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Abstract

A strongly polynomial algorithm is given for the generalized flow maximization problem. It
uses a new variant of the scaling technique, called continuous scaling. The main measure of
progress is that within a strongly polynomial number of steps, an arc can be identified that must
be tight in every dual optimal solution, and thus can be contracted.

The full version is available on arXiv:1307.6809.

The generalized flow model is a classical extension of network flows. Besides the capacity con-
straints, for every arc e there is a gain factor γe > 0, such that flow amount gets multiplied by γe
while traversing the arc e. We study the flow maximization problem, where the objective is to send
the maximum amount of flow to a sink node t. The model was already formulated by Kantorovich
[17], as one of the first examples of linear programming; it has several applications in operations
research [2, Chapter 15]. Gain factors can be used to model physical changes such as leakage or
theft. Other common applications use the nodes to represent different types of entities, e.g. different
currencies, and the gain factors correspond to the exchange rates.

The existence of a strongly polynomial algorithm for linear programming is a major open question
from a theoretical perspective. This refers to an algorithm with the number of arithmetic operations
polynomially bounded in the number of variables and constraints, and the size of the numbers during
the computations polynomially bounded in the input size. The landmark result by Tardos [27] gives
an algorithm with the running time dependent only on the size of numbers in the constraint matrix,
but independent from the right-hand side and the objective vector. This gives strongly polynomial
algorithms for several combinatorial problems such as minimum cost flows (see also Tardos [26]) and
multicommodity flows.

Instead of the sizes of numbers, one might impose restrictions on the structure of the constraint
matrix. Hence a natural question arises whether there exists a strongly polynomial algorithm for
linear programs (LPs) with at most two nonzero entries per column (that can be arbitrary numbers).
This question is still open; as shown by Hochbaum [15], all such LPs can be polynomially trans-
formed to instances of the minimum cost generalized flow problem. (Note also that every LP can be
polynomially transformed to an equivalent one with at most three nonzero entries per column.)

Generalized flow maximization is an important special case of minimum cost generalized flows;
it is probably the simplest natural class of LPs where no strongly polynomial algorithm has been
known. The existence of such an algorithm has been a well-studied and longstanding open problem
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(see e.g. [8, 3, 31, 23, 25]) A strongly polynomial algorithm for the corresponding dual feasibility
problem was given by Megiddo [19], but this is not applicable to flow maximization. A strongly
polynomial algorithm for some restricted classes of generalized flow problems was given by Adler
and Cosares [1].

In this paper, we exhibit a strongly polynomial algorithm for generalized flow maximization.
Let n denote the number of nodes and m the number of arcs in the network, and let B denote the
largest integer used in the description of the input (see Section 1 for the precise problem setting).
A strongly polynomial algorithm for the problem entails the following (see [14]): (i) it uses only
elementary arithmetic operations (addition, subtraction, multiplication, division), and comparisons;
(ii) the number of these operations is bounded by a polynomial of n and m; (iii) if all numbers
in the input are rational, then all numbers occurring in the computations are rational numbers of
encoding size polynomially bounded in n, m and B. In this extended abstract we outline a simpler
version of our algorithm that satisfies requirements (i) and (ii) only, using a model with real number
computations, ignoring the encoding sizes. In order to satisfy (iii) as well, additional rounding steps
have to be introduced; this is done in Section 7 of the full version.

Combinatorial approaches have been applied to generalized flows already in the sixties by Dantzig
[4] and Jewell [16]. However, the first polynomial-time combinatorial algorithm was only given in
1991 by Goldberg, Plotkin and Tardos [8]. This was followed by a multitude of further combinatorial
algorithms e.g. [3, 10, 12, 28, 6, 11, 13, 31, 23, 24, 30]; a central motivation of this line of research was
to develop a strongly polynomial algorithm. The algorithms of Cohen and Megiddo [3], Wayne [31],
and Restrepo and Williamson [24] present fully polynomial time approximation schemes, that is, for
every ε > 0, they can find a solution within ε from the optimum value in running time polynomial
in n, m and log(1/ε). This can be transformed to an optimal solution for a sufficiently small ε;
however, this value does depend on B and hence the overall running time will also depend on logB.
The current most efficient weakly polynomial algorithms are the interior point approach of Kapoor
an Vaidya [18] with running time O(m1.5n2 logB), and the combinatorial algorithm by Radzik [23]
with running time Õ(m2n logB).1 For a survey on combinatorial generalized flow algorithms, see
Shigeno [25].

The generalized flow maximization problem exhibits deep structural similarities to the minimum
cost circulation problem, as first pointed out by Truemper [29]. Most combinatorial algorithms for
generalized flows, including both algorithms by Goldberg et al. [8], exploit this analogy and adapt
existing efficient techniques from minimum cost circulations. For the latter problem, several strongly
polynomial algorithms are known, the first given by Tardos [26]; others relevant to our discussion
are those by Goldberg and Tarjan [9], and by Orlin [21]; see also [2, Chapters 9-11]. Whereas these
algorithms serve as starting points for most generalized flow algorithms, the applicability of the
techniques is by no means obvious, and different methods have to be combined. As a consequence,
the strongly polynomial analysis cannot be carried over when adapting minimum cost circulation
approaches to generalized flows, although weakly polynomial bounds can be shown. To achieve a
strongly polynomial guarantee, further new algorithmic ideas are required that are specific to the
structure of generalized flows. The new ingredients of our algorithm are highlighted in Section 1.3.

Let us now outline the scaling method for minimum cost circulations, a motivation of our gener-
alized flow algorithm. The first (weakly) polynomial time algorithm for minimum cost circulations
was given by Edmonds and Karp [5], introducing the simple yet powerful idea of scaling (see also [2,
Chapter 9.7]). The algorithm consists of ∆-phases, with the value of ∆ > 0 decreasing by a factor
of at least two between every two phases, yielding an optimal solution for sufficiently small ∆. In
the ∆-phase, the flow is transported in units of ∆ from nodes with excess to nodes with deficiency
using shortest paths in the graph of arcs with residual capacity at least ∆. Orlin [21], (see also

1The Õ() notation hides a polylogarithmic factor.
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[2, Chapters 10.6-7]) devised a strongly polynomial version of this algorithm. The key notion is
that of “abundant arcs”. In the ∆-phase of the scaling algorithm [5], the arc e is called abundant
if it carries > 4n∆ units of flow. For such an arc e, it can be shown that x∗e > 0 must hold for
some optimal solution x∗. By primal-dual slackness, the corresponding constraint must be tight in
every dual optimal solution. Based on this observation, Orlin [21] shows that such an arc can be
contracted; the scaling algorithm is then restarted on the smaller graph. This enables to obtain a
dual optimal solution in strongly polynomial time; that provided, a primal optimal solution can be
found via a single maximum flow computation. Orlin [21] also presents a more sophisticated and
efficient implementation of this idea.

Let us now turn to generalized flows. The analogue of the scaling method was an important
component of the Fat-Path algorithm of [8]; the algorithm of Goldfarb, Jin and Orlin [12] and the
one in [30] also use this technique. The notion of “abundant arcs” can be easily extended to these
frameworks: if an arc e carries a “large” amount of flow as compared to ∆, then it must be tight
in every dual optimal solution, and hence can be contracted. This idea was already used by Radzik
[23], to boost the running time of [12]. Nevertheless, it is not known whether an “abundant arc”
would always appear in any of the above algorithms within a strongly polynomial number of steps.

Our contribution is a new type of scaling algorithm that suits better the dual structure of the
generalized flow problem, and thereby the quick appearance of an “abundant arc” will be guaranteed.
Whereas in all previous methods, the scaling factor ∆ remains constant for a linear number of path
augmentations, our continuous scaling method keeps it decreasing in every elementary iteration of
the algorithm, even in those that lead to finding the next augmenting path.

The rest of this extended abstract is structured as follows. Section 1 first defines the problem
setting, introduces relabelings, gives the characterization of optimality, and defines the notion of
∆-feasibility. Section 1.3 then gives a more detailed account of the main algorithmic ideas. In
Section 2 we first describe a simpler weakly polynomial version of our algorithm, whereas a sketch
of the strongly polynomial algorithm is given in Section 3.

1 Preliminaries

Let G = (V,E) be a directed graph with a designated sink node t ∈ V . Let n = |V |, m = |E|, and
for each node i ∈ V , let di denote total number of arcs incident to i (both entering and leaving). We
will always assume n ≤ m. We do not allow parallel arcs and hence we may use ij to denote the arc
from i to j. This is for notational convenience only, and all result straightforwardly extend to the
setting with parallel arcs. For an arc set F ⊆ E and node set S ⊆ V , let F [S] := {ij ∈ F : i, j ∈ S}
denote the set of arcs in F spanned in S. All paths and cycles in the paper will refer to directed
paths and directed cycles.

The following is the standard formulation of the problem. Let us be given arc capacities u : E →
Q>0 and gain factors γ : E → Q>0.

max
∑
j:jt∈E

γjtfjt −
∑
j:tj∈E

ftj∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij ≥ 0 ∀i ∈ V − t (Pu)

0 ≤ f ≤ u

It is common in the literature to define the problem with equalities in the node constraints. The two
forms are essentially equivalent, see e.g. [25]; moreover, the form with equality is often solved via a
reduction to (Pu). In this paper, we prefer to use yet another equivalent formulation, where all arc
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capacities are unbounded, but there are node demands instead. A problem given in the standard
formulation can be easily transformed to an equivalent instance in this form; the transformation is
described in Section 8.1 of the full version. Given a node demand vector b : V − t → Q and gain
factors γ : E → Q>0, the uncapacitated formulation is defined as

max
∑
j:jt∈E

γjtfjt −
∑
j:tj∈E

ftj∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij ≥ bi ∀i ∈ V − t (P )

0 ≤ f

For a vector f ∈ R|E|+ , let us define the excess of a node i ∈ V by

ei(f) :=
∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij − bi.

The node constraints in (P ) can be written as ei(f) ≥ 0, and the objective is equivalent to maximizing
et(f). When f is clear from the context, we will denote the excess simply by ei := ei(f). By a

generalized flow we mean a feasible solution to (P ), that is, a nonnegative vector f ∈ R|E|+ with
ei(f) ≥ 0 for all i ∈ V − t. For convenience, we define bt = −∞, or some very small value, such that
et(f) < 0 must hold for every feasible f . Let us define the surplus of f as

Ex(f) :=
∑
i∈V−t

ei(f).

It will be convenient to make the following assumptions; in Section 8.1 of the full version it
is shown that any problem in the standard form can be transformed to an equivalent one in the
uncapacitated form that also satisfies these assumptions.

There is an arc it ∈ E for every i ∈ V − t; (?)

We are given an initial feasible solution f̄ to (P ); (??)

Note that for (Pu), f ≡ 0 is a feasible solution; f̄ in (??) will be the image of 0 under the
transformation. Our main result is the following.

Theorem 1.1. There exists a strongly polynomial algorithm for the uncapacitated formulation (P )
with running time O(n3m2).

This in turn gives an O(m5) time strongly polynomial algorithm for the standard formulation
(Pu).

1.1 Labelings and optimality conditions

Dual solutions to (P ) play a crucial role in the entire generalized flow literature. Let λ : V → R+

be a solution to the dual of (P ). Following Glover and Klingman [7], the literature standard is not
to consider the λ values but their inverses instead. With µi := 1/λi, we can write the dual of (P ) in
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the following form.

max
∑
i∈V

bi
µi

γijµi ≤ µj ∀ij ∈ E (D)

µi > 0 ∀i ∈ V − t
µt = 1

µ ∈ (R+ ∪ {∞})|V |

A feasible solution µ to this program will be called a relabeling or labeling. An optimal labeling is an
optimal solution to (D). Under assumption (?), all µi values must be finite. A useful and well-known
property is the following.

Proposition 1.2. Given an optimal solution to (D), an optimal solution to (P ) can be obtained in
strongly polynomial time, and conversely, given an optimal solution to (P ), an optimal solution to
(D) can be obtained in strongly polynomial time.

In fact, our strongly polynomial algorithm will proceed via finding an optimal solution to (D),
and computing the primal optimal solution via a single maximum flow computation. Relabelings
will be used in all parts of the algorithm and proofs. For a generalized flow f and a labeling µ, we
define the relabeled flow fµ by fµij :=

fij
µi

for all ij ∈ E. This can be interpreted as changing the base
unit of measure at the nodes (i.e. in the example of the currency exchange network, it corresponds
to changing the unit from pounds to pennies). To get a problem setting equivalent to the original
one, we have to relabel all other quantities accordingly. That is, we define relabeled gains, demands,
excesses and surplus by

γµij := γij
µi
µj
, bµi :=

bi
µi
, eµi :=

ei
µi
, and Exµ(f) :=

∑
i∈V−t

eµi ,

respectively. Another standard notion is the residual network Gf = (V,Ef ) of a generalized flow f ,
defined as

Ef := E ∪ {ij : ji ∈ E, fji > 0}.

Arcs in E are called forward arcs, while arcs in the second set are reverse arcs. For a forward arc
ij, let γij be the same as in the original graph. For a reverse arc ji, let γji := 1/γij . Also, we define
fji := −γijfij for every reverse arc ji ∈ Ef . By increasing (decreasing) fji by α on a reverse arc
ji ∈ Ef , we mean decreasing (increasing) fij by α/γij .

The crucial notion of conservative labelings is motivated by primal-dual slackness. Let f be a
generalized flow (that is, a feasible solution to (P )), and let µ : V → R>0. We say that µ is a
conservative labeling for f , if µ is a feasible solution to (D) with the further requirement that γµij = 1
whenever fij > 0 for ij ∈ E. The following characterization of optimality is a straightforward
consequence of primal-dual slackness in linear programming.

Theorem 1.3. Assume (?) holds. A generalized flow f is an optimal solution to (P ) if and only if
there exists a conservative labeling µ that such that ei = 0 for all i ∈ V − t.

Given a labeling µ, we say that an arc ij ∈ Ef is tight if γµij = 1. A directed path in Ef is called
tight if it consists of tight arcs.
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1.2 ∆-feasible labels

Let us now introduce a relaxation of conservativity crucial in the algorithm. This is new notion,
although similar concepts have been used in previous scaling algorithms [10, 30]. Section 1.3 explains
the background and motivation of this notion. Given a labeling µ, let us call arcs in E with γµij < 1
non-tight, and denote their sets by

Fµ := {ij ∈ E : γµij < 1}.

For every i ∈ V , let

Ri :=
∑

j:ji∈Fµ
γjifji

denote the total flow incoming on non-tight arcs; let Rµi := Ri
µi

=
∑

j:ji∈Fµ γ
µ
jif

µ
ji. For some ∆ ≥ 0,

let us define the ∆-fat graph as

Eµf (∆) = E ∪ {ij : ji ∈ E, fµji > ∆}.

We say that µ is a ∆-conservative labeling for f , or that (f, µ) is a ∆-feasible pair, if

• γµij ≤ 1 holds for all ij ∈ Eµf (∆), and

• µt = 1, and µi > 0, ei ≥ Ri for every i ∈ V − t.

Note that in particular, µ must be a feasible solution to (D). The first condition is equivalent to
requiring fµij ≤ ∆ for every non-tight arc. Note that 0-conservativeness is identical to conserva-
tiveness: Eµf (∆) = Eµf , and therefore every arc carrying positive flow must be tight; the second
condition simply gives ei ≥ 0 whenever µi > 0. The next lemma can be seen as the converse of this
observation.

Lemma 1.4. Let (f, µ) be a ∆-feasible pair for some ∆ > 0. Let us define the generalized flow
f̃ with f̃ij = 0 if ij ∈ Fµ and f̃ij = fij otherwise. Then µ is a conservative labeling for f̃ , and
Exµ(f̃) ≤ Exµ(f) + |Fµ|∆.

Claim 1.5. In a ∆-conservative labeling, Rµi < di∆ holds for every i ∈ V .

1.3 Overview of the algorithms

We now informally describe some fundamental ideas of our algorithms Continuous Scaling and
Enhanced Continuous Scaling, and explain their relations to previous generalized flow algo-
rithms.

Basic features of the algorithms

By sending α units of flow on a walk P = w1w2 . . . wt ⊆ Ef , we mean increasing the flow on w1 by
p1 = α, and increasing the flow on wi by pi = γwi−1pi−1 for all 1 < i ≤ t (assuming that the residual
capacities do not get violated). Note that if P is a cycle then this will change wi on precisely one
node i.

Given a generalized flow f , a cycle C in the residual graph Ef is called flow generating, if
γ(C) =

∏
e∈C γe > 1. If there exists a flow generating cycle, then some positive amount of flow can

be sent around it to create positive excess in an arbitrary node i incident to C.
The notion of conservative labellings is closely related to flow generating cycles. Notice that

for an arbitrary labeling µ, γ(C) = γµ(C). Therefore, if µ is a conservative labeling, then there
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cannot be any flow generating cycle in Ef . It is also easy to verify the converse: if there are no flow
generating cycles, then there exists a conservative labeling.

The Maximum-mean-gain cycle-canceling procedure, introduced in [8], can be used to
eliminate all flow generating cycles efficiently. The subroutine proceeds by choosing a cycle C ⊆ Ef
maximizing γ(C)1/|C|, and from an arbitrary node i incident to C, sending the maximum possible
amount of flow around C admitted by the capacity constraints, thereby increasing the excess ei.
It terminates once there are no more flow generating cycles left in Ef . This is a natural analogue
of the minimum mean cycle cancellation algorithm of Goldberg and Tarjan [9] for minimum cost
circulations. Radzik [22] (see also [25]) gave a strongly polynomial running time bound O(m2n log2 n)
for the Maximum-mean-gain cycle-canceling algorithm.

Our algorithm also starts with performing this algorithm, with the input being the initial solution
f̄ provided by (??). Hence one can obtain a feasible solution f along with a conservative labeling µ
in strongly polynomial time.

Such an f can be transformed to an optimal solution using Onaga’s algorithm [20]: while there
exists a node i ∈ V − t with ei > 0, find a highest gain augmenting path from i to t, that is, a path
P in the residual graph Ef with the product of the gains maximum. Send the maximum amount
of flow on this augmenting path enabled by the capacity constraints. A conservative labeling can
be used to identify such paths: we can transform a conservative labeling to a canonical labeling
(see [8]), where every node i is connected to the sink via a tight path. Such a canonical labeling
can be found via a Dijkstra-type algorithm, increasing the labels of certain nodes. The correctness
of Onaga’s algorithm follows by the observation that sending flow on a tight path maintains the
conservativeness of the labeling, hence no new flow generating cycles may appear.

Unfortunately, Onaga’s algorithm may run in exponentially many steps, and might not even
terminate if the input is irrational. The Fat-Path algorithm [8] introduces a scaling technique to
overcome this difficulty. The algorithm maintains a scaling factor ∆ that decreases geometrically.
In the ∆-phase, flow is sent on a highest gain “∆-fat” augmenting path, that is, a highest gain path
among those that have sufficient capacity to send ∆ units of flow to the sink. However, this might
create new flow generating cycles, that have to be cancelled by calling the cycle-canceling subroutine
at the beginning of every phase.

Our notion of ∆-feasible pairs in Section 1.2 is motivated by the idea of ∆-fat paths: note that
every arc in the ∆-fat graph Ef (∆) has sufficient capacity to send ∆ units of relabeled flow. A
main step in our algorithm will be sending ∆ units of relabeled flow on a tight path in Ef (∆) from
a node with “high” excess to the sink t or another node with “low” excess. This is in contrast to
Fat-Path and most other algorithms, where these augmenting paths always terminate in the sink
t. We allow other nodes as well in order to guarantee that the conditions ei ≥ Ri are maintained
during the algorithm. The purpose of these conditions is to make sure that we always stay “close” to
a conservative labeling: recall Lemma 1.4 asserting that if (f, µ) is a ∆-feasible pair, then if we set
the flow values to 0 on every non-tight arc, the resulting f̃ is a feasible solution to (P ) not containing
any flow generating cycles. That is the reason why we need to call the cycle-canceling algorithm
only once, at the initialization, in contrast to Fat-Path.

Similar ideas have been already used previously. The algorithm of Goldfarb, Jin and Orlin [10]
also uses a single initial cycle-canceling and then performs highest-gain augmentations in a scaling
framework, combined with a clever bookkeeping on the arcs. The algorithm in [30] does not perform
any cycle cancellations and uses a homonymous notion of ∆-conservativeness that is closely related
to ours; however, it uses a different problem setup (called “symmetric formulation”), and includes a
condition stronger than ei ≥ Ri.
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The way to the strongly polynomial bound

The basic principle of our strongly polynomial algorithm is motivated by Orlin’s strongly polynomial
algorithm for minimum cost circulations ([21], see also [2, Chapters 10.6-7]). The true purpose of
the algorithm will be to compute a dual optimal solution to (D). Provided a dual optimal solution,
we can compute a primal optimal solution to (P ) by a single maximum flow computation on the
network of tight arcs.

The main measure of progress will be identifying an arc ij ∈ E that must be tight in every dual
optimal solution. Such an arc can be contracted, and an optimal dual solution to the contracted
instance can be easily extended to an optimal dual solution on the original instance. The algorithm
can be simply restarted from scratch in the contracted instance. Our algorithm Enhanced Con-
tinuous Scaling is somewhat more complicated and keeps the previous primal solution to achieve
better running time bounds by a global analysis of all contraction phases.

We use a scaling-type algorithm to identify such arcs tight in every dual optimal solution. Our
algorithm always maintains a scaling parameter ∆, and a ∆-feasible pair (f, µ) such that Exµ(f) ≤
16m∆. Using standard flow decomposition techniques, it can be shown that an arc ij with fµij ≥
17m∆ must be positive in some optimal solution f∗ to (P ). Then by primal-dual slackness it follows
that this arc is tight in every dual optimal solution. Arcs with fµij ≥ 17m∆ will be called abundant.

A simple calculation shows that once |bµi | ≥ 20mn∆ for a node i ∈ V − t, there must be an
abundant arc leaving or entering i. Hence our goal is to design an algorithm where such a node
appears within a strongly polynomial number of iterations.

A basic step in the scaling approaches (e.g. [8, 10, 30]) is sending ∆ units of relabeled flow on
a tight path; we shall call this a path augmentation. In all previous approaches, the scaling factor
∆ remained fixed for a number of path augmentations, and reduces by a substantial amount (by
at least a factor of two) for the next ∆-phase. Our main idea is what we call continuous scaling:
the boundaries between ∆-phases are dissolved, and the scaling factor decreases continuously, even
during the iterations that lead to finding the next path for augmentation. We now give a high-level
overview.

We shall have a set T0 with nodes of “high” relabelled excess; another set N will be the set
of nodes with “low” relabelled excess, always including the sink t. We will look for tight paths
connecting a node in T0 to one in N ; we will send ∆ units of relabeled flow along such a path. In an
intermediate elementary step, we let T to denote the set of nodes reachable from T0 on a tight path;
if it does not intersect N , then we increase the labels µi for all i ∈ T by the same factor α hoping
that a new tight arc appears between T and V \T , and thus T can be extended. We simultaneously
decrease the value of ∆ by the same factor α. Thus the relabeled excess of nodes in V \ T increases
relative to ∆. This might lead to changes in the sets T0 and N ; hence an elementary step does not
necessarily terminate when a new tight arc appears, and therefore the value of α has to be carefully
chosen.

This framework is undoubtedly more complicated than the traditional scaling algorithms. The
main reason for this approach is the phenomenon one might call “inflation” in the previous scaling-
type algorithms. There it might happen that the relabeling steps used for identifying the next
augmenting paths increase some labels by very high amounts, and thus the relabeled flow remains
small compared to ∆ on every arc of the network - therefore a new abundant arc can never be iden-
tified. It could even be the case that most ∆-scaling phases do not perform any path augmentations
at all, but only label updates: the relabeled excess at every node becomes smaller than ∆ during
the relabeling steps.2

2However, to the extent of the author’s knowledge, no actual examples are known for these phenomena in any of
the algorithms.
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The advantage of changing ∆ continuously in our algorithm is that the ratios
|bµi |
∆ are nonde-

creasing for every i ∈ V − t during the entire algorithm. In the above described situation, these
ratios are unchanged for i ∈ T and increase for i ∈ V \ T . As remarked above, there must be an

abundant arc incident to i once
|bµi |
∆ ≥ 20mn.

We first present a simpler version of this algorithm, Continuous Scaling, proving only a

weakly polynomial running time bound. Whereas the ratios
|bµi |
∆ are nondecreasing, we are not able

to prove that one of them eventually reaches the level 20mn in a strongly polynomial number of
steps. This is since the set V \ T where the ratio increases might always consist only of nodes

where
|bµi |
∆ is very small. The algorithm Enhanced Continuous Scaling therefore introduces one

additional subroutine, called Filtration. In case |bµi | < ∆/n for every i ∈ (V \T )− t, we “tidy-up”
the flow inside V \T , by performing a maximum flow computation here. This drastically reduces all
relabeled excesses in V \ T , and thereby guarantees that most iterations of the algorithm will have

to increase certain
|bµi |
∆ values that are already at least 1/n.

In summary, the strongly polynomiality of our algorithm is based on the following three main
new ideas.

• The definition of ∆-feasible pairs, in particular, the condition on maintaining a security reserve
Ri. It is a cleaner and more efficient framework than similar ones in [10] and [30]; we believe
this is the “real” condition a scaling type algorithm has to maintain.

• Continuous scaling, that guarantees that the ratios
|bµi |
∆ are nondecreasing during the algorithm.

This is achieved by doing the exact opposite of [8, 10, 30] that use the natural analogue of the
scaling technique for minimum cost circulations.

• The Filtration subroutine that intervenes in the algorithm whenever the nodes on a certain,
relatively isolated part of the network have “unreasonably high” excesses as compared to the
small node demands in this part.

2 The Continuous Scaling algorithm

The algorithm Continuous Scaling is shown on Figure 1. It starts with the subroutine Initialize,
that returns an initial flow f , along with a ∆ = ∆̄-conservative labeling µ such that eµi < (di + 2)∆
holds for every i ∈ V . This is based on the Maximum-mean-gain cycle-canceling algorithm as
in [8, 22], a standard method also used e.g. in [12] the same way. The termination condition depends
on the parameter B̄ bounding the input description as described in the full version. After the while
loops, the exact optimum solution can be obtained via a single maximum flow computation on the
residual network of tight arcs; this is also the standard method used in all previous generalized flow
algorithms. The main part of the algorithm (the while loop) consists of iterations. The value of the
scaling parameter ∆ is monotone decreasing and all µi values are monotone increasing during the
algorithm. In every iteration, a ∆-feasible pair (f, µ) is maintained.

The set N always denotes the set of nodes with eµi < (di + 1)∆, and T0 will consist of a certain
set of nodes (but not all) with eµi ≥ (di + 2)∆. The set T will denote a set of nodes that can be
reached from T0 on a tight path in the ∆-fat graph Eµf (∆). Both T0 and T are initialized empty.
Note that t ∈ N as we chose bt such that et < 0 always holds.

Every iteration first checks whether N ∩ T 6= ∅. If yes, then nodes p ∈ T0 and q ∈ N are picked
connected by a tight path P in the ∆-fat graph. ∆ units of relabeled flow is sent from p to q on P :
that is, fij is increased by ∆µi for every ij ∈ P (if ij was a reverse arc, this means decreasing fji
by ∆µj). The only ei values that change are ep and eq. If the new value is eµp < (dp + 2)∆, then p
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Algorithm Continuous Scaling
Initialize;
T0 ← ∅ ; T ← ∅;
While ∆ ≥ 1/(17mB̄3) do

N ← {i ∈ V : eµi < (di + 1)∆};
if N ∩ T 6= ∅ then

pick p ∈ T0, q ∈ N connected by a tight path P in Eµf (∆);

send ∆ units of relabeled flow from p to q along P ;
if eµp < (dp + 2)∆ then T0 ← T0 \ {ep};
T ← T0;

else
if ∃ij ∈ Eµf (∆), γµij = 1, i ∈ T , j ∈ V \ T then T ← T ∪ {j};
else Elementary Step(T );

Tight-Flow(V, µ) ;

Figure 1: Description of the weakly polynomial algorithm

is removed from T0. The iteration finishes in this case by resetting T = T0 (irrespective to whether
p was removed or not).

Let us now turn to the case N ∩ T = ∅. If there is a node j ∈ V \ T connected by a tight arc
in Eµf (∆) to T , then we extend T by j, and the iteration terminates. Otherwise, the subroutine
Elementary Step(T ) is called. The precise description is given in Section 3.2 of the full version;
we give an outline below.

For a carefully chosen α > 1, all µi values are multiplied by α for i ∈ T , and µi is left unchanged
for i ∈ V \ T . At the same time, ∆ is divided by α (this is the only step in the main part of the
algorithm modifying the µi’s and the value of ∆). The flow is divided by α on all non-tight arcs
in Fµ[V \ T ], and on every arc entering T . The value of α is chosen to be the largest such that
the labeling remains ∆-feasible with the above changes, and further eµi ≤ 4(di + 2)∆ holds for all
i ∈ V \ T . All nodes i for which equality holds are added both to T0 and to T . On the other hand,
the eµi values might also decrease both for i ∈ T and i ∈ V \ T . If for some i ∈ T0, the value of eµi
drops below (di + 2)∆, then i is removed from T0, and T is reset to T = T0. In every step when T0

is not extended, a tight arc in Eµf (∆) leaving T must appear. Hence T will be extended in the next
iteration.

We shall prove the following running time bound:

Theorem 2.1. The algorithm Continuous Scaling can be implemented to find an optimal solution
for the uncapacitated formulation (P ) in running time max{O(m(m+n log n) log B̄), O(m2n log2 n)}.

The high level idea of the analysis is the following. The eµi values for nodes i ∈ T0 are non
increasing, and a path augmentation starting from i reduces eµi by ∆. The node i leaves T0 once
eµi drops below (di + 2)∆, and may enter again once it increases to 4(di + 2)∆. We show that the
value of ∆ must decrease by at least a factor 2 between two such events. Also, it is easy to verify
that within every 2n Elementary step operations, either a path augmentation must be carried
out, or a node i must leave T0 due to decrease in eµi caused by label changes. These facts together
lead to a polynomial bound on the running time. We can adapt the algorithm to work directly
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for the standard formulation (Pu); one can obtain a running time bound O(m2(m+ n log n) logB),
matching the one by Goldfarb et al. [12].

3 The strongly polynomial algorithm

The while loop of the algorithm Enhanced Continuous Scaling (see Section 5.3 of the full
version) proceeds very similarly to Continuous Scaling, with the addition of one more subroutine.
However, the termination criterion is quite different. As discussed in the Introduction, the goal is to

find a node i ∈ V − t with
|bµi |
∆ ≥ 20mn. There must be an abundant arc incident to such a node that

we can contract and restart the algorithm in the smaller graph. (Instead of restarting from scratch,
the actual implementation of Enhanced Continuous Scaling in the full version uses the flow f
obtained before the contraction to achieve better running time bounds.) We shall define the set

D :=

{
i ∈ V − t :

|bµi |
∆
≥ 1

n

}
,

and modify the algorithm in order to guarantee that most iterations when ∆ is multiplied by α will

multiply
|bµi |
∆ by α for some i ∈ D. This will ensure that

|bµi |
∆ ≥ 20mn happens within O(nm log n)

number of steps. Note that in the subroutine Elementary step(T ), the
|bµi |
∆ ratio is multiplied by

α for all nodes i ∈ V \ T and remains unchanged for i ∈ T .
Therefore we modify the while loop of Continuous Scaling as follows. If (V \ T ) ∩ D 6= ∅,

Elementary step(T ) is performed identically. If (V \ T ) ∩ D = ∅, then before Elementary
step(T ), the special subroutine Filtration(V \ T ) is executed, as outlined below(see Section 5.2
of the full version).

The value of f is set to 0 for every arc entering T , and fij is left unchanged for i ∈ T . The flow
value on arcs inside E[V \ T ] is replaced by an entirely new flow f ′ computed by a maximum flow
subroutine as follows.

Add a new source node s to V \T , and add an arc si from s to every i ∈ (V \T )− t; let E′ denote
the union of these new arcs and the tight arcs in E[V \ T ] with respect to µ. Set lower and upper
arc capacities `si := −∞ and usi := −bµi for all i ∈ (V \ T ) − t, and `ij := 0, uij := ∞ on all other
arcs. Compute a maximum flow x from s to t on the network ((V \ T ) ∪ {s}, E′) with capacities `
and u. Define f ′ : E → R+ by f ′ij := xijµi if ij ∈ E′ and f ′ij := 0 otherwise.

The next lemma plays an important role in the analysis.

Lemma 3.1. The above flow problem is feasible, and µ is a conservative labeling for f ′ on V \ T .
Further,

eµi (f ′) ≤ n max
j∈(V \T )−t

|bµj | ∀i ∈ V \ T.

Based on this lemma, we can show the following. Either the set D must be extended in the
iteration following Filtration(V \ T ), or a path augmentation must be performed within the next
two iterations. Note that once a node enters D, it stays there forever. Together with the argument
on the running time bound of Continuous Scaling, this enables us to show that an abundant arc
can be found in O(nm log n) number of steps.

4 Conclusion

We have given a strongly polynomial algorithm for the generalized flow maximization problem. A
natural next question is to address the minimum cost generalized flows. As noted in the Introduction,
this problem is equivalent to solving LPs with two nonzero entries per column (see Hochbaum [15]).
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In contrast to the vast literature on the flow maximization problem, there is only one weakly
polynomial combinatorial algorithm known for this setting, the one by Wayne [31]. This setting
is more challenging since the dual structure cannot be characterized via the convenient relabelling
framework, and thereby most tools for minimum cost circulations, including the scaling approach
also used in this paper, become difficult if not impossible to apply.
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