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abstract: This paper introduces a dynamic panel data model in which the intercepts and
the coefficients on the lagged endogenous variables are specific to the cross section units,
while the coefficients on the exogenous variables are assumed to be normally distributed
across the cross section.  Thus the model includes mixture of fixed coefficients and
random coefficients, which I call the “MFR” model.  The paper shows that this model has
several desirable characteristics.  In particular, the model allows for a considerable degree
of heterogeneity across the cross section both in the dynamics and in the relationship
between the independent and dependent variables.  Estimation of the MFR model
produces an estimate of the variance of the coefficients across the cross section units
which can be used as a diagnostic tool to judge how widespread a relationship is and
whether pooling of the data is appropriate.  In addition, unlike LSDV estimation of
dynamic panel models, the MFR model does not produce severely biased estimates when
T is small.
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 1.  Introduction

Panel data models in Macroeconomics have become increasingly popular in the past
decade with the increased availability of cross country data sets that span 20 years or
more.  There are several key advantages of using panel data over a single time series or
cross section data set.   In cases where there is limited time series data available for each
country there may be insufficient power of tests of hypotheses.  If it is possible to impose
some homogeneity conditions upon the parameter across countries then a panel data
model will afford additional power and may allow the detection of relationships not
apparent from the individual time series.  Unlike cross section models, with a panel model
it is possible to control for the country-specific, time invariant characteristics through the
use of country-specific intercepts or “fixed effects.”  In addition, many processes display
dynamic adjustment over time and ignoring the dynamic aspect of the data is not only a
loss of potentially important information, but can lead to serious misspecification biases in
the estimation.  Including lagged dependent variables in a model can also control to a large
extent for many omitted variables.

In practice there are two important econometric problems in estimating dynamic panel
data models.  The first is that parameters estimates are known to be biased in models with
fixed effects and lagged dependent variables, and the second is that the homogeneity
assumptions that are often imposed on the coefficients of the lagged dependent variable
can lead to serious biases when in fact the dynamics are heterogeneous across the cross
section units.  This paper proposes a dynamic, fixed effects panel data model which
reduces both of these problems. The estimation of the model does not require instrumental
variables and the model has the additional benefit of providing the researcher with
diagnostic information about the extent of heterogeneity in the panel.

The paper proceeds as follows.  In section 2 the econometric issues surrounding the
estimation of dynamic panel models are discussed, and some current estimation techniques
are briefly reviewed.  In section 3 I introduce an alternative model specification (the
“MFR” model) which addresses the problems discussed in section 2 and discuss its
properties.  Section 4 presents the results of Monte Carlo simulation and a simple
empirical exercise which illustrate the advantages of the MFR model.  Section 5
summarizes the paper and concludes.  The estimation algorithm for the MFR model is
presented in the appendix.
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2.  Brief Discussion of Econometric Estimation of Dynamic Panel Data Models

Consider the simple model,

y y xit it it it= + +−γ β ε1

where ε µ ηit i it= +   and  i = 1, …,N cross section units and t = 1, …,T time periods.
There is a clear simultaneity problem as the lagged dependent variable yit −1  is correlated
with the error term εit by virtue of its correlation with the time-invariant component of the
error term, µi .  Nickell (1981) has shown that even if the “fixed effects” (FE)  or Least
Squares Dummy Variable (LSDV) is used, yit −1  will still be correlated with the error term
and the resulting bias will be of O(1/T).  Andersen and Hsiao (1981) and Hsiao (1986)
both provide extensive discussions of this bias.

The usual approach for dealing with this problem is to first first-difference the data to
remove the µi  which yields:

y y y y x xit it it it it it it it− = − + − + −− − − −1 1 1 1γ β ε ε( ) ( ) ( )

Then, because ∆yit−1  is correlated with the first difference error term it is necessary to
instrument for it.  Andersen and Hsiao (1981) have suggested using ∆yit −2  or yit −2  as an
instrument as these terms are not correlated with ∆ε η ηit it it= − −1 .  Arellano (1989)
showed that an estimator that uses the levels for instruments has no singularities and
displays much smaller variances than does the analogous estimator that uses differences as
estimators.  Holtz-Eakin et. al.(1988) adopt the approach to panel VAR’s in a framework
for testing Granger causality in panels and suggest using a time-varying set of instruments
that includes both differences and levels. In addition other instruments have been
suggested by a succession of researchers1.  In practice however it is often difficult to find
good instruments for the first-differenced lagged dependent variable, which can itself
create problems for the estimation.   Kiviet (1995) shows that panel data models that use
instrumental variable estimation often lead to poor finite sample efficiency and bias.  Using
a broad array of Monte Carlo simulations he finds,

In particular situations it seems that valid orthogonality restrictions can
better not be employed when composing a set of instrumental variables.  It
is difficult to find clues on when which  instrumental variables are better
put aside in order to avoid serious small sample bias or relatively large
standard deviations, which both entail poor estimator efficiency.  As yet, no
technique is available that has shown uniform superiority in finite samples
over a wide range of relevant situations as far as the true parameter values

                                                       
1 For example, see Arellano and Bond(1991), Keane and Runkle (1992), Arellano and Bover(1995), and
Ahn and Schmidt(1995).  Baltagi (1995) provides a useful overview of all these papers.



4

and the further properties of the data generating mechanism are concerned.
(p.72)

Fortunately, as T gets larger this bias becomes less of a problem. Nevertheless it would be
useful to have an estimator which did not have such a large bias for small T and which did
not require instrumental variables estimation.  In particular, many cross country data sets
have time dimensions of between 15 to 25 years, at which point it is hard to judge whether
the Nickell bias or a weak instrument set will do more harm to the estimation.

An additional problem of introducing dynamics into a panel data model is the potential
bias induced by heterogeneity of the cross section units.  Pesaran and Smith (1995) have
explored this problem in depth. They show that parameter estimates derived from  pooled
data are not consistent in dynamic models even for large N and T.  In particular consider a
model in which the coefficient on the lagged dependent variable is constrained to be equal
across all cross section units so that we have:

y y xit i it it it= + + +−α γ β ε1

there could be significant bias introduced if in fact the coefficients on the lagged dependent
variable are not constant across the cross section.  In this case the difference between the
actual value and the estimated coefficient times the dependent variable, ( )γ γi ity− −1  , will
be a component of the error term2 and this serial correlation induces bias and inconsistency
in the estimation.    As Pesaran and Smith (1995) point out, this bias is distinct from the
fixed effects Nickell bias discussed above and cannot be addressed with instrumental
variables estimation.  In fact, in the case of macroeconomic cross country dynamic models
the Pesaran and Smith bias could be much more severe than the former considering the
larger T dimension of these data sets and the likelihood of cross country heterogeneity.

3.  An Alternative Dynamic, “Fixed Effects” Panel Data Model

In this paper I propose an alternative specification for dynamic panel data models which
allows for greater heterogeneity in the parameters than do the traditional models and has
the additional benefit of producing considerably less biased parameter estimates than the
fixed effects estimator with small T.   This reduction in bias may make it more reasonable
to forgo instrumental variables estimation in cases where the instruments are poor, a
common problem with cross country panel data sets.   In addition, the model provides its
own internal diagnostics which can warn a researcher of excessive panel heterogeneity.  In
particular consider the specification:

y y xit i i it i it it= + + +−α γ β ε1

where the coefficient on the lagged dependent variable is country-specific and the
coefficient on the exogenous explanatory variable x is drawn from a random distribution

                                                       
2 Again, see Pesaran [19].
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with mean β , so that β β υi i= + . I call this a “mixed fixed and random coefficients”
(MFR) model after Hsiao (1989) who originally developed the estimation algorithm for a
combination of fixed and random coefficients in a non-dynamic, non-fixed-effects panel
data model of regional electricity demand.

It is important to explain why this particular combination of fixed, individual-specific
coefficients on the lagged dependent variable and random coefficients only on the lagged
independent variables has been chosen for the MFR model.  First, note that it is
inappropriate to simply introduce lagged dependent variables into a “random coefficients
model”. To illustrate, consider a simple model:

y y xit i i it i it it= + + +−α γ β ε1

where γ γ η β β ηi i i i= + = +1 2 ,    and η  is a random disturbance.  The model can thus be
rewritten as:

y y xit i it it it= + + +−α γ β ξ1

where ξ η η εit i it i it ity x= + +−1 1 2 .  There is clearly a serious problem with this specification
as the error term is correlated with the lagged dependent variable. Moreover, the
traditional econometric remedy for such models, using instrumental variable estimation,
may not be possible in this situation.  It is very difficult, if not impossible, to find
instruments which are correlated with the LHS variables but not with the error term.3  If
we instead model the coefficient on the lagged dependent variable as fixed rather than
random, but constrain it to be equal across all cross section units so that we have:

y y xit i it i it it= + + +−α γ β ε1

there could still be significant biases introduced if in fact the coefficients on the lagged
dependent variable are not constant across the cross section, as discussed in section 2 of
this paper.  It is thus clear that if we suspect heterogeneity in the panel it is prudent to
allow as much flexibility in the estimation of the coefficient on the lagged dependent
variable as possible.  However we cannot allow both the coefficients on the explanatory
variables and on the lagged dependent variable to be random.

The MFR model avoids both of the problems outlined above. It allows for heterogeneity in
both the coefficient on the lagged endogenous variable and on the exogenous variable
without introducing the simultaneity problem.  However, it has not yet been shown why
this model should be less biased with small T than traditional fixed effects dynamic panel
data models.  Section 4 presents a series of Monte Carlo simulations that demonstrate that
the bias in the estimates of the coefficient on the exogenous variable are quite small even
when the time series is as short as T = 5.  If it is desired, the MFR model can be estimated
using any of the instrument sets suggested in the literature.  However, given that the

                                                       
3 For an explicit treatment of this problem see Pesaran [19] p. 24.
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instruments are often of quite poor quality, researchers using cross country panel data
which tend to have time dimensions of about 15 to 30 years may find that using a MFR
model is preferable to traditional models. In addition, unlike traditional panel models, the
MFR model provides panel diagnostics which  are discussed in the next section.

3.1  Heterogeneity and the MFR Model as a Diagnostic Tool

In addition to the properties discussed above, the MFR model estimation provides an
estimate of not only the mean, but also the variance of the random coefficients.  The
estimated variance of  β β,  which we denote ,s2  can be used as a diagnostic tool to

determine the extent of heterogeneity in the relationship in question.  If the estimated
variance is quite large relative to the coefficient estimates, this is a signal of significant
heterogeneity in the panel.  Rather than continuing with the panel data analysis at that
point it may be prudent to rather investigate the heterogeneity in greater detail to assess
the appropriateness of the specification and/or the pooling of the data.  However, if the
variance is quite small then a researcher can have additional confidence that the
conclusions of the estimation are quite general across the panel.  In a complementary
paper (Weinhold (1998)) I propose a “rule of thumb” for interpreting the estimated
variance from the MFR model in the context of causality testing.  In particular I suggest

multiplying the standard error of the mean estimate by N and constructing a confidence
interval around zero that is twice this distance on either side. The area that falls within this
interval is interpreted to correspond to observations that are not significantly different
from zero. Thus,

( ) ( )
ββ ˆˆ se20se20Prob0Prob NxNx +≤≤−==

Another use of the estimated distribution from the MFR model is to recover estimates of
the individual cross section coefficients in the case in which the time dimension is too
short to have confidence in the individual time-series estimates4.  Specifically, under the

assumption of normality we have β β σ β1 1
2

i ~  N( ,  ) .  Although the cross section time

series are too short for reliable estimates of the individual β1i 's, these estimates can be
used to estimate the order of the parameter values across cross section units. We can
denote these ordered estimates as b(j) with b(j+1) > b(j) for all j5.  Then, for example,  bi =
b(j) implies that bi is the jth largest estimate.  If EN(J) is the jth normal score from a sample
of size N, we can construct a new estimate

~
βi NE= s (j) + b .   That is, by scaling the normal

score using the mean and standard deviation estimated in the first two steps we derive the

new estimates 
~
βi ’s.  These estimates will have the correct mean and variance and will be

perfectly normally distributed. Furthermore, they should be more reliable than those
estimated directly from a single series if the assumption that they are randomly distributed
is valid.

                                                       
4 This approach was originally suggested by Prof. C.W.J. Granger.
5 Ties can be broken by averaging equal values or by random allocation.
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4.  Monte Carlo Simulations and a Simple Empirical Example
4.1  Monte Carlo Trials

Monte Carlo simulation trials were run to gauge the extent of any bias in the MFR
estimates for different magnitudes of T and N.    In particular data were generated that I
feel approximates the nature of many cross country data sets, with cross-section specific
fixed effects and individual dynamics.  Thus panels of different dimensions were generated
from the model6:

x x

y y x
it i it it

it i i it i it it

= + +
= + + +

−

−

α ε
α γ β ε

1 1 1

2 1 2

0 41.

where α α γ1 20 2 12 05 35 0 003 0 997i i iRNDU RNDU RNDU~ [ . , . ], ~ [ . , . ], ~ [ . , . ],         − and
βi N~ ( )0.2,  1.0 .  Both errors terms were drawn from the standard normal distribution,
as were the initial values of both x and y.  The model was allowed to iterate 30 times
before the panel data of x’s and y’s were used for estimation.

Kiviet (1995) performed a wide variety of Monte Carlo simulations for different dynamic
panel data estimators.  He shows that although it is biased, the LSDV has a relatively
small standard deviation compared to the asymptotically consistent IV and GMM
estimators. He therefore proposes an estimator in which an approximation to the Nickell
bias is calculated and the LSDV estimator is directly corrected, and finds this estimator to
be more efficient than the alternatives.  However, the Kiviet estimator is derived under the
assumption of homogenous parameter values across the cross section, as are the
alternative IV and GMM estimators.  We can nevertheless use his estimates of the biases
as a general point of comparison, taking into account the fundamental differences in model
design.  Since the actual LSDV Nickell bias depends on the value ofγ , the coefficient on
the lagged dependent variable, I do not expect to obtain the normal Monte Carlo LSDV
biases that are generated under homogenous parameters.   Rather, the bias on the LSDV
estimator reported here will be a combination of the Nickell bias and the Pesaran and
Smith bias.  Since many real world applications are susceptible to both sources of bias
(and I have argued that in many cases the Pesaran and Smith bias might be the more
damaging of the two) I feel that it is interesting to observe their joint impact on the
standard LSDV estimator.

Panel dimensions that closely resemble the dimensions of many cross country data sets
were used.  In particular I examine model performance for T= 5, 10, 25 and 50 years for
panels of N= 20, 40 and 80 cross section units.  For each simulation both the MFR model
as well as an LSDV model were estimated using the generated panel data.  This was

                                                       
6 Some simulations were also run constraining the coefficient on the lagged dependent variable to be
constant across countries. If anything the reduction in bias from the MFR model was even greater in these
cases.  However, computation time is quite long for the larger panels and I feel that heterogeneous
dynamics is more likely representative of cross-country data sets. Thus heterogeneous dynamics were used
for the whole simulation presented here.
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repeated 10,000 times and the average estimate of β  from each model is presented in

table 1.  Since we know the true value of β  is 0.20 we can observe that the biases of the
models directly and compare their magnitudes.  Table 2 presents the estimates of the
variance of βi , σ β

2 .  Again, since we know thatσ β
2 =1.0 we can readily observe any bias

from the MFR estimation.  Finally, since I am allowing country-specific dynamics in the
model  (i.e.γ i  is uniformly distributed across the cross section) there is no single “true”
parameter valueγ  in the model.

The results from table 1  illustrates that, unlike the traditional LSDV estimator, the mean
estimate of β  is not severely biased by a short time dimension in the data for the typical
cross section dimensions found in cross country data sets.  On average the biases range
between 0.001 and 0.003. There is a slightly larger upwards bias of 0.0105 on the estimate
when N=80 and T =5 however.  Unfortunately, this dimensionality is the most comparable
to the Kiviet (1995) results, although Kiviet’s models have one more time observation
which may make a big difference.  To check this I rerun the simulation for T=6 and
N=100, emulating Kiviet as closely as possible by running 1000 replications.  Our average
estimate of the mean is .2021 (the LSDV estimate in this case is 0.1832) The calculated
bias, shown at the end of the second column in table 3, is thus 0.0021 which compares
quite favorably with the alternative estimators.  In addition, table 2 presents the standard
deviation of the estimates which show the clear pattern of root-N consistency.

For panels with time dimensions of 10 or greater, the average estimate of the MFR model
seems to hover between 0.2012 and 0.2025 without showing much systematic evolution
related to the time or cross section dimensions.  On the other hand I find that the bias on
the LSDV is significant in all of the panels and actually increases as T grows larger7.  This
confirms my earlier suspicion that in panels with heterogeneous dynamics, a longer time
dimension does not necessarily justify the use of the LSDV estimator.

As table 4 illustrates, while the average estimated mean of β  in the MFR model appears

fairly invariant to the time dimension,  the estimate of the variance, σ β
2 , is highly biased

upwards for very small T.  In particular we can observe that the estimated variance for T =
5 is between 7 and 10 times the actual value.  This upward bias initially declines sharply
with the number of time periods so that by T = 10 the estimated variance is 1.24 compared
to the actual value of 1.0.  The bias declines at a decreasing rate after that; at T = 25 the
estimated variance has only a very small bias of 1.07, and at T= 50  it has decreased to
1.03.    Thus researchers using the MFR model with short time series should take into
account that the variance estimate is highly biased upwards. This would effect the
diagnostic ability of the model if the bias is not taken into account, but the simulations

                                                       
7 I assume this is due to the use of heterogeneous dynamics in the simulated data and is the result of the
Pesaran and Smith (1995) bias.  One possibility is that the two biases somehow mitigate each other when
T is small, but that as T grows larger and the Nickell bias shrinks, the Pesaran and Smith bias come to
dominate. In this case the Pesaran and Smith Bias is clearly negative.
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have shown that the mean estimate is much less biased the LSDV estimator which could
make the model a good choice regardless.

Finally, in order to more directly compare the bias of the MFR model with those of
alternative estimators under heterogeneous dynamics a final set of Monte Carlo
simulations is run.  In particular it is informative to investigate the properties of some of
the more common dynamic panel data estimators, which have been derived under
homogenous dynamics assumptions, when in fact the dynamics are generated to be unit-
specific.

Thus, following Judson and Owen (1997) the simulation is expanded to include a simple
Anderson and Hsiao (1981) estimate as well as a GMM estimator proposed  in Arellano
and Bond (1991).   Anderson and Hsiao first difference the model, yeilding

ittititi xyy εβγ ∆+∆+∆=∆ − ,1,,  where 1,, −−=∆ titiit yyy  and so on. They then suggest

estimating the model using the second lagged level of the dependent variable as an
instrument for the the lagged first differenced dependent variable. Thus we have

YZXZAH
′′= −1)(δ̂  where Z is a matrix of instruments, X is a matrix of regressors and Y is

a vector of dependent variables.

A GMM estimator suggested in Arellano and Bond (1991), and explored by Kiviet (1995)
as well as by Judson and Owen (1997), uses both lags of the dependent as well as
exogenous regressors as instruments.  Briefly, the estimator can be expressed as:

YZAZXXZAZX NNGMM

′′′′= ∗∗−∗∗ 1)(δ̂  where X and Y are defined as above, and Zi* is a

block diagonal matrix8.  Different choices for AN result in different GMM estimators.
Judson and Owen compare two alternatives and find that one of these produces both
smaller biases and smaller standard deviations of the estimates, and thus we focus on this

version alone. In particular their chosen estimator uses 
1

**1
−








 ′
= ∑ i

i
iN ZHZ

N
A  where H

is a T-2 square matrix with twos in the main diagonals, minus ones in the first
subdiagonals, and zeros otherwise.  In the simulation presented here a restricted version of
this GMM estimator is employed in which the number of instruments used is set to three9.

While both of these estimators have been found to be consistent when the data generating
process in each of the cross section units is homogenous except for an individual specific
intercept term or "fixed effect," most empirical macro economic models use countries as
the cross section unit of analysis. In these cases it is almost always the case that the
dynamic properties, especially the short run dynamics, are quite distinct across countries.
In addition the processes determining the evolution of the exogenous variables as well as

                                                       
8 For full details see Judson and Owen (1997).  Essentially the sth block of Zi* is given by

( )( 1,11 +siiisi xxyy KK  for s=1,…,T-2.  Then Z*=(Z*1  ,…, Z*N)'.
9 For the T=10 case I also experimented with a GMM estimator with 5 instruments, with no significant
change in the results.
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the salient omitted variables may well vary quite a bit from country to country, so that the
restrictive assumptions of the theoretically consistent estimators may start to diverge
alarmingly far from reality.  For this Monte Carlo simulation the data was generated in a
similar manner to the simulations from Table 1, with the small difference that the random
numbers were generated in this case using seeds and stored in advance in a matrix.  Since
the GMM estimators are originally designed for use when N is relatively large and T
relatively small (and computational demands increase considerably with higher T)
comparisons were done only in the T=5 and T=10 cases. In addition, due to the extra
computational requirements of the GMM estimator the number of replications in these
simulations was restricted to either 4000 or 2000 replications, depending on the T and N
dimensions, and is so noted in table 5.

The results, in table 5, yeild similar bias estimates for the MFR and LSDV estimation as in
table 1, as one would expect.  However both the instrumental variables esimators perform
very poorly under the more realistic heterogeneous dynamics. The Anderson and Hsiao
estimator shows no clear pattern in terms of the sign of the bias, but clearly has a high
variance around the true mean value of 0.2.  The GMM estimator, on the other hand,
displays a persistent and highly significant negative bias.  The only conclusion of such an
exercise is that while instrumental variables estimators may still be the best choice for
microeconomic data that more closely adheres to the homogeneity assumptions under
which these estimators gain consistency, it is not so clear that these are the superior choice
for models of macro-economic processes across countries or other cross section units in
which the dynamics are likely to be heterogeneous.

4.2  A Simple Empirical Example

In order to illustrate empirically the advantages of the MFR model over traditional models
I consider a simple dynamic model of the impact of the share of GDP of  aid (AIDSH),
foreign direct investment (FDISH), and gross domestic investment (GDISH) on the
growth (GGDP) in a panel of 32 less developed countries from 1976 to 199510.

GGDP GGDP GGDP GDISH GDISH

FDISH FDISH AIDSH AIDSH
it i it it it it

it it it it it

= + + + + +

+ + + +
− − − −

− − − −

α γ γ β β
β β β β ε

1 1 2 2 11 1 12 2

21 1 22 2 31 1 32 2

This model was estimated following the Holtz-Eakin et.al. (1988) methodology for
causality testing in panels, in which the model is first-differenced to eliminate the fixed
effects and the first differenced lagged dependent variable is instrumented for with a mix
of lagged differences and levels of the (several times lagged) dependent variable as
described in section 2.  The model was then modified to be estimated as a MFR model by
specifying fixed, country specific coefficients on the lagged dependent variables and
random coefficients on the lagged explanatory variables so that it became:

                                                       
10  This example is taken from Nair and Weinhold (1998).
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GGDP GGDP GGDP GDISH GDISH

FDISH FDISH AIDSH AIDSH
it i i it i it i it i it

i it i it i it i it it

= + + + + +

+ + + +
− − − −

− − − −

α γ γ β β
β β β β ε

1 1 2 2 11 1 12 2

21 1 22 2 31 1 32 2

where β β σjki jk jkN~ ( , )2 .  The lagged exogenous variables were orthogonalized with

respect to the lagged dependent variables and each other so that the coefficients would be
independent and the variance estimates would not be influenced by each other.  Since the
time span is 20 years I elect not to make any adjustments to the estimated variances,
although it is expected that the estimates will be slightly biased upwards.  Table 4
summarizes the essential results from the estimation of both the MFR model and the
Holtz-Eakin model11.  In particular, for the MFR model the table shows the estimated
mean, variance and standard deviation, and for the Holtz Eakin model it presents the
coefficient estimates and the results of an F-test for the joint significance of the two lags of
the given variable.

The results from the Holtz-Eakin estimation in table 6 seem to provide strong evidence
that both GDISH and AIDSH Granger-cause GGDP.  However, the MFR results clearly
show that there is enormous variability across countries.  The MFR estimation results find
no statistical evidence of Granger causality in the panel. In fact, when individual country-
by-country regressions are run I find that in fact there is huge heterogeneity in each of
these relationships, both in terms of magnitude, sign and statistical level of significance.
Although the individual country regressions are not particularly reliable themselves due to
the limited time dimension, it is clear that the strong conclusions drawn by the Holtz-Eakin
estimation are misleading.  Furthermore, as is illustrated in table 7 where the number of
countries has been reduced to N=28, if the set of countries is varied and the models re-
estimated, the estimated coefficients and their statistical significance are susceptible to
dramatic changes in the Holtz-Eakin model.  The mean estimates are more stable in the
MFR model, with the estimated variances adjusting more dramatically and providing some
guidance in interpreting the results in the context of how widespread the relationship in
question is in the panel.  (See Nair and Weinhold 1998, from which this example was
drawn, for a comprehensive discussion of heterogeneity and causality modeling using this
data set).

5.  Conclusions

As many economists are beginning to work with cross-country panel data sets there is an
increasing interest in panel data estimation.  In this paper I have promoted the use of a
“mixed fixed and random” coefficients model, or MFR model, for cases in which a
researcher would like to include both “fixed effects” and lagged dependent variables in a
panel data model.  This paper has shown that the MFR model allows for much more
flexibility of the coefficients across the cross section than do traditional models.  This
property allows the MFR model to avoid the simultaneity biases that arise from
constraining the coefficient on the lagged dependent variable to be constant across
countries and provides the researcher with a diagnostic tool to judge how widespread a
                                                       
11 For a comprehensive analysis of these models and related issues see Nair and Weinhold  (1998).
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particular relationship is across the panel.  This is especially important for cross-country
data sets in which there can be considerable heterogeneity.  In addition, simulations have
shown that the estimates of the mean coefficient value on the exogenous variables in the
MFR model have a much smaller bias than do estimates from LSDV estimation.  This can
be a major advantage when the instrument set necessary for a Andersen-Hsiao type
solution to the LSDV bias is of poor quality.  In these cases it may be preferable to use an
MFR model without IV estimation.
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6. Tables

Table 1: Monte Carlo Comparison of MFR and LSDV Estimation

N = 20 N = 40 N = 80
LSDV MFR LSDV MFR LSDV MFR

T = 5 0.1807 0.2049 0.1802 0.2014 0.1847 0.2105
T = 10 0.1851 0.1998 0.1860 0.2012 0.1885 0.2026
T = 25 0.1812 0.2027 0.1782 0.2024 0.1777 0.2024
T = 50 0.1753 0.2023 0.1715 0.2012 0.1670 0.1991

Note:  # reps = 10,000      β =0.2

Table  2:  Standard deviation of estimate of beta (shows root-N consistency)

N = 20 N = 40 N = 80
LSDV MFR MFR MFR LSDV

T = 5 0.30715 0.43178 0.30091 0.20752 0.15699
T = 10 0.25472 0.24886 0.17728 0.12518 0.12893
T = 25 0.23134 0.16448 0.11575
T = 50 0.20571 0.22876 0.16124 0.11315 0.09879

Note:  # reps = 10,000      β =0.2
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Table 3: Kiviet (1995) Monte Carlo Bias Estimates Compared with MFR Model

Estimator Bias Estimator Bias
GMM1 0.000 IV ∆ X 0.053
GMM2 -0.006 OLS -0.068
AH ∆ 0.023 OLSt -0.067
AHX ∆ 0.007 LSDV 0.005
AHL -0.001 LSDVb 0.007
AHXL 0.176 LSDVc -0.011
IVAX 0.006 MFR 0.002

β =0.2, T=6, N=100   ( #reps = 1000)

Table 4: Monte Carlo MFR Estimates of σ β
2

N = 20 N = 40 N = 80
T = 5 7.663 10.047 9.392
T = 10 1.242 1.243 1.247
T = 25 1.069 1.065 1.068
T = 50 1.030 1.031 1.035

Note:  # reps = 10,000    σ β
2 =1.0

Table 5: Monte Carlo Comparison of MFR, LSDV, AH and GMM Estimation
N = 20 N = 40 N = 80

MFR LSDV AH GMM MFR LSDV AH GMM MFR LSDV AH GMM

T=5 .2082 a .1867 a .2145 a .1688 a .2098 a .1809 a .1547 a .1497 a .2047 b .1813 b .2300 b .1427 b

T=10 .2008 a .1869 a .2196 a .1723 a .2033 b .1931 b .2462 b .1777 b .2057 b .1923 b .1775 b .1751 b

a:  # reps = 4,000      β =0.2

b: # reps = 2,000
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Table 6:  Dependent variable = Growth (GDP),  N=32, T=20

MFR Estimation Holtz Eakin et. al. Estimation
Variable Mean Variance St. Error coeff. est. Joint F-stat p-value (F)
GDISH_1 -4.025 4479.723 17.911 -21.465 9.23 0.0012
GDISH_2 -18.613 5186.013 23.842 -5.465
FDISH_1 0.492 42.900 0.924 0.205 1.08 0.3400
FDISH_2 0.211 42.367 1.000 -0.049
AIDSH_1 0.114 49.597 0.274 0.683 48.70 >.0001
AIDSH_2 0.858 149.100 0.559 0.109

Table 7:  Dependent variable = Growth (GDP),  N=28, T=20

MFR Estimation Holtz Eakin et. al. Estimation
Variable Mean Variance St. Error coeff. est. Joint F-stat p-value (F)
GDISH_1 -3.872 4955.860 13.249 -18.385 6.949 0.0011
GDISH_2 -15.704 3067.529 17.731 -4.933
FDISH_1 0.468 48.939 0.761 0.330 1.607 0.2017
FDISH_2 0.266 48.319 0.874 -0.0802
AIDSH_1 -0.073 31.203 0.336 0.237 2.054 0.1297
AIDSH_2 1.053 166.268 0.534 0.116
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Appendix

A.1  Hsiao's Mixed Fixed and Random Estimation Algorithm

The following algorithm is available in GAUSS code via Email from the author upon
request.

The algorithms presented here are from Hsiao [12] .  The estimate of the mean of the
random causal variable is:
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where φi i r i i TX X s I= ′ +∆ 2 ,  Xi denotes the T time series observations of the designated
random variables, Zi  denotes the observation of the variables  with “fixed” coefficients,
and si

2  is the estimated variance of the individual OLS regression of  Yi on Xi and Zi. In
addition,
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 where bi are the estimates of the coefficients on the Xi from an OLS estimation of  Yi on
Xi and Zi.

Then, ∆ r  denotes the submatrix of ∆  corresponding to the Xi.  Thus, it is possible to read
off directly from this matrix the estimates of the variance of the random coefficients.   The
fixed coefficient estimates may be recovered from:

( ) ( )[ ]b Z Z Z Y X bfi i i i i i= ′ ′ −
−1
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