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Abstract

This study shows that introducing (fixed or proportional) decision cost

helps to reconcile expected-utility agents’ risk attitudes toward small and large

gambles. As an example, we show that in the presence of decision costs,

stock market non-participation can be explained with plausible risk aversion

coefficients.



1 Introduction

Experimental evidence shows that across a range of wealth levels, people typically

reject games with small to moderate stakes in which the potential gain is less than

twice the potential loss. For example, the majority of subjects surveyed by Barberis,

Huang, and Thaler (2003) turned down a 50:50 bet offering a $550 gain against a $500

loss. Such observed risk aversion to small-scale gambles, however, implies unrealistic

risk aversion over large stakes within the existing theories of decision making under

risk.1 The intuition is that within the expected-utility framework, turning down

a modest-stakes gamble means that the marginal utility of money must diminish

very quickly for small changes in wealth. In fact, within all expected-utility models,

only approximate risk neutrality over modest stakes would preclude such unrealistic

implications (Rabin 2000). This local risk neutrality puzzle leads researchers to

search for alternative models, such as loss aversion and narrow framing, to capture

risk attitudes toward small and large-stake gambles.2

We argue that decision cost may help to explain the local risk neutrality puzzle.

We introduce theorems that calibrate a relationship between decision cost and risk

attitudes over small and large-stake gambles. Theorems show that even with a

relatively small decision cost, the marginal utility of extra dollar diminishes far slower

and attitude toward both small and reasonably large-scale gambles can be explained

in an expected-utility framework. In our calibration exercise, we examine how large

decision costs have to be in order to explain risk attitude toward reasonable large

and small gambles. The small gamble we consider is a 50:50 bet offering a $550

gain against a $500 loss; and the large gamble is a 50:50 bet offering a $20 million

1Rabin (2000) shows that turning down a 50:50 gamble that offers $10 loss against $10.10 gain

implies turning down a 50:50 gamble that offers $1000 loss against ∞ gain, within the expected

utility models. Earlier, Kandel and Stambaugh (1991) have also pointed out that power utility

functions cannot reconcile attitudes to both large and small-scale gambles simultaneously. Barberis,

Huang, and Thaler (2003) find that this problem extends to the intertemporal setting as well.
2Rabin (2000) indicates loss aversion may explain risk attitudes toward both small and large-

scale gambles. Barberis, Huang, and Thaler (2003) argue that narrow framing could explain the

local neutrality puzzle, especially considering the cases where the gambles are not immediately

played.
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gain against a $10,000 loss.3 We find that a fixed cost of $3.60 or a proportional

cost of 0.69% are consistent with rejecting the small-stake gamble and accepting the

large-stake gamble considered in this paper.

Psychological studies of decision making suggest at least three types of decision

costs: the opportunity costs of the time it takes; the tendency to make errors under

decision overload, and the psychic costs of anxiety and regret (Loewenstein 1999).

Schwartz (2004) idenfities the following psychological factors underlying the psychic

cost: People are more likely to regret their decisions; People are more likely to an-

ticipate regretting their decisions adn this anticipated regret prevents people from

actually deciding; When decisions have disappointing results, people tend to blame

themselves because they feel that with so many options available, unsatisfying results

must be their faults. Decision costs in this context can be thought of as either time

and effort spent or, more important, psychological stress incurred in participating in

the gamble. Presumably, information processing cost and propensity to error is min-

imal when a simple 50:50 bet with stakes as small as 550/500 is presented. Similarly,

time and effort spent in investigating the fairness of gamble and participating the

gamble may exist, but are not substantial. However, potential psychological stress

may stop subjects from taking the small gamble altogether: A small gain will not

make subjects feel much richer, but a small loss will definitely make subjects feel

personally responsible and stupid. In the case of large-scale gambles, decision costs

such as psychological stress are less important since the monetary stakes are very

high.

Barberis, Huang, and Thaler (2003) argue that preferences with first-order risk

aversion (such as loss aversion, disappointment aversion) can explain risk attitudes

toward small and large-scale gambles only if the gambles are played out immedi-

ately. If the gambles are played with some delay, subjects are likely to face other

sources of risks at the same time (such as labor income risk, house price risk); it

is optimal for subjects, with first-order risk averse preferences, to accept the small

gamble since it offers diversification benefits when merged with these other sources of

risks. Following this reasoning, they argue that subjects must have preferences that

3The choice of gambles in our calibration exercise is based on Barberis, Huang, Thaler (2003).
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depend on the outcome of the gamble over and above what the outcome implies for

aggregate wealth risk, a feature called narrow framing. We show that with decision

costs, subjects may not accept small gambles that are not immediately played either.

By definition, subjects “frame” each gamble as a separation decision besides other

“gambles” they are taking in their lives, and hence involve separate decision costs.

Similar to preferences with first-order risk aversion, introducing decision costs

increases the magnitude of losses and raises an individual’s risk aversion toward

small-scale gambles relative to large-scale gambles. It differs from preferences with

first-order risk aversion in three aspects: First, decision costs also decrease the mag-

nitude of gains; second, decision costs do not introduce kinks in utility function as

in the case of preferences of first-order risk aversion; third, the value of extra dollar

depreciates due to the concavity feature of expected-utility models, even though the

rate of depreciation of the marginal dollar is smaller than the expected-utility case

without decision costs. Introducing decision costs to expected-utility models to study

an individual’s attitude toward risk may help us gauge to what extent expected util-

ity incorporating various individual decision-making features can or cannot explain

existing puzzles. How much decision costs help to explain the local risk neutrality

puzzle depends on whether reasonable sizes of decision costs can deliver realistic

rates of depreciation of marginal dollars observed in reality. The findings on the

magnitude of decision costs needed to explain local risk neutrality puzzles in this

paper are based on two data points taken from the experimental work in Barberis,

Huang, and Thaler (2003), and contrasted with findings in empirical literature on

transaction costs (Vissing-Jorgensen 2002). Our calibration exercise shows that in an

expected utility framework with plausible risk aversion coefficients, a fixed decision

cost in the magnitude of $25 or a proportional decision cost of 0.48% will preclude

investors from investing in the stock market all together.

The remainder of the paper is organized as follows. Section 2 develops two cali-

bration theorems that incorporate fixed or proportional decision costs and presents

numerical examples on the impact of different magnitudes of decision costs on atti-

tudes toward risk. Section 3 analyzes the implication of decision costs in financial

markets. More specifically, we consider the stock market participation puzzle. Sec-
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tion 4 concludes.

2 Some Calibrations of Risk-Taking Behavior with

Decision Costs

Consider an expected utility maximizer over wealth, w, with Von Neuman-Morgenstern

preferences U(w). Assume that for all w, U(w) is (strictly) increasing and (weakly)

concave. Suppose further that, for some of initial wealth levels and for some g > l >

0, the individual rejects bets losing $l or gaining $g, each with a 50% chance. For

a certain size of fixed decision costs (c),4 the theorem below places an upper bound

on the rate at which utility increases above a given wealth level, and a lower bound

on the rate at which utility decreases below that wealth level.

Theorem 1 (Fixed Decision Cost) Suppose that for all w, U(w) is strictly in-

creasing and weakly concave. Suppose that there exists w > w, g − c ≥ l + c ≥ 0,

such that for all w ∈ [w,w], 0.5U(w− l− c) + 0.5U(w + g− c) < U(w). Then for all

w ∈ [w,w], for all x > 0,

(i) if g − c ≤ 2l + 2c, then

U(w)− U(w − x− c) ≥





2
k∗(x)∑
i=1

(g−c
l+c

)i−1r(w) if w − w ≥ x + c ≥ 2l + 2c

2
k∗(w−w)∑

i=1

(g−c
l+c

)i−1r(w) + A if x + c ≥ w − w

(ii)

U(w + x− c)− U(w) ≤





2
k∗∗(x)∑
i=1

( l+c
g−c

)i−1r(w) if x− c ≤ w − w

2
k∗∗(w−w)∑

i=1

( l+c
g−c

)i−1r(w) + B if x− c ≥ w − w

4The fixed cost is expressed in term of monetary units. If the investor takes the game, he/she

will take either a gain of $g − $c or a loss of $l − $c.
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where, letting k∗ ≡ int((x + c)/(2l + 2c)), k∗∗ ≡ int((x − c)/(2g − 2c)), r(w) =

U(w)−U(w− l− c), A = (x+ c− (w−w))(g−c
l+c

)k∗(w−w)r(w), and B = (x− c− (w−
w))( l+c

g−c
)k∗∗(w−w)r(w).

Suppose now that decision costs are proportional to the size of the stakes, that is,

the investor will take either a gain of (1 − δ)$g or a loss of (1 + δ)$l, the following

theorem characterizes the upper (lower) bounds of the rate at which utility increases

(decreases) at a given wealth level.

Theorem 2 (Proportional Decision Cost) Suppose that for all w, U(w) is strictly

increasing and weakly concave. Suppose that there exists w > w, (1−δ)g > (1+δ)l >

0, such that for all w ∈ [w,w], 0.5U(w − (1 + δ)l) + 0.5U(w + (1 − δ)g) < U(w).

Then for all w ∈ [w, w], for all x > 0,

(i) if g ≤ 2(1 + δ)l, then

U(w)− U(w − (1 + δ)x) ≥





2
k∗(x)∑
i=1

λi−1r(w) if w − w ≥ x(1 + δ) ≥ 2(1 + δ)l

2
k∗(w−w)∑

i=1

λi−1r(w) + A if x(1 + δ) ≥ w − w

(ii)

U(w + (1 + δ)x)− U(w) ≤





2
k∗∗(x)∑
i=1

(1/λ)i−1r(w) if x(1− δ)g) ≤ w − w

2
k∗∗(w−w)∑

i=1

(1/λ)i−1r(w) + B if x(1− δ)g) ≥ w − w

where, letting λ = (1−δ)g
(1+δ)l

, k∗ ≡ int( x
2l

), k∗∗ ≡ int( x
2g

), r(w) = U(w)−U(w−(1+δ)l),

A = (x(1 + δ)− (w − w))λk∗(w−w)r(w), and B = (x− (w − w))(1/δ)k∗∗(w−w)r(w).

Table 1 illustrates the implications of these two theorems. It presents the smallest

size of fixed and proportional costs needed for the following to be true: An individual

who is known to reject, for all initial wealth levels, a 50:50 bet offering a $550 gain

against a $500 loss, accepts a 50:50 bet offering a $20 million gain against a $10,000

loss. The interesting point of the table is how small these costs are.
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Table 1: Risk Attitudes Toward Small and Large Gambles with Fixed and Propor-

tional Decision Costs

Both gambles are 50:50 bets, with losses indicated in L column and gains in G

column. Table displays an expected-utility individual’s decisions to accept or reject

the gambles for a given level of decision costs.

L G Fixed-Decision Cost Proportional-Decision Cost

c < 3.6 c > 3.6 c < 1.12% c > 1.12%

$500 $550 Reject Reject Reject Reject

$10,000 $20,000,000 Reject Accept Reject Accept

To compare the rates at which utility increases (decreases) above (below) certain

wealth level, Table 2 considers an individual who is known to reject, for all initial

wealth levels, 50:50, lose $500 and gain g bets, for g = $550, $555, $560, $570. For

each of these small gambles, it presents how large the gain has to be in order for the

individual to accept the gamble for a certain loss L, where each L is a column in

the table. The table presents results for the no-decision cost case, the fixed-decision

cost case (c = $3.6), and the proportional decision cost case (c = 1.12%). Panel A of

the table shows the results in Rabin (2000). Panels B and C contrast the findings in

the cases of fixed and proportional decision costs: Utility increases at much slower

diminishing rates with decision costs, even with small sizes of decision costs.

3 An Example

We have shown that a small decision cost can explain aversion to a small-size gamble

without making counterintuitive predictions about attitudes to large-size gambles.

We now show that this analysis also has useful implications for financial markets.

We consider the stock market participation puzzle. The finance literature has doc-

umented the fact that many investors are reluctant to allocate any money to the

stock market even though stocks have a high mean return (Mankiw and Zeldes

(1991), Haliassos and Bertaut (1995)). The puzzle is deepened when considering
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that for most households, stock market risk has a correlation close to zero with other

important risks, such as labor income risk, proprietary income risk, and house price

risk (Heaton and Lucas 1996). Here with decision costs that reconcile investors’ risk-

averse attitude toward both small and large gambles, we calibrate investors’ portfolio

allocation problem using the commonly used stock market return process, and find

whether the preference parameters required to explain the non-participation are rea-

sonable or not. We incorporate a specification for pre-existing risk in our calibration,

similar to Vissing-Jorgensen (2002), who invokes transaction costs of investing in the

stock market to explain the non-participation puzzle.

We consider a setup specified in Barberis, Huang, and Thaler (2003), where an

investor has a fixed fraction of her wealth (θn) in a non-financial asset (e.g., the labor

income risk) with a gross return specified as

Rn
t+1 = egn+σnεn

t+1 .

Now she decides what fraction of her wealth (θs) to invest in the stock market. The

stock market has a gross return of

Rs
t+1 = egs+σsεs

t+1 ,

where
(

εc

εn

)
∼ N

((
0

0

)
,

(
1, ϕ

ϕ, 1

))
i.i.d. over time.

The remaining fraction of her wealth, 1−θn−θs, is to be invested in a risk-free asset

earning Rf , so that the overall return on wealth is

Rw
t+1 = (1− θn − θs)Rf + θnRn

t+1 + θsR
s
t+1.

The return process parameters are drawn from Barberis, Huang, and Thaler

(2003) and are given in Table 3. In particular, gs and σs are chosen to match

historical annual data on aggregate stock returns; and the correlation between the

stock market and investor’s pre-existing risks, ϕ, is chosen to be 0.1 to reflect the low

correlation between the pre-existing risk and stock market returns. We also assume
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a decision cost (a fixed cost of $25 or a proportional cost of 0.48%) is incurred

when investing in the stock market. We solve this portfolio problem for a recursive

utility with the power utility form, where the consumption and portfolio problems

are separable and the portfolio problem is given by,

maxθsE((Rw
t+1 − 1{θs 6=0}c)

1−γ) if a fixed cost, c, is incurred; or

maxθsE((Rw
t+1 − 1{θs 6=0}δR

w
t+1)

1−γ) if a proportional cost, δ, is incurred.

Our calibration analysis shows that for power utility without decision costs, γ >

93 is required to generate stock market non-participation; but with the magnitude

of decision costs (fixed or proportional costs) specified here, γ = 2 is sufficient to

generate a 0% allocation to stocks.

The result here is supported by the findings in the transaction cost and stock

market participation literature. For example, Vissing-Jogensen (2002) estimates a

model of the benefits of stock market particiaption and finds that a per period cost of

$50 is sufficient to explain the choices of half of stock market nonparticipants in the

presence of pre-existing risks such as labor income. Although calibration exercises

are similar, decision costs differ from transaction costs in concept. Transaction costs

are normally considered as monetary costs to set up brokerage accounts, commission

or the bid-ask spread investors have to pay to buy or sell stocks, or the price impact

or illquidity cost of a trade. By decision cost, we emphasize that a decision to invest

in stock market may involve more than stated monetary costs. The stress arised

from having to pick stocks to invest and facing possible losses may deter investors

from investing at all.

4 Conclusion

We show, through a calibration theorem, that introducing decision costs helps to

address the local risk neutrality puzzle partially and has plausible implications in the

financial market. The reason why it is partial is because that the marginal utility

still depreciates, even though at a slower speed. We need experimental evidence to

answer whether decision costs deliver a reasonable depreciation rate or not.
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The insight from the analysis in this paper, however, is that to reconcile agents’

risk attitudes toward small and large-scale gambles, large-scale gambles have to be to-

tally different ball games from the small scale gambles to the agents. Decision costs is

one way to separate large from small-scale gambles since decision costs may dominate

the gains from small-scale gambles in magnitude. Another approach is by Barberis,

Huang, and Thaler (2003), who argue first order risk aversion, combined with nar-

row framing, also address the local risk neutrality puzzle and have plausible financial

applications. The first order risk aversion introduces a kink around the small-scale

gamble. Narrow framing is introduced to reflect the fact that investors seem to treat

stock market risk separately from other un-insurable pre-exisitng risks such as labor

income risks. In our decision cost approach, investors effectively “frame” each stock

market investment as a separate decision besides other risks they are taking in their

lives. Hence these two approaches in this sense are similar.
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Appendix A: Proof of Theorem 1

Proof. For notational ease, let r(w) = U(w)− U(w − l − c).

Part (i).

By the concavity of U(·) : U(λw + (1− λ)(w − l − c)) ≥ λU(w) + (1− λ)U(w − l − c)

⇒ U(w − (1− λ)(l + c))− U(w − l − c) ≥ λ (U(w)− U(w − l − c)) .

Choose λ = g−l−2c
l+c

so that

(1− λ)(l + c) = 2l − g + 3c.

Hence,

U(w − 2l + g − 3c)− U(w − l − c) ≥ g − l − 2c

l + c
(U(w)− U(w − l − c))

⇒ U(w − 2l + g − 3c)− U(w − 2c− 2l)

≥ g − l − 2c

l + c
(U(w)− U(w − l − c)) + U(w − l − c)− U(w − 2c− 2l)

⇒ U(w − 2c− 2l + g − c)− U(w − 2c− 2l)

≥ g − c

l + c
(U(w)− U(w − l − c))− (U(w)− U(w − l − c)) + (U(w − l − c)− U(w − 2l − 2c))

⇒ U(w − 2c− 2l + g − c)− U(w − 2c− 2l) ≥ g − c

l + c
(U(w)− U(w − l − c))

Hence, if w− 2c− 2l ≥ w, since by assumption U(w− 2c− 2l + g− c) + U(w− 2c−
2l − l − c) ≤ 2U(w − 2c− 2l), we know that the following is true:

U(w − 2c− 2l)− U(w − 2c− 3l − c) ≥ g − c

l + c
(U(w)− U(w − l − c)).
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More generally,

U(w − (2k − 1)c− (2k − 1)l − c)− U(w − 2kc− 2kl)

≥ U(w − 2(k − 1)c− 2(k − 1)l)− U(w − (2k − 1)c− (2k − 1)l − c)

By concavity,

⇒ U(w − 2kc− 2kl + g − c)− U(w − (2k − 1)c− (2k − 1)l)

≥ g − l − 2c

l + c
(U(w − 2(k − 1)c− 2(k − 1)l)− U(w − (2k − 1)c− (2k − 1)l))

⇒ U(w − 2kc− 2kl + g − c)− U(w − 2kc− 2kl)

≥ g − c

l + c
(U(w − 2(k − 1)c− 2(k − 1)l)− U(w − (2k − 1)c− (2k − 1)l))

By rejecting the gamble,

⇒ U(w − 2kc− 2kl)− U(w − 2kc− (2k + 1)l − c)

≥ g − c

l + c
(U(w − 2(k − 1)c− 2(k − 1)l)− U(w − (2k − 1)c− (2k − 1)l))

These lower bounds on marginal utilities yield the lower bound on total utilities

U(w)− U(w − x− c) in part (i) of the Theorem.

Part (ii).

By the concavity of U(·) :

U(w + 2g − 2c)− U(w + g − l − 2c) ≤ 1

λ
(U(w + 2g − 2c− (1− λ)(g + l))− U(w + g − l − 2c))

=
g + l

g − c
(U(w + 2g − l − 3c)− U(w + g − l − 2c))

= (
l + c

g − c
+ 1)(U(w + 2g − l − 3c)− U(w + g − l − 2c))

⇒ U(w + 2g − 2c)− U(w + 2g − 2l − 3c) ≤ l + c

g − c
(U(w + 2g − l − c)− U(w + g − l − c))

If w +2g− 2c ≤ w, then U(w +3g− 3c)−U(w +2g− 2c) ≤ U(w +2g− 2c)−U(w +

2g − l − 3c) by assumption. We know that the following is true:

U(w + 3g − 3c)− U(w + 2g − 2c) ≤ l + c

g − c
(U(w + 2g − l − 2c)− U(w + g − l − c))

≤ l + c

g − c
(U(w + g − c)− U(w))

≤ l + c

g − c
(U(w)− U(w − l − c))
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More generally, by the concavity of U(·)

U(w + 2mg − 2mc)− U(w + (2m− 1)g − l − 2mc)

≤ 1
λ

(U(w + 2mg − 2mc− (1− λ)(g + l))− U(w + (2m− 1)g − l − 2mc))

=
g + l

g − c
(U(w + 2mg − 2mc− l − c)− U(w + (2m− 1)g − l − 2mc))

= (
l + c

g − c
+ 1)(U(w + 2mg − 2mc− l − c)− U(w + (2m− 1)g − l − 2mc))

⇒ U(w + 2mg − 2mc)− U(w + 2mg − 2mc− l − c)

≤ l + c

g − c
(U(w + 2mg − 2mc− l − c)− U(w + (2m− 1)g − l − 2mc))

If w + 2mg− 2mc ≤ w, then U(w + (2m + 1)g− (2m + 1)c)−U(w + 2mg− 2mc) ≤
U(w + 2mg − 2c) − U(w + 2mg − 2mc − l − c) by assumption. We know that the

following is true:

U(w + (2m + 1)g − (2m + 1)c)− U(w + 2mg − 2mc)

≤ l + c

g − c
(U(w + 2mg − 2mc− l − c)− U(w + (2m− 1)g − l − 2mc))

≤ l + c

g − c
(U(w + (2m− 1)g − (2m− 1)c)− U(w − 2(m− 1)g − 2(m− 1)c))

These upper bounds on marginal utilities yield the upper bound on utilities U(w +

x− c)− U(w) in part (ii) of the Theorem.

Appendix B: Proof of Theorem 2

Proof. For notational ease, let r(w) = U(w)− U(w − (1 + δ)l).

Part (i).

By the concavity of U(·) : U(λw + (1− λ)(w − (1 + δ)l)) ≥ λU(w) + (1− λ)U(w − (1 + δ)l)

⇒ U(w − (1− λ)(1 + δ)l)− U(w − (1 + δ)l) ≥ λ (U(w)− U(w − (1 + δ)l)) .

Choose λ = (1−δ)g−(1+δ)l
(1+δ)l

so that

(1− λ)(1 + δ)l = 2(1 + δ)l − (1− δ)g.
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Hence,

U(w − 2(1 + δ)l + (1− δ)g)− U(w − (1 + δ)l)

≥ (1− δ)g − (1 + δ)l

(1 + δ)l
(U(w)− U(w − (1 + δ)l))

⇒ U(w − 2(1 + δ)l + (1− δ)g)− U(w − 2(1 + δ)l)

≥ (1− δ)g − (1 + δ)l

(1 + δ)l
(U(w)− U(w − (1 + δ)l)) + U(w − (1 + δ)l)− U(w − 2(1 + δ)l)

⇒ U(w − 2(1 + δ)l + (1− δ)g)− U(w − 2(1 + δ)l)

≥ (1− δ)g

(1 + δ)l
(U(w)− U(w − (1 + δ)l))− (U(w)− U(w − (1 + δ)l))

+(U(w − (1 + δ)l)− U(w − 2(1 + δ)l))

⇒ U(w − 2(1 + δ)l + (1− δ)g)− U(w − 2(1 + δ)l) ≥ (1− δ)g

(1 + δ)l
(U(w)− U(w − (1 + δ)l))

Hence, if w − 2(1 + δ)l ≥ w, since by assumption, U(w − 2(1 + δ)l + (1 − δ)g) +

U(w− 2(1 + δ)l− (1 + δ)l) ≤ 2U(w− 2(1 + δ)l), we know that the following is true:

U(w − 2(1 + δ)l)− U(w − 3(1 + δ)l) ≥ (1− δ)g

(1 + δ)l
(U(w)− U(w − (1 + δ)l)).

More generally,

U(w − (2k − 1)(1 + δ)l)− U(w − 2k(1 + δ)l)

≥ U(w − 2(k − 1)(1 + δ)l)− U(w − (2k − 1)(1 + δ)l)

By concavity,

⇒ U(w − 2k(1 + δ)l + (1− δ)g)− U(w − (2k − 1)(1 + δ)l)

≥ (1− δ)g − (1 + δ)l

(1 + δ)l
(U(w − 2(k − 1)(1 + δ)l)− U(w − (2k − 1)(1 + δ)l))

⇒ U(w − 2k(1 + δ)l + (1− δ)g)− U(w − 2k(1 + δ)l)

≥ (1− δ)g

(1 + δ)l
(U(w − 2(k − 1)(1 + δ)l)− U(w − (2k − 1)(1 + δ)))

By rejecting the gamble,

⇒ U(w − 2k(1 + δ)l)− U(w − (2k + 1)(1 + δ)l)

≥ (1− δ)g

(1 + δ)l
(U(w − 2(k − 1)(1 + δ)l)− U(w − (2k − 1)(1 + δ)l))

These lower bounds on marginal utilities yield the lower bound on total utilities

U(w)− U(w − (1 + δ)x) in part (i) of the Theorem.
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Part (ii)

By the concavity of U(·):

U(w + 2(1− δ)g)− U(w + (1− δ)g − (1 + δ)l)

≤ 1

λ
(U(w + 2(1− δ)g − (1− λ)((1− δ)g + (1− δ)l))− U(w + (1 + δ)g − (1− δ)l))

=
(1− δ)g + (1− δ)l

(1 + δ)g − (1− δ)c
(U(w + 2(1− δ)g − (1 + δ)l)− U(w + (1− δ)g − (1 + δ)l))

= (
(1 + δ)l

(1− δ)g
+ 1)(U(w + 2(1− δ)g − (1 + δ)l)− U(w + (1− δ)g − (1 + δ)l))

⇒ U(w + 2(1− δ)g)− U(w + 2(1− δ)g − 2(1 + δ)l)

≤ (1 + δ)l

(1− δ)g
(U(w + 2(1− δ)g − (1 + δ)l)− U(w + (1− δ)g − (1 + δ)l))

If w +2(1− δ)g ≤ w, then U(w +3(1− δ)g)−U(w +2(1− δ)g) ≤ U(w +2(1− δ)g)−
U(w + 2(1− δ)g − (1 + δ)l) by assumption. We know that the following is true:

U(w + 3(1− δ)g)− U(w + 2(1− δ)g)

≤ (1 + δ)l

(1− δ)g
(U(w + 2(1− δ)g − (1 + δ)l)− U(w + (1− δ)g − (1 + δ)l))

≤ (1 + δ)l

(1− δ)g
(U(w + (1− δ)g)− U(w))

≤ (1 + δ)l

(1− δ)g
(U(w)− U(w − (1 + δ)l))

More generally, by the concavity of U(·)

U(w + 2m(1− δ)g)− U(w + (2m− 1)(1− δ)g − (1 + δ)l)

≤ 1
λ

(U(w + 2m(1− δ)g − (1− λ)((1− δ)g + (1 + δ)l))− U(w + (2m− 1)(1− δ)g − (1 + δ)l))

=
(1 + δ)g + (1− δ)l

(1− δ)g
(U(w + 2m(1− δ)g − (1 + δ)l)− U(w + (2m− 1)(1− δ)g − (1 + δ)l))

= (
(1 + δ)l
(1− δ)g

+ 1)(U(w + 2m(1− δ)g − (1 + δ)l)− U(w + (2m− 1)(1− δ)g − (1 + δ)l))

⇒ U(w + 2m(1− δ)g)− U(w + 2m(1− δ)g − (1 + δ)l)

≤ (1 + δ)l

(1− δ)g
(U(w + 2m(1− δ)g − (1 + δ)l)− U(w + (2m− 1)(1− δ)g − (1 + δ)l))
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If w + 2m(1 − δ)g ≤ w, then U(w + (2m + 1)(1 − δ)g) − U(w + 2m(1 − δ)g) ≤
U(w + 2m(1 − δ)g) − U(w + 2m(1 − δ)g − (1 + δ)l) by assumption. We know that

the following is true:

U(w + (2m + 1)(1− δ)g)− U(w + 2m(1− δ)g)

≤ (1 + δ)l

(1− δ)g
(U(w + 2m(1− δ)g − (1 + δ)l)− U(w + (2m− 1)(1− δ)g − (1 + δ)l))

≤ (1 + δ)l

(1− δ)g
(U(w + (2m− 1)(1− δ)g)− U(w − 2(m− 1)(1− δ)g))

These upper bounds on marginal utilities yield the upper bound on utilities U(w +

(1− δ)x)− U(w) in part (ii) of the Theorem.
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Table 2: Rates at Which Utility Increases

The table displays the lowest gain at which an expected-utility individual accepts a

50:50 bet for a loss of $2,000-$9,000, if she rejects a 50:50 bet with $500 loss and a

gain of $550, $555, $560, $570, respectively. Panel A shows the standard expected-

utility case without decision costs. Panel B shows the case with fixed-decision costs.

Panel C shows the case with proportional decision costs.

Panel A: No Decision Costs

$2,000 $3,000 $4,000 $5,000 $6,000 $7,000 $8,000 $9,000

$550 $4,400 $5,500 $7,700 $11,000 $15,400 $24,200 ∞ ∞
$555 $4,440 $5,550 $8,880 $13,320 $21,090 ∞ ∞ ∞
$560 $4,480 $6,720 $11,200 $23,520 ∞ ∞ ∞ ∞
$570 $4,560 $7,980 $15,960 ∞ ∞ ∞ ∞ ∞

Panel B: Fixed Decision Costs (c=$3.6)

$2,000 $3,000 $4,000 $5,000 $6,000 $7,000 $8,000 $9,000

$550 $2,189 $3,282 $4,375 $6,560 $8,746 $12,024 $17,488 $26,231

$555 $2,209 $3,312 $4,415 $6,620 $9,929 $13,237 $20,957 $44,116

$560 $2,229 $3,342 $4,455 $6,680 $10,019 $15,583 $27,824 ∞
$570 $2,269 $3,402 $5,668 $7,933 $12,464 $23,792 ∞ ∞

Panel C: Proportional Decision Costs (c=1.12%)

$2,000 $3,000 $4,000 $5,000 $6,000 $7,000 $8,000 $9,000

$550 $3,300 $4,400 $6,600 $8,800 $11,000 $15,400 $20,900 $30,800

$555 $3,330 $4,440 $6,660 $8,880 $12,210 $17,760 $26,640 ∞
$560 $3,360 $4,480 $6,720 $10,080 $13,440 $21,280 $47,040 ∞
$570 $3,420 $4,560 $7,980 $11,400 $19,380 ∞ ∞ ∞
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Table 3: Return Process Parameter Values

Parameters gs and σs (gn and σn) are the mean and standard deviation of log stock

market returns (log returns on a non-financial asset); θn is the fixed fraction of wealth

held in the non-financial asset; w is the correlation of log returns on the stock market

and the non-financial asset; and Rf is the risk-free rate.

Parameter gs σs gn σn θn ϕ Rf

Value 0.06% 0.20% 0.04% 0.03% 0.75 0.10 1.02%
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