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Abstract

We study flows between investment funds and their effects on asset prices in a simple two-

period version of Vayanos and Woolley (2010, VW). As in VW, flows cause assets to comove

in ways unrelated to fundamentals, affect assets with high idiosyncratic risk the most, and

raise the expected returns of funds experiencing outflows. We sketch how adding periods can

generate other results of VW such as momentum, reversal, amplification, and commercial-risk

management. We also extend the VW framework to study how index redefinitions affect the

price level and the extent of comovement.
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1 Introduction

Institutional investors, such as mutual, hedge and pension funds, hold a large fraction of financial

assets.1 Flows by these investors have significant price effects, which are often hard to explain based

only on asset fundamentals. For example, “fire sales” of stocks by mutual funds experiencing large

outflows drive the prices of these stocks down to a level where subsequent returns are abnormally

high; redefinitions of market indices raise the prices of stocks whose weight increases and lower those

of stocks whose weight decreases; and comovement between stocks increases when they become part

of the same market index or are held by many mutual funds in common.2

Vayanos and Woolley (2010, VW) develop a model to study fund flows and their price effects.

Fund flows are shown to generate momentum and reversal, two of the most prominent market

anomalies. They also amplify shocks to asset fundamentals, generate lead-lag effects, and cause

assets to comove in ways unrelated to fundamentals. The effects of flows are larger for assets

with high idiosyncratic risk. Moreover, flows affect prices not only through contemporaneous

price pressure, but also through fund managers’ willingness to hedge against the commercial risk

associated with future outflows.

VW is set in continuous time and infinite horizon, and hence requires technical tools such as Ito’s

lemma and dynamic programming. In this paper we present a simple two-period version of VW

that illustrates the basic model and some of the main mechanisms. Two periods suffice to generate

flow-driven comovement and the effects of idiosyncratic risk. Other results, such as momentum,

reversal, amplification, and the effects of commercial risk require more than two periods, and we

sketch how they can be derived. In addition to providing a simplified version of VW, we derive

additional results that are not in VW. We study, in particular, how changes in index weights,

assumed constant in VW, affect the price level and the extent of comovement.

Section 2 presents the model. We consider an economy lasting over two periods: Period 1 in

which financial assets are traded and Period 2 in which they pay off. There are multiple risky

assets, which we refer to as stocks, and one riskless asset. A competitive investor can invest in

stocks through two investment funds. We assume that one of these funds tracks mechanically a

market index. This is for simplicity, so that portfolio optimization concerns only the other fund,

which we refer to as the active fund. To ensure that the investor has a motive to move across
1For example, according to the New York Stock Exchange Factbook, the fraction of US stocks held directly by

individuals in 2002 was less than 40%.
2See, for example, Coval and Stafford (2007), Jotikasthira, Lundblad and Ramadorai (2010) and Lou (2010) for

evidence on fire sales; Harris and Gurel (1986), Shleifer (1986) and Chen, Noronja and Singal (2004) for evidence on
index additions and deletions; Greenwood (2005) and Hau (2010) for evidence on more general index redefinitions;
Vijh (1994), Barberis, Shleifer and Wurgler (2005) and Boyer (2010) for evidence on how index membership affects
comovement; and Anton and Polk (2010) and Greenwood and Thesmar (2010) for evidence on how comovement
depends on mutual-fund holdings. See also Duffie’s (2010) presidential address to the American Finance Association,
and the survey by Gromb and Vayanos (2010), for additional discussion and references.
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funds, we assume that she suffers a cost from investing in the active fund. Changes in this cost

generate fund flows. The interpretation of the cost that best fits our model is as a managerial perk,

although other interpretations such as managerial ability could fit more complicated versions of the

model. The active fund is run by a competitive manager, who can also invest his personal wealth in

stocks through the fund. The latter assumption is for parsimony: in addition to choosing the active

portfolio, the manager acts as trading counterparty to the investor’s flows, and this eliminates the

need to introduce additional agents into the model. The investor and the active-fund manager are

risk averse and maximize expected utility of wealth in Period 2.

Section 3 computes the equilibrium by solving the investor’s and manager’s optimization prob-

lems and imposing market clearing. The optimization problems take a simple mean-variance form.

Equilibrium also takes a simple form, with stock prices and investor holdings of the active fund

being linear functions of the cost C.

Section 4 examines how changes in C affect fund flows, and how these flows affect the prices and

expected returns of the stocks and the investment funds. Following an increase in C, the investor

flows out of the active and into the index fund. Through these flows, she effectively sells stocks that

the active fund overweights relative to the index fund, and buys stocks that it underweights. These

transactions are equivalent to selling a slice of a “flow portfolio,” which is independent of C. Long

positions in that portfolio correspond to stocks that the active fund overweights and the investor

effectively sells. Conversely, short positions correspond to stocks that the active fund underweights

and the investor effectively buys.

The price effects of flows depend on the covariance with the flow portfolio. Following an increase

in C, stocks’ expected returns must change so that the risk-averse manager is induced to buy a

slice of the flow portfolio from the investor. Stocks that covary positively with the flow portfolio

offer higher expected returns and their price decreases, while stocks that covary negatively offer

lower expected returns and their price increases. We illustrate these effects using standard portfolio

frontiers in a simple two-stock example.

A stock’s covariance with the flow portfolio is high in absolute value for stocks with high

idiosyncratic risk, meaning that these stocks are more affected by fund flows. The intuition is that

changes in C induce the investor to rebalance across funds but not to change her overall exposure

to the market index. Therefore, the investor’s willingness to carry risk perfectly correlated with the

index does not change. The investor’s exposure to individual stocks or industry sectors changes,

however, and the resulting price effects are larger for stocks or sectors with high idiosyncratic risk.

Since fund flows affect prices, they induce comovement between stocks. This comovement is

large in absolute value when the stocks have high idiosyncratic risk because they are more affected
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by fund flows. Moreover, it can be positive or negative: positive for stock pairs whose covariance

with the flow portfolio has the same sign, and negative otherwise. Intuitively, two stocks move in

the same direction in response to fund flows if they are both overweighted or both underweighted by

the active fund, but move in opposite directions if one is overweighted and the other underweighted.

Comovement thus depends on the pattern of stock holdings across funds.

Changes in C affect not only the expected returns of stocks, but also that of the active fund.

Holding stock prices constant, an increase in C reduces the net-of-cost return that the active fund

offers to the investor. At the same time, the increase in C also triggers outflows from the active

fund, which tend to raise the fund’s gross expected return because of price pressure: stocks that

the active fund overweights relative to the index fund experience a price drop and an increase in

expected return, while the converse is true for underweighted stocks. The first effect dominates the

second: an increase in C lowers the active fund’s net expected return, even taking into account the

price pressure caused by outflows.

Section 5 outlines two extensions of the model. One extension is to allow the index weights to

vary, and study how index redefinitions affect prices. Consistent with the empirical evidence, we

show that stocks whose index weight increases go up in price and become more correlated with

other stocks with high index weight. A more difficult extension, which we only sketch, is to allow

for more than two periods. Adding periods makes it possible to address momentum, reversal,

amplification, and commercial-risk management, results which are explicitly derived in continuous

time in VW.

Our analysis of how index redefinitions affect prices is related to a number of papers. Brennan

(1993) shows in a two-period model that when some investors care about their wealth relative to

an index, inclusion of a stock in the index raises its price. Cuoco and Kaniel (2010) show a similar

result in a continuous-time model, and also study the effect of index inclusion on volatility. Basak

and Pavlova (2010) show in a continuous-time model that inclusion in an index not only raises a

stock’s price but also makes the stock more correlated with other stocks in the index. Barberis and

Shleifer (2003) show in a multi-period model that stocks within the same investment style comove

more. Their definition of a style is behavioral and could encompass an index.

2 Model

There are two periods, t = 1, 2. The financial market consists of one riskless and N risky assets

that pay off in Period 2. We refer to the risky assets as stocks, but they could also be interpreted

as industry-level portfolios, asset classes, etc. The riskless asset pays off one unit with certainty,

and stock n = 1, .., N pays off Dn units. The random vector D ≡ (D1, .., DN )′ is normal with mean
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D̄ ≡ (D̄1, .., D̄N )′ and covariance matrix Σ. (The vector v′ is the transpose of v.) Using the riskless

asset as the numeraire, we denote by Sn the price of stock n in Period 1, and set S ≡ (S1, .., SN )′.

We denote by πn the supply of stock n in terms of number of shares.

A competitive investor can invest in the riskless asset and in the stocks. The investor can access

the stocks only through two investment funds. We assume that the first fund is passively managed

and tracks mechanically a market index. This is for simplicity, so that portfolio optimization

concerns only the other fund, which we refer to as the active fund. We assume that the market

index includes a fixed number ηn of shares of stock n. Thus, if the vectors π ≡ (π1, .., πN ) and

η ≡ (η1, .., ηN ) are collinear, the market index is capitalization-weighted and coincides with the

market portfolio.

To ensure that the active fund can add value over the index fund, we assume that the market

index differs from the true market portfolio characterizing equilibrium asset returns. This can

be because the market index does not include some stocks. Alternatively, the market index can

coincide with the market portfolio, but unmodelled buy-and-hold investors, such as firms’ managers

or founding families, can hold a portfolio different from the market portfolio. That is, buy-and-hold

investors hold π̂n shares of stock n, and the vectors π and π̂ ≡ (π̂1, .., π̂N ) are not collinear. To

nest the two cases, we define a vector θ ≡ (θ1, .., θN ) to coincide with π in the first case and π − π̂

in the second. The vector θ represents the residual supply left over from buy-and-hold investors,

and is the true market portfolio characterizing equilibrium asset returns. We assume that θ is not

collinear with the market index η.

The investor determines how to allocate her wealth between the riskless asset, the index fund,

and the active fund. She maximizes expected utility of wealth in Period 2. Utility is exponential,

i.e.,

−E1 exp(−aW2), (2.1)

where a is the coefficient of absolute risk aversion and W2 is wealth. The investor’s control variables

are the number of shares x and y of the index and active fund, respectively.

The active fund is run by a competitive manager, who can also invest his personal wealth in

the fund. The manager determines the active portfolio and the allocation of his wealth between

the riskless asset and the fund. He maximizes expected utility of wealth in Period 2. Utility is

exponential, i.e.,

−E1 exp(−āW̄2), (2.2)
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where ā is the coefficient of absolute risk aversion and W̄2 is wealth. The manager’s control variables

are the number of shares ȳ of the active fund, and the active portfolio z ≡ (z1, .., zN ), where zn

denotes the number of shares of stock n included in one share of the active fund.

The assumption that the manager can invest his personal wealth in the active fund is for

parsimony: it generates a simple objective that the manager maximizes when choosing the fund’s

portfolio, and ensures that the manager acts as trading counterparty to the investor’s flows. Under

the alternative assumption that the manager must invest his wealth in the riskless asset, we would

need to introduce two new elements into the model: a performance fee to provide the manager with

incentives for portfolio choice, and an additional set of agents who could access stocks directly and

act as counterparty to the investor’s flows. This would complicate the model without changing the

main intuitions. The manager in our model can be viewed as the aggregate of all agents absorbing

the investor’s flows.

Under the assumptions introduced so far, and in the absence of other frictions, the investor

holds stocks only through the active fund since its portfolio dominates the index portfolio. We

introduce a tradeoff between the two funds by assuming that the investor’s return from the active

fund is equal to the gross return, made of the returns of the stocks held by the fund, net of a cost.

Changes in this cost generate fund flows. An empirical counterpart for the cost is the return gap,

defined as the difference between a mutual fund’s return over a given quarter and the return of a

hypothetical portfolio invested in the stocks that the fund holds at the beginning of the quarter.

Empirical studies of the return gap include Grinblatt and Titman (1989), Wermers (2000), and

Kacperczyk, Sialm and Zhang (2008). They attribute the return gap mostly to operational costs,

agency costs, and managerial stock-picking ability.

All three interpretations of the return gap—with agency costs and ability in reduced form—fit

the more complicated version of our model where the manager must invest his wealth in the riskless

asset. Because, however, we are assuming (for parsimony) that the manager can also invest in the

active fund, we need to specify how his own investment in the fund is affected by the cost. The most

convenient assumption is that the manager does not suffer the cost on his investment: this ensures,

in particular, that changes in the cost generate flows between the investor and the manager. This

assumption rules out the operational-cost and ability interpretations of the cost, which imply that

the cost hurts the manager. We adopt instead the agency-cost interpretation, assuming that the

cost is a perk that the manager can extract from the investor. Examples of perks in a delegated

portfolio management context are late trading and soft-dollar commissions. The main intuitions

coming out of our model, however, are broader than the managerial-perk interpretation.

We assume that the index fund entails no cost, so its gross and net returns coincide. This is

for simplicity, but also fits the interpretations of the return gap. Indeed, managing an index fund
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involves no stock-picking ability, and operational and agency costs are smaller than for active funds.

We take the active fund’s cost to be proportional to the number of shares y that the investor

holds in the fund, and denote the coefficient of proportionality by C ≥ 0. We assume that the

investor observes C perfectly; unobservability of C matters for our analysis only when there are

more than two periods, as we explain in Section 5.2.

To remain consistent with the managerial-perk interpretation of the cost, we should allow the

manager to derive a benefit from the investor’s participation in the active fund. The benefit,

however, matters for our analysis only when there are more than two periods, so we ignore it until

Section 5.2.

The cost Cy is assumed proportional to y for analytical convenience. At the same time, it is

sensitive to how shares of the active fund are defined (e.g., it changes with a stock split). We define

one share of the fund by the requirement that its market value equals the equilibrium market value

of the entire fund. Under this definition, the number of fund shares held by the investor and the

manager in equilibrium sum to one, i.e.,

y + ȳ = 1. (2.3)

We define one share of the index fund to coincide with the market index η. We define the constant

∆ ≡ θΣθ′ηΣη′ − (ηΣθ′)2,

which is positive and becomes zero when the vectors η and θ are collinear. Figure 1 summarizes

our model’s basic structure.

3 Equilibrium

3.1 Manager’s Optimization

The manager chooses the active fund’s portfolio z and the number ȳ of fund shares that he owns

to maximize the expected utility (2.2). He is subject to the budget constraint

W̄2 = W̄1 + ȳz(D − S),
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I d F dIndex Fund

Investor

StocksActive Fund
Cost C

Manager
Buy-and-Hold

Investors

Figure 1: Agents and assets.

where the second term is his capital gain from investing in the active fund. Given exponential

utility and normality, the objective (2.2) is equivalent to the mean-variance objective

ȳz(D̄ − S)− ā

2
ȳ2zΣz′.

This objective depends on (ȳ, z) only through the product ȳz, and the first-order condition is

D̄ − S = āȳΣz′. (3.1)

Eq. (3.1) links stocks’ expected returns D̄ − S to the risk faced by the manager. The expected

return that the manager requires from a stock depends on the stock’s covariance with the manager’s

portfolio ȳz.
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3.2 Investor’s Optimization

The investor chooses the number of shares x and y of the index and active fund, respectively, to

maximize the expected utility (2.1). She is subject to the budget constraint

W2 = W1 + xη(D − S) + yz(D − S)− Cy,

where the second and third terms are her capital gains from investing in the index and active

fund, respectively. Given exponential utility and normality, the objective (2.1) is equivalent to the

mean-variance objective

(xη + yz)(D̄ − S)− a

2
(xη + yz)Σ(xη + yz)′ − Cy.

The first-order conditions with respect to x and y are

η(D̄ − S) = aηΣ(xη + yz)′, (3.2)

z(D̄ − S)− C = azΣ(xη + yz)′, (3.3)

respectively. Eqs. (3.2) and (3.3) are analogous to the manager’s first-order condition (3.1) in that

they equate expected returns to risk. The difference with (3.1) is that the investor is constrained to

two portfolios rather than N individual stocks. Eq. (3.1) is a vector equation with N components,

while (3.2) and (3.3) are scalar equations derived by pre-multiplying expected returns with the

vectors η and z of index- and active-fund weights. Note that the investor’s expected return from

the active fund in (3.3) is net of the cost C.

3.3 Market Clearing

In equilibrium, the active fund holds θn − xηn shares of stock n: the number of shares θn in the

true market portfolio, minus the number of shares xηn that the investor holds through the index

fund. Since one share of the active fund includes zn shares of stock n, and is normalized to coincide

with the total holdings of the active fund, market clearing implies that

z = θ − xη. (3.4)

Combining (2.3), (3.1), (3.2), (3.3) and (3.4), we can compute equilibrium prices and investment

levels.
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Proposition 3.1 In equilibrium,

x =
CηΣθ′

a∆ + CηΣη′
, (3.5)

y =
ā

a + ā
− CηΣη′

(a + ā)∆
, (3.6)

ȳ =
a

a + ā
+

CηΣη′

(a + ā)∆
, (3.7)

S = D̄ − aā

a + ā
Σθ′ − āηΣη′C

(a + ā)∆
Σp′f , (3.8)

where

pf ≡ θ − ηΣθ′

ηΣη′
η. (3.9)

Eqs. (3.5)-(3.8) simplify in the benchmark case where the investor’s cost C from investing in the

active fund is zero. The investor holds x = 0 shares of the index fund, thus investing exclusively in

the active fund. This is because the active fund offers a superior portfolio than the index fund at

no cost. The relative share of the investor and the manager in the active fund is y/ȳ = ā/a, which

corresponds to the optimal risk-sharing rule. Stocks’ expected returns are

D̄ − S =
aā

a + ā
Σθ′,

and hence are determined by the covariance with the true market portfolio. The intuition is that

since the index fund receives zero investment, the true market portfolio coincides with the active

portfolio z, which is also the portfolio held by the manager. Since the manager determines the

cross section of expected returns through the first-order condition (3.1), the true market portfolio

is the only pricing factor.

We next examine how changes in the cost C affect fund flows (Section 4.1), and how these flows

affect stock prices and expected returns (Section 4.2). We show that fund flows have larger effects

on stocks with high idiosyncratic risk (Section 4.3) and induce comovement between stocks (Section

4.4). We finally examine how changes in C and the resulting fund flows affect the expected returns

of the index and active funds (Section 4.5).

9



4 Fund Flows and Price Effects

4.1 Fund Flows

Following an increase in the cost C of investing in the active fund, the investor flows out of the

active and into the index fund. Indeed, (3.5) implies that the number of shares x held by the

investor in the index fund increases in C, and (3.6) implies that the number of shares y held in

the active fund decreases in C.3 Using (3.5) and (3.6) we can also determine the change in the

investor’s indirect stock holdings, i.e., the shares of the stocks that the investor owns through the

funds. Indirect stock holdings are xη + yz and they change by

∂

∂C
(xη + yz) =

∂

∂C
[xη + y(θ − xη)] = − 1

(a + ā)∆
(
ηΣη′θ − ηΣθ′η

)
= − ηΣη′

(a + ā)∆
pf ,

where the second step follows from (3.5) and (3.6), and the third from (3.9). The net change in

indirect stock holdings is proportional to the portfolio pf defined in (3.9). We refer to pf as the

flow portfolio because it characterizes fund flows. The flow portfolio consists of the true market

portfolio θ, plus a position in the market index η that renders the covariance with the index equal

to zero.4 The intuition why the flow portfolio characterizes fund flows is as follows. Following an

increase in C, the investor reduces her investment in the active fund, thus selling a slice of the true

market portfolio. She also increases her investment in the index fund, thus buying a slice of the

index. Because investing in the index fund is costless, the investor maintains a constant overall

exposure to the index. Therefore, the net change in her portfolio is uncorrelated with the index,

which means that she is selling a slice of the flow portfolio.

In selling a slice of the flow portfolio, the investor is effectively selling some stocks and buying

others. The stocks being sold correspond to long positions in the flow portfolio. Therefore, they

correspond to large components of the vector θ relative to η, and are overweighted by the active

fund relative to the index fund. Conversely, the stocks being bought correspond to short positions

in the flow portfolio, and are underweighted by the active fund.
3The result that x increases in C requires the additional assumption that ηΣθ′ > 0, i.e., the market index η and

the true market portfolio θ covary positively. This assumption is satisfied, for example, if the elements of the vector
θ and of the matrix Σ are positive.

4The covariance between the return η(D − S) of the index and the return pf (D − S) of the flow portfolio is

Cov(ηD, pfD) = ηΣp′f = ηΣ

(
θ − ηΣθ′

ηΣη′
η

)′
= ηΣθ′ − ηΣθ′

ηΣη′
ηΣη′ = 0.
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4.2 Stock Prices and Returns

The flows generated by the investor affect stock prices and expected returns. Eq. (3.8) implies that

following an increase in C, prices change by

∂S

∂C
= − āηΣη′

(a + ā)∆
Σp′f = − āηΣη′

(a + ā)∆
Cov(D, pfD). (4.1)

Prices of stocks that covary positively with the flow portfolio decrease and prices of stocks that

covary negatively increase. These effects are through fund flows. Indeed, when C increases, the

investor sells a slice of the flow portfolio, which is acquired by the manager. Since the manager

is risk averse, he requires higher expected returns from stocks that covary positively with the flow

portfolio, and the price of these stocks decreases. Conversely, the expected returns of stocks that

covary negatively with the flow portfolio decrease, and their price increases.

The effects of C on fund flows, prices and expected returns can be illustrated through simple

portfolio-frontier diagrams. Suppose that there are two stocks, 1 and 2, whose payoffs have the

same mean and variance (D̄1 = D̄2 and Σ11 = Σ22). Suppose that the market index consists of

one share of each stock (η1 = η2 = 1), but the true market portfolio is (θ1, θ2) = (1, 0.6). Figures 2

and 3 plot portfolio frontiers involving the two stocks. Returns are computed per share (Dn − Sn)

rather than per dollar ((Dn − Sn)/Sn), and so portfolio weights are computed in terms of shares

rather than dollars. Since the two stocks have the same payoff variance, they are on the same

vertical line. Moreover, stock 1 is higher in that line: it is cheaper than stock 2 since its weight in

the true market portfolio is higher.

The blue (dark) solid line in Figure 2 is the portfolio frontier of stocks 1 and 2 when C = 0. The

portfolio tangent to that line is the active portfolio. This is because the active portfolio is also the

personal stock portfolio of the manager, who maximizes a mean-variance objective and can invest

in the riskless asset. When C = 0, the investor can achieve the same point on the frontier as the

manager by investing exclusively in the active fund. Note that since the index fund receives zero

investment, the active portfolio coincides with the true market portfolio. The latter portfolio has

weights (5/8, 3/8) since the fraction of shares of stock 1 is θ1/(θ1 + θ2) = 1/(1 + 0.6) = 5/8. The

index portfolio has weights (1/2, 1/2) since the fraction of shares of stock n = 1, 2 is ηn/(η1 + η2) =

1/(1 + 1) = 1/2.

An increase in C, holding stock prices constant, lowers the return of the active fund to the

investor: the point representing the active fund from the investor’s viewpoint shifts downwards by

an amount equal to C. Therefore, the investor can no longer access the same point on the frontier
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Index (1/2,1/2)
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Figure 2: Effect of C on fund flows, prices and expected returns. The blue (dark)
solid line is the portfolio frontier of stocks 1 and 2 when C = 0. The portfolio tangent
to that line is the active portfolio. This is the manager’s personal stock portfolio, as
well as that of the investor when C = 0. When C increases, holding prices constant,
the investor holds the portfolio tangent to his new frontier, which is the green (light)
solid line. The investor’s new portfolio gives less than full weight to the active fund,
and positive weight to the index fund. The investor effectively sells stock 1, which the
active fund overweights relative to the index fund, and buys stock 2, which the active
fund underweights.

as the manager, but instead is limited to the more restricted frontier formed by the index fund and

the active fund net of the cost. The latter frontier is the green (light) solid line, and the investor

holds the portfolio tangent to that line. The investor’s new portfolio gives less than full weight

to the active fund, and positive weight to the index fund. (In fact, it almost coincides with the

index fund in Figure 2.) Figure 2 thus confirms that an increase in C causes the investor to flow

out of the active and into the index fund. The investor effectively sells stock 1, which the active

fund overweights relative to the index fund, and buys stock 2, which the active fund underweights.

Since the manager’s portfolio does not change, markets do not clear, and prices have to adjust.

The blue (dark) dashed line in Figure 3 is the portfolio frontier of stocks 1 and 2 after the price

adjustment. Because the investor effectively sells stock 1 and buys stock 2, stock 1 becomes cheaper

and stock 2 more expensive. Therefore, the points representing stocks 1 and 2 shift upwards and

downwards, respectively. The portfolio tangent to the new frontier of stocks 1 and 2 gives increased

weight to stock 1 and decreased weight to stock 2. Since the portfolio tangent to the frontier of

stocks 1 and 2 is the manager’s personal stock portfolio (as well as the active portfolio), the manager

buys stock 1 and sells stock 2. Note that the price adjustment also causes the investor’s frontier to

12



New stock 1

Stock 1New active (>5/8,<3/8)
R

)

New active net of cost

Investor's new TP

Active (5/8,3/8)
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(R)
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Figure 3: Effect of C on fund flows, prices and expected returns. When C increases,
the investor effectively sells stock 1 and buys stock 2. Therefore, stock 1 becomes
cheaper and stock 2 more expensive. The frontier of stocks 1 and 2 moves from the
blue (dark) solid line to the blue dashed line. The portfolio tangent to the new frontier
gives increased weight to stock 1 and decreased weight to stock 2, meaning that the
manager buys stock 1 and sells stock 2. The green (light) dashed line is the new
frontier of the investor. The manager’s trades offset those of the investor.

change, from the green (light) solid line in Figure 2 to the green dashed line in Figure 3. The price

adjustment and resulting changes in frontiers are such that the trades of the manager offset those

of the investor.

In the example illustrated in Figures 2 and 3 an increase in C lowers the price of stock 1, which

is overweighted by the active fund relative to the index fund, and raises the price of stock 2, which

is underweighted. Recall from (4.1) that the price effect is determined by the stock’s covariance

with the flow portfolio rather than by the stock’s relative weight across the two funds. Stocks that

the active fund overweights, however, are likely to covary positively with the flow portfolio, which

involves long positions in such stocks. Conversely, stocks that the active fund underweights are

likely to covary negatively because they correspond to short positions. This is the case for the

example illustrated in Figures 2 and 3. Indeed, the flow portfolio involves a long position in stock 1

and a short position of the same size in stock 2. Stock 1 covaries positively with the flow portfolio

and stock 2 covaries negatively.
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4.3 Idiosyncratic Risk

While a stock’s relative weight across the two funds influences the sign of a stock’s covariance with

the flow portfolio, idiosyncratic risk influences the magnitude: stocks with high idiosyncratic risk

have higher covariance with the flow portfolio in absolute value, and hence are more affected by

fund flows. To derive this effect, we regress the vector D−S of stock returns on the return η(D−S)

of the market index:

D − S = α + βη(D − S) + ε.

Taking covariances of both sides with the return pf (D − S) of the flow portfolio, and noting that

the market index is uncorrelated with the flow portfolio, we find

Σp′f = Cov(D, pfD) = Cov(ε, pfD),

i.e., the covariance between a stock and the flow portfolio is equal to that between the idiosyncratic

component ε of the stock’s payoff and the flow portfolio.5 Therefore, stocks with high idiosyncratic

risk have higher covariance with the flow portfolio in absolute value, and hence are more affected by

changes in C. To explain the intuition, we recall that changes in C induce the investor to rebalance

across funds but not to change her overall exposure to the market index. Therefore, the investor’s

willingness to carry risk perfectly correlated with the index does not change, and neither does the

price of the market index or of a stock that correlates perfectly with the index. On the other hand,

changes in C induce the investor to change her exposure to individual stocks or industry sectors.

The price effects caused by these flows are larger for stocks or sectors with large idiosyncratic risk.

4.4 Comovement

Since fund flows affect prices, they induce comovement between stocks. To study comovement

between prices in Period 1, we introduce a Period 0 as of which these prices are uncertain. We

allow the uncertainty to concern asset payoffs and fund flows since they both affect prices. Prices in

Period 1 depend on payoffs through the expected payoff vector D̄ ≡ (D̄1, .., D̄N )′. Moreover, fund

flows are triggered by changes in the cost C. We assume that D̄ and C are random as of Period 0,

independent of each other, and with covariance matrix Σ and variance s2, respectively. Eq. (3.8)
5Note that we consider idiosyncratic risk relative to the market index η and not relative to the market portfolio

π. This is typically how idiosyncratic risk is computed in empirical studies.
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implies that the covariance matrix, as of Period 0, of prices in Period 1 is

Cov0(S, S′) = Σ +
[

āηΣη′s
(a + ā)∆

]2

Σp′fpfΣ. (4.2)

The matrix Σ represents the covariance driven by payoffs, and we refer to it as fundamental co-

variance. The matrix
[

āηΣη′s
(a+ā)∆

]2
Σp′fpfΣ represents the additional covariance introduced by fund

flows, and we refer to it as non-fundamental covariance. The non-fundamental covariance between

a pair of stocks is proportional to the product of the covariances between each stock in the pair and

the flow portfolio. It is thus large in absolute value when the stocks have high idiosyncratic risk,

because they are more affected by fund flows. Moreover, it can be positive or negative: positive

for stock pairs whose covariance with the flow portfolio has the same sign, and negative other-

wise. Intuitively, two stocks move in the same direction in response to fund flows if they are both

overweighted or both underweighted by the active fund, but move in opposite directions if one is

overweighted and the other underweighted.

The non-fundamental covariance depends on the pattern of stock holdings across funds, which

can be viewed as an institutional characteristic of the market. We further emphasize the role of

institutional characteristics in driving comovement in Section 5.1, where we show that a redefinition

of the market index changes the non-fundamental covariance.

4.5 Fund Returns

We next examine how changes in the cost C affect the expected returns of the index and active

funds. Changes in C have a direct and an indirect effect on the active fund’s expected return. The

direct effect is that holding stock prices constant, an increase in C reduces the net-of-cost return

that the active fund offers to the investor. The indirect effect is that the active fund’s gross return

changes because the investor’s outflows from the fund affect stock prices and expected returns. In

particular, stocks that the active fund overweights relative to the index fund experience a price

drop and an increase in expected return, while the converse is true for underweighted stocks. The

indirect effect raises the active fund’s gross expected return, thus attenuating the direct effect. This

means that the investor’s outflows from the active fund make the fund’s portfolio more attractive.

But while the direct effect is attenuated, it dominates the indirect effect: an increase in C lowers the

active fund’s net expected return, even taking into account the price pressure caused by outflows.

To compute the direct and indirect effects, we need a measure of the active fund’s expected

return. We use the active fund’s alpha, which is the fund’s expected return risk-adjusted by the
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expected return of the market index. Alpha is the constant in the regression of the active fund’s

net return (θ − xη)(D − S)− C on the market index return η(D − S):6

(θ − xη)(D − S)− C = α + βη(D − S) + ε.

The regression yields

β =
Cov [(θ − xη)D, ηD]

V ar(ηD)
=

ηΣθ′

ηΣη′
− x, (4.3)

α = (θ − xη)(D̄ − S)− C − βη(D̄ − S) = pf (D̄ − S)− C. (4.4)

Alpha is equal to the expected return of the flow portfolio net of the cost C. The intuition is

that risk-adjusting the active fund’s return amounts to adding to the active portfolio a position in

the market index such that the covariance with the index is zero—and this exactly how the flow

portfolio is constructed. Substituting (3.8) and (3.9) into (4.4), we find

α =
aā∆

(a + ā)ηΣη′
+

(
ā

a + ā
− 1

)
C. (4.5)

The term aā∆
(a+ā)ηΣη′ is the active fund’s alpha when C = 0. When C = 0, the active portfolio

dominates the market index, and hence has positive alpha. The term
(

ā
a+ā − 1

)
C describes how

alpha varies with C, and is the sum of the direct and indirect effects. The direct effect is that

an increase in C causes a one-for-one decrease in the active fund’s alpha: this corresponds to the

second term in the parenthesis. The indirect effect corresponds to the first term, and is positive

but dominated by the direct effect.

The direct and indirect effects cancel each other only in the special case where the manager is

infinitely risk averse (ā = ∞). Indeed, in that case the manager’s personal stock holdings are zero,

and hence the investor holds the entire true market portfolio in equilibrium. Therefore, following

an increase in C, the investor does not flow out of the active fund, but prices adjust so that the

active fund’s net expected return remains constant. In terms of Figure 3, the investor’s portfolio

frontier remains identical to the case where C = 0, i.e., the green dashed line coincides with the

blue solid line. In the general case where ā is finite, the investor flows out of the active fund, and

the manager takes the other side of this trade attenuating the price effects. As a consequence, the

indirect effect is smaller than when ā = ∞, and the active fund’s net expected return decreases.
6Note that we consider alpha relative to the market index η and not relative to the market portfolio π. This is

typically how alpha is computed in empirical studies.
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The direct and indirect effects are zero for the index fund. Indeed, since the index fund entails

no cost for the investor, the direct effect is zero. Moreover, since changes in C do not change the

price of the market index, the indirect effect is zero. Therefore, changes in C do not affect the

index fund’s expected return.

5 Extensions

5.1 Index Redefinitions

To study the effects of index redefinitions, we perform the following simple exercise. Suppose that

two stocks (n, n′) are identical in all aspects except their weights in the market index. That is,

they have the same payoff variance (Σnn = Σn′n′), the same payoff covariance with all other stocks

(Σn` = Σn′` for all ` 6= n, n′), the same weights in the true market portfolio (θn = θn′), but different

weights in the market index (ηn 6= ηn′). We examine the price effects of switching the index weights

of the two stocks. Without loss of generality we assume that stock n receives originally higher

weight (ηn > ηn′), so after the switch stock n′ receives higher weight.

Proposition 5.1 (Index Effects) Suppose that stocks (n, n′) are identical in all aspects except

that stock n receives higher index weight. Switching the index weights of the two stocks raises the

price of stock n′ and reduces that of stock n by

āηΣθ′C
(a + ā)∆

Σnn(1− ρnn′)(ηn − ηn′), (5.1)

where ρnn′ is the correlation coefficient between stocks (n, n′)

Consistent with the empirical evidence, the stock whose index weight increases (stock n′) ex-

periences a price increase, while the stock whose index weight decreases (stock n) experiences a

price decrease.7 The effect appears only when C > 0; when C = 0, the investor does not invest in

the index fund, and hence index weights are irrelevant. Moreover, the effect strengthens when C

increases because the index fund then receives more investment.

To study how index composition affects comovement, we extend the previous exercise by con-

sidering two additional stocks (m,m′), which are also identical in all aspects except that stock m

receives higher index weight than stock m′ (ηm > ηm′). We examine how the weight switch between
7This result requires the additional assumption that ηΣθ′ > 0, i.e., the index portfolio η and the true market

portfolio θ covary positively. This assumption is satisfied, for example, if the elements of the vectors (η, θ) and of the
matrix Σ are positive.
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stocks (n, n′) affects how these covary with stocks (m,m′). As in Section 4.4, covariance concerns

prices in Period 1 and is evaluated as of Period 0.

Proposition 5.2 (Index-Induced Comovement) Suppose that stocks (n, n′) are identical in all

aspects except that stock n receives higher index weight, and the same is true for stocks (m,m′).

Switching the index weights of stocks (n, n′) raises the covariance between (n′, m) relative to that

between (n′,m′), and lowers the covariance between (n,m) relative to that between (n,m′).

Consistent with the empirical evidence, the stock whose index weight increases (stock n′) expe-

riences an increase in covariance with stocks whose index weight is high (stock m) relative to stocks

whose index weight is low (stock m′). Conversely, the stock whose index weight decreases (stock

n) experiences an increase in covariance with stocks whose index weight is low (stock m′) relative

to stocks whose index weight is high (stock m). The intuition is analogous to that in Section 4.4:

stocks with high index weight tend to go up following inflows to the index fund, while stocks with

low index weight tend to go down.

5.2 Multiple Periods

Our analysis so far assumes two periods: Period 1, in which stocks are traded, and Period 2, in

which they pay off. Sections 4.4 and 5.1 introduce an additional Period 0, as of which the covariance

of prices in Period 1 is computed. Adding more periods, and allowing C to vary across periods,

makes it possible to study a number of new issues. We analyze these issues informally here, and

refer to Vayanos and Woolley (2010, VW) for a formal analysis in continuous time.

5.2.1 Momentum and Reversal

Momentum and reversal are two of the most prominent market anomalies, and have been docu-

mented extensively for a wide variety of assets. Momentum is the tendency of assets with good

(bad) recent performance to continue overperforming (underperforming) in the near future. Re-

versal concerns predictability based on a longer performance history: assets that performed well

(poorly) over a long period tend to subsequently underperform (overperform).

Our two-period model generates return predictability, which is driven by fund flows. Following

an increase in C, the investor flows out of the active fund in Period 1. In response to these

outflows, stocks that covary positively with the flow portfolio drop in price and their expected

returns increase, while the opposite happens to stocks that covary negatively. In both cases, a

stock’s price in Period 1 predicts negatively the stock’s return between Periods 1 and 2. This yields
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reversal, as can be seen by introducing a Period 0: a stock’s return between Periods 0 and 1 predicts

negatively the return between Periods 1 and 2.

The combination of momentum and reversal can be derived by introducing an additional period

prior to Period 0, and assuming that fund flows exhibit inertia. Suppose, for example, that the

investor cannot respond instantaneously to an increase in C in Period 0, but can flow out of the

active fund only in Period 1. The investor’s outflows in Period 1 cause stocks that covary positively

with the flow portfolio to be cheap in that period and earn high expected returns between Periods

1 and 2. Since the outflows are anticipated in Period 0, the prices of these stocks drop immediately

following the increase in C in Period 0. VW show, however, that the expected returns of these

stocks between Periods 0 and 1 decrease, and so the underperformance in Period 0 is expected to

continue. This yields the combination of momentum and reversal, as can be seen by introducing a

Period -1: a stock’s return between Periods -1 and 0 predicts positively the return between Periods

0 and 1, but the return between Periods -1 and 1 predicts negatively the return between Periods 1

and 2.

The result that momentum can arise is surprising: why is the manager willing to hold in Period

0 a stock that is expected to underperform in Period 1? The intuition is that the manager prefers to

guarantee a “bird in the hand.” Indeed, the anticipation of outflows in Period 1 causes the stock to

become underpriced in Period 0 and offer an attractive return (bird in the hand) between Periods 0

and 2. The manager could earn an even more attractive return (two birds in the bush), on average,

by buying the stock in Period 1, immediately after the outflows occur. This, however, exposes him

to the risk that the outflows might not occur (because of an offsetting shock to C in Period 1), in

which case the stock would cease to be underpriced. Thus, the manager might prefer to guarantee

an attractive long-horizon return, and pass up on the opportunity to exploit an uncertain short-run

price drop.

A simple example illustrates the point. A stock is expected to pay off at 100 in Period 2. The

stock price is 92 in Period 0, and 80 or 100 in Period 1 with equal probabilities. Buying the stock

in Period 0 earns the manager a two-period expected capital gain of 8. Buying in Period 1 earns

an expected capital gain of 20 if the price is 80 and 0 if the price is 100. A risk-averse manager

might prefer earning 8 rather than 20 or 0 with equal probabilities, even though the expected return

between Periods 0 and 1 is negative.
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t = 0 t = 1 t = 2

No Flows: S1=100

Outflows: S1=80

E(S2)=100
S0=92

E(S1)=90

Figure 4: Momentum and reversal in a three-period example.

5.2.2 Commercial Risk

The compensation of fund managers in practice increases in the size of the fund that they manage.

This gives rise to commercial risk: managers are concerned with experiencing outflows. How do

managers’ concerns with commercial risk affect equilibrium asset prices?

To study the effects of commercial risk, we must introduce a benefit that the manager derives

from managing a larger fund. Our model can accommodate a benefit that is a general function of

the number of shares y that the investor holds in the active fund. For example, the benefit can

be assumed proportional to y, with coefficient of proportionality B. If the cost is a perk that the

manager can extract efficiently, then B = C. VW allow B to be a general affine function of C.

Introducing a benefit has no effect on stock prices in the two-period model. This is because

stocks pay off in Period 2, so the active fund is terminated regardless of the manager’s portfolio

choice in Period 1. With more periods, however, the benefit matters. Indeed, the manager’s concern

with outflows in Period 1 influences his portfolio choice in Period 0. VW show that an increase

in B lowers the prices of stocks that covary positively with the flow portfolio and raises those of

stocks covarying negatively. Since the former are generally stocks that the active fund overweights

and the latter stocks that it underweights, this result implies that a manager concerned with losing

his fee is less willing to deviate from the market index. The intuition is that a manager concerned

with losing his fee seeks to hedge against increases in C since these trigger outflows. Hedging can

be accomplished by holding a portfolio closer to the index since changes in C do not affect the

index price.

When B is an increasing (affine) function of C, an increase in C in Period 0 lowers the prices of

stocks that covary positively with the flow portfolio and raises those of stocks covarying negatively

because of two mutually-reinforcing effects: the price pressure caused by outflows, and the man-
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ager’s increased concern with commercial risk. Thus, the manager’s desire to hedge against future

outflows amplifies the effect that current outflows have on prices. In other words, the manager’s

concern with commercial risk has the perverse effect to make returns riskier.

5.2.3 Asymmetric Information

Our analysis so far assumes that the investor observes C. A more realistic assumption, however, is

that the investor does not observe C but infers it from fund returns and prices. Inference generates

a causal effect of fund returns on fund flows: for example, following poor returns by the active fund,

the investor infers that C has increased and flows out of the fund. Note that when the investor

observes C, causality runs only from flows to returns: changes in C trigger flows, and the price

pressure that these generate affects returns.

Non-observability of C generates a causal effect of returns on flows only when there are more

than two periods. Indeed, in our two-period model, returns are realized in Period 2, but no flows

are possible in that period because stocks pay off and funds are terminated. With an additional

Period 0, however, returns realized in Period 1 affect flows in that period.

When causality between flows and returns runs in both directions, flows amplify the effects of

shocks to asset fundamentals. Suppose, for example, that a stock experiences a negative payoff

shock. If the stock is overweighted by the active fund, then the shock lowers the return of the

active fund relative to the index fund. As a consequence, the investor infers that C has increased,

and flows out of the active and into the index fund. Since the active fund overweights the stock,

the investor’s flows cause the stock to be sold and push its price down. Conversely, if the stock is

underweighted, then the investor infers that C has decreased, and flows out of the index and into

the active fund. Since the active fund underweights the stock, the investor’s flows cause again the

stock to be sold and push its price down. Thus, in both cases, fund flows amplify the effect that

the payoff shock has on returns.

Amplification is related to comovement. Recall that when the investor observes C, and so

causality runs only from flows to returns, non-fundamental comovement between a pair of stocks

arises because flows affect the prices of both stocks in the pair. When, however, the investor does

not observe C, and so causality runs also from returns to flows, a new channel of comovement

appears: a shock to one stock’s payoffs affects fund returns, and so triggers flows which affect

the price of the other stock. When the two stocks coincide, this channel manifests itself as the

amplification effect of the previous paragraph.

Finally, causality from returns to flows gives rise to a new channel of momentum and reversal.

When the investor observes C, momentum and reversal are triggered only by (observable) stocks to
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C. When, however, the investor does not observe C, momentum and reversal are triggered by fund

returns, which are affected not only by (unobservable) shocks to C but also by shocks to stocks’

payoffs.
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Appendix

A Proofs

Proof of Proposition 3.1: Substituting (3.4) into (3.1), and using (2.3), we find

D̄ − S = ā(1− y)Σ(θ − xη)′. (A.1)

Substituting (3.4) into (3.2) and (3.3), we find the equivalent system

η(D̄ − S) = aηΣ [xη + y(θ − xη)]′ , (A.2)

θ(D̄ − S)− C = aθΣ [xη + y(θ − xη)]′ . (A.3)

Substituting S from (A.1) into (A.2) and (A.3), we find

ā(1− y)ηΣ(θ − xη)′ = aηΣ [xη + y(θ − xη)]′ , (A.4)

ā(1− y)θΣ(θ − xη)′ − C = aθΣ [xη + y(θ − xη)]′ . (A.5)

Eqs. (A.4) and (A.5) constitute a linear system of equations in (y, x(1− y)). Solving for y we find

(3.6), and solving for x we find (3.5). Eq. (3.7) follows from (2.3) and (3.6). Eq. (3.8) follows from

(3.5), (3.6) and (A.1).

Proof of Proposition 5.1: Since stocks (n, n′) are identical in all aspects except their index

weights, the weight switch does not affect the scalars ηΣη′ and ηΣθ′. It also does not affect the

vectors pf and Σp′f except for their components n and n′, which are switched. Using the subscripts

(n, n′) to denote components before the switch, we find

(pf )n − (pf )n′ = −ηΣθ′

ηΣη′
(ηn − ηn′), (A.6)

(Σp′f )n − (Σp′f )n′ = Σnn(1− ρnn′) [(pf )n − (pf )n′ ]

= −ηΣθ′

ηΣη′
Σnn(1− ρnn′)(ηn − ηn′), (A.7)

where (A.6) follows from (3.9), and (A.7) from (A.6). Eq. (3.8) implies that the price of stock n′
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increases by

− āηΣη′C
(a + ā)∆

[
(Σp′f )n − (Σp′f )n′

]
, (A.8)

and the price of stock n decreases by the same amount. Eqs. (A.7) and (A.8) imply (5.1).

Proof of Proposition 5.2: Since Σm` = Σm′` for ` = n, n′, (4.2) implies that before the switch,

the difference in covariances between stocks (n,m) and (n,m′) is

Cov0(S, S′)nm − Cov0(S, S′)nm′ =
[

āηΣη′s
(a + ā)∆

]2

(Σp′f )n

[
(Σp′f )m − (Σp′f )m′

]
, (A.9)

and that between stocks (n′, m) and (n′,m′) is

Cov0(S, S′)n′m − Cov0(S, S′)n′m′ =
[

āηΣη′s
(a + ā)∆

]2

(Σp′f )n′
[
(Σp′f )m − (Σp′f )m′

]
. (A.10)

After the switch, the difference in covariances between stocks (n,m) and (n,m′) is given by (A.10),

and that between stocks (n′,m) and (n′,m′) is given by (A.9). This is because stocks (n, n′) are

identical in all aspects except their index weights. Therefore, the proposition holds if

[
(Σp′f )n − (Σp′f )n′

] [
(Σp′f )m − (Σp′f )m′

]
> 0, (A.11)

where the subscripts (n, n′) denote components before the switch. Using (A.7) for stocks (m,m′)

and (n, n′), we find that (A.11) is equivalent to

(ηn − ηn′)(ηm − ηm′) > 0,

which holds.
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