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ABSTRACT
We consider the problem of approximating maximum Nash social

welfare (NSW) while allocating a set of indivisible items to n agents.

The NSW is a popular objective that provides a balanced tradeoff

between the often conflicting requirements of fairness and effi-

ciency, defined as the weighted geometric mean of the agents’ valu-

ations. For the symmetric additive case of the problem, where agents

have the same weight with additive valuations, the first constant-

factor approximation algorithm was obtained in 2015. Subsequent

work has obtained constant-factor approximation algorithms for

the symmetric case under mild generalizations of additive, and

O(n)-approximation algorithms for subadditive valuations and for

the asymmetric case.

In this paper, wemake significant progress towards both symmet-

ric and asymmetric NSW problems. We present the first constant-

factor approximation algorithm for the symmetric case under Rado
valuations. Rado valuations form a general class of valuation func-

tions that arise from maximum cost independent matching prob-

lems, including as special cases assignment (OXS) valuations and

weighted matroid rank functions. Furthermore, our approach also

gives the first constant-factor approximation algorithm for the

asymmetric case under Rado valuations, provided that the maxi-

mum ratio between the weights is bounded by a constant.

CCS CONCEPTS
•Theory of computation→Approximation algorithms anal-
ysis; Algorithmic game theory.

KEYWORDS
Nash social welfare, approximation algorithm, Rado valuations

ACM Reference Format:
Jugal Garg, Edin Husić, and László A. Végh. 2021. Approximating Nash

Social Welfare under Rado Valuations. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC ’21), June 21–25,

∗
Supported by NSF Grant CCF-1942321 (CAREER).

†
Supported by European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant agreement no. ScaleOpt–757481).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00

https://doi.org/10.1145/3406325.3451031

2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3406325.3451031

1 INTRODUCTION
In the discrete Nash social welfare (NSW) problem, one needs to

allocate a set G ofm indivisible items to a set A of n agents where

each agent i has a valuation function vi : 2
G → R+ and weight

(entitlement)wi > 0. The goal is to find an allocation maximizing

the weighted geometric mean, i.e., the Nash social welfare, of the

valuations:

max


(∏
i ∈A

vi (Si )
wi

) 1∑
i∈A wi

: {Si }i ∈A is a partition of G

 .
We refer to the special case when all agents have equal weight (i.e.,

wi = 1) as the symmetric NSW problem, and call the general case

the asymmetric NSW problem.

The (symmetric) NSW can be seen as a balanced trade-off be-

tween two other popular social welfare concepts, the utilitarian
social welfare that maximizes the sum of the valuations, and the

max-min fairness, also known as the Santa Claus problem, that

maximizes the smallest valuation of any agent. A distinctive feature

of the NSW problem is invariance under scaling of the valuation

functions. That is, unlike the utilitarian social welfare and the max-

min fairness, the set of optimal allocations in the NSW problem

remains unchanged even if the valuations of the agents are scaled

by arbitrary positive constants.

Origins. Fair and efficient allocation of resources is a fundamen-

tal problem in many disciplines, including computer science, eco-

nomics, and social choice theory; see, e.g., several excellent books

written specifically on this problem [6, 9, 10, 46, 59, 60, 68]. TheNash

social welfare emerged as an objective that provides a balanced

tradeoff between the often conflicting requirements of fairness and

efficiency. It was discovered independently in several different con-

texts: First, as the unique solution to a bargaining game by Nash

in 1950 [37, 51]. It also coincides with the notion of competitive

equilibrium with equal incomes in economics [64], and as a notion

of proportional fairness in networking [38]. The above mentioned

works considered the symmetric Nash social welfare problem. The

asymmetric objective has also been well-studied since the seventies

[33, 36], and has found many applications in different areas, such

as bargaining theory [13, 42], water resource allocation [18, 34],

and climate agreements [69].

Computational Complexity. The NSW problem is NP-hard even

for two identical agents with additive valuations: the partition
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problem reduces to the NSW problem [53]. Moreover, the problem

is NP-hard to approximate within a factor better than 1.069 for

additive valuations [24], and better than 1.5819 for submodular

valuations [28]. These results hold already in the symmetric case.

On the positive side, several approximation algorithms were de-

veloped for the problem using various techniques. For the symmet-

ric NSW problem with additive valuations, Cole and Gkatzelis [16],

in a breakthrough result, designed the first constant-factor approx-

imation algorithm using a spending-restricted market equilibrium.

Anari, Oveis Gharan, Saberi, and Singh [1] followed with a constant-

factor approximation algorithm built on the theory of real stable

polynomials. Barman, Krishnamurthy, and Vaish [8] developed yet

another approach based on local search that provides the state-of-

the-art approximation factor of 1.45.

These three approaches have been extended to obtain constant-

factor approximation algorithms formild generalizations of additive

valuations: budget-additive [25], separable piecewise linear concave

(SPLC) [2], and their combination, budget-SPLC [14] valuations. All

these approaches heavily exploit the symmetry of agents and the

characteristics of these ‘additive-like’ valuations, such as the notion

of a maximum bang-per-buck (MBB) items. This makes them hard

to extend to significantly more general settings.

Beyond ‘additive-like’ valuations or the asymmetric NSW prob-

lem no constant-factor approximation algorithms are known. Here,

the state-of-the-art areO(n)-approximation algorithms for the asym-

metric Nash problem under subadditive valuations [7, 15, 28]. How-

ever, no better thanO(n) approximation has been achieved even for

special cases such as OXS valuations, or only two types of agents

with weights 1 or 2 under additive valuations. Therefore, O(n)
remained the best approximation factor for the symmetric NSW

problem beyond ‘additive-like’ valuations or for the asymmetric

NSW problem.

Independently, in a very recent development, Li and Vondrák

[45] gave a
e3

(e−1)2
-approximation of the optimum NSW value for a

broad class of submodular valuation functions, including the same

class of Rado valuations we study, as well as the cone generated

by Rado valuations. A notable example in this cone are coverage

functions. The paper extends the real stable polynomial approach

used by Anari, Oveis Gharan, Saberi, and Singh [1], and shows that

the corresponding convex relaxation has constant integrality gap.

However, the randomized rounding technique can find a constant

factor approximate solution with exponentially small probability

only. Therefore, this does not yield a polynomial-time algorithm

for finding a near-optimal allocation. Moreover, the results only

apply for symmetric NSW.

Our Contributions. We make significant progress towards both

symmetric and asymmetric NSW problems. Firstly, we obtain a

constant-factor approximation for a broad class of submodular val-

uations we call Rado valuations.1 This is a common generalization

of OXS valuations and weighted matroid functions. A Rado valua-

tion of an agent i ∈ A is specified by a bipartite graph (G,Vi ;Ei ),

1
We propose the name “Rado valuations” (Definition 2.4) in honor of Richard Rado,

who first studied the independent matching problem [58]. As already mentioned, in

the context of NSW, the same class has been studied in the recent work of Li and

Vondrák [45] as valuations arising via bipartite matching with a matroid constraint.
Murota [50] calls Rado valuations independent assignment valuations.

edge costs ci : Ei → R+ and a matroid Mi = (Vi ,Ii ). The value
vi (S) of a subset of items S ⊆ G is given as the maximum cost of

a matching between nodes in S and nodes in Vi such that the end-

points in Vi form an independent set in the matroidMi . Relation

between popular classes of valuations functions follows [43, 54]:

Additive ⊊ SPLC ⊊
OXS

Weighted Matroid Rank

⊊ Rado

Rado ⊊ GS ⊊ Submodular ⊊ Subadditive .

Theorem 1.1. There exists a polynomial-time 256e3/e≈772-app-
roximation algorithm for the symmetric Nash social welfare problem
under Rado valuations.

Rado valuations form a subclass of gross substitutes (GS) valu-

ations. In fact, it was conjectured by Frank in 2003 that every GS

valuation arises as a Rado valuation, see Section 2.2. We give a

counterexample and formulate a refinement of this conjecture.

Secondly, we obtain a constant-factor approximation for the

asymmetric NSW problem under Rado valuations, provided that

the maximum ratio between the weights is bounded by a constant.

Assume the weightswi of the agents fall in the interval [1,γ − 1]

for some γ ≥ 2.

Theorem 1.2 (Main). There exists a polynomial-time 256γ 3-app-
roximation algorithm for the Nash social welfare problem with Rado
valuation functions. For additive valuation functions, there exists a
polynomial-time 16γ -approximation algorithm.

We note that even if the weights of the agents are bounded,

an O(1)-approximation for the symmetric case does not yield an

O(1)-approximation to the asymmetric case.
2
Table 1 summarizes

the updated best approximation guarantees for the problem under

various valuation functions. The result of Li and Vondrák [45] gives

a
e3

(e−1)2
≈ 6.8 approximation of the optimum value (but without

providing an allocation) for the cone generated by Rado valuations

in the symmetric case.

Table 1: Summary of the best approximation algorithms for
the NSW problem. Definitions of valuations functions are
deferred to Section 2.1.

Valuations Symmetric Asymmetric
Additive 1.45 [8] O(γ ) [Theorem 1.2]

SPLC 1.45 [14] O(γ 3) [Theorem 1.2]

Rado O(1) [Theorem 1.1] O(γ 3) [Theorem 1.2]

Subadditive O(n) [7, 15] O(n) [7, 15]

2
To illustrate this point, consider two items and two agents with weights w1 = 2,

w2 = 1 and additive valuations v1({1}) = M , v1({2}) = 1, v2({1}) = M + 1,

v2({2}) = 1, where M is an arbitrarily large number. The unique optimal solution to

the symmetric case (by settingw ′
1
= w ′

2
= 1) is allocating good 2 to agent 1 and good

1 to agent 2. However, this returns an NSW value (M + 1)1/3
for the original weights.

This can be worse by an arbitrary factor than the value M2/3
obtainable by assigning

good 1 to agent 1 and good 2 to agent 2.
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1.1 Main Ideas
Our approach is based on a mixed-integer programming relaxation,

using a careful combination of convex programming relaxations

and combinatorial arguments.

The NSW problem is given with discrete valuation functions

vi : 2
G → R+. In order to apply convex programming techniques,

we first need to obtain a convex programming relaxation; already

this turns out to be a nontrivial task. As explained in Section 2.2,

gross substitute valuations are the subclass of discrete valuations

where a concave extension can be naturally defined.

Already for additive valuations, the natural relaxation of the

NSW problem has unbounded integrality gap [16]. In order to

formulate a mixed integer program, we identify a set H of n items,

and require that all these items must be integrally allocated. We do

not know if this relaxation can be solved in polynomial time: we

only provide an approximate solution to a further relaxation.

For the set H , we aim to identify the set of the ‘most important’

items. We find the allocation maximizing the NSW value assuming

each agent can obtain just a single item, and select H as the set of

the items chosen in this allocation. This can be efficiently solved

as a maximum weight matching problem. The algorithm in [28]

also starts with such a matching. One cannot commit to assigning

these items to the agents, as it may result in an arbitrarily bad

outcome; the approach in [28] is an intricate combinatorial scheme

with iterated matchings and reallocations to obtain an O(n logn)
approximation for submodular valuations. Our result implies that

the mixed integer relaxation that requires H to be integrally al-

located has a constant integrality gap, in contrast to the standard

continuous relaxation. As a possible explanation why this may hap-

pen, we make a connection to the approach of Cole and Gkatzelis

[16] showing that all ‘expensive’ items in the spending restricted

equilibrium will be included inH .

We give a detailed exposition of the overall approach and formu-

late the main lemmas in Section 3, split into five phases. Here, we

only give a high-level overview. Phase I selectsH as above. Phase
II approximates the mixed relaxation by another mixed integer pro-

gram (Mixed+matching) that assigns items G \ H fractionally to

the agents, and at most one item fromH to each agent. This is not a

relaxation of the original problem anymore, as an optimal solution

may allocate multiple items fromH to the same agent. However,

(Mixed+matching) approximates the original mixed within a factor

γ . We note that this is the only part of our reductions that depends

on the bound γ .
Solving (Mixed+matching) still does not turn out to be easy. In

Phase III, we find a 2-approximate solution by first solving the

restriction to G \ H—a convex program—then optimally assigning

the items inH subject to this fractional allocation.

All reductions thus far work for general subadditive valuations,

assuming they are given with a suitable concave extension. In

Phase IV we exploit combinatorial properties of the concave ex-

tension of Rado valuations to obtain a sparse solution. We first

show that the restriction of (Mixed+matching) to G\H has a basic

optimal solution with at most |A| + 2|G \ H | non-zero variables.

We note that this yields an interesting new rational convex program
[65], the first nonlinear example we are aware of with an exponen-

tial number of constraints, given by a separation oracle. We then

further sparsify the solution to at most 2|A| + |G \ H | non-zero

variables, at the expense of losing at most half of the objective

value.

At this point, we have a mixed integer solution that is not too

far from an integral one. Namely, H is already allocated integrally

and G \ H is allocated to agents fractionally but with at most

2|A| + |G \H | non-zero variables. Thus, it suffices to fix a suitable

subset of 2|A| fractional variables to zero of the non-zero to obtain

a feasible solution, and round the rest of the variables to 1. However,

this may not be viable for any subset.

In the final Phase V, we make use of the initial choice ofH as

the set of items allocated in the best allocation with one item per

agent. Using this property, we carefully recombine the matching

in the mixed assignment and the initial allocation of the items in

H by swapping around alternating cycles. This enables the final

rounding step to obtain an integer allocation.

We note that Phase IV and Phase V are the most involved in

our approach.

1.2 Further Related Work
We brieflymention further results on Nash social welfare, utilitarian

social welfare and max-min welfare.

Nash Social Welfare. NSW has turned out to be the focal point

in fair division. Caragiannis, Kurokawa, Moulin, Procaccia, Shah,

and Wang [12] call the optimal NSW solution ‘unreasonably’ fair

and efficient. The same paper introduces an algorithm for find-

ing optimum NSW allocation, which is deployed on the website

spliddit.org and used for fair allocation of indivisible goods [30].

Approximation algorithms for the NSW also preserve many nice

fairness properties, as shown in [11, 15, 29].

Utilitarian Social Welfare. In this setting, the goal is to find a

partition of the items that maximizes the sum of agents’ valuations.

This problem is straightforward for additive valuations. For gross

substitutes valuations (see Definition 2.1), the optimal partition

corresponds to a Walrasian equilibrium: there exists a price vector

such that each agent receives an optimal bundle at these prices.

Such an allocation can be efficiently computed [32, 39]. Gül and

Stachetti [32] also showed that the converse is essentially true: if a

class C of valuation functions contains all unit demand valuations,

and there exists a Walrasian equilibrium for an arbitrary choice

of valuation functions from C, then C must be a subset of gross

substitutes valuations.

For submodular valuations there is an
e

e−1
≈ 1.5819-

approximation algorithm by Vondrák [67] and this is the best possi-

ble [40]. Feige [22] gave a 2-approximation algorithm for the social

welfare problem under subadditive valuations assuming access to

particular demand queries.

Max-Min Welfare. In this problem the objective is to maximize

the minimum valuation of any agent. This NP-hard problem can be

seen as an absolute fairness problem and it has been appropriately

named the Santa Claus problem [5]. It is a significant open problem

to obtain a constant-factor approximation for additive valuations:

such algorithms are known only for restricted subclasses of additive

valuations, see Annamalai, Kalaitzis, and Svensson [3], and Davies,

Rothvoß, and Zhang [17]. For additive (resp. submodular) valuations

1414
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the best approximation factor is O( 3

√
n log

3 n) by Asadpour and

Saberi [4] (resp. O(n) by Khot and Ponnuswami [41]).

Organization of the Paper. In Section 2 we formally define all the

notation and concepts. Here, we also explain the significance of

the gross substitutes and Rado valuations for the problem and our

approach. In Section 3 we give a rigorous overview of the algorithm

together with main lemmas proof ideas. Sections 4 and 5 contain

more detailed arguments for two phases. Concluding remarks are

given in Section 6.

Many proofs are omitted and for these proofs we refer the reader

to the full version [27]. We have chosen to present the proofs so that

the result in Theorem 1.2 for additive valuations is fully contained.

2 PRELIMINARIES
Throughout, we let G denote a finite set of m indivisible items

(goods), and A a set of n agents. Each of the agents i ∈ A are

equipped with a valuation function vi : 2
G → R+. We use the

shorthand notation vi j = vi ({j}) to denote the valuation of agent i
for the whole item j.

Given a subset S ⊆ G we denote with χS the characteristic

vector of S . For k ∈ N, we let [k] = {1, 2, . . . ,k}. A bipartite graph
(U ,V ;E) has node setU ∪V and an undirected edge set E ⊆ U ×V .

For an edge subset F ⊆ E, we let δU (F ) and δV (F ) denote the set of
endpoints of F inU and inV , respectively. A matching fromU toV
is represented as a mapping σ : U → V ∪ {∅} such that for each

i ∈ U with σ (i) , ∅, we have (i,σ (i)) ∈ E, and if σ (i) , ∅, then

σ (i) , σ (j) for j , i .
Amatroid on a finite ground setV is given asM = (V ,I), where

I ⊆ 2
V
is a nonempty collection of independent sets. This collection

is required to satisfy the independence axioms:

(I1) Monotonicity: if X ∈ I then Y ∈ I for all Y ⊆ X , and

(I2) Exchange property: if X ,Y ∈ I, |X | < |Y |, then there exists a

y ∈ Y \ X such that X ∪ {y} ∈ I.

The rank function rM : 2
V → Z+ associated with the matroidM

is defined with rM (X ) denoting the size of the largest independent

subset of X ⊆ V . A fundamental property implied by (I2) is that

every maximal independent set in X has size rM (X ). The value

rM (V ) is called the rank of the matroid, and the maximal inde-

pendent sets are called bases. A set X ⊆ V is in I if and only if

r (X ) = |X |. We refer the reader to [61, Part IV] for matroids and

their role in optimization.

2.1 Valuation Functions
By a valuation function, we mean a function v : 2

G → R+ with

v(∅) = 0. Let us start with two simple examples of valuations. The

function v is an additive valuation if v(S) =
∑
j ∈S vj , and a unit

demand valuation if v(S) = maxj ∈S vj where vj ∈ R+ represents

the value of item j ∈ G.

We now define some basic properties. A function v : 2
G → R+

is monotone if v(X ) ≤ v(Y ) for any X ⊆ Y ⊆ G, subadditive if

v(X ) +v(Y ) ≥ v(X ∪ Y ) ∀X ,Y ⊆ G ,

and submodular if

v(X ) +v(Y ) ≥ v(X ∩ Y ) +v(X ∪ Y ) ∀X ,Y ⊆ G .

Additive valuations and unit demand valuations satisfy all the above

properties. Another basic example of submodular functions is the

rank function rM of a matroidM = (V ,I). In fact, every integer

valued monotone submodular set function on V with v(X ) ≤ |X |

arises as the rank function of a matroid. Given a weighting д ∈ RV+ ,
the weighted rank function rд(X ) is the maximum д-weight of a
maximal independent set in X ; this function is also submodular.

Gross Substitute Valuations. For a price vector p ∈ RG and a

subset S ⊆ G, we let p(S) =
∑
j ∈S pj . For a valuation function

v : 2
G → R+, the utility obtainable at prices p from a set S ⊆ G is

v(S) − p(S). The set of optimal bundles at prices p is called demand
correspondence and is defined as the set of bundles maximizing the

utility, i.e.,

D(v,p) := arg max

S ⊆G

v(S) − p(S) .

An important class of valuation functions is gross substitutes valua-
tions, defined by Kelso and Crawford in 1982 [39]:

Definition 2.1. The valuation function v : 2
G → R+ is a gross

substitutes (GS) valuation if for any p,p′ ∈ RG such that p′ ≥ p and

any S ∈ D(v,p), there exists an S ′ ∈ D(v,p′) such that S ∩ {j : pj =
p′j } ⊆ S ′.

That is, if we have an optimal bundle at prices p and increase

some of the prices, then there will be an optimal bundle that con-

tains all items whose price remained unchanged. For a comprehen-

sive survey on GS valuations, we refer the reader to the survey by

Paes Leme [57].

Gül and Stachetti [32] showed that every gross substitutes valu-

ation is submodular. It turns out that gross substitute functions are

intimately connected to discrete convex analysis, a general theory
arising at the intersection of convex analysis and submodularity.

Murota’s book [47] gives a comprehensive treatment of this field.

A central concavity concept on the integer lattice is that of M♮ -
concave functions. The definition specialized for valuation functions

(corresponding to the sublattice {−∞, 0}G ) is as follows.

Definition 2.2. The function v : 2
G → R+ is anM♮ -concave if for

any X ,Y ⊆ G and x ∈ X \ Y ,

v(X ) +v(Y ) ≤ max

Z ⊆Y \X , |Z | ≤1

v((X \ {x}) ∪ Z ) +v((Y \ Z ) ∪ {x})

That is, for any x ∈ X \ Y , the sum v(X ) + v(Y ) is either non-
decreasing if we move x from X to Y , or the sum is non-decreasing

by swapping x for some y ∈ Y \X . As established by Fujishige and

Yang [23], these two concepts are equivalent:

Theorem 2.3 ([23]). The valuation function v : 2
G → R+ is a

gross substitutes valuation if and only if it is M♮ -concave.

This connection has enabled a fruitful interaction between the

areas of mechanism design and discrete convexity, see e.g. [50, 57].

Rado Valuations. The key class of valuation functions for this

paper will be Rado valuation functions, or Rado valuations. We

provide examples and an intuitive interpretation of these valuations

after the definition.

Definition 2.4. Assume we are given a bipartite graph (G,V ;E)
with a cost function c : E → R+ on the edges, and a matroid

1415
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M = (V ,I). For a subset of items S ⊆ G, the Rado valuation
function v(S) is defined as the maximum cost of a matchingM in

(G,V ;E) such that δG(M) ⊆ S and δV (M) ∈ I, i.e.,

v(S) := max


∑
e ∈M

c(e) :

M is a matching,

δG(M) ⊆ S,
δV (M) ∈ I

 . (1)

Let us consider the special case where the matroidM is the free

matroid on V , i.e., I = 2
V
. In this case, the matroid constraints

δV (M) ∈ I are void. The value of a set S it then the maximum

cost matching in the bipartite subgraph induced by S ∪ V . Such
valuations are called assignment valuations by Shapley [62], and

OXS valuations by Lehmann, Lehmann, and Nisan [43].

Shapley [62] gives a nice interpretation of assignment valuations.

Assume that each agent is a company. Furthermore, assume that

the items G are workers and V is the set of jobs within a particular

company. The edge set represents the possibilities (willingness) of

assigning workers to jobs, and the cost c jk is value the company

gets by assigning worker j to job k . By the definition of assignment

valuations, the value of a subset S ⊆ G of workers for the company

is the maximum possible value the company gets by assigning

workers S to jobs V .

The same interpretation extends to Rado valuations with the

additional possibility that the occupied set of jobs must be an inde-

pendent set in matroidM. For example, the company may partition

the set of all jobs V into certain types, and require that at most one

job of each type to be assigned—a partition matroid constraint.

As another example of Rado valuations, consider the case where

V is a copy of the set of items G, with each j ∈ G having a corre-

sponding j ′ ∈ V , and let E = {(j, j ′) : j ∈ G}. Let д : G → R, and
c j j′ = дj for all j ∈ G, and let r be rank function of M. In this case

the v(S) equals the weighted matroid rank function rд(S), i.e., the
maximum д-weight of an independent subset of S .

Assignment valuations and weighted matroid rank functions

are well-known examples of M
♮
-concave (and, according to The-

orem 2.3, gross substitutes) functions. This is true in general for

Rado valuations.

Lemma 2.5 (Murota [50]). Every Rado valuation v : 2
G → R+ is

an M♮ -concave function.

It is worth noting that in 2003, Frank posed the question on

whether the converse is also true: is the class of M
♮
-concave func-

tions the same as those of Rado valuations?
3
We use an example

from [43] showing that this is not the case. The main underlying

reason is that this class is not minor closed. We then formulate a

refined conjecture, and mention an earlier conjecture by Ostrovsky

and Paes Leme [56], partially refuted by Tran [63]. For details we

refer to the full version [27].

2.2 Continuous Valuation Functions
The valuation functions v in the Nash social welfare problem are

defined on subsets of G. Our arguments are based on convex re-

laxations, which requires a continuous extension of the valuation

functions to RG+ . We provide such an extension for Rado valuations;

3
Personal communication by András Frank. See also Kazuo Murota’s lecture [48], the

problem sheet [49], and Renato Paes Leme’s lecture [44].

however, we note that a suitable extension does not even exist for

general submodular valuations.

By a continuous valuation function we mean a continuous func-

tionv : [0, 1]G → R+ withv(0) = 0. We slightly abuse the notation

by using v to denote both discrete and continuous valuations; the

value of a subset S ⊆ G of items will be v(χS ) = v(S). Extend-

ing notions from discrete valuations, a function f : RG+ → R+

is monotone if f (x) ≤ f (y) for x ≤ y, x,y ∈ RG+ , and subaddi-
tive if f (x + y) ≤ f (x) + f (y) for any x,y ∈ [0, 1]G such that

x + y ∈ [0, 1]G .4

Whereas our overall result requires the continuous extension of

Rado valuations, much weaker assumptions suffice for most parts

of the argument, as formulated next.

Assumption 1. For every agent i ∈ A the continuous valuation

function vi : [0, 1]G → R+ is monotone, concave, and subadditive.

Concave Extensions of Discrete Valuations. For any discrete val-

uation function v : 2
G → R+, we can define the concave closure

v̄ : [0, 1]G → R+ as

v̄(x) := min

p∈RG ,α ∈R
{⟨p, x⟩ + α : p(S) + α ≥ v(S),∀S ⊆ G} ,

see e.g. [47, Section 3.4]. As the minimum of linear functions, v̄ is

always concave. Note that it provides the concave upper envelope

of the function v defined on the discrete set {0, 1}G , meaning that

v̄ ≤ f for every concave function f : RG+ → R+ such that v(S) ≤
f (χS ) for all S ⊆ G.

We leave it to the reader as an exercise to verify that for an

additive valuation v(S) =
∑
j ∈S vj , the concave closure is the linear

function v̄(x) = ⟨v, x⟩.
Whereas the extension v̄ can be defined and is concave for every

valuation function v , evaluating v̄(x) can be a hard problem. For

example, in the case of submodular valuations, deciding whether

p(S) + α ≥ v(S) holds for all S ⊆ G amounts to submodular max-

imization and is thus NP-hard. Computing v̄(x) amounts to min-

imization over a polyhedron P where separation is NP-hard; by

the polynomial equivalence of optimization and separation [31], it

follows that evaluating v̄(x) is NP-hard for submodular functions

(see also [35, Lemma 6.15]).

Apart from computational hardness, another problem is that

v̄(χS ) > v(S) may be possible for S ⊆ G. If v̄(χS ) = v(S) for all
subsets S ⊆ G, then we say that v̄ is the concave extension of v , and
that v is concave extensible.

Theorem 6.43 in [47] asserts that all M
♮
-concave functions are

concave extensible, and the converse is also essentially true. This

underlines the importance of gross substitutes/M
♮
-concave valua-

tions for our approach: this is the subclass of valuations where we

can naturally use convex relaxation techniques. We also note that

for M
♮
-concave functions, the concave extension can be evaluated

in polynomial time. This is since, in contrast with general submod-

ular functions, M
♮
-concave functions can be efficiently maximized

with a simple greedy algorithm.

4
The more precise definition would be f (x ∨y) ≤ f (x )+ f (y) for any x , y ∈ [0, 1]G ,

where x∨y is the pointwise maximum of the vectors x andy . For monotone valuations,

these two definitions are equivalent.
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The Concave Extension of Rado Valuations. For the case of Rado
valuations, we now give an explicit description of the concave

extension by a linear program. This representation of the concave

extension is at the core of the arguments in Phase IV, where we
argue about the existence of a sparse optimal solution of a particular

convex program.

Theorem 2.6. Consider a Rado valuation v : 2
G → R+ given by

a bipartite graph (G,V ;E) with costs on the edges c : E → R+, and a
matroidM = (V ,I)with a rank function r = rM as in Definition 2.4.
For x ∈ [0, 1]G , let us define

ν (x) := max

∑
(j ,k )∈E

c jkzjk

s.t.:
∑
k ∈V

zjk ≤ x j ∀j ∈ G∑
j ∈G,k ∈T

zjk ≤ r (T ) ∀T ⊆ V

z ≥ 0 .

(2)

Then, ν = v̄ is the concave extension of v , and satisfies Assumption 1.

In the light of this theorem, in the rest of the paper we will

denote by v : [0, 1]G → R+ the continuous Rado valuation defined

in (2).

2.3 Simple Upper Bounds
We will often use the following simple bounds.

Lemma 2.7. Let n, c ∈ N, S ⊆ [n], and 1 ≤ w1, . . . ,wn ≤ γ − 1. For
i ∈ S let ki ∈ R+ such that

∑
i ∈S ki ≤ c · n. Then(∏

i ∈S
kwi
i

)
1/

∑n
i=1

wi

≤ c · γ .

Proof. By the inequality of weighted arithmetic and geometric

means we have:(∏
i ∈S

kwi
i

)
1/

∑n
i=1

wi

=
∏
i ∈S

k

wi∑n
i=1

wi
i ·

∏
i ∈[n]\S

1

wi∑n
i=1

wi

≤
∑
i ∈S

wiki∑n
i=1

wi
+

∑
i ∈[n]\S

wi∑n
i=1

wi

≤ (γ − 1)

∑
i ∈S ki∑n
i=1

wi
+ 1 ≤ c · γ . □

Lemma 2.8. Let n, c ∈ N, S ⊆ [n]. For i ∈ S let ki ∈ R+ such that∑
i ∈S ki ≤ c · n. Then (∏

i ∈S
ki

)
1/n

≤ c · e1/e .

3 OVERVIEW OF THE APPROACH
Letvi be a continuous valuation function andwi > 0 be the weight

for each i ∈ A. Given a fractional allocation x = (x1, . . . , xn ) ∈

RA×G
+ , we let

NSW(x) :=

(∏
i ∈A

vi (xi )
wi

)
1/

∑
i wi

.

Then, the asymmetric Nash social welfare program is captured by

the following integer program.

max NSW(x) s.t.

∑
i ∈A

xi j ≤ 1 ∀j ∈ G, x ∈ {0, 1}E . (NSW-IP)

Let OPT denote the optimum value. The natural relaxation of

(NSW-IP) is

max NSW(x) s.t.

∑
i ∈A

xi j ≤ 1 ∀j ∈ G, x ≥ 0 . (3)

The objective is log-concave assuming the vi ’s are concave func-
tions. However, Cole and Gkatzelis [16, Lemma 3.1] showed that

this relaxation has unbounded integrality gap already for additive

valuations.

We propose a mixed integer programming relaxation instead

of (3). Consider a set of itemsH ⊆ G. Ourmixed relaxation requires

the items inH to be allocated integrally and the rest can be allocated

fractionally.

max NSW(x)

s.t.:

∑
i ∈A

xi j ≤ 1 ∀j ∈ G

xi j ∈ {0, 1} ∀j ∈ H ,∀i ∈ A

x ≥ 0 .

(Mixed relaxation)

This clearly gives a relaxation of (NSW-IP):OPTH ≥ OPTwhere

OPTH is optimal value of (Mixed relaxation) for any set of items

H . Theorem 1.2 is shown by constructing an integer allocation x ∈

{0, 1}A×G
and an item setH such that NSW(x) ≥ OPTH/(256γ 3).

This is proved in five phases:

Phase I Find an appropriate item setH .

Phase II Approximate (Mixed relaxation) by another integer

program (Mixed+matching).

Phase III Find an approximate mixed integer solution to

(Mixed+matching).

Phase IV Find a sparse approximate mixed integer solution

to (Mixed+matching).

Phase V Round the mixed integer solution to an integer so-

lution.

We note that phases are not necessarily algorithmic phases but also

conceptional reductions of the problem. Regardless, we call them

phases for the sake of presentation. We now give an overview of

all the phases.

3.1 Phase I: Finding the Item Set H
We solve a maximum weight matching problem that achieves the

highest Nash social welfare value under the restriction that each

agent may only receive a single item. This can be achieved by

assigning an edge weight ωi j = wi log(vi j ) for every i ∈ A, j ∈
G, and solving the maximum weight assignment problem in the

complete bipartite graph between A and G; we recall the notation

vi j = vi ({j}). We let τ : A → G denote the optimal matching

represented as a mapping, i.e. τ (i) is the item matched to agent
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i ∈ A.We defineH as the set of items assigned by τ , i.e.,H := τ (A).

We will refer to this setH as the set of most preferred items.5

The existence of τ with finite weight proves that the instance

is feasible, i.e., there is a way of allocating one item to each agent

such that agent values the assigned item positively. On the other

hand, if no finite weight matching exists, the optimum value to

(NSW-IP) is 0. Henceforth, we assume without loss of generality

that the optimal NSW is non-zero.

3.2 Phase II: Reduction to the Mixed Matching
Relaxation

We approximate (Mixed relaxation) by a second mixed integer pro-

gram. We use variables y ∈ R
A×(G\H)
+ representing the fractional

allocations of the items in G \ H . Even though the valuation func-

tions vi are defined on RG+ , we use vi (yi ) to denote vi (xi ), where
xi is obtained from yi by setting xi j = 0 for j ∈ H and xi j = yi j
for j ∈ G \ H .

max

(∏
i ∈A

(
vi (yi ) +viσ (i)

)wi

)
1/

∑
i wi

s.t.:

∑
i ∈A

yi j ≤ 1 ∀j ∈ G \ H

yi j ≥ 0 ∀j ∈ G \ H ,∀i ∈ A

σ : A → H is a matching.

(Mixed+matching)

We will refer to this program as the mixed matching relaxation.
The program (Mixed+matching) differs from (Mixed relaxation) in

two respects. Firstly, the objective differs from NSW(x): for each
agent, the value of each agent in (Mixed relaxation) is given by the

Rado valuation while in (Mixed+matching) we evaluate the utility

of each agent separately on H and G \ H and take the sum of

these two values. Secondly, and more importantly, we require that

the items in H are allocated to the agents by a matching. Unlike

(Mixed relaxation), this will not be a relaxation of (NSW-IP): the

optimal integer solution may allocate multiple items in H to the

same agent. We show that the effect of both these changes is limited.

Let (y,σ ) be a feasible solution to (Mixed+matching). We define

NSW(y,σ ) as the objective function value in (Mixed+matching),

and let OPTH denote the optimum value. Let us define NSW(y,σ )
as the Nash social welfare of the same allocation. Namely,

NSW(y,σ ) = NSW(x), where xi j = yi j if j ∈ G \ H , and for

j ∈ H we have xi j = 1 if j = σ (i), and xi j = 0 otherwise. The next

lemma is an easy consequence of monotonicity and subadditivity.

Lemma 3.1. For a feasible solution (y,σ ) to (Mixed+matching), we
have

NSW(y,σ ) ≥ NSW(y,σ ) ≥
1

2

NSW(y,σ ) .

Proof. We have NSW(y,σ ) ≥ NSW(y,σ ) by subadditivity. By

monotonicity: 2 NSW(y,σ ) ≥ NSW(y, ∅)+NSW(0,σ ) = NSW(y,σ ).
□

5
Interestingly, in case of symmetric agents endowed with additive valuations the set

H contains all items with price at least one in any spending restricted equilibrium as

in [16].

Using this lemma, as well as Lemma 2.7, we can relate the opti-

mum values and approximate solutions of (Mixed relaxation) and

(Mixed+matching).

Theorem 3.2. Let H ⊆ G with |H | = |A|. For the optimum val-
ues OPTH to (Mixed relaxation) and OPTH to (Mixed+matching),
we have

OPTH ≥
1

γ
OPTH .

Let (y,σ ) be an α-approximate optimal solution to
(Mixed+matching), that is, NSW(y,σ ) ≥ 1

α OPTH . Then,
NSW(y,σ ) ≥ 1

2αγ OPTH . If the valuation functions vi are

additive, then the stronger bound NSW(y,σ ) ≥ 1

αγ OPTH applies.

Proof. We first show that OPTH ≥ 1

γ OPTH . Let x be an opti-

mal solution to (Mixed relaxation). For each agent i , letKi be the set
of items agent i receives fromH under x ; and lety be the restriction

of x on G \H defined as yi j = xi j for j ∈ G \H and yi j = 0 other-

wise. Let ki := |Ki |. Denote with S the set of agents that receive at

least one items fromH , i.e., S = {i ∈ A : ki ≥ 1}. For each agent

i ∈ S let σ (i) = maxj ∈Ki {vi j }, and define σ (i) = ∅ for i ∈ A \ S .
Then, (y,σ ) is a feasible solution of (Mixed+matching). In other

words, (y,σ ) is obtained from x once each agent i ∈ S discards all

items from Ki except the most valuable one. By monotonicity and

subadditivity, for all i ∈ S , we have

vi (xi ) ≤ vi (y) +
∑
j ∈Ki

vi j ≤ ki · (vi (y) +viσ (i)) .

Therefore,

NSW(x)

NSW(y,σ )
=

(∏
i ∈S

vi (xi )
wi

(vi (y) +viσ (i))
wi

) 1∑
i wi

≤

(∏
i ∈S

kwi
i

) 1∑
i wi

.

Moreover,

∑
i ∈S ki ≤ |H | = |A| = n. Then, the bound follows by

Lemma 2.7 and since

OPTH

OPTH

≤
NSW(x)

NSW(y,σ )
. The second part of the

theorem follows by Lemma 3.1. □

3.3 Phase III: Approximating the Mixed
Matching Relaxation

Our next goal is to find a 2-approximation solution to

(Mixed+matching); we do not know whether this problem is

polynomial-time solvable. By Theorem 3.2, this yields a (4γ )-
approximation to (Mixed relaxation).

Let us first remove all items in H . Some agents may only value

positively the itemsH . We letA ′
the subset of agents who have pos-

itive values for the items G\H , that is,A ′
:= {i ∈ A : vi (G\H) >

0}. Consider the “naïve” relaxation (3) on the instance restricted to

A ′
and G \ H , and taking the logarithm of the objective

max

∑
i ∈A′

wi log(vi (yi ))

s.t.:

∑
i ∈A′

yi j ≤ 1 ∀j ∈ G \ H

y ≥ 0.

(EG)

This is the classical Eisenberg–Gale convex program that com-

putes an equilibrium in Fisher markets with divisible items for
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homogeneous concave valuation functions [20]. Given an optimal

solution y∗ ∈ R
A′×(G\H)
+ of (EG) we can find an approximate

solution to (Mixed+matching).

Theorem 3.3. LetH ⊆ G with |H | = |A|. Let π∗ be maximum
weight assignment in the complete bipartite graph between A and

H , with edge weights ωi j = wi log

(
vi (y

∗
i ) +vi j

)
for i ∈ A, j ∈ H .

Then, NSW(y∗, π∗) ≥ 1

2
OPTH .

Theorem 3.3 is an immediate consequence of the following

lemma.

Lemma 3.4. Let H ⊆ G with |H | = |A|. Let α > 0 and y∗ be
an optimal and y a feasible solution of (EG) such that vi (yi ) ≥
1

α vi (y
∗
i ) for all i ∈ A ′. Let π be maximum weight assignment in

the bipartite graph with colour classes A andH , and edge weights
ωi j = wi log

(
vi (yi ) +vi j

)
for i ∈ A, j ∈ H . Then,

NSW(y, π ) ≥
1

2α
OPTH .

Since valuations vi are concave, (EG) is a convex program. For

any ε > 0, we can find an (1−ε)-approximate solution in polynomial-

time, where the running time depends on log(1/ε). It turns out that
approximation of the objective function might not be enough. In

Lemma 3.4 we require an agent-wise approximate solution: each

agent gets at least a constant fraction of her value in the optimum.

It is not clear if finding such agent-wise approximation is possible

in polynomial time for general concave valuations vi , but as we
will see in the next section we can find an exact optimal solution

for Rado valuations.

The proof of Lemma 3.4 is deferred to Section 4. It does not

depend on the choice of H but only requires |H | = |A|.

3.4 Phase IV: A Sparse Approximate Solution
for the Mixed Matching Relaxation

In this section we exploit the properties of Rado valuations. As-

suming the agents have Rado valuation functions, we can find an

approximate solution of (Mixed+matching) with a strong sparsity

property. Even though the approximation ratio is weaker than given

in Theorem 3.3, sparsity will be essential for the rounding in Phase
V.

Theorem 3.5. Suppose the functions vi are Rado valuations. Let
H ⊆ G with |H | = |A|. We can find a feasible solution (y, π ) to
(Mixed+matching) such that

(i) NSW(y, π ) ≥ 1

4
OPTH ,

(ii) supp(y) ≤ 2|A|+|L+ | whereL+ = {j ∈ G\H :

∑
i ∈A′ yi j >

0}, that is, L+ is the set of allocated items in y.

Moreover, for additive valuation functions, we can strengthen (i) to
NSW(y,σ ) ≥ 1

2
OPTH and (ii) to supp(y) ≤ |A| + |L+ |.

Let us start with the special case of additive valuations. In this

case, an exact solution y∗ to the Eisenberg–Gale convex program
(EG) can be found in strongly polynomial time [55, 66].

Theorem 3.6. Assuming the valuations vi are additive, we can
find an optimal solution y∗ of (EG) in strongly polynomial time such
that the support supp(y∗) is a forest.

The claim on the support follows easily by showing that any

cycles in supp(y∗) can be eliminated, see e.g., [16, 19, 55]. Conse-

quently, |supp(y∗)| ≤ |A ′ | + |L+ | − 1. Together with Lemma 3.4,

this proves the statement in Theorem 3.5 for additive valuations.

For Rado valuations, we first prove that an optimal solution

of (EG) can be found in polynomial time. We first show that this

is a rational convex program, and use the variant of the ellipsoid

method for rational polyhedron [31].

Lemma 3.7. Suppose that for each agent i ∈ A, vi is a Rado
valuation given by a bipartite graph (G,Vi ;Ei ), integer costs ci :

Ei → Z and a matroid Mi = (Vi ,Ii ) as in Definition 2.4. Let
T = maxi ∈A |Vi |, and C = maxi ∈A ∥ci ∥∞. Let the weights wi > 0

be rational numbers given as quotients of two integers at most U .
Assume the matroidsMi are given by rank oracles. Then, (EG) has a
rational solution with poly(|A|, |G|,T , logC, logU ) bit-complexity,
and such a solution can be found in poly(|A|, |G|,T , logC, logU )

arithmetic operations and calls to the matroid rank oracles.

Our next lemma shows that any feasible solution to (EG) can

be sparsified by losing at most the half of the value for each agent.

This is achieved in two steps, using the sparsity of basic feasible

solutions to linear programs. Half of the valuation may be lost

in the second step, where for the fractionally allocated items we

aim to remove one of the fractional edges. The set to be deleted is

identified by writing an auxiliary linear program.

Lemma 3.8. Suppose the functions vi are Rado valuations, and let
ŷ be a feasible solution to (EG). Then, in polynomial time we can find
a feasible solution y such that

(i) vi (y) ≥ 1

2
vi (ŷ),

(ii) |supp(y)| ≤ 2|A ′ | + |L+ | where
L+ := L+(y) = {j ∈ G \ H :

∑
i ∈A′ yi j > 0}.

By combining Lemmas 3.4, 3.7, 3.8, we obtain Theorem 3.5 for

Rado valuations. For the proofs of Lemmas 3.7 and 3.8 see [27].

3.5 Phase V: Rounding the Mixed Integer
Solution

For this phase of the algorithm, we require a sparse approximate

solution as in Theorem 3.5, and exploit the choice ofH as the set

of most preferred items in Phase I. We start with a mixed integer

solution (y, π ) as in Theorem 3.5. By a reduction of (y, π )we mean a

mixed integer solution (yr , π ) obtained as follows. For each j ∈ L+,

we pick an arbitrary agent κ(j) ∈ A such that yκ(j)j > 0. We set

yrκ(j)j = yκ(j)j , and set yri j = 0 if i , κ(j). By the bound on supp(y),

this amounts to setting ≤ 2|A| values yi j to 0. The proof of the

next lemma is given in Section 5.

Lemma 3.9. Let H be the set of most preferred items, and let (y, π )
be a solution to (Mixed+matching) as in Theorem 3.5. Let (yr , π ) be a
reduction of (y, π ). Then in polynomial-time we can find a matching
ρ : A → H such that

NSW(yr , ρ) ≥
1

32γ 2
NSW(y, π ) .

Further, if the valuations are linear, then we can find a matching
ρ : A → H such that NSW(yr , ρ) ≥ 1

8
NSW(y, π ).

1419



Approximating Nash Social Welfare under Rado Valuations STOC ’21, June 21–25, 2021, Virtual, Italy

Such a matching ρ can be found by combining the matching π
in the solution (y, π ), and the initial matching τ from Phase I that
delivers the highest NSW value such that every agent may receive

only one item. We swap from π to τ on certain alternating paths

and cycles.

We are ready to prove the main results.

Theorem 1.2 (Main). There exists a polynomial-time 256γ 3-app-
roximation algorithm for the Nash social welfare problem with Rado
valuation functions. For additive valuation functions, there exists a
polynomial-time 16γ -approximation algorithm.

Proof. From Theorem 3.5 and Lemma 3.9, we can obtain a solu-

tion an (128γ 2)-approximate solution (yr , ρ) to (Mixed+matching)

such that for each item L+ there is exactly one incident edge in

supp(yr ). We can obtain a 0–1 valued solution x to (NSW-IP) by

assigning each item inH according to ρ and each item j ∈ L+ to

the unique agent i with yri j > 0. Clearly, NSW(x) ≥ NSW(yr , ρ).

We obtain NSW(x) ≥ OPTH/(256γ 3) ≥ OPT/(256γ 3) using Theo-

rem 3.2. For additive valuations, we use the stronger bounds in the

same results. □

The proof of Theorem 1.1 follows exactly as the proof of The-

orem 1.2 once we replace γ by e1/e
. Such a change is justified as

in the symmetric case we can use Lemma 2.8 instead of the bound

given by Lemma 2.7.

4 PHASE III: APPROXIMATING THE MIXED
MATCHING RELAXATION

Phase III presents a general way of obtaining a 2-approximation

to (Mixed+matching). By Theorem 3.2, this gives a (4γ )-
approximation to (Mixed relaxation), a mixed integer relaxation

of the ANSW problem.

In (Mixed+matching), we need to allocate items G to the agents

in A in order to maximize an objective function that is an approxi-

mation of the NSW. Items in G \ H can be allocated fractionally

to the agents without any constraints. The items inH have to be

allocated integrally via an assignment, thereby allocating exactly

one item fromH to each agent A.

While the exact computational complexity of (Mixed+matching)

remains unresolved, we show that we can 2-approximate it.

Denote L = G \ H . Let A ′
be the subset of agents that have

positive value for the items inG\H ,A ′
:= {i ∈ A : vi (G\H) > 0},

as some agents may only have positive value for the items in H .

Restricting (Mixed+matching) to the items L and agents A ′
and

taking the objective yields an instance of (EG):

max

∑
i ∈A′

wi logvi (yi )

s.t.:

∑
i ∈A′

yi j ≤ 1 ∀j ∈ L

yi j ≥ 0 ∀j ∈ L,∀i ∈ A ′.

The above is a convex program whenever the valuations vi (.) are
concave, and we can solve it to an arbitrary precision in polynomial

time if we have access to a supergradient oracle to the objective

function.

On the other hand, suppose that in (Mixed+matching) the vari-

ables y are fixed. Under the fixed y, we can find an optimal as-

signment σ . Namely, an optimal assignment is exactly a maxi-

mum weight assignment in the bipartite graph (A,H ;E)where the
weight of an edge ij for i ∈ A, j ∈ H is ωi j := wi log(vi (yi ) +vi j ).

Informally, (Mixed+matching) is a combination of two tractable

problems. We show that an optimal solution y∗ to the restriction of

the problem to L and A ′
, and an optimal assignment with respect

to the fixed y∗ gives a 2-approximation for (Mixed+matching).

In Section 4.1 we discuss the restriction of the problem to L and

A ′
and give a technical lemma. The main result of the section is

presented in Section 4.2.

4.1 Properties of Eisenberg–Gale Program
Let us now consider the Eisenberg–Gale program (EG). For concave

valuationsvi , the above is a convex program. An optimal solutiony∗

and the optimal Lagrangemultiplierspj for j ∈ L can be interpreted

as the so-called Gale equilibrium in the market with divisible items

L, agents A ′
, and where agent i has valuation vi and budget wi .

In particular, y∗ represent the allocations and pj for j ∈ L, specify

the prices in the market equilibrium, see e.g., [26, 52]. In case of

additive (or more general homogeneous) valuations this can be

used to find a Fisher equilibrium, since Fisher and Gale equilibria

coincide under homogeneous valuations [21, 52].

Lemma 4.1. Let y∗ be an optimal solution to (EG) with additive
valutaions. Then for any feasible solution y′ and any A ′′ ⊆ A ′ it

holds
∑
i ∈A′′ wi

vi (y′
i )

vi (y∗
i )

≤
∑
i ∈A′ wi .

Proof. By scaling we may assume that v(y∗) = wi . Hence, we

need to prove

∑
i ∈A′′ vi (y

′
i ) ≤

∑
i ∈A′ v(y∗). As y∗ and p form a

Fisher equilibrium, the previous inequality holds by the first welfare

theorem. □

For general monotone concave valuations, we will use a more

general technical lemma which we state without the proof.

Lemma 4.2. Let y∗ be an optimal solution to (EG). Then for any
feasible solution y′ and any A ′′ ⊆ A ′ it holds∑

i ∈A′′

wi
vi (y

′
i )

vi (y
∗
i )

≤
∑
i ∈A′′

wi +
∑
i ∈A′

wi .

4.2 The Approximation Guarantee for the
Mixed Matching Relaxation

Lemma 3.4. Let H ⊆ G with |H | = |A|. Let α > 0 and y∗ be
an optimal and y a feasible solution of (EG) such that vi (yi ) ≥
1

α vi (y
∗
i ) for all i ∈ A ′. Let π be maximum weight assignment in

the bipartite graph with colour classes A andH , and edge weights
ωi j = wi log

(
vi (yi ) +vi j

)
for i ∈ A, j ∈ H . Then,

NSW(y, π ) ≥
1

2α
OPTH .

Proof. Let π∗
be a maximum weight matching in the bipartite

graph with colour classes A and H and with edge weights q∗i =
wi log(vi (y

∗) +vi j ). Equivalently, π
∗
is a matching maximizing( ∏

i ∈A′

(
vi (y

∗
i ) +viπ ∗(i)

)wi

)
1/

∑
i∈A wi

.
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We have the bounds

NSW(y, π ) ≥ NSW(y, π∗) ≥
1

α
NSW(y∗, π∗) . (4)

The first inequality is by the definition of π as the maximum weight

matching. The second inequality follows from the assumption

vi (yi ) ≥
1

α vi (y
∗
i ) for each i ∈ A ′

.

The rest of the proof is devoted to proving that NSW(y∗, π∗) ≥
1

2
OPTH ; together with (4), this implies the statement. Let us intro-

duce some notation. For an agent i ∈ A, let Y ∗
i = vi (y

∗
i ) be the

value agent i gets from the optimal fractional bundle y∗. Then,

NSW(y∗, π∗) =
©­«
∏
i ∈A′

(Y ∗
i +viπ ∗(i))

wi
∏

i ∈A\A′

vwi
iπ ∗(i)

ª®¬
1/

∑
i∈A wi

.

Let (y′, ϱ) be an optimal solution achieving OPTH . For an

agent i ∈ A let Yi = vi (y
′
i ) be the value agent i gets from

the fractional allocation y′. Then OPTH = NSW(y′, ϱ) =(∏
i ∈A (Yi +viϱ(i))

wi
)

1/
∑
i∈A wi

. By definition of the set A ′
, the

agents inA\A ′
do not value the items inL. Thus, by monotonicity

NSW(y′, ϱ) =
©­«
∏
i ∈A′

(Yi +viϱ(i))
wi

∏
i ∈A\A′

vwi
iϱ(i)

ª®¬
1/

∑
i∈A wi

.

By the choice of π∗
, we have NSW(y∗, π∗) ≥ NSW(y∗, ϱ) where

NSW(y∗, ϱ) =
©­«
∏
i ∈A′

(Y ∗
i +viϱ(i))

wi
∏

i ∈A\A′

vwi
iϱ(i)

ª®¬
1/

∑
i∈A wi

.

Combining the last two we have:

NSW(y′, ϱ)

NSW(y∗, π∗)
≤

( ∏
i ∈A′

(
Yi +viϱ(i)

Y ∗
i +viϱ(i)

)wi
)

1/
∑
i∈A wi

.

Let A ′′ = {i ∈ A ′
: Yi > Y ∗

i } be the set of agents that get

more value from y′ than y∗. Then, for i ∈ A ′ \ A ′′
the fraction

Yi +viϱ(i)

Y ∗
i +viϱ(i)

is trivially bounded by 1. On the other hand, for i ∈ A ′′

we have

Yi +viϱ(i)

Y ∗
i +viϱ(i)

≤
Yi
Y ∗
i
. Since OPTH = NSW(y′, ϱ) it follows

OPTH

NSW(y∗, π∗)
≤

( ∏
i ∈A′

(
Yi +viϱ(i)

Y ∗
i +viϱ(i)

)wi
)

1/
∑
i∈A wi

≤

( ∏
i ∈A′′

(
Yi
Y ∗
i

)wi
)

1/
∑
i∈A wi

.

We claim that the last expression is bounded by 2. By Lemma 4.2 we

have

∑
i ∈A′′ wi

Yi
Y ∗
i
≤

∑
i ∈A′′ wi+

∑
i ∈A′ wi . Then by the inequality

between weighted arithmetic and geometric mean we have

∏
i ∈A′′

(
Yi
Y ∗
i

)wi /
∑
i∈A wi

≤

∑
i ∈A′′ wi

Yi
Y ∗
i
+

∑
i ∈A\A′′ 1∑

i ∈A wi

≤

∑
i ∈A′′ wi +

∑
i ∈A′ wi + |A \ A ′′ |∑
i ∈A wi

≤ 2 .

The lemma follows. □

5 PHASE V: ROUNDING THE MIXED
SOLUTION

We present the rounding for a sparse solution of (Mixed+matching).

We recall that by sparse we mean a feasible solution (y, π )
of (Mixed+matching) satisfying: supp(y) ≤ 2|A| + |L+ |, where

L+ =
{
j ∈ G \ H :

∑
i ∈A′ yi j > 0

}
.

Such a sparse solution is rounded by setting 2|A| positive vari-

ables in y to 0, i.e., a reduction of (y, π ) and allocating the items

according to the support of the reduction. Formally, by a reduc-
tion of (y, π ) we mean a mixed integer solution (yr , π ) obtained
as follows. For each item j a fraction of which is allocated by y
(i.e., j ∈ L+), we pick an arbitrary agent κ(j) getting the item (i.e.,

yκ(j)j > 0). We set yrκ(j)j = yκ(j)j , and set yri j = 0 if i , κ(j). In

words, the agent κ(j) keeps getting the same amount in reduction

and no other agent receives any part of item j. By the bound on

supp(y), this amounts to setting ≤ 2|A| values yi j to 0. Looking at

the reduction from the agents perspective: let di be the number of

items agent i lost by reduction, i.e., the number of items j for which
yi j > 0 and yri j = 0. Then,

∑
i ∈A′ di ≤ 2|A|.

The reduction (yr , π ) might have an arbitrarily worse objective

value than (y, π ) (e.g., if for agent i we haveviπ (i) = 0 and reduction

sets yri = 0), but we show that we can find a different assignment

ρ such that (yr , ρ) is only worse by a constant factor than (y, π ),
no matter how the reduction is carried out. The assignment ρ is

obtained as a combination of τ (the assignment obtained in Phase

I) and π .
For a fixed reduction and the values di , ρ and its properties are

given by the following lemma.

Lemma 5.1 (Key rounding lemma). Let H be the set of most pre-
ferred items, (y, π ) a feasible solution to (Mixed+matching), and let
di ∈ N, (di ≥ 1) for each i ∈ A. In O(|A|) time, we can find an
assignment ρ such that

NSW(y, ρ) ≥
1

2

(∏
i ∈A

(di + 1)−wi

)
1/

∑
i∈A wi

NSW(y, π )

and for each i ∈ A it holds either

(a) viρ(i) ≥
1

di
vi (yi ), or

(b) for each j ∈ L it holds vi j ≤ 1

di+1
(vi (yi ) +viρ(i)).

Intuitively, the above lemma states that starting with a feasible

allocation y, we can find an assignment ρ that might have smaller

NSW(y, ρ) than NSW(y, π ) but has the following nice property for

each agent i ∈ A:

• In case (a), i values the item ρ(i) at least as she values a

1/di fraction of yi (and thus at least a 1/(di + 1) fraction of

vi (yi ) +viρ(i)). Hence, agent i keeps a 1/(di + 1)-fraction of

her value just by keeping ρ(i) even if we can take away all

items i gets from L.

• In case (b), every item L has a small value for i when com-

pared to the combined value of yi and ρ(i). That is, i values
yi and ρ(i) significantly more than any di items combined

from L. Looking at it from the other side, even if we were

to take away any di in L items from i she will still keep a

fraction of the value.
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The essence of both cases is that the reduction will not hurt the

agent too much. Before we present the proof of Lemma 5.1, we

show that this is enough to prove Lemma 3.9.

Lemma 3.9. Let H be the set of most preferred items, and let (y, π )
be a solution to (Mixed+matching) as in Theorem 3.5. Let (yr , π ) be a
reduction of (y, π ). Then in polynomial-time we can find a matching
ρ : A → H such that

NSW(yr , ρ) ≥
1

32γ 2
NSW(y, π ) .

Further, if the valuations are linear, then we can find a matching
ρ : A → H such that NSW(yr , ρ) ≥ 1

8
NSW(y, π ).

Proof of Lemma 3.9. We first prove the lemma for the general

case. Let yr be any reduction of y and let di be the number items

agent i lost in reduction. By sparsity in Theorem 3.5 we have∑
i ∈A di ≤ 2|A|.

We use Lemma 5.1 to obtain ρ. Note that Lemma 5.1 requires

di ≥ 1 so we define di = max{1,di }. Thus, now we have the bound∑
i ∈A (di +1) ≤ 4|A|. Let ρ be the matching obtained by Lemma 5.1

given di ’s and y. By Lemma 2.7 we have that(∏
i ∈A

(di + 1)−wi

)
1/

∑
i∈A wi

≥
1

4γ
.

Thus, NSW(y, ρ) ≥ 1

8γ NSW(y, π ). By the same

inequality, it suffices to show that NSW(yr , ρ) ≥(∏
i ∈A(di + 1)−wi

)∑
i∈A wi

NSW(y, ρ). We do so, by showing

that for each i ∈ A it holds vi (y
r
i ) +viρ(i) ≥

1

d i+1

(vi (yi ) +viρ(i)).

By Lemma 5.1 for agent i we have either (a) or (b).

(a) In this case we have diviρ(i) ≥ vi (yi ). Thus, viρ(i) ≥
1

d i+1

(vi (yi ) + viρ(i)). Consequently, vi (y
r
i ) + viρ(i) ≥

1

d i+1

(vi (yi ) +viρ(i)).

(b) We have vi j ≤ 1

d i+1

(vi (yi ) + viρ(i)) for all j ∈ L. Denote

with Di the set of di items j for which yi j > 0 and yri j = 0.

By subadditivity vi (Di ) ≤
∑
j ∈Di vi j . Therefore, vi (Di ) ≤

di
d i+1

(vi (yi )+viρ(i)) ≤
d i

d i+1

(vi (yi )+viρ(i)). Hence,vi (yi )−

vi (Di )+viρ(i) ≥
1

d i+1

(vi (yi )+viρ(i)). By subadditivity and

monotonicity we have vi (y
r
i ) ≥ vi (yi ) −vi (Di ), proving in

this case as well that vi (y
r
i ) +viρ(i) ≥

1

d i+1

(vi (yi ) +viρ(i)).

The lemma follows.

For additive valuations, we recall Theorem 3.6. It gives us an

optimal solution of (EG) that is supported on a forest in which each

tree contains an agent. In particular, this implies a nice property

for the reductions of y. Namely, we can choose a reduction yr in
which di ≤ 1 for each agent i ∈ A. Such a reduction is obtained

by rooting each tree of the forest at an arbitrary agent and letting

κ(j) to be the parent agent of item j . Informally, each agent loses at

most one item. Therefore, di = 1 for all i ∈ A. The lemma follows

by Lemma 5.1. □

The proof of Lemma 5.1 is presented in the following section.

5.1 Constructing the New Matching
Recall Phase I where we defined τ as an assignment maximizing(∏

i ∈A vwi
iτ (i)

)
andH the set of items assigned by τ . We number the

agentsA = {1, 2, . . . ,n}, and renumber the itemsH = {1, 2, . . . ,n}
such that τ = {(i, i) : i ∈ A}. In other words, τ assigns item i ∈ G

to agent i ∈ A.

Intuition. We are given a feasible solution (y, π )
of (Mixed+matching) and τ . For the sake of illustration as-

sume that by using the matching τ instead of π we don’t lose too

much in the objective, i.e.,

NSW(y, τ ) ≥

(∏
i ∈A

(di + 1)−wi

)
1/

∑
i∈A wi

NSW(y, π ) .

In this case, each agent i gets the item i fromH . Let us show that

under the above assumption we can set ρ = τ , i.e., that for each
agent i either (a) or (b) holds.

Claim 5.2. Let i ∈ A. Then either vii > 1

di
vi (yi ) or for any j ∈ L

it holds vi j ≤ 1

di+1
(vii +vi (yi ))

Proof of Claim. By the optimality of τ it then holds vii ≥ vi j
for all j ∈ L. If vii ≥

1

di
vi (yi ) then (a) holds. Otherwise, we have

that divii < vi (yi ). Combining it with vi j < vii , we have that

(di + 1)vi j ≤ (di + 1)vii < vi (yi ) +vii = vi (yi ) +viτ (i) . ■

Therefore, our goal is to construct ρ by “replacing” as much of

π with τ without losing too much in the objective. By Claim 5.2 for

any agent for which ρ(i) = τ (i) we will have either (a) and (b). We

formalize this idea below, and give a way of constructing ρ such

that even when ρ(i) , τ (i) still we have either (a) and (b).

Algorithm. Let (y, π ) be a feasible solution of (Mixed+matching).

We denote with Yi the value agent i gets in y, i.e., Yi = vi (yi ). We

construct new assignment ρ by combining π and τ . In particular,

whenever π (i) = τ (i) then we set ρ(i) := π (i) = τ (i) and otherwise

exactly one of the following will be the case: ρ(i) = τ (i), ρ(i) = π (i)
or ρ(i) = ∅. Notation ρ(i) = ∅ represents the case that i is not
allocated any item from H . (Formally, we can allocate one item to

each agent since |H | = |A| but as some agents might value some

items at 0 it is simpler to say that agent is not allocated an item by

ρ.)
Consider the symmetric difference of the two assignments π∆τ .

Each component is an alternating cycle; we consider the compo-

nents one-by-one. Take any component C of π∆τ with c agents
and c items. Let the agents in the component be a1,a2, . . . ,ac . The
numbering is modulo c: ac+k = ak for all k ∈ Z. By the con-

vention on the numbering, the corresponding items are also num-

bered a1,a2, . . . ,ac , and (ak ,ak ) ∈ τ for all k ∈ [c]. We order the

agents around the cycle such that (ak ,ak−1
) ∈ π for all k ∈ [c]. Let

B := B(C) = {t ∈ [c] : Yat > datvatat−1
}. We consider two cases

based on the size of B:

|B | = 0. In this case we set ρ(at ) = π (at ) = at−1 for all t ∈ [c].
|B | ≥ 1. First, we trim π by setting π (at ) = ∅ for each t ∈ B. We have

Yat +vat at−1

Yat
≤ 2 for each t ∈ B since dat ≥ 1. In words, each

agent losses at most half of her value.
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After trimming π , the connected component C decomposes

into several alternating paths. Consider one such path, start-

ing in agent ak and ending in item ar . It follows that k ∈ B
and t < B for all k < t ≤ r . We consider the following

ratio that measures the change in the objective value by

augmenting π over the previously mentioned path:

φ(C,k, r ) :=

(
Yak

vakak + Yak

)wak
r∏

t=k+1

(
vatat−1

+ Yat
vatat + Yat

)wat
.

If it holds that φ(C,k, r ) ≤
∏r−1

t=k (dat + 1)wat then we say

that the interval [k, r ] is reversible. Moreover, we set ρ(at ) =
τ (at ) = at for all k ≤ t ≤ r . If [k, r ] is not reversible then we

set ρ(ak ) = ∅ and ρ(at ) = π (at ) = at for all k < t ≤ r . We

do the same for every augmenting path.

To prove Lemma 5.1, we first show that by changing the assign-

ment from π to ρ the objective value of (Mixed+matching) cannot

decrease by too much.

Lemma 5.3. The assignment ρ can be constructed in linear time (in
n), and it holds

NSW(y, π )

NSW(y, ρ)
≤ 2 ·

(∏
i ∈A

(di + 1)wi

)
1/

∑
i∈A wi

.

Proof. It suffices to prove the lemma for each of the connected

components C of π∆τ . For |B | = 0 the lemma holds trivially. So

assume that |B | ≥ 1 for the rest of the proof.

The procedure terminates in linear time, as we only require one

pass through the agents and items in C . To prove the bound on

NSW(y,ρ)
NSW(y,π )

, we show that for every interval [k, r ] the objective value

“before averaging” decreases at most by factor 2
wak

∏r
t=k (dat +

1)wat .

If interval [k, r ] is not reversible, then the change in the objec-

tive function is captured by

(vak ak−1
+Yak

Yak

)wak
, as for every agent

at with t ∈ [k + 1, r ], we have ρ(at ) = π (at ), and ρ(ak ) = ∅.

Since k ∈ B, it follows that Yak > dakvakak−1
≥ vakak−1

. Thus,(vak ak−1
+Yak

Yak

)wak
< 2

wak .

If, on the other hand, [k, r ] is reversible, then the difference in

the objectives is captured by(
vakak−1

+ Yak
vakak + Yak

)wak
r∏

t=k+1

(
vatat−1

+ Yat
vatat + Yat

)wat

=

(
vakak−1

+ Yak
Yak

·
Yak

vakak + Yak

)wak
r∏

t=k+1

(
vatat−1

+ Yat
vatat + Yat

)wat

As [k, r ] is reversible

φ(C,k, r ) =

(
Yak

vakak + Yak

)wak
·

r∏
t=k+1

(
vatat−1

+ Yat
vatat + Yat

)wat

< b
r∏

t=k

(dat + 1)wat .

Since k ∈ B and dak ≥ 1 we again have

vak ak−1
+Yak

Yak
< 2. Hence,

the change in the objective value is bounded by 2
wak ·

∏r
t=k (dat +

1)wat . □

It is left to show that for each agent i either (a) or (b) holds. Recall
that Yi = vi (yi ).

Lemma 5.4. Let i ∈ A. Then we either have

(a) viρ(i) ≥
1

di
vi (yi ), or

(b) for each j ∈ L it holds vi j ≤ 1

di+1
(vi (yi ) +viρ(i)).

To prove the lemma we use the following simple claim, which

can applied to any agent i < B:

Claim 5.5. For any agent i ∈ A, if Yi ≤ diviπ (i), then

viπ (i) + Yi

vii + Yi
≤

(di + 1)viπ (i)

vii
.

Proof of Lemma 5.4. If ρ(i) = i , that is, agent i receives the
same item in ρ as in τ then the lemma follows by Claim 5.2. For the

rest of the proof we assume ρ(i) , i . Hence, either ρ(i) = π (i) or
ρ(i) = ∅.

We consider the component C of τ∆π containing an agent i . We

use the notation as before, denoting the agents inC bya1,a2, . . . ,ac ,
and letting i = ak .

If ρ(ak ) = π (ak ) = ak−1
then for i it holds (a). Namely, ρ(ak ) =

ak−1
implies that k < B as otherwise this would be trimmed. Thus

Yak ≤ dakvakak−1
; or equivalently vakak−1

≥ 1

dak
Yak .

If on the other hand ρ(ak ) = ∅, we have that k ∈ B and also that

the interval [k, r ] with starting and k and ending in r that corre-
sponds to some alternating path in C is not reversible (otherwise,
ρ(ak ) = ak ). Therefore, φ(C,k, r ) >

∏r
t=1

(dat + 1)wat . Recall that

for each such considered interval we have k ∈ B and t < B. Starting
with

∏r
t=k (dat +1)wat < φ(C,k, r ) and then by Claim 5.5 we obtain

1 <

r−1∏
t=k

(dat + 1)−wat ·

(
Yak

vakak + Yak

)wak
·

r∏
t=2

(
vatat−1

+ Yat
vatat + Yat

)wat

≤ (dak + 1)
−wak ·

(
Yak

vakak + Yak

)wak
·

r∏
t=2

(
vatat−1

vatat

)wat
.

We further bound

1 < (dak + 1)
−wak ·

(
Yak
vak j

·
vak j

vakak

)wak
·

r∏
t=2

(
vatat−1

vatat

)wat
.

By the optimal choice of τ , for every j ∈ L we have

1 ≤

(
vakak
vak j

)wak
·

r∏
t=2

(
vatat
vatat−1

)wat
.

Combining the last two inequalities, we obtain Yak > (dak +1)vak j .
Hence, in this case (b) holds, by recalling that i = ak and ρ(ak ) =
∅. □
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6 CONCLUSIONS AND FUTUREWORK
We have given a constant factor approximation algorithm for the

Nash social welfare problem with Rado valuations, assuming that

the weights of the agents are bounded by a constant. Rado val-

uations form a broad subclass of gross substitutes valuations. It

remains open to obtain a constant factor approximation for the

entire class of gross substitutes valuations, and for even more gen-

eral classes, such as submodular valuations. The other main open

question is to remove the assumption of bounded weights, that is,

to obtain a constant factor independent of the parameter γ .
We note that for subadditive valuations, Barman, Bhaskar, Kr-

ishna, and Sundaram [7] gave an O(n)-approximation and showed

that this is essentially tight: an O(n1−ε ) approximation would re-

quire an exponential number of oracle queries for any fixed ε > 0.

The algorithm is based on a mixed integer programming relax-

ation, and decomposes into a number of phases. Most reduction

steps are applicable for the general subadditive setting. We only

require Rado valuations for Phase IV, to obtain an approximate

solution with a small support. The factor γ only appears in the

reduction in Phase II, where we restrict each agent to receiving

only a single item from the set H . Besides extending the result to

more general settings, there is much scope for improving the ap-

proximation factor by using tighter analyses and amortizing across

the different phases.

For example, we expect that a (mild) extension to budget-Rado

valuations should be achievable. Similarly to [14, 25], this means

Rado valuations with a cap on the maximum obtainable value for

each agent. This only requires a slightly more careful argument in

Phase IV.
Our work also highlights Rado valuations as an interesting class

of gross substitutes valuations; this could be relevant also for other

problems in mechanism design: it is a broad class including most

common examples such as weighted matroid rank functions and

OXS valuations, yet it has a rich combinatorial structure that can

be exploited for algorithm design.
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