-
holds in the economy because of participation costs. While we consider
participation costs as a market imperfection (Section 4), they can be
viewed as implicit in the perfect-market benchmark under the second
interpretation.

An additional imperfection implicit in the perfect-market bench-
mark is that agents cannot write contracts in Period 0 contingent on
whether they are a liquidity demander or supplier in Period 1. Thus, the
market in Period 0 is incomplete in the Arrow–Debreu sense. If agents
could write complete contracts in Period 0, they would not need to
trade in Period 1, in which case liquidity would not matter. Complete
contracts are infeasible in our model because whether an agent is a
liquidity demander or supplier is private information.



3
Perfect-Market Benchmark

In this section we solve the basic model described in Section 2, assum-
ing no market imperfections. We first compute the equilibrium, going
backwards from Period 1 to Period 0. We next construct measures of
illiquidity in Period 1, and study how these measures as well as the
expected return of the risky asset as of Period 0 depend on the param-
eters of the model. Detailed derivations and proofs of the results in this
and subsequent sections are in Vayanos and Wang (2010, 2012a).

3.1 Equilibrium

In Period 1, a liquidity demander chooses holdings θd
1 of the risky asset

to maximize the expected utility (2.1). Consumption in Period 2 is

Cd
2 = W1 + θd

1(D − S1) + z(D − D̄),

i.e., wealth in Period 1, plus capital gains from the risky asset, plus the
endowment. Therefore, expected utility is

−Eexp
{

−α
[
W1 + θd

1(D − S1) + z(D − D̄)
]}

, (3.1)

233
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where the expectation is over D. Because D is normal, the expectation
is equal to

−exp
{

−α

[
W1 + θd

1(D̄ − S1) − 1
2
ασ2(θd

1 + z)2
]}

. (3.2)

A liquidity supplier chooses holdings θs
1 of the risky asset to maximize

the expected utility

−exp
{

−α

[
W1 + θs

1(D̄ − S1) − 1
2
ασ2(θs

1)
2
]}

, (3.3)

which can be derived from (3.2) by setting z = 0. The solution
to the optimization problems is straightforward and summarized in
Proposition 3.1.

Proposition 3.1. Agents’ demand functions for the risky asset in
Period 1 are

θs
1 =

D̄ − S1

ασ2 , (3.4a)

θd
1 =

D̄ − S1

ασ2 − z. (3.4b)

Liquidity suppliers are willing to buy the risky asset as long as its
price S1 in Period 1 is below the expected payoff D̄, and are will-
ing to sell otherwise. Liquidity demanders have a similar price-elastic
demand function, but are influenced by the liquidity shock z. When, for
example, z is positive, liquidity demanders are willing to sell because
their endowment is positively correlated with the asset.

Market clearing requires that the aggregate demand equals the asset
supply θ̄:

(1 − π)θs
1 + πθd

1 = θ̄. (3.5)

Substituting (3.4a) and (3.4b) into (3.5), we find

S1 = D̄ − ασ2 (
θ̄ + πz

)
. (3.6)

The price S1 decreases in the liquidity shock z. When, for example,
z is positive, liquidity demanders are willing to sell, and the price must
drop so that the risk-averse liquidity suppliers are willing to buy.
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In Period 0, all agents are identical. An agent choosing holdings θ0

of the risky asset has wealth

W1 = W0 + θ0(S1 − S0) (3.7)

in Period 1. The agent can be a liquidity supplier in Period 1 with
probability 1 − π, or liquidity demander with probability π. Substitut-
ing θs

1 from (3.4a), S1 from (3.6), and W1 from (3.7), we can write the
expected utility (3.3) of a liquidity supplier in Period 1 as

−exp
{

−α

[
W0 + θ0(D̄ − S0) − ασ2θ0(θ̄ + πz) +

1
2
ασ2(θ̄ + πz)2

]}
.

(3.8)
The expected utility depends on the liquidity shock z since z affects the
price S1. We denote by U s the expectation of (3.8) over z, and by Ud

the analogous expectation for a liquidity demander. These expectations
are agents’ interim utilities in Period 1/2. An agent’s expected utility
in Period 0 is

U ≡ (1 − π)U s + πUd. (3.9)

Agents choose θ0 to maximize U . The solution to this maximization
problem coincides with the aggregate demand in Period 0, since all
agents are identical in that period and are in measure one. In equi-
librium, aggregate demand has to equal the asset supply θ̄, and this
determines the price S0 in Period 0.

Proposition 3.2. The price in Period 0 is

S0 = D̄ − ασ2θ̄ − πM

1 − π + πM
∆1θ̄, (3.10)

where

M = exp
(

1
2α∆2θ̄

2)√
1 + ∆0π2

1 + ∆0(1 − π)2 − α2σ2σ2
z

, (3.11)

∆0 = α2σ2σ2
z , (3.12a)

∆1 =
ασ2∆0π

1 + ∆0(1 − π)2 − α2σ2σ2
z

, (3.12b)

∆2 =
ασ2∆0

1 + ∆0(1 − π)2 − α2σ2σ2
z

. (3.12c)
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The first term in (3.10) is the asset’s expected payoff in Period 2,
the second term is a discount arising because the payoff is risky, and
the third term is a discount due to illiquidity (i.e., low liquidity). The
risk discount is independent of the parameter σ2

z that measures the size
of liquidity shocks, and is non-zero even when there are no shocks, i.e.,
σ2

z = 0. The illiquidity discount is instead increasing in σ2
z , and is zero

when σ2
z = 0. In the next section we explain why the illiquidity discount

arises.

3.2 Illiquidity and its Effect on Price

We construct two measures of illiquidity in Period 1, both based on
the price impact of the liquidity demanders’ trades. The first measure,
to which we refer as lambda or price impact, is the coefficient of a
regression of the price change S1 − S0 between Periods 0 and 1 on the
signed volume π(θd

1 − θ̄) of liquidity demanders in Period 1:

λ ≡ Cov
[
S1 − S0,π(θd

1 − θ̄)
]

Var
[
π(θd

1 − θ̄)
] . (3.13)

Intuitively, when λ is large, trades have large price impact and the
market is illiquid. Equation (3.6) implies that the price change between
Periods 0 and 1 is

S1 − S0 = D̄ − ασ2 (
θ̄ + πz

) − S0. (3.14)

Equations (3.4b) and (3.6) imply that the signed volume of liquidity
demanders is

π(θd
1 − θ̄) = −π(1 − π)z. (3.15)

Equations (3.13)–(3.15) imply that

λ =
ασ2

1 − π
. (3.16)

Price impact λ is higher when agents are more risk-averse (α large),
the asset is riskier (σ2 large), or liquidity suppliers are less numerous
(1 − π small).
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Since the signed volume of liquidity demanders is minus that of
liquidity suppliers, λ is also minus the regression coefficient of the price
change between Periods 0 and 1 on suppliers’ signed volume in Period 1:

λ = −Cov
[
S1 − S0,(1 − π)(θs

1 − θ̄)
]

Var
[
(1 − π)(θs

1 − θ̄)
] . (3.17)

The supplier-based definition of λ can be easier to implement empiri-
cally than the equivalent demander-based definition. Indeed, an impor-
tant class of liquidity suppliers in some markets are designated market
makers, and information on their trades is often available.

The second measure of illiquidity is based on the autocovariance
of price changes. The liquidity demanders’ trades in Period 1 cause
the price to deviate from fundamental value, while the two coincide
in Period 2. Therefore, price changes exhibit negative autocovariance,
and more so when trades have large price impact. We use minus auto-
covariance

γ ≡ −Cov(S2 − S1,S1 − S0) , (3.18)

as a measure of illiquidity, and refer to it as price reversal. Equa-
tions (3.6), (3.14), (3.18) and S2 = D imply that

γ = −Cov
[
D − D̄ + ασ2 (

θ̄ + πz
)
, D̄ − ασ2 (

θ̄ + πz
) − S0

]
= α2σ4σ2

zπ
2. (3.19)

Price reversal γ is higher when agents are more risk-averse, the asset is
riskier, liquidity demanders are more numerous (π large), or liquidity
shocks are larger (σ2

z large).1

The measures λ and γ have been defined in models focusing on
specific market imperfections, and have been widely used in empirical
work ever since. Using our model, we can examine the behavior of
these measures across a variety of imperfections, and provide a broader
perspective on their properties. We emphasize basic properties below,
leaving more detailed results to subsequent sections.

1 The comparative statics of autocorrelation are similar to those of autocovariance. We use
autocovariance rather than autocorrelation because normalizing by variance adds unnec-
essary complexity.
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Kyle (1985) defines λ in a model where an informed insider trades
with uninformed market makers and noise traders. The price impact
measured by λ concerns the aggregate order that market makers
receive, which is driven both by the insider’s private information and
by noise trading. Our definition of λ parallels Kyle’s since the trades of
our liquidity demanders can be motivated by hedging or information. In
Kyle, however, market makers are risk neutral, and trades affect prices
only because they can contain information. Thus, λ reflects purely the
amount of information that trades convey, and is permanent because
the risk-neutral market makers set the price equal to their expecta-
tion of fundamental value. In general, as in our model, λ has both
a transitory and a permanent component. The transitory component,
present even in our perfect-market benchmark, arises because liquidity
suppliers are risk averse and require a price movement away from fun-
damental value to absorb a liquidity shock. The permanent component
arises only when information is asymmetric, for the same reasons as in
Kyle.2

Roll (1984) links γ to the bid-ask spread, in a model where market
orders cause the price to bounce between the bid and the ask. Grossman
and Miller (1988) link γ to the price impact of liquidity shocks, in a
model where risk-averse liquidity suppliers must incur a cost to partic-
ipate in the market. In both models, price impact is purely transitory
because information is symmetric. In our model, price impact has both
a transitory and a permanent component, and γ isolates the effects
of the transitory component. Note that besides being a measure of
imperfections, γ provides a useful characterization of price dynamics:
it measures the importance of the transitory component in price arising
from temporary liquidity shocks, relative to the random-walk compo-
nent arising from fundamentals.

Illiquidity in Period 1 lowers the price in Period 0 through the illiq-
uidity discount, which is the third term in (3.10). To explain why the
discount arises, consider the extreme case where trade in Period 1 is

2 An alternative definition of λ, which isolates the permanent component, involves the price
change between Periods 0 and 2 rather than between Periods 0 and 1. This is because
the transitory deviation between price and fundamental value in Period 1 disappears in
Period 2.
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not allowed. In Period 0, agents know that with probability π they
will receive an endowment in Period 2. The endowment amounts to
a risky position in Period 1, the size of which is uncertain because it
depends on z. Uncertainty about position size is costly to risk-averse
agents. Moreover, the effect is stronger when agents carry a large posi-
tion from Period 0 because the cost of holding a position in Period 1
is convex in the overall size of the position. (The cost is the quadratic
term in (3.2) and (3.3).) Therefore, uncertainty about z reduces agents’
willingness to buy the asset in Period 0.

The intuition is similar when agents can trade in Period 1. Indeed,
in the extreme case where trade is not allowed, the shadow price faced
by liquidity demanders moves in response to z to the point where
these agents are not willing to trade. When trade is allowed, the price
movement is smaller, but non-zero. Therefore, uncertainty about z still
reduces agents’ willingness to buy the asset in Period 0. Moreover,
the effect is weaker when trade is allowed in Period 1 than when it
is not (this follows from the more general result of Proposition 6.6),
and therefore corresponds to a discount driven by illiquidity. Because
market imperfections hinder trade in Period 1, they tend to raise the
illiquidity discount in Period 0.

The illiquidity discount is the product of two terms. The first term,
πM

1−π+πM , can be interpreted as the risk-neutral probability of being a
liquidity demander: π is the true probability, and M is the ratio of
marginal utilities of wealth of demanders and suppliers, where utili-
ties are interim in Period 1/2. The second term, ∆1θ̄, is the discount
that an agent would require conditional on being a demander. Since
the illiquidity discount lowers the asset price in Period 0, it raises the
expected return

E(R) = D̄ − S0

from buying the asset in Period 0 and holding it until it pays off in
Period 2. From now on, we refer to E(R) simply as the asset’s expected
return.

The illiquidity discount is higher when liquidity shocks are larger
(σ2

z large) and occur with higher probability (π large). It is also higher
when agents are more risk averse (α large), the asset is riskier (σ2 large),
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and in larger supply (θ̄ large). In all cases, the risk-neutral probability
of being a liquidity demander is higher, and so is the discount that
an agent would require conditional on being a demander. For example,
an increase in any of (σ2

z ,π,α,σ2) increases the discount required by a
demander because the liquidity shock z generates higher price volatility
in Period 1 (as can be seen from (3.6)). Furthermore, in the case of
(σ2

z ,α,σ2), the risk-neutral probability of being a demander increases
because so does the ratio M of marginal utilities of wealth of demanders
and suppliers: suppliers, who benefit from the higher price volatility in
Period 1, become better off relative to demanders, who are hurt by
this volatility. In the case of π, both M and the physical probability of
being a demander increase.3

3 The comparative statics of the illiquidity discount extend to its ratio relative to the dis-
count ασ2θ̄ driven by payoff risk. Thus, while risk aversion α, payoff risk σ2, or asset
supply θ̄ raise the risk discount, they have an even stronger impact on the illiquidity dis-
count. For example, an increase in α raises the risk discount because agents become more
averse to payoff risk. The effect on the illiquidity discount is even stronger because not
only agents become more averse to the risk of receiving a liquidity shock, but also the
shock has larger price impact and hence generates more risk.



4
Participation Costs

In the perfect-market benchmark, all agents are present in the market
in all periods. Thus, a seller, for example, can have immediate access to
the entire population of buyers. In practice, however, agents face costs
of market participation. Such costs include buying trading infrastruc-
ture or membership of a financial exchange, having capital available
on short notice, monitoring market movements, etc. To model costly
participation, we assume that agents must incur a cost c to trade in
Period 1. Consistent with the notion that participation is an ex-ante
decision, we assume that agents must decide whether or not to incur c

in Period 1/2, after learning whether or not they will receive an endow-
ment but before observing the price in Period 1. (The price depends on
the liquidity shock, which is observed only in Period 1.) If the decision
can be made contingent on the price in Period 1, then c is a fixed trans-
action cost rather than a participation cost. We consider transaction
costs as a separate market imperfection (Section 5).

We structure this section as follows: first compute the equilibrium,
then examine how participation costs affect the illiquidity measures and
the expected return, and finally survey the literature on participation
costs. We adopt the same structure in the subsequent sections, which
analyze the remaining five imperfections.
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4.1 Equilibrium

The price in Period 1 is determined by the participating agents. We
look for an equilibrium where all liquidity demanders participate, but
only a fraction µ > 0 of liquidity suppliers do. Such an equilibrium
exists under conditions on the parameters of the model that we derive
in Corollary 4.3. We focus on the case where these conditions are met
since we are interested in examining how participation costs affect the
supply of liquidity. Participation costs have an effect only when the
fraction of participating liquidity suppliers is interior.

Market clearing requires that the aggregate demand of participating
agents equals the asset supply held by these agents. Since in equilibrium
agents enter Period 1 holding θ̄ shares of the risky asset, market clearing
takes the form

(1 − π)µθs
1 + πθd

1 = [(1 − π)µ + π] θ̄. (4.1)

Agents’ demand functions are as in Section 3. Substituting (3.4a) and
(3.4b) into (4.1), we find that the price in Period 1 is

S1 = D̄ − ασ2
[
θ̄ +

π

(1 − π)µ + π
z

]
. (4.2)

We next determine the measure µ of participating liquidity sup-
pliers, assuming that all liquidity demanders participate. If a supplier
participates, he submits the demand function (3.4a) in Period 1. Since
participation entails a cost c, wealth in Period 1 is

W1 = W0 + θ0(S1 − S0) − c. (4.3)

Using (3.4a), (4.2) and (4.3), we can compute the interim utility U s of a
participating supplier in Period 1/2. If the supplier does not participate,
holdings in Period 1 are the same as in Period 0 (θs

1 = θ0), and wealth
in Period 1 is given by (3.7). We denote by U sn the interim utility of a
non-participating supplier in Period 1/2.

The participation decision is derived by comparing U s to U sn for
the equilibrium choice of θ0, which is θ̄. If the participation cost c is
below a threshold c, then all suppliers participate (µ = 1). If c is above
c and below a larger threshold c̄, then suppliers are indifferent between
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participating or not (U s = U sn), and only some participate (0 < µ < 1).
Increasing c within that region reduces the fraction µ of participating
suppliers, while maintaining the indifference condition. This is because
with fewer participating suppliers, competition becomes less intense,
enabling the remaining suppliers to cover their increased participation
cost. Finally, if c is above c̄, then no suppliers participate (µ = 0).

Proposition 4.1. Suppose that all liquidity demanders participate.
Then, the fraction of participating liquidity suppliers is

µ = 1, if c ≤ c ≡ log
(
1 + α2σ2σ2

zπ
2
)

2α
, (4.4a)

µ =
π

1 − π

(
ασσz√
e2αc − 1

− 1
)

, if c < c < c̄ ≡ log
(
1 + α2σ2σ2

z

)
2α

,

(4.4b)

µ = 0, if c ≥ c̄. (4.4c)

We next determine the participation decisions of liquidity deman-
ders, taking those of liquidity suppliers as given.

Proposition 4.2. Suppose that a fraction µ > 0 of liquidity suppliers
participate. Then, a sufficient condition for all liquidity demanders to
participate is

(1 − π)µ ≥ π. (4.5)

Equation (4.5) requires that the measure π of liquidity demanders
does not exceed the measure (1 − π)µ of participating suppliers. Intu-
itively, when demanders are the short side of the market, they stand to
gain more from participation, and can therefore cover the participation
cost (since suppliers do). Combining Propositions 4.1 and 4.2, we find:

Corollary 4.3. An equilibrium where all liquidity demanders and a
fraction µ > 0 of liquidity suppliers participate exists under the suffi-
cient conditions π ≤ 1/2 and c ≤ ĉ ≡ [log

(
1 + 1

4α
2σ2σ2

z

)
]/2α.
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For π ≤ 1/2 and c ≤ ĉ, only two equilibria exist: the one in the
corollary and the trivial one where no agent participates because they
do not expect others to participate. The same is true for π larger but
close to 1/2, and for c larger but close to ĉ.1 When, however, c exceeds
a threshold in (ĉ, c̄), the equilibrium in the corollary ceases to exist,
and no-participation becomes the unique equilibrium.

To determine the price in Period 0, we follow the same steps as in
Section 3. The price takes a form similar to that in the perfect-market
benchmark.

Proposition 4.4. The price in Period 0 is given by (3.10), where

M = exp
(

1
2α∆2θ̄

2)
√√√√√ 1 + ∆0

π2

[(1−π)µ+π]2

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (4.6)

∆1 =
ασ2∆0

π
(1−π)µ+π

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (4.7a)

∆2 =
ασ2∆0

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (4.7b)

and ∆0 is given by (3.12a).

4.2 Participation Costs and Illiquidity

We next examine how participation costs impact the illiquidity
measures and the expected return. Proceeding as in Section 3, we can

1 Other equilibria are ruled out by the following argument. Prices and trading profits in
Period 1 depend only the relative measures of participating suppliers and demanders.
Therefore, if participation occurs, the fraction of either suppliers or demanders must
(generically) equal one. If the fraction of demanders is less than one, then the fraction
of suppliers must equal one. This is a contradiction for π ≤ 1/2 because of (4.5). It is
also a contradiction for π larger but close to 1/2 because (4.5) is a sufficient condition:
because liquidity demanders face the risk of liquidity shocks, they can benefit from par-
ticipation more than suppliers even when they are the long side of the market. See Huang
and Wang (2009, 2010) for a more detailed discussion of the nature of equilibrium under
costly participation.
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compute price impact λ and price reversal γ:

λ =
ασ2

(1 − π)µ
, (4.8)

γ =
α2σ4σ2

zπ
2

[(1 − π)µ + π]2
. (4.9)

Both measures are inversely related to the fraction µ of participating
liquidity suppliers. Proposition 4.4 implies that the illiquidity discount
is also inversely related to µ.

We derive comparative statics with respect to c for the equilibrium
in Corollary 4.3, and consider only the region c > c, where the mea-
sure µ of participating suppliers is less than one. This is without loss of
generality: in the region c ≤ c, where all suppliers participate, prices are
not affected by the participation cost and are as in the perfect-market
benchmark. When c > c, an increase in the participation cost lowers
µ, and therefore raises price impact, price reversal, and the illiquidity
discount. Since the illiquidity discount increases, so does the asset’s
expected return.

Proposition 4.5. An increase in the participation cost c raises price
impact λ, price reversal γ, and the asset’s expected return E(R).

4.3 Literature

The idea that participation in financial markets is costly and hence
limited dates back to Demsetz (1968). Demsetz (1968) studies the pro-
vision of immediacy, i.e., immediate execution of trades. He argues that
supplying immediacy is costly but there is a demand for it. Because of
the costs of supplying immediacy, only a subset of agents will choose to
supply it, and they will be compensated from the price concessions they
will earn from the demanders of immediacy. Demsetz (1968) identifies
the suppliers of immediacy with market makers, and their compensa-
tion with the bid-ask spread.

A subsequent literature models price formation in the presence of
market makers. In most of that literature, market makers are assumed
to be the only suppliers of immediacy and to receive an exogenous
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flow of orders from the demanders of immediacy. The literature deter-
mines the bid-ask spreads chosen by market makers as a function of
the process of order arrival, the degree of competition between market
makers, and the inventory and risk aversion of market makers. Exam-
ples are Garman (1976), Stoll (1978), Amihud and Mendelson (1980),
Ho and Stoll (1980, 1981, 1983), Cohen et al. (1981) and Mildenstein
and Schleef (1983). Because of the focus on market makers’ inventory,
that literature is often referred to as the inventory literature.

Most of the inventory literature takes the market structure as
exogenous, e.g., assumes an exogenous number of market makers. One
exception is Stoll (1978), who endogenizes the number of market makers
in the spirit of Demsetz (1968), taking the costs of supplying immediacy
to be fixed costs of processing orders. Grossman and Miller (1988) per-
form a similar exercise, but emphasize more explicitly costs of market
participation. Their setting is closely related to ours: a number of liq-
uidity suppliers choose whether or not to participate in a market, and
those choosing to participate pay a cost and can absorb an uncertain
and exogenous order by liquidity demanders. The analysis of Grossman
and Miller (1988) is closely related to the equilibrium in Periods 1/2
and 1 in our model. Grossman and Miller (1988) emphasize additionally
that the bid-ask spread has drawbacks as a measure of liquidity, and
suggest the use of price reversal instead. They show that price reversal
increases in participation costs, consistent with our Proposition 4.5.

Grossman and Miller (1988) do not derive the effect of participation
costs on ex-ante expected returns because they do not introduce our
Period 0. They introduce, however, two periods after our Period 1: a
Period 2 in which an offsetting liquidity shock arrives in the market,
and a Period 3 in which the asset pays off. This captures the important
idea that a liquidity shock experienced by some agents is absorbed
first by a small set of market participants (the liquidity suppliers in
Period 1) and then by a larger set of agents who gradually arrive in the
market in response to the shock (the traders with the offsetting liquidity
shock in Period 2). The idea that some agents arrive gradually into a
market in response to profitable opportunities has received attention
recently in the search literature reviewed in Section 9. Duffie (2010)
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and Suominen and Rinne (2011) model a similar effect in a centralized
market. They assume that some agents arrive into a market infrequently
with liquidity shocks. These shocks are absorbed by market makers
present in the market in all periods, and by other infrequent traders
arriving in future periods who can trade with market makers.

Huang and Wang (2009) study how participation costs affect both
the demand for immediacy, which Grossman and Miller (1988) treat
as exogenous, and the supply. They assume that liquidity shocks are
opposite across agents and so do not affect the price in the absence of
participation costs. Participation costs lower the price because sellers
are more willing to participate than buyers. The intuition is that sellers
receive a larger risky endowment, and are hence more concerned about
the risk that an additional shock will leave them with a large risk
exposure. This effect of participation costs on ex-ante expected returns
is closely related to the one that we derive in Period 0 of our model.
Huang and Wang (2010) employ a similar framework as in Huang and
Wang (2009) to study welfare questions. They show, in particular, that
the market can provide less liquidity than the social optimum.

The costs of market participation in our model concern Period 1,
which is after agents have bought the asset. Costs to participate in the
market in Period 0 and to buy the asset can be interpreted as entry
costs, e.g., learning about the asset. Goldsmith (1976), Mayshar (1979)
and Merton (1987) show that entry costs induce agents to under-invest
and under-diversify, and typically reduce asset prices. Entry costs would
have a similar effect in our model: they would render agents less willing
to buy the asset in Period 0, and hence would lower the Period 0 price.
Mankiw and Zeldes (1991) conjecture that limited investor participa-
tion in the stock market can render stocks cheaper relative to bonds,
explaining the equity premium puzzle of Mehra and Prescott (1985).
Basak and Cuoco (1998) show that when some investors cannot par-
ticipate in the stock market, stocks’ expected excess returns relative to
bonds increase, and interest rates decrease.

Pagano (1989a) and Allen and Gale (1994) show that entry costs
can result in multiple equilibria: high-volatility ones, where few agents
enter the market for an asset, causing volatility to be high and entry
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to be undesirable, and low-volatility ones, where many agents enter.
Key for the multiplicity in Pagano (1989a) is the feedback from asset
prices to equity issuance by firms, and in Allen and Gale (1994) the
heterogeneity between investors.2

2 A different type of multiplicity arises when agents can choose between market venues to
trade an asset. Agents prefer to trade in a venue where others are trading, and this causes
concentration of trade in one venue (Pagano, 1989b). A related multiplicity result arises
in our model because there exists one equilibrium in which there is market participation
in Period 1 and one equilibrium in which no agent participates.



5
Transaction Costs

In addition to costs of market participation, agents typically pay costs
when executing transactions. Transaction costs drive a wedge between
the buying and selling price of an asset. They come in many types,
e.g., brokerage commissions, exchange fees, transaction taxes, bid-ask
spreads, price impact. Some types of transaction costs can be viewed
as a consequence of other market imperfections: for example, Section 4
shows that costly participation can generate price-impact costs. Other
types of costs, such as transaction taxes, can be viewed as more primi-
tive. We assume that transaction costs concern trade in Period 1. The
difference with the participation costs of Section 4 is that the decision
whether or not to incur the transaction costs is contingent on the price
in Period 1.

We focus on the case where transaction costs are proportional to
transaction size, and for simplicity assume that proportionality con-
cerns the number of shares rather than the dollar value. Denoting by
κ the cost per unit of shares traded and by θt the number of shares
that an agent holds in Period t = 0,1, proportional costs take the form
κ |θ1 − θ0|. We assume that the liquidity shock z is drawn from a gen-
eral distribution that is symmetric around zero with density f(z); spe-
cializing to a normal distribution does not simplify the analysis.

249
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5.1 Equilibrium

Transaction costs generate a bid-ask spread in Period 1. An agent buy-
ing one share pays the price S1 plus the transaction cost κ, and so faces an
effective ask price S1 + κ. Conversely, an agent selling one share receives
S1 but pays κ, and so faces an effective bid price S1 − κ. The bid-ask
spread is independent of transaction size because transaction costs are
proportional. Because of the spread, trade occurs only if the liquidity
shock z is sufficiently large. Suppose, for example, that z > 0, in which
case liquidity demanders value the asset less than liquidity suppliers.
If liquidity suppliers buy, their demand function is similar to that in
Section 3 (Equation (3.4a)), but with S1 + κ taking the place of S1, i.e.,

θs
1 =

D̄ − S1 − κ

ασ2 . (5.1)

Conversely, if liquidity demanders sell, their demand function is also
similar to that in Section 3 (Equation (3.4b)), but with S1 − κ taking
the place of S1, i.e.,

θd
1 =

D̄ − S1 + κ

ασ2 − z. (5.2)

Since in equilibrium agents enter Period 1 holding θ̄ shares of the risky
asset, trade occurs if there exists a price S1 such that θs

1 > θ̄ and θd
1 < θ̄.

Using (5.1) and (5.2), we can write these conditions as

κ < D̄ − S1 − ασ2θ̄ < ασ2z − κ.

Therefore, trade occurs if z > 2κ
ασ2 ≡ κ̂, i.e., the liquidity shock z is

large relative to the transaction cost κ. The price can be deter-
mined by substituting (5.1) and (5.2) into the market-clearing equa-
tion (3.5). Repeating the analysis for z < 0, we can derive the following
proposition.

Proposition 5.1. The equilibrium in Period 1 is as follows:

• |z| ≤ κ̂: Agents do not trade;
• |z| > κ̂: All agents trade and the price is

S1 = D̄ − ασ2
[
θ̄ + πz + κ̂

(
1
2

− π

)
sign(z)

]
. (5.3)
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The effect of transaction costs on the price depends on the relative
measures of liquidity suppliers and demanders. Suppose, for example,
that z > 0. In the absence of transaction costs, liquidity demanders sell
and the price drops. Because transaction costs deter liquidity suppliers
from buying, they tend to depress the price, amplifying the effect of z.
At the same time, transaction costs deter liquidity demanders from
selling, and this tends to raise the price, dampening the effect of z. The
overall effect depends on agents’ relative measures. If π < 1/2 (more
suppliers than demanders), the impact on suppliers dominates, and
transaction costs amplify the effect of z. The converse holds if π > 1/2.
The price in Period 0 takes a form similar to that in the perfect-market
benchmark.1

Proposition 5.2. The price in Period 0 is given by (3.10), where

M =

∫ κ̂
0 exp

(1
2α2σ2z2

)
ch(α2σ2θ̄z)f(z)dz +

∫ ∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz∫ κ̂

0 f(z)dz +
∫ ∞
κ̂ exp

[−1
2α2σ2π2(z − κ̂)2

]
f(z)dz

,

(5.4)

∆1 =

ασ2

[∫ κ̂
0 exp

(1
2α2σ2z2

)
sh

(
α2σ2θ̄z

)
zf(z)dz

+
∫ ∞
κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1 − π)κ̂]f(z)dz

]

θ̄

[∫ κ̂
0 exp

(1
2α2σ2z2

)
ch(α2σ2θ̄z)f(z)dz

+
∫ ∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz

] , (5.5)

Γ(z) = exp
[
1
2
α2σ2z2 − 1

2
α2σ2(1 − π)2(z − κ̂)2

]
. (5.6)

1 Extending our analysis to fixed costs is more complicated because agents’ optimization
problems become non-convex. Non-convexity can give rise to multiple solutions, meaning
that agents of the same type (suppliers or demanders) can fail to take the same action.
Suppose, for example, that all agents start with the same position θ0 = θ̄ in Period 0. As
with proportional costs, all agents trade in Period 1 if the liquidity shock z is large, while
no agent trades if z is small. For intermediate values of z, however, some agents pay the
fixed cost and trade, while others of the same type do not trade.

A further complication arising from non-convexity is that θ0 = θ̄ is not an equilibrium.
Indeed, consider a deviation from θ0 = θ̄ in either direction. The trades that become
profitable in the margin are those whose surplus equals the fixed cost. But while the net
surplus of these trades is zero, the marginal surplus (i.e., the derivative with respect to θ0)
is non-zero. Thus, expected utility at θ0 = θ̄ has a local minimum and a kink, implying
that identical agents in Period 0 choose different positions in equilibrium.
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5.2 Transaction Costs and Illiquidity

We next examine how transaction costs impact the illiquidity measures
and the expected return. Because transaction costs deter liquidity sup-
pliers from trading, they raise price impact λ. Note that λ rises even
when transaction costs dampen the effect of the liquidity shock z on
the price. Indeed, dampening occurs not because of enhanced liquidity
supply, but because liquidity demanders scale back their trades.

Proposition 5.3. Price impact λ is

λ =
ασ2

1 − π

[
1 +

κ̂

2π

∫ ∞
κ̂ (z − κ̂)f(z)dz∫ ∞
κ̂ (z − κ̂)2 f(z)dz

]
, (5.7)

and is higher than without transaction costs (κ = 0).

Defining price reversal γ involves a slight complication because for
small values of z there is no trade in Period 1, and therefore the price
S1 is not uniquely defined. We define price reversal conditional on
trade in Period 1. The empirical counterpart of our definition is that
no-trade observations are dropped from the sample. Transaction costs
affect price reversal both because they limit trade to large values of z,
and because they impact the price conditional on trade occuring. The
first effect raises price reversal. The second effect works in the same
direction when transaction costs amplify the effect of z on the price,
i.e., when π < 1/2.

Proposition 5.4. Price reversal γ is

γ = α2σ4

∫ ∞
κ̂

[
πz +

(1
2 − π

)
κ̂
]2

f(z)dz∫ ∞
κ̂ f(z)dz

. (5.8)

It is increasing in the transaction cost coefficient κ if π ≤ 1/2.

Because transaction costs hinder trade in Period 1, a natural conjec-
ture is that they raise the illiquidity discount. When, however, π ≈ 1,
transaction costs can lower the discount. The intuition is that for π ≈ 1



5.3 Literature 253

liquidity suppliers are the short side of the market and stand to gain
the most from trade. Therefore, transaction costs hurt them the most,
and reduce the ratio M of marginal utilities of wealth of demanders and
suppliers. This lowers the risk-neutral probability πM/(1 − π + πM)
of being a demander, and can lower the discount. Transaction costs
always raise the discount, and hence the asset’s expected return, when
π ≤ 1/2.

Proposition 5.5. The asset’s expected return E(R) is decreasing in
the transaction cost coefficient κ if π ≤ 1/2.

We can sharpen the results of Propositions 5.4 and 5.5 by assum-
ing specific distributions for the liquidity shock z. When z is drawn
from a two-point distribution, transaction costs raise price reversal
γ for all values of π, but lower the illiquidity discount for π ≈ 1.
When z is normal, transaction costs raise γ for all values of π, and
numerical calculations suggest that they also raise the discount for all
values of π.

5.3 Literature

Early papers on the effects of transaction costs are Amihud and Mendel-
son (1986) and Constantinides (1986). Constantinides (1986) derives
the optimal investment policy of an infinitely lived agent, who can
trade a riskless and a risky asset. The return of the riskless asset is
constant over time, and that of the risky asset is i.i.d. The risky asset
carries transaction costs, which are proportional to the dollar value
traded. Because the agent has CRRA preferences, the optimal policy
in the absence of transaction costs is to maintain a constant fraction of
wealth invested the risky asset, as in Merton (1971). In the presence of
transaction costs, the agent instead prevents this fraction from exiting
an interval. When the fraction is strictly inside the interval, the agent
does not trade. The agent incurs a small utility loss from transaction
costs, even though he trades infinitely often in their absence. Intuitively,
the derivative of the utility at the optimal policy is zero, and hence a
deviation from that policy results in a second-order loss.
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The solution of Constantinides (1986) is approximate because
consumption is assumed to be an exogenous constant fraction of wealth.
Davis and Norman (1990) provide an exact solution. Fleming et al.
(1990), and Dumas and Luciano (1991) do the same in the more
tractable case where the agent consumes only at the end of his invest-
ment horizon. To eliminate horizon effects, they focus on the limit
where the horizon converges to infinity. Liu and Loewenstein (2002)
consider explicitly the finite-horizon case. Balduzzi and Lynch (1999),
Lynch and Balduzzi (2000), Liu (2004), Jang et al. (2007) and Lynch
and Tan (2011) consider richer settings, involving multiple risky assets
and predictable returns.

While Constantinides (1986) and the subsequent literature mainly
emphasize portfolio optimization, they also explore implications for
equilibrium asset prices. They do this by giving the agent a choice
between two economies: one in which the risky asset carries transaction
costs, and one in which it does not but its expected return is lower. They
interpret the reduction in expected return that would make the agent
indifferent between the two economies as an equilibrium effect of trans-
action costs. Whether this effect would arise in an explicit equilibrium
model, such as those that we survey in the remainder of this section, is
doubtful; for example, the effect should depend on the scarcity of the
more liquid asset, but asset supply is not taken into consideration. This
exercise, however, provides an intuitive metric to express the utility loss
from transaction costs.

Amihud and Mendelson (1986) build an equilibrium model, in which
agents are risk neutral and have different investment horizons. Upon
entering the economy, agents can invest in a set of assets that differ in
transaction costs. Agents must sell their assets when they exit the econ-
omy, and exit rates are independent of age but can differ across agents.
Assets with high transaction costs trade at a lower price in equilibrium.
Moreover, they are held by agents with long investment horizons, i.e.,
low exit rates, who can amortize the costs over a longer period. Each
agent holds only one asset, the one maximizing expected return net
of transaction costs amortized over the agent’s horizon. The effect of
transaction costs on asset prices is concave. Indeed, the price differen-
tial between one asset and its next closest in terms of transaction costs
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is determined by the “marginal” investor who is indifferent between
the two assets. Since the marginal investor in the case of assets with
high transaction costs has a long horizon and hence is less concerned
about costs, the price differential between these assets is smaller than
for low-cost assets.

Aiyagari and Gertler (1991) and Vayanos and Vila (1999) allow
for intertemporal consumption and risk aversion in a setting with two
riskless assets, one of which carries transaction costs. The latter paper
shows that a decrease in the supply of the more liquid asset increases
the liquidity premium, i.e., the premium investors are willing to pay to
hold that asset. This is in the spirit of Amihud and Mendelson (1986):
since the horizon of the marginal investor becomes shorter, the investor
is more concerned about transaction costs. Heaton and Lucas (1996)
assume that the asset carrying transaction costs is risky and agents
trade to smooth labor income shocks. A calibration of their model
reveals that transaction costs have small effects on asset prices unless
agents face borrowing constraints.

Vayanos (1998) re-examines the effects of transaction costs in a set-
ting with multiple risky assets and risk averse agents. Agents hold a
diversified portfolio at all times, but when they need to reduce their
risk exposure they sell disproportionately more of the assets with low
transaction costs. Moreover, because transaction costs make agents less
willing not only to buy but also to sell an asset, assets with high
costs can trade at higher prices than assets with low costs. This result,
which also holds in Period 1 of our model, cannot arise when agents
are risk neutral or assets are riskless because of a “dominance” argu-
ment: since assets are perfect substitutes except for transaction costs,
agents would not buy assets with high costs if these trade at higher
prices than assets with low costs. Furthermore, the marginal-investor
pricing derived in Amihud and Mendelson (1986) does not hold since
agents hold diversified portfolios and hence are all marginal for an asset
pair.

Huang (2003) assumes stochastic liquidation needs and two riskless
assets, one of which carries transaction costs. He shows that transaction
costs can generate a strict preference for diversification even though the
assets are riskless. This is because returns net of transaction costs are
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risky: investing in the less liquid asset yields a low payoff if an agent
needs to sell on short notice, and a high payoff otherwise.

Lo et al. (2004) assume that agents trade to share risk and have
access to a riskless asset carrying no costs and a risky asset carry-
ing fixed costs, i.e., independent of transaction size. They show that
transaction costs hinder risk sharing, as in Period 1 of our model, and
this causes the price of the risky asset to decrease, as in Period 0 of
our model. Because agents in their model have high-frequency trad-
ing needs, small fixed costs have a strong effect on the price and the
expected return of the risky asset.

More recent work on transaction costs emphasizes the time vari-
ation in these costs and in the liquidity premia per unit of the costs.
Acharya and Pedersen (2005) assume that investors have a one-period
horizon and transaction costs are stochastic. They show that part
of the costs’ price effect is through a risk premium. This is because
transaction costs impact the covariance between an asset’s return net
of costs and the net return of the market portfolio. For example, if
an asset’s transaction costs increase when the costs of the market
portfolio increase or when the market portfolio’s dividends decrease,
this adds to the asset’s risk and causes the asset price to decrease.
Beber et al. (2012) examine the effects of stochastic transaction costs
when investors differ in their horizons.

Vayanos (2004) explores time variation in investor horizons, assum-
ing constant transaction costs. He assumes that investors are fund man-
agers subject to withdrawals when their performance drops below a
threshold, and that the volatility of asset dividends is time-varying.
During volatile times, fund managers’ horizons shorten because their
performance is more likely to drop below the threshold. This causes liq-
uidity premia per unit of transaction costs to increase. It also causes the
market betas of assets with high transaction costs to increase precisely
during the times when the market is the most risk averse.

Papers on time varying transaction costs and liquidity premia show
that the traditional CAPM should be augmented by pricing factors
relating to aggregate liquidity. These factors are aggregate transaction
costs in Acharya and Pedersen (2005) and Beber et al. (2012), and
volatility (which correlates with liquidity premia) in Vayanos (2004).
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Buss and Dumas (2011) and Buss et al. (2011) develop numerical
algorithms to solve dynamic general equilibrium models with trans-
action costs and general model primitives. Buss et al. (2011) assume
multiple risky assets and labor income shocks, and show that transac-
tion costs have small price effects. Buss and Dumas (2011) show that
deterministic transactions costs give rise to time-variation in measures
of illiquidity, such as price impact and volume, and this variation can
be a priced factor.

Most of the papers mentioned so far adopt specific functional forms
for the primitives of the model, e.g., agents’ utility functions and asset
payoffs. This is because without functional restrictions it is difficult to
derive closed-form solutions for portfolio optimization and equilibrium
under transaction costs. (The same applies for other market imperfec-
tions that we consider in this survey.) A different set of papers derive
more basic properties of markets with transaction costs without resort-
ing to specific functional forms. For example, Jouini and Kallal (1995)
show that under transaction costs, no-arbitrage does not require the
discounted price to be a martingale but only that a martingale lies
between the bid and ask prices. Luttmer (1996) shows that transaction
costs weaken significantly the restrictions that the Euler equation of
portfolio optimization imposes on the link between consumption and
asset prices. Leland and Rubinstein (1985), Edirisinghe et al. (1993),
and Soner et al. (1995) show that transaction costs also weaken the
no-arbitrage bounds of option pricing.



6
Asymmetric Information

In the perfect-market benchmark, all agents have the same information
about the payoff of the risky asset. In practice, however, agents can
have different information because they have access to different sources
of information or have different abilities to process information from
the same source. We model asymmetric information through a private
signal s about the asset payoff D that some agents observe in Period 1.
The signal is

s = D + ε (6.1)

where ε is normal with mean zero and variance σ2
ε , and is independent

of (D,z). We assume that liquidity demanders, who observe the liq-
uidity shock z in Period 1, are also the only ones to observe s. This
assumption is without loss of generality: even if liquidity demanders
do not observe the signal, they can infer it perfectly from the price
because they observe the liquidity shock. Asymmetric information can
therefore exist only if some liquidity suppliers are uninformed. We
assume that they are all uninformed for simplicity. Note that because
liquidity suppliers are uninformed, our model determines how the sup-
ply of liquidity is influenced by suppliers’ concern about trading against
better-informed agents.

258
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6.1 Equilibrium

The price in Period 1 incorporates the signal of liquidity demanders,
and therefore reveals information to liquidity suppliers. To solve for
equilibrium, we follow the standard rational expectations equilibrium
(REE) procedure to conjecture a price function, i.e., a relationship
between the price and the signal, then determine how agents use their
knowledge of the price function to learn about the signal and formu-
late demand functions, and finally confirm that the conjectured price
function clears the market.

We conjecture a price function that is affine in the signal s and the
liquidity shock z, i.e.,

S1 = a + b(s − D̄ − cz) (6.2)

for three constants (a,b,c). For expositional convenience, we set ξ ≡
s − D̄ − cz. We also refer to the price function as simply the price.

Agents use the price and their private information to form a pos-
terior distribution about the asset payoff D. For a liquidity demander,
the price conveys no additional information relative to observing the
signal s. Given the joint normality of (D,ε), D remains normal condi-
tional on s = D + ε, with mean and variance

E[D|s] = D̄ + βs(s − D̄), (6.3a)

σ2[D|s] = βsσ
2
ε , (6.3b)

where βs ≡ σ2/(σ2 + σ2
ε ). For a liquidity supplier, the only information

is the price S1, which is equivalent to observing ξ. Conditional on ξ

(or S1), D is normal with mean and variance

E[D|S1] = D̄ + βξξ = D̄ +
βξ

b
(S1 − a), (6.4a)

σ2[D|S1] = βξ(σ2
ε + c2σ2

z), (6.4b)

where βξ ≡ σ2/σ2
ξ and σ2

ξ ≡ σ2 + σ2
ε + c2σ2

z . Agents’ optimization prob-
lems are as in Section 3, with the conditional distributions of D replac-
ing the unconditional one. Proposition 6.1 summarizes the solution to
these problems.
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Proposition 6.1. Agents’ demand functions for the risky asset in
Period 1 are

θs
1 =

E[D|S1] − S1

ασ2[D|S1]
, (6.5a)

θd
1 =

E[D|s] − S1

ασ2[D|s] − z. (6.5b)

Substituting (6.5a) and (6.5b) into the market-clearing equation
(3.5), we find

(1 − π)
E[D|S1] − S1

ασ2[D|S1]
+ π

(
E[D|s] − S1

ασ2[D|s] − z

)
= θ̄. (6.6)

The price (6.2) clears the market if (6.6) is satisfied for all values
of (s,z). Substituting S1, E[D|s], and E[D|S1] from (6.2), (6.3a) and
(6.4a), we can write (6.6) as an affine equation in (s,z). Therefore, (6.6)
is satisfied for all values of (s,z) if the coefficients of (s,z) and of the
constant term are equal to zero. This yields a system of three equations
in (a,b,c), solved in Proposition 6.2.

Proposition 6.2. The price in Period 1 is given by (6.2), where

a = D̄ − α(1 − b)σ2θ̄, (6.7a)

b =
πβsσ

2[D|S1] + (1 − π)βξσ
2[D|s]

πσ2[D|S1] + (1 − π)σ2[D|s] , (6.7b)

c = ασ2
ε . (6.7c)

To determine the price in Period 0, we follow the same steps as
in Section 3. The calculations are more complicated because expected
utilities in Period 1 are influenced by two random variables (s,z) rather
than only z. The price in Period 0, however, takes the same general form
as in the perfect-market benchmark.
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Proposition 6.3. The price in Period 0 is given by (3.10), where M

is given by (3.11),

∆0 =
(b − βξ)2(σ2 + σ2

ε + c2σ2
z)

σ2[D|S1]π2 , (6.8a)

∆1 =
α3bσ2(σ2 + σ2

ε )σ
2
z

1 + ∆0(1 − π)2 − α2σ2σ2
z

, (6.8b)

∆2 =
α3σ4σ2

z

[
1 + (βs−b)2(σ2+σ2

ε )
σ2[D|s]

]
1 + ∆0(1 − π)2 − α2σ2σ2

z

. (6.8c)

6.2 Asymmetric Information and Illiquidity

We next examine how asymmetric information impacts the illiquid-
ity measures and the expected return. When some agents observe a
private signal, this not only generates dispersion in information across
agents, but also renders each agent more informed because the signal is
partially revealed through the price. The improvement in each agent’s
information is not a distinguishing feature of asymmetric information:
information can also improve if all agents observe a public signal. To
focus on the dispersion in information, which is what distinguishes
asymmetric information, we compare with two symmetric-information
benchmarks: the no-information case, where information is symmetric
because no agent observes the signal s, and the full-information case,
where all agents observe s. The analysis in Section 3 concerns the no-
information case, but can be extended to the full-information case.
Price impact λ and price reversal γ under full information are given by
(3.16) and (3.19), respectively, where σ2 is replaced by σ2[D|s].

Proposition 6.4. Price impact λ under asymmetric information is

λ =
ασ2[D|S1]

(1 − π)
(
1 − βξ

b

) . (6.9)

Price impact is highest under asymmetric information and lowest under
full information. Moreover, price impact under asymmetric information
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increases when the private signal (6.1) becomes more precise, i.e., when
σ2

ε decreases.

Proposition 6.4 shows that price impact is higher under asymmet-
ric information than under either of the two symmetric-information
benchmarks. This comparison is driven by an uncertainty and a learn-
ing effect. Price impact increases in the uncertainty faced by liquidity
suppliers, measured by their conditional variance of the asset payoff.
Because of this uncertainty effect, price impact tends to be lowest under
full information, since liquidity suppliers observe the signal perfectly,
next lowest under asymmetric information, since the signal is partially
revealed to liquidity suppliers through the price, and highest under no
information.

An additional source of price impact, present only under asymmetric
information, is that liquidity suppliers seek to learn the signal from
the price. Because, for example, liquidity suppliers attribute selling
pressure partly to a low signal, they require a larger price drop to
buy. This learning effect corresponds to the term βξ/b in (6.9), which
lowers the denominator and raises price impact λ. The learning effect
works in the same direction as the uncertainty effect when comparing
asymmetric to full information, but in the opposite direction when
comparing asymmetric to no information. Proposition 6.4 shows that
in the latter comparison the learning effect dominates.

While price impact is unambiguously higher under asymmetric
information, the same is not true for price reversal. Indeed, consider two
extreme cases. If π ≈ 1, i.e., almost all agents are liquidity demanders
(informed), then the price processes under asymmetric and full infor-
mation approximately coincide, and so do the price reversals. Since,
in addition, liquidity suppliers face more uncertainty under no infor-
mation than under full information, price reversal is highest under no
information. If instead π ≈ 0, i.e., almost all agents are liquidity suppli-
ers (uninformed), then price impact λ converges to infinity (order 1/π)
under asymmetric information. This is because the trading volume of
liquidity demanders converges to zero, but the volume’s informational
content remains unchanged. Because of the high price impact, price
reversal is highest under asymmetric information.
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Proposition 6.5. Price reversal γ under asymmetric information is

γ = b(b − βξ)(σ2 + σ2
ε + c2σ2

z). (6.10)

Price reversal is lowest under full information. It is highest under asym-
metric information if π ≈ 0, and under no information if π ≈ 1.

The analysis of the illiquidity discount involves an effect that goes
in the direction opposite to the uncertainty effect. This is that infor-
mation revealed about the asset payoff in Period 1 reduces uncertainty
and hence the scope for risk sharing. Less risk sharing, in turn, renders
agents less willing to buy the asset in Period 0 and raises the illiquidity
discount. The negative effect of information on risksharing and wel-
fare has been shown in Hirshleifer (1971). We derive the implications
of the Hirshleifer effect for asset pricing: Proposition 6.6 shows that
the reduced scope for risksharing in Period 1 lowers the asset price in
Period 0 and raises the illiquidity discount.

Because of the Hirshleifer effect, the illiquidity discount under full
information is higher than under no information — a comparison which
is exactly the reverse than for the measures of illiquidity. A corollary
of this result is that the illiquidity discount under no trade is higher
than in the perfect-market benchmark of Section 3. Indeed, the perfect-
market benchmark corresponds to the no-information case, while no
trade is a special case of full information when the signal (6.1) is
perfectly precise (σ2

ε = 0).1

The Hirshleifer effect implies that the illiquidity discount under
asymmetric information should be between that under no and under full
information. The discount under asymmetric information, however, is
also influenced by the learning effect, which raises price impact, reduces

1 Recall from Section 3 that the illiquidity discount is the product of πM/(1 − π + πM),
the risk-neutral probability of being a liquidity demander, times ∆1θ̄, the discount that
an agent would require conditional on being a demander. No trade renders both deman-
ders and suppliers worse off relative to the perfect-market benchmark, and hence has an
ambiguous effect on the ratio M of their marginal utilities of wealth. The increase in the
illiquidity discount is instead driven by the increase in the discount ∆1θ̄ required by a
demander.
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the scope for risk sharing and hence raises the discount. The learning
effect works in the same direction as the Hirshleifer effect when com-
paring asymmetric to no information, but in the opposite direction
when comparing asymmetric to full information. Proposition 6.6 shows
that in the latter comparison the learning effect dominates. Therefore,
the illiquidity discount, and hence the asset’s expected return, is higher
under asymmetric information than under either of the two symmetric-
information benchmarks.

Proposition 6.6. The asset’s expected return E(R) is highest under
asymmetric information and lowest under no information.

6.3 Literature

The analysis of REE with asymmetric information was pioneered by
Grossman (1976). Grossman (1976) assumes that agents observe pri-
vate signals about the payoff of a risky asset, which are of equal quality
and independent conditional on the payoff. The equilibrium price of
the risky asset reveals the average of agents’ signals, which is a suffi-
cient statistic for all the signals because of normality. Hence, the price
aggregates information perfectly.

Grossman and Stiglitz (1980) assume that some agents observe a
common signal about the payoff of a risky asset and the remaining
agents observe no signal. Following some of the literature, we term this
information structure “asymmetric information structure,” and that in
Grossman (1976) as “differential information structure.” Grossman and
Stiglitz (1980) allow additionally for the supply of the risky asset to be
stochastic. With a deterministic supply, the price reveals perfectly the
signal of the informed agents, and hence the uninformed can achieve
the same utility as the informed. With a stochastic supply instead,
the informed can achieve higher utility. The analysis of Grossman and
Stiglitz (1980) is closely related to the equilibrium in Period 1 of our
model, except that we introduce noise in the price through endowments
rather than through the asset supply. Diamond and Verrecchia (1981)
are first to use this modeling trick, and do so in a differential informa-
tion model.
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Grossman (1976) and Grossman and Stiglitz (1980) derive two basic
paradoxes relating to information aggregation. Since the price in Gross-
man (1976) aggregates perfectly agents’ private signals, agents should
form their asset demand based only on the price and not on their sig-
nals. The paradox then is how can the price aggregate the signals.
A second paradox is that if the price in Grossman and Stiglitz (1980)
reveals perfectly the signal of the informed agents, then why would the
informed be willing to commit resources to acquire their signal.

Both paradoxes can be resolved by introducing noise, e.g., through
stochastic asset supply. Grossman and Stiglitz (1980) show that with
stochastic supply, the informed can achieve higher utility than the
uninformed and hence can have an incentive to acquire costly infor-
mation. This has the important implication that markets cannot be
fully efficient when information acquisition is costly because informa-
tion will be acquired only when the price is not fully revealing.2 Hellwig
(1980) introduces stochastic supply in a differential information model,
which generalizes Grossman (1976) by allowing for heterogeneity in sig-
nal quality and agent risk aversion. He shows that the price does not
aggregate information perfectly, and hence agents have an incentive to
use both the price and their private signal when forming their asset
demand.

All papers mentioned so far assume that agents can trade one risk-
less and one risky asset over one period. Admati (1985) extends the
analysis to multiple risky assets, while also allowing for a general corre-
lation structure among asset payoffs, asset supplies, and agents’ private
signals. She shows that because signals about one asset are also infor-
mative about the payoff and supply of others, surprising phenomena
can arise. For example, a high price of one asset, holding other prices
constant, can cause agents to lower their expectation of that asset’s
payoff.

Grundy and McNichols (1989) and Brown and Jennings (1990)
assume two trading periods and one risky asset. They show that unin-
formed traders learn about the asset payoff not only from current prices

2 This conclusion does not extend to settings with imperfect competition, as we point out
in Section 7.
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but also from past ones because prices are noisy signals of asset payoffs.
The optimal strategy thus uses the entire price history, in a manner
similar to strategies used by technical traders. Wang (1993) studies a
continuous-time setting with one risky asset. He shows that uninformed
agents behave as price chasers, buying following a price increase. He
also shows that return volatility and price reversal can be highest under
asymmetric information than under full or no information. The latter
result is consistent with our Proposition 6.5. Wang (1994) employs a
similar model to study the behavior of trading volume and its relation-
ship with price changes. These papers assume an asymmetric infor-
mation structure. He and Wang (1995) study the joint behavior of
trading volume and prices under a differential information structure.
Vives (1995) studies the speed at which prices aggregate information
under a combined asymmetric-differential information structure, where
some agents observe conditionally independent signals about the payoff
of a risky asset and the remaining agents observe no signal.

Much of the literature on REE with asymmetric information focuses
on the informativeness of prices, rather than on market liquidity. Mar-
ket liquidity is instead emphasized in a subsequent literature which
combines asymmetric information with strategic behavior or sequential
arrival of traders. This literature was pioneered by Glosten and Milgrom
(1985) and Kyle (1985), and is surveyed in the next section. Yet, even
REE models with asymmetric information have implications for market
liquidity. We derive such implications in the context of our model in
Propositions 6.4 and 6.5. Additional implications are derived, for exam-
ple, in Eisfeldt (2004) and Cespa and Foucault (2011). Eisfeldt (2004)
assumes that risk-averse entrepreneurs can sell stakes in projects on
which they have private information. During times of high productiv-
ity, entrepreneurs undertake larger projects, and hence have a stronger
motive to share risk. Thus, when productivity is high, adverse selec-
tion is low and liquidity is high. Cespa and Foucault (2011) show that
asymmetric information can generate liquidity spillovers: because asset
payoffs are correlated, a drop in liquidity in one asset reduces the infor-
mation available on other assets, hence reducing the liquidity of those
assets.
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A number of recent papers examine whether agents require higher
expected returns to invest in the presence of asymmetric information.
O’Hara (2003) and Easley and O’Hara (2004) show that prices are
lower and expected returns are higher when agents receive private sig-
nals than when signals are public. This comparison concerns Period 1
of our model, and reverses when using the alternative symmetric-
information benchmark where no signals are observed. By contrast, we
show (Proposition 6.6 and Vayanos and Wang (2012a)) that the price
in Period 0 is lower under asymmetric information than under either
symmetric-information benchmark. Comparing prices in Period 0 mea-
sures the ex-ante effect of the imperfection, i.e., what compensation do
agents require to invest ex-ante knowing that they will face asymmet-
ric information ex-post? Qiu and Wang (2010) derive similar results
in an infinite-horizon model. Garleanu and Pedersen (2004) show in
a model with risk-neutral agents and unit demands that asymmetric
information can raise or lower prices, with the effect being zero when
probability distributions are symmetric — as is the case under normal-
ity. Ellul and Pagano (2006) show that asymmetric information lowers
prices in a model of IPO trading.



7
Imperfect Competition

In the perfect-market benchmark, agents are competitive and have no
effect on prices. In many markets, however, some agents are large rela-
tive to others, in the sense that they can influence prices either because
of their size or because of their information advantage. We model imper-
fect competition by assuming that some agents can exert market power
in Period 1. We mainly focus on the case where liquidity demanders
behave as a single monopolist, and consider more briefly monopolistic
behavior by liquidity suppliers. We emphasize the former case because
it has received more attention in the literature. When liquidity suppli-
ers behave monopolistically, imperfect competition obviously influences
the supply of liquidity. More surprisingly, it can also influence liquidity
supply when liquidity demanders behave monopolistically and suppliers
do not.

We consider both the cases where liquidity demanders have no pri-
vate information on asset payoffs, and so information is symmetric, and
where they observe the private signal (6.1), and so information is asym-
metric. The second case nests the first by setting the variance σ2

ε of the
signal noise to infinity. Hence, we treat both cases simultaneously, and
compare imperfect competition to the competitive equilibrium with
asymmetric information studied in Section 6.

268
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The trading mechanism in Period 1 is that liquidity suppliers submit
a demand function and liquidity demanders submit a market order, i.e.,
a price-inelastic demand function. Restricting liquidity demanders to
trade by market order is without loss of generality: they do not need
to condition their demand on price because they know all information
available in Period 1.

7.1 Equilibrium

We conjecture that the price in Period 1 has the same affine form (6.2)
as in the competitive case, with possibly different constants (a,b,c).
Given (6.2), the demand function of liquidity suppliers is (6.5a) as in the
competitive case. Substituting (6.5a) into the market-clearing equation
(3.5), and using (6.4a), yields the price in Period 1 as a function of the
liquidity demanders’ market order θd

1 :

S1(θd
1) =

D̄ − βξ

b a + ασ2[D|S1]
1−π (πθd

1 − θ̄)

1 − βξ

b

. (7.1)

Liquidity demanders choose θd
1 to maximize the expected utility

−Eexp
{

−α
[
W1 + θd

1

(
D − S1(θd

1)
)

+ z(D − D̄)
]}

. (7.2)

The difference with the competitive case is that liquidity demanders
behave as a single monopolist and take into account the impact of their
order θd

1 on the price S1. Proposition 7.1 characterizes the solution to
the liquidity demanders’ optimization problem.

Proposition 7.1. The liquidity demanders’ market order in Period 1
satisfies

θd
1 =

E[D|s] − S1(θd
1) − ασ2[D|s]z + λ̂θ̄

ασ2[D|s] + λ̂
, (7.3)

where λ̂ ≡ dS1(θd
1)

dθd
1

= απσ2[D|S1]

(1−π)
(
1− βξ

b

) .
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Equation (7.3) determines θd
1 implicitly because it includes θd

1 in
both the left- and the right-hand side. We write θd

1 in the form (7.3) to
facilitate the comparison with the competitive case. Indeed, the com-
petitive counterpart of (7.3) is (6.5b), and can be derived by setting λ̂

to zero. The parameter λ̂ measures the price impact of liquidity deman-
ders, and is closely related to the price impact λ. Because in equilibrium
λ̂ > 0, the denominator of (7.3) is larger than that of (6.5b), and there-
fore θd

1 is less sensitive to changes in E[D|s] − S1 and z than in the
competitive case. Intuitively, because liquidity demanders take price
impact into account, they trade less aggressively in response to their
signal and their liquidity shock.

Substituting (6.5a) and (7.3) into the market-clearing equation
(3.5), and proceeding as in Section 6, we find a system of three equa-
tions in (a,b,c). Proposition 7.2 solves this system.

Proposition 7.2. The price in Period 1 is given by (6.2), where

b =
πβsσ

2[D|S1] + (1 − π)βξσ
2[D|s]

2πσ2[D|S1] + (1 − π)σ2[D|s] , (7.4)

and (a,c) are given by (6.7a) and (6.7c), respectively. The linear equi-
librium exists if σ2

ε > σ̂2
ε , where σ̂2

ε is the positive solution of

α2σ̂4
ε σ

2
z = σ2 + σ̂2

ε . (7.5)

The price in the competitive market in Period 0 can be determined
through similar steps as in Sections 3 and 6.

Proposition 7.3. The price in Period 0 is given by (3.10), where

M = exp
(

1
2
α∆2θ̄

2
)√√√√ 1 + ∆0π2

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]
)

(1 − π)2 − α2σ2σ2
z

,

(7.6)
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∆1 =
α3bσ2(σ2 + σ2

ε )σ
2
z

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]
)

(1 − π)2 − α2σ2σ2
z

, (7.7a)

∆2 =
α3σ4σ2

z

[
1 +

α(βs−b)2(σ2+σ2
ε )(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)2

]

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]
)

(1 − π)2 − α2σ2σ2
z

, (7.7b)

and ∆0 is given by (6.8a).

7.2 Imperfect Competition and Illiquidity

We next examine how imperfect competition by liquidity demanders
impacts the illiquidity measures and the expected return.

Proposition 7.4. Price impact λ is given by (6.9). It is the same as
under competitive behavior when information is symmetric, and higher
when information is asymmetric.

When information is asymmetric, imperfect competition lowers liq-
uidity, as measured by price impact, even though liquidity suppliers are
competitive. The intuition is that when liquidity demanders take into
account their effect on price, they trade less aggressively in response
to their signal and their liquidity shock. This reduces the size of both
information- and liquidity-generated trades (hence lowering b in (6.9)).
The relative size of the two types of trades (measured by c) remains
the same, and so does price informativeness, measured by the signal-to-
noise ratio. Monopoly trades thus have the same informational content
as competitive trades, but are smaller in size. As a result, the signal per
unit trade is higher, and so is the price impact λ of trades. Imperfect
competition has no effect on price impact when information is symmet-
ric because trades have no informational content.

An increase in information asymmetry, through a reduction in the
variance σ2

ε of the signal noise, generates an illiquidity spiral. Because
illiquidity increases, liquidity demanders scale back their trades. This
raises the signal per trade size, further increasing illiquidity. When
information asymmetry becomes severe, illiquidity becomes infinite and
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trade ceases, leading to a market breakdown. This occurs when σ2
ε ≤ σ̂2

ε ,
i.e., for values of σ2

ε such that the equilibrium of Proposition 7.2 does
not exist. Note that in our model non-competitive behavior is essential
for the non-existence of an equilibrium with trade because such an
equilibrium always exists under competitive behavior.

While imperfect competition raises price impact λ, it lowers price
reversal γ. Intuitively, price reversal arises because the liquidity deman-
ders’ trades in Period 1 cause the price to deviate from fundamental
value. Under imperfect competition, these trades are smaller and so is
price reversal.

Proposition 7.5. Price reversal γ is given by (6.10), and is lower
than under competitive behavior.

Imperfect competition can lower or raise the illiquidity discount.
Indeed, since liquidity demanders scale back their trades, they render
the price less responsive to their liquidity shock. Therefore, they can
obtain better insurance against the shock, and become less averse to
holding the asset in Period 0. This effect drives the illiquidity discount,
and hence the asset’s expected return, below the competitive value
when information is symmetric. When information is asymmetric, the
comparison can reverse. This is because the scaling back of trades gen-
erates the spiral of increasing illiquidity, and this reduces the insurance
received by liquidity demanders.

Proposition 7.6. The asset’s expected return E(R) is lower than
under perfect competition when information is symmetric, but can be
higher when information is asymmetric.

The case where liquidity suppliers collude can be treated in a man-
ner similar to the case where demanders collude, so we provide a brief
sketch. Suppose that demanders are competitive but suppliers behave
as a single monopolist in Period 1. Since suppliers do not know the liq-
uidity shock z and signal s, their trading strategy is to submit a price-
elastic demand function (rather than a market order). Non-competitive
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behavior renders this demand function less price-elastic than its com-
petitive counterpart (6.5a). The lower elasticity manifests itself through
an additive positive term in the denominator of the competitive demand
(6.5a), exactly as is the case for liquidity demanders in (6.5b) and (7.3).

Because liquidity suppliers submit a less price-elastic demand func-
tion than in the competitive case, the trades of liquidity demanders
have larger price impact. Hence, price impact λ and price reversal γ

are larger than in the competitive case. The illiquidity discount is also
larger because liquidity demanders receive worse insurance against the
liquidity shock. Thus, imperfect competition by suppliers has the same
effect as by demanders on λ, the opposite effect on γ, and the same or
opposite effect on the illiquidity discount.

7.3 Literature

Two seminal papers on imperfect competition in financial markets and
its relationship with asymmetric information are Kyle (1985, 1989).
Kyle (1989) assumes a combined asymmetric-differential information
structure, where some agents observe conditionally independent sig-
nals about the payoff of a risky asset and the remaining agents observe
no signals. Agents submit demand functions, as in competitive ratio-
nal expectations equilibrium (REE), but the equilibrium concept is
instead Nash equilibrium in demand functions, as in Wilson (1979) and
Klemperer and Meyer (1989). Noise traders add a stochastic amount to
the asset supply, preventing prices from being fully revealing. Because
informed agents take into account their effect on price, they trade less
aggressively in response to their signal. Imperfect competition thus
reduces the size of information-based trades. Since it has no effect on
liquidity-generated trades, which are initiated by the exogenous noise
traders, it lowers price informativeness.

Kyle (1985) assumes a risk neutral insider who observes a private
signal about the payoff of a risky asset and can trade with market mak-
ers and noise traders. The insider and the noise traders submit market
orders, which are batched together and absorbed by market makers.
Because the latter are risk neutral and competitive, they compete a
la Bertrand and absorb all orders at a price equal to their conditional
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expectation of the asset payoff. Imperfect competition reduces price
informativeness, as in Kyle (1989). An advantage of Kyle (1985) is
that it is highly tractable and can be extended in many directions.
One important extension, performed in Kyle (1985), is to allow trad-
ing to take place dynamically, over more than one period. The insider
then reveals his information slowly over time, as revealing it quickly
would subject him to a higher price impact in the early periods. In the
continuous-time limit, the insider reveals his information in a way that
exactly equates price impact across time.

The model of Kyle (1985) has been extended in many other direc-
tions as well. A first extension is to introduce multiple insiders. Admati
and Pfleiderer (1988) show that liquidity traders can concentrate their
trades in the same period, to reduce price impact, and this effect can be
amplified when there are multiple insiders. Holden and Subrahmanyam
(1992) assume multiple insiders who receive a common signal about the
payoff of a risky asset, and show that they reveal it almost immediately
in the continuous-trading limit because each insider tries to exploit his
information before others do. Foster and Viswanathan (1996) assume
multiple insiders who receive imperfectly correlated signals, and show
that information revelation slows down because of a “waiting-game”
effect, whereby each insider attempts to learn the others’ signals. Back
et al. (2000) formulate this problem in continuous time and show that
information is not fully revealed in prices until the end of the trading
session.

A second extension is to drop the noise traders and derive
non-informational trading from utility maximization. Glosten (1989)
generates non-informational trading through a random endowment
received by the insider. We make the same assumption, and the equi-
librium in our Period 1 is closely related to the one that Glosten (1989)
derives in the case where market makers are competitive. Glosten
(1989) assumes risk-neutral market makers; a paper even closer to our
model is Bhattacharya and Spiegel (1991), which assumes that liquid-
ity suppliers are risk averse.1 Both papers find that the market breaks

1 Both papers assume one trading period and do not derive effects on ex-ante expected
returns, as we do.
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down when information asymmetry is severe. The mechanism is the
same as in our model, and the key assumptions are that some liquidity
demanders are informed and all are non-price-takers.2 The idea that
adverse selection can cause market breakdown dates back to Akerlof
(1970).

Other extensions are to introduce non-normal probability distribu-
tions for the asset payoff, combine risk aversion with dynamics, and
allow for a minimum trade size. Back (1992) shows that the result on
the equalization of price impact across time extends to general payoff
distributions. Holden and Subrahmanyam (1994) and Baruch (2002)
show that a risk averse insider reveals his information faster than a
risk neutral one because he is eager to reduce the uncertainty at which
his trades will be executed. Back and Baruch (2004) assume that noise
traders execute discrete transactions rather than trading continuously,
in which case the insider must do the same so not to be revealed. They
show that the insider follows a mixed strategy, and can trade in a
direction opposite to his information in some cases.

A further extension is to change the information structure. Kyle
(1985) assumes that the insider receives all his information in an initial
period, and the information is announced publicly in a final period.
Chau and Vayanos (2008) and Caldentey and Stacchetti (2010) show
that when the insider receives a constant flow of new information over
time, he chooses to reveal it infinitely fast in the continuous-trading
limit. This result is in sharp contrast to Kyle (1985), where revelation
is slow. Moreover, markets are arbitrarily close to efficiency and yet
informed traders earn abnormal profits, in sharp contrast to Grossman
and Stiglitz (1980). Efficient markets and insider profits are not contra-
dictory because continuous trading gives insiders the flexibility to earn
profits even though they reveal each piece of new information within
a very short interval.3 Other models exploring insider trading with a

2 For example, market breakdown does not occur in Kyle (1985) because noise traders
submit price-inelastic demands, which can be viewed as an extreme form of price taking.

3 Jackson (1991) provides an alternative resolution of the Grossman and Stiglitz (1980)
paradox within a static setting. He assumes that agents can acquire private signals at a
cost and submit demand functions as in Kyle (1989). Unlike in Kyle (1989), there are no
noise traders. The equilibrium price is fully revealing and yet agents have an incentive to
acquire information. This is because information helps them predict their price impact,
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flow of new information are Back and Pedersen (1998) and Guo and
Ou-Yang (2010).

A final set of extensions examine issues relating to market design.
For example, Chowhdry and Nanda (1991) study the competition
between market venues. Fishman and Hagerty (1992), Leland (1992)
and Repullo (1999) study whether insider trading is desirable or should
be banned. Admati and Pfleiderer (1991) study “sunshine trading,”
whereby liquidity traders pre-announce their intention to trade, so to
distinguish themselves from insiders and reduce their trading costs.
Pagano and Roell (1996) and Naik et al. (1999) study the effects of
a transparency regulation requiring disclosure of all trades but of not
traders’ identities. Huddart et al. (2001) consider instead a regulation
requiring disclosure of trades by insiders. They show that the regulation
speeds up information revelation and reduces insiders’ profits. It also
induces the insiders to trade less aggressively and follow a mixed strat-
egy, trading occasionally in a direction opposite to their information.
Buffa (2011) shows that because of the latter effect, the regulation can
instead slow down information revelation when insiders are risk averse.

Kyle (1985) and much of the subsequent literature assume that
the non-price-taking agents are insiders who receive private informa-
tion about asset payoffs. In many cases, however, agents without such
information affect prices simply because of the size of their trades. For
example, trades by pension funds can exceed the average daily volume
of many stocks, and are often triggered by reasons other than infor-
mation, e.g., regulatory constraints. Vayanos (1999) assumes that large
traders with no private information about asset payoffs receive random
endowments over time and need to share risk. He shows that these
agents break their trades into small pieces so to reduce price impact,
and risk sharing is accomplished slowly even in the continuous-trading
limit. What deters them from trading faster is that this will signal to
the market that a larger trade is yet to come, and so price impact will

which the price does not reveal. Normal-linear models cannot generate this effect because
price impact is a constant independent of information. For an analysis of information
revelation without noise traders, normality and linearity, see also Laffont and Maskin
(1990).



7.3 Literature 277

be large. Vayanos (2001) shows that the presence of noise traders in
this setting can accelerate trading and hence improve risk sharing.4

Large traders who trade over time to share risk are similar to
durable-good monopolists. According to the Coase conjecture, the
monopolists should trade infinitely fast in the continuous-trading limit.
Trading occurs slowly in Vayanos (1999) because each trader is the
only one to observe his endowment and hence his eagerness to share
risk; if instead endowments are publicly observed, the Coase conjecture
holds. DeMarzo and Urosevic (2006) consider a general setting where
a large trader not only needs to share risk but can also take actions to
increase asset payoffs, e.g., monitor the firm’s managers. The trader’s
eagerness to share risk is public information. DeMarzo and Urosevic
(2006) confirm the Coase conjecture in the case where asset payoffs are
independent of the trader’s actions. Rostek and Weretka (2011) study
risk sharing in a dynamic setting where agents’ endowments are public
information. They decompose the price impact of a trade into a per-
manent component, due to the risk aversion of agents taking the other
side, and a temporary one, due to their monopoly power.

When large traders affect prices, information about their future
trades is valuable to others. This is so even when large traders them-
selves have no information about asset payoffs. Cao et al. (2006)
label information about future large trades “inventory information.”
Brunnermeier and Pedersen (2005) assume that a large trader needs
to sell because of financial distress, and show that other traders exploit
this information by selling at the same time as him. Such “predatory”
behavior benefits these traders because they cause the distressed trader
to sell at low prices, at which they can buy. Pritsker (2005) stud-
ies predatory behavior in a multi-asset setting. Attari et al. (2005),
Fardeau (2011) and Venter (2011) model the financial constraints of
distressed traders and examine how predatory behavior by others can
bring them closer to distress by moving asset prices against them.

4 Bertsimas and Lo (1998), Almgren and Chriss (1999), Almgren (2003) and Huberman
and Stanzl (2005) study the optimal policy of large traders in partial-equilibrium settings,
under exogenous price dynamics. Obizhaeva and Wang (2006) derive the price dynamics
faced by large traders from a model of the limit-order book, which describes how new limit
orders arrive after existing ones are consumed.
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Carlin et al. (2007) derive predatory behavior as a breakdown of col-
laboration in a repeated game.

Most papers mentioned so far emphasize non-price-taking behavior
by liquidity demanders; liquidity suppliers, such as market makers, are
assumed to behave competitively. Biais (1993) studies how oligopolistic
market makers bid for an order, depending on whether or not they
know the inventories of their competitors. He relates the quality of
market makers’ information to whether the market is centralized or
fragmented. Earlier papers on oligopolistic market makers include Ho
and Stoll (1980) and Copeland and Galai (1983).

Glosten (1989) shows that when information is asymmetric, a mar-
ket with a monopoly market maker can dominate one with competi-
tive market makers. This is because the market can break down with
competitive market makers, but breakdown can be avoided with a
monopoly market maker. Glosten (1989) models perfect competition
between market makers in terms of a zero-profit condition. Glosten
(1994) derives this condition as the equilibrium of a game in which
market makers post price–quantity schedules. Bernhardt and Hughson
(1997) study this game in the case of two oligopolistic market makers.
Biais et al. (2000) study the game for a general number of market mak-
ers and provide a full characterization of the equilibrium. For a finite
number of market makers the equilibrium has a Cournot flavor, and it
converges to the competitive case characterized by Glosten (1989) as
the number goes to infinity. Back and Baruch (2011) provide an alter-
native characterization of the same game. Liu and Wang (2012) assume
that market makers are risk averse and compete by posting quantities
rather than price–quantity schedules.

Models with non-price-taking behavior study the interaction
between small numbers of agents. In this sense, they are related to
models of sequential order arrival, in which traders arrive in the market
one at a time and remain there for a short period. The latter models
assume implicitly participation costs since agents are not present in
the market until when they arrive. Early models in that spirit include
Garman (1976), Amihud and Mendelson (1980) and Ho and Stoll
(1981), in which market makers receive an exogenous flow of orders.
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Glosten and Milgrom (1985) propose a highly tractable model of
sequential order arrival with asymmetric information. Some of the
agents receive a private signal about the asset payoff, while others
do not and trade for liquidity reasons. Upon arriving in the market,
agents can execute a buy or sell transaction of a fixed size with market
makers. As in Kyle (1989), market makers are risk neutral and com-
petitive. Therefore, they compete a la Bertrand and absorb orders at
a price equal to their conditional expectation of the asset payoff. In
equilibrium, the bid price that market makers quote to buy from other
agents is lower than the ask price that they quote to sell to them. This
is because when market makers buy, they suspect that other agents
might have sold to them because of negative information. Glosten and
Milgrom (1985) thus link the bid-ask spread to asymmetric informa-
tion, building on earlier works by Bagehot (1971) and Copeland and
Galai (1983).

The models of Glosten and Milgrom (1985) and Kyle (1985) give rise
to different measures of illiquidity. Illiquidity in Glosten and Milgrom
(1985) is measured by the bid-ask spread since all transactions are
assumed to be of a fixed size. By contrast, in Kyle (1985) transac-
tions can be of any size since probability distributions are normal and
trading strategies are linear. Illiquidity is measured by the sensitivity
of price to quantity, which corresponds to λ in our model. While the
bid-ask spread and λ are derived within different models, the share the
basic property of being increasing in the degree of asymmetric infor-
mation. Easley and O’Hara (1987) consider a hybrid model in which
agents arrive in the market one at a time and can execute transactions
of variable size with market makers. The prices that market makers
post depend on quantity, in a spirit similar to Kyle (1985). Easley
and O’Hara (1992) allow the time when private information arrives to
be stochastic. They show that the bid-ask spread increases following
a surge in trading activity because market makers infer that private
information has arrived.

A recent literature studies sequential order arrival in limit-order
markets, where there are no designated market makers and liquid-
ity is supplied by the arriving agents. Agents can execute a buy or
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sell transaction of a fixed size. Impatient agents execute this trans-
action immediately upon arrival through a market order, and hence
demand liquidity. Patient agents submit instead a limit order, i.e., a
price-elastic demand function, which is executed against future mar-
ket orders. Hence, they supply liquidity to future agents. Papers in
that literature include Parlour (1998), Foucault (1999), Foucault et al.
(2005), Goettler et al. (2005) and Rosu (2009).5 These papers deter-
mine the bid-ask spread that results from the submitted limit orders,
the choice of agents between market and limit orders, the expected time
for limit orders to execute, etc. A positive bid-ask spread arises even in
the absence of asymmetric information, and is decreasing in the degree
of competition between limit-order suppliers. This parallels our result
that λ is larger when liquidity suppliers behave monopolistically than
when they are competitive.

5 These papers assume that agents have market power. Biais et al. (2011) assume instead
that agents are competitive and observe their valuation for an asset only infrequently.
They show that the optimal orders that agents submit at the observation times can be
price-contingent and concern future execution.



8
Funding Constraints

Agents’ portfolios often involve leverage, i.e., borrow cash to establish a
long position in a risky asset, or borrow a risky asset to sell it short. In
the perfect-market benchmark, agents can borrow freely provided that
they have enough resources to repay the loan. But as the Corporate
Finance literature emphasizes, various frictions can limit agents’ ability
to borrow and fund their positions. These frictions can also influence
the supply of liquidity in the market.

Since in our model consumption is allowed to be negative and
unbounded from below, agents can repay a loan of any size by reduc-
ing consumption. Negative consumption can be interpreted as a costly
activity that agents undertake in Period 2 to repay a loan. We derive a
funding constraint by assuming that agents cannot commit to reduce
their consumption below a level −A ≤ 0. This nests the case of full
commitment assumed in the rest of this paper (A = ∞), and the case
where agents can walk away from a loan rather than engaging in neg-
ative consumption (A = 0). Because our focus is on how the funding
constraint influences the supply of liquidity, we impose it on liquidity
suppliers only, i.e., assume that the lack of commitment concerns only
them.

281
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For simplicity, we assume that loans must be fully collateralized in
the sense that agents must be able to commit enough resources to cover
any losses in full. To ensure that full collateralization is possible, we
replace normal distributions by distributions with bounded support.
We denote the support of the asset payoff D by [D̄ − bD, D̄ + bD] and
that of the liquidity shock z by [−bz, bz]. We assume that D and z are
distributed symmetrically around their respective means, D is positive
(i.e., D̄ − bD ≥ 0), and agents receive a positive endowment B of the
riskless asset in Period 0.

8.1 Equilibrium

In Period 1, a liquidity demander chooses holdings θd
1 of the risky asset

to maximize the expected utility (3.1). The expectation over D is

−exp
{

−α
[
W1 + θd

1(D̄ − S1) − f(θd
1 + z)

]}
, (8.1)

where

f(θ) ≡ logEexp
[−αθ(D − D̄)

]
α

. (8.2)

Equation (8.1) generalizes (3.2), derived under normality, to any sym-
metric distribution. The function f(θ), equal to 1

2αθ2 under normality,
is positive, symmetric around the y-axis, and convex.1 Maximizing (8.1)
over θd

1 yields the demand function

θd
1 =

(
f ′)−1 (D̄ − S1) − z. (8.3)

Since f(θ) is convex, the demand θd
1 is a decreasing function of the

price S1.
A liquidity supplier chooses holdings θs

1 of the risky asset to maxi-
mize the expected utility

−exp
{−α

[
W1 + θs

1(D̄ − S1) − f(θs
1)

]}
, (8.4)

which can be derived from (8.1) by setting z = 0. The optimization
is subject to a funding constraint. Indeed, losses from investing in the

1 The function αf(θ) is the cumulant-generating function of −α(D − D̄). Cumulant-
generating functions are convex. Symmetry follows because D is distributed symmetrically
around D̄. Positivity follows from f(0) = 0, symmetry and convexity.
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risky asset can be covered by wealth W1 or negative consumption. Since
suppliers must be able to cover losses in full, and cannot commit to
consume less than −A, losses cannot exceed W1 + A, i.e.,

θs
1(S1 − D) ≤ W1 + A, for all D.

This yields the constraint

m|θs
1| ≤ W1 + A, (8.5)

where

m ≡ S1 − min
D

D, if θs
1 > 0, (8.6a)

m ≡ max
D

D − S1, if θs
1 < 0. (8.6b)

The constraint (8.5) requires that a position of θs
1 shares is backed by

capital m|θs
1|. This limits the size of the position as a function of the

capital W1 + A available to suppliers in Period 1. Suppliers’ capital
is the sum of the capital W1 that they physically own in Period 1,
and the capital A that they can access through their commitment to
consume — A in Period 2. The parameter m is the required capital
per share of levered position, and can be interpreted as a margin or
haircut. The margin is equal to the maximum possible loss per share.
For example, the margin (8.6a) for a long position does not exceed the
asset price S1, and is strictly smaller if the asset payoff D has a positive
lower bound (i.e., minD D = D̄ − bD > 0).2

Intuitively, the constraint (8.5) can bind when there is a large dis-
crepancy between the price S1 and the expected payoff D̄, since this
is when liquidity suppliers want to hold large positions. There is, how-
ever, a countervailing effect because of a decrease in the margin. When,
for example, S1 is low, suppliers want to hold large long positions, but
the margin is small because the maximum possible loss is small. The
required capital (position size times margin) increases in the discrep-
ancy between S1 and D̄ under the sufficient condition

2απbDbz < 1, (8.7)

which for simplicity we assume from now on.

2 The margins (8.6a) for a long position and (8.6b) for a short position are finite because
D has bounded support. Our analysis can accommodate short-sale constraints, i.e., infinite
margins for short positions, by setting the upper bound of D to infinity.
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Proposition 8.1. The equilibrium in Period 1 has the following
properties:

• The funding constraint (8.5) never binds if

B + A + θ̄(D̄ − bD) − πbz

[
bD − f ′(θ̄ + πbz)

] ≥ 0. (8.8)

Otherwise, (8.5) binds for z ∈ [−bz,−z) ∪ (z,bz], where 0 < z <

z ≤ bz.
• An increase in z lowers the price S1 and raises the liquidity

suppliers’ position θs
1. When (8.5) does not bind, θs

1 = θ̄ + πz

and

S1 = D̄ − f ′(θ̄ + πz). (8.9)

The funding constraint never binds if agents receive a large endow-
ment B of the riskless asset in Period 0, or if they can commit to a
large negative consumption −A in Period 2. In both cases, the capital
that they can access in Period 1 is large. If instead B and A are small,
the constraint binds for large positive and possibly large negative val-
ues of the liquidity shock z. For example, when z is large and positive,
the price S1 is low and liquidity suppliers are constrained because they
want to hold large long positions. Setting

K∗ ≡ πbz

[
bD − f ′(θ̄ + πbz)

] − θ̄(D̄ − bD),

we refer to the region B + A > K∗, where liquidity suppliers are well-
capitalized and the constraint never binds, as the abundant-capital
region, and to the region B + A < K∗, where the constraint binds for
some values of z, as the scarce-capital region. Note that in both regions,
the constraint does not bind for z = 0. Indeed, the unconstrained out-
come for z = 0 is that liquidity suppliers maintain their endowments θ̄

of the risky asset and B of the riskless asset. Since this yields positive
consumption, the constraint is met.

An increase in the liquidity shock z lowers the price S1 and raises
the liquidity suppliers’ position θs

1. These results are the same as in
the perfect-market benchmark of Section 3, but the intuition is more
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complicated when the funding constraint binds. Suppose that capital
is scarce (i.e., B + A < K∗), and z is large and positive, in which case
suppliers hold long positions and are constrained. The intuition why
they can buy more, despite the constraint, when z increases is as fol-
lows. Since the price S1 decreases, suppliers realize a capital loss on the
θ̄ shares of the risky asset that they carry from Period 0. This reduces
their wealth in Period 1 and tightens the constraint. At the same time,
a decrease in S1 triggers an equal decrease in the margin (8.6a) for
long positions, and loosens the constraint. This effect is equivalent to
a capital gain on the θs

1 shares that suppliers hold in Period 1. Because
suppliers are net buyers for z > 0 (i.e., θs

1 > θ̄), the latter effect domi-
nates, and suppliers can buy more in response to an increase in z.

To determine the price in Period 0, we make the simplifying assump-
tion that the risk-aversion coefficient α is small. We denote by (σ2,σ2

z)
the variances of (D,z), by k ≡ [E[D − D̄]4/σ4] − 3 the curtosis of D,
by F (z) the cumulative distribution function of z, and by o(αn) terms
smaller than αn.

Proposition 8.2. Suppose that α is small. The price in Period 0 is

S0 = D̄ − ασ2θ̄ − α3σ4
[(

1 +
1
2
k

)
σ2

zπ
2 +

1
6
kθ̄2

]
θ̄ + o(α3) (8.10)

when capital is abundant, and

S0 = D̄ − ασ2θ̄ − ασ2(1 − π)

×
[∫ z

z
(z − z)dF (z) +

∫ bz

z
(z − z)dF (z)

]
+ o(α) (8.11)

when capital is scarce.

8.2 Funding Constraints and Illiquidity

We next examine how the funding constraint impacts the illiquidity
measures and the expected return. We compute these variables in the
abundant-capital region (liquidity suppliers are well-capitalized and
unconstrained by leverage for all values of the liquidity shock z), and
compare with the scarce-capital region.
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Proposition 8.3. Suppose that α is small or z is drawn from a two-
point distribution. Price impact λ is higher when capital is scarce than
when it is abundant.

Proposition 8.4. Price reversal γ is higher when capital is scarce
than when it is abundant.

The intuition is as follows. When the liquidity shock z is close to
zero, the constraint does not bind in both the abundant- and scarce-
capital regions, and therefore price and volume are identical in the
two regions. For larger values of z, the constraint binds when capital is
scarce, impairing suppliers’ ability to accommodate an increase in z. As
a result, an increase in z has a larger effect on price and a smaller effect
on volume. Since the effect on price is larger, so is the price reversal γ.
Price impact λ is also larger because it measures the price impact per
unit of volume. Note that λ measures an average price impact, i.e., the
average slope of the relationship between price change and signed vol-
ume. This relationship exhibits an important non-linearity when capital
is scarce: the slope increases for large values of z, which is when the
constraint binds. This property distinguishes funding constraints from
other imperfections.

The illiquidity discount, and hence the asset’s expected return, is
higher when capital is scarce. This is because the funding constraint
binds asymmetrically: it is more likely to bind when liquidity deman-
ders sell (z > 0) than when they buy (z < 0). Indeed, the constraint
binds when the suppliers’ position is large in absolute value — and a
large position is more likely when suppliers buy in Period 1 because this
adds to the long position θ̄ that they carry from Period 0. Since price
movements in Period 1 are exacerbated when the constraint binds, and
the constraint is more likely to bind when demanders sell, the average
price in Period 1 is lower when capital is scarce. This yields a lower
price in Period 0.

Proposition 8.5. Suppose that α is small. The asset’s expected
return E(R) is lower when capital is scarce than when it is abundant.
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8.3 Literature

The literature on funding constraints in financial markets can be viewed
as part of a broader literature on the limits of arbitrage. Indeed, both
literatures emphasize the idea that some traders rely on external cap-
ital, which is costlier than internal capital, and this affects liquidity
and asset prices. External capital can take the form of collateralized
debt, as in our model, or other forms such as equity. We first survey
work that derives funding constraints from collateralized debt, and then
survey more briefly the broader theoretical literature on the limits of
arbitrage. An extensive survey of the latter literature is Gromb and
Vayanos (2010).

The effects of funding constraints have been studied in macroeco-
nomic settings, starting with Bernanke and Gertler (1989) and Kiyotaki
and Moore (1997). In these papers, adverse shocks to economic activ-
ity depress the collateral values of productive assets, and this reduces
lending and amplifies the drop in activity. Similar amplification effects
arise in financial-market settings, as we point out below.

A number of papers link the tightness of funding constraints to
the volatility of the collateral. Hart and Moore (1994, 1995) show that
uncertainty about assets’ liquidation values impairs agents’ ability to
borrow. Shleifer and Vishny (1992) endogenize liquidation values and
the ability to borrow in market equilibrium. Geanakoplos (1997, 2003)
defines collateral equilibrium, in which agents borrow to buy finan-
cial assets and post the assets as collateral. The amount of collateral
is determined endogenously in equilibrium, and is increasing in asset
volatility. Moreover, if volatility increases following adverse shocks,
funding constraints tighten, and this causes agents to sell assets, ampli-
fying the shocks. The link between volatility and ability to borrow is
also present in our model. Indeed, an increase in the parameter bD,
which measures the dispersion of the asset payoff distribution, raises the
margins in (8.6a) and (8.6b), holding the price S1 constant. The funding
constraint (8.5) in our model is derived along the lines of Geanakoplos
(2003), who also provides conditions under which full collateralization
is an equilibrium outcome.

Gromb and Vayanos (2002) link market liquidity to the capital of
financial intermediaries and their funding constraints — a link that we
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also derive in Propositions 8.3 and 8.4. Investors are subject to liquid-
ity shocks and can realize gains from trade across segmented markets
by trading with intermediaries. Intermediaries exploit price discrepan-
cies, and in doing so supply liquidity to investors: they buy low in
a market where investors are eager to sell, and sell high in a market
where investors are eager to buy, thus supplying liquidity to both sets
of investors. Intermediaries fund their position in each market using
collateralized debt, and face a funding constraint along the lines of
(8.5). Shocks to asset prices that trigger capital losses by intermedi-
aries, tighten the intermediaries’ funding constraints and force them to
reduce their positions. This lowers market liquidity and amplifies the
shocks.

Amplification effects do not arise in our model because liquidity sup-
pliers increase their position θs

1 in Period 1 following an increase in the
liquidity shock z. Amplification effects require instead that suppliers
decrease their position, hence becoming demanders of liquidity. Recall
that suppliers in our model are able to increase their position following
an increase in z because while their wealth decreases, there is a stronger
countervailing effect caused by a decrease in the margin. Amplifica-
tion effects arise when the margin instead increases, as in Geanakoplos
(1997, 2003), or stays constant. They can arise even when the margin
decreases but there are multiple periods, as in Gromb and Vayanos
(2002). Kondor (2009) shows that amplification effects can arise even
in the absence of shocks. Indeed, if a price discrepancy between two
assets were to remain constant or decrease over time, intermediaries
would exploit it and reduce it to a level from which it could increase.

In Gromb and Vayanos (2002) and Kondor (2009), intermediaries
have one investment opportunity, which is a long–short position
involving assets trading in segmented markets. Some papers study
the effects of funding constraints when intermediaries have multiple
investment opportunities. Brunnermeier and Pedersen (2009) show in a
static setting that funding constraints generate not only amplification
but also contagion, whereby shocks to one investment opportunity are
transmitted to otherwise unrelated opportunities through changes in
intermediaries’ positions. Moreover, a tightening of funding constraints
has the largest impact on the prices of more volatile opportunities
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because these require more collateral. Gromb and Vayanos (2011a,b)
derive the joint dynamics of intermediary capital, asset volatility,
correlations and liquidity. They show that amplification and contagion
are stronger when intermediary capital is neither too high nor too low.
Other papers that derive amplification and contagion from funding
constraints include Aiyagari and Gertler (1999), Allen and Gale
(2000), Geanakoplos and Fostel (2008), Pavlova and Rigobon (2008),
Adrian et al. (2009), Rytchkov (2011), Danielsson et al. (2012), and
Chabakauri (2012).3

Funding constraints can give rise to price discrepancies between
assets with identical payoffs, even in the absence of market segmen-
tation. Basak and Croitoru (2000) show that a derivative can carry
a price premium relative to a perfectly correlated underlying asset
when agents are constrained in the size of their long position in the
asset and cannot short-sell the derivative. This is because optimistic
agents have a high demand for the derivative, in which their long posi-
tions are unconstrained, and pessimistic agents cannot accommodate
this demand by shorting the derivative. Garleanu and Pedersen (2011)
assume that the constraint on long positions takes the form of a mar-
gin requirement, which is smaller for the derivative. They show that
the derivative’s lower margin requirement causes it to carry a price
premium relative to the underlying asset. Other papers examining vio-
lations of the law of one price generated by funding constraints include
Cuoco (1997), Detemple and Murthy (1997), Geanakoplos (2003), and
Basak and Croitoru (2006).

Liu and Longstaff (2004) study how funding-constrained interme-
diaries exploit price discrepancies under an exogenous price process.
They show that a funding constraint, along the lines of (8.5), prevents

3 Amplification and contagion can also be derived in models without explicit funding con-
straints but where risk aversion depends on wealth. This is done in Kyle and Xiong (2001)
and Xiong (2001), who endow some agents with logarithmic utility, under which the coeffi-
cient of absolute risk aversion decreases in wealth. Following adverse shocks, these agents
reduce their positions because they become more risk averse and not because they hit
funding constraints. The analysis has similarities to that with funding constraints, e.g.,
amplification and contagion are stronger when the capital of the agents with logarith-
mic utility is neither too high nor too low. An important difference is in the welfare and
policy implications: funding constraints can create inefficiencies and the scope for welfare-
improving policies, while wealth effects preserve the Pareto optimality of equilibrium.
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drastically intermediaries from exploiting opportunities that appear to
be perfect arbitrages. Other papers on optimal portfolio policy under
funding constraints are Grossman and Vila (1992), Jurek and Yang
(2007) and Milbradt (2012).

Early work on the limits of arbitrage does not consider funding con-
straints explicitly, but argues that such constraints can shorten traders’
horizons, and this can affect asset prices. De Long et al. (1990) show
that short horizons can cause deviations from the law of one price. They
assume an infinite-horizon economy, two assets with identical payoffs,
and stochastic shocks to the demand for one of the assets. They show
that when traders have short horizons there exist two equilibria: one
in which the assets trade at the same price and one in which they
trade at different prices. The intuition for the latter equilibrium is that
agents do not trade aggressively against price discrepancies between
the two assets for fear that they might widen in the short run. As a
consequence, demand shocks can cause price discrepancies and render
traders’ belief self-fulfilling.

Tuckman and Vila (1992, 1993) show that short horizons can arise
endogenously because of holding costs. Moreover, holding costs can
render traders unwilling to exploit price discrepancies between assets
with similar payoffs for fear that they might widen in the short run. Dow
and Gorton (1994) assume short horizons and show that holding costs
can generate large mispricings. Casamatta and Pouget (2011) endoge-
nize short horizons based on moral hazard between fund managers and
investors, and show that they cause prices to be less informative.

Shleifer and Vishny (1997) model the reliance of traders on exter-
nal capital and its implications for traders’ horizons and asset pricing.
They assume that traders can buy a underpriced asset but run the
risk that the mispricing might worsen in the short run. Traders can
raise external funds to buy the asset, but the suppliers of the funds
can request them back if the trade performs poorly in the short run.
This assumed performance–flow relationship can generate amplification
effects: following demand shocks that cause the mispricing to worsen
in the short run, traders are deprived of funds and must sell the asset,
causing the mispricing to worsen further.
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Shleifer and Vishny (1997) derive the funding constraint from equity
finance: traders can be interpreted as managers of an open-end fund
raising equity from fund investors. Yet, the amplification effects that
they find are similar to those in the papers that derive funding con-
straints from collateralized debt. Recent work on the limits of arbitrage
seeks to derive funding constraints from optimal contracts, instead
of assuming an exogenous contract form. Examples are Acharya and
Viswanathan (2011), Hombert and Thesmar (2011), Biais et al. (2012),
and He and Krishnamurthy (2012). Endogenizing the constraints would
help identify whether the common results, such as amplification, are
driven by a single underlying friction, or whether the constraints are
fundamentally different. Recent work on the limits of arbitrage also
seeks to develop tractable dynamic multi-asset models that can address
empirical puzzles. The survey by Gromb and Vayanos (2010) provides
more details and references.

Funding constraints can interact with other market imperfec-
tions. Yuan (2005) and Albagli (2011) consider the interaction with
asymmetric information, and impose funding constraints on informed
agents. Yuan (2005) shows that when prices drop, informed agents
become constrained and hence prices become less informative. The
resulting increase in uncertainty exacerbates the price drop, causing
volatility to be asymmetric and higher on the downside. Albagli (2011)
derives multiple equilibria, through a mechanism that is reminiscent
of De Long et al. (1990) but does not require an infinite horizon.
When future demand shocks are expected to have a large effect on
prices, funding-constrained agents do not trade aggressively on their
information. This makes prices less informative, hence reducing the
willingness of future agents to absorb demand shocks. Cespa and Vives
(2012) derive a similar mechanism in a setting where traders have short
horizons.



9
Search

In the perfect-market benchmark, the market is organized as a cen-
tralized exchange. Many markets, however, have a more decentral-
ized form of organization. For example, in over-the-counter markets,
investors negotiate prices bilaterally with dealers. Locating suitable
counter-parties in these markets can take time and involve search.

To model decentralized markets, we assume that agents do not
meet in a centralized exchange in Period 1, but instead must search
for counterparties. When a liquidity demander meets a supplier, they
bargain bilaterally over the terms of trade, i.e., the number of shares
traded and the share price. We assume that bargaining leads to an
efficient outcome, and denote by φ ∈ [0,1] the fraction of transaction
surplus appropriated by suppliers. We denote by N the measure of
bilateral meetings between demanders and suppliers. This parameter
characterizes the efficiency of the search process, and is bounded by
min{π,1 − π} since there cannot be more meetings than demanders or
suppliers. Assuming that all meetings are equally likely, the probability
of a demander meeting a supplier is πd ≡ N/π, and of a supplier meeting
a demander is πs ≡ N/(1 − π).
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9.1 Equilibrium

Prices in Period 1 are determined through pairwise bargaining between
liquidity demanders and suppliers. Agents’ outside option is not to
trade and retain their positions from Period 0, which in equilibrium
are equal to θ̄. The consumption in Period 2 of a liquidity supplier who
does not trade in Period 1 is Csn

2 = W0 + θ̄(D − S0). This generates a
certainty equivalent

CEQsn = W0 + θ̄(D̄ − S0) − 1
2
ασ2θ̄2, (9.1)

where the first two terms are the expected consumption, and the third a
risk adjustment quadratic in position size. If the supplier buys x shares
at price S1, the certainty equivalent becomes

CEQs = W0 + θ̄(D̄ − S0) + x(D̄ − S1) − 1
2
ασ2(θ̄ + x)2 (9.2)

because the position becomes θ̄ + x. Likewise, the certainty equivalent
of a liquidity demander who does not trade in Period 1 is

CEQdn = W0 + θ̄(D̄ − S0) − 1
2
ασ2(θ̄ + z)2, (9.3)

and if the demander sells x shares at price S1, the certainty equivalent
becomes

CEQd = W0 + θ̄(D̄ − S0) − x(D̄ − S1) − 1
2
ασ2(θ̄ + z − x)2. (9.4)

Under efficient bargaining, x maximizes the sum of certainty equiva-
lents CEQs + CEQd. The maximization yields x = z/2, i.e., the liquid-
ity shock is shared equally between the two agents. The price S1 is such
that the supplier receives a fraction φ of the transaction surplus, i.e.,

CEQs − CEQsn = φ
(
CEQs + CEQd − CEQsn − CEQdn

)
. (9.5)

Proposition 9.1. When a supplier and a demander meet in Period 1,
the supplier buys z/2 shares at the price

S1 = D̄ − ασ2
[
θ̄ +

1
4
z(1 + 2φ)

]
. (9.6)
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Equation (9.6) implies that the impact of the liquidity shock z on
the price in Period 1 increases in the liquidity suppliers’ bargaining
power φ. When, for example, z > 0, liquidity demanders need to sell,
and greater bargaining power by suppliers results in a lower price.
Comparing (9.6) to its centralized-market counterpart (3.6) reveals an
important difference: price impact in the search market depends on the
distribution of bargaining power within a meeting, characterized by
the parameter φ, while price impact in the centralized market depends
on aggregate demand-supply conditions, characterized by the measures
(π,1 − π) of demanders and suppliers. The price in the centralized mar-
ket in Period 0 can be determined through similar steps as in previous
sections.

Proposition 9.2. The price in Period 0 is

S0 = D̄ − ασ2θ̄ −
N(1+φ)

2G
3
2
2

exp
(

α4σ4σ2
z θ̄2

2G2

)
+ π−N

G
3
2
3

exp
(

α4σ4σ2
z θ̄2

2G3

)
N√
G1

+ 1 − π − N + N√
G2

exp
(

α4σ4σ2
z θ̄2

2G2

)
+ π−N√

G3
exp

(
α4σ4σ2

z θ̄2

2G3

)
α3σ4σ2

z θ̄,

(9.7)
where

G1 = 1 +
1
2
φα2σ2σ2

z ,

G2 = 1 − 1
2
(1 + φ)α2σ2σ2

z ,

G3 = 1 − α2σ2σ2
z .

9.2 Search and Illiquidity

We next examine how the search friction impacts the illiquidity mea-
sures and the expected return. We perform two related but distinct
exercises: compare the search market with the centralized market of
Section 3, and vary the measure N of meetings between liquidity
demanders and suppliers.
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When N decreases, the search process becomes less efficient and
trading volume decreases. At the same time, the price in each meet-
ing remains the same because it depends only on the distribution of
bargaining power within the meeting. Since illiquidity λ measures the
price impact of volume, it increases. One would expect that λ in the
search market is higher than in the centralized market because only
a fraction of suppliers are involved in bilateral meetings and provide
liquidity (N ≤ 1 − π). Proposition 9.3 confirms this result when bar-
gaining power is symmetric (φ = 1/2). The result is also true when sup-
pliers have more bargaining power than demanders (φ > 1/2) because
the liquidity shock has then larger price impact. Moreover, the result
extends to all values of φ when less than half of suppliers are involved
in meetings (N ≤ (1 − π)/2).

Proposition 9.3. Price impact λ is

λ =
ασ2(1 + 2φ)

2N
, (9.8)

and increases when the measure N of meetings decreases. It is higher
than in the centralized market if φ + 1/2 ≥ N/(1 − π).

Because the price in the search market is independent of N , so is
the price reversal γ. Moreover, γ in the search market is higher than in
the centralized market if φ is large relative to π.

Proposition 9.4. Price reversal γ is

γ =
α2σ4σ2

z(1 + 2φ)2

16
, (9.9)

and is independent of the measure N of meetings. It is higher than in
the centralized market if φ + 1/2 ≥ 2π.

When the measure N of meetings decreases, agents are less likely to
trade in Period 1. A natural conjecture then is that the illiquidity dis-
count increases and so does the asset’s expected return. Proposition 9.5
confirms this conjecture under the sufficient condition φ ≤ 1/2. Intu-
itively, if φ ≈ 1, a decrease in the measure of meetings does not affect
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liquidity demanders because they extract no surplus from a meeting.
Since, however, liquidity suppliers become worse off, the risk-neutral
probability of being a demander decreases, and the price can increase.1

Proposition 9.5. A decrease in the measure N of meetings raises
the asset’s expected return E(R) if φ ≤ 1/2.

9.3 Literature

Early work modeling search frictions in asset markets and their impli-
cations for equilibrium prices includes Burdett and O’Hara (1987),
Pagano (1989b) and Keim and Madhavan (1996). These papers focus
on the market for large blocks of shares (known as the “upstairs” mar-
ket in the New York Stock Exchange).

Duffie et al. (2002, 2005, 2008) model price formation in asset mar-
kets building on the search framework of Diamond (1982), Mortensen
(1982) and Pissarides (1985), in which a continuum of agents negoti-
ate prices in bilateral meetings over an infinite horizon and continuous
time. Duffie et al. (2002) focus on the repo market, where traders can
borrow or lend assets. In a centralized market with no frictions, lenders
of positive-supply assets would compete their rent down to zero. Indeed,
equilibrium requires that some agents hold the assets, and hence would
be willing to lend them as long as they earn any non-zero rent. With
search frictions, however, lenders can earn a rent because they can
extract some of the borrowers’ surplus when bargaining in bilateral
meetings. The rent is an additional payoff from holding the assets and
raises their price in the spot market.

Duffie et al. (2008) focus on the spot market and assume that the
valuation of agents for a risky asset switches over time between high and
low. Agents with high valuation who do not own the asset seek to buy it.
Conversely, agents with low valuation who own the asset seek to sell it.
The equilibrium prices that emerge in the bilateral meetings depend
not only on the measures of buyers and sellers, as in a centralized

1 The illiquidity discount in the search market is higher than in the centralized market if φ
is large relative to π. This property is the same as for λ and γ, but the calculations are
more complicated.
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market, but also on their relative bargaining power. Our model yields
an extreme version of this result: the price in Period 1 depends only on
the bargaining power parameter φ and not on the measures (π,1 − π)
of liquidity demanders and suppliers. An implication of this result is
that an increase in search frictions can raise or lower the asset price,
with the price decreasing when there are more buyers than sellers.
Indeed, with larger frictions, the price responds less to the aggregate
demand/supply conditions, and hence decreases when these conditions
are favorable to the sellers. Finally, following a positive shock to the
measure of sellers, which moves the market away from steady state,
prices drop and recover gradually with the drop being larger when
frictions increase.

Duffie et al. (2005) introduce market makers who intermediate
trade. Market makers differ from other agents, who we term investors,
because they can be contacted more easily. If investors are better able
to contact each other, then market makers face more competition and
post lower bid-ask spreads. Moreover, if investors are heterogeneous in
their ability to contact market makers, then market makers post lower
spreads for investors with higher such ability. Weill (2007) studies the
dynamics of an intermediated search market away from steady state. He
shows that following a positive shock to the measure of sellers, market
makers build up inventories, which they gradually unload to buyers.
Market makers acquire the asset despite having lower valuation for it
than other agents because they are more efficient in passing it to the
buyers.

Vayanos and Wang (2007) and Weill (2008) extend the analysis
to multiple assets, and show that search frictions can generate price
discrepancies between assets with identical payoffs. Buyers choose one
of two assets to search for, and then can only meet sellers of that asset.
In equilibrium, they can locate one asset more easily, and are hence
willing to pay a higher price for it. The asset that is easier to locate
has a higher number of sellers either because it attracts endogenously
high-turnover agents in Vayanos and Wang (2007), or because it is in
larger supply in Weill (2008). Note that one-asset models, such as Duffie
et al. (2008), yield the opposite prediction that assets in larger supply
trade at lower prices.
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Vayanos and Weill (2008) show that deviations from the law of one
price can arise even under simultaneous search, i.e., buyers can meet
sellers of all assets. Key to this result is the presence of short sellers, who
borrow an asset in the repo market, then sell it in the spot market, and
then buy it back again to unwind the short sale. In equilibrium, short
sellers endogenously concentrate in one asset, making it more liquid.
That asset trades at a higher price because its superior liquidity is
priced by the longs, i.e., the buyers who seek to establish long positions.
Moreover, the higher concentration of short-sellers in one asset makes
it profitable for longs to lend the asset in the repo market, and further
raises its price as in Duffie et al. (2002).

A number of papers relax the assumption that agents can hold zero
or one unit of an asset. Garleanu (2009) and Lagos and Rocheteau
(2009) show that an increase in search frictions makes agents less will-
ing to change their positions in response to short-run shocks to their
valuation for the asset. This is because they are aware that it will take
them time to change their positions back should an offsetting shock
hit. Since agents become less responsive to shocks in either direction,
search frictions have an ambiguous effect on the price, consistent with
Duffie et al. (2008). Lagos et al. (2012) study the effects of shocks that
move the market away from steady state, and show that the speed of
recovery is non-monotonic in search frictions. Afonso and Lagos (2011)
study price formation in the interbank market, and determine how the
Federal Funds Rate depends on the search frictions and on Federal
Reserve policy actions. Pagnotta and Philippon (2012) study the com-
petition between financial exchanges that offer different speeds of trade
execution, modeled as contact rates, at different fees.

Search models emphasize the idea that matching buyers and sellers
takes time. In their work on participation costs, Grossman and Miller
(1988) model a related idea: a liquidity shock experienced by some
agents is absorbed first by a small set of market participants and then
by a larger set of agents who gradually arrive in the market. The market
participants who first absorb the shock act as intermediaries, building
up inventories and then unwinding them. Search models provide a nat-
ural setting to study the process through which assets are reallocated
across agents via the temporal variation in intermediaries’ inventories.
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This is done, for example, in Weill (2007), where intermediaries are
modeled as a special class of agents who can be contacted more easily
than others. It is also done in Afonso and Lagos (2011), where agents
engage endogenously in intermediation when they meet others with
large liquidity shocks: they absorb more than their final share of a
shock knowing that they can unload it to others in future bilateral
meetings. Duffie and Strulovici (2011) model the process through which
new agents slowly become informed about liquidity shocks in one mar-
ket and bring their capital into that market. Mitchell et al. (2007) and
Duffie (2010) emphasize the idea that capital moves slowly across mar-
kets in response to profitable investment opportunities.

All papers mentioned so far assume that agents have symmet-
ric information about the asset payoff. If some agents receive private
signals, then these can be revealed gradually through the bilateral meet-
ings, as agents learn the information of those they meet and of those
that their meeting partners have met in the past. Papers studying the
transmission of private information in decentralized markets include
Wolinksy (1990), Blouin and Serrano (2001), Duffie and Manso (2007),
Duffie et al. (2009), Golosov et al. (2011) and Zhu (2012).

Finally, some papers study portfolio choice under the assumption
that agents can trade only after a lag, which could reflect unmodeled
search frictions or market breakdowns. For example, Longstaff (2001)
restricts trading strategies to be of bounded variation, while Ang et al.
(2011) assume that investors can trade only at exogenous random times.
Both papers take prices as given and compute the utility loss from
infrequent trading. This exercise is in the spirit of the one performed in
Constantinides (1986) in the case of transaction costs, but the utility
loss is larger in the case of infrequent trading. Longstaff (2009) shows
in an equilibrium model that infrequent trading has large effects on
asset prices.



10
Conclusion

In this paper we survey the theoretical literature on market liquidity.
This large and growing literature traces illiquidity, i.e., the lack of
liquidity, to underlying market imperfections. It shows that even simple
imperfections can break the clean properties of the perfect-market
model and lead to rich but complex behavior. Moreover, this behav-
ior can be sensitive to the particular form of imperfection and the
specification of the model. The lack of a unified framework and robust
predictions makes it difficult not only to advance our theoretical under-
standing of illiquidity, but also to provide guidance for empirical
work.

In this survey we hope to demonstrate that a framework can be
constructed to unify the existing theoretical literature. Our framework
nests six main imperfections studied in the literature: participation
costs, transaction costs, asymmetric information, imperfect competi-
tion, funding constraints, and search. These imperfections map into six
different theories of illiquidity. Using our framework, we examine in
a systematic manner how the six imperfections affect illiquidity and
expected asset returns. We also examine how well different empirical
measures of illiquidity capture the underlying imperfections. Needless
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to say, the framework has a number of limitations, some of which are
pointed out in Section 1. But this only suggests that more research is
needed; and the limitations of the framework may well point us to new
and fruitful directions.
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