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Abstract

We study the effect of estimated model parameters in investment strategies
on expected log-utility of terminal wealth. The market consists of a riskless
bond and a potentially vast number of risky stocks modelled as geometric Brow-
nian motions. The well-known optimal Merton strategy depends on unknown
parameters and thus cannot be used in practice. We consider the expected util-
ity of several estimated strategies when the number of risky assets gets large. We
suggest strategies which are less affected by estimation errors and demonstrate
their performance in a real data example. Strategies in which the investment
proportions satisfy an L1-constraint are less affected by estimation effects.

Key Words: optimal investment, continuous time, estimation effects, lasso, shrink-
age, vast portfolios

1 Introduction

We consider an investor who seeks to maximise expected logarithmic utility of ter-
minal wealth. We assume the same setup as in Merton (1971), i.e. the financial
market consists of a riskless bond and a potentially vast number of risky stocks
modelled as geometric Brownian motions. The optimal strategy in this setup, de-
rived in Merton (1971), depends on the unknown model parameters, the vector of
drifts and the volatility matrix. To use this optimal strategy, these parameters need
to be estimated.

How does estimation influence the expected utility, in particular if the market
consists of many stocks? We answer this question for various types of investment
strategies.

The present paper contains several new results. First, we give analytic results
for the expected utility of several strategies that use estimated parameters. Second,
we provide new explicit optimal strategies for L1-restricted portfolio optimisation
problems. Third, we analyse the limiting behaviour of the expected utility when the
number of available assets goes to infinity. Fourth, via theoretical considerations,
simulations, and an empirical study, we discuss which strategies are less affected by
estimation errors if a vast number of assets is available.

Parameter uncertainty is a well-known problem in portfolio selection, see e.g.
Merton (1971); Detemple (1986, 1991); Dothan and Feldman (1986); Gennotte (1986).
The problem of parameter uncertainty in the static Markowitz (1952, 1959) situa-
tion is for example considered by Bai et al. (2009). It is popular to use a Bayesian
approach in continuous-time portfolio selection, which allows the use of filtering
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1 INTRODUCTION

methods to account for parameter estimation, see e.g. Karatzas and Zhao (2001);
Rogers (2001); Rieder and Bäuerle (2005); Garlappi et al. (2007). All of the above
references do not consider the effect when the number of stocks d goes to infinity.

In this paper we consider continuous-time portfolio optimisation when the num-
ber of assets gets large/goes to infinity. We assume that the parameters are estimated
on a set of past data and plugged into the various strategies. We do not use any
Bayesian/filtering approach. We consider this problem in a Merton market. To our
knowledge, this has not been discussed in the literature. The effect of letting the
number of available assets tend to infinity has only been studied in the Markowitz
framework (Pesaran and Zaffaroni, 2008).

Our analysis is based on a simple setup with logarithmic utility function and
constant market coefficients. In this setup, we can show the key points about
estimation effects: they must not be ignored and they can be reduced by using
constrained strategies. There are more general portfolio choice problems with ob-
servable time-dependent stochastic model parameters, see e.g. Ocone and Karatzas
(1991); Detemple et al. (2003). In these more general setups, time-dependent pa-
rameters would have to be estimated instead of mere constants. This should make
the estimation effects even more prominent.

When letting the number d of assets tend to infinity we always consider the fol-
lowing example: The drift of the assets are realisation of independent and identically
distributed random variables. The volatility matrix is such that, conditionally on
those drifts, the log returns of different assets have a fixed constant correlation. In
this setup, the optimal Merton-strategy with known parameters leads to a linearly
increasing expected utility in the number d of available assets (Example 2.1).

In our theoretical derivations (Sections 3-6), but not in our simulation study
(Section 7), we assume that the volatility matrix is known. This is reasonable
because volatility is in principle much easier to estimate, particularly, when high-
frequency data are available.

We assume that the mean returns are unknown. It is well-known that estimating
the expected return is a very difficult task. As (Merton, 1980, p. 4) said: “. . . one
might say that to attempt to estimate the expected return on the market is to
embark on a fool’s errand.” For the expected return, sampling at higher frequencies
does not improve the estimates. Instead, a very long time horizon is needed for
an accurate estimation, see e.g. Merton (1980); Rogers (2001). Still, the expected
return is one of the main input parameters in our and almost all portfolio selection
models, and therefore we have to tackle this problem.

We begin our study of the effect of estimation on expected utility in Section 3 by
considering the optimal Merton strategy with a plug-in estimator of the expected
return. Our analytic results show that this plug-in estimator has a detrimental
effect: when we send the number of stocks d to infinity then the expected utility
goes to −∞ in realistic cases.

In Section 4, we investigate whether this can be prevented by improving the
strategy through James-Stein type shrinkage (Stein, 1956; James and Stein, 1961).
This shrinkage improves an estimator for a multivariate quantity by shrinking it
towards a specific target, resulting in a biased estimator with smaller mean square
error. This can be interpreted as an empirical Bayes approach (Efron and Morris,
1975). The use of James-Stein-type estimators for the mean return and/or the
covariance matrix has been advocated by e.g. Jorion (1986); Gruber (1998); Ledoit
and Wolf (2004); Golosnoy and Okhrin (2009).

We apply James-Stein type shrinkage directly to the strategy rather than the
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drift or the volatility. To do this one has to pick a strategy one is shrinking towards.
When shrinking towards the optimal strategy, the James-Stein strategy is (almost)
as good as the optimal strategy - except for a fixed penalty not depending on the
number d of available stocks, see (4.2). In practice, when the optimal strategy is
unknown, one has a linear loss of expected utility as the number d of available stocks
goes to infinity, see (4.3).

Next, in Sections 5 and 6, we investigate whether restricting the set of investment
strategies suitably improves the situation. Generally, restricting the set of strate-
gies cannot lead to higher expected utility if the parameters are known. If those
have to be estimated, however, it will turn out that restricting the set of strategies
can improve the expected utility since the resulting strategies are less affected by
estimation errors and more robust.

In the Markowitz portfolio selection model, Jagannathan and Ma (2003) show
that restricting the strategies by a no-short-selling constraint improves the portfolio
performance. The no-short-selling constraint is a special case of an L1-constraint on
the portfolio weights, i.e. the sum of the absolute values of the proportions of wealth
invested in the risky assets is required to be bounded above by a predetermined con-
stant. Fan et al. (2009) and Brodie et al. (2009) consider such a general L1-constraint
in the Markowitz framework. They find that the no-short-selling portfolio is usu-
ally too restrictive and can be improved by allowing some short-positions such that
the sum of the absolute value of the portfolio weights still stays below a previously
fixed level. The advantage of the L1-constraint is that it induces sparsity into the
portfolio, i.e. it does not invest in all assets. This is reasonable when the number of
assets gets large, particularly in the presence of transaction costs and market fric-
tions. Compared to optimal subset selection, which is an (NP-) hard problem, there
are computational benefits in using an L1-constraint, as efficient algorithms to solve
L1-constrained optimisation problems have been developed (Efron et al., 2004). In
addition to sparsity, an L1-constraint avoids the accumulation of estimation errors
(Fan et al., 2009). There is empirical evidence that these L1-constrained strategies
even outperform an evenly balanced portfolio which is very rarely the case for a
strategy obtained from solving an optimisation model (DeMiguel et al., 2007). None
of the above papers consider the expected utility as d→∞, nor do they work in a
Merton setup.

In Section 5, we investigate the effect of an L1-constraint in the Merton context.
A major advantage of an L1-constraint is, as we will show, that the expected utility
is bounded from below as d→∞.

We also provide analytic results for the optimal strategies with L1-constraint and
known parameters for a specific volatility matrix (Theorem 5.2, Corollary 5.3). We
see that the L1-constrained strategies are sparse, i.e. do not invest in all the assets.

We study how quickly this optimal strategy diversifies when plug-in estimators
for the expected return are used. By using results from extreme value statistics,
we obtain analytic results for d → ∞ (Theorems 5.4, 5.5). We find that the diver-
sification is very slow, i.e. the strategy invests only in few assets. This makes the
resulting strategy less robust against changes in the market.

In Section 6, we consider two further L1-constrained strategies: the 1/d-strategy,
that invests an equal amount in all available stocks, and a modification of the 1/d-
strategy, that only invests in the stocks with the most extreme returns. We call this
strategy EWE-strategy (Equal Weighting of Extreme stocks). Essentially, the EWE-
strategy is designed to have a higher return than the 1/d-strategy whilst retaining its
diversification and robustness properties. We find that the EWE-strategy performs
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2 MODEL DEFINITION

particularly well in our simulations as well as in the application to real data.
The theoretical as well as the out-of-sample utility of the strategies in examples

are illustrated in Section 7. Section 8 contains a discussion and Section 9 contains
conclusions. Proofs can be found in the appendix.

2 Model Definition and Classical Solution

2.1 The Financial Market and the Investor’s Objective

We are working in a market with d + 1 assets, one bond and d stocks. We assume
the standard log-Gaussian dynamics

dS0(t) = S0(t)rdt, S0(0) = 1,

dSi(t) = Si(t)

µidt+

d∑
j=1

σijdWj(t)

 , Si(0) > 0, i = 1, . . . , d,

where r > 0 is the constant interest rate, W = (W1, . . . ,Wd)
> is a standard d-variate

Brownian motion, µ = (µ1, . . . , µd)
> is the constant drift and σ = (σij)1≤i,j≤d is the

constant d× d-volatility matrix. We assume that σ is of full rank. Explicitly,

Si(t) = Si(0) exp

µi − 1

2

d∑
j=1

σ2
ij

 t+

d∑
j=1

σijWj(t)

 , i = 1, . . . , d.

We assume that in this market an investor seeks to maximise

V (π|µ) := E[log(XT )],

where T > 0 is some fixed time, Xt denotes their wealth at time t, which satisfies

dXt =
d∑
i=0

πi(t)Xt
dSi(t)

Si(t)

and πi(t) denotes the fraction of the wealth invested in the ith asset at time t. Hence,∑d
i=0 πi(t) = 1 for all t. We assume that X0 is a constant. We use the notation

V (π|µ) to emphasize that we will later allow the true µ to be random and that we
will consider the above model conditionally on µ.

2.2 The Merton Solution

Next, we briefly derive the classical Merton (1971) strategy which is optimal among
all strategies π that are adapted to the filtration Ft = σ(W (s), s ≤ t), t ≥ 0 and that
are sufficiently integrable such that their stochastic integrals with respect to W are
martingales. Using π0(t) = 1−

∑d
i=1 πi(t) and setting π = (π1, . . . , πd)

> we get

dXt

Xt
=
(
r + π>(t)(µ− r1)

)
dt+ π>(t)σdW (t),

where 1 = (1, . . . , 1)> ∈ Rd. Hence,

XT = X0 exp

(∫ T

0

(
r + π>(t)(µ− r1)− 1

2
π(t)>Σπ(t)

)
dt+

∫ T

0
π(t)σdW (t)

)
,
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where Σ = σσ>. Therefore, the expected log-utility is

V (π|µ) = E[log(XT )] = log(X0) + rT + E
[∫ T

0

(
π(t)>(µ− r1)− 1

2
π(t)>Σπ(t)

)
dt

]
.

Hence the optimal π is constant in time. For any time-constant strategy π,

V (π|µ) = log(X0) + rT + TE
[
π>(µ− r1)− 1

2
π>Σπ

]
.(2.1)

The term in brackets can be written as −1
2‖σ

>π−σ−1(µ−r1)‖22+c, where c does not
depend on π and ‖ · ‖2 is the Euclidean norm. Thus obtaining the optimal strategy
requires the solution of a classic quadratic optimisation problem. If there are no
constraints on π then the optimal strategy is

π∗ = Σ−1(µ− r1).(2.2)

The corresponding expected utility is

V (π∗|µ) = log(X0) + rT +
T

2
[(µ− r1)>Σ−1(µ− r1)].(2.3)

2.3 Expected Utility as d→∞

In the following example, we consider the effect of increasing the number of assets
on the expected utility. We assume that all model parameters are known and that
the covariance matrix has a very simple structure. Particularly, we assume that all
stocks have the same volatility and all pairs of stocks have the same correlation.

In the example we let µ be random and consider the model described in Sections
2.1, 2.2 conditionally on µ. We denote the utility obtained by integrating over µ by

V (π) = E(V (π|µ)).

Letting µ be random allows us to easily specify properties of µ as d→∞. V (π) can
be interpreted as average behaviour of the strategy over several different “truths”.

Example 2.1 (Utility of the Merton strategy as d→∞).
Suppose Σ = η2

[
(1− ρ)I + ρ11>

]
, for some η2 > 0, 0 ≤ ρ < 1, where I ∈ Rd×d is

the identity matrix and 1 = (1, . . . , 1)> ∈ Rd. Furthermore, suppose that µ1, . . . , µd
are i.i.d. with E(µ2

i ) <∞. Then, as we show in Appendix B,

(2.4) V (π∗) = log(X0) + rT + Td
(1 + ρ(d− 2))Var[µ1] + (1− ρ)(Eµ1 − r)2

2η2(1− ρ)(1 + ρ(d− 1))
.

Hence, if ρ > 0,

V (π∗) =

{
d T

2η2(1−ρ)
Var(µ1) + o(d), if Var(µ1) > 0,

log(X0) + rT + T [Eµ1−r]2
2η2ρ

+ o(1), if Var(µ1) = 0,

where o(d) and o(1) are meant as d → ∞. Thus V (π∗) is linearly increasing in d
unless Var(µ1) = 0. The latter case, when all stocks have the same non-random
return, is obviously not very realistic.

If ρ = 0 then V (π∗) = log(X0) + rT + Td
2η2

[
Var(µ1) + [Eµ1 − r]2

]
and hence,

V (π∗) =

{
d T

2η2

(
Var(µ1) + [Eµ1 − r]2

)
+ o(d), if P(µ1 6= r) > 0,

log(X0) + rT, else.

Thus, unless all stocks have the same return as the risk-free bond, the utility will
increase linearly with d.
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3 PLUG-IN MERTON STRATEGY

Remark 2.2. How does the utility V (π∗) depend on the correlation ρ in the previous
example? One can show that ∂

∂ρV (π∗)|ρ=0 = T
2η2
d(1 − d)[Eµ1 − r]2 < 0 for d > 1.

Furthermore, ∂
∂ρV (π∗) has two roots. One that is clearly negative for large d, and

the other one is

−[Eµ1 − r]2 − Var(µ1) +
√

Var(µ1)2 + [Eµ1 − r]2Var(µ1) d

(d− 2)Var(µ1)− [Eµ1 − r]2
.

For large d this is between 0 and 1. Hence, for large d, V (π∗) is initially decreasing
in ρ and increasing afterwards.

We have seen in the example that when parameters are known and not all the
stocks have the same return, the expected utility is a linearly increasing function in
the number of stocks. We will see in the next section that this is no longer the case
when parameters have to be estimated.

3 Plug-in Merton Strategy

3.1 General Plug-in Strategies

In general the drift parameter µ and the volatility matrix σ will be unknown and
need to be estimated from empirical data. In this section we consider the case where
σ is known but µ is unknown and an estimator µ̂ is plugged into the optimal strategy
π∗, i.e. we consider the strategy π̂ = Σ−1(µ̂− r1).

If π̂ ∼ N(m0, V
2

0 ), for some m0 ∈ Rd and V 2
0 ∈ Rd×d then the expected utility is

V (π̂|µ) = log(X0) + rT + TE[π̂>(µ− r1)− 1

2
π̂>Σπ̂]

= log(X0) + rT + T

(
m>0 (µ− r1)− 1

2
[tr(ΣV 2

0 ) +m>0 Σm0]

)
,

where tr denotes the trace operator. If, in addition, π̂ is unbiased for the optimal
strategy, i.e. m0 = Σ−1(µ− r1) then, using (2.3),

V (π̂|µ) = V (π∗|µ)− T

2
tr(ΣV 2

0 ).

Suppose we have observed the value S of the stocks over some past time interval
[−test, 0] for some test > 0. Then for i = 1, . . . , d,

(3.1) µ̂i =
log(Si(0))− log(Si(−test))

test
+

1

2

d∑
j=1

σ2
ij

is an unbiased estimator of µi. For this estimator, V 2
0 = Σ−1/test. Thus in this case

V (π̂|µ) = V (π∗|µ)− d T

2test
.(3.2)

Thus the loss through estimation is linear in the number of available assets. More-
over, it is increasing linearly in the time horizon and decreasing in the length of the
estimation period test.
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3.2 Expected Utility as d→∞ 4 JAMES-STEIN-TYPE STRATEGY

Remark 3.1. Can we do better if we update the estimator at each time point?
Consider the the time-dependent plug-in strategy π̂(t) = Σ−1(µ̂(t)− r1) with

µ̂i(t) =
log(Si(t))− log(Si(−test))

t+ test
+

1

2

d∑
j=1

σ2
ij .

The expected utility of this strategy can be shown to be

V (π̂(·)|µ) = V (π∗|µ)− d

2
log

(
1 +

T

test

)
.

Comparing this to (3.2), we see that the loss through estimation is still linear in d
— only the constant changes. The continuous updating of the estimator will lead
to appreciable improvements only if the length T of the investment period is large
compared to the length test of the initial estimation period.

3.2 Expected Utility of Plug-in Strategy as d→∞

Example 3.2. What happens to V (π̂) as d → ∞? Consider the same setup as in
Example 2.1 with ρ > 0. Suppose we use the estimator in (3.1). Then

V (π̂) =E(V (π̂|µ)) = E(V (π∗|µ))− Td

2test
= d

T

2

(
Var(µ1)

η2(1− ρ)
− 1

test

)
+ o(d)

→

{
∞, Var(µ1) > η2(1−ρ)

test

−∞, Var(µ1) < η2(1−ρ)
test

(d→∞).

In particular if all stocks are the same (Var(µ1) = 0) then the limiting utility is
−∞.

Since we assume a special structure of Σ and (3.1), the covariance matrix of the
estimator µ̂ is

Σ/test =
η2(1− ρ)

test
I +

η2ρ

test
11>.

Hence, the limiting behaviour of V (π̂) depends on how Var(µ1) relates to the id-

iosyncratic part of Var(µ̂1) (which is η2(1−ρ)
test

). In practice, we would usually expect
the variance of µ1 to be smaller than the idiosyncratic part of the variance of µ̂1,

i.e. Var(µ1) < η2(1−ρ)
test

, in which case the expected utility goes to −∞.

4 James-Stein-type Shrinkage of the Strategy

In this section, we consider James-Stein-type (JS) shrinkage of the Merton plug-
in strategy towards some given fixed strategy π0. More precisely, we consider the
strategy

π̂JS,π
0

=

(
1− a

(π̂ − π0)>Σ(π̂ − π0)

)
(π̂ − π0) + π0,

where π̂ = Σ−1(µ̂− r1) and π0 ∈ Rd, a > 0 are fixed constants.
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4.1 JS-Strategy 4 JAMES-STEIN-TYPE STRATEGY

4.1 JS-Strategy

The following theorem is the transformation of the classical result about the loss of
the James-Stein estimator (James and Stein, 1961) to our situation.

Theorem 4.1. If µ̂ ∼ N(µ,Σ/test) then

V (π̂JS,π
0 |µ) = V (π̂|µ) +

T

2
a

[
2
d− 2

test
− a
]
E
[

test
d− 2 + 2K

]
,

where K ∼ Poisson(λ), λ = (π∗ − π0)>Σ(π∗ − π0)/2 and π̂ is the Merton plug-in
strategy. V (π̂JS,π

0 |µ) is maximised for a = (d− 2)/test, giving

(4.1) V (π̂JS,π
0 |µ) = V (π̂|µ) +

T

2

(d− 2)2

test
E
[

1

d− 2 + 2K

]
.

A proof can be found in Appendix C.
The above theorem shows that the James-Stein strategy strictly dominates the

Merton plug-in strategy π̂ for 0 < a < 2(d− 2)/test.
If λ = 0, i.e. one is shrinking towards the optimal strategy π∗, then using the

optimal a = (d− 2)/test and the estimator given in (3.1) we get

(4.2) V (π̂JS,π
∗ |µ) = V (π̂|µ) +

T (d− 2)

2test
= V (π∗|µ)− T

test
.

Thus, if one is shrinking towards the optimal strategy then the James-Stein strategy
is (almost) as good as the optimal strategy - except for a fixed penalty that does
not depend on the number d of available stocks.

Remark 4.2. The classical James-Stein estimator can also be interpreted as an
empirical Bayes approach, see Efron and Morris (1975). In our context, the empirical
Bayes approach would be as follows. We would assume a normal prior on π∗ with
expectation π0. The prior variance of π∗ would be estimated using the observed π̂
(this is the empirical Bayes part). Then the posterior mean of π∗ will coincide with
the JS estimator π̂JS,π

0
.

4.2 Expected Utility of JS-Strategy as d→∞

In the following, we consider the far more realistic case of not shrinking towards the
correct strategy. We use the optimal a and shrink towards π0 = β

d1 for some β ∈ R.
We assume that µ1, . . . , µd are i.i.d. normally distributed with P(µ1 6= r) > 0 and
Var(µ1) <∞ and that Σ = η2

[
(1− ρ)I + ρ11>

]
.

By Lemma C.1, E
[

1
d−2+2K

]
= E(E

[
1

d−2+2K |λ
]
) = E

[
1

d−2+2λ

]
+O( 1

d2
). Then,

λ =
1

2
(π∗ − π0)>Σ(π∗ − π0) =

1

2
(µ− r1)>Σ−1(µ− r1) + o(d)

almost surely, because (π0)>Σπ∗ = (π0)>(µ − r1) = β
d

∑d
i=1(µi − r) → βE(µ1 − r)

almost surely and (π0)>Σπ0 = β2

d2
η2[d(1− ρ) + ρd2] = O(1). Using Lemma A.1 and

the strong law of large numbers,

λ =d
1

2

1

η2(1− ρ)

(
1

d
(µ− r1)>(µ− r1)− ρd

1− ρ+ ρd

(
1

d
1>(µ− r1)

)2
)

+ o(d)

=
1

2
αd+ o(d),
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4.2 Expected Utility as d→∞ 4 JAMES-STEIN-TYPE STRATEGY

where α = 1
η2(1−ρ)

Var(µ1). By the bounded convergence theorem (for d ≥ 3: d/(d−
2 + 2λ) ≤ d/(d− 2) ≤ 3),

dE
[

1

d− 2 + 2λ

]
= E

[
d

(1 + α)d+ o(d)

]
= E

[
1

(1 + α) + o(1)

]
→ 1

1 + α
.

Hence, the difference between the expected utility of the James-Stein strategy and
the plug-in Merton strategy is

V (π̂JS,π
0
)− V (π̂) = E(V (π̂JS,π

0 |µ))− E(V (π̂|µ)) =
T (d− 2)2

2(1 + α)dtest
+ o(d)

= d
T

2(1 + α)test
+ o(d).

We see that the expected utility from the plug-in Merton strategy can be increased
linearly in the number d of stocks through James-Stein shrinkage. The gain due to
the James-Stein strategy compared to the plug-in strategy is increasing in the time
horizon and decreasing in the length of the estimation interval test.

Next, we consider the difference between the expected utility of a James-Stein
strategy and the expected utility of an informed investor that uses the optimal
strategy. Using (3.2),

V (π̂JS,π
0
)− V (π∗) = E(V (π̂JS,π

0 |µ))− E(V (π∗|µ))

= −
(

1− 1

1 + α

)
Td

2test
+ o(d)

= − α

1 + α

Td

2test
+ o(d) = − Var(µ1)

η2(1− ρ) + Var(µ1)

Td

2test
+ o(d).

(4.3)

Comparing this to (3.2), we see that the loss in expected utility due to using the
James-Stein strategy rather than the optimal strategy is α

1+α times smaller than the
loss due to using the plug-in strategy rather than the optimal stratey.

How well does the James-Stein strategy perform in absolute terms? If ρ > 0 and
Var(µ1) > 0, combining (4.3) with Example 2.1 gives

V (π̂JS,π
0
) = E(V (π̂JS,π

0 |µ)) = d
T

2

(
Var(µ1)

η2(1− ρ)
− Var(µ1)

(η2(1− ρ) + Var(µ1)) test

)
+ o(d)

= d
T

2η2(1− ρ)
Var(µ1)

1− 1(
1 + Var(µ1)

η2(1−ρ)

)
test

+ o(d).

In particular, if test ≥ 1 then V (π̂JS,π
0
)→∞, i.e. the James-Stein strategy does not

only perform better than the plug-in Merton strategy but the expected utility even
converges to +∞ as in the situation when the parameters are known.

If ρ = 0 and P(µ1 6= r) > 0 then

V (π̂JS,π
0
) = d

T

2η2

Var(µ1)

1− 1(
1 + Var(µ1)

η2

)
test

+ [E(µ1 − r)]2
+ o(d).

Again test ≥ 1 is sufficient for V (π̂JS,π
0
)→∞.
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5 L1-RESTRICTED STRATEGY — LASSO

5 L1-restricted Strategy — Lasso

In this section we consider the effect of bounding the L1-norm of the investment
weights in the stocks. More precisely, we suppose that π̂ satisfies ‖π̂‖1 =

∑d
i=1 |π̂i| ≤

c for a constant c ≥ 0. This bound does not include a bound on the investment in
the risk-free asset. In a regression context this kind of constrained optimisation is
called ’lasso’ (Tibshirani, 1996).

The expected utility with this bound is

V (π̂|µ) = log(X0) + rT + TE
[
π̂>(µ− r1)− 1

2
π̂>Σπ̂

]
≥ log(X0) + rT − TE

{
cmax

i
|µi − r|+

c2

2
max
i,j
|Σij |

}
.

Therefore, if maxi |µi − r| and maxi,j |Σij | are bounded then the utility of an L1-
restricted strategy cannot deteriorate to −∞ as d→∞.

Remark 5.1. Tibshirani (1996, Section 5) showed that Lasso estimates can be
understood as Bayes posterior mode under independent double exponential priors for
the unknown parameters in the linear model (assuming diagonal covariance matrix).

In the following we first clarify the structure of the optimal L1-constrained in-
vestment strategies for known parameters and a specific covariance matrix Σ. After
that we analyse the effect of plugging estimators of the drift µ into this strategy.
Particularly, we are interested in how the strategy diversifies as the number of assets
gets large.

5.1 The Optimal Strategy with Known Drift

We consider the optimisation problem for a special structure of the covariance ma-
trix, i.e. we assume Σ = σσ> = η2(ρ11> + (1 − ρ)I) for constants η > 0 and
1 ≥ ρ ≥ 0. As we have remarked after (2.1) maximising V (π|µ) is equivalent to
minimsing ‖σ>π − σ−1(µ− r1)‖22 which will be used in the following theorem.

Theorem 5.2. Suppose Σ = σσ> = η2(ρ11>+(1−ρ)I). Consider the optimisation
problem {

‖σ>π − σ−1(µ− r1)‖22 → min

‖π‖1 ≤ c
(5.1)

The unconstrained solution is

π† =
1

η2(1− ρ)

(
(µ− r1)− ρ

1− ρ+ ρd
11>(µ− r1)

)
,

which is a solution to the constrained optimisation problem (5.1) if ‖π†‖1 ≤ c.
Otherwise, the unique solution to (5.1) is

π∗i =


1

η2(1−ρ)
(µi − r − a+), if µi − r > a+,

1
η2(1−ρ)

(µi − r − a−), if µi − r < a−,

0, otherwise,

where a+ ≥ a− are solutions to the equations

a+ + a− = 2η2ρ1>π∗, ‖π∗‖1 = c.

Such a+ and a− always exist and are unique.

10



5.2 Unknown Drift 5 L1-RESTRICTED STRATEGY — LASSO

A proof for this theorem is given in Appendix D. The main use of the above
theorem is the clarification of the structure of the solution. If ρ = 0 then a+ = −a−
and we get the following simpler solution. In a regression context this simpler
solution has been mentioned in (Tibshirani, 1996, Section 2.2).

Corollary 5.3. Suppose Σ = η2I and µ ∈ Rd with |µ1−r| > |µ2−r| > . . . > |µd−r|.
Then π† = 1

η2
(µ − r1) is a solution to (5.1) if ‖π†‖1 ≤ c. Otherwise, the unique

solution to (5.1) is

π∗ :=
1

η2
(sgn(µ1 − r)(|µ1 − r| − a), . . . , sgn(µk − r)(|µk − r| − a), 0, . . . , 0)>,

where sgn is the sign function,

k = min

{
l ∈ {1, . . . , d} : c ≤ 1

η2

l∑
i=1

(|µi − r| − |µl+1 − r|)

}
,

a = 1
k

[
η2c−

∑k
i=1 |µi − r|

]
and µd+1 = r.

5.2 Optimal Strategy with Estimated Drift

We now analyse the optimal L1-constrained strategy with plug-in estimator µ̂ of
the drift vector µ, that is we plug µ̂ into (5.1). In particular, we determine the
probability of investing in a fixed number of stocks when the number of stocks d
in the market goes to infinity. We find that the optimal strategy does not diversify
quickly.

We consider the independence case Σ = η2I first. In this case we can get some
explicit results using results from extreme value theory.

Assume that µ1, . . . , µd are i.i.d. normally distributed and that conditionally on
those, each µi can be estimated by an independent normally distributed estimator
µ̂i. Thus, µ̂1, . . . , µ̂d are independent and identically distributed.

Theorem 5.4. Suppose Σ = η2I and suppose we use the L1-constrained optimal
strategy with plug-in estimators µ̂i for µi, where µ̂1, . . . , µ̂d are independent and
identically normally distributed. We use the threshold c = αcd, where cd > 0
are norming constants specified in Theorem E.1 for a folded normal distribution
FN(E(µ̂1 − r),Var(µ̂1)). Then

#{i : π∗i 6= 0} L→ K + 1 (d→∞),

where
L→ denotes convergence in distribution and K is a Poisson distribution with

expected value αη2.

Figure 1 contains some plots of the constants cd.
One of the main ideas for the proof of Theorem 5.4, provided in Appendix E, is

that the random variables Zi := |µ̂i − r|, i = 1, . . . , d are i.i.d. and follow a folded
normal distribution. By Corollary 5.3, the number of stocks one invests in depends
on the spacings of the upper order statistics of Zi which can be analysed via extreme
value theory. The norming constants are the scaling constants for extreme values of
a folded normal distribution, see Theorem E.1.

Motivated by the above result, we compare, crudely via their means, the ap-
proximation #{i : π∗i 6= 0} ≈ K + 1, where K is a Poisson(η2c/cd) distribution, to

11
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Figure 1: Plot of the constants cd in Theorem 5.4, see also Theorem E.1.
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Figure 2: Mean number of stocks the L1-strategy is investing in when ρ = 0, η = 1,
µ̂1, . . . , µ̂d ∼ N(0.5, 1) and c = 2. The Poisson approximation is the mean of K + 1
where K ∼ Poisson(η2c/cd). The true value was obtained through simulations.
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6 OTHER RESTRICTED STRATEGIES

simulation results in Figure 2. The approximation seems to be good. Furthermore,
we see that diversification happens very slowly in the L1-constrained situation.

For Σ = η2((1− ρ)I + ρ11>) with ρ > 0 the following theorem gives bounds on
the number of stocks one invests in as d→∞.

Theorem 5.5. Suppose Σ = η2((1 − ρ)I + ρ11>) with ρ > 0 and suppose we
use the L1-constrained optimal strategy with plug-in estimators µ̂i for µi, where
(µ̂1, . . . , µ̂d)

> ∼ N(ξ1,Σ/test) for some ξ ∈ R. If we choose the threshold c =
α(2 log(d))−1/2 then for even k,

lim
d→∞

P(#{i : π∗i 6= 0} > k) ≤2P(K ≥ k/2 + 1),

where K is a Poisson distribution with expected value αη
√

1− ρ
√
test.

Again, using the resulting Poisson approximation, one can see that the diversi-
fication happens only slowly.

6 Other Restricted Strategies

6.1 L0-restricted Strategies

Consider funds that are restricted to invest in certain sectors and/or certain coun-
tries. This means that these funds use strategies that only invest in a fixed finite
number of stocks. After renumbering the stocks this means that π̂j = 0 for j > k,
where k ∈ N is some fixed constant. Then, if one uses the resulting Merton-strategy
with plug-in estimators based on only these k stocks one does not suffer from the
deterioration of performance as d→∞.

6.2 L2-restricted Strategies

Imposing an L2 restriction on its own does not guarantee that the expected utility
does not degenerate to −∞ as d → ∞. Indeed, consider Σ = (1 − ρ)I + ρ11> and
µ − r1 = ξ1 for some ρ 6= 0 and some ξ 6= 0. The strategy π = c√

d
1 satisfies the

L2-restriction ‖π‖2 ≤ c, but has an expected utility that degenerates to −∞ for
d → ∞. Indeed, π>Σπ = (1 − ρ)c2 + ρc2d and π>(µ − r1) = cξ

√
d. Thus the

corresponding expected utility converges to −∞ as d→∞.

6.3 The 1/d-Strategy

Consider the strategy that invests the same amount into all stocks, i.e. πα∗/d = α∗
d 1

for some α∗ > 0. Assuming that µ1, . . . , µd are i.i.d., as d→∞,

(6.1) V (πα∗/d) = E(V (πα∗/d|µ))→ log(X0) + rT + Tα∗E[µ1 − r]−
T

2
η2α∗

2ρ.

No degeneration occurs.

6.4 Equal Weighting of the most Extreme stocks (EWE)

In this section we suggest a strategy that improves upon the 1/d-strategy by invest-
ing in the stocks that have the most extreme variance-adjusted returns. As it turns
out, we will get potentially a better mean log-return, without a higher variance of
the return. In this section we will assume that Σ is known.
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7 SOME EXAMPLES

Consider the strategy

πEWE
ki

=
α∗
βd

sgn(âki)I(i ≤ βd), i = 1, . . . , d,

where âi = µ̂i−r
Σii

, α∗ > 0 and β ∈ (0, 1) are constants, and ki are such that |âk1 | >
|âk2 | > · · · > |âkd |. As this strategy uses an Equal Weighting of the most Extreme
stocks, we call it the EWE-strategy.

Remark 6.1. This strategy can be seen as satisfying an Lp restriction for all 0 ≤
p ≤ ∞, namely ‖πEWE‖p ≤ α∗(βd)1/p−1 for 0 < p ≤ ∞ and ‖πEWE‖0 ≤ βd.

Theorem 6.2. Suppose Σ = η2
[
(1− ρ)I + ρ11>

]
. Then

V (πEWE|µ) ≥ log(X0) + rT + TE[(µ− r1)>πEWE]− Tη2α2
∗

2βd
[1 + ρ(βd− 1)] .(6.2)

Furthermore, suppose that µ1, . . . , µd are i.i.d. and that, conditionally on µ1, . . . , µd,
the estimator satisfies µ̂ ∼ N(µ, 1

test
Σ). This implies that µ̂i ∼ N(µA + µi,

1
test

(1 −
ρ)η2), i = 1, . . . , d are i.i.d. conditionally on µA ∼ N(µ∗A,

1
test

ρη2) and µ1, . . . , µd.
Then

lim
d→∞

V (πEWE) = lim
d→∞

E(V (πEWE|µ)) ≥ log(X0) + rT − T

2
η2α∗

2ρ

+ T
α∗
β
E[P(â1 > c|µ1, µA)(µ1 − r)− P(â1 < −c|µ1, µA)(µ1 − r)],

(6.3)

where c is such that P(|â1| > c|µA) = β.

A proof is given in Appendix F.
Comparing (6.1) and (6.3), one sees that the variance penalty of strategies, T2 α

2
∗ρ

for the 1/d-strategy is not larger than the variance penalty for the EWE-strategy.
Furthermore, the EWE-strategy is superior to the 1/d-strategy in the limit if

g(β) = β−1E[P(â1 > c|µ1, µA)(µi − r)− P(â1 < −c|µ1, µA)(µi − r)]− E[µi − r] ≥ 0,

which essentially is the difference between the mean log-returns of the two strategies.
Some simulation based evaluations of the previous expression can be seen in Figure
3. We used the following simple setup: µi ∼ N(µ0, .052), η2/ttest = 0.12. The EWE
strategy is superior in many situations. Especially, if β, the proportion of stocks one
is investing in, is small.

7 Some Examples

In this section, we investigate the performance of the various trading strategies by
looking at their theoretical performance in a specific setup (Section 7.1) and by
looking at their real life performance in an out-of-sample test (Section 7.2).

Both will be based on a data set which consists of daily returns of 373 stocks that
where part of the S&P 500 index on the 1st of January 2006 and had daily returns
for all trading days between 2001 and 2008. This choice might lead to some selection
bias as we are choosing companies which existed for several years and survived the
financial crisis in 2008. The out-of-sample results in Section 7.2 might therefore be
slightly optimistic.
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7.1 Theoretical Utility - Simulation Study 7 SOME EXAMPLES
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Figure 3: Comparison of the EWE-strategy with the 1/d-strategy. Plot of g(β)
against β. If g(β) > 0 then the EWE-strategy is superior.

Throughout this section we assume X0 = 1. There were n = 2011 trading days
in these 8 years. We assume a yearly interest rate of r = 0.02.

We will investigate how the strategies perform as the number d of stocks varies.
For this we use a specific random ordering of the stocks and will allow the strategies
to invest in the first d stocks of this ordering.

Based on the observed stock prices at the time points 0,∆, 2∆, . . . , (n− 1)∆, we
use the following unbiased estimators of µ and Σ:

µ̂data =
1

∆
ξ̂ +

1

2
diag(Σ̂data),

Σ̂data
µ,ν =

1

∆(n− 2)

n−2∑
i=0

[
Rµ(i)− ξ̂µ

] [
Rν(i)− ξ̂ν

](7.1)

for µ, ν = 1, . . . , d, where Rµ(i) = log
(
Sµ((i+1)∆)
Sµ(i∆)

)
, ξ̂µ = 1

n−1

∑n−2
i=0 Rµ(i).

7.1 Theoretical Utility - Simulation Study

In this subsection, we consider the theoretical performance of the strategies men-
tioned in the previous sections. For strategies for which we do not have explicit
formulas for the expected utilities (e.g. for unknown Σ), we will use simulation to
compute their expected utility.

We use the data described above to define the model we will simulate from. We
set the true return vector to µ = µ̂data and we let the covariance matrix Σ be given
by Σ = σ̂2(1

511> + 4
5I), where σ̂2 = 1

d

∑d
i=1 Σ̂data

ii . A similar analysis, not reported

here, for Σ = σ̂2I and Σ = Σ̂data lead to similar results.
All of the following is conditional on these choices of µ and Σ. In particular, the

S&P 500 data set will not be used any further in this subsection and, in contrast to
some of the examples in previous sections, µ will not be random.

We consider up to three degrees of information about the model parameters that
the strategy π can use:

• µ,Σ known,

• Σ known, µ has to be estimated and

• both µ,Σ have to be estimated.

15



7.1 Theoretical Utility - Simulation Study 7 SOME EXAMPLES

−
20

−
10

0
10

20

d

n == 504

ex
pe

ct
ed

 u
til

ity
 V

((ππ
|µµ

))

Merton−Strategies

µµ,ΣΣ known
µµ estimated, ΣΣ known
µµ,ΣΣ estimated

d

n == 1008

d

n == 2016

−
20

−
10

0
10

20

d

ex
pe

ct
ed

 u
til

ity
 V

((ππ
|µµ

))

James−Stein Strategies

JS, ππ0 == ππ*
JS, ππ0 == ππ*, ΣΣ est.
JS, ππ0 == 0
JS, ππ0 == 0, ΣΣ est.

d d

0 100 200 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

dd

ex
pe

ct
ed

 u
til

ity
 V

((ππ
|µµ

)) L1−restricted Strategies 

L1
L1,µµ est.
L1,µµ,ΣΣ est
1 d
EWE, ββ == 0.1

0 100 200 300
dd

0 100 200 300
dd

Figure 4: Comparison of the expected utility of several strategies. The first row
contains Merton strategies (Section 3), the second row James-Stein type strategies
(Section 4), the third row L1-restricted strategies (Sections 5, 6).

Figure 4 shows the expected utility V (π|µ) when using roughly T = 1 year as invest-
ment period. In the first two information scenarios, we have used our explicit results
for the expected utility V (π|µ) for the Merton strategy with known parameters (2.3),
the plug-in Merton (3.2) and the James-Stein strategy (4.1). For the 1/d-strategy, an
explicit formula can be obtained by using (2.1). For other strategies π, we simulate
n=504, 1008, or 2016 past observations spaced one trading day apart (corresponding
to 2, 4 or 8 years) and estimate the parameters µ and Σ analogously to the esti-
mation in (7.1). We repeat this 1000 times and based on the estimated parameters
obtain estimated strategies π(1), . . . , π(1000). We then approximate V (π|µ) in (2.1)
by the Monte-Carlo estimate

log(X0) + rT + T
1

1000

1000∑
i=1

[
(π(i))>(µ− r1)− 1

2
(π(i))>Σπ(i)

]
.

The first row of Figure 4 compares the expected utility for the Merton strategy
with and without plug-in estimators. If both µ and Σ are known then the expected
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7.2 Out-of-Sample Performance 7 SOME EXAMPLES

utility is increasing roughly linearly in the number of stocks. This illustrates the
theoretical results from Section 2. When µ has to be estimated then, consistently
with the theoretical results of Section 3, the expected utility is decreasing linearly
in the number of assets. Having to estimate Σ in addition to µ makes the situation
even worse. The loss in utility is now non-linear. Furthermore, we see that having an
increased sample size for estimation improves the estimated strategies. Consistently
with (3.2), the loss in expected utility through the estimation of µ alone is halved
when the observation period is doubled.

The second row of Figure 4 shows the expected utility for different James-Stein-
type strategies. The best overall performance is obtained by using a James-Stein
estimator that shrinks towards the optimal strategy, i.e. π0 = π?. Compared to the
optimal utility of the Merton strategy with known parameters in the first row, only
very little utility is lost. Obviously, in practice this strategy cannot be used, since
the true parameter is unknown. The expected utility of a James-Stein estimator
which shrinks towards π0 = 0 ∈ Rd performs less well than if one shrinks towards
the optimal strategy. A James-Stein estimator does improve the performance of the
portfolio significantly when compared to the Merton plug-in strategies. When we
have to estimate the covariance matrix Σ for the shrinkage, then the expected utility
is decreasing very rapidly in the number of stocks.

Finally, the last row of Figure 4 compares different strategies that all respect
the L1-constraint ‖π‖1 ≤ 1: the optimal L1-restricted strategy (with combinations
of known/estimated parameters), the equally weighted portfolio, the EWE-strategy
described in Section 6.4 (with β = 0.1 and α∗ = 1) and the equally weighted
portfolio (1/d-strategy). The best performance can be achieved by using an L1-
constraint when the parameters are known. In this situation the optimal portfolio
only contains a very small number of stocks. The expected utility therefore only
changes if a new asset becomes available which has a much better expected return
and volatility than those which were previously available. That is why we observe
a step-function type of behaviour. If the parameters µ and Σ have to be estimated
in the L1-constraint case the expected utility is obviously worse than in the case
with known parameters. The expected utility stays positive in the majority of
situations which was not the case in the plug-in-Merton case or the JS-case when
both parameters had to be estimated. The difference between having to estimate Σ
or not is marginal in the L1-constrained case. The 1/d-strategy has a very stable
performance. It outperforms the L1-constrained portfolio and the EWE-strategy
when parameters have to be estimated and the number of available stocks is very
small. Otherwise, the 1/d-strategy is strictly dominated by the other L1-restricted
strategies. The EWE-strategy performs well and guarantees a stable performance.

As the sample size n increases, the performance of the estimated optimal L1-
constrained strategy approaches the performance of the optimal L1-constrained
strategy with known parameters. Furthermore, the expected utility of the EWE-
strategy improves. The 1/d-strategy and the L1-strategy with known parameters
do not use any estimated parameters and thus their performance is not affected by
n.

7.2 Out-of-Sample Performance

Based on the 8 years of S&P 500 data, we now consider the out-of-sample perfor-
mance of the strategies. We estimated the covariance matrix and the mean returns
on data from 4 years and run the investment strategy for the following year.
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Figure 5: Out-of-sample performance for several strategies. Note the different scale
for the utility for the L1-constrained strategies in the first row and the Merton and
the James-Stein strategy in the second row. In the latter case the observed utility
can be −∞.

As the Merton model is a continuous time model we need to approximate it by
trading in discrete time. We do this by trading once per trading day. The discrete
trading may lead to negative wealth at a time point t, in which case we set the
utility log(XT ) to −∞. As discussed in Rogers (2001), to avoid going bankrupt, the
investor trading at discrete time steps has to restrict the investment proportions π
to be nonnegative and to satisfy

∑d
i=1 πi ≤ 1. Then the loss due to discrete time

trading is small.
Results can be seen in Figure 5, where the number d of available stocks is plotted

against the utility log(ST ) with T being one year.
The plug-in Merton strategy performs badly in all years, being equal to −∞ very

quickly as d increases. The James-Stein strategy (which uses π0 = 0) shows results
with a very high volatility, and shows a utility of −∞ in 2007 and 2008 for large d.

The L1-optimal strategy with plug-in-estimators has a large volatility. A good
performance in 2007 is destroyed by the extremely poor performance in 2008. This
volatile behaviour is due to the slow diversification of the L1-strategy.

The EWE-strategy and the 1/d-strategy are not very much affected by the num-
ber of available stocks. Overall, the EWE-strategy performs best, narrowly beating
the 1/d-strategy. This is particularly evident in 2008, the year of a financial crisis.

This is no contradiction to the results for the theoretical expected utility in
Section 7.1, where the optimal L1-restricted strategy with estimated parameters was
doing best. In this subsection, we consider a real-data situation. Several assumptions
of the theoretical model will be violated. In particular, the assumption that µ and
Σ are constant over time probably not be true and will have a heavy impact when,
as in the last column of Figure 5, pre-crisis data (2004-2007) are used to trade in
the crisis year 2008. Not surprisingly, the strategies that do best (1/d-strategy,
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8 DISCUSSION

EWE-strategy) are the ones that are least dependent on the estimates.

8 Discussion

The L1-constrained portfolio selection problem is an example of an optimal invest-
ment problem with convex constraints on the investment strategies. Such problems
were analysed by Cvitanic and Karatzas (1992) using duality methods. In princi-
ple, one could use their approach as well to tackle the L1-constraint situation and
consider general existence results. Since we find that the primal formulation already
allows the derivation of analytic formulae for the optimal strategies we prefer the
direct approach here.

In the unconstrained Merton portfolio optimisation problem with logarithmic
utility the optimal investment strategy is given by Σ−1(µ − r1) which is, up to a
scaling factor, the optimal solution to the one-period mean-variance optimisation
problem with one riskless and d risky assets (usually referred to as Tobin model
or generalised Markowitz model). In what sense do our results carry over to the
Markowitz/Tobin situation? In a classical one-period mean-variance model an ob-
jective function could have the form f(π) = E[π>R]− 1

2Var(π
>R) where R models

the random return vector and π as before models the investment weights. We see
immediately, that by writing Var(π>R) = π>Σπ we derive the optimal strategy in
the Merton and in the static mean-variance framework by solving the same quadratic
optimisation problem as long as π is deterministic. Therefore, our results for the
optimal strategies (also for the L1-constrained strategies) carry over to the static
mean-variance optimisation problem. However, the expressions for the expected
utility are different in the Merton and the mean-variance situation. Consider e.g.
the estimator π̂ which has to be used when model parameters are unknown. In the
Merton context we consider the expression

V (π̂|µ) = log(X0) + rT + TE
[
π̂>(µ− r1)− 1

2
π̂>Σπ̂

]
,

whereas in the mean-variance context we consider

f(π̂) = E[π̂>R]− 1

2
Var(π̂>R) 6= E[π̂>R]− 1

2
E(π̂>Σπ̂).

These two expressions do not coincide and therefore the loss due to having to es-
timate the model parameters in the Merton context and the static mean-variance
context is not directly comparable.

Our model does not include any transaction costs. Analysing the effect of esti-
mation in a model that includes transaction costs would be of interest. However,
no explicit results for the strategy and no analytic results for the expected utility
are known in these models. For proportional transaction costs, Davis and Nor-
man (1990) have shown that the optimal strategy can be expressed in terms of a
no-trading-interval : While the proportion of wealth in the share stays within this
interval it is optimal not to trade. Otherwise just enough trading is done to push
this proportion into this interval. This interval usually contains the Merton propor-
tion. From a mathematical point of view one has to solve a free boundary problem
and even in one dimension (meaning one risky asset) there are no analytic results
for the boundaries of this interval. There are numerical algorithms available which
could be applied for higher dimensions. But those algorithms suffer the curse of
dimensionality and it will be effectively impossible to solve this problem even for
known parameters for high-dimensional problems.

19



B EXPECTED UTILITY OF THE MERTON STRATEGY

9 Conclusions

Our theoretical results for known Σ about the behaviour of the utility when the
number of stocks d goes to ∞ can be summarised as follows. The plug-in Merton
strategy degenerates to −∞ in realistic cases. The James-Stein type strategy does
better than plug-in Merton. In particular, the James-Stein strategy does not degen-
erate in many realistic scenarios. The utility of L1-constrained strategies can never
degenerate to −∞. The L1-constrained optimal strategy with plug-in estimators
diversifies only slowly, i.e. it invests in few stocks only.

The specific situation considered in Section 7.1 covers, via simulations, the case
when Σ needs to be estimated as well. In this case we observed the following. The
expected utility of the plug-in Merton and the James-Stein strategy degenerates to
−∞. For the optimal L1-strategy with plug-in estimators, the difference between
having to estimate Σ or not is negligible. The EWE-strategy (Equal Weighting of
Extreme stocks) performs better than the 1/d-strategy. The optimal L1-strategy
with plug-in estimators does better than the EWE-strategy for large d.

However, in the out-of-sample tests, the EWE-strategy and the 1/d-strategy do
better than the optimal L1-strategy. This could be explained by the L1-strategy in-
vesting only in few stocks, whereas the EWE-strategy and the 1/d-strategy diversify
much better, investing in more stocks and weighting them all equally. This seems
to be important when there are structural changes in the market, such as in the
financial crisis of 2008. An explanation why the EWE-strategy seems to outperform
the 1/d-strategy is that the former tries to pick stocks with a higher return, while
still diversifying reasonably.

A Inverse of a Specific Covariance Matrix

The following lemma can be derived by solving I = Σ(aI + b11>) for a and b.

Lemma A.1. Suppose Σ = η2
[
(1− ρ)I + ρ11>

]
, where 0 ≤ ρ ≤ 1 and 1 =

(1, . . . , 1)> ∈ Rd. Then

Σ−1 =
1

η2(1− ρ)

[
I − ρ

1− ρ+ ρd
11>

]
for ρ < 1.

B Expected Utility of the Merton Strategy

This section contains the proof of (2.4) in Example 2.1. Using Lemma A.1, the
quadratic term in (2.3) can be written as

(µ− r1)>
1

η2(1− ρ)

[
I − ρ

1− ρ+ ρd
11>

]
(µ− r1)

=
1

η2(1− ρ)

(
‖µ− r1‖22 −

ρ

1− ρ+ ρd

[
(µ− r1)>1

]2
)

=
1

η2(1− ρ)

 d∑
i=1

(µi − r)2 − ρ

1− ρ+ ρd

∑
i 6=j

(µi − r)(µj − r) +

d∑
i=1

(µi − r)2

 .
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The expected value of this is

1

η2(1− ρ)

[
dE[(µ1 − r)2]− ρ

1− ρ+ ρd

[
d(d− 1)(E(µ1 − r))2 + dE[(µ1 − r)2]

]]
=

d

η2(1− ρ)(1− ρ+ ρd)

[
(1− ρ+ ρd− ρ)E[(µ1 − r)2]− (ρd− ρ)(E(µ1 − r))2

]
=
d
[
(1 + ρ(d− 2))Var[µ1] + (1− ρ)(E(µ1 − r))2

]
η2(1− ρ)(1 + ρ(d− 1))

.

C Proof - James-Stein Strategy

Proof of Theorem 4.1. Using (2.1) yields

V (π̂JS,π
0 |µ) = log(X0) + rT − 1

2
TE[−2(π̂JS,π

0
)>Σπ∗ + (π̂JS,π

0
)>Σπ̂JS,π

0
],

where π∗ = Σ−1(µ− r1) is the optimal strategy. Noting that π̂JS,π
0

= π̂ − aπ̂0

(π̂0)>Σπ̂0

with π̂0 = π̂ − π0 and expanding the term in the expectation gives

−2π̂>Σπ∗ + 2a
(π̂0)>Σπ∗

(π̂0)>Σπ̂0
+ π̂>Σπ̂ − 2a

(π̂0)>Σπ̂

(π̂0)>Σπ̂0
+

a2

(π̂0)>Σπ̂0
.

Collecting terms gives

V (π̂JS,π
0 |µ) = V (π̂|µ) +

T

2

{
2aE

[
(π̂ − π∗)>Σ

π̂0

(π̂0)>Σπ̂0

]
− a2E

[
1

(π̂0)>Σπ̂0

]}
= V (π̂|µ) +

T

2
a

{
2E

[
(ζ̂ − ζ∗)> ζ̂

ζ̂>ζ̂

]
− aE

[
1

ζ̂>ζ̂

]}
,

where ζ̂ = σ>π̂0 = σ−1(µ̂− r1)− σ>π0 ∼ N(ζ∗, I/test) and ζ∗ = σ>(π∗ − π0).
Using Stein’s lemma (Stein, 1981) as in (Young and Smith, 2005, p.34) yields

E

[
(ζ̂ − ζ∗)> ζ̂

ζ̂>ζ̂

]
= E

[
(ζ̂/test − ζ∗/test)>ζ̂/test

ζ̂/t>estζ̂/test

]
= E

[
d− 2

ζ̂>ζ̂

]
/test.

testζ̂
>ζ̂ follows a χ2

d(2λ) distribution with non-centrality parameter 2λ = testζ
∗>ζ∗ =

test(π
∗−π0)>Σ(π∗−π0). Thus testζ̂

>ζ̂ can be written as a mixture of central χ2
d+2K

random variables where the mixture variable K follows a Poisson distribution with
parameter λ. Thus,

E
[

1

testζ̂>ζ̂

]
= E

[
1

d− 2 + 2K

]
.

Lemma C.1. Let K be a Poisson distributed random variable with mean λ and let
q ≥ 1. Then,

E
(

1

q +K

)
=

1

q + λ
+O

(
1

q2

)
as q + λ→∞,

where λ may depend on q and O
(

1
q2

)
does not depend on λ.
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Proof. A Taylor expansion of K 7→ 1
q+K around K = λ gives

1

q +K
=

1

q + λ
− 1

(q + λ)2
(K − λ) +

1

(q + ξK)3
(K − λ)2,(C.1)

for some ξK between K and λ. Using that the last term is non-negative and taking
expectations, we get

E
(

1

q +K

)
≥ 1

q + λ
.

Furthermore,
1

(q + ξK)3
≤ 1

(q + λ/2)3
+ I(K < λ/2)

1

q3
.

Using this, taking expectations in (C.1) and using (Houdré, 2002, (1.6)) with f(x) =
−x, which gives P(K < λ/2) ≤ exp(λ/2− 3/2λ log(3/2)), we get

E
(

1

q +K

)
≤ 1

q + λ
+

λ

(q + λ/2)3
+
λ

q3
e
λ
2
− 3

2
λ log( 3

2
).

The second term can be bounded above by 8/q2 and λ exp(λ/2 − 3/2λ log(3/2)) is
bounded.

D Proof for the Structure of L1-constrained Strategies

Proof of Theorem 5.2. The solution for the unconstrained case follows directly from
(2.2) and Lemma A.1.

Let π+
i = max(πi, 0), π−i = max(−πi, 0). Hence, π = π+ − π−. We consider the

(2d)-dimensional vector π̃> = (π+>, π−>). Let 1k = (1, . . . , 1)> ∈ Rk for k ∈ N.
The optimisation problem can be written as follows:

π̃>

(
Σ −Σ

−Σ Σ

)
π̃ − 2

(
(µ− r1d)>, (r1d − µ)>

)
π̃ → min

subject to(
I

−1>2d

)
π̃ ≥

(
0

−c

)
.

The following Kuhn-Tucker conditions characterise uniquely the solution to this
problem (Lawson and Hanson, 1995, p.159,160).

2

(
Σ −Σ
−Σ Σ

)
π̃ − 2

(
µ− r1d
r1d − µ

)
− u+ 12dv = 0,

π̃ ≥ 0, 1>2dπ̃ ≤ c, v ≥ 0, u ≥ 0,

ui = 0 ∀i ∈ {1, . . . , 2d} : π̃i > 0,

v = 0 or 1>2dπ̃ = c,

where v ∈ R and u ∈ R2d. The first equation is equivalent to

(D.1) 2η2(1− ρ)

(
π
π

)
+ 2η2ρ1d1

>
d π − 2

(
µ− r1d
µ− r1d

)
+

(
−u1

u2

)
+

(
1d
−1d

)
v = 0,
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where u = (u>1 , u
>
2 )>, u1, u2 ∈ Rd. It is straightforward to verify that π∗ satisfies

the Kuhn-Tucker conditions with v = a+ − a−,

u1i =


0, if π∗i > 0,

−2(µi − r − a+) if π∗i = 0,

2(a+ − a−) if π∗i < 0,

u2i =


2(a+ − a−) if π∗i > 0,

2(µi − r − a−) if π∗i = 0,

0 if π∗i < 0.

Thus π∗ is a solution to the optimisation problem.
Next, we show that the equations for a+ and a− always have a unique solu-

tion. From quadratic optimisation theory it is known that the optimisation problem
always has a unique solution. This solution has to satisfy the Kuhn-Tucker equa-
tions. Thus it suffices to show that any solution to the Kuhn-Tucker equation can
be written in the form of π∗, which we will do next.

For i with πi > 0, (D.1) implies η2(1−ρ)πi+η2ρ1>d π− (µi−r)+v/2 = 0. Hence,

πi =
1

η2(1− ρ)

(
µi − r − a+

)
,

where a+ = v/2 + η2ρ1>d π. Similarly, for i with πi < 0,

πi =
1

η2(1− ρ)

(
µi − r − a−

)
,

where a− = −v/2 + η2ρ1>d π. Thus a+ + a− = 2η2ρ1>d π. For i with πi = 0,

2η2ρ1>π − 2(µi − r) + v = u1i ≥0,

2η2ρ1>π − 2(µi − r)− v = −u2i ≤0.

Hence, a+ ≥ µi − r and a− ≤ µi − r. Thus if ‖π‖1 = c, then π = π∗.

E Some Results from Extreme Value Theory

Let X ∼ N(µ, σ2). We will say that |X| has a folded normal distribution and denote
its distribution by FN(µ, σ2).

Theorem E.1. The folded normal distribution is in the domain of attraction of
the Gumbel distribution, i.e. let X1, . . . , Xd ∼ FN(µ, σ2) be independent, then there
exist norming constants cd > 0, bd ∈ R such that

max(X1, . . . , Xd)− bd
cd

L−→ H (d→∞),

where H denotes the Gumbel distribution. The norming constants cd, bd are (im-
plicitly) given by

1− Φ
(
bd−µ
σ

)
+ 1− Φ

(
bd+µ
σ

)
= 1

d , cd = a(bd),

a(x) =
Φ
(x−µ

σ

)
(x− µ) + σφ

(x−µ
σ

)
+ Φ

(x+µ
σ

)
(x+ µ) + σφ

(x+µ
σ

)
− 2x

2− Φ(x−µσ )− Φ(x+µ
σ )

,
(E.1)

where Φ (resp. φ) is the cdf (pdf) of a standard normal distribution.

The following two lemmas are needed for the proof of Theorem E.1.
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Lemma E.2. The cumulative distribution function of X ∼ FN(µ, σ2) is F (x) =
−1 + Φ(x−µσ ) + Φ(x+µ

σ ) for x ≥ 0.

Proof. F (x) = P(X ≤ x) = Φ
(x−µ

σ

)
− Φ

(−x−µ
σ

)
.

Lemma E.3. Let F be the cdf of X ∼ FN(µ, σ2) and let F̄ (x) = 1− F (x). Then

lim
x→∞

F̄ (x)F ′′(x)

(F ′(x))2
= −1,

where ′ denotes differentiation.

Proof. First, we consider the case σ = 1. By l’Hôpital’s rule,

lim
x→∞

F̄ (x)
1

x−µφ(x− µ) + 1
x+µφ(x+ µ)

=

= lim
x→∞

−φ(x− µ)− φ(x+ µ)
−1

(x−µ)2
φ(x− µ)− φ(x− µ) + −1

(x+µ)2
φ(x+ µ)− φ(x+ µ)

= lim
x→∞

−1

−1 +
−1

(x−µ)2
φ(x−µ)+ −1

(x+µ)2
φ(x+µ)

φ(x−µ)+φ(x+µ)

= 1.

The last equality holds because

0← −1

(x− µ)2
≤

−1
(x−µ)2

φ(x− µ) + −1
(x+µ)2

φ(x+ µ)

φ(x− µ) + φ(x+ µ)
≤ −1

(x+ µ)2
→ 0.

Hence,

lim
x→∞

F̄ (x)F ′′(x)

(F ′(x))2
= lim

x→∞

[
φ(x−µ)
x−µ + φ(x+µ)

x+µ

]
[−(x− µ)φ(x− µ)− (x+ µ)φ(x+ µ)]

[φ(x− µ) + φ(x+ µ)]2
.

Expanding the negative of the numerator gives

φ(x− µ)2 + φ(x+ µ)2 + φ(x− µ)φ(x+ µ)

[
x+ µ

x− µ
+
x− µ
x+ µ

]
.

Thus

lim
x→∞

F̄ (x)F ′′(x)

(F ′(x))2
= −1− lim

x→∞

φ(x− µ)φ(x+ µ)
[
x+µ
x−µ + x−µ

x+µ − 2
]

[φ(x− µ) + φ(x+ µ)]2
.

The limit on the right hand side is 0 because the term in the bracket in the numerator
simplifies as follows

x2 + 2µx+ µ2 + x2 − 2µx+ µ2

x2 − µ2
− 2 =

4µ2

x2 − µ2
→ 0 (x→∞),

and because

0 ≤ φ(x− µ)φ(x+ µ)

[φ(x− µ) + φ(x+ µ)]2
=

φ(x− µ)φ(x+ µ)

φ(x− µ)2 + φ(x+ µ)2 + 2φ(x− µ)φ(x+ µ)
≤ 1

2
.

In the general case σ 6= 1,we have F (x) = G(x/σ) where G is the cdf of |X| where
X ∼ N(µ/σ, 1). Hence,

lim
x→∞

F̄ (x)F ′′(x)

(F ′(x))2
= lim

x/σ→∞

Ḡ(x/σ)G′′(x/σ)/σ2

(G′(x/σ))2/σ2
= −1.
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Proof of Theorem E.1. Lemma E.3 together with (Embrechts et al., 1997, Example
3.3.23, Proposition 3.3.25) imply that F is in the domain of attraction of the Gumbel
distribution. Furthermore, (Embrechts et al., 1997, Theorem 3.3.26) shows that the
norming constants can be defined by

bd = F−1(1− 1

d
), cd = a(bd), a(x) =

∫ ∞
x

F (t)

F (x)
dt.

Evaluating the integral gives (E.1).

Proof of Theorem 5.4. Corollary 5.3 shows that the optimal strategy with plug-
in estimators invests in k < d stocks if and only if 1

η2
∑k−1

i=1 (Zi,d − Zk,d) < c ≤
1
η2
∑k

i=1(Zi,d−Zk+1,d), where Z1,d ≥ Z2,d ≥ . . . ≥ Zd,d are the upper order statistics

of Zi = |µ̂i − r|, i = 1, . . . , d. The random variables Z1, . . . , Zd are i.i.d. folded
normally distributed.

Theorem E.1 shows that the folded normal distribution is in the domain of at-
traction of the Gumbel distribution and therefore (Embrechts et al., 1997, Corollary
4.2.11, p. 202) implies that for k ≥ 1,∑k

i=1 Zi,d − kZk+1,d

cd

L−→
k∑
i=1

Ei (d→∞),

where E1, . . . , Ek are i.i.d. exponentially distributed (with parameter 1) random
variables and cd > 0 are norming constants specified in Theorem E.1. Noting that
P(
∑k

i=1Ei ≤ c) = P(K + 1 = k) finishes the proof.

Proof of Theorem 5.5. For even k, using notation from Theorem 5.2,

P(#{i : π∗i 6= 0} > k) ≤ P(#{i : π∗i > 0} > k/2 or #{i : π∗i < 0} > k/2)

≤ P(#{i : π∗i > 0} > k/2) + P(#{i : π∗i < 0} > k/2)

≤ P(µ̂k/2+1,d − r − a+ > 0) + P(µ̂d−k/2,d − r − a− < 0),

where µ̂1,d ≥ · · · ≥ µ̂d,d. On the event {µ̂k/2+1,d − r − a+ > 0}, we have

c ≥
d∑
i=1

|π∗i | ≥
d∑
i=1

max(π∗i , 0) ≥ 1

η2(1− ρ)

k/2+1∑
i=1

(µ̂i,d − r − a+)

≥ 1

η2(1− ρ)

k/2+1∑
i=1

((µ̂i,d − r)− (µ̂k/2+1,d − r)) =
1

η2(1− ρ)

k/2+1∑
i=1

(µ̂i,d − µ̂k/2+1,d),

and, similarly, on the event {µ̂d−k/2,d − r − a− < 0}, we have

c ≥
d∑
i=1

|π∗i | ≥
1

η2(1− ρ)

d∑
d−k/2

(a− − (µ̂i,d − r)) ≥
1

η2(1− ρ)

d∑
d−k/2

(µ̂d−k/2,d − µ̂i,d).

Thus,

P(#{i : π∗i 6= 0} > k) ≤P

k/2+1∑
i=1

[µ̂i,d − µ̂k/2+1,d] ≤ cη2(1− ρ)


+ P

 d∑
i=d−k/2

[µ̂d−k/2,d − µ̂i,d] ≤ cη2(1− ρ)

 .
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Since Cov(µ̂) = 1
test

η2((1 − ρ)I + ρ11>), there are independent and normally dis-

tributed µA, µ
0
1, . . . , µ

0
d with Var(µ0

i ) = η2(1− ρ)/test such that µ̂i = µ0
i + µA. As a

consequence we can replace µ̂i,d− µ̂k/2+1,d by µ0
i,d−µ0

k/2+1,d in the previous expres-
sion.

The normal distribution is in the domain of attraction of a Gumbel distribution.
Therefore, by (Embrechts et al., 1997, Example 3.3.29, Corollary 4.2.11),

√
test

η
√

1− ρ
(2 log(d))1/2

k/2+1∑
i=1

µ0
i,d − (k/2 + 1)µ0

k/2+1,d

 L→
k/2+1∑
i=1

Ei (d→∞),

where µ0
1,d ≥ · · · ≥ µ0

d,d and E1, . . . , Ek/2+1 are i.i.d. standard exponential. A similar
argument can be made for the lower tail.

With the chosen threshold c = α(2 log(d))−1/2 we get

lim
d→∞

P(#{i : π∗i 6= 0} > k) ≤2P

k/2+1∑
i=1

Ei ≤ λ

 = 2P(K ≥ k/2 + 1),

where λ = αη
√

1− ρ
√
test and K is a Poisson distribution with parameter λ.

F Proofs for the EWE-Strategy

Proof of Theorem 6.2. Plugging πEWE into (2.1), the last term in the expectation is

(πEWE)>ΣπEWE ≤ η2α2
[
(1− ρ)βd+ ρβ2d2

]
= η2α2βd [1 + ρ(βd− 1)] ,

and thus,

V (πEWE|µ) ≥ log(X0) + rT + TE[(πEWE)>(µ− r1)]− T

2
η2α

2
∗

βd
[1 + ρ(βd− 1)] .

Next, we prove the second part of the statement. For all i = 1, . . . , d,

E[πEWE
i (µi − r)] =αE[P(πEWE

i > 0
∣∣µA, µi)(µi − r)− P(πEWE

i < 0
∣∣µA, µi)(µi − r)]

(∗)→αE[P(â1 > c
∣∣µ1, µA)(µi − r)]− P(â1 < −c

∣∣µ1, µA)(µi − r)].

To see (∗):

P(πEWE
i > 0|µA, µi) = P

1

d

d∑
j=1

I (|âj | < |âi|) ≥ 1− β, âi > 0
∣∣∣µA, µi

 .

As d→∞, for i 6= 1,

1

d

d∑
j=1

I (|âj | < |âi|)→ P (|â1| < |âi||µA, µ1, . . . , µd) .

Thus by the bounded convergence theorem, (∗) holds.
Letting d→∞ in the final term of (6.2) completes the proof.
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