Strongly Polynomial Algorithm for a Class of
Minimum-Cost Flow Problems with Separable Convex
Objectives

*
Laszl6 A. Végh
College of Computing
Georgia Institute of Technology
Atlanta, GA

veghal@cs.elte.hu

ABSTRACT

A well-studied nonlinear extension of the minimum-cost flow
problem is to minimize the objective 37, . Ci;(fi;) over
feasible flows f, where on every arc ij of the network, Cj; is
a convex function. We give a strongly polynomial algorithm
for finding an exact optimal solution for a broad class of
such problems. The key characteristic of this class is that
an optimal solution can be computed exactly provided its
support.

This includes separable convex quadratic objectives and
also certain market equilibria problems: Fisher’s market
with linear and with spending constraint utilities. We thereby
give the first strongly polynomial algorithms for separable
quadratic minimum-cost flows and for Fisher’s market with
spending constraint utilities, settling open questions posed
e.g. in [15] and in [35], respectively. The running time is
O(m*logm) for quadratic costs, O(n*+n?(m-+nlogn)logn)
for Fisher’s markets with linear utilities and O(mn>+m?(m--
nlogn)logm) for spending constraint utilities.

Categories and Subject Descriptors

G.2.1 [Combinatorics]: [Combinatorial algorithms]; F.2
[Analysis of Algorithms and Problem Complexity]:
[General]

General Terms

Theory, Algorithms, Economics

Keywords

network flow algorithms, convex optimization, strongly poly-
nomial algorithms, market equilibrium

*Supported by NSF Grant CCF-0914732.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’12, May 19-22, 2012, New York, New York, USA.

Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

1. INTRODUCTION

The flow polyhedron is defined on a directed network
G = (V,E) by arc capacity and node demand constraints.
For feasible solutions f, we aim to minimize }_, ., Ci;(fi;),
where on each arc ij € E, Cj; is a differentiable convex
function. Assume that each C;; can be described by some
numerical parameters (for example, if Cyj(a) = ¢;;0° +d;ja,
then it is described by the values c¢;;,d;;). By a strongly
polynomial algorithm for such a problem, we mean the fol-
lowing: (i) the algorithm uses only elementary arithmetic
operations and comparisons; (ii) the number of these oper-
ations is bounded as a polynomial of the number of nodes
(n) and arcs of the network (m); (iii) if the input consists
of rational numbers, then the size of all numbers during the
computations is polynomially bounded in n, m, and the size
of the input numbers.

Flows with separable convex objectives are natural convex
extensions of minimum-cost flows with several applications
as matrix balancing or traffic networks, see [1, Chapter 14]
for further references. Polynomial-time combinatorial algo-
rithms were given by Minoux [25] in 1986, by Hochbaum
and Shantikumar [17] in 1990, and by Karzanov and Mc-
Cormick [21] in 1997. The latter two approaches are able
to solve even more general problems of minimizing a sepa-
rable (not necessarily differentiable) convex objective over
a polytope given by a matrix with a bound on its largest
subdeterminant. Both approaches give polynomial, yet not
strongly polynomial algorithms.

In contrast, for the same problems with linear objectives,
Tardos [33, 34] gave strongly polynomial algorithms. One
might wonder whether this could also be extended to the
convex setting. This seems impossible for arbitrary convex
objectives by the very nature of the problem: the optimal
solution might be irrational, and thus the exact optimum
cannot be achieved.

Beyond irrationality, the result of Hochbaum [15] shows
that it is impossible to find an e-approximate solution in
strongly polynomial time even for a network consisting of
parallel arcs between a source and a sink node and the Cj;’s
being polynomials of degree at least three. This is based
on Renegar’s [30] result showing the impossibility of finding
e-approximate roots of polynomials in strongly polynomial
time.

The remaining class of polynomial objectives with hope
of strongly polynomial algorithms is convex quadratic. For
these functions, the existence of a rational optimal solution is

always guaranteed. Granot and Skorin-Kapov [12] extended
Tardos’s method [34] to solving separable convex quadratic
optimization problems where the running time depends only
on the entries of the constraint matrix and the coefficients of
the quadratic terms in the objective. However, in a strongly
polynomial algorithm, the running time should only depend
on the matrix.

The existence of a strongly polynomial algorithm for the
quadratic flow problem thus remained an important open
question (mentioned e.g. in [15, 4, 16, 12, 32]). The sur-
vey paper [16] gives an overview of special cases solvable
in strongly polynomial time. This includes fixed number of
suppliers (Cosares and Hochbaum, [4]), and series-parallel
graphs (Tamir [32]). We resolve this question affirmatively,
providing a strongly polynomial algorithm for the general
problem in time O(m* logm).

There is an analogous situation for convex closure sets:
[15] shows that no strongly polynomial algorithm may exist
in general, but for quadratic cost functions, Hochbaum and
Queyranne gave a strongly polynomial algorithm [14].

An entirely different motivation of our study comes from
the field of market equilibrium algorithms. Devanur et al.
[5] developed a polynomial time combinatorial algorithm for
a classical problem in economics, Fisher’s market with linear
utilities. This motivated a line of research to develop combi-
natorial algorithms for other market equilibrium problems.
For a survey, see [27, Chapter 5] or [36]. All these problems
are described by rational convex programs. For the linear
Fisher market problem, a strongly polynomial algorithm was
given by Orlin [29].

To the extent of the author’s knowledge, this field has
been considered so far as an entirely new domain in com-
binatorial optimization. An explicit connection to classical
flow problems was pointed out in the recent paper [37]. It
turns out that the linear Fisher market, along with several
other problems, is captured by a concave extension of the
classical generalized flow problem, solvable by a polynomial
time combinatorial algorithm.

The paper [37] uses the convex programming formulation
of linear Fisher markets by Eisenberg and Gale [7]. An al-
ternative convex program for the same problem was given
by Shmyrev [31]. This formulation turns out to be a convex
separable minimum-cost flow problem. Consequently, equi-
librium for linear Fisher market can be computed by the
general algorithms [17] or [21] (with a final transformation
of a close enough approximate solution to the exact optimal
one).

The class of convex flow problems solved in this paper also
contains the formulation of Shmyrev, yielding an alterna-
tive strongly polynomial algorithm for linear Fisher market.
This formulation can be extended to spending constraint
utilities, a market defined by Vazirani [35]. For this prob-
lem, we obtain the first strongly polynomial algorithm. Our
running time bounds are O(n* + n?(m + nlogn)logn) for
linear and O(mn®+m?(m+nlogn)logm) for spending con-
straint utilities, with m being the number of segments in the
latter problem. Orlin [29] used the assumption m = O(n?)
and achieved running time O(n* logn), the same as ours un-
der this assumption. So far, no extensions of [29] are known
for other market settings. Using the general framework en-
ables a simpler treatment as in [29].

1.1 Prior work

For linear minimum-cost flows, the first polynomial time
algorithm was the scaling method of Edmonds and Karp [6].
The current most efficient strongly polynomial algorithm,
given by Orlin [28], is also based on this framework. On the
other hand, the algorithm of [6] has also been extended to
the convex minimum-cost flow problem, first by Minoux [24]
to convex quadratic flows, later to general convex objectives
(Minoux [25], Hochbaum and Shantikumar [17]). Our algo-
rithm is an enhanced version of these later algorithms, in the
spirit of Orlin’s technique [28]. However, there are impor-
tant differences that make the nonlinear setting significantly
harder. Let us remark that Orlin’s strongly polynomial al-
gorithm for linear Fisher market [29] is also based on the
ideas of [28]. To get an overview on linear and nonlinear
minimum-cost flow algorithms, we refer the reader to [1].

The algorithm of Edmonds and Karp consists of A-phases,
and the scaling factor A decreases at least by a factor of
two for the next phase. The elementary step of the A-phase
transports A units of flow from a node with excess at least
A to another with demand at least A. This is done on a
shortest path in the A-residual network, the graph of resid-
ual arcs with capacity at least A. An invariant property
maintained in the A-phase is that the A-residual network
does not contain any negative cost cycles. When moving
to the next phase, the flow on the arcs has to be slightly
modified to restore the invariant property.

Orlin’s algorithm [28] works on a problem instance with
no upper capacities on the arcs (every minimum-cost flow
problem can be easily transformed to this form). The basic
idea is that once an arc ij has flow at least 4nA in the A-
phase, then the flow on ij must be positive in some optimal
solution. Such an arc is called abundant. Using primal-dual
slackness, this means that 7§ must be tight for an arbitrary
dual optimal solution. It can be shown that within O(logn)
scaling phases, an abundant arc ¢j appears.

Based on this observation, one can obtain the following
simple algorithm. Let us contract ij, and restart the Ed-
monds-Karp algorithm in the smaller graph. Iterating this
method, we can find an optimal dual solution, which easily
enables to compute an optimal primal solution. Instead of
explicitly contracting and restarting, [28] (see also [1, Chap-
ter 10.7]) continues the scaling method after finding an abun-
dant arc, and maintains the forest F' of such arcs. A new arc
enters F' in O(logn) phases, and the running time can be
bounded by O(mlog n(m+nlogn)), so far the most efficient
minimum-cost flow algorithm known.

Let us now turn to the nonlinear setting. The Edmonds-
Karp algorithm naturally extends here (see [24, 25, 17]).
In the A-phase, the invariant is that the A-residual graph
contains no negative cycle for the linearization of the cost
function into A-chunks. That is, the cost of the arc ij is
defined as (Ci;(fi; + A) — Cs5(fi;))/A. When transporting
A-units of flow on a shortest path with respect to this cost
function, the invariant is maintained. A key observation is
that when moving to the A/2-phase, the invariant can be
restored by changing the flow on each arc by at most A/2.
As A approaches 0, the cost of ij converges to the derivative
Ci;(fi;). By the KKT conditions, a flow f is optimal if and
only if the residual graph contains no negative cycles for
the derivatives. A variant of this algorithm is outlined in
Section 3.

1.2 Our results

The class of problems where we give a strongly polynomial
algorithm is defined by four assumptions. We need to have
an oracle access to the derivatives of the C;;’s by Assump-
tion 1. The technical Assumption 2 restricts the problem
instances where each cost functions is either strictly convex
or linear.

Two main ingredients of the algorithm are black box sub-
routines provided by Assumptions 3 and 4. The first sub-
routine returns a solution that satisfies optimally the KKT-
conditions on a subset of edges. In particular, it returns an
optimal solution if the input is the support of an optimal
solution. For quadratic cost functions and for the Fisher
markets, this can be implemented by solving simple systems
of equations. The second is a technical subroutine measur-
ing the quality of a candidate solution, returning its distance
from optimality in a certain metric. This subroutine appears
to be the bottleneck in complexity: for quadratic costs, it
needs a minimum cost-to-time ratio cycle computation (also
known as the tramp steamer problem). For the Fisher mar-
kets, an all pairs shortest paths computation is performed.
The main result of the paper is the following.

THEOREM 1.1. Let Assumptions 1-4 hold for the problem
of minimizing 3=, . Cij (fij) over feasible flows f in a net-
work on n nodes and m arcs, my among them having non-
linear cost functions. Let pr(n,m) and pg(n,m) denote the
running time of the subroutines defined in Assumptions 3
and 4, and let ps(n,m) be the running time needed for a
single shortest path computation. Then an exact optimal so-
lution can be found in O((n +mn)(pr(n,m) + pe(n,m)) +
(n 4+ mn)2ps(n,m)logm) time.

This gives an O(m™ logm) algorithm for quadratic convex
objectives. For Fisher markets, we obtain O(n* + n?(m +
nlogn)logn) running time for linear and O(mn>+m?(m+
nlogn)logm) for spending constraint utilities.

We shall now outline the basic ideas of our strongly poly-
nomial algorithm. The problem is first transformed to an
instance with no upper bounds on the arcs. All cost func-
tions C;; are assumed to be differentiable. From a com-
plexity perspective, cost functions are provided via oracles
(Assumption 1), as in [17] and [21].

For simplicity of presentation, let us now assume that
there exists a unique optimal solution f*. We shall assume
that f* can be computed exactly (in particular, it is ratio-
nal). Let F'* denote the set of arcs ij with f7; > 0. By the
KKT conditions, m; — m; = Cj;(fij) for each ij € F* and
for the Lagrangian multipliers 7. Assumption 3 guarantees
that if we can somehow guess the set F'*, then we can obtain
the optimal f* by solving the above equality system.

Our starting point is the nonlinear scaling scheme as de-
scribed above, with the only difference that the linearized
cost function is replaced by C};(fi; + A). This has similar
properties but is easier to handle. As in [28], we can iden-
tify an abundant arc ij in O(logn) steps, which must be
contained in F*. However, contraction does not work. The
reason is that the KKT-conditions give m; —m; = Ci,(f5), a
condition containing both primal and dual (more precisely,
Lagrangian) variables simultaneously.

In each phase of the algorithm, we shall maintain a set
F C F™ of arcs, called revealed arcs. F will be extended
by a new arc in every O(logn) phases; thus we find F* in

O(mlogn) steps. We change the terminology from abun-
dant as they will not necessarily carry a huge amount of
flow. Indeed, for revealed arcs, we delete the lower capacity
and even allow the flow value to become negative. Accord-
ingly, we keep both ¢j and ji for ij € F in the set of residual
arcs.

The second important difference is that in contrast to Or-
lin’s algorithm, we cannot assume that F' is acyclic: there are
simple quadratic instances with the support of an optimal
solution containing cycles. In Orlin’s algorithm, progress is
always made by connecting two components of F. This will
also be an important event in our algorithm, but sometimes
F must also be extended with arcs inside a component.

At the end of each phase when F' is extended, we compute
the discrepancy of F', the maximum absolute value of the
sum of node demands in a component of F'. If this value is
large, then it can be shown that F' will be extended within
O(logn) phases as in Orlin’s algorithm.

If the discrepancy is small, the procedure TRIAL-AND-
ERROR is performed. We pretend that F' = F* and try to
compute an optimal solution f under this hypothesis, which
can be done by a subroutine guaranteed by Assumption 3.
If F C F*, then f is not optimal. Another subroutine, de-
scribed in Assumption 4, enables us to compute the smallest
A value for which f is A-feasible (that is, it satisfies the nec-
essary conditions for a A-phase), IfA < A/2, then we set A
as our next scaling value and f = f as the next pseudoflow.
Otherwise, the usual transition to phase A/2 is done with
keeping the same flow f. The analysis shows that a new arc
shall be revealed in every O(logn) phases. The key lemma
is a proximity result between f and f , which implies that
TRIAL-AND-ERROR cannot return the same f if performed
again after O(logn) phases, implying that the set F' cannot
be the same.

The paper is organized as follows. Section 2 contains the
basic definitions and notation. Section 3 presents the simple
adaptation of the Edmonds-Karp algorithm for convex cost
functions, following Minoux [25]. Our algorithm in Section 4
is built on this algorithm with the addition of the subrou-
tine TRIAL-AND-ERROR, that guarantees strongly polyno-
mial running time. Analysis is given in Section 5. Section 6
adapts the general algorithm for quadratic utilities, and for
Fisher’s market with linear and with spending constraint
utilities. Section 7 contains a final discussion of the results
and some open questions.

2. PROBLEM DEFINITIONS

Let G = (V, E) be a directed graph possibly containing
parallel arcs. Let n = |V|, m = |E|. We are given lower and
upper capacities £,u : E — R U {co} on the arcs, and node
demands b : V — R with Ziev b; = 0. On each arc ij € E,
Cij : (—00,00) = RU {00} is a convex function. Either it
is differentiable everywhere, or it is 0o on (—o0,¥;;) and is
differentiable on (¢;;,00). The minimum-cost flow problem
with separable convex objective is defined as follows.

min Z CIJ(LE”)

ijeE

Z fii— Z fij =bi VieV (P)
jijieE jujEE
&'j < fij < Wij Vij € E

Throughout the paper, we shall work with the uncapaci-
tated version, that is, £ = 0 and u = co. With a standard
method, every problem can be transformed to an equivalent
uncapacitated form. Indeed, let us replace each arc ij € E
by a path ikj of length 3, by introducing a new node k.
Let us set by = Uij — ei]‘, C; (a) = Cij(a +f¢j), ij = 0.
Furthermore, let us increase b; by ¢;; and decrease b; by
u;j. It is easy to see that this gives an equivalent optimiza-
tion problem, and if the original graph had n’ nodes and m’
arcs, the transformed instance has n = n’ + m’ nodes and
m = 2m’ arcs.

By a pseudoflow we mean a function f : E — R satisfying
the capacity constraints. For the uncapacitated problem, it
simply means f > 0. Let

pr(i) = > fii— > fus,

JiiEE o)
and let Ex(f) = Exy(f) = >,y max{ps(¢) — b;,0} denote

the total positive excess. For an arc set F', let ? denote the
set of backward arcs and let ? = FU F. We shall use the

vector norms ||z||cc = max |z;| and ||z||1 = 3 |24l
Following [17] and [21], we do not require the functions
Cij to be given explicitly, but assume oracle access only.

ASSUMPTION 1. For each arc ij, we are given a differen-
tial oracle that returns the value Ci; (o) in O(1) time for any
acR.

Note that we do not assume an evaluation oracle return-
ing Cj;(c). The main algorithm needs only access to a dif-
ferential oracle; however, the subroutines described in As-
sumptions 4 and 3 may need stronger oracles. For quadratic
objectives, the derivatives are linear functions, however, for
the market applications, we will have logarithmic deriva-
tives. As we shall argue in Section 6.2, in those settings,
access is provided to the exact values ecl{j((’), which is also
sufficient for all applications of the oracle, most importantly,
shortest path computations. Assumptions 2, 3, and 4 shall
be given in Section 4.

Given a pseudoflow f, let us define the residual graph Ey
by ij € Ey if ij € E, or ji € E and fj; > 0. Arcs of the
first type are called forward, those of the latter type back-
ward arcs. We use the convention that on a backward arc
ji, fii = —fij, Cji(a) = Cs;(—a), also convex and differen-
tiable. The residual capacity is oo on forward arcs and f;;
on the backward arc ji.

The Karush-Kuhn-Tucker conditions assert that the solu-
tion f to (P) is optimal if and only if there exists 7 : V — R
such that

m; —m < Ci;(fiy) Vij € Ey. (1)

For a value A > 0, let E¢(A) denote the subset of arcs in
E; that have residual capacity at least A (in particular, it
contains F). We say that the pseudoflow f is A-feasible, if
Ef(A) contains no negative cycles with respect to the cost
function Cj;(fi; + A). This is equivalent to the existence of
a potential 7 : V' — R so that

m —m < Ci(fig + D) Vij € Ef(A). (2)

If ji is a reverse arc, then this condition gives Cj; (fi; —A) <
m; — ;. This is different (and weaker) than the condition in
[25} and [17], where (C”(f” + A) — C”(f”))/A is used in
the place of CJ;(fi; + A).

The following lemma shows that a 2A-feasible pseudoflow
can be transformed to a A-feasible pseudoflow by small
changes on the arcs.

LEMMA 2.1. If the pseudoflow f is 2A-feasible, then there
exists a A-feasible pseudoflow f with fij — fi; € {0,£A} on
each ij € E. Consequently, Ex(f) < Ex(f) + mA.

Proor. Consider a potential 7 satisfying (2) with f and
2A. We want to prove that modifying f on each arc by +A
or 0 will give a solution f satisfying (2) with A and the same
.

Let ij € E be a forward arc. If the condition is violated on
ij, then Cj; (fi; +A) < 7j — ;. However, by 2A-feasibility
we know m; — m; < C;(fi; + 2A). These show that setting
fi; = fij + A satisfies (2) for both ij and ji, using that
Ci;(fis — A) < Ci(fiz) = Cij(fi; + A) < mj — mi.

In the sequel, assume that (2) holds for ij € E. If ji ¢
E7(A) or (2) holds for ji, then we set fi; = fi;. Assume
now ji € E7(A) but (2) is violated for ji, meaning m; —m; <
Ci;(fi; — A). Let us set fi; = fi; — A. ij satisfies (2) by
m; —mi < Cf(fij — D) < C(fig) = Ci;(fij + D). _

If ji € E7(2A), then we have Cj;(fi; — A) = Ci;(fis —
2A) < 7; — m;, and thus (2) also holds for ji. Finally, if
Jji € Ef(A) — Ef(2A), then ji ¢ Ef(A). O

The subroutine ADJUST(A) performs the simple steps of the
proof.

Finally, we may assume without loss of generality that
G = (V, E) is strongly connected. Indeed, we can add a new
node ¢t with edges vt, tv for any v € V, with extremely high
(possibly linear) cost functions on the edges. This guaran-
tees that an optimal solution shall not use such edges, when-
ever the problem is feasible. We will also assume n < m.

3. THE BASIC ALGORITHM

Let us now outline the (weakly) polynomial algorithm by
Minoux [25], a simple extension of the Edmonds-Karp algo-
rithm.

We start with the Ao-feasible solution f° = 0 with Ex(f°)
< (2n+m)Ag. The algorithm consists of A-phases, starting
with A = Ay, with A decreasing by exactly a factor of two
between two phases.

Each A-phase consists of a preprocessing part and a main
part. In the first, Ap-phase, no preprocessing is needed. In
each later phase, we start with a 2A-feasible pseudoflow f’.
We perform ADJUST(A) to obtain a A-feasible pseudoflow

7.

In the main part of phase A, let S(A) ={i € V : ps(i) —
bi > A} and T(A) = {i € V : ps(i) —b; < —A}. Aslong
as S(A) #£ 0, T(A) # 0, send A units of flow from a node
s € S(A) to anode t € T(A) on a shortest path in Ef (A)
with respect to the cost function Ci;(fi; +A). If S(A) =0
or T(A) = 0, we proceed to the next phase with scaling
factor A/2.

3.1 Analysis

We omit the proof of the following two simple lemmas;
their analogous counterparts for the enhanced algorithm will
be proved in Section 5.

LEMMA 3.1. (i) In the A-phase, the pseudoflow is an

integer multiple of A on each arc, and consequently,
Ef(A) = EY.

(ii) A-feasibility is maintained when augmenting on a short-
est path.

(i4i) At the beginning of the main part, Ex(f) < (2n+m)A,
and at the end, Ex(f) < nA.

(iv) The main part consists of at most 2n + m flow aug-
mentation steps.

LEMMA 3.2. Let f be the pseudoflow at the end of the A-
phase and f' in an arbitrary later phase. Then ||f — f'||oo <
2n+m+1)A. If fi; > 2n+m+1)A at the end of the A-
phase, then this property is maintained in all later phases,
and there exists an optimal solution f* with f; > 0.

4. THE ENHANCED ALGORITHM

4.1 Revealed arc sets
We investigate a slightly restricted class of functions Cj;.

ASSUMPTION 2. Each cost function Ci;(«) is either lin-
ear or strictly convex, that is, C{j (a) s either constant or
strictly monotone increasing.

Arcs with Cj;(a) linear are called linear arcs, the rest is
called nonlinear arcs. Let mr, and my denote their numbers,
respectively. We use the terms linear and nonlinear for the
reverse arcs as well.

Let F'* denote the set of arcs that are tight in every opti-
mal solution. Formally, ij € F* if for all pairs (f,7) satis-
fying (1), m; — m; = Ci;(fi;) holds. The next lemma shows
that F* contains the support of every optimal solution.

LEMMA 4.1. Let f be an arbitrary optimal solution to
(P), and fi; > 0 for some ij € E. Then ij € F*.

The proof needs the following notion, also used later. Let
z,y : E — R be two vectors. Let us define the difference
graph Dy, = (V,Egy) with ij € E,, if z;; > yi; or if
Tji < Yji-

PROOF OF LEMMA 4.1. Let f* be a different optimal so-
lution, and consider potentials 7 and 7* with both (f,n)
and (f*,7") satisfying (1). If f7; > 0, then ji € Ey« and
thus 7 — 7} = Ci;(f7;) must hold.

Assume now f;; = 0. Consider the difference graph Dy, .
Since fi; > f;, it follows that ij € Ey y«. Because of py« =
ps, By ¢+ must contain a cycle C containing ij. For every
arc ab € C, fq > fip and thus ab € Ey« and ba € Ef. By
(1),

0=> m—m <> Culfu)and

abeC abeC

0= Z Ta — Th < Z Cl/m(fba) = - Z Ctlzb(fab)'

abeC abeC abeC

Since each function Cyp is convex, fap > fip, gives Cly(fab) >
! o(f2). In the above inequalities, equality must hold ev-
erywhere, implying 7} — n} = Cj;(f7;) as desired. O

We shall see that under Assumption 3, finding the set F*
enables us to compute an optimal solution. In the basic al-
gorithm, F' = {ij € E : fi; > (2n+m + 1)A} is always a

subset of F* by Lemma 3.2. Furthermore, once an edge
enters F, it stays there in all later phases. Yet there is no
guarantee (and it is in fact not true) that in the basic algo-
rithm, F' is extended in some number of steps polynomially
bounded in n and m. We shall modify the algorithm in or-
der to guarantee that within O(logn) phases, a new arc is
guaranteed to enter F'.

In each step of the enhanced algorithm, there will be an
arc set F, called the revealed arc set, which is guaranteed
to be a subset of F*. We remove the lower capacity 0 from
arcs in F' and allow also negative values here.

Formally, a vector f : E — R is an F-pseudoflow, if fi; >
0 for ij € E — F (but it is allowed to be negative on F).

For such an f, let us define E}w =FE;UF. Ifij € F, then
the residual capacity of ji is co. We shall maintain an F-
pseudoflow when F C F* is the set of revealed arcs in some
phase of the algorithm.

We say that f : E — R is F-optimal, if it is an F-
pseudoflow with Exzy(f) = 0 and there exists 7 : V. — R
with

mj —mi < Ciy(fiy) Vij € Ef. (3)
The definition of F* implies that any optimal f* is also F-
optimal if F* C F*. We shall prove that given an F-optimal
solution, we can easily find an optimal solution as well.

LEMMA 4.2. Assume that for a subset F C F*, an F-
optimal solution f is provided. Then an optimal solution to
(P) can be found by a mazimum flow computation. Further,
ij € F* whenever f;; > 0.

PrOOF. Assume (f,7) and (f,7) both satisfy (3). We
prove that (i) fi; = fi; whenever ij is a nonlinear arc;
and (i) if ij is a linear arc with fi; # fi;, then m; — m =
Ci;(fig) = Ci;(fig) = 75 — 7.

(%) immediately implies the second half of the claim as it
can be applied for an arbitrary optimal f*. The proof uses
the same argument as for Lemma 4.1.

W.lo.g. assume f;; > fi; for an arc ij, and consider the
difference graph D; 7. Since fi; > fis, 7 must be contained
on a cycle C' C Ey 7. For every arc ab € C, ab € E}F and

ba € E7 follows (using w C E? NEY). By (3),

0= Z Ty — Ta < Z Ciy(fap) and

abeC abeC
0= Z To — M < Z Cll)a(fba) = Z Cab(fab)~
abeC abeC abelC

Now convexity yields Cly(fap) = Chy(fap) for all ab € C.
Assumption 2 implies that all arcs in C' are linear, in partic-
ular, 4j. This immediately proofs (i). To verify (ii), observe
that all above inequalities must hold with equality.

This suggests the following simple method to transform
an F-optimal solution f to an optimal f*. For every non-
linear arc ij, we must have f; = fi;. On the set of linear
arcs satisfying m; — m; = C};(fi;), we can solve a feasible
circulation problem with node demands being the same as
the py (i) values, lower capacities 0 and upper capacities co.
The feasible solutions are precisely the optimal solutions.
Indeed, if f* is an optimal solution, then (3) and (i) imply
mj —m = Cf;(fiz) for all 45 with f7; > 0. O
Let I be the set of revealed arcs in the A-phase. We main-

tain an F-pseudoflow f, but instead of A-feasibility, we re-
quire the following slightly stronger property. Let E? (A)

denote the set of arcs in Ef with residual capacity at least
A. We say that the F-pseudoflow F' is (A, F)-feasible, if
Ef (A) contains no negative cycle with respect to the cost
function Cj;(fi; + A). Equivalently, there exists a potential
m:V — R so that

m —m < Cl(fiy +A) Vij € Ef (A). (4)

We shall also maintain that the set of revealed arcs, F' is
linear acylic, meaning that F' does not contain any cycle of
linear arcs.

4.2 Subroutine assumptions

Given the set F' C F™ of revealed arcs, we will try to find
out whether F' already contains the support of an optimal
solution. This motivates the following definition. We say
that the (not necessarily nonnegative) vector z : £ — R
is F-tight, if x;; = 0 whenever ij ¢ F and there exists a
potential 7 : V — R with

ﬂj—ﬂi=C£j(.Tij) V’L]EF (5)

For example, any optimal solution is F'*-tight by Lemma 4.1.
Notice that an F-tight vector f is not necessarily F-optimal
as (3) might be violated for edges in E — F and also since
Exy(f) > 0 is allowed. On the other hand, an F-optimal
set is not necessarily F-tight as it can be nonzero on E — F'.

Given F' and some node demands b : V — R, we would
like to find an F-tight « with Fx;(z) = 0. Let us define
the discrepancy Dy(F) of F as the maximum of |}, bil
over undirected connected components K of F. A trivial
necessary condition for solvability is D;(F) = 0.

ASSUMPTION 3. Assume we have a subroutine TRIAL(F, b)
so that for any linear acyclic ' C E and any vector b:V —
R satisfying Dy(F') = 0, it delivers an F-tight solution x
with Ex;(x) = 0 in running time pr(n, m).

For quadratic cost functions and also for Fisher markets, this
subroutine can be implemented by solving simple systems of
equations.

Consider now an F-tight f, and let

errp(f) = inf{A : f is (A, F)-feasible}.

Because of continuity, this infimum is actually a minimum
whenever the set is nonempty. If f is not (A, F')-feasible for
any A, then let errp(f) = co. f is F-optimal if and only if
f is a feasible flow (that is, Exy(f) = 0) and errp(f) = 0.
As f is assumed to be F-tight, Ef(A) =FU
arc set in (4) for any value of A.

, the same

ASSUMPTION 4. Assume a subroutine ERROR(f, F') is pro-
vided, that returns errp(f) for any F-tight pseudoflow f in
running time pg(n,m). Further, if errg(0) = oo, then (P)
is unbounded.

This subroutine seems significantly harder to implement for
the applications: we need to solve a minimum cost-to-time
ratio cycle problem for quadratic costs and all pairs shortest
paths for the Fisher markets.

4.3 Description of the enhanced algorithm

The algorithm starts with the (Ao, @))-feasible solution 0
with Fz(0) < (2n + mn)Ao. The appropriate value can be
chosen as Ag = max{erry(0), Ex,(0)/(2n + mn)}. By the
second part of Assumption 4, erry(0) must be finite or the
problem is unbounded. We initialize the revealed arc set
F=0.

The algorithm consists of A-phases, starting with A =
Ap. In the A-phase, we shall maintain a linear acyclic re-
vealed arc set ' C F*, and a (A, F)-feasible F-pseudoflow
f. Besides preprocessing and main part, the phases have a
third part, TRIAL-AND-ERROR, where the next value of A is
also determined.

No preprocessing is done in the Ag-phase. In a later phase,
either we have a A-feasible pseudoflow from the previous
phase, or the scaling factor in the previous phase was 2A,
and thus we have a 2A-feasible f. In the latter case, AD-
JUST(A) provides a A-feasible pseudoflow.

The main part of the A-phase is the same as in the basic
algorithm. Let S(A) = {i € V : ps(i) — by > A} and
T(A) ={i €V :ps(i) —b; < —A}. Aslong as S(A) # 0,
T(A) # 0, send A units of flow from a node s € S(A) to a
node t € T(A) on a shortest path in Ef (A) with respect to
the cost function C};(fi; + A).

After the main part is finished, EXTEND(F, f,A) adds
some arcs ij € E—F with fi; > (2n+m+1)A to F. We add
all nonlinear such j’s to F', and keep adding linear arcs as
long as the linear acyclic property is maintained. Consider
a linear arc 45, which is not admitted to F' because there

exists a path P C between ¢ and j. Then we reroute the
entire amount f;; of flow from ij to P.

If no new arc enters F', then we move to the next scaling
phase with the same f and set the scaling factor to A/2.
This is done also if F' is extended, but it still has a high
discrepancy: Dy(F) > A.

Otherwise, the subroutine TRIAL-AND-ERROR(F, f, A) de-
termines the next f and A. Based on the arc set I, we find
a new F-pseudoflow f and scaling factor at most A/2. The
subroutine may also terminate with an F-optimal solution,
which enables us to find an optimal solution to (P) by a
maximum flow computation due to Lemma 4.2.

Algorithm ENHANCED CONVEX FLOW
[0; A <= max{errg(f), Exp(f)/(2n +mn)};
F 0
repeat //A-phase
if f is not A-feasible then ADJUST(A);
do //main part
S(A) {i € V:ps(i) —b; > A}
TA) <+ {1 eV :ps(i) — b < —A};
P < shortest s — t path in E}J
with s € S(A), t € T(A);
send A units on P from s to t;
while S(A), T(A) # 0;
EXTEND(F, f, A);
if F was extended and (Dy(F) < A)
then TRIAL-AND-ERROR(F, f, A)
else A + A/2;

The Trial-and-Error subroutine

The subroutine assumes that the discrepancy of F' is small:
Dy(F) < A.

Step 1. First, modify b to b: in each (undirected) compo-
nent K of F', pick a node j € K and change b; by — 3, bi;

leave all other b; values unchanged. Thus we get a b with
D;(F) = 0. TRIAL(F, b) returns an F-tight vector f.

Step 2. Call the subroutine ERROR(f,). If b = b and
errF(f) = 0, then f is F-optimal. By Lemma 4.2, an op-
timal solution to (P) can be found by a single maximum
flow computation. In this case, the algorithm terminates. If
errr(f) > A/2, then keep the original f, and go to the next
scaling phase with scaling factor A/2. Otherwise, set f = f
and define the next scaling factor as

Anert = max{errr(f), Exs(f)/(2n + mn)}.

5. ANALYSIS

TRIAL-AND-ERROR replaces f by f if errp(f) < A/2 and
keeps the same f otherwise. The first case will be called a
successful trial, the latter is unsuccessful. The following is
(an almost identical) counterpart of Lemma 3.1.

LEMMA 5.1. (i) In the A-phase, the F-pseudoflow f is
an integer multiple of A on each arc ij € E — F, and
consequently, Ef? (A) = Ef

(ii) (A, F)-feasibility is maintained in the main part and
in subroutine EXTEND(F, f, A).

(ivi) At the beginning of the main part, Ex(f) < (2n +
mn)A, and at the end, Ex(f) < nA.

(iv) The main part consists of at most 2n + my flow aug-
mentation steps.

ProOF. For (i), f is zero everywhere in £ — F at the
beginning of the algorithm and after every successful trial.
In every other case, the previous phase had scaling factor
2A, and thus by induction, the flow is an integer multiple of
2A at the beginning of the A-phase. This is maintained in
the preprocessing, as ADJUST may only modify by A. The
shortest path augmentations also change the flow by A. This
implies Ef (A) = Ef .

For (i), P is a shortest path if there exists potentials
w verifying (4) with m; — m; = Ci;(fi; + A) on each arc
ij € P. We show that when augmenting on the shortest
path P, (4) is maintained with the same 7. If neither of
ij,71 is in P, then it is trivial as the flow is not changed
on ij. If ij € P, then the new flow value will be f;; + A,
hence we need m; — m < Cji;(fi; + 2A), obvious as Cj; is
monotonely increasing. Finally, if ji € P, then the new
flow is fi; — A, and thus we need m; — m; < Cyi;(fi;). By
ji € P we had m; — m; = Cj;(fj: + A), which is equivalent
to m; — m = Ci;(fi; — A), implying again the claim.

In subroutine EXTEND, we reroute the flow f;; from a
linear arc ij if ? contains a directed path P from i to j.

This cannot affect feasibility since the Cj,’s are constant on

linear arcs. Also note that arcs in F have infinite residual
capacities.

For (i), Ex(f) < nA as the main part terminates with
either S(A) = 0 or T(A) = 0. If the original flow f is kept
and the next scaling factor is A/2, then Fz(f) < 2n(A/2) at

the beginning of the next phase. ADJUST(A/2) increases the
excess by at most A/2 on each nonlinear arc, and it does not
change values on linear arcs. If a successful trial replaced A
by Anest, then by definition, the new excess is at most (2n+
mn)Anest, and ADJUST(Apeqt) does not change anything as
the flow is already Apesz:-feasible. (i) immediately implies
(i), as each flow augmentation decreases Ez(f) by A. [

LEMMA 5.2. F C F* holds in each step of the algorithm.

PrOOF. The proof is by induction. A new arc ij may
enter F if fi; > (2n 4+ m + 1)A for a (A, F)-feasible f. We
shall prove that f;; > 0 for some F-optimal solution, and
thus Lemma 4.2 gives ij € F™.

After the phase when ¢j entered, let us continue with run-
ning the basic algorithm in all later phases: we do not extend
F and do not perform TRIAL-AND-ERROR in any of the later
phases, and always choose the next scaling factor as A/2.
In a A’-phase, the flow is modified by at most A’ on ij dur-
ing preprocessing and (2n+muy)A’ during the main part by
Lemma 5.1(v). Consequently, in all phases after A, the total
modification is bounded by 2n+m+1)(A/2+A/4+...) <
2n+m+1).

If we leave the algorithm running forever, it converges
to the F-optimal solution f*. By the above observation,

fiy>0. 0O
The next lemma is of key importance.

LEMMA 5.3. In TRIAL-AND-ERROR(F, f, A), errp(f) <
2(2n 4+ m 4+ 4)mA.

Before proving the lemma, we show how it provides the
strongly polynomial bound.

THEOREM 5.4. The enhanced algorithm terminates in at
most O((n +mn)logm) scaling phases.

PROOF. The set of revealed arcs can be extended at most
my—+n—1 times, since there can be at most (n—1) linear arcs
because of the linear acyclic property. We shall show that
after any A-phase, a new arc is revealed within 2[log, T'|
phases, for T' = 8(2n+m+4)m. As A decreases by at least
a factor of two between two phases, after [log, T'| steps we
have Ar < A/T. Assume that in the Ar phase, we still
have the same revealed arc set F' as in the A-phase.

Assume first Dy(F) > A. At the end of the main part of
the Ar-phase, Dy(F) > (2n 4+ m + 2)mAr. Thus there is a
connected component K of F with |3, bi| > (2n+m +
2)mAr. We have

lps (K)| = >

— E:Cb(f) >

> psli)

€K

Zbi

€K

> (2n+m+2)mAr —nAr > (2n+m+ 1)mAr.

There must be an arc ij entering or leaving K with f;; >
2n +m -+ 1, a contradiction as at least one such arc must be
added to F' in EXTEND(F, f, Ar).

Assume next Dy(F) < A. We may assume that either
we are at the very beginning of the algorithm with F' = (),
or in a phase when F' just has been extended; otherwise,
we could consider an earlier phase with this property. We
can interpret the initial solution 0 and Ay as the output of
TRIAL-AND-ERROR(0).

If Dy(F) > Ar, the above argument shows that within
the next [log, T'] steps, F shall be extended. Otherwise, we

can apply the analysis of the TRIAL-AND-ERROR subroutine
for the Ar-phase. (Even if the subroutine is not actually
performed, its analysis is valid provided that Dy(F) < Ar.)

Let f be the arc set found by TRIAL(F, 6) This is the
same in the A and the Ap-phase (we may assume that b
is modified to b always the same way for the same F). In
the event of an unsuccessful trial in the A-phase, A/2 <

errr(f). Using Lemma 5.3 for the Ap-phase,
errF(f) <202n+m+4)mAr < A/4 < errF(f)/Z,

a contradiction. On the other hand, if we had a successful
trial in the A-phase, then Ar < 2A,c0¢/T. Also, Exy(f) <
nDy(F) < nAr. Thus

Apert = max{errr(f), Exp(f)/(2n +mn)} <
<2@2n+m+4)mAr < Aneat/2,

a contradiction again. [

Some preparation is needed to prove Lemma 5.3.

LEMMA 5.5. For a linear acylic arc set ' C E, let x and
y be two F-tight vectors. Then ||z —y||co < ||pe—pyl|1 holds.

ProOF. First, we claim that the difference graph D, , =
(V, Ey y) is acyclic. Indeed, if there existed a cycle C C Fy ,,
then we get 0 = 3, o Cop(Tab) = Y opcc Cap(Wab). As
Tab > Yab for every ab € C, this is only possible if all arcs of
C' are linear, contradicting the linear acyclic property of F.
(Note that Eg,, C ?)

Define the function g by ¢i; = xs; — yi; > 0 for ij € Ey y
(again with the convention x;; = —x;j, yj: = —yi; ifij € E).
Pg = pz — py, therefore we have to prove g;; < ||pg||1 for
ij € Eg,. This property indeed holds for every positive g
with acyclic support.

Consider a reverse topological ordering vi,...,v, of V,
where vyv, € Ey , implies p > q. For the arc ¢j € Ey 4, let
t=wvy and j = v (¢’ > t). Let Vi = {v1,...,v:}. Viisa
directed cut in E; 4, thus

Z Gupvg = Zpg(vp)~

p>t>q p<t

As g is positive on all arcs, this implies guv,v, < >°,<, Pg(vp) <
[|pg||1 for all such arcs, in particular, for ¢5. [

CLamM 5.6. If f andf are F'-pseudoflows with fi]' =0 for
ij € E—F, and f is (A, F)-feasible, then f is A+||f — fl|e
feasible.

ProOF. There is a potential © so that f and 7 satisfy
(4), that is, m; — m < Ci;(fi; + A) if ij € Ef(A). For
a= ||fff|\oo, we have fi; +A < f¢j+A+a. Consequently,
(4) is satisfied for fi;, 7 and A + a for every arc in Ef(A).

By the assumption that f is zero outside F', we have
E?(A +a) =EU C Ef(A) and thus the claim fol-
lows. [J

PROOF OF LEMMA 5.3. fis (A, F')-feasible with some po-
tential 7. We claim that there is an F-tight f so that |f;; —

fij| < A for every ij € F, and Exy(f) < (2n 4+ m + 2)mA.
Indeed, (A, F)-feasibility gives

Cii(fij — A) <mj —m < Ci(fij + A) Vij € F.

As Cj; is continuous, there must be a value fii—A<B<
fi; + A with C;](ﬁ) = m; — ;. Let us set f;; = (. This
increases Ex(f) by at most |F|A.

Let us set fi;; = 0 for ij € E — F. Using that fi; <
2n+m+1)A if ij ¢ F and Ex,(f) < nA, we obtain an
F-tight f with

Exy(f) <nA+|FI A+ (2n+m+1)(m — |F|)A
< (2n+m+ 2)mA.

On the other hand, Exy(f) < nDy(F) < nA. Conse-
quently,

o7 = pslls < llp7 = blls +llp; —blly =

=2Fxy(f) + 2Bz (f) < 2(2n + m + 3)mA.

Applying Lemma 5.5 for = f and y = f gives [|F = flloo <
2(2n +m + 3)mA. Now f is 2(2n + m + 4)mA-feasible by
Claim 5.6. [

THEOREM 5.7. Let ps(n,m) be the running time needed
for one shortest path computation. Then the running time
of the algorithm is bounded by

O((ntmn)(pr (n,m)+pe(n,m))+(nt+mn)*ps(n,m) logm).

PROOF. By Theorem 5.4, there are at most (n+mn) log m
scaling phases, each dominated by O(n+muy) shortest path
computations. The subroutine TRIAL-AND-ERROR is per-
formed only when F' is extended, that is, at most n + mn
times, and performs the subroutines TRIAL and ERROR. []

We may not use O(logn) = O(logm) as the graph is al-
lowed to contain parallel arcs.

REMARK 5.8. A shortest path computation can be per-
formed in time ps(n,m) = O(m + nlogn), see [9]. Recall
that the original problem instance was on n’ nodes and m’
arcs, and it was transformed to an uncapacitated instance on
n =n'+m' nodes and m = 2m’ arcs. However, as in Or-
lin’s [28] algorithm, we can use the bound O(m' + n’logn’)
instead of O(m’ + m'logn’) because shortest path computa-
tions can be essentially performed on the original network.

6. APPLICATIONS

6.1 Quadratic convex costs

Assume that Ci;(a) = ¢ija® + dyjo for each ij € F, with
cij > 0. This clearly satisfies Assumption 1 since Cj;(a) =
2¢ija+ dij. Also, Assumption 2 is satisfied.

The subroutine TRIAL(F,b) can be implemented by solv-
ing a system of linear equations.

Vij € F (6)
YieV

T — M = 2Ci;Tij + dij

Z Tji — Z x,]:bl
jijieF jijeFr

To verify Assumption 3, we show that this system is solvable
if F' is linear acyclic and Dy(F) = 0. Clearly, we can solve
the system separately on different connected components of
F. In the sequel, let us focus on a connected component K.
Consider first the case when all arcs are linear. Then we
can solve the equalities corresponding to edges and nodes
separately. As F is assumed to be linear acyclic, it forms
a tree. If we fix one 7; value arbitrarily, it determines all

other 7; values by moving along the edges in the tree. The
xi;’s can be found by solving a flow problem on the same
tree with the demands b;. Both tasks can be performed in
linear time.

Assume next both linear and nonlinear arcs are present,
and let T be a connected component of linear arcs. As above,
all m; — m; values for 4,7 € T are uniquely determined. If
there is a nonlinear arc ij € F' with 4,5 € T, then z;; = «
is also uniquely determined. We can remove this edge by
replacing b; by b;+« and b; by b; —«. Hence we may assume
that the components of linear edges span no nonlinear edges.

Next, we can contract each such component T to a single
node t by setting by = . 1 b; and modifying the d;; values
on incident arcs appropriately. A solution to the contracted
problem can be extended to the original instance.

For the rest, we can assume all arcs are nonlinear, that
is, ¢;; > 0 for all 45 € F. Let A be the node-arc incidence

matrix of F' on component K: A;;; = —1, A; j; = 1 for all
ij € F, and all other entries are 0. Let C be the |F| x |F|
diagonal matrix with Cjj:; = —2¢;;. (6) can be written in
the form

(%T i)(w,x):<(bl>.

This can be transformed into

(4 Yimno (),

where L is the weighted |K| x |K| Laplacian matrix with
1 1 ep .-

L'Li = Z]l]E? Tij’ LU = ng = —26” le] € F and L” =0

otherwise, and b’ is an appropriate vector with Y ick b, = 0.

The main task is to solve the system Lm = b'. It is well-

know that in the component K of F, L has rank |[K| —1

and the system is always solvable whenever ., b, =0. A

solution can be found in O(n*3") time [3]. All previously
described operations can be done in O(m) time, hence we
obtain pg(n,m) = O(n?37).

To implement ERROR(f, F'), we have to find the minimum
A-value such that there exists a m potential with

T — T < (QCijl’-;j +dbj) + ZCijA Vije EU ? (7)

We show that this can be reduced to the minimum-cost-to-
time ratio cycle problem (see [1, Chapter 5.7]). In a directed
graph, there is a cost function p;; and a time 7;; > 0 associ-
ated with each arc. The aim is to find a cycle C' minimizing
(2ijecPis)/ (D ijec Tis)- A strongly polynomial algorithm
was given by Megiddo [22, 23] that solves the problem in
min{O(n>log®n), O(nlogn(n® + mloglogn))} time. The
problem can be equivalently formulated as

min y s. t. there are no negative cycles

for the cost function p;; — p7ij. (8)

Our problem fits into this framework with p;; = 2¢;;z:5 +
d;; and 7;; = 2¢;5. In (8), the optimal p value is —A. How-
ever, [22] defines the minimum ratio cycle problem with
7i; > 0 for every ij € E. This property is not essential
for Megiddo’s algorithm, which uses a parametric search
method for p to solve (8) under the only (implicit) restric-
tion that the problem is feasible.

In our setting 7;; > 0 holds for nonlinear arcs, but 7;; = 0
for linear arcs. Also, there can be cycles C with >, 7i; =
0. (This can happen even if F' is linear acyclic, as C' can

be any cycle in £ U ?) If we have such a cycle C with
> ijec Pij < 0, then (8) is infeasible. In every other case,
the problem is feasible and thus Megiddo’s algorithm can be
applied.

For this reason, we first check whether there is a negative
cycle with respect to the p;;’s in the set of linear arcs in

EU?. If there exists one, then (7) is infeasible, thus A = oo,
and (P) is unbounded as we can send arbitrary flow around
this cycle. Otherwise, we have Zijec Ti; > 0 for any cycle
with Zijecpij < 0, and consequently, there exists a finite
A satisfying (7).

Consequently, pr(n, m) = min{O(n?log® n), O(nlog n(n>+
mloglogn))}. Theorem 5.7 gives the following running time
bound.

THEOREM 6.1. For convex quadratic objectives on an un-
capacitated instance on n nodes and m arcs, the algorithm
finds an optimal solution in O(m(n®log®n 4+ mlogm(m +
nlogn))). For a capacitated instance, the running time can
be bounded by O(m*logm).

The bottleneck is clearly the m minimum-cost-to-time com-
putations. Asin Remark 5.8, it is likely that one can get the
same running time O(m(n®log®n 4+ mlogm(m + nlogn)))
for capacitated instances as well analyzing Megiddo’s algo-
rithm.

6.2 Fisher’s market with linear utilities

In the linear Fisher market model, we are given a set B of
buyers and a set G of goods. Buyer 7 has a budget m;, and
there is one divisible unit of each good to be sold. For each
buyer ¢ € B and good j € G, U;; > 0 is the utility accrued
by buyer ¢ for one unit of good j. Let n = |B| + |G]; let E
be the set of pairs (¢,j) with U;; > 0 and let m = |E|. We
assume that there is at least one edge incident to each ¢ and
to each j.

An equilibrium solution consist of prices p; on the goods
and an allocation z;;, so that (i) all goods are sold, (i) all
money of the buyers is spent, and (%) each buyer ¢ buys a
best bundle of goods, that is, goods j maximizing U;; /p;.

The classical convex programming relaxation of this prob-
lem was given by Eisenberg and Gale [7] in 1959. Recently,
Shmyrev [31] gave the following alternative relaxation. The
variable f;; represents the money payed by buyer 7 for prod-
uct j.

min Y p;(logp; —1) = > fi;log Ui

i€G ijEE
Z fij =m; Vie B
JjEG
Zfij =Dj Vjed
i€B
fi; =0 Vij e &

Let us construct a network on node set BUGU{t} as follows.
Add an arc ij for every i € B, j € G with U;; > 0, and an
arc jt for every j € G. Set by = —m,; for i € B, b; =0
for j € G and by = ZieB m;. Let all lower arc capacities
be 0 and upper arc capacities co. With p; representing the
flow on arc jt, the above formulation is a minimum-cost flow
problem with separable convex objective. In this section, the
convention p; = fj; shall be used for some pseudoflow f in
the above problem.

Let us justify that an optimal solution gives a market
equilibrium. Let f be an optimal solution that satisfies (1)
with 7 : BUGU{t} — R. We may assume m = 0. C},(a) =
log a implies m; = —logp;. On each ij € E we have 7; —
m; < —log Us; with equality if f;; > 0. With §; = €™, this
is equivalent to U;; /p; < (s, verifying that every buyer buys
a best bundle of goods.

Assumption 2 is clearly satisfied, however, Assumption 1
needs oracle access to the derivatives. On the arcs ij between
buyers and goods, this is —log U;;, while on an arc jt it is
log fjt, hence we cannot determine the exact values.

The derivative oracle is used in two parts of the algorithm:
for computing shortest paths between S(A) and T'(A) in the
main part, and for the subroutine ADJUST(A) in the prepro-
cessing part. We can solve both these problems provided the
rational values e (™). For shortest path computations, we
use a multiplicative version of Dijkstra’s algorithm, comput-
ing products instead of sums on the arcs. For ADJUST(A),
we need a potential w verifying that f is (A, F')-feasible. In-
stead of the 7; values we can use the e™ values, that can
be chosen as rational numbers.

Let us turn to Assumption 3. When the subroutine TRIAL
is called, we transform b to b by changing the value at one
node of each component K of F'. For simplicity, let us always
modify b if £ € K. We shall verify Assumption 3 only for
such b’s; the argument can easily be extended to arbitrary b
(although it is not necessary for the algorithm). Let us call
the component K containing ¢ the large component.

In TRIAL(F'), we want to find a potential 7 : BUGU{t} —
R U {oo}, money allocations f;; for ij € F,i € B, j € G,
and prices p; = f;+ for jt € F such that

w; —m = —log Usj Vije F,i € B,j € G
m — m; = log p; vjt e F
pi= Y, fi Vjt € F

i€B,ijeF

We may again assume m; = 0. Let P; = e~ ™ for j € G and
R; = €™ for i € B. With this notation, U;;/P; = R; for
ij € F. If jt € F, then P; = p;.

Finding f and 7 can be done independently on the differ-
ent components of F'. For any component different from the
large one, all edges are linear. Therefore we only need to
find a feasible flow on a tree, and independently, P; and R;
values satisfying U;;/P; = R; on arcs ij in the component.
Both of these can be performed in linear time in the number
of edges in the tree. Note that multiplying each P; by a
constant o > 0 and dividing each R; by the same « yields
another feasible solution.

Let Th, ..., T, be the components of the large component
after deleting ¢. If Ty contains a single good j, then we
shall set p; = P; = 0 (m; = 0). If T} is nonsingular, then
F restricted to Ty forms a spanning tree. The equalities
Ui;j/P; = R; uniquely define the ratio P;/P; for any j,j' €
GNT,. Using that p; = Pj and 3=, prr, mi = X iconr, Pis
this uniquely determines the prices in the component. Then
the edges in F' simply provide the allocations f;;. All these
computations can be performed in pr(n,m) = O(m) time.

For Assumption 4, we show that ERROR(f, F') can be im-
plemented based on the Floyd-Warshall algorithm. Let 7 be
the potential witnessing that f is (A, F')-feasible. Assuming
m = 0, and using again the notation P; = e~ ™ for j € G

and R; =e™ fori € B, we get U;;/P; < R;ifi € B, j € G,
ij € E, with equality if ji € Eff . Furthermore, we have
pi —A<P;<p;j+Aifp; >0and P; <Aif p; =0.

Let us now define 5 : G x G — R as

B;j: = max { Usir € B,ji,ij' € E?} .
If no such i exists, define 3;;; = 0; let §;; = 1 for every
jeQ@G.

Clearly, P;; > P;3;;; must hold to guarantee that edges
ij with ji € E}? have the best bang-per-buck values. Con-
versely, if the prices P; satisfy this property, then we can set
the R; values as best bang-per-buck ratios, thus satisfying
the necessary inequalities on all edges.

If there is a directed cycle C with IlapecBap > 1, then
f cannot be (A, F)-feasible for any A. Otherwise, we may
compute Bjj/ as the maximum of Il,pc pBasp over all directed
paths P from j to j' (setting the value 0 again if no such path
exists). This can be done by the multiplicative version of the
Floyd-Warshall algorithm in O(n®) time (note that this is
equivalent to finding all-pair shortest paths for — log B4s).

For (A, F)-feasibility, we clearly need to satisfy

(pj — BB,y < PifByyr < Py <pyr + A.

Let us define A as the smallest value satisfying all these
inequalities, that is,

A = max < 0, max IM . (9)
J,j'€G /Bjj’ +1

We claim that f is (A, F)-feasible with the above choice.
For each j € G, let P; = maxnea th (pn — A). It is easy to
verify that these P values satisfy P;; > P;f;;/, and pj —A <
Pj S Pj + A

The complexity of ERROR(f, F') is dominated by the Floyd-
Warshall algorithm, O(n?) [8]. The problem is defined on an
uncapacitated network, with the number of nonlinear arcs
my = |G| < n. Thus Theorem 5.7 gives the following.

THEOREM 6.2. For Fisher’s market with linear utilities,
the algorithm finds an optimal solution in O(n* + n?(m +
nlogn)logn).

The algorithm by Orlin [29] runs in O(n*logn) time, as-
suming m = O(n?). Under this assumption, we get the
same running time bound.

6.3 Fisher’s market with spending constraint
utilities

The spending constraint utility extension of linear Fisher
markets was defined by Vazirani [35]. In this model, the
utility of a buyer decreases as the function of the money
spent on the good. Formally, for each pair i and j there
is a sequence U}; > U} > ... > Uf;’j > 0 of utilities with
numbers ng, ceey ij
every unit of j he purchased by spending the first L}j dollars
on good j, Ufj for spending the next L?j dollars, etc. These
£;; intervals corresponding to the pair ¢j are called segments.
£;; = 0 is allowed, but altogether at least one segment is
required to be incident to each good ¢ and to each buyer j.
Let n = |B| + |G| denote the total number of buyers and
goods, and m denote the total number of segments. Note
that m > n? is also possible.

> 0. Buyer ¢ accrues utility Uilj for

No extension of the Eisenberg-Gale convex program is
known to capture this problem. The existence of a con-
vex programming formulation is left as an open question in
[35]. This was settled by Devanur et al. [2], showing that
Shmyrev’s formulation naturally extends here. Let fikj rep-
resent the money payed by buyer i for the k’th segment of
product j, 1 < k < ¢;;.

min) _ p;(logp; — 1) — >

i€G i€B,JEG,1<k<L;;

> fy=mi VieB

JEG,1<k<{;;
k .
§ fij=p; Vi€l
i€B,1<k<l;;

0< fiy <L VijeE.

fElog UL,

This gives a convex cost flow problem again on the node
set B U G U {t}, by adding ¢;; parallel arcs from i € B to
j € G, and arcs jt for each j € G. The upper capacity on the
k’th segment for the pair ij is ij. To apply our method, we
first need to transform it to an equivalent problem without
upper capacities. This is done by replacing the arc repre-
senting the k’th segment of ij by a new node (ij, k) and two
arcs i(ij, k) and j(4j, k). The node demand on the new node
is set to ij, while on the good j, we replace the demand 0
by = > ik ij, the negative of the sum of capacities of all in-
cident segments. The cost function on i(ij, k) is — log U@a,
while the cost of j(ij,k) is 0. Let S denote the set of the
new (ij, k) nodes. This modified graph has n’ =n +m + 1
nodes and m’ = 2m + |G| arcs.

Assumptions 1 and 2 are satisfied the same way as for
linear Fisher markets, using an oracle for the %3 (@) values.

In TRIAL(F), we want to find an F-tight flow f’ on the
extended network, witnessed by the potential 7 : BUSUGU
{t} - R. We may assume 7, = 0. Let P; = e~ ™ for j € G
and R; = e™ for i € B and S}; = e "Gi*). For the k’th
segment of ij, UL /SE < R; and Sf; > P;. If i(ij k) € F
then Ul /P; > R; and if j(ij, k) € F then US/P; < R; .

As for linear Fisher markets, if a component of F' does not
contain ¢, we can simply compute all potentials and flows as
F is a spanning tree of linear edges in this component.

For the component K with t € K, let T; be a component
of K —t. F is a spanning tree of linear edges in Ty as well,
therefore the ratio P;/Pjs is uniquely defined for any j,j €
G NT;. On the other hand, we must have P; = p;, and we
know that 3 ¢, Pj = — D ,ep, bo by flow conservation.
These determine the P; = p; values, and thus all other R;
and S{“j values in the component as well. The support of the
flow fi; is a tree and hence it can also easily computed. The
running time of TRIAL is again linear, pr(n’,m’) = O(m’) =

O(m).

ERROR(f, F') can be implemented the same way as for the
linear Fisher market. We shall define the values 5 : G x G —
R so that P;; > P;3;;; must hold, and conversely, given P;
prices satisfying these conditions, we can define the R; and
Sfj values feasibly. Let

3@, k), (i,)iy iGis', k), (67 K)j € EF).

Given these 3;;/ values, the Bjj/ values can be computed by
the Floyd-Warshall algorithm and the optimal A obtained
by (9) as for the linear case.

Finding the §;;/ values can be done in O(m’) time, and
the Floyd-Warshall algorithm runs in O(|G|*). This gives
pe(n’,m') = O(m' +|G?) = O(m+n?). From Theorem 5.7,
together with Remark 5.8, we obtain:

THEOREM 6.3. For an instance of Fisher’s market with
spending constraint utilities with n = |B| 4+ |G| and m seg-
ments, the running time can be bounded by O(mn3+m2(m+
nlogn)logm).

7. DISCUSSION

We have given strongly polynomial algorithms for a class
of minimum-cost flow problems with separable convex ob-
jectives. This gives the first strongly polynomial algorithms
for quadratic convex cost functions and for Fisher’s market
with spending constraint utilities. For Fisher’s market with
linear utilities, we get the same complexity as Orlin [29].

The bottleneck in complexity of all applications is the
subroutine TRIAL. However, the exact value of errp(f) is
not needed: a constant approximation would also yield the
same complexity bounds. Unfortunately, no such algorithm
is known for the minimum cost-to-time ratio cycle problem
that would have significantly better, strongly polynomial
running time. Finding such an algorithm would immedi-
ately improve the running time for quadratic costs.

A natural future direction could be to develop strongly
polynomial algorithms for quadratic objectives and const-
raint matrices with bounded subdeterminants. This would
be a counterpart of Tardos’ [34] for linear programs. Such
an extension could be possible by extending our techniques
to the setting of Hochbaum and Shantikumar [17].

The recent paper [37] shows that linear Fisher market,
along with several extension, can be captured by a concave
extension of the generalized flow model. A natural ques-
tion is if there is any direct connection between the concave
generalized flow model and the convex minimum cost flow
model studied in this paper. Despite certain similarities,
no reduction is known in any direction. Indeed, no such
reduction is known even between the linear special cases,
that is, generalized flows and minimum-cost flows. The per-
fect price discrimination model by Goel and Vazirani [11],
and the Arrow-Debreu Nash-bargaining problem by Vazirani
[36], are instances of the concave generalized flow model, but
they are not known to be reducible to convex cost flows. On
the other hand, the spending constraint utility model inves-
tigated in this paper is not known to be reducible to concave
generalized flows.

The algorithm in [37] is not strongly polynomial. More-
over, no strongly polynomial algorithm is known for linear
generalized flows, despite the huge literature on polynomial
time algorithms. Developing a strongly polynomial algo-
rithm for generalized flows is a fundamental open question.
Resolving it could lead to strongly polynomial algorithms
for the market problems that fit into the concave general-
ized flow model.

A related problem is finding a strongly polynomial algo-
rithm for minimizing a separable convex objective over a
submodular polyhedron. Fujishige [10] showed that for sep-
arable convex quadratic costs, this is essentially equivalent
to submodular function minimization. Submodular utility

allocation markets by Jain and Vazirani [20] also fall into
this class, and are solvable in strongly polynomial time; see
also Nagano [26]. Other strongly polynomially solvable spe-
cial cases are given by Hochbaum and Hong [13].

A common generalization of this problem and ours is mini-
mizing a separable convex objective over a submodular flow
polyhedron. Weakly polynomial algorithms were given by
Iwata [18] and by Iwata, McCormick and Shigeno [19]. One
might try to develop strongly polynomial algorithms for
some class of separable convex objectives; in particular, for
separable convex quadratic functions.

8. REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.
Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Inc., Feb. 1993.

[2] B. Birnbaum, N. R. Devanur, and L. Xiao. Distributed
algorithms via gradient descent for Fisher markets. In
Proceedings of ACM EC, pages 127-136, 2011.

[3] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. Journal of
Symbolic Computation, 9(3):251-280, 1990.

[4] S. Cosares and D. S. Hochbaum. Strongly polynomial
algorithms for the quadratic transportation problem
with a fixed number of sources. Mathematics of
Operations Research, pages 94-111, 1994.

[5] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and
V. V. Vazirani. Market equilibrium via a primal-dual
algorithm for a convex program. Journal of the ACM
(JACM), 55(5):22, 2008.

[6] J. Edmonds and R. M. Karp. Theoretical
improvements in algorithmic efficiency for network
flow problems. Journal of the ACM (JACM),
19(2):248-264, 1972.

[7] E. Eisenberg and D. Gale. Consensus of subjective
probabilities: The pari-mutuel method. The Annals of
Mathematical Statistics, 30(1):165-168, 1959.

[8] R. Floyd. Algorithm 97: shortest path.
Communications of the ACM, 5(6):345, 1962.

[9] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and

their uses in improved network optimization

algorithms. Journal of the ACM (JACM),

34(3):596-615, 1987.

S. Fujishige. Submodular systems and related topics.

Mathematical Programming at Oberwolfach II, pages

113-131, 1984.

[11] G. Goel and V. V. Vazirani. A perfect price
discrimination market model with production, and a
(rational) convex program for it. Mathematics of
Operations Research, 36:762-782, 2011.

[12] F. Granot and J. Skorin-Kapov. Towards a strongly
polynomial algorithm for strictly convex quadratic
programs: An extension of Tardos’ algorithm.
Mathematical Programming, 46(1):225-236, 1990.

[13] D. Hochbaum and S. Hong. About strongly
polynomial time algorithms for quadratic optimization
over submodular constraints. Mathematical
programming, 69(1):269-309, 1995.

[14] D. Hochbaum and M. Queyranne. Minimizing a
convex cost closure set. SIAM Journal on Discrete
Mathematics, 16:192, 2003.

10

[15] D. S. Hochbaum. Lower and upper bounds for the
allocation problem and other nonlinear optimization
problems. Mathematics of Operations Research,
19(2):390-409, 1994.

[16] D. S. Hochbaum. Complexity and algorithms for
nonlinear optimization problems. Annals of Operations
Research, 153(1):257-296, 2007.

[17] D. S. Hochbaum and J. G. Shanthikumar. Convex
separable optimization is not much harder than linear
optimization. Journal of the ACM (JACM),
37(4):843-862, 1990.

[18] S. Iwata. A capacity scaling algorithm for convex cost
submodular flows. Mathematical Programming,
76(2):299-308, 1997.

[19] S. Iwata, S. Mccormick, and M. Shigeno. Fast cycle
canceling algorithms for minimum cost submodular
flow. Combinatorica, 23(3):503-525, 2003.

[20] K. Jain and V. V. Vazirani. Eisenberg-Gale markets:
Algorithms and game-theoretic properties. Games and
Economic Behavior, 70(1):84-106, 2010.

[21] A. V. Karzanov and S. T. McCormick. Polynomial
methods for separable convex optimization in
unimodular linear spaces with applications. STAM J.
Comput., 26(4):1245-1275, 1997.

[22] N. Megiddo. Combinatorial optimization with rational
objective functions. Mathematics of Operations
Research, 4(4):414-424, 1979.

[23] N. Megiddo. Applying parallel computation
algorithms in the design of serial algorithms. Journal
of the ACM (JACM), 30(4):852-865, 1983.

[24] M. Minoux. A polynomial algorithm for minimum
quadratic cost flow problems. Furopean Journal of
Operational Research, 18(3):377-387, 1984.

[25] M. Minoux. Solving integer minimum cost flows with
separable convex cost objective polynomially.
Mathematical Programming Study, 25:237, 1985.

[26] K. Nagano. On convex minimization over base
polytopes. Integer Programming and Combinatorial
Optimization, pages 252266, 2007.

[27] N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani. Algorithmic Game Theory. Cambridge
University Press New York, NY, USA, 2007.

[28] J. B. Orlin. A faster strongly polynomial minimum
cost flow algorithm. Operations Research,
41(2):338-350, 1993.

[29] J. B. Orlin. Improved algorithms for computing
Fisher’s market clearing prices. In Proceedings of the
42nd ACM Symposium on Theory of Computing
(STOC), pages 291-300. ACM, 2010.

[30] J. Renegar. On the worst-case arithmetic complexity
of approximating zeros of polynomials. Journal of
Complezity, 3(2):90-113, 1987.

[31] V. I. Shmyrev. An algorithm for finding equilibrium in
the linear exchange model with fixed budgets. Journal
of Applied and Industrial Mathematics, 3(4):505-518,
20009.

[32] A. Tamir. A strongly polynomial algorithm for
minimum convex separable quadratic cost flow
problems on series-parallel networks. Mathematical
Programming, 59:117-132, 1993.

[33] E. Tardos. A strongly polynomial minimum cost

[34]

[35]

[36]

[37]

circulation algorithm. Combinatorica, 5(3):247-255,
1985.

E. Tardos. A strongly polynomial algorithm to solve
combinatorial linear programs. Operations Research,
34(2):250-256, 1986.

V. V. Vazirani. Spending constraint utilities with
applications to the adwords market. Mathematics of
Operations Research, 35(2):458-478, 2010.

V. V. Vazirani. The notion of a rational convex
program, and an algorithm for the Arrow-Debreu
Nash bargaining game. Journal of ACM (JACM),
59(2), 2012.

L. A. Végh. Concave generalized flows with
applications to market equilibria. Arziv preprint
arXiv:1109.3893, 2011.

