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APPROXIMATING MINIMUM-COST k-NODE CONNECTED
SUBGRAPHS VIA INDEPENDENCE-FREE GRAPHS∗
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Abstract. We present a 6-approximation algorithm for the minimum-cost k-node connected
spanning subgraph problem, assuming that the number of nodes is at least k3(k − 1) + k. We
apply a combinatorial preprocessing, based on the Frank–Tardos algorithm for k-outconnectivity, to
transform any input into an instance such that the iterative rounding method gives a 2-approximation
guarantee. This is the first constant factor approximation algorithm even in the asymptotic setting
of the problem, that is, the restriction to instances where the number of nodes is lower bounded by
a function of k.
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1. Introduction. A basic problem in network design is to find a minimum-
cost subnetwork H of a given network G such that H satisfies some prespecified
connectivity requirements. Most of these problems are NP-hard; hence, research has
focused on the design and analysis of approximation algorithms. The area flourished
in the 1990s, and there were a number of landmark results pertaining to problems with
edge-connectivity requirements. This line of research culminated with a result of Jain
that gives a 2-approximation algorithm for a general problem called the survivable
network design problem, abbreviated as SNDP.1 Progress has been much slower on
similar problems with node-connectivity requirements, despite more than a decade of
active research.

Our focus is on undirected graphs throughout. For a positive integer k, a graph is
called k-node-connected (abbreviated k-connected) if it has at least k + 1 nodes, and
the deletion of any set of k− 1 nodes leaves a connected graph. In the minimum-cost
k-connected spanning subgraph problem, we are given a graph with nonnegative costs
on the edges; the goal is to find a k-connected spanning subgraph of minimum cost.
Throughout, we use k to denote the connectivity parameter and n = |V | to denote
the number of nodes; both are integers with 1 ≤ k < n.

1.1. Previous results. A well-studied related problem is k-outconnectivity in
directed graphs: given a root node r, find a minimum-cost subset of arcs containing
k internally disjoint directed paths from r to every other node. Frank and Tardos
[12] gave a polynomial-time algorithm for this problem (discussed in section 3.1).
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Their algorithm is a crucial subroutine in most results on k-node-connected subgraphs
mentioned below, as well as in our paper.

Finding a minimum-cost k-node-connected subgraph is the same as finding a
minimum-cost spanning tree for k = 1; however, it is NP-hard for every fixed value
k ≥ 2. Using the above mentioned result [12] on k-outconnectivity augmentation, it
is easy to obtain an approximation guarantee of 2k; this is discussed in [20]. This
approximation guarantee was improved to k by Kortsarz and Nutov [22].

In the asymptotic setting of the problem, we restrict ourselves to instances where
the number of nodes is lower bounded by a function of k. Results in the asymptotic
setting address the issue of approximability as a function of the single parameter k
(for all sufficiently large n). In [4], an O(log k) approximation guarantee was given
for the asymptotic setting, assuming that n ≥ 6k2.

Most research efforts subsequent to [4] focused on finding near-logarithmic approx-
imation guarantees for all possible ranges of n and k, and on extending the results to
the more general setting of directed graphs. Kortsarz and Nutov [23] presented an al-
gorithm with an approximation guarantee of O(log k ·min{√k, n

n−k log k}). The paper
by Fakcharoenphol and Laekhanukit [7] gave an O(log2 k)-approximation algorithm.
The approximation guarantee was further improved by Nutov [30] to O(log k log n

n−k ).
The results of [23, 7, 30] apply to both undirected graphs and directed graphs. The ap-
proximability for k = n− o(n) seems to raise combinatorial difficulties such that even
a decade after the O(log k) approximation guarantee was proved in the asymptotic
setting, it is still not clear whether the same guarantee holds for all k and n.

Even the following fundamental question has been open: Does there exist an
o(log k) approximation algorithm for the problem on undirected graphs in the asymp-
totic setting, or is it possible to prove a superconstant hardness-of-approximation
threshold? Our result resolves this question by giving a constant factor approximation
in the asymptotic setting (see Theorem 1.1).

Whereas no constant factor approximation was given previously for this prob-
lem, such results were already known for similar problems with edge-connectivity
requirements. A fundamental tool here is the iterative rounding method (see Algo-
rithm 1 as adapted to our setting), introduced by Jain [18] for the edge-connectivity
SNDP. Jain’s pivotal result asserts that every basic feasible solution to the standard
linear programming (LP) relaxation has at least one edge of value at least 1

2 . A 2-
approximation is obtained by iteratively adding such an edge to the graph and solving
the LP relaxation again.

As tempting as it might be to apply iterative rounding for the SNDP with node-
connectivity requirements, unfortunately the standard LP relaxation for this prob-
lem might have basic feasible solutions with small fractional values on every edge.
Such examples were presented in [3, 8, 9]. Recently, [1] improved on these previous
constructions2 by exhibiting an example of the min-cost k-connected spanning sub-
graph problem with a basic feasible solution that has value O(1)/

√
k on every edge.

Still, iterative rounding has been applied to problems with node-connectivity require-
ments: Fleischer, Jain, and Williamson [9] gave a 2-approximation for a special class
of demand functions, called “very weakly two-supermodular.” This includes the node-
connectivity SNDP with maximum requirement 2, and also the element-connectivity

2The construction in [1] applies to our problem, whereas the negative implications of the con-
structions predating [1] apply to more general problems (e.g., the node-connectivity SNDP) but not
to our setting.
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SNDP, a problem lying between edge- and node-connectivity.3 Chuzhoy and Khanna
[5] gave an O(k3 logn)-approximation algorithm for the node-connectivity SNDP,
based on an elegant randomized reduction to the element-connectivity SNDP, where
the 2-approximation of Fleischer, Jain, and Williamson [9] is applicable. Here k
denotes the maximum connectivity requirement value. A different application of it-
erative rounding was recently given by Fukunaga, Nutov, and Ravi [13] for degree-
bounded variants of the node-connectivity SNDP; also, see Nutov [31] and Fukunaga
and Ravi [14].

We also remark that the general node-connectivity SNDP is substantially harder
than the edge- or element-connectivity variant. One might not hope for a constant
factor approximation, as the problem is kε-hard for every k > k0, for fixed positive
constants k0 and ε, as shown by Chakraborty, Chuzhoy, and Khanna [2]; previous
bounds were given by Kortsarz, Krauthgamer, and Lee [21].

1.2. Our result and the main ideas. Our main result is the following.
Theorem 1.1. There exists a polynomial-time 6-approximation algorithm for the

following problem: given an undirected graph G = (V,E) with nonnegative costs on
the edges, and a positive integer k, such that G is k-connected and |V | ≥ k3(k−1)+k,
find a k-connected spanning subgraph of minimum cost.

In what follows, we describe the main ideas of our result. Our new insight is
that whereas iterative rounding fails to give constant factor approximations for arbi-
trary instances, we can isolate a class of graphs, called “independence-free graphs,”
where it does give a 2-approximation; and moreover, we are able to transform an
arbitrary input instance to a new instance from this class. The 2-approximation for
independence-free graphs follows from the result of Fleischer, Jain, and Williamson
[9]. Section 1.2.1 describes these graphs, whereas section 1.2.2 gives an overview of
the initial transformation of the input. The precise definitions and detailed arguments
will be given in section 2 and the subsequent sections.

1.2.1. Independence-free graphs. There is an equivalent formulation of our
problem that we prefer to use within this paper: For a set V , let

(
V
2

)
denote the edge

set of the complete graph on the node set V . In the minimum-cost k-connectivity
augmentation problem, we are given a graph G = (V,E) and nonnegative edge costs
c :

(
V
2

)→ R+, and the task is to find a minimum-cost set F ⊆ (
V
2

)
of edges such that

G + F is k-connected.4 Let opt(G) denote the cost of an optimal augmenting edge
set. Our reason for switching problems is the formal convenience of the connectivity
augmentation framework for the presentation of iterative rounding as the second part
of our algorithm; the standard analysis of iterative rounding is “memoryless” in that
the analysis holds regardless of the “starting graph,” whereas our analysis of iterative
rounding exploits properties of this graph.

Frank and Jordán [11] introduced the framework of set-pairs for node-connectivity
problems; the LP relaxation is also based on this notion. By a set-pair we mean a

3The element-connectivity SNDP is similar to the (edge-connectivity) SNDP; we are given a set
of terminals T ⊆ V ; each edge, as well as each nonterminal node, is called an element ; for each
unordered pair i, j ∈ T , there is a connectivity requirement for ρij element-disjoint paths between
i and j. Similarly, in the node-connectivity SNDP the requirement is to have ρij internally node-
disjoint paths between any nodes i and j.

4Let us quickly verify the equivalence of the two problems. Given an instance (V, Ê), ĉ : Ê → R+

of the subgraph problem, we can reduce it to the augmentation problem with G = (V, ∅), ce = ĉe if

e ∈ Ê and ce = ∞ if e ∈ (V
2

)−Ê. In the other direction, given an instance G = (V, E), c :
(V
2

) → R+

of the augmentation problem, we can reduce it to the subgraph problem on the complete graph, with
ĉe = ce if e ∈ (V

2

)−E and ĉe = 0 if e ∈ E.
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pair of nonempty disjoint sets of nodes, not connected by any edge of the graph; the
two sets are called pieces. If the union of the two pieces has size > n − k, then the
set-pair is called deficient since it corresponds to the two sides of a node cut of size
< k. Clearly, a k-connected graph must not contain any deficient set-pairs. A new
edge has to cover every deficient set-pair, that is, an edge whose endpoints lie in the
two different pieces. Two set-pairs are called dependent if they can be simultaneously
covered by an edge (of the complete graph); otherwise, the two set-pairs are called
independent. It can be seen that the two set-pairs are independent if and only if one
of them has a piece disjoint from both pieces of the other set-pair.

A graph is called independence-free if any two deficient set-pairs are dependent.
We observed that bad examples for iterative rounding (such as the one in [1]) always
contain independent deficient set-pairs. We show that this is the only possible ob-
struction: in independence-free graphs, the analogue of Jain’s theorem holds, that is,
that every basic feasible solution to the LP relaxation has an edge with value at least
1
2 ; see Theorem 2.2 in section 2.

Theorem 2.2 can be derived from a general result by Fleischer, Jain, and William-
son [9, Theorems 3.5, 3.13], asserting that iterative rounding gives a 2-approximation
for covering “very weakly two-supermodular” functions. This is an extension of Jain’s
notion of weakly supermodular (requirement) functions to the framework of set-pairs.
A more concise proof using a fractional token argument was given by Nagarajan, Ravi,
and Singh [29]. We provide direct, simplified proofs for the independence-free case.

The notion of independence-free graphs was introduced by Jackson and Jordán
[17] in the context of minimum cardinality k-connectivity augmentation (the spe-
cial case of our problem where each edge in

(
V
2

)−E has cost 1). They gave a
polynomial-time algorithm for this problem for fixed k. They first solve the prob-
lem for independence-free graphs and then show how the general case can be reduced
to such instances. At a high level, we follow a similar approach, but there is very
little in common between the details of their algorithm and ours; they have to use an
elaborate analysis to get an optimal solution to an unweighted problem, whereas we
use simple methods (based on powerful algorithmic tools) to approximately solve the
weighted problem. The first phase of our algorithm uses “combinatorial methods”
to add a set of edges of cost ≤ 4opt(G) to obtain an independence-free graph. The
second phase of our algorithm then applies iterative rounding to add a set of edges of
cost ≤ 2opt(G) to obtain an augmented graph that is k-connected.

1.2.2. Overview of the first phase. In the first phase, we shall guarantee
a property stronger than independence-freeness. For this purpose, let us consider
deficient sets instead of deficient set-pairs. A set of nodes U is called deficient if it has
fewer than k neighbors, and moreover, the union of U and its neighbor set is a proper
subset of V (in other words, the neighbors of U form a node cut of size < k). There
is a one-to-one correspondence between deficient sets and pieces of deficient set-pairs.
By a rogue set we mean a deficient set U with |U | < k. We call a graph rogue-free if
it does not contain any rogue sets or, equivalently, if every deficient set is of size at
least k. It is easy to see that a rogue-free graph must also be independence-free.

Next, we give an algorithmic overview of the first phase by showing that an
arbitrary graph G with at least k3(k − 1) + k nodes can be made rogue-free by two
applications of the Frank–Tardos algorithm [12] for k-outconnectivity. (Section 3.1
discusses this algorithm in sufficient detail; it is a standard tool in the area and has
been used in [20, 4, 23, 7, 30], etc.) First, we pick a set R0 of k arbitrary nodes
of G and connect them (temporarily) to a new root node r̂. Then we apply the
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Frank–Tardos algorithm with root r̂; after recording the output, we remove r̂ and
its incident edges. The algorithm outputs a set of edges F ′ of cost ≤ 2opt(G) such
that in the augmented graph G′ = G + F ′, every surviving deficient set contains
some node of R0. Theorem 2.5 below asserts that the union of all rogue sets of G′

has size ≤ k3(k − 1). In section 5, assuming that n ≥ k3(k − 1) + k, we describe a
polynomial-time algorithm for finding (a superset of) the union of rogue sets. Hence,
we can choose a second set of nodes R1 of size k, disjoint from all rogue sets, and
apply the Frank–Tardos algorithm again to find a set of edges F ′′ of cost ≤ 2opt(G)
such that in the augmented graph G′′ = G′ + F ′′ = G + F ′ + F ′′, every surviving
deficient set contains some node of R1. The key point is that the graph G′′ resulting
from the second application has no rogue sets (any rogue set of G′′ must be a rogue
set of G′ = G′′ − F ′, and moreover, it must contain a node of R1, but we chose R1

to be disjoint from all rogue sets of G′). Thus, we make the graph independence-free
by adding a set of edges of total cost ≤ 4opt(G).

We restate our main result in the setting of the min-cost k-connectivity augmen-
tation problem.

Theorem 1.2. There exists a polynomial-time 6-approximation algorithm for the
following problem: given an undirected graph G = (V,E), a nonnegative cost function
c :

(
V
2

)→ R+, and a positive integer k such that |V | ≥ k3(k− 1)+ k, find an edge set

F ⊆ (
V
2

)
of minimum cost such that G+ F is k-connected.

The rest of the paper is organized as follows. Section 2 precisely defines the
notion of set-pairs, the LP relaxation, and independence-free and rogue-free graphs
and formulates the two main theorems of the two parts of the proof. Section 3 bounds
the size of the union of the rogue sets after the first application of the Frank–Tardos
algorithm. Section 4 analyzes the iterative rounding method on independence-free
graphs. The arguments of these sections do not rely on each other. Section 5 shows
how the structural results shown in the above sections can be implemented in a
polynomial-time algorithm. Finally, section 6 discusses some related problems and
open questions.

2. Set-pairs, LP relaxation, and independence. For a graph G = (V,E)
and a set of edges F ⊆ (

V
2

)
, let G+F denote the graph (V,E∪F ). For a set U ⊆ V , we

use N(U) to denote the set of neighbors of U , namely, {w ∈ V −U | ∃uw ∈ E, u ∈ U},
and we use n(U) to denote |N(U)|. Let U∗ = V−(U ∪N(U)). By a deficient set U
we mean a set of nodes U such that n(U) < k and U and U∗ are both nonempty.
Clearly, a graph is k-connected if and only if there are no deficient sets in it.

A more abstract yet more convenient characterization of k-connectivity can be
given in terms of set-pairs. Note that set-pairs are usually defined in a directed sense;
see [11, 4]. Since our focus is on undirected graphs, our set-pairs are defined as
unordered pairs.

For two disjoint nonempty sets of nodes U0 and U1, the unordered pair U =
(U0, U1) is called a set-pair if there is no edge with one end in U0 and the other end
in U1. U0 and U1 are called the pieces of U. We use Γ(U) = Γ(U0, U1) to denote
V−(U0 ∪ U1). Let us define the deficiency function

(1) p(U) = p(U0, U1) = max{0, k − |Γ(U)|} = max{0, k − |V−(U0 ∪ U1)|}.

The set-pair is called deficient if p(U) > 0. It is easy to see that a graph is k-connected
if and only if there are no deficient set-pairs, that is, p ≡ 0. Furthermore, if the set
U is deficient, then the set-pair (U,U∗) is also deficient with N(U) = Γ(U,U∗) and
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p(U,U∗) = k − n(U) > 0. Conversely, if (U0, U1) is a deficient set-pair, then both U0

and U1 are deficient sets with U0 ⊆ U∗
1 and U1 ⊆ U∗

0 .
We say that an edge e = uv ∈ (

V
2

)
covers the set-pair U = (U0, U1) if one of

its endpoints lies in U0 and the other one lies in U1. For an edge set F ⊆ (
V
2

)
,

let dF (U) = dF (U0, U1) denote the number of edges in F covering U. Clearly, the
following statement holds: G+F is k-connected if and only if dF (U) ≥ p(U) for every
set-pair U.

Let S denote the family of all set-pairs in G, and for a set-pair U, let δ(U) ⊆ (
V
2

)
denote the set of edges covering U. For a vector x : E → R and a set-pair U, let
x(δ(U)) =

∑
e∈δ(U) xe. The following is a well-known LP relaxation of the minimum-

cost k-connectivity augmentation problem:

(LP-VC)

minimize
∑
e∈E

ce xe

subject to x(δ(U)) ≥ p(U) ∀U ∈ S,

xe ≥ 0 ∀ e ∈
(
V

2

)
.

Requiring integrality of the variables xe, we get the integer programming formulation
of the problem. As in [11], a basic optimal solution to (LP-VC) can be found in
polynomial time using the ellipsoid algorithm (see [15, Theorem 6.4.9]). Notice that
an optimal integral solution contains neither any edge of the original graph G nor any
parallel edges.

We say that two set-pairs U = (U0, U1) and W = (W0,W1) are independent if
there is no edge in

(
V
2

)
covering both of them.

Claim 2.1. U and W are independent if and only if either U has a piece disjoint
from both pieces of W, or W has a piece disjoint from both pieces of U.

Proof. Assume U = (U0, U1) and W = (W0,W1) are independent, and both U0

and U1 intersect at least one of W0 and W1. If U0 intersects Wi and U1 intersects
W1−i for some i ∈ {0, 1}, then every edge between U0∩Wi and U1∩W1−i covers both
set-pairs U and W, a contradiction to independence. Hence both must intersect the
same Wi, and not W1−i for some i ∈ {0, 1}. But then W1−i is disjoint from U0 ∪ U1,
as required. The converse direction is trivial.

The graph G = (V,E) is called independence-free if it does not have two set-pairs
that are deficient and independent; in other words, for every two deficient set-pairs
U = (U0, U1) and W = (W0,W1), there exists i ∈ {0, 1} such that U0 intersects Wi

and U1 intersects W1−i.
The following theorem is a consequence of Fleischer, Jain, and Williamson [9,

Theorems 3.5, 3.13] and the arguments used in their proofs. We explain the corre-
spondence in section 4, where we also present a simpler proof.

Theorem 2.2. Let G = (V,E) be an independence-free graph, and let k be a
positive integer. Then every basic feasible solution x to (LP-VC) with x ≡ 0 has an
edge e with xe ≥ 1/2.

Iterative rounding was introduced by Jain [18] for survivable network design; we
refer the reader to the recent book [25] on this method. It can be naturally adapted
to our problem of min-cost k-connectivity augmentation, as outlined in Algorithm 1.
The next corollary follows directly from Theorem 2.2, using the standard argument
from [18]; observe that adding new edges to an independence-free graph preserves this
property. Here and in the following, opt(G) will always denote the minimum cost of
an edge set whose addition to G results in a k-connected graph.



1348 JOSEPH CHERIYAN AND LÁSZLÓ A. VÉGH

Corollary 2.3. The iterative rounding algorithm (Algorithm 1) returns an edge
set of cost ≤ 2opt(G).

Algorithm 1. Iterative rounding algorithm.

Input: An independence-free graph G = (V,E), costs c :
(
V
2

)→ R+ and k ∈ Z+.

Output: An edge set F ⊆ (
V
2

)
such that (V,E ∪ F ) is k-connected.

1. E′ ← E.
2. While (V,E′) is not k-connected

(a) Solve (LP-VC) for the graph (V,E′).
(b) Let x be a basic optimal solution.
(c) If x ≡ 0, then terminate.
(d) Pick e ∈ (

V
2

)
such that xe ≥ 1

2 .
(e) E′ ← E′ ∪ {e}.

3. Return F = E′−E.

We call a deficient set U with |U | < k a rogue set. A graph is called rogue-free if
there are no rogue sets in it, that is, every deficient set is of cardinality ≥ k. Whenever
we have two set-pairs (U0, U1) and (W0,W1) that are independent, then at least one
of the four pieces U0, U1,W0,W1 must be a rogue set. We state this for later use.

Fact 2.4. If a graph has two deficient set-pairs that are independent, then it has
a rogue set. Equivalently, if a graph is rogue-free, then it is independence-free.

Our main structural result on rogue sets follows. This result is the key to our
first algorithmic goal, namely, given the input graph G = (V,E), find an edge set F0

such that G+ F0 is independence-free and c(F0) ≤ 4opt.
Theorem 2.5. Assume that there exists a set R ⊆ V such that every rogue

set has a nonempty intersection with R. Then the union of all rogue sets has size
≤ |R|k2(k − 1).

3. Making a graph rogue-free. In this section, we first describe our main
algorithmic tool, the Frank–Tardos algorithm, and its use in the first phase of our
algorithm. Section 3.2 is devoted to the proof of Theorem 2.5.

3.1. The Frank–Tardos algorithm for k-outconnectivity. Let D = (V,E)
be a directed graph, let r be a node of D, and let k be a positive integer; D is
called k-outconnected from r (or k-outconnected with root r) if it has k internally
disjoint dipaths from r to v for each node v ∈ V −{r}. Frank and Tardos [12] gave a
polynomial-time algorithm for finding an optimal solution to the following problem:
Given a directed graph D with costs on the edges, a root node r, and a positive integer
k, find a min-cost subgraph of D that is k-outconnected from r. (See also Frank [10]
for a simpler algorithm.)

We shall apply this algorithm in the following special way. In the graph G =
(V,E), pick a set of nodes R ⊆ V , with |R| = k. By a terminal we mean a node of R.
We (temporarily) add a new node r̂ to the graph and construct the following complete

directed graph D̂ on the node set V ∪ {r̂} with cost function ĉ. We set ĉuv = 0 for
every u, v ∈ V , (u, v) ∈ E, and ĉuv = c(u,v) if u, v ∈ V , (u, v) /∈ E; thus we obtain
equal costs on oppositely directed pairs of edges inside V . Further, let us set cr̂v = 0
if v ∈ R and ĉr̂v =∞ if v ∈ V−R; the cost of arcs from V to r̂ is also set to ∞. We
apply the Frank–Tardos algorithm to find a minimum-cost k-outconnected subgraph
F̂ from r̂ in D̂. Finally, we remove the root r̂ and all arcs incident to it, and from the
underlying undirected edges of F̂ we return the set F ′ of those that are not contained
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in E. We refer to this procedure as R-outconnectivity augmentation, and we denote
it as subroutine Rooted(G,R) (see Algorithm 2 and Figure 1).

Algorithm 2. The subroutine Rooted(G,R).

Input: Undirected graph G = (V,E), costs c :
(
V
2

) → R+ and k ∈ Z+, and node set
R ⊆ V , |R| = k.
Output: An edge set F ′ ⊆ (

V
2

)
.

1. Construct complete directed graph D̂ on node set V ∪{r̂}, with cost ĉ defined
as ĉuv = 0 if u, v ∈ V , (u, v) ∈ E, ĉuv = c(u,v) if u, v ∈ V , (u, v) /∈ E, ĉr̂v = 0
if v ∈ R, and ĉuv =∞ for all other arcs.

2. Apply the Frank–Tardos algorithm to find a minimum-cost k-outconnected
directed subgraph F̂ from r̂ in (D̂, ĉ).

3. Let F ⊆ (
V
2

)
be the underlying undirected graph of the arcs in F̂ not incident

to r̂.
4. Return F ′ = F−E.

c=1

c=1

c=0

c=10

c=0

c=10

c=1

c=1

c=0

p q r s

c=0

r̂

Fig. 1. An illustration of Rooted(G,R) for k = 4: The left figure shows a complete graph on
eight nodes with edge costs; edges of infinite cost are not shown; the edges of the graph G = (V, E)
are shown as solid (forming two 4-cliques). The middle figure shows the output of the Frank–Tardos
algorithm for k = 4; the filled nodes indicate the node r̂ and the nodes in R; the undirected edges
represent pairs of oppositely oriented arcs of the same cost. The right figure shows the graph G+F ′
and R = {p, q, r, s}; note that each deficient set contains one or more nodes of R.

The following well-known result describes a key property of the graph resulting
from an application of this subroutine (see [20]); we include a proof for the sake of
completeness.

Proposition 3.1. Let R ⊆ V be a subset of nodes with |R| = k, and let the
subroutine Rooted(G,R) return the edge set F ′. Then c(F ′) ≤ opt(G). Further, let
(U0, U1) be a deficient set-pair in G+F ′. Then (U0, U1) is also a deficient set-pair in
G. Moreover, R ∩ U0 = ∅ and R ∩ U1 = ∅.

Proof. First, let us verify c(F ′) ≤ opt(G). Let F ∗ denote a minimum-cost edge
set such that G + F ∗ is k-connected. It is easy to see that bidirecting every edge in
E ∪ F ∗ and adding k arcs from r̂ to the nodes in R gives a k-outconnected digraph
from r̂. This shows c(F ′) ≤ c(F ∗) = opt(G). It is obvious that every deficient set-pair
in G+ F ′ is also deficient in G. Consider the last claim. For a contradiction, assume
that there is a deficient set-pair (U0, U1) in G + F ′ with U0 ∩ R = ∅. Pick a node
v ∈ U0. The k internally disjoint paths from v to r̂ in the (rooted) digraph D̂+ F̂ give
k internally disjoint (undirected) paths from v to the k terminals in G+F ′. Consider
the first node on each path not in U0. Each of these k distinct nodes is in V−(U0∪U1)
because U0 ∩ R = ∅, by assumption, and there are no edges between U0 and U1, by
the definition of set-pair. This gives p(U0, U1) = max{0, k − |V−(U0 ∪ U1)|} = 0, a
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contradiction to the deficiency of the set-pair.
We will apply the following simple corollary to obtain a rogue-free graph.
Corollary 3.2. Let G = (V,E) be a graph, let R0 be a set of k arbitrary nodes

of G, and let F ′ be the edge set returned by the subroutine Rooted(G,R0). Let R1

be a set of k nodes that is disjoint from every rogue set of G+F ′. Let the subroutine
Rooted(G + F ′, R1) return an edge set F ′′. Then (V,E ∪ F ∪ F ′′) is a rogue-free
graph.

3.2. Bounding the union of the rogue sets. In this section, we focus on a
graph that has been preprocessed by one application of the subroutineRooted(G,R).
For simplicity, let us denote the resulting graph also by G. We prove Theorem 2.5,
namely, the union of all rogue sets is of size ≤ |R|k2(k−1), assuming that every rogue
set has a nonempty intersection with R. We first need some elementary properties of
the function n(.).

Fact 3.3. For all U,W ⊆ V , we have

n(U) + n(W ) ≥ n(U ∩W ) + n(U ∪W ) and

n(U) + n(W ) ≥ n(U∗ ∩W ) + n(U ∩W ∗).

Lemma 3.4. Let w1, w2 be two nodes. Let W1 and W2 be inclusionwise-minimal
deficient sets such that w1 ∈ W1 − W2 and w2 ∈ W2 − W1 (in other words, for
i ∈ {1, 2} and any proper subset of Wi, either the subset is not deficient or the subset
does not contain wi). Suppose that W1 ∩W2 is nonempty. Then, either w1 ∈ N(W2)
or w2 ∈ N(W1).

Proof. We argue by contradiction. Suppose that w1 /∈ N(W2); then w1 ∈ W ∗
2 .

Similarly, if w2 /∈ N(w1), then w2 ∈ W ∗
1 . Thus, w1 ∈ W1 ∩W ∗

2 , and w2 ∈ W2 ∩W ∗
1 .

We apply the submodularity of n(.) to get

2(k − 1) ≥ n(W1) + n(W2) ≥ n(W1 ∩W ∗
2 ) + n(W2 ∩W ∗

1 ).

But W1 ∩W ∗
2 is a proper subset of W1 that contains w1 (it is a proper subset be-

cause W1 ∩W2 is nonempty); hence, by the inclusion-minimal choice of W1, we must
have n(W1 ∩ W ∗

2 ) ≥ k. Similarly, we must have n(W2 ∩ W ∗
1 ) ≥ k. This gives a

contradiction.
We are now ready to prove Theorem 2.5. For a positive integer � we denote the

set of integers {1, 2, . . . , �} by [�].
Proof of Theorem 2.5. Let U1, U2, . . . , U� be a smallest family of rogue sets whose

union contains every rogue set.
Since � is minimum, for each i ∈ [�], the set Ui must contain a “witness node” wi

that is not in any set Uj, j = i; in other words, Ui−
⋃{Uj | j ∈ [�]−{i}} is nonempty

and we take wi to be any node of this set.
Next, for each set Ui, i ∈ [�], we defineWi to be an inclusionwise-minimal deficient

subset of Ui that contains wi. Thus, no proper subset of Wi may contain wi and be
deficient at the same time; the existence of Wi is guaranteed since Ui satisfies both
requirements. Let W denote the family of sets Wi: thus, W = {W1, . . . ,W�}.

Each set Wi is also a rogue set, so it must contain a node of R by the condition
of the theorem. Consider a fixed but arbitrary node r ∈ R, and focus on all the sets
Wi ∈ W that contain r; let us denote their family byW(r) = {Wi | i ∈ [�] and r ∈Wi}.
Below, we show that |W(r)| ≤ k2. The same upper bound applies for each node in
R, yielding |W| ≤∑

r∈R |W(r)| ≤ |R|k2.
We bound the size of W(r) by constructing a sequence of sets such that for

each set Wi ∈ W(r), either Wi is in the sequence or else wi (the “witness node”



APPROXIMATING MIN-COST k-CONNECTED SUBGRAPHS 1351

of Wi) is in the neighborhood of some set in the sequence. More formally, consider
a sequence of sets from W(r) that is obtained as follows: we start with α1 as the
smallest index i such that Wi ∈ W(r); assume that the sets Wα1

, . . . ,Wαj
have

been defined; we choose αj+1 to be the smallest index i such that Wi ∈ W(r) and
wi /∈ N(Wα1) ∪ N(Wα2) ∪ · · · ∪ N(Wαj ) ∪ {wα1 , wα2 , . . . , wαj}; we stop if there is

no such index i. Let �̂(r) denote the length of this sequence of sets; the last set in the
sequence is Wα�̂(r)

.

Claim 3.5. �̂(r) ≤ k.

Proof. Within this proof, let W = Wα�̂(r)
. Pick an arbitrary i ∈ [�̂(r) − 1],

and apply Lemma 3.4 to the sets Wαi
and W . Their intersection is nonempty, as it

contains r. Clearly, wα�̂(r)
(the “witness node” of W ) is not in N(Wαi

), according to

the choice of the sets in the sequence. Then, by Lemma 3.4, we have wαi
∈ N(W ),

and we have |N(W )| ≤ k − 1. The conclusion follows: the total number of “witness
nodes” of the sets in the sequence is ≤ k.

Finally, observe that for each set Wj ∈ W(r) that is not in the sequence, we have

wj ∈ N(Wα1
) ∪ · · · ∪N(Wα�̂(r)

). It follows that |W(r)| ≤ �̂(r) + �̂(r) · (k − 1) ≤ k2.

Applying the same upper bound for each node r ∈ R, we have � ≤ |R|k2. It
follows that

⋃
i∈[�] Ui has size ≤ |R|k2(k − 1) since each set Ui has size ≤ k − 1.

The proof of the previous theorem relies on two properties: namely, every rogue
set is a deficient set, and every rogue set contains a node of the terminal set R; but, the
bound on the size of rogue sets is used only once, at the end. There is an immediate
extension to deficient sets of G of size ≤ s.

Theorem 3.6. Assume that there exists a set R ⊆ V such that every deficient
set of size ≤ s has a nonempty intersection with R. Then the union of all deficient
sets of size ≤ s has size ≤ |R|k2s.

4. Iterative rounding in independence-free graphs. In this section, we
first explain how Theorem 2.2 can be derived from the results in Fleischer, Jain, and
Williamson [9]; then we give a new, simpler proof. As opposed to our unordered
definition of set-pairs, they consider a demand function on ordered disjoint subsets of
V , called two-sets. Consider a two set-function f , that is, a function whose domain
is the set of two-sets. We assume that f(S, S′) = 0 whenever S = ∅ or S′ = ∅. f is
called weakly two-supermodular if for an arbitrary pair of two-sets (S, S′) and (T, T ′),
we have
(2)
f(S, S′) + f(T, T ′)
≤ max{f(S ∪ T, S′ ∩ T ′) + f(S ∩ T, S′ ∪ T ′), f(S ∪ T ′, S′ ∩ T ) + f(S ∩ T ′, S′ ∪ T )}.

Theorem 3.5 in [9] shows that for a weakly two-supermodular demand function, every
basic solution of the corresponding LP has an edge of fractional value ≥ 1

2 . Let us
define the two-set function p as in (1) (the original definition was for set-pairs; for two-
sets, this gives a symmetric two-function, i.e., p(S, S′) = p(S′, S)). This function does
not satisfy (2) in general; however, it does hold for pairs with p(S, S′), p(T, T ′) > 0.
Indeed, since set-pairs with positive deficiency cannot be independent, we must have
either S ∩ T, S′ ∩ T ′ = ∅ or S ∩ T ′, S′ ∩ T = ∅; the inequality must hold for the
corresponding case (see Remark 4.2 below).

Section 5.1 of [9] introduces the class of very weakly two-supermodular functions;
this requires (2) only for pairs with p(S, S′), p(T, T ′) > 0, and furthermore the max-
imum on the right-hand side contains further terms. The proof of Theorem 3.13 of
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[9] essentially shows that iterative rounding gives a 2-approximation for such demand
functions as well.

Let us now turn to our proof; we start by introducing some necessary terminology.
This differs from the standard notion originating from [11] and used also in [9] because
our set-pairs are unordered.

Consider two set-pairs U = (U0, U1) and W = (W0,W1). We call U and W nested
if for some i, j ∈ {0, 1}, Ui ⊇ W1−j and Wj ⊇ U1−i; we call Ui the dominant piece
of U with respect to W, and we call Wj the dominant piece of W with respect to U.

Note that two nested set-pairs U and W are always nonindependent since uw ∈ (
V
2

)
covers both set-pairs for arbitrary u and w in the nondominant pieces of U and W,
respectively. The set-pairs U andW are called crossing if they are neither independent
nor nested. These notions are illustrated in Figure 2. A family L of set-pairs is called
cross-free if it has no two crossing members. Note that in an independence-free graph,
any two deficient set-pairs in a cross-free family must be nested.

(c)(a) (b) (d)

Fig. 2. Relations of set-pairs: (a) independent; (b) nested; (c) crossing with two ways to
uncross; (d) crossing with only one way to uncross.

Let us now define the uncrossing of set-pairs that cross. A node u is called a
meeting point of the set-pairs U = (U0, U1) and W = (W0,W1) if there exists another
node w such that uw ∈ (

V
2

)
covers both U and W. Note that two set-pairs have a

meeting point if and only if they are nonindependent. For any given meeting point u,
we define two new set-pairs U⊗uW and U⊕uW as follows. Let us choose i, j ∈ {0, 1}
such that the meeting point u lies in Ui ∩Wj . Then we define the set-pairs

U⊗u W := (Ui ∪Wj , U1−i ∩W1−j) and

U⊕u W := (Ui ∩Wj , U1−i ∪W1−j).

There is a pair of set-pairs associated with any meeting point u, namely, U⊗u W

and U ⊕u W; there are at most two such pairs of set-pairs over all possible meeting
points (suppose we get one pair for a meeting point in Ui ∩Wj for fixed i, j ∈ {0, 1};
then we could get another pair for a meeting point in Ui ∩W1−j). Figure 2(c) shows
two set-pairs that can be uncrossed in two different ways, whereas the set-pairs in
Figure 2(d) have a unique way of uncrossing.

If U and W are nested set-pairs, then a node u is a meeting point if and only if u
belongs to one of the two nondominant pieces; moreover, for every meeting point u,
{U⊗u W,U⊕u W} = {U,W}.

Recall that S denotes the family of all set-pairs in a graph G. A real-valued
function f on S is called bisubmodular if for any two set-pairs U and W and any
meeting point u, we have

f(U) + f(W) ≥ f(U⊗u W) + f(U⊕u W).
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For any nonnegative vector x : E → R+ on the edges, the corresponding function on
set-pairs, x(δ(W )) =

∑
e∈δ(W ) xe, is bisubmodular.

A nonnegative, integer-valued function f on S is called positively crossing bisu-
permodular if for any two crossing set-pairs U and W with f(U) > 0 and f(W) > 0
and a meeting point u, we have

f(U) + f(W) ≤ f(U⊗u W) + f(U⊕u W).

Claim 4.1. The deficiency function p : S → R+ defined by (1) is positively
crossing bisupermodular.

Proof. Consider two crossing set-pairs U and W with p(U) > 0, p(W) > 0, and
let u be a meeting point. We have to show that

(k − |Γ(U)|) + (k − |Γ(W)|)
≤ max{0, k − |Γ(U⊗u W)|}+max{0, k − |Γ(U⊕u W)|}.

This holds because |Γ(U)| + |Γ(W)| = |Γ(U ⊗u W)| + |Γ(U ⊕u W)|, or equivalently,
|U0 ∪U1|+ |W0 ∪W1| is equal to the sum of the size of the union of the two pieces of
U⊗u W and the size of the union of the two pieces of U⊕u W.

Remark 4.2. Assume the graph is independence-free; this implies that arbitrary
set-pairs U = (U0, U1) and W = (W0,W1) with p(U), p(W) > 0 must have a meeting
point. Equivalently, either U0∩W0 = ∅ and U1∩W1 = ∅ or U0∩W1 = ∅ and U1∩W0 =
∅. Hence, if we define a a two-set function as in [9] with f(S, S′) = f(S′, S) =
p(S, S′), then the above claim implies that (2) must hold in an independence-free
graph whenever f(S, S′), f(T, T ′) > 0.

The next result characterizes a basic solution of (LP-VC) via a cross-free fam-
ily of set-pairs. The theorem holds for arbitrary input graphs, without assuming
independence-freeness.

Theorem 4.3. Let x be a basic solution of (LP-VC) such that xe < 1 for all
edges e ∈ (

V
2

)
. Let supp(x) denote the support of x, that is, the set of edges e ∈ (

V
2

)
with xe > 0, and for a set-pair U, let χ(U) = δ(U) ∩ supp(x) denote the set of edges
in supp(x) covering U. Then there exists a cross-free family L of deficient set-pairs
such that the following hold:

(i) |L| = |supp(x)|.
(ii) The vectors χ(U), U ∈ L, are linearly independent.

The same holds if p in (LP-VC) is replaced by an arbitrary positively crossing bisu-
permodular function on set-pairs.

Analogous results are well known in the iterative rounding literature; the proof
follows the standard lines (see, e.g., [25, Theorem 4.1.5], [4, Theorem 3.3]). We defer
the proof to the appendix and only mention that Case III in the proof of Claim A.3
differs from the arguments in the standard proofs cited above. This argument shows
that if the set-pairsU andW cross with meeting point u and a set-pair T is independent
of one of them and is nested with the other one, then it cannot cross either U ⊕u W

or U⊗u W.
The proof of Theorem 2.2 is also deferred to the appendix. It uses the “fractional

token” technique of Nagarajan, Ravi, and Singh [29], in a way similar to their proof
for element-connectivity, with some differences due to the undirected framework used
by us. The proof straightforwardly extends to the more general setting where p is an
arbitrary positively crossing bisupermodular function; by independence-freeness we
mean that there are no two set-pairs with positive p values that are independent.
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5. Algorithmic aspects. Our algorithm starts by applying the subroutine
Rooted(G,R0) for an arbitrary subset R0 ⊆ V of size k. Let G0 denote the resulting
graph; thus, G0 contains all of the edges added by Rooted(G,R0). By Corollary 3.2
and Theorem 2.5, if n ≥ k3(k−1)+k, then there exists a set of nodes R1, |R1| = k dis-
joint from every rogue set of G0, and the application of subroutine Rooted(G0, R1)
results in a rogue-free graph G1. Clearly, G1 is also independence-free (by Fact 2.4).
Hence, by Theorem 2.2, iterative rounding can be applied to find an augmenting edge
set of cost ≤ 2opt(G1) ≤ 2opt(G0) ≤ 2opt(G).

Whereas the existence of an appropriate set R1 is guaranteed if n ≥ k3(k−1)+k, it
is a nontrivial algorithmic task to find one. If k3(k−1)+k ≤ n < k4(k−1)+k, then we
apply a brute-force method described in section 5.1 that is based on a stronger version
of Theorem 2.2. This method works for larger values of n as well, but in section 5.2, we
present a different and more efficient algorithm that is based on submodular function
minimization for the case of n ≥ k4(k − 1) + k.

5.1. Small values of n. In this part, we assume that k3(k − 1) + k ≤ n <
k4(k − 1) + k. Our method is based on the following strengthening of Theorem 2.2
that allows the input graph to contain deficient set-pairs that are independent.

Theorem 5.1. Let G = (V,E) be an arbitrary graph, and let x ≡ 0 be a basic
feasible solution to (LP-VC). Then either there exists an edge e with xe ≥ 1/2 or we
can find a rogue set in polynomial time.

Proof. The key point is to show that a rogue set can be found efficiently if xe < 1/2
for each edge e, where x is a basic feasible solution of (LP-VC) and x ≡ 0. This is
based on the following claim.

Claim 5.2. If xe < 1/2 for each edge e, then there exist two independent deficient
set-pairs U and W with p(U) = x(δ(U)), p(W) = x(δ(W)).

Proof. Consider the cross-free family L as in Theorem 4.3; note that independence-
freeness is not assumed. If this family is independence-free, then the entire argument
in the proof of Theorem 2.2 carries over, showing that there exists an edge e with
xe ≥ 1

2 , in contradiction to our assumption. Consequently, L must contain two inde-
pendent set-pairs, verifying the claim.

Let us add every e ∈ (
V
2

)
as a fractional edge of value xe to G. The resulting

(fractional) graph is k-connected, and its minimum node cuts correspond to tight
set-pairs (set-pairs satisfying x(δ(W)) = p(W)).

Using standard network-flow techniques (bidirect every edge and replace every
node by a capacitated directed edge) we can compute a minimum node cut sepa-
rating any two nodes u,w ∈ V by a max-flow min-cut computation. Moreover, the
computation also finds the unique inclusionwise-minimal one among the minimum
u,w node cuts. Let us compute the inclusionwise-minimal minimum u,w node cut for
every pair u,w ∈ V . In Claim 5.2, at least one piece of U or W is a rogue set, and con-
sequently, one of these inclusionwise-minimal sets found by network-flow techniques
must be a rogue set.

The algorithm (Algorithm 3) starts by applying Rooted(G,R0) for an arbitrary
set R0 ⊆ V of size k to obtain the edge set F ′. The set S denotes the “forbidden
set” for the second root set R1, initialized as S = R0. We repeat the following steps,
which we call a major cycle of the algorithm. Pick a subset R1 disjoint from S,
run the subroutine Rooted(G + F ′, R1) returning the edge set F ′′, and apply the
iterative rounding algorithm in (V,E ∪ F ′ ∪ F ′′). If the iterative rounding algorithm
fails to find an edge e with xe ≥ 1

2 , we identify a rogue set X in the current graph
as discussed in the proof of Theorem 5.1. Clearly, X must have already been a rogue
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Algorithm 3. The Connectivity augmentation algorithm.

Input: An undirected graph G = (V,E), costs c :
(
V
2

)→ R+ and k ∈ Z+.

Output: An edge set F ∗ ⊆ (
V
2

)
such that (V,E ∪ F ∗) is k-connected.

1. Pick an arbitrary R0 ⊆ V , |R0| = k.
2. Run the subroutine Rooted(G,R0); let F

′ denote the set of edges returned.
3. Set S ← R0.
4. Repeat

(a) Pick an arbitrary R1 ⊆ V−S, |R1| = k.
(b) Run the subroutine Rooted(G+F ′, R1); let F

′′ denote the set of edges
returned.

(c) Run the iterative rounding algorithm (Algorithm 1) with the input graph
(V,E ∪ F ′ ∪ F ′′).

(d) If it terminates with a k-connected graph (V,E′), then return F ∗ =
E′−E and terminate.

(e) If x ≡ 0 and xe < 1
2 for every edge e, then find a rogue set X in the

current graph (V,E′) as in Theorem 5.1. Set S ← S ∪ X , and go to
step 4.

5. Return F ∗ = E′−E.

set in (V,E ∪ F ′). Thus we move back to the graph (V,E ∪ F ′), update S to S ∪X ,
and start the next major cycle with a new root set R1 (note that all edges added in
the previous major cycle are removed).

Note that the size of S increases by at least one in every major cycle since R1∩S =
∅ and R1 ∩ X = ∅ by Proposition 3.1. Since the union of all rogue sets in G + F ′

has size ≤ k3(k − 1), the number of major cycles is bounded by k3(k − 1)− k. Also
note that if the iterative rounding algorithm successfully finds an augmenting edge
set, then it has cost ≤ 2opt(G+ F ′) ≤ 2opt(G).

5.2. Large values of n. In this part, we focus on the case k4(k − 1) + k ≤ n.
Our plan is to identify a set B ⊆ V such that |B| ≤ k4(k − 1) and B contains every
rogue set. After that, we can easily find an appropriate set of k terminals R1 that is
disjoint from B.

Let us define the function h : 2V → R+ by h(X) = |X | + (k − 1)n(X). The
following claim is straightforward.

Claim 5.3. (i) For every rogue set X, h(X) ≤ k(k − 1).
(ii) If h(X) ≤ k(k − 1) for a set ∅ = X ⊆ V , then X is a deficient set and

|X | ≤ k(k − 1).
We define B to be the union of all sets X with h(X) ≤ k(k−1). By part (i) of the

claim, B contains all rogue sets. By part (ii) and Theorem 3.6, we get |B| ≤ k4(k−1).
To find B, observe that h is a fully submodular function. Indeed, n(X) is sub-

modular (see Fact 3.3), and |X | is a modular function. Consequently, for every v ∈ V ,
we can find the minimal value of h(X) over all sets X containing v in strongly poly-
nomial time; see [32, 16]. These algorithms can also be used to find the unique largest
set X containing v that achieves the above minimum value of h(.).

The subroutine for finding B proceeds as follows. We start with A,B = ∅. In
each step, we take a node v ∈ V−(A ∪ B) and apply the subroutine for submodular
function minimization. If the minimum value is greater than k(k− 1), then we add v
to the set A. Otherwise, let X be the minimizer set that has the largest size. Replace
B by B ∪X , and proceed to the next node in V−(A∪B). The subroutine terminates
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once A ∪B = V is attained.
Hence the algorithm for minimum-cost k-connectivity augmentation first performs

Rooted(G,R0) for an arbitrary subset R0 ⊆ V of size k, returning the edge set F ′.
Then we apply the above subroutine for finding the setB inG+F ′, and then we choose
an arbitrary R1 ⊆ V−B, |R1| = k, and perform Rooted(G+ F ′, R1), returning F ′′.
Observe that the resulting graph (V,E ∪ F ′ ∪ F ′′) is independence-free. Finally, we
apply iterative rounding with the input graph (V,E ∪ F ′ ∪ F ′′).

Remark 5.4. If we apply Algorithm 3 for n ≥ k4(k− 1)+k with the set R1 being
randomly sampled, then with probability at least (1 − 1

k )
k, R1 will be disjoint from

every rogue set. Hence, with high probability, we terminate within a constant number
of major cycles.

6. Discussion. In this paper, only the asymptotic setting of k-connectivity aug-
mentation is covered, for the case n ≥ k3(k − 1) + k, leaving the case of all values
of n open. This result has already been improved to n ≥ k(k − 1)(k − 1.5) + k by
Fukunaga, Nutov, and Ravi; see [13, Theorem 1.4].

Also, note that the first set of terminals is chosen arbitrarily; further improve-
ment might be possible by a clever choice. Yet it seems difficult to obtain an O(1)
approximation guarantee for all values of n using these tools only, and substantial
new insights may be needed to resolve this, e.g., as in [23, 7, 30], as compared to [4].
Note that if n < 2k, then our method is void: making a graph rogue-free is equivalent
to the original connectivity augmentation problem.

An important special case of our problem is the min-cost augmentation-by-one
problem, i.e., when the input graph is already (k−1)-connected. The paper [4] gave a
6-approximation for the asymptotic setting by applying the Frank–Tardos algorithm
three times based on a result of Mader [28] on 3-critical graphs. Our methods do not
seem to give any improvement on a 6-approximation for augmentation-by-one in the
asymptotic setting, but Nutov [30] gives a 5-approximation.

Our result only concerns undirected graphs and does not apply for directed graphs.
This is in contrast with most of the literature (see [23, 7, 30]), where the undirected
problem is essentially solved via a reduction to the more general setting of directed
graphs. However, it seems that undirected set-pairs have certain advantageous prop-
erties not shared by their directed counterparts. In particular, the right notion of
independence-freeness for directed graphs is not clear; forbidding all independence in
the directed sense seems too restrictive. A good candidate for the notion of rogue
sets could be the sets of size less than k that are both in-deficient and out-deficient.
Yet we were not able to prove any analogue of Theorem 2.2 even assuming rogue-free
directed graphs in this sense. Also, bounding the size of the union of such rogue sets
seems more challenging.

There is a line of research focusing on degree-bounded problems in network de-
sign, i.e., finding a min-cost subgraph subject both to connectivity requirements and
bounds on the degrees of the nodes. For the degree-bounded (edge-connectivity)
SNDP, bicriteria approximations were given by Lau et al. [24] and Lau and Singh
[26]. Recently, Fukunaga, Nutov, and Ravi [13] have presented such results for sev-
eral degree-bounded problems with node-connectivity requirements; also, see Nutov
[31] and Fukunaga and Ravi [14]. In particular, for min-cost degree-bounded k-node-
connected spanning subgraphs, [13, Theorem 1.3] gives an (O(k), 2b(v) + O(k3/2))
bicriteria approximation; i.e., given an upper bound of b(v) on the degree of each node
v, [13] finds a solution subgraph of cost O(k) times the optimal cost of the relevant
LP relaxation such that the degree of each node v is ≤ 2b(v) +O(k3/2).
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It may be possible to extend our approach to obtain an (O(1), O(1)b(v)) bicriteria
approximation for the asymptotic setting. Indeed, instead of using the Frank–Tardos
algorithm, one may apply the (4, 2b(v) + O(k)) bicriteria approximation for degree-
bounded directed k-outconnectivity from [14]. Lau et al. [24] and Lau, Ravi, and Singh
[25] extended Jain’s iterative rounding results and token arguments to give a (2, 2b(v)+
3) bicriteria approximation for the degree-bounded SNDP. It may be possible to
extend these results to the setting of positively crossing bisupermodular requirements
in independence-free graphs. Combining these results with Theorem 2.5 would give
an (O(1), O(1)b(v)) bicriteria approximation for the degree-bounded version of our
problem in the asymptotic setting. Very recently, Ene and Vakilian [6] have obtained
such results using new ideas.

Our results give an O(1) approximation algorithm in the FPT (fixed parame-
ter tractable) setting, where the goal is to design an algorithm that runs in time
O(f(k)nO(1)), that is, polynomial in n = |V | while the dependence on k could be
arbitrary; note that the approximation guarantee is required to be constant, indepen-
dent of k. Ideally, an FPT algorithm should find an optimal solution. However, even
for k = 2, finding an optimal solution in time O(f(k)nO(1)) would give a polynomial-
time algorithm for the Hamiltonian cycle problem. Thus, an O(1) approximation
guarantee is the best one can achieve with this bound on the running time. The
O(1) approximation is obtained as follows: If n ≥ k3(k − 1) + k, then we get a 6-
approximation in time polynomial in n by Theorem 1.1. Otherwise, we guess each
possible edge set of size ≤ kn of E(G) and if the associated graph is k-connected, then
we record the cost of the edge set (note that an edge-minimal k-connected graph has
≤ kn edges); the edge set with the smallest recorded cost gives an optimal solution;

the running time is O
((

n2

kn

)
nO(1)

)
= O(f(k)nO(1)), where f(k) =

(
k8

k5

)
.

Our algorithm first applies a combinatorial preprocessing, and then it solves a
continuous relaxation (namely, an LP relaxation) and rounds the fractional solution
to get an integer solution. Neither method by itself is known to achieve good ap-
proximation guarantees (not even polylog in k), but the combined method achieves
a constant approximation guarantee in the asymptotic setting. Analogous schemes
are applied by Karger, Motwani, and Sudan [19] for coloring 3-colorable graphs with
Õ(n1/3) colors and by Li and Svensson [27] for the metric k-median problem. For
the coloring problem, a randomized rounding of a semidefinite programming relax-
ation (SDP) is an efficient tool; however, it performs much better for graphs with
low maximum degree. The approximation guarantee of Karger, Motwani, and Sudan
[19] for coloring 3-colorable graphs is obtained by first eliminating the high degree
nodes using a combinatorial preprocessing based on Widgerson’s algorithm [33]. For
the k-median problem, Li and Svensson [27] show that an α-approximation algorithm
for k-median can be obtained via a pseudoapproximation algorithm that finds an α-
approximate solution by opening k + O(1) facilities; this is based on preprocessing
the input. Using this result, [27] presents a 1 +

√
3 + ε approximation algorithm for

k-median, thus improving on the best previous guarantee of 3 + ε.

Appendix.

Proof of Theorem 4.3. Given a basic solution x as in Theorem 4.3, let F = {U :
x(δ(U)) = p(U)} denote the family of tight constraints. It is well known using basic
linear algebra that rank{χ(U), U ∈ F} = |supp(x)|; see [25, Lemma 2.1.4]. Hence the
theorem will be a consequence of the following lemma, by choosing a maximal family
H ⊆ F with χ(U), U ∈ H, being cross-free.
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Lemma A.1. Let H be a maximal cross-free subfamily of deficient sets in F .
Then span{χ(U),U ∈ F} = span{χ(U), U ∈ H}.

The proof needs the following claim.
Claim A.2. Assume U,W ∈ F have a meeting point u, and assume p(U), p(W) >

0. Then also U⊗u W, U⊕u W ∈ F , and
(3) χ(U) + χ(W) = χ(U⊗u W) + χ(U⊕u W).

Proof. Applying the positively crossing bisupermodularity of p(.) (Claim 4.1) and
the bisubmodularity of x(δ(.)), we get that

x(δ(U)) + x(δ(W)) = p(U) + p(W)

≤ p(U⊗u W) + p(U⊕u W) ≤ x(δ(U ⊗u W)) + x(δ(U ⊕u W))

≤ x(δ(U)) + x(δ(W)),

and hence equality must hold everywhere. This implies both parts of the claim.
Proof of Lemma A.1. For a contradiction, assume H is a maximal cross-free

subfamily of deficient sets in F , yet span{χ(U),U ∈ H} � span{χ(U),U ∈ F}. For
any W ∈ F−H, let cross(W,H) denote the number of set-pairs in H crossing W.
Let us pick W such that χ(W) /∈ span{χ(U),U ∈ F}, and cross(W,H) is minimal.
Clearly, cross(W,H) ≥ 1, as otherwise we could extend H by W keeping the cross-free
property. Let us choose U ∈ H such that U and W cross; let u be a meeting point of
U and W. Clearly, p(U) > 0, as otherwise x(δ(U)) = p(U) = 0, and hence χ(U) = 0,
contradicting the choice of U as a deficient set.

Claim A.3. If p(U ⊗u W) > 0, then cross(U ⊗u W,H) < cross(W,H). If
p(U⊕u W) > 0, then cross(U⊕u W,H) < cross(W,H).

Proof. We verify the claim for U⊗uW; the proof is analogous for U⊕uW. Assume
p(U ⊗u W) > 0, i.e., U ⊗u W is deficient. Observe that whereas U and W cross, U
and U⊗u W are nested. The claim follows by showing that whenever U⊗u W crosses
some T ∈ H, then W and T also cross.

Without loss of generality, assume u ∈ U0∩W0, that is, U⊗uW = (U0∪W0, U1∩
W1). For a contradiction, assume there exists a T ∈ H such that U⊗uW and T cross,
but W and T are either independent or nested. As H is cross-free, U and T are also
either independent or nested.

Case I. T is independent of both U and W. Clearly, any edge of
(
V
2

)
covering

U ⊗u W = (U0 ∪W0, U1 ∩W1) must cover either U or W. Consequently, if U ⊗u W

and T are nonindependent, then either U and T are nonindependent or W and T are
nonindependent. This gives a contradiction.

Case II. T is nested with both U and W. It can be seen that the dominant piece
of T with respect to U must be the same as the dominant piece of T with respect to W,
and hence it follows that for some i, j, � ∈ {0, 1}, T� ⊇ Ui ∪Wj , T1−� ⊆ U1−i ∩W1−j .
For every possible choice of indices i, j ∈ {0, 1}, it can be verified that U⊗u W and T

are also nested. This gives a contradiction.
Case III. T is independent with either of U and W and nested with the other one.

By symmetry, we may assume without loss of generality that U and T are independent,
whereas W and T are nested. Assume first that W0 is the dominant piece of W with
respect to T. Then U⊗u W and T are also nested, with U0 ∪W0 being the dominant
piece. Next, assume that W1 is the dominant piece of W with respect to T, and let
T0 be the dominant piece of T with respect to W; thus, we have W0 ⊆ T0.

We claim that U ⊗u W and T must be independent. Indeed, let pq ∈ (
V
2

)
be an

edge covering both, with p ∈ T0, q ∈ T1. We have two cases:



APPROXIMATING MIN-COST k-CONNECTED SUBGRAPHS 1359

(a) p ∈ U0 ∪W0, q ∈ U1 ∩W1, or
(b) q ∈ U0 ∪W0, p ∈ U1 ∩W1.
Both cases contradict the independence of U and T. In case (a), we have q ∈

T1 ∩U1 ∩W1 ⊆ U1 ∩ T1, and this is a contradiction because the meeting point u is in
U0 ∩W0 ⊆ U0 ∩ T0: the edge uq ∈ (

V
2

)
covers both U and T. In case (b), since q /∈ T0

and T0 ⊇W0, it follows that q ∈ U0−W0, and hence pq covers both U and T.
This completes the proof of Claim A.3.
By Claim A.2, both U ⊗u W and U ⊕u W are in F , and (3) holds. Let us first

show that p(U ⊗u W), p(U ⊕u W) > 0. Indeed, if p(U ⊗u W) = 0, then we have
χ(U ⊗u W) = 0. Then by (3), χ(U ⊕u W) /∈ span{χ(U),U ∈ H}. Moreover, by
Claim 4.1, we have p(U⊕u W) > 0. Thus Claim A.3 is applicable, and it contradicts
the choice of W as an eligible set-pair that crosses the minimum number of set-pairs
in H. An analogous argument shows p(U⊕u W) > 0.

Since χ(W) /∈ span{χ(U),U ∈ H}, (3) implies that either χ(U⊗uW) or χ(U⊕uW)
is also not contained in this set. Again we can use Claim A.3 to derive a contradiction.
This completes the proof of Lemma A.1.

Proof of Theorem 2.2. We first state some properties of cross-free families of
set-pairs in an independence-free graph. For a set-pair U = (U0, U1) and i ∈ {0, 1},
let us call Ui the tail of U if |Ui| < |U1−i|; moreover, if |U0| = |U1|, let us arbitrarily
designate one of the pieces to be the tail. The piece different from the tail is called
the head. We denote the tail and head of a set-pair U by Ut and Uh, respectively. The
next lemma will be applied for the cross-free family L as in Theorem 4.3. As usual,
we say that a family of sets S is laminar if for any X,Y ∈ S, either X ⊆ Y or Y ⊆ X
or X ∩ Y = ∅.

Lemma A.4. Suppose that G = (V,E) is an independence-free graph. Let L be a
cross-free family of set-pairs.

(i) The tails of the set-pairs in L form a laminar family {Ut | U ∈ L} that we
denote by Lt. Suppose that we have two disjoint tails in Lt; then each tail is
a subset of the other set-pair’s head.

(ii) Suppose that an edge e = uw has exactly one endnode in a tail Ut ∈ Lt, say
u ∈ Ut, and suppose that e does not cover the set-pair U. Then, if there is a
tail Yt ∈ Lt that contains w (the other endnode of e), then Ut ⊆ Yt.

Proof. (i) Suppose that the tails of two set-pairs U,W ∈ L intersect properly (that
is, Ut ∩Wt,Ut−Wt,Wt−Ut are all nonempty). By cross-freeness, U and W are either
nested or independent, but the latter is excluded because the graph is assumed to be
independence-free. Hence U and W are nested, with Ut and Wt being the dominant
pieces, and consequently, Uh ⊆Wt and Wh ⊆ Ut. This implies

|Uh| ≤ |Wt| ≤ |Wh| ≤ |Ut| ≤ |Uh|.
Equality must hold throughout. Therefore U and W are identical set-pairs, a contra-
diction. Hence, the tails of the set-pairs in L form a laminar family. The second part
of the claim also follows.

(ii) Suppose that w ∈ Yt. Since Yt and Ut belong to a laminar family, either the
two tails are disjoint or Yt is a superset of Ut (it cannot be a subset because w ∈ Yt

and w /∈ Ut).
Suppose that Yt and Ut are disjoint. By part (i), we have w ∈ Yt ⊆ Uh. Then the

edge e = uw would cover the set-pair U; this contradicts the statement of (ii).
Proof of Theorem 2.2. By way of contradiction, suppose that x is a basic feasible

solution with xe < 1/2 for all edges e ∈ supp(x).
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By Theorem 4.3, x is associated with a cross-free family of set-pairs, call it L; also,
let Lt be the laminar family of tails. We define parent, child, smallest set containing
a specified node, etc., in the usual way for the laminar family of tails Lt. Moreover,
for ease of notation, we use the same terms for the set-pairs in L; e.g., if Ut has two
children Wi:t and Wj:t in Lt, then we say that U has two children Wi and Wj in L.

We will show that |supp(x)| > |Lt|, thus contradicting Theorem 4.3. (Note that
|Lt| = |L|.)

We assign a unit token to each edge in supp(x), and then we redistribute tokens
to the sets in Lt ∪ {V } in such a way that every set in Lt gets at least one unit of
token, and V also gets some positive amount. This will imply |supp(x)| > |Lt|.

Consider any edge e = uw ∈ supp(x). Let Ut ∈ Lt∪{V } be the smallest tail that
contains the endnode u of e, and let Wt ∈ Lt ∪{V } be the smallest tail that contains
the endnode w of e. The unit token of e is redistributed to the tails in Lt using the
following rules:

(i) Suppose that Ut and Wt are disjoint; then we assign xe tokens to each of Ut

and Wt, and we assign 1 − 2xe tokens to the smallest tail in Lt ∪ {V } that
contains both u and w.

(ii) Otherwise, one of the tails Ut or Wt is a subset of the other one; without
loss of generality, suppose that Wt ⊆ Ut; then we assign xe tokens to Wt,
and we assign 1 − xe tokens to the smallest tail Zt ∈ Lt ∪ {V } such that
u,w ∈ Zt ∪ Γ(Z).

Observe that two cases could arise within rule (ii): we have w ∈ Zt or w ∈ Γ(Z).
In the first case, Z = U follows, while in the second case, Zt � Ut is possible.

We claim that each tail in Lt gets at least one token. Consider a set-pair U ∈ L,
and let it have q children W1, W2, . . . , Wq (possibly, q = 0). We now focus on
the set of edges given by the symmetric difference of χ(U) and

⋃q
i=1

χ(Wi) (recall
χ(U) = δ(U) ∩ supp(x)), and we partition this set into three sets A,B,C as follows:

• A is the set of edges with (exactly) one endnode in Ut −
⋃q

i=1 Wi:t and that
cover U;
• B is the set of edges with both endnodes in

⋃q
i=1 Wi:t and covering two of

the children W1,W2, . . . ,Wq;
• C is the set of edges that cover one of the children W1,W2, . . . ,Wq but that
do not cover U.

Note that if an edge has an endnode in Wi:t and covers U, then it must also cover
Wi. By subtracting the equations of the children from the equation of U, we get

p(U)−
q∑

i=1

p(Wi) = x(δ(U)) −
q∑

i=1

x(δ(Wi))

= x(A)− 2x(B)− x(C).(4)

Claim A.5. If e ∈ A, then xe tokens from e are assigned to U. If e ∈ B, then
1− 2xe tokens from e are assigned to U. Finally, if e ∈ C, then 1− xe tokens from e
are assigned to U.

Proof. The first two claims are straightforward by the definitions. Consider any
edge e = uw ∈ C. Let Wi be the child covered by e with u ∈ Wi:t. We claim that
the token of e is distributed according to rule (ii) and 1− xe is allocated to U. This
clearly holds if w ∈ Ut, as Ut is the smallest tail in Lt containing w; also, the tail Zt

of rule (ii) is equal to Ut.
Next, assume w /∈ Ut. Then w ∈ Γ(U) since uw does not cover U. Let Yt ∈ Lt

be the smallest tail containing w. Then Lemma A.4(ii) is applicable for U and Y,
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yielding Ut ⊆ Yt. Consequently, the smallest tails containing u and w cannot be
disjoint, and therefore rule (ii) applies. Since Wi is a child of U and uw covers Wi, it
also follows that U is the set-pair with the smallest tail containing u but not covered
by e. Consequently, U receives 1− xe tokens from e.

A ∪ B ∪ C must be nonempty; otherwise, we have χ(U) =
∑q

i=1
χ(Wi), contra-

dicting linear independence. Using the above claim and (4), we obtain the following
lower bound on the amount of tokens received by U (it may get even more):

∑
e∈A

xe +
∑
e∈B

(1− 2xe) +
∑
e∈C

(1− xe)

= x(A) + (|B| − 2x(B)) + (|C| − x(C))

= |B|+ |C|+ x(A) − 2x(B)− x(C)

= |B|+ |C|+ p(U)−
q∑

i=1

p(Wi).

Since A∪B ∪C is nonempty and 0 < xe <
1
2 for each edge e, the above quantity

is strictly positive (by the left-hand side expression). On the other hand, it is integer
(by the right-hand side expression). Hence, U gets at least one token.

Finally, we derive the contradiction by showing that V received a positive amount
of tokens. Consider any (inclusionwise-) maximal tail Ut ∈ Lt; there must be at least
one edge f = vw that covers U. Then V receives either the 1 − 2xf tokens assigned
by rule (i) for f or the 1 − xf tokens assigned by rule (ii) for f . This completes the
proof of Theorem 2.2.
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