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Abstract

A well-studied nonlinear extension of the minimum-cost flow problem is to minimize the
objective

∑
ij∈E Cij(fij) over feasible flows f , where on every arc ij of the network, Cij is a

convex function. We give a strongly polynomial algorithm for finding an exact optimal solution
for a broad class of such problems. The most important characteristic of this class is that an
optimal solution can be computed exactly provided its support.

This includes separable convex quadratic objectives and also certain market equilibria prob-
lems: Fisher’s market with linear and with spending constraint utilities. We thereby give the
first strongly polynomial algorithms for separable quadratic minimum-cost flows and for Fisher’s
market with spending constraint utilities, settling open questions posed e.g. in [16] and in [36],
respectively. The running time is O(m4 logm) for quadratic costs, O(n4 +n2(m+n log n) log n)
for Fisher’s markets with linear utilities and O(mn3 +m2(m+ n log n) logm) for spending con-
straint utilities.

1 Introduction

Let us consider an optimization problem where the input is given by N numbers. An algorithm
for such a problem is called strongly polynomial (see [13]), if (i) it uses only elementary arithmetic
operations (addition, subtraction, multiplication, division, and comparison); (ii) the number of
these operations is bounded by a polynomial of N (iii) if all numbers in the input are rational, then
all numbers occurring in the computations are rational numbers of size polynomially bounded in
N and the maximum size of the input numbers. Here, the size of a rational number p/q is defined
as dlog2(p+ 1)e+ dlog2(q + 1)e.

The flow polyhedron is defined on a directed network G = (V,E) by arc capacity and node
demand constraints; throughout the paper, n = |V | and m = |E|. We study the minimum cost
convex separable flow problem: for feasible flows f , we aim to minimize

∑
ij∈E Cij(fij), where on

each arc ij ∈ E, Cij is a differentiable convex function. We give a strongly polynomial algorithm
for the case of convex quadratic functions, i.e. if Cij(α) = cijα

2 + dijα with cij ≥ 0 for every
arc ij ∈ E. We also give strongly polynomial algorithms for Fisher’s market with linear and with
spending constraint utilities; these problems can be formulated as minimum cost convex separable
flow problems, as shown respectively by Shmyrev [32] and by Devanur et al. [2].

These algorithms are obtained as special cases of an algorithm that works for the general problem
setting under certain assumptions. We assume that the functions are represented by oracles (we
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provide the specific details later), and further we are provided two black-box subroutines. We give
a strongly polynomial algorithm in the sense that it uses only basic arithmetic operations, oracle
calls and subroutine calls; the total number of these operations is polynomial in n and m. We then
verify our assumptions for convex quadratic objectives and the Fisher markets, and show that we
can obtain strongly polynomial algorithms for these problems in the first sense.

Flows with separable convex objectives are natural convex extensions of minimum-cost flows
with several applications as matrix balancing or traffic networks, see [1, Chapter 14] for further refer-
ences. Polynomial-time combinatorial algorithms were given by Minoux [26] in 1986, by Hochbaum
and Shantikumar [18] in 1990, and by Karzanov and McCormick [22] in 1997. The latter two
approaches are able to solve even more general problems of minimizing a separable (not necessar-
ily differentiable) convex objective over a polytope given by a matrix with a bound on its largest
subdeterminant. Both approaches give polynomial, yet not strongly polynomial algorithms.

In contrast, for the same problems with linear objectives, Tardos [34, 35] gave strongly polyno-
mial algorithms. One might wonder whether this could also be extended to the convex setting. This
seems impossible for arbitrary convex objectives by the very nature of the problem: the optimal
solution might be irrational, and thus the exact optimum cannot be achieved.

Beyond irrationality, the result of Hochbaum [16] shows that it is impossible to find an ε-
accurate solution1 in strongly polynomial time even for a network consisting of parallel arcs between
a source and a sink node and the Cij ’s being polynomials of degree at least three. This is based
on Renegar’s result [31] showing the impossibility of finding ε-approximate roots of polynomials in
strongly polynomial time.

The remaining class of polynomial objectives with hope of strongly polynomial algorithms is
where every cost function is convex quadratic. If all coefficients are rational, then the existence
of a rational optimal solution is guaranteed. Granot and Skorin-Kapov [12] extended Tardos’s
method [35] to solving separable convex quadratic optimization problems where the running time
depends only on the entries of the constraint matrix and the coefficients of the quadratic terms in
the objective. However, in a strongly polynomial algorithm, the running time should only depend
on the matrix.

The existence of a strongly polynomial algorithm for the quadratic flow problem thus remained
an important open question (mentioned e.g. in [16, 4, 17, 12, 33]). The survey paper [17] gives
an overview of special cases solvable in strongly polynomial time. These include fixed number of
suppliers (Cosares and Hochbaum, [4]), and series-parallel graphs (Tamir [33]). We resolve this
question affirmatively, providing a strongly polynomial algorithm for the general problem in time
O(m4 logm).

There is an analogous situation for convex closure sets: [16] shows that no strongly polynomial
algorithm may exist in general, but for quadratic cost functions, Hochbaum and Queyranne [15]
gave a strongly polynomial algorithm.

An entirely different motivation of our study comes from the study of market equilibrium
algorithms. Devanur et al. [5] developed a polynomial time combinatorial algorithm for a classical
problem in economics, Fisher’s market with linear utilities. This motivated a line of research to
develop combinatorial algorithms for other market equilibrium problems. For a survey, see [28,
Chapter 5] or [37]. All these problems are described by rational convex programs (see [37]). For
the linear Fisher market problem, a strongly polynomial algorithm was given by Orlin [30].

To the extent of the author’s knowledge, these rational convex problems have been considered
so far as a new domain in combinatorial optimization. An explicit connection to classical flow
problems was pointed out in the recent paper [38]. It turns out that the linear Fisher market, along

1A solution x is called ε-accurate if there exists an optimal solution x∗ with ||x− x∗||∞ ≤ ε.
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with several other problems, is captured by a concave extension of the classical generalized flow
problem, solvable by a polynomial time combinatorial algorithm.

The paper [38] uses the convex programming formulation of linear Fisher markets by Eisenberg
and Gale [7]. An alternative convex program for the same problem was given by Shmyrev [32].
This formulation turns out to be a convex separable minimum-cost flow problem. Consequently,
equilibrium for linear Fisher market can be computed by the general algorithms [18, 22] (with a
final transformation of a close enough approximate solution to an exact optimal one).

The class of convex flow problems solved in this paper also contains the formulation of Shmyrev,
yielding an alternative strongly polynomial algorithm for linear Fisher market. Devanur et al. [2]
gave an analogous formulation for Fisher’s market with spending constraint utilities, defined by
Vazirani [36]. For this problem, we obtain the first strongly polynomial algorithm. Our running
time bounds are O(n4 + n2(m + n log n) log n) for linear and O(mn3 + m2(m + n log n) logm) for
spending constraint utilities, with m being the number of segments in the latter problem. For the
linear case, Orlin [30] used the assumption m = O(n2) and achieved running time O(n4 log n),
the same as ours under this assumption. So far, no extensions of [30] are known for other market
settings.

1.1 Prior work

For linear minimum-cost flows, the first polynomial time algorithm was the scaling method of
Edmonds and Karp [6]. The current most efficient strongly polynomial algorithm, given by Orlin
[29], is also based on this framework. On the other hand, Minoux extended [6] to the convex
minimum-cost flow problem, first to convex quadratic flows ([25]), later to general convex objectives
([26]) Our algorithm is an enhanced version of the latter algorithm, in the spirit of Orlin’s technique
[29]. However, there are important differences that make the nonlinear setting significantly harder.
Let us remark that Orlin’s strongly polynomial algorithm for linear Fisher market [30] is also
based on the ideas of [29]. In what follows, we give an informal overview of the key ideas of these
algorithms that motivated our result. For more detailed references and proofs, we refer the reader
to [1].

The algorithm of Edmonds and Karp consists of ∆-phases for a scaling parameter ∆. Initially,
∆ is set to a large value, and decreases by at least a factor of two at the end of each phase. An
optimal solution can be obtained for sufficently small ∆. The elementary step of the ∆-phase
transports ∆ units of flow from a node with excess at least ∆ to another node with demand at
least ∆. This is done on a shortest path in the ∆-residual network, the graph of residual arcs
with capacity at least ∆. An invariant property maintained in the ∆-phase is that the ∆-residual
network does not contain any negative cost cycles. When moving to the next phase, the flow on
the arcs has to be slightly modified to restore the invariant property.

Orlin’s algorithm [29] works on a problem instance with no upper capacities on the arcs (every
minimum-cost flow problem can be easily transformed to this form). The basic idea is that if the
algorithm runs for infinite number of phases, then the solution converges to an optimal solution;
furthermore, the total change of the flow value in the ∆-phase and all subsequent phases is at most
4n∆ on every arc. Consequently, if an arc ij has flow > 4n∆ in the ∆-phase, then the flow on
ij must be positive in some optimal solution. Such an arc is called abundant. Using primal-dual
slackness, this means that ij must be tight for an arbitrary dual optimal solution. It can be shown
that within O(log n) scaling phases, an abundant arc ij appears.

Based on this observation, [29] obtains the following simple algorithm. Let us start running
the Edmonds-Karp algorithm on the input graph. Once there is an abundant arc, it is contracted
and the Edmonds-Karp algorithm is restarted on the smaller graph. The method is iterated until
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the graph consists of a single node only. A dual optimal solution here can be easily extended to a
dual optimal solution in the original graph by reversing the contraction operations. Provided a dual
optimal solution, a primal optimal solution can be obtained by a single maximum flow computation.
The paper [29] (see also [1, Chapter 10.7]) also contains a second, more efficient algorithm. When
an abundant arc is found, instead of contracting and restarting, the arc is added to a special forest
F . The scaling algorithm exploits properties of this forest and can thereby ensure that a new arc
enters F in O(log n) phases. The running time can be bounded by O(m log n(m+ n log n)), so far
the most efficient minimum-cost flow algorithm known.

Let us now turn to the nonlinear setting. By the KKT conditions, a feasible solution is optimal
if and only if the residual graph contains no negative cycles with respect to the cost function
C ′ij(fij). The algorithm is a natural extension of the Edmonds-Karp scaling technique (see [25, 26],
[1, Chapter 14.5]). In the ∆-phase it maintains the invariant that the ∆-residual graph contains
no negative cycle with respect to the relaxed cost function (Cij(fij + ∆) − Cij(fij))/∆. When
transporting ∆-units of flow on a shortest path with respect to this cost function, this invariant is
maintained. A key observation is that when moving to the ∆/2-phase, the invariant can be restored
by changing the flow on each arc by at most ∆/2. The role of the scaling factor ∆ is twofold: besides
being the quantity of the transported flow, it also approximates optimality in the following sense.
As ∆ approaches 0, the cost of ij converges to the derivative C ′ij(fij). Consequently, the solution
converges to a feasible optimal solution. A variant of this algorithm is outlined in Section 3.

1.2 Strongly polynomial algorithm for convex quadratic flows

To formulate the exact assumptions needed for the general algorithm, several notions have to be
introduced. Therefore we postpone the formulation of our main result Theorem 4.5 to Section 4.2.
Now we exhibit the main ideas on the example of convex quadratic functions. We only give an in-
formal overview here without providing all technical details; the precise definitions and descriptions
are given in the later parts of the paper. Then in Section 6.1, we show how the general framework
can be adapted to convex quadratic functions.

Let us assume that Cij(α) = cijα
2+dijα with cij > 0 for every arc ij ∈ E. The general algorithm

also allows cij = 0. However, it is useful to make this restriction for the sake of our overview, as it
guarantees that the optimal solution is unique, enabling simplifications to the general algorithm.

Let us further assume that the lower capacity is 0 on every arc and the upper capacity is ∞.
This is without loss of generality as an arbitrary instance can be transformed to such a form, by
adding a corresponding new node for every arc (see Section 2). For node capacities bi, our problem
can be formulated as follows.

min
∑
ij∈E

cijf
2
ij+dijfij∑

j:ji∈E
fji −

∑
j:ij∈E

fij = bi ∀i ∈ V

f ≥ 0

Let f∗ be the optimal solution; it is unique by the strict convexity of the objective. Let F ∗

denote the support of f∗. From the Karush-Kuhn-Tucker conditions, we can derive that f∗ is
unique solution of the following system of linear equations (note that the domain of f∗ is restricted
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to F ∗; π gives the optimal Lagrangian multipliers).

πj − πi = 2cijf
∗
ij + dij ∀ij ∈ F ∗∑

j:ji∈F ∗
f∗ji −

∑
j:ij∈F ∗

f∗ij = bi ∀i ∈ V (1)

f∗ij = 0 ∀ij ∈ E \ F ∗

Consequently, provided F ∗, we can obtain f∗ by solving a system of linear equations (see Sec-
tion 6.1 for details). Our subroutine Trial(F, b̂) solves the above system of equations substituting
F ∗ by an arbitrary arc set F and b by an arbitrary vector b̂. Let us define the discrepancy DF (b̂)
as the maximum value of |

∑
i∈K b̂i|, where K ranges over the undirected connected components of

F . It can be verified that the system is solvable for F and b̂ if and only if DF (b̂) = 0 and a solution
can be found in time O(n2.37) (see Lemma 6.1).

Our starting point is a variant of Minoux’s nonlinear scaling scheme as described above, with
the only difference that the relaxed cost function is replaced by C ′ij(fij + ∆) (see Section 3).

Following Orlin [29], we can identify an arc carrying a “large” amount of flow in O(log n) steps.
The required amount, > (2n+m+ 1)∆ at the end of the ∆-phase, is large enough that even if we
run the algorithm forever and thereby converge to the optimal solution f∗, this arc must remain
positive. Consequently, it must be contained in F ∗. However, we cannot simply contract such
an arc as in [29]. The reason is that the KKT-conditions give πj − πi = cijf

∗
ij + dij , a condition

containing both primal and dual (more precisely, Lagrangian) variables simultaneously.
In every phase of the algorithm, we shall maintain a set F ⊆ F ∗ of arcs, called revealed arcs. F

will be extended by a new arc in every O(log n) phases; thus we find F ∗ in O(m log n) steps. Given
a set F ⊆ F ∗, we introduce some technical notions; the precise definitions and detailed discussions
are given in Section 4.1. First, we waive the nonnegativity requirement on the arcs in F - a flow
taking possibly negative values on the arcs in F but nonnegative in E \F is called an F -pseudoflow.

For an F -pseudoflow f and a scaling factor ∆ > 0, the (∆, F )-residual graph contains all
residual arcs where f can be increased by ∆ so that it remains an F -pseudoflow (that is, all arcs
in E, and all arcs ji where ij ∈ F or ij ∈ E \ F and fij ≥ ∆.) We require that the flow f in
this phase satisfies the (∆, F )-feasibility property: the (∆, F )-residual graph contains no negative
cycles with respect to the cost function C ′ij(fij + ∆).

Let us now describe our algorithm. We start with F = ∅ and a sufficiently large ∆ value so
that the initial flow f ≡ 0 is (∆, ∅)-feasible. We run the Minoux-type scaling algorithm sending
flow on shortest paths in the (∆, F )-residual graph from nodes with excess at least ∆ to nodes with
deficiency at least ∆. If there exist no more such paths, we move to the ∆/2-phase, after a simple
modification step that transforms the flow to a (∆/2, F )-feasible one, on the cost of increasing the
total excess by at most m∆/2 (see subroutine Adjust in Section 4.1). We include every edge ij
into F with fij > (2n+m+ 1)∆ at the end of the ∆-phase.

At the end of each phase when F is extended, we perform a special subroutine instead of simply
moving to the ∆/2-phase. First, we compute the discrepancy DF (b) (as defined above). If this
value is large, then it can be shown that F will be extended within O(log n) phases as in Orlin’s
algorithm.

If the discrepancy is small, the procedure Trial-and-Error is performed, consisting of two
subroutines. First, we run the subroutine Trial(F, b̂), where b̂ is a small modification of b satisfying
DF (b̂) = 0. This returns an F -pseudoflow f̂ , satisfying (1) with F in the place of F ∗. (This step
be seen as “pretending” that F = F ∗ and trying to compute an optimal solution under this
hypothesis.) The resulting f̂ is optimal if and only if F = F ∗. Otherwise, we use a second
subroutine Error(f̂ , F ), that returns the smallest value ∆̂ > 0 such that f̂ is (F, ∆̂)-feasible.
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This subroutine can be reduced to a minimum cost-to-time ratio cycle problem (also known as the
tramp streamer problem), see [1, Chapter 5.7]; a strongly polynomial time algorithm was given by
Megiddo [23].

If ∆̂ < ∆/2, then we set ∆̂ as our next scaling value and f = f̂ as the next F -pseudoflow -
we can proceed since f̂ is (F, ∆̂)-feasible. Otherwise, the standard transition to phase ∆/2 is done
with keeping the same flow f . The analysis shows that a new arc shall be revealed in every O(log n)
phases. The key lemma is a proximity result between f and f̂ , which implies that Trial-and-
Error cannot return the same f̂ if performed again after O(log n) phases, implying that the set
F cannot be the same, and has been therefore extended. Since |F | ≤ m, this shows that the total
number of scaling phases is O(m log n).

Besides the impossibility of contraction, an important difference as compared ot Orlin’s al-
gorithm is that F cannot be assumed to be a forest (in the undirected sense). There are simple
quadratic instances with the support of an optimal solution containing cycles. In Orlin’s algorithm,
progress is always made by connecting two components of F . This will also be an important event
in our algorithm, but sometimes F shall be extended with arcs inside a component.

The paper is organized as follows. Section 2 contains the basic definitions and notation. Sec-
tion 3 presents the simple adaptation of the Edmonds-Karp algorithm for convex cost functions,
following Minoux [26]. Our algorithm in Section 4 is built on this algorithm with the addition of
the subroutine Trial-and-Error, that guarantees strongly polynomial running time. Analysis is
given in Section 5. Section 6 adapts the general algorithm for quadratic utilities, and for Fisher’s
market with linear and with spending constraint utilities. Section 7 contains a final discussion of
the results and some open questions.

2 Preliminaries

2.1 Problem definitions

Let G = (V,E) be a directed graph possibly containing parallel arcs. Let n = |V |, m = |E|. We
are given lower and upper capacities `, u : E → R∪{∞} on the arcs, and node demands b : V → R
with

∑
i∈V bi = 0. On each arc ij ∈ E, Cij : R → R ∪ {∞} is a convex function. We allow two

types of arcs ij:

• Free arcs: Cij is differentiable everywhere on R.

• Restricted arcs: Cij(α) =∞ if α < `ij , Cij is differentiable on (`ij ,∞) and has a right deriva-
tive in `ij , that equals −∞; let C ′ij(`ij) = −∞ denote this right derivative. By convention,
let us define C ′ij(α) = −∞ for α < `ij .

By convexity, C ′ij is continuous on R for free and on [`ij ,∞) for restricted arcs. Restricted arcs
will play a role in the Fisher market applications, where the function Cij(α) = α(logα− 1) will be
used on certain arcs (with Cij(0) = 0 and Cij(α) =∞ if α < 0.)

The minimum-cost flow problem with separable convex objective is defined as follows.

min
∑
ij∈E

Cij(fij)∑
j:ji∈E

fji −
∑
j:ij∈E

fij = bi ∀i ∈ V (P)

`ij ≤ fij ≤ uij ∀ij ∈ E
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Throughout the paper, we shall work with the uncapacitated version, that is, ` ≡ 0 and u ≡ ∞.
With a standard method, every problem can be transformed to an equivalent uncapacitated form.
Indeed, let us replace each arc ij ∈ E by a new node k and two arcs ik and jk. Let us set
bk = uij − `ij , Cik(α) = Cij(α + `ij), Cjk ≡ 0. Furthermore, let us increase bi by `ij and decrease
bj by uij . It is easy to see that this gives an equivalent optimization problem, and if the original
graph had n′ nodes and m′ arcs, the transformed instance has n = n′ + m′ nodes and m = 2m′

arcs.
Further, we may assume without loss of generality that G = (V,E) is strongly connected and

(P) is always feasible. Indeed, we can add a new node t with edges vt, tv for any v ∈ V , with
extremely high (possibly linear) cost functions on the edges. This guarantees that an optimal
solution shall not use such edges, whenever the problem is feasible. We will also assume n ≤ m.

By a pseudoflow we mean a function f : E → R satisfying the capacity constraints. For the
uncapacitated problem, it simply means f ≥ 0. Let

ρf (i) :=
∑
j:ji∈E

fji −
∑
j:ij∈E

fij , (2)

and let
Ex(f) = Exb(f) :=

∑
i∈V

max{ρf (i)− bi, 0}

denote the total positive excess. For an arc set F , let
←−
F denote the set of backward arcs and let←→

F = F ∪
←−
F . We shall use the vector norms ||x||∞ = max |xi| and ||x||1 =

∑
|xi|.

Following [18] and [22], we do not require the functions Cij to be given explicitly, but assume
oracle access only.

Assumption 1. We are given a differential oracle that satisfies either of the following properties.

(a) For every arc ij ∈ E, the oracle returns the value C ′ij(α) in O(1) time for every α ∈ R. If α is
rational then C ′ij(α) is also rational.

(b) For every arc ij ∈ E, the oracle returns the value eC
′
ij(α) in O(1) time for every α ∈ R. If α is

rational then eC
′
ij(α) is also rational.

Assumption 1(a) holds for quadratic objectives, while (b) is valid for the Fisher markets, where
the derivatives are − logUij and logα on the different arcs. Note that we do not assume an
evaluation oracle returning Cij(α) or eCij(α) - these values are not needed in the algorithm.

Our next assumption slightly restricts the class of functions Cij for technical reasons.

Assumption 2. Each cost function Cij(α) is either linear or strictly convex, that is, C ′ij(α) is
either constant or strictly monotone increasing.

Arcs with Cij(α) linear are called linear arcs, the rest is called nonlinear arcs. Let mL and mN

denote their numbers, respectively. We use the terms linear and nonlinear for the corresponding
reverse arcs as well. This assumption is only a mild restriction: if Cij does not satisfy it, R can be
decomposed to intervals such that C ′ij is either constant or strictly monotone increasing on each
interval. We can replace ij by a set of parallel arcs with appropriately chosen capacities and cost
functions all of which satisfy the assumption (indeed, the piecewise linear utility functions in Fisher
markets with spending constraint utilities will be handled in such a way). If the number of intervals
is polynomial in n and m, this decreases the running time by a strongly polynomial factor only.
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2.2 Optimality and ∆-feasibility

Given a pseudoflow f , let us define the residual graph Ef by ij ∈ Ef if ij ∈ E, or ji ∈ E and
fji > 0. Arcs of the first type are called forward, those of the latter type backward arcs. We use the
convention that on a backward arc ji, fji = −fij , Cji(α) = Cij(−α), also convex and differentiable.
The residual capacity is ∞ on forward arcs and fij on the backward arc ji.

The Karush-Kuhn-Tucker conditions assert that the solution f to (P) is optimal if and only if
there exists a potential vector π : V → R such that

πj − πi ≤ C ′ij(fij) ∀ij ∈ Ef . (3)

This is equivalent to asserting that the residual graph contains no negative cost cycles with respect
to the cost function C ′ij(fij).

For a value ∆ > 0, let Ef (∆) denote the subset of arcs in Ef that have residual capacity at
least ∆ (in particular, it contains E). We say that the pseudoflow f is ∆-feasible, there exists a
potential vector π : V → R such that

πj − πi ≤ C ′ij(fij + ∆) ∀ij ∈ Ef (∆). (4)

Equivalently, f is ∆-feasible if and only if Ef (∆) contains no negative cycles with respect to the
cost function C ′ij(fij + ∆). If ji is a reverse arc, then (4) gives C ′ij(fij −∆) ≤ πj − πi.

We note that our notion is different (and weaker) than the analogous conditions in [26] and in
[18], where (Cij(fij + ∆)− Cij(fij))/∆ is used in the place of C ′ij(fij + ∆).

Subroutine Adjust(∆, f)
INPUT A 2∆-feasible pseudoflow f̄ and a potential vector π satisfying (4) with f̄ and 2∆.
OUTPUT A ∆-feasible pseudoflow f such that π satisfies (4) with f and ∆.
for all ij ∈ E do

if C ′ij(f̄ij + ∆) < πj − π then fij ← f̄ij + ∆.

if f̄ji ≥ ∆ and πj − πi < C ′ij(f̄ij −∆) then fij ← f̄ij −∆.

if neither of the above, then fij ← f̄ij .

Figure 1:

The subroutine Adjust(∆, f) (Figure 1) transforms a 2∆-feasible pseudoflow to a ∆-feasible
pseudoflow by possibly changing the value of every arc by ±∆.

Lemma 2.1. The subroutine Adjust(∆, f) is well-defined and correct: it returns a ∆-feasible
pseudoflow with (f, π) satisfying (4). Further, Ex(f) ≤ Ex(f̄) + mN∆ (recall that mN is the
number of nonlinear arcs).

Proof. For well-definedness, we observe that the two alternatives cannot hold simultaneously:
C ′ij(f̄ij + ∆) < πj − π < C ′ij(f̄ij − ∆) would contradict the convexity of Cij . Consider the po-

tential vector π satisfying (4) with f̄ and 2∆. We prove that π satisfies (4) with f and ∆ as
well.

First, take a forward arc ij ∈ E with C ′ij(f̄ij + ∆) < πj − πi. By 2∆-feasibility we know

πj−πi ≤ C ′ij(f̄ij + 2∆). These show that setting fij = f̄ij + ∆ satisfies (4) for both ij and ji, using
that

C ′ij(fij −∆) ≤ C ′ij(fij) = C ′ij(f̄ij + ∆) < πj − πi ≤ C ′ij(f̄ij + 2∆) = C ′ij(fij + ∆).
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Next, assume f̄ji ≥ ∆ and πj − πi < C ′ij(f̄ij − ∆). Note that fij satisfies (4) by πj − πi <
C ′ij(f̄ij −∆) ≤ C ′ij(f̄ij) = C ′ij(fij + ∆).

If ji ∈ Ef̄ (2∆) (that is, f̄ij ≥ 2∆), then we have C ′ij(fij −∆) = C ′ij(f̄ij − 2∆) ≤ πj − πi, and
thus (4) also holds for ji. If ji ∈ Ef̄ (∆)− Ef̄ (2∆), then ji /∈ Ef (∆).

Finally, consider the case when fij = f̄ij . The condition (4) holds for ij as we assume πj −πi ≤
C ′ij(f̄ij + ∆). Also, either fij = f̄ij < ∆ and thus ji /∈ Ef (∆), or fij = f̄ij ≥ ∆ and (4) holds for ji

by the assumption C ′ij(f̄ij −∆) ≤ πj − πi.
To verify the last claim, observe that C ′ij is constant on every linear arc and therefore f̄ij = fij

will be set on every linear arc. The flow change is ±∆ on every nonlinear arc; every such change may
increase the excess of one of the endpoints of the arc by ∆. Consequently, Ex(f) ≤ Ex(f̄) +mN∆
follows.

3 The basic algorithm

Figure 2 outlines a simple algorithm for minimum cost flows with separable convex objectives, to
be referred as the “Basic algorithm”. This is a modified version of Minoux’s algorithm [26].

Algorithm Basic
f ← 0; ∆← ∆0;
repeat //∆-phase

do //main part

S(∆)← {i ∈ V : ρf (i)− bi ≥ ∆};
T (∆)← {i ∈ V : ρf (i)− bi ≤ −∆};
P ← shortest s− t path in Ef (∆) for the cost C ′ij(fij + ∆) with s ∈ S(∆), t ∈ T (∆);

send ∆ units of flow on P from s to t;
while S(∆), T (∆) 6= ∅;
Adjust(∆/2, f);
∆← ∆/2;

Figure 2:

We start with the pseudoflow f ≡ 0 and an initial value ∆ = ∆0. We assume that the value
∆0 is provided in the input so that 0 is a ∆0-feasible and Ex(0) ≤ (2n+m)∆0); in the enhanced
algorithm we shall specify how such a ∆0 value can be determined. The algorithm consists of
∆-phases, with ∆ decreasing by a factor of two between two phases.

In the main part of phase ∆, let S(∆) = {i ∈ V : ρf (i) − bi ≥ ∆} and T (∆) = {i ∈ V :
ρf (i) − bi ≤ −∆}, the set of nodes with excess and deficiency at least ∆. As long as S(∆) 6= ∅,
T (∆) 6= ∅, send ∆ units of flow from a node s ∈ S(∆) to a node t ∈ T (∆) on a shortest path in
Ef (∆) with respect to the cost function C ′ij(fij + ∆). (Note that there must be a path connecting
nodes in S(∆) and T (∆), due to our assumption that the graph G = (V,E) is strongly connected,
and E ⊆ Ef (∆).)

The main part finishes once S(∆) = ∅ or T (∆) = ∅. The ∆-phase terminates by performing
Adjust(∆/2, f) and proceeding to the next phase with scaling factor ∆/2.

In the main part, we need to compute shortest paths in the graph Ef (∆) for the cost function
C ′ij(fij + ∆). This can be done only if there is no negative cost cycle. ∆-feasibility is exactly
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this property and is maintained throughout (see Lemma 3.1 below). Details of the shortest path
computation will be given in Section 5.1(ii), for the enhanced algorithm.

Note that the algorithm in this form does not terminate. If one requires an ε-accurate solution,
it can be shown that for sufficiently small ∆ we are able to obtain a ε-accurate solution. However,
we do not include these details as the Basic algorithm is needed in the analysis of the enhanced
algorithm exactly in the current infinite (nonterminating) version.

3.1 Analysis

We omit the proof of the following two simple lemmas; their analogous counterparts for the enhanced
algorithm will be proved in Section 5. By the main part of the ∆-phase, we mean the sequence of
flow augmentations.

Lemma 3.1. (i) In the main part of the ∆-phase, the pseudoflow is an integer multiple of ∆ on
each arc, and consequently, Ef (∆) = Ef .

(ii) ∆-feasibility is maintained when augmenting on a shortest path.

(iii) At the beginning of the main part, Ex(f) ≤ (2n+mN )∆, and at the end, Ex(f) ≤ n∆.

(iv) The main part consists of at most 2n+mN flow augmentation steps.

Lemma 3.2. Let f be the pseudoflow at the end of the main part of the ∆-phase and f ′ in an
arbitrary later phase. Then ||f − f ′||∞ ≤ (2n+m+ 1)∆. If fij > (2n+m+ 1)∆ at the end of the
∆-phase, then this property is maintained in all later phases, and there exists an optimal solution
f∗ with f∗ij > 0.

4 The enhanced algorithm

4.1 Revealed arc sets

Let F ∗ denote the set of arcs that are tight in every optimal solution (note that in general, we do
not assume the uniqueness of the optimal solution). This arc set plays a key role in our algorithm.
Formally,

F ∗ := {ij ∈ E : πj − πi = C ′ij(fij) holds ∀(f, π) satisfying (3)}.

The next lemma shows that F ∗ contains the support of every optimal solution.

Lemma 4.1. Let f be an arbitrary optimal solution to (P), and fij > 0 for some ij ∈ E. Then
ij ∈ F ∗.

The proof needs the following notion, also used later. Let x, y : E → R be two vectors. Let us
define the difference graph Dx,y = (V,Ex,y) with ij ∈ Ex,y if xij > yij or if xji < yji. Using the
convention xji = −xij , yji = −yij it follows that xij > yij for every ij ∈ Ex,y. We will need the
following simple claim.

Claim 4.2. Assume that for two vectors x, y : E → R, ρx = ρy holds (recall the definition of ρ in
(2)). Then every arc ij with xij > yij must be contained in a cycle in the difference graph Ex,y.

Proof. Let us set zij = xij − yij if xij > yij and zij = yji−xji if xji < yji. The assumption ρx = ρy
implies that zij is a circulation in Ex,y with positive value on every arc. As such, it can be written
as a nonnegative combination of incidence vectors of cycles. If xij > yij then zij > 0 and therefore
ij must be contained in a cycle in Ex,y.

10



Proof of Lemma 4.1. Let f∗ be an arbitrary optimal solution, and consider potentials π and π∗

with both (f, π) and (f∗, π∗) satisfying (3). We shall prove that π∗j − π∗i = C ′ij(f
∗
ij). Since (f∗, π∗)

is chosen arbitrarily, this will imply ij ∈ F ∗. If f∗ij > 0, then ji ∈ Ef∗ and thus π∗j − π∗i = C ′ij(f
∗
ij)

must hold.
Assume now f∗ij = 0. Consider the difference graph Df,f∗ . Since fij > f∗ij , it follows that

ij ∈ Ef,f∗ . Because of ρf∗ ≡ ρf ≡ b, Claim 4.2 is applicable and provides a cycle C in Ef,f∗

containing ij. For every arc ab ∈ C, fab > f∗ab and thus ab ∈ Ef∗ and ba ∈ Ef . By (3),

0 =
∑
ab∈C

π∗b − π∗a ≤
∑
ab∈C

C ′ab(f
∗
ab) and

0 =
∑
ab∈C

πa − πb ≤
∑
ab∈C

C ′ba(fba) = −
∑
ab∈C

C ′ab(fab).

The convexity of Cab and fab > f∗ab give C ′ab(fab) ≥ C ′ab(f
∗
ab). In the above inequalities, equality

must hold everywhere, implying π∗j − π∗i = C ′ij(f
∗
ij) as desired.

We shall see that under Assumption 3 (to be formulated later), finding the set F ∗ enables us to
compute an optimal solution in strongly polynomial time. In the Basic algorithm, F = {ij ∈ E :
fij > (2n+m+ 1)∆} is always a subset of F ∗ according to Lemma 3.2. Furthermore, once an edge
enters F , it stays there in all later phases. Yet there is no guarantee (and it is in fact not true) that
in the Basic algorithm, F would be extended in some number of steps polynomially bounded in n
and m. We shall modify the basic algorithm in order to guarantee that within O(log n) phases, a
new arc is guaranteed to enter F .

In each step of the enhanced algorithm, there will be an arc set F , called the revealed arc set,
which is guaranteed to be a subset of F ∗. We remove the lower capacity 0 from arcs in F and allow
also negative values here.

Formally, for an edge set F ⊆ E, a vector f : E → R is an F -pseudoflow, if fij ≥ 0 for ij ∈ E\F
(but it is allowed to be negative on F ). For such an f , let us define

EFf := Ef ∪
←−
F = E ∪

←−
F ∪ {ji : ij ∈ E, fij > 0}.

If ij ∈ F , then the residual capacity of ji is ∞. In every phase of the algorithm, we maintain an
F -pseudoflow f for a revealed arc set F ⊆ F ∗.

Provided the revealed arc set F ⊆ F ∗, we will aim for F -optimal solutions as defined below; we
prove that finding an F -optimal solution is essentially equivalent to finding an optimal one. We say
that f : E → R is F -optimal, if it is an F -pseudoflow with Exb(f) = 0 and there exists a potential
vector π : V → R with

πj − πi ≤ C ′ij(fij) ∀ij ∈ EFf . (5)

This is stronger than the optimality condition (3) by requiring the inequality also on arcs in
←−
F .

On the other hand, it does not imply optimality as it allows fij < 0 for ij ∈ F . Nevertheless,
it is easy to see that every optimal solution f∗ is also F -optimal for every F ⊆ F ∗. This is due
to the definition of F ∗ as the set of arcs satisfying πj − πi = C ′ij(fij) whenever (f, π) satisfies
(3). Conversely, we shall prove that provided an F -optimal solution, we can easily find an optimal
solution by a single feasible circulation algorithm, a problem equivalent to maximum flows (see [1,
Chapters 6.2, 7]).

Lemma 4.3. Assume that for a subset F ⊆ F ∗, an F -optimal solution f is provided. Then an
optimal solution to (P) can be found by a feasible circulation algorithm. Further, ij ∈ F ∗ whenever
fij > 0.
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Proof. Assume (f, π) and (f̄ , π̄) both satisfy (5). We prove that (i) fij = f̄ij whenever ij is a
nonlinear arc; and (ii) if ij is a linear arc with fij 6= f̄ij , then πj−πi = C ′ij(fij) = C ′ij(f̄ij) = π̄j− π̄i.

Note that (ii) immediately implies the second half of the claim as it can be applied for f and
an arbitrary optimal (and consequently, F -optimal) solution f̄ .

The proof uses the same argument as for Lemma 4.1. W.l.o.g. assume fij > f̄ij for an arc ij,
and consider the difference graph Df,f̄ . Since ρf ≡ ρf̄ ≡ b and fij > f̄ij , Claim 4.2 is applicable

and shows that ij must be contained on a cycle C ⊆ Ef,f̄ . For every arc ab ∈ C, ab ∈ EF
f̄

and

ba ∈ EFf follows (using
←→
F ⊆ EF

f̄
∩ EFf ). By (5),

0 =
∑
ab∈C

π̄b − π̄a ≤
∑
ab∈C

C ′ab(f̄ab) and

0 =
∑
ab∈C

πa − πb ≤
∑
ab∈C

C ′ba(fba) = −
∑
ab∈C

C ′ab(fab).

Now convexity yields C ′ab(fab) = C ′ab(f̄ab) for all ab ∈ C. Assumption 2 implies that all arcs in C
are linear, in particular, ij is linear. This immediately proofs (i). To verify (ii), observe that all
above inequalities must hold with equality.

This suggests the following simple method to transform an F -optimal solution f to an optimal
f∗. For every nonlinear arc ij, we must have f∗ij = fij . Let H ⊆ E be the set of linear arcs
satisfying πj −πi = C ′ij(fij). Consider the solutions h of the following feasible circulation problem:

hij = fij ∀ij ∈ E \H∑
j:ji∈E

hji −
∑
j:ij∈E

hij = bi ∀i ∈ V

h ≥ 0

We claim that the feasible solutions to this circulation problem are precisely the optimal solutions
to (P). Indeed, if f∗ is an optimal solution, then (5) and (ii) imply that f∗ij = fij for all ij ∈ E \H
and ij ∈ H for every arc with fij 6= f∗ij . The degree conditions are satisfied because of ρf∗ ≡ ρf ≡ b.
Conversely, every feasible circulation h is an optimal solution to (P), since (h, π) satisfies (3).

In every step of our algorithm we will have a scaling parameter ∆ ≥ 0 and a revealed arc set
F ⊆ F ∗. The Basic algorithm used the notion of ∆-feasibility; it has to be modified according to
F . Let EFf (∆) denote the set of arcs in EFf with residual capacity at least ∆. That is,

EFf (∆) := Ef (∆) ∪
←−
F = E ∪

←−
F ∪ {ji : ij ∈ E, fij ≥ ∆}. (6)

We say that the F -pseudoflow f is (∆, F )-feasible, if there exists a potential vector π : V → R so
that

πj − πi ≤ C ′ij(fij + ∆) ∀ij ∈ EFf (∆). (7)

This is equivalent to the property that EFf (∆) contains no negative cycle with respect to the cost
function C ′ij(fij + ∆).

In accordance with (∆, F )-feasibility, we have to modify the subroutine Adjust. The modified
subroutine, denoted by Adjust(∆, f, F ) is shown on Figure 3. The only difference from the
algorithm on Figure 1 is that the condition (4) is replaced by (7), and that in the second condition,
“f̄ji ≥ ∆” is replaced by “(f̄ji ≥ ∆ or ij ∈ F )”. The following lemma can be proved by the same
argument as Lemma 2.1.
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Subroutine Adjust(∆, f, F )
INPUT A (2∆, F )-feasible pseudoflow f̄ and a potential vector π satisfying (7) with f̄ and 2∆.
OUTPUT A (∆, F )-feasible pseudoflow f such that π satisfies (7) with f and ∆.
for all ij ∈ E do

if C ′ij(f̄ij + ∆) < πj − π then fij ← f̄ij + ∆.

if (f̄ji ≥ ∆ or ij ∈ F ) and πj − πi < C ′ij(f̄ij −∆) then fij ← f̄ij −∆.

if neither of the above, then fij ← f̄ij .

Figure 3:

Lemma 4.4. The subroutine Adjust(∆, f, F ) is well-defined and correct: it returns a (∆, F )-
feasible pseudoflow with (f, π) satisfying (7). Further, Ex(f) ≤ Ex(f̄) +mN∆.

Finally, we say that a set F ⊆ E is linear acyclic, if F does not contain any undirected cycles
of linear arcs (that is, no cycle in F may consist of linear arcs and their reverse arcs). We shall
maintain that the set of revealed arcs, F is linear acyclic.

4.2 Subroutine assumptions

Given the set F ⊆ F ∗ of revealed arcs, we will try to find out whether F already contains the
support of an optimal solution. This motivates the following definition. We say that the (not
necessarily nonnegative) vector x : E → R is F -tight, if xij = 0 whenever ij /∈ F and there exists
a potential vector π : V → R with

πj − πi = C ′ij(xij) ∀ij ∈ F. (8)

For example, any optimal solution is F ∗-tight by Lemma 4.1. Notice that an F -tight vector f is

not necessarily F -optimal as (5) might be violated for edges in EFf \
←→
F and also since Exb(f) > 0

is allowed. On the other hand, an F -optimal vector is not necessarily F -tight as it can be nonzero
on E \ F .

Given F and some node demands b̂ : V → R, we would like to find an F -tight x with Exb̂(x) = 0.
This is equivalent to finding a feasible solution (x, π) to the following system:

πj − πi = C ′ij(xij) ∀ij ∈ F∑
j:ji∈F

xji −
∑
j:ij∈E

xij = b̂i ∀i ∈ V (9)

xij = 0 ∀ij ∈ E \ F

Let us define the discrepancy Db̂(F ) of F as the maximum of |
∑

i∈K b̂i| over undirected connected
components K of F . A trivial necessary condition for solvability is Db̂(F ) = 0: indeed, summing

up the second set of equalities for a component K we obtain 0 =
∑

i∈K b̂i.

Assumption 3. Assume we have a subroutine Trial(F, b̂) so that for any linear acyclic F ⊆ E
and any vector b̂ : V → R satisfying Db̂(F ) = 0, it delivers an F -tight solution x to (9) with
Exb̂(x) = 0 in strongly polynomial running time ρT (n,m).
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For quadratic cost functions and also for Fisher markets, this subroutine can be implemented
by solving simple systems of equations (for quadratic, this was outlined in Section 1.2).

Consider now an F -tight vector f , and let

errF (f) := inf{∆ : f is (∆, F )-feasible}.

Recall the definition (6) of the edge set EFf (∆). As f is assumed to be F -tight and therefore fij > 0

only if ij ∈ F , we get that EFf (∆) = E ∪
←−
F . Consequently, EFf (∆) is independent from the value

of ∆. Because of continuity, this infimum is actually a minimum whenever the set is nonempty.
If f is not (∆, F )-feasible for any ∆, then let errF (f) = ∞. f is F -optimal if and only if f is a
feasible flow (that is, Exb(f) = 0) and errF (f) = 0.

Assumption 4. Assume a subroutine Error(f, F ) is provided, that returns errF (f) for any F -
tight vector f in strongly polynomial running time ρE(n,m). Further, if err∅(0) =∞, then (P) is
unbounded.

This subroutine seems significantly harder to implement for the applications: we need to solve
a minimum cost-to-time ratio cycle problem for quadratic costs and all pairs shortest paths for the
Fisher markets.

Having formulated all necessary assumptions, we are finally in the position to formulate the
main result of the paper.

Theorem 4.5. Let Assumptions 1-4 hold for the problem (P) in a network on n nodes and m
arcs, mN among them having nonlinear cost functions. Let ρT (n,m) and ρE(n,m) denote the
running time of the subroutines defined in Assumptions 3 and 4, and let ρS(n,m) be the running
time needed for a single shortest path computation. Then an exact optimal solution can be found
in O((n+mN )(ρT (n,m) + ρE(n,m)) + (n+mN )2ρS(n,m) logm) time.

This gives an O(m4 logm) algorithm for quadratic convex objectives. For Fisher markets, we
obtain O(n4 + n2(m+ n log n) log n) running time for linear and O(mn3 +m2(m+ n log n) logm)
for spending constraint utilities.

4.3 Description of the enhanced algorithm

The algorithm (see Figure 4) starts with the f = 0, ∆ = max{err∅(0), Exb(0)/(2n + mN )} and
F = ∅. The algorithm consists of ∆-phases. In the ∆-phase, we shall maintain a linear acyclic
revealed arc set F ⊆ F ∗, and a (∆, F )-feasible F -pseudoflow f .

The main part of the ∆-phase is the same as in the Basic algorithm. Let S(∆) = {i ∈ V :
ρf (i) − bi ≥ ∆} and T (∆) = {i ∈ V : ρf (i) − bi ≤ −∆}. As long as S(∆) 6= ∅, T (∆) 6= ∅, send ∆
units of flow from a node s ∈ S(∆) to a node t ∈ T (∆) on a shortest path in EFf (∆) with respect
to the cost function C ′ij(fij + ∆). (The existence of such a path P is guaranteed by our assumption
that the graph G = (V,E) is strongly connected.)

After the main part (the sequence of path augmentations) is finished, the subroutine Ex-
tend(∆, f, F ) adds new arcs ij ∈ E \ F with fij > (2n + m + 1)∆ to F maintaining the linear
acyclic property. Note that all nonlinear such arcs will be included in F .

If no new arc enters F , then we perform Adjust(∆/2, f, F ) and move to the next scaling phase
with the same f and set the scaling factor to ∆/2. This is done also if F is extended, but it has a
high discrepancy: Db(F ) > ∆.

Otherwise, the subroutine Trial-and-Error(F ) determines the next f and ∆. Based on the
arc set F , we find a new F -pseudoflow f and scaling factor at most ∆/2. The subroutine may also
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terminate with an F -optimal solution, which enables us to find an optimal solution to (P) by a
maximum flow computation due to Lemma 4.3.

Algorithm Enhanced Convex Flow
Error(0, ∅);
f ← 0; ∆← max{err∅(0), Exb(0)/(2n+mN )}; F ← ∅;
repeat //∆-phase

do //main part

S(∆)← {i ∈ V : ρf (i)− bi ≥ ∆};
T (∆)← {i ∈ V : ρf (i)− bi ≤ −∆};
P ← shortest s− t path in EFf (∆) for the cost C ′ij(fij + ∆) with s ∈ S(∆), t ∈ T (∆);

send ∆ units of flow on P from s to t;
while S(∆), T (∆) 6= ∅;
Extend(∆, f, F );
if (F was extended) and (Db(F ) ≤ ∆) then Trial-and-Error(F )

else Adjust(∆/2, f, F );
∆← ∆/2;

Subroutine Extend(∆, f, F )
for all ij ∈ E \ F , fij > (2n+m+ 1)∆ do

if F ∪ {ij} is linear acyclic then F ← F ∪ {ij}
else

P ← path of linear arcs in
←→
F between i and j;

send fij units of flow on P from i to j;
fij ← 0;

Figure 4:

The Trial-and-Error subroutine

The subroutine assumes that the discrepancy of F is small: Db(F ) ≤ ∆.
Step 1. First, modify b to b̂: in each (undirected) component K of F , pick a node j ∈ K and

change bj by −
∑

i∈K bi; leave all other bi values unchanged. Thus we get a b̂ with Db̂(F ) = 0.

Trial(F, b̂) returns an F -tight vector f̂ .
Step 2. Call the subroutine Error(f̂ , F ). If b = b̂ and errF (f̂) = 0, then f̂ is F -optimal.

An optimal solution to (P) can be found by a single maximum flow computation, as described in
the proof of Lemma 4.3. In this case, the algorithm terminates. If errF (f̂) ≥ ∆/2, then keep the
original f , perform Adjust(∆/2, f, F ) and go to the next scaling phase with scaling factor ∆/2.
Otherwise, set f = f̂ and define the next scaling factor as

∆next = max{errF (f̂), Exb(f̂)/(2n+mN )}.

5 Analysis

The details how the shortest path computations are performed will be discussed in Section 5.1; in
the following analysis, we assume it can be efficiently implemented. At the initialization, err∅(0)
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must be finite or the problem is unbounded by the second part of Assumption 4.
Trial-and-Error replaces f by f̂ if errF (f̂) ≤ ∆/2 and keeps the same f otherwise. The

first case will be called a successful trial, the latter is unsuccessful. The following is (an almost
identical) counterpart of Lemma 3.1.

Lemma 5.1. (i) In the main part of the ∆-phase, the F -pseudoflow f is an integer multiple of
∆ on each arc ij ∈ E \ F , and consequently, EFf (∆) = EFf .

(ii) (∆, F )-feasibility is maintained in the main part and in subroutine Extend(∆, f, F ).

(iii) At the beginning of the main part, Ex(f) ≤ (2n+mN )∆, and at the end, Ex(f) ≤ n∆.

(iv) The main part consists of at most 2n+mN flow augmentation steps.

Proof. For (i), f is zero on every arc in E \ F at the beginning of the algorithm and after every
successful trial. In every other case, the previous phase had scaling factor 2∆, and thus by induction,
the flow is an integer multiple of 2∆ at the end of the main part of the 2∆-phase, a property
also maintained by Extend(2∆, f, F ). The 2∆-phase finishes with Adjust(∆, f, F ), possibly
modifying the flow on every arc by ±∆. In the main part of the ∆-phase, the shortest path
augmentations also change the flow by ±∆. This implies EFf (∆) = EFf .

For (ii), P is a shortest path if there exists a potential π satisfying (7) with πj−πi = C ′ij(fij+∆)
on each arc ij ∈ P (see also Section 5.1). We show that when augmenting on the shortest path
P , (7) is maintained with the same π. If ij, ji /∈ P , then it is trivial as the flow is left unchanged
on ij. If ij ∈ P , then the new flow value will be fij + ∆, hence we need πj − πi ≤ C ′ij(fij + 2∆),
obvious as C ′ij is monotonely increasing. Finally, if ji ∈ P , then the new flow is fij −∆, and thus
we need πj − πi ≤ C ′ij(fij). By ji ∈ P we had πi − πj = C ′ji(fji + ∆), which is equivalent to
πj − πi = C ′ij(fij −∆), implying again the claim.

In subroutine Extend, we reroute the flow fij from a linear arc ij if
←→
F contains a directed

path P from i to j. This cannot affect feasibility since the C ′ij ’s are constant on linear arcs. Also

note that arcs in
←→
F have infinite residual capacities.

For (iii), Ex(f) ≤ n∆ as the main part terminates with either S(∆) = ∅ or T (∆) = ∅.
Lemma 4.4 shows that Adjust(∆/2, f, F ) increases the excess by at most mN∆/2. Consequently,
Ex(f) ≤ (2n+mN )(∆/2) at the beginning of the ∆/2-phase.

The other possible case is that a successful trial replaces ∆ by ∆next. By definition, the new
excess is at most (2n+mN )∆next.

Finally, (iii) implies (iv), as each flow augmentation decreases Ex(f) by ∆.

Lemma 5.2. F ⊆ F ∗ holds in each step of the algorithm.

Proof. The proof is by induction. A new arc ij may enter F if fij > (2n + m + 1)∆ after the
main part of the ∆-phase. We shall prove that f∗ij > 0 for some F -optimal solution f∗, and thus
Lemma 4.3 gives ij ∈ F ∗.

After the phase when ij entered, let us continue with the following modified algorithm: do not
extend F and do not perform Trial-and-Error anymore, but always choose the next scaling
factor as ∆/2, and keep the algorithm running forever. (This is almost the same as the Basic
algorithm, with the difference that we have a revealed arc set F .)

Let ∆0 = ∆ and ∆t = ∆/2t denote the scaling factor in the t’th phase of this algorithm (with
phase 0 corresponding to the ∆-phase). Consider any ∆t-phase (t ≥ 1). The flow is modified by at
most (2n + mN )∆t during the main part by Lemma 5.1(iv) and by ∆t/2 in Adjust(∆t/2, f, F ),
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amounting to a total modification ≤ (2n+mN + 1
2)∆t. Consequently, the total modification in the

∆t phase and all later phases is bounded by (2n+mN + 1
2)
∑∞

k=t ∆k ≤ 2(2n+m+ 1
2)∆t.

We may conclude that when running forever, the flow f converges to an F -optimal solution f∗.
Indeed, let f (t) denote the F -pseudoflow at the end of the t’th phase. By the above observation,
||f (t) − f (t′)||∞ ≤ (2n + m + 1

2)∆t for any t′ ≥ t ≥ 0. Consequently, on every arc ij ∈ E, the

sequence f
(t)
ij converges; let f∗ denote the limit. We claim the f∗ is F -optimal.

Firstly, f∗ is clearly an F -pseudoflow. Property (5) is equivalent to the property that EFf does

not contain any negative cycle w.r.t. C ′ij(fij). This follows from the fact that EFf (∆t) does not

contain any negative cycle w.r.t. C ′ij(f
(t)
ij ) due to the (∆t, F )-feasibility of f (t). Finally, Exb(f

∗) =

limt→∞Exb(f
(t)) ≤ limt→∞ n∆t = 0, and therefore Exb(f

∗) = 0.
To finish the proof, we observe that f∗ij > 0. Indeed, fij > (2n + m + 1)∆ after the main

part of the ∆-phase, and hence fij > (2n+m+ 1
2)∆ at the end of the ∆-phase (after performing

Adjust(∆/2, f, F )). By the above argument, the total change in all later phases is ≤ 2(2n+m+
1
2)∆1 = (2n+m+ 1

2)∆, yielding the desired conclusion.

Recall that the objective function Cij is called restricted if for some arc ij, Cij(α) = ∞ and
C ′ij(α) = −∞ for α < 0.

Claim 5.3. fij ≥ 0 holds for every restricted arc ij during the entire algorithm, even if ij ∈ F .

Proof. fij ≥ 0 holds at the initialization; consider the first ∆-phase when fij < 0 is attained. This
can happen during a path augmentation or in the Adjust subroutine (Extend may not modify
fij as ij is a nonlinear arc). In case of a path augmentation, ji is contained on the shortest path
P , and therefore πi− πj = C ′ij(fij −∆) must hold for a potential π, a contradiction as fij −∆ < 0
and thus C ′ij(fij −∆) = −∞. A similar argument works for Adjust.

The next lemma is of key importance.

Lemma 5.4. When Trial-and-Error(F ) is performed in the ∆-phase, errF (f̂) ≤ 2(2n + m +
4)m∆ holds.

Before proving the lemma, we show how it provides the strongly polynomial bound.

Theorem 5.5. The enhanced algorithm terminates in at most O((n+mN ) logm) scaling phases.

Proof. The set of revealed arcs can be extended at most mN + n − 1 times, since there can be
at most (n − 1) linear arcs because of the linear acyclic property. We shall show that after any
∆-phase, a new arc is revealed within 2dlog2 T e phases, for T = 8(2n+m+ 4)m.

As ∆ decreases by at least a factor of two between two phases, after dlog2 T e steps we have
∆T ≤ ∆/T . Assume that in the ∆T phase, we still have the same revealed arc set F as in the
∆-phase.

Assume first Db(F ) > ∆. At the end of the main part of the ∆T -phase, Db(F ) > (2n + m +
2)m∆T . Thus there is an undirected connected component K of F with |

∑
i∈K bi| > (2n + m +

2)m∆T . Let ρf (K) denote the total f value on arcs entering K minus the value on arcs leaving K,
that is,

ρf (K) :=
∑

ij∈E:i/∈K,j∈K

fij −
∑

ij∈E:i∈K,j /∈K

fij .

We have

|ρf (K)| =

∣∣∣∣∣∑
i∈K

ρf (i)

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈K

(ρf (i)− bi + bi)

∣∣∣∣∣ ≥
∣∣∣∣∣∑
i∈K

bi

∣∣∣∣∣− Exb(f).
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The last part is derived from the simple inequality |β+α++α−| ≥ |β|−γ, whenever α+, α−, β, γ ∈ R
with −γ ≤ α− ≤ 0 ≤ α+ ≤ γ. In our setting, β =

∑
i∈K bi, α

+ =
∑

i∈K max{ρf (i) − bi, 0},
α− =

∑
i∈K min{ρf (i)− bi, 0}, and γ = Exb(f). The conditions hold since

γ = Exb(f) =
∑
i∈V

max{ρf (i)− bi, 0} = −
∑
i∈V

min{ρf (i)− bi, 0}.

Now we may conclude

|ρf (K)| ≥

∣∣∣∣∣∑
i∈K

bi

∣∣∣∣∣− Exb(f) > (2n+m+ 2)m∆T − n∆T ≥ (2n+m+ 1)m∆T .

Consequently, there must be an arc ij entering or leaving K with fij > (2n + m + 1)∆T , a
contradiction as at least one such arc must have been added to F in Extend(∆T , f, F ). Note that
the first such arc examined during Extend(∆T , f, F ) does keep the linear acyclic property as it
connects two separate connected components of F .

Assume next Db(F ) ≤ ∆. We may assume that either we are at the very beginning of the
algorithm with F = ∅, or in a phase when F just has been extended; otherwise, we could consider
an earlier phase with this property. We can interpret the initial solution 0 and initial ∆ as the
output of Trial-and-Error(∅).

If Db(F ) > ∆T , the above argument shows that within the next dlog2 T e steps, F shall be
extended. Otherwise, we can apply the analysis of the Trial-and-Error subroutine for the
∆T -phase. (Even if the subroutine is not actually performed, its analysis is valid provided that
Db(F ) ≤ ∆T .)

Let f̂ be the arc set found by Trial(F, b̂). This is the same in the ∆ and the ∆T -phase (we may
assume that b is modified to b̂ always the same way for the same F ). In the event of an unsuccessful
trial in the ∆-phase, ∆/2 < errF (f̂). Using Lemma 5.4 for the ∆T -phase,

errF (f̂) ≤ 2(2n+m+ 4)m∆T ≤ ∆/4 < errF (f̂)/2,

a contradiction. On the other hand, if we had a successful trial in the ∆-phase, then ∆T ≤
2∆next/T , as ∆T is the scaling factor T −1 phases after the ∆next-phase. Lemma 5.4 and Exb(f̂) ≤
nDb(F ) ≤ n∆T together yield

∆next = max{errF (f̂), Exb(f̂)/(2n+mN )} ≤ 2(2n+m+ 4)m∆T ≤ ∆next/2,

a contradiction again.

Some preparation is needed to prove Lemma 5.4.

Lemma 5.6. For a linear acylic arc set F ⊆ E, let x and y be two F -tight vectors. Then ||x−y||∞ ≤
||ρx − ρy||1 holds.

Proof. First, we claim that the difference graph Dx,y = (V,Ex,y) is acyclic. Indeed, if there existed
a cycle C ⊆ Ex,y, then we get 0 =

∑
ab∈C C

′
ab(xab) =

∑
ab∈C C

′
ab(yab) as in the proof of Lemma 4.1.

Since xab > yab for every ab ∈ C, this is only possible if all arcs of C are linear (Assumption 2),

contradicting the linear acyclic property of F . (Note that Ex,y ⊆
←→
F , since by definition, every

F -tight vector is supported on F ).
Define the function z by zij = xij − yij > 0 for ij ∈ Ex,y (again with the convention xji = −xij ,

yji = −yij if ij ∈ E). ρz ≡ ρx − ρy, therefore we have to prove zij ≤ ||ρz||1 for ij ∈ Ex,y. This
property indeed holds for every positive z with acyclic support.
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Consider a reverse topological ordering v1, . . . , vn of V , where vavb ∈ Ex,y implies a > b. For
the arc ij ∈ Ex,y, let i = vt′ and j = vt (t′ > t). Let Vt = {v1, . . . , vt}. Vt is a directed cut in Ex,y,
thus ∑

a>t≥b
zvpvq =

∑
p≤t

ρz(vp).

As z is positive on all arcs, this implies zvavb ≤
∑

p≤t ρz(vp) ≤ ||ρz||1 for all such arcs, in particular,
for ij.

Claim 5.7. If f and f̂ are F -pseudoflows with f̂ij = 0 for ij ∈ E \ F , and f is (∆, F )-feasible,

then f̂ is (∆ + ||f − f̂ ||∞, F )-feasible.

Proof. There is a potential π so that f and π satisfy (7), that is, πj−πi ≤ C ′ij(fij+∆) if ij ∈ EFf (∆).

For α = ||f − f̂ ||∞, we have fij + ∆ ≤ f̂ij + ∆ + α. Consequently, (7) is satisfied for (f̂ij , π) and
∆ + α for every arc in EFf (∆).

By the assumption that f̂ is zero outside F , we have EF
f̂

(∆ + α) = E ∪
←−
F ⊆ EFf (∆) and thus

the claim follows.

Proof of Lemma 5.4. When Trial-and-Error is applied, f is (∆, F )-feasible with some potential
π and Exb(f) ≤ n∆. We claim that there is an F -tight f̄ so that |f̄ij − fij | ≤ ∆ for every ij ∈ F ,
and Exb(f̄) ≤ (2n+m+ 2)m∆.

Indeed, (∆, F )-feasibility gives

C ′ij(fij −∆) ≤ πj − πi ≤ C ′ij(fij + ∆) ∀ij ∈ F.

If ij is a free arc (that is, differentiable on the entire R), then C ′ij is continuous, so there must be
a value fij −∆ ≤ β ≤ fij + ∆ with C ′ij(β) = πj − πi. This also holds if ij is a restricted arc, since
by Claim 5.3, fij ≥ 0 and C ′ij is continuous on (max{0, fij −∆}, fij + ∆), and C ′ij(0) = −∞. Let

us set f̄ij = β. This increases Exb(f) by at most |F |∆.
Let us set f̄ij = 0 for ij ∈ E \ F . Note that fij ≤ (2n + m + 1)∆ if ij /∈ F (every arc with

fij > (2n + m + 1)∆ is either added to F or is modified to fij = 0 in the subroutine Extend).
Further, Exb(f) ≤ n∆, and thus we obtain an F -tight f̄ with

Exb(f̄) ≤ n∆ + |F |∆ + (2n+m+ 1)(m− |F |)∆
≤ (2n+m+ 2)m∆.

On the other hand, Exb(f̂) ≤ nDb(F ) ≤ n∆, since Exb̂(f̂) = 0 and b̂ is obtained from b by
modifying certain values by ≤ Db(F ). Consequently,

||ρf̄ − ρf̂ ||1 ≤ ||ρf̄ − b||1 + ||ρf̂ − b||1 = 2Exb(f̄) + 2Exb(f̂) ≤ 2(2n+m+ 3)m∆.

Applying Lemma 5.6 for x = f̄ and y = f̂ gives ||f̄ − f̂ ||∞ ≤ 2(2n + m + 3)m∆. Now f̄ is
2(2n+m+ 4)m∆-feasible by Claim 5.7.

Theorem 5.8. Let ρS(n,m) be the running time needed for one shortest path computation. Then
the running time of the algorithm is bounded by

O((n+mN )(ρT (n,m) + ρE(n,m)) + (n+mN )2ρS(n,m) logm).
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Proof. By Theorem 5.5, there are at most (n + mN ) logm scaling phases, each dominated by
O(n + mN ) shortest path computations. The subroutine Trial-and-Error is performed only
when F is extended, that is, at most n + mN times, and performs the subroutines Trial and
Error.

We may not use O(log n) = O(logm) as the graph is allowed to contain parallel arcs.

5.1 Shortest path computations

For the sake of efficiency, we shall maintain a potential vector π during the entire algorithm such
that (f, π) satisfies the condition (7) on (∆, F )-feasibility.

For the initial ∆ value, ∆ ≥ err∅(0), and the latter value is computed by Error(0, ∅). This
means that f = 0 is (∆, ∅)-feasible. Similarly, after every successful trial we have a new flow f
and value ∆ ≥ errF (f), computed by Error(f, F ). In the applications, this subroutine will also
return a potential vector π such that (f, π) satisfies (7).

Alternatively, such a potential vector may be obtained by the standard label correcting algo-
rithm (see [1, Chapter 5.5]), since it is a dual proof of the fact that the graph EFf (∆) contains no
negative cycles with respect to the cost function C ′ij(fij + ∆); we have access to these values via
the value oracle in Assumption 1.

In the main part of the ∆-phase, we may apply Dijkstra’s algorithm (see [1, Chapter 4.5])
to compute shortest paths. This needs a nonnegative cost function, but instead of the original
C ′ij(fij + ∆) that may take negative values, we shall use C ′ij(fij + ∆) − πj + πi, a nonnegative
function by (7); the set of shortest paths is identical for the two costs. This subroutine can be
implemented by updating the potentials π such that finally we get C ′ij(fij + ∆) = πj − πi on
every arc of every shortest path. For the sake of completeness, we describe this subroutine in the
Appendix.

As shown in the proof of Lemma 5.1(ii), sending ∆-units of flow on a shortest path maintains
(7) for (f, π). It is also maintained in Extend(∆, f, F ) since flow values are modified only on arcs
with C ′ij constant. Finally, Adjust(∆/2, f, F ) modifies the flow so that (7) is maintained for the
same π and ∆/2 by Lemma 4.4.

Let us now explore the relation to Assumption 1. In both applications, we shall verify that
the subroutine Trial-and-error returns a rational flow vector f and a rational value ∆. Since
flow will always be modified in units of ∆ in all other parts of the algorithm, we may conclude
that a rational f will be maintained in all other parts. Under Assumption 1(a) (i.e., quadratic
objectives), we shall maintain a rational potential vector π, while under Assumption 1(b) (i.e.,
Fisher markets), we shall maintain the rationality of the eπi values; during the computations, we
shall use the representation of these values instead of the original π. For this aim, we will use a
multiplicative version of Dijkstra’s algorithm, also described in the Appendix. We shall also verify
that in the corresponding applications, the subroutine Error(f, F ) returns a potential vector π so
that (f, π) satisfies (7), with the πi or the eπi values being rational, respectively.

Finally, it is easy to verify that whereas we are working on a transformed uncapacitated instance,
we may use the complexity bound of the original instance, as summarized in the following remark.

Remark 5.9. A shortest path computation can be performed in time ρS(n,m) = O(m + n log n)
using Fibonacci heaps, see [9]. Recall that the original problem instance was on n′ nodes and m′

arcs, and it was transformed to an uncapacitated instance on n = n′ + m′ nodes and m = 2m′

arcs. However, as in Orlin’s algorithm [29], we can use the bound O(m′ + n′ log n′) instead of
O(m′ + m′ log n′) because shortest path computations can be essentially performed on the original
network.
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6 Applications

6.1 Quadratic convex costs

Assume that Cij(α) = cijα
2 + dijα for each ij ∈ E, with cij ≥ 0. This clearly satisfies Assump-

tion 1(i) since C ′ij(α) = 2cijα+ dij . Also, Assumption 2 is satisfied: ij is linear if cij = 0.
The subroutine Trial(F, b) can be implemented by solving a system of linear equations.

πj − πi = 2cijxij + dij ∀ij ∈ F∑
j:ji∈F

xji −
∑
j:ij∈F

xij = bi ∀i ∈ V (10)

xij = 0 ∀ij ∈ E \ F

Assumption 3 is verified by the next claim.

Lemma 6.1. If F is linear acyclic and Db(F ) = 0, then (10) is feasible and a solution can be
found in ρT (n,m) = O(n2.37) time.

Proof. Clearly, we can solve the system separately on different undirected connected components of
F . In the sequel, let us focus on a single connected component; for simplicity of notation, assume
this component is the entire V .

Consider first the case when all arcs are linear. Then we can solve the equalities corresponding
to edges and nodes separately. As F is assumed to be linear acyclic, it forms a tree. If we fix one
πj value arbitrarily, it determines all other πi values by moving along the edges in the tree. The
xij ’s can be found by solving a flow problem on the same tree with the demands bi. This is clearly
feasible by the assumption Db(F ) = 0, that is,

∑
i∈V bi = 0 (note that we do not have nonnegativity

constraints on the arcs). Both tasks can be performed in linear time.
Assume next both linear and nonlinear arcs are present, and let T be an undirected connected

component of linear arcs. As above, all πj − πi values for i, j ∈ T are uniquely determined. If
there is a nonlinear arc ij ∈ F with i, j ∈ T , then xij = (πj − πi − dij)/(2cij) = α is also uniquely
determined. We can remove this edge by replacing bi by bi + α and bj by bj − α. Hence we may
assume that the components of linear arcs span no nonlinear arcs.

Next, we can contract each such component T to a single node t by setting bt =
∑

i∈T bi and
modifying the dij values on incident arcs appropriately. A solution to the contracted problem can
be easily extended to the original instance.

For the rest, we can assume all arcs are nonlinear, that is, cij > 0 for all ij ∈ F . Let A be the
node-arc incidence matrix of F : Ai,ij = −1, Ai,ji = 1 for all ij ∈ F , and all other entries are 0. Let
C be the |F | × |F | diagonal matrix with Cij,ij = −2cij . (10) can be written in the form(

AT C
0 A

)
(π, x) =

(
d
b

)
.

This can be transformed into (
AT C
L 0

)
(π, x) =

(
d
b′

)
,

where L is the weighted Laplacian matrix with Lii =
∑

j:ij∈
←→
F

1
2cij

, Lij = Lji = − 1
2cij

if ij ∈ F and

Lij = 0 otherwise, and b′ is an appropriate vector with
∑

i∈V b
′
i = 0.

The main task is to solve the system Lπ = b′. It is well-know (recall that V is assumed to be
a single connected component) that L has rank |V | − 1 and the system is always feasible whenever
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∑
i∈V b

′
i = 0. A solution can be found in O(n2.37) time [3]. All previously described operations

(eliminating nonlinear arcs spanned in components of linear arcs, contracting components of linear
arcs) can be done in O(m) time, hence the bound ρT (n,m) = O(n2.37).

To implement Error(f, F ), we have to find the minimum ∆-value such that there exists a π
potential with

πj − πi ≤ (2cijfij + dij) + 2cij∆ ∀ij ∈ E ∪
←−
F . (11)

We show that this can be reduced to the minimum-cost-to-time ratio cycle problem, defined as
follows (see [1, Chapter 5.7]). In a directed graph, there is a cost function pij and a time τij ≥ 0 as-
sociated with each arc. The aim is to find a cycle C minimizing (

∑
ij∈C pij)/(

∑
ij∈C τij). A strongly

polynomial algorithm was given by Megiddo [23, 24] that solves the problem in min{O(n3 log2 n), O(n log n(n2+
m log log n))} time. The problem can be equivalently formulated as

minµ s. t. there are no negative cycles

for the cost function pij + µτij . (12)

Our problem fits into this framework with pij = 2cijfij + dij and τij = 2cij . In (12), the optimal µ
value is −∆. However, [23] defines the minimum ratio cycle problem with τij > 0 for every ij ∈ E.
This property is not essential for Megiddo’s algorithm, which uses a parametric search method for
µ to solve (12) under the only (implicit) restriction that the problem is feasible.

In our setting τij > 0 holds for nonlinear arcs, but τij = 0 for linear arcs. Also, there can be
cycles C with

∑
ij∈C τij = 0. (This can happen even if F is linear acyclic, as C can be any cycle in

E ∪
←−
F .) If we have such a cycle C with

∑
ij∈C pij < 0, then (12) is infeasible. In every other case,

the problem is feasible and thus Megiddo’s algorithm can be applied.
For this reason, we first check whether there is a negative cycle with respect to the pij ’s in the

set of linear arcs in E ∪
←−
F . This can be done via the label correcting algorithm in O(nm) time

([1, Chapter 5.5]). If there exists one, then (11) is infeasible, thus errF (f) = ∆ = ∞, and (P) is
unbounded as we can send arbitrary flow around this cycle. Otherwise, we have

∑
ij∈C τij > 0 for

every cycle with
∑

ij∈C pij < 0, and consequently, there exists a finite ∆ satisfying (11).

Consequently, ρT (n,m) = min{O(n3 log2 n), O(n log n(n2 + m log logn))}. Theorem 5.8 gives
the following running time bound.

Theorem 6.2. For convex quadratic objectives on an uncapacitated instance on n nodes and m
arcs, the algorithm finds an optimal solution in O(m(n3 log2 n + m logm(m + n log n))). For a
capacitated instance, the running time can be bounded by O(m4 logm).

The bottleneck is clearly the m minimum-cost-to-time computations. As in Remark 5.9, it is
likely that one can get the same running time O(m(n3 log2 n+m logm(m+n log n))) for capacitated
instances via a deeper analysis of Megiddo’s algorithm.

Let us verify that the algorithm is strongly polynomial. It uses elementary arithmetic operations
only, and the running time is polynomial in n and m, according to the above theorem. It is left
to verify property (iii): if all numbers in the input are rational, then every number occurring in
the computations is rational and is of size polynomially bounded in the size of the input. At the
initialization and in every successful trial, we compute a new flow f by solving (10) as described
in Lemma 6.1, and compute the new ∆ and π values by Megiddo’s algorithm. These are strongly
polynomial subroutines and return rational values of size polynomially bounded in the input. In
phases between the initialization and the first successful trial, and between any two later successful
trials, ∆ is always decreased by a factor of 2 between two phases, and f is modified on every arc by
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±∆ in a path augmentation. The π values are updated by the Dijkstra subroutine described in the
Appendix. All these updates keep rationality if the input is rational. Since the number of phases
between two successful trials is O(logm), the sizes of numbers remain polynomially bounded.

6.2 Fisher’s market with linear utilities

In the linear Fisher market model, we are given a set B of buyers and a set G of goods. Buyer i
has a budget mi, and there is one divisible unit of each good to be sold. For each buyer i ∈ B and
good j ∈ G, Uij ≥ 0 is the utility accrued by buyer i for one unit of good j. Let n = |B|+ |G|; let
E be the set of pairs (i, j) with Uij > 0 and let m = |E|. We assume that there is at least one edge
in E incident to every buyer and to every good.

An equilibrium solution consist of prices pi on the goods and an allocation xij , so that (i) all
goods are sold, (ii) all money of the buyers is spent, and (iii) each buyer i buys a best bundle of
goods, that is, goods j maximizing Uij/pj .

The classical convex programming formulation of this problem was given by Eisenberg and Gale
[7]. Recently, Shmyrev [32] gave the following alternative formulation. The variable fij represents
the money paid by buyer i for product j.

min
∑
i∈G

pj(log pj − 1)−
∑
ij∈E

fij logUij∑
j∈G

fij = mi ∀i ∈ B∑
i∈B

fij = pj ∀j ∈ G

fij ≥ 0 ∀ij ∈ E

Let us construct a network on node set B ∪G∪{t} as follows. Add an arc ij for every ij ∈ E, and
an arc jt for every j ∈ G. Set bi = −mi for i ∈ B, bj = 0 for j ∈ G and bt =

∑
i∈Bmi. Let all

lower arc capacities be 0 and upper arc capacities ∞. With pj representing the flow on arc jt, the
above formulation is a minimum-cost flow problem with separable convex objective. (The arc jt is
restricted, with extending the functions pj(log pj − 1) to take value 0 in 0 and ∞ on (−∞, 0). All
other arcs are free; indeed, they are linear.) In this section, the convention pj = fjt shall be used
for some pseudoflow f in the above problem.

Let us justify that an optimal solution gives a market equilibrium. Let f be an optimal solution
that satisfies (3) with π : B ∪ G ∪ {t} → R. We may assume πt = 0. C ′jt(α) = logα implies
πj = − log pj . On each ij ∈ E we have πj − πi ≤ − logUij with equality if fij > 0. With βi = eπi ,
this is equivalent to Uij/pj ≤ βi, verifying that every buyer receives a best bundle of goods.

Assumption 1(b) is valid, since the derivatives on arcs ij between buyers and goods are − logUij ,
while on an arc jt it is log fjt. Assumption 2 is straightforward.

Let us turn to Assumption 3. When the subroutine Trial is called, we transform b to b̂ by
changing the value at one node of each component K of F . For simplicity, let us always modify bt
if t ∈ K. We shall verify Assumption 3 only for such b̂’s; the argument can easily be extended to
arbitrary b̂ (although it is not necessary for the algorithm). Let us call the component K containing
t the large component.

In Trial(F ), we want to find a potential π : B ∪G∪{t} → R∪{∞}, money allocations fij for
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ij ∈ F , i ∈ B, j ∈ G, and prices pj = fjt for jt ∈ F such that

πj − πi = − logUij ∀ij ∈ F, i ∈ B, j ∈ G
πt − πj = log pj ∀jt ∈ F

pj =
∑

i∈B,ij∈F
fij ∀jt ∈ F

pj = −b̂j +
∑

i∈B,ij∈F
fij ∀jt ∈ E \ F

We may again assume πt = 0. Let Pj = e−πj for j ∈ G and Ri = eπi for i ∈ B. With this notation,
Uij/Pj = Ri for ij ∈ F . If jt ∈ F , then Pj = pj .

Finding f and π can be done independently on the different components of F . For any com-
ponent different from the large one, all edges are linear. Therefore we only need to find a feasible
flow on a tree, and independently, Pj and Ri values satisfying Uij/Pj = Ri on arcs ij in this com-
ponent. Both of these can be performed in linear time in the number of edges in the tree. Note
that multiplying each Pj by a constant α > 0 and dividing each Ri by the same α yields another
feasible solution.

Let T1, . . . , Tk be the components of the large component after deleting t. If T` contains a single
good j, then we set pj = Pj = 0 (πj = 0). If T` is nonsingular, then F restricted to T` forms a
spanning tree. The equalities Uij/Pj = Ri uniquely define the ratio Pj/Pj′ for any j, j′ ∈ G ∩ T`.
Using that pj = Pj and

∑
i∈B∩T` mi =

∑
j∈G∩T` pj , this uniquely determines the prices in the

component. Then the edges in F simply provide the allocations fij . All these computations can
be performed in ρT (n,m) = O(m) time.

For Assumption 4, we show that Error(f, F ) can be implemented based on the Floyd-Warshall
algorithm (see [1, Chapter 5.6]). Let π be the potential witnessing that f is (∆, F )-feasible. As-
suming πt = 0, and using again the notation Pj = e−πj for j ∈ G and Ri = eπi for i ∈ B, we
get

Uij/Pj ≤ Ri if i ∈ B, j ∈ G, ij ∈ E, with equality if ji ∈ EFf . (13)

Furthermore, we have pj −∆ ≤ Pj ≤ pj + ∆ if pj > 0 and Pj ≤ ∆ if pj = 0.
Let us now define β : G×G→ R as

βjj′ = max

{
Uij′

Uij
: i ∈ B, ji, ij′ ∈ EFf

}
.

If no such i exists, define βjj′ = 0; let βjj = 1 for every j ∈ G.

Claim 6.3. Assume we are given some Pj values, j ∈ G. There exists Ri values (i ∈ B) satisfying
(13) if and only if Pj′ ≥ Pjβjj′ holds for every j, j′ ∈ G.

Proof. The condition is clearly necessary by the definition of βjj′ . Conversely, if this condition
holds, setting Ri = maxj∈G Uij/Pj does satisfy (13).

If there is a directed cycle C with Πab∈Cβab > 1, then f cannot be (∆, F )-feasible for any ∆.
Otherwise, we may compute β̃jj′ as the maximum of Πab∈Pβab over all directed paths P in EFf from
j to j′ (setting the value 0 again if no such path exists). This can be done by the multiplicative
version of the Floyd-Warshall algorithm in O(n3) time (note that this is equivalent to finding
all-pair shortest paths for − log βab).
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For (∆, F )-feasibility, we clearly need to satisfy

(pj −∆)β̃jj′ ≤ Pj β̃jj′ ≤ Pj′ ≤ pj′ + ∆.

Let us define ∆ as the smallest value satisfying all these inequalities, that is,

∆ = max

{
0, max
j,j′∈G

pj β̃jj′ − pj′
β̃jj′ + 1

}
. (14)

We claim that f is (∆, F )-feasible with the above choice. For each j ∈ G, let Pj = maxh∈G β̃hj(ph−
∆). It is easy to verify that these P values satisfy Pj′ ≥ Pjβjj′ , and pj −∆ ≤ Pj ≤ pj + ∆. The
condition (13) follows by Claim 6.3.

The complexity of Error(f, F ) is dominated by the Floyd-Warshall algorithm, O(n3) [8]. The
problem is defined on an uncapacitated network, with the number of nonlinear arcs mN = |G| < n.
Thus Theorem 5.8 gives the following.

Theorem 6.4. For Fisher’s market with linear utilities, the algorithm finds an optimal solution in
O(n4 + n2(m+ n log n) log n).

The algorithm of Orlin [30] runs in O(n4 log n) time, assuming m = O(n2). Under this assump-
tion, we get the same running time bound.

To prove that the algorithm is strongly polynomial, let us verify the nontrivial condition (iii).
As discussed in Section 5.1, if the input is rational, we shall maintain that f , ∆ and the eπi values
are rational; the latter are used in the computations instead of the πi’s. At the initialization and in
every successful trial, the subroutines described above are strongly polynomial and therefore return
rational f , ∆ and eπi values, of size polynomially bounded in the input (note that the eπi values
above are denoted by Pi for i ∈ G and Ri for i ∈ B, and eπt = 1). Between two successful trials,
∆ is always divided by two between two phases and the path augmentations change f by ±∆; the
multiplicative Dijkstra algorithm described in the Appendix also maintains rational eπi values. The
sizes of the numbers remain polynomially bounded in n and m since the number of phases between
two successful trials is O(logm).

6.3 Fisher’s market with spending constraint utilities

The spending constraint utility extension of linear Fisher markets was defined by Vazirani [36].
In this model, the utility of a buyer decreases as the function of the money spent on the good.

Formally, for each pair i and j there is a sequence U1
ij > U2

ij > . . . > U
`ij
ij > 0 of utilities with

numbers L1
ij , . . . , L

`j
ij > 0. Buyer i accrues utility U1

ij for every unit of j he purchased by spending

the first L1
ij dollars on good j, U2

ij for spending the next L2
ij dollars, etc. These `ij intervals

corresponding to the pair ij are called segments. `ij = 0 is allowed, but altogether at least one
segment is required to be incident to each good i and to each buyer j. Let n = |B|+ |G| denote the
total number of buyers and goods, and m denote the total number of segments. Note that m > n2

is also possible.
No extension of the Eisenberg-Gale convex program is known to capture this problem. The

existence of a convex programming formulation is left as an open question in [36]. This was settled
by Devanur et al. [2], giving a convex program based on Shmyrev’s formulation. Let fkij represent
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the money paid by buyer i for the k’th segment of product j, 1 ≤ k ≤ `ij .

min
∑
i∈G

pj(log pj − 1)−
∑

i∈B,j∈G,1≤k≤`ij

fkij logUkij∑
j∈G,1≤k≤`ij

fkij = mi ∀i ∈ B∑
i∈B,1≤k≤`ij

fkij = pj ∀j ∈ G

0 ≤ fkij ≤ Lkij ∀ij ∈ E.

This gives a convex cost flow problem again on the node set B ∪G∪ {t}, by adding `ij parallel
arcs from i ∈ B to j ∈ G, and arcs jt for each j ∈ G. The upper capacity on the k’th segment
for the pair ij is Lkij . To apply our method, we first need to transform it to an equivalent problem
without upper capacities. This is done by replacing the arc representing the k’th segment of ij by a
new node (ij, k) and two arcs i(ij, k) and j(ij, k). The node demand on the new node is set to Lkij ,

while on the good j, we replace the demand 0 by −
∑

i,k L
k
ij , the negative of the sum of capacities

of all incident segments. The cost function on i(ij, k) is − logUkijα, while the cost of j(ij, k) is 0.
Let S denote the set of the new (ij, k) nodes. This modified graph has n′ = n+m+ 1 nodes and
m′ = 2m+ |G| arcs.

Assumptions 1 and 2 are satisfied the same way as for linear Fisher markets, using an oracle
for the eC

′
ij(α) values.

In Trial(F ), we want to find an F -tight flow f ′ on the extended network, witnessed by the
potential π : B ∪ S ∪G ∪ {t} → R. We may assume πt = 0. Let Pj = e−πj for j ∈ G and Ri = eπi

for i ∈ B and Skij = e−π(ij,k) . For the k’th segment of ij, Ukij/S
k
ij = Ri if i(ij, k) ∈ F and Skij = Pj

if (ij, k)j ∈ F .
As for linear Fisher markets, if a component of F does not contain t, we can simply compute

all potentials and flows as F is a spanning tree of linear edges in this component.
For the component K with t ∈ K, let T` be a component of K− t. F is a spanning tree of linear

edges in T` as well, therefore the ratio Pj/Pj′ is uniquely defined for any j, j′ ∈ G∩T`. On the other
hand, we must have Pj = pj , and we know that

∑
j∈G∩T` pj = −

∑
v∈T` bv by flow conservation.

These determine the Pj = pj values, and thus all other Ri and Skij values in the component as well.
The support of the flow fij is a tree and hence it can also easily computed. The running time of
Trial is again linear, ρT (n′,m′) = O(m′) = O(m).

Error(f, F ) can be implemented the same way as for the linear Fisher market. We shall define
the values β : G×G→ R so that Pj′ ≥ Pjβjj′ must hold, and conversely, given Pj prices satisfying
these conditions, we can define the Ri and Skij values feasibly. Let

βjj′ = max
{Uk′ij′
Ukij

: i ∈ B,

j(ij, k), (ij, k)i, i(ij′, k′), (ij′, k′)j′ ∈ EFf
}
.

Given these βjj′ values, the β̃jj′ values can be computed by the Floyd-Warshall algorithm and the
optimal ∆ obtained by (14) as for the linear case.

Finding the βjj′ values can be done in O(m′) time, and the Floyd-Warshall algorithm runs in
O(|G|3). This gives ρE(n′,m′) = O(m′ + |G|3) = O(m + n3). From Theorem 5.8, together with
Remark 5.9, we obtain:
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Theorem 6.5. For an instance of Fisher’s market with spending constraint utilities with n =
|B|+ |G| and m segments, the running time can be bounded by O(mn3 +m2(m+ n log n) logm).

It can be verified that the algorithm is strongly polynomial the same way as for the linear case.

7 Discussion

We have given strongly polynomial algorithms for a class of minimum-cost flow problems with
separable convex objectives. This gives the first strongly polynomial algorithms for quadratic
convex cost functions and for Fisher’s market with spending constraint utilities. For Fisher’s
market with linear utilities, we get the same complexity as in [30].

The bottleneck in complexity of all applications is the subroutine Trial. However, the exact
value of errF (f) is not needed: a constant approximation would also yield the same complexity
bounds. Unfortunately, no such algorithm is known for the minimum cost-to-time ratio cycle
problem that would have significantly better, strongly polynomial running time. Finding such an
algorithm would immediately improve the running time for quadratic costs.

A natural future direction could be to develop strongly polynomial algorithms for quadratic
objectives and constraint matrices with bounded subdeterminants. This would be a counterpart
of Tardos’s result [35] for linear programs. Such an extension could be possible by extending our
techniques to the setting of Hochbaum and Shantikumar [18].

The recent paper [38] shows that linear Fisher market, along with several extension, can be
captured by a concave extension of the generalized flow model. A natural question is if there is any
direct connection between the concave generalized flow model and the convex minimum cost flow
model studied in this paper. Despite certain similarities, no reduction is known in any direction.
Indeed, no such reduction is known even between the linear special cases, that is, generalized
flows and minimum-cost flows. The perfect price discrimination model [11], and the Arrow-Debreu
Nash-bargaining problem [37], are instances of the concave generalized flow model, but they are
not known to be reducible to convex cost flows. On the other hand, the spending constraint utility
model investigated in this paper is not known to be reducible to concave generalized flows.

The algorithm in [38] is not strongly polynomial. Moreover, no strongly polynomial algorithm
is known for linear generalized flows, despite the huge literature on polynomial time algorithms.
Developing a strongly polynomial algorithm for generalized flows is a fundamental open question.
Resolving it could lead to strongly polynomial algorithms for the market problems that fit into the
concave generalized flow model.

A related problem is finding a strongly polynomial algorithm for minimizing a separable convex
objective over a submodular polyhedron. Fujishige [10] showed that for separable convex quadratic
costs, this is essentially equivalent to submodular function minimization. Submodular utility al-
location markets by Jain and Vazirani [21] also fall into this class, and are solvable in strongly
polynomial time; see also Nagano [27]. Other strongly polynomially solvable special cases are given
by Hochbaum and Hong [14].

A common generalization of this problem and ours is minimizing a separable convex objective
over a submodular flow polyhedron. Weakly polynomial algorithms were given by Iwata [19] and by
Iwata, McCormick and Shigeno [20]. One might try to develop strongly polynomial algorithms for
some class of separable convex objectives; in particular, for separable convex quadratic functions.
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[34] É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–255, 1985.
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Appendix

In this Appendix we describe two versions of Dijkstra’s algorithm that are used for the shortest
path computations in our algorithm. This is an equivalent description of the well-known algorithm,
see e.g. [1, Chapter 4.5]. The first, standard version is shown on Figure 5. We start from a cost
function c on a digraph D = (V,A) and a potential vector π with cij−πj +πi ≥ 0 for every arc, and
two designated subsets S and T . The set R is initialized as R = S, and denotes in every iteration
the set of nodes that can be reached from S on a tight path, that is, all arcs of the path satisfying
cij − πj + πi = 0. Every iteration increases the potential on V \R until some new tight arcs enter.
We terminate once R contains a node in T ; a shortest path between S and T can be recovered
using the pointers pred(i).

In our algorithm, this subroutine will be applied if Assumption 1(i) holds. In the ∆-phase, we
apply it for the digraph EFf (∆) and the cost function cij = C ′ij(fij + ∆), and the potential π as in
the algorithm. Note that if the initial π is rational, and all cij values are rational, the algorithm
terminates with a π that is also rational. Assumption 1(i) guarantees that if fij and ∆ are rational
numbers, then so is cij .

Figure 6 shows a multiplicative version of Dijkstra’s algorithm. It is the same as the original one
after substituting cij = log γij and πi = logµi. This variant shall be applied under Assumption 1(ii).

We shall assume that every eπi value is rational, and set µi = eπi , and γij = eC
′
ij(fij+∆). The

assumption guarantees that if fij and ∆ are rational numbers, then so is γij . Consequently, the
rationality of the eπi values is maintained during the computations.
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Subroutine Dijsktra
INPUT A digraph D = (V,A), disjoint subsets S, T ⊆ V , a cost function c : A→ R

and a potential vector π : V → R with cij − πj + πi ≥ 0 for every ij ∈ A.
OUTPUT A shortest path P between a node in S and a node in T and a π′ : V → R

with cij − π′j + π′i ≥ 0 for every ij ∈ A, and equality on every arc of P .

R← S;
for i ∈ S do pred(i)← NULL;
while R ∩ T = ∅ do

α← min{cij − πj + πi : ij ∈ A, i ∈ R, j ∈ V \R};
for j ∈ V \R do πj ← πj + α;
Z ← {j ∈ V \R : ∃ij ∈ A, i ∈ R such that cij − πj + πi = 0};
for j ∈ Z do

pred(j)← i ∈ R such that ∃ij ∈ A : cij − πj + πi = 0;
R← R ∪ Z;

π′ ← π;

Figure 5:

Subroutine Multiplicative Dijsktra
INPUT A digraph D = (V,A), disjoint subsets S, T ⊆ V , a cost function γ : A→ R

and a potential vector µ : V → R with γij
µi
µj
≥ 1 for every ij ∈ A.

OUTPUT A shortest path P between a node in S and a node in T and a µ′ : V → R

with γij
µ′i
µ′j
≥ 1 for every ij ∈ A, and equality on every arc of P .

R← S;
for i ∈ S do pred(i)← NULL;
while R ∩ T = ∅ do

α← min{γij µiµj : ij ∈ A, i ∈ R, j ∈ V \R};
for j ∈ V \R do µj ← αµj ;
Z ← {j ∈ V \R : ∃ij ∈ A, i ∈ R such that γij

µi
µj

= 1};
for j ∈ Z do

pred(j)← i ∈ R such that ∃ij ∈ A : γij
µi
µj

= 1;

R← R ∪ Z;
µ′ ← µ;

Figure 6:
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