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Abstract

In this paper, I develop a novel approach to elicit heterogeneous investor beliefs

about expected returns as well as common investor beliefs about the covariance ma-

trix of the risky assets from a snapshot of cross-section portfolio holdings. Portfolio

revealed expectations and the covariance matrix are forward-looking and dynamic, fun-

damentally different from those estimated from historical return data. As an empirical

application, I measure a fund manager’s forecasting ability by correlating his revealed

beliefs about stock returns with the subsequent realized returns. The results show that,

on average, this correlation (termed either semi-belief accuracy index (SBAI) or belief

accuracy index (BAI)) is not significantly different from zero, indicating fund man-

agers, on average, may not possess forecasting abilities. However, funds with higher

positive correlations outperform funds with lower or negative correlations, indicating

some managers have the ability to predict stock returns. Sorting funds into deciles ac-

cording to this correlation, I find the annualized performance spread between the top

and bottom decile is about 4-5%. I also show that new performance measures, SBAI

and especially BAI, contain unique information that is not in the existing performance

measures.
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1 Introduction

A longstanding tradition in economics is to elicit aspects of decision makers’ preferences

from their choices (Samuelson 1938). Following this tradition, this paper proposes a novel

approach to elicit mean-variance optimizing fund managers’ beliefs on expected returns and

variance-variance matrix of the risky assets in the economy from their portfolio holdings. The

basic intuition is that if a fund manager prefers one portfolio over another, that action reveals

his or her belief on the relative risk-return tradeoff of the asset mix in the two portfolios.

To capture the major risk-return tradeoff faced by fund managers, I model an environ-

ment where there are k non-redundant assets and investors are mean-variance risk-averse in

returns.1 The variance-covariance matrix of risky assets in this economy is, hence, character-

ized by a k-eigenfactor structure. To elicit heterogeneous beliefs about expected returns of

these k non-redundant assets among investors, I assume that the variance-covariance matrix

of asset returns is common knowledge among investors. This assumption is based on the

argument that mean returns are a lot harder to estimate than volatilities (Merton 1980)

and is not controversial in the portfolio choice literature. For example, the Black-Litterman

model (1992), which is well adopted among practitioners, is based on the same assumption.

Basak (2005) also employs a similar assumption to study the asset pricing implication of het-

erogeneous beliefs in a dynamic setting. Under these assumptions, I show that an investor’s

portfolio indeed exhibits k-fund separation. This result is in clear contrast to that obtained

under homogeneous information. For example, a fairly general result in the modern finance

theory is that when investors are homogenously informed, their portfolio holdings exhibit

two-fund separation (Huang and Litzenberger (1988)).

I further demonstrate that k-fund allocations vary among investors and the heterogeneity

of investors’ portfolios across the k-fund reveals their respective private information. Intu-

itively, an investor optimally tilts his portfolio holdings toward assets with better perceived

risk-return tradeoffs conditional on his private information. By reverse-engineering the cor-

responding portfolio optimization problem, I show that heterogeneity in investor portfolio

holdings reveal heterogeneous beliefs among investors, and the commonality across portfolio

holdings reveal investors’ common belief on the variance-covariance matrix. I term this set

1The mean-variance analysis of Markowitz (1952) has long been recognized as the cornerstone of modern

portfolio theory and is widely used in both academia and industry. Recently, Preuschoff, Quartz, and

Bossaerts (2006) also find the support of Markowitz theory in the human brain-scanning evidence.
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of beliefs portfolio (revealed) beliefs and the inferred variance-covariance matrix portfolio (re-

vealed) variance-covariance matrix. Alternatively, the variance-covariance matrix can also

be estimated using historical return data. With the estimated covariance matrix as a proxy

for the common belief on risk, heterogeneous investor beliefs can be elicited from investor

portfolio holdings. I term this set of beliefs semi-portfolio (revealed) beliefs. The differences

between these two sets of revealed beliefs lie on the use of the covariance matrix – it is

elicited from a forward-looking holding matrix in the former and is estimated from historical

realized returns in the latter.

This model has several important empirical implications. In this paper, I focus on the

following one: If fund managers are able to forecast future stock returns, then their private

beliefs about these future stock returns should mimic the subsequent realized returns. To

measure such forecasting abilities among investors, I use the correlation between their ex ante

beliefs as revealed in their portfolio holdings, and the subsequent realized stock returns. I

term these correlations the semi-belief accuracy index (SBAI) when using semi-portfolio

revealed beliefs and the belief accuracy index (BAI) when using portfolio revealed beliefs.

I regard these correlations as performance metrics since they are measures of managers’

abilities to forecasting future stock returns. Specifically, I construct an SBAI and a BAI

for each fund by computing the correlation between portfolio revealed beliefs (that is, a

manager’s private beliefs regarding future stock returns) and the respective subsequent one-

month returns for all stocks in this fund portfolio, for each quarter in the sample. I find, on

average, the correlation between the portfolio revealed beliefs and the realized returns (i.e.,

SBAI or BAI) is not significantly different from zero, indicating that mutual fund managers,

on average, cannot predict stock returns. This result is not surprising given that Grinblatt

and Titman (1989) find that the average fund performance in their sample is close to zero

and Spiegel, Mamaysky, and Zhang (2007) find there is little evidence that average funds

earn superior returns. I then sort the funds into deciles according to this correlation measure.

The Spearman rank correlation coefficient between the rankings of average SBAIs/BAIs of

the past one year and the rankings based on the current SBAI/BAIs is around 0.7/0.6. This

persistence disappears for SBAI and weakens for BAI after three quarters. This finding

indicates that some fund managers possess the ability to forecast future factor returns for

short to medium horizons.

If SBAI and BAI measure fund managers’ talents, the cross-sectional difference in these

measures should contain valuable information that can be used to predict cross-sectional
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future fund performance. To examine this hypothesis, I sort funds into deciles according to

either SBAI or BAI and track decile fund performance over the subsequent three months, and

compare this performance over the full sample. I find the performance spread between the

sorted top and bottom deciles is 4-5% per annum and statistically significant. This spread

remains statistically significant after adjusting for styles and using CAPM, Fama-French,

and Carhart models.

To compare SBAI and BAI, I perform double sorts. For each portfolio formation period,

I first sort funds into quintiles based on their SBAIs and then sort funds into quintiles based

on their BAIs within each SBAI. The 5-1 spread is statistically significant for three SBAI

quintiles, indicating that BAI contains unique information that is not in SBAI. I also sort

funds into quintiles in reverse, first by BAI and then by the SBAI measure. The 5-1 spread

is only statistically significant for one BAI quintile. These results indicate that the portfolio

revealed variance-covariance matrix Σ indeed contains some unique information about the

future returns relative to Σ estimated using historical return data.

To see whether SBAI and BAI contain information about future fund performance that

is not in other holding-based performance measures, I perform additional double-sorts. The

closely related portfolio-based measure that is not based on historical return data is the

benchmark-free metric proposed in Grinblatt and Titman (1989), henceforth the GT mea-

sure. Controlling for the GT measure, the average differences between the top and bottom

quintiles of the funds ranked by their SBAIs/BAIs range from 5 to 44 basis points per month

or 0.6% to 5.28% per year, with three quintiles statistically significant. These results indi-

cate that SBAI/BAI contain significant information about future fund returns that is not

contained in the holding-based GT measure. I also perform double-sorts between the BAI

and the characteristic selectivity (CS) measure of Daniel, Grinblatt, Titman, and Wermers

(1997), and between the BAI and the FundRank measure of Shi, Stoffman, Yuan, and Zhu

(2007). The results show that SBAI/BAI has unique information to predict future fund

returns. In sum, these findings establish empirical supports for using SBAI/BAI to measure

investment performance.

One may question whether it is reasonable to extract beliefs assuming that fund managers

are mean-variance optimizers given the empirical evidence that fund managers are not fully

rational and are exposed to various behavior biases as one may expect. For example, they

are likely to engage in non-mean-variance optimizing activities such as window-dressing

(Haugen and Lakonishok (1988); Musto (1997; 1999); Carhart, Kaniel, Musto, and Reed
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(2002)). They may also have a slightly different objective such as minimizing tracking error

or maximizing fund inflow. However, there are three responses to such critiques. First, as

long as the mean-variance optimization, the foundation of modern portfolio management,

captures the main trade-off faced by a portfolio manager, the results in this paper should

hold. Second, one can think that the observable portfolio weights consist of two components.

The first and the major component is the outcome of a mean-variance optimization. The

second component is the noise introduced by various “irrationalities” or departures from

mean-variance optimization. Window dressing, for example, can be thought as contributing

to the latter effect. Typically, window dressing refers to the phenomenon where managers

reshuffle their portfolios around disclosure dates to include stocks with good immediate past

performance and could also be used by funds to disguise their positions. Such noises are going

to bias downward the estimated forecasting abilities. The estimates of SBAI/BAI, therefore,

can be thought as a lower bound of managerial skills. The noises also bias against any findings

of the predictability of SBAI/BAIs for future fund returns. Given these considerations, our

empirical findings of the predictability of SBAIs/BAIs provide further empirical supports

for SBAI/BAI as performance measures. Finally, even though it does not adjust explicitly

for the specific index benchmark that funds use if their objective is to minimize tracking

errors, the proposed method accounts for the index implicitly by extracting the underlying

indexes among index-tracking funds as non-redundant assets and comparing these funds’

performance accordingly.

It is also worthwhile to mention that BAI is constructed from a cross-sectional observation

of fund holdings and subsequent stock returns rather than estimated based on a time series of

past fund returns or a combination with a time series of historical fund holdings. For example,

one can construct a BAI with only one quarterly filing of holding and one subsequent return

data point for each fund, without using any further historical time series data points on

holdings or returns. This is useful for ranking a large set of newly incepted funds with no

performance track record other than one quarterly filing of holdings. In contrast, existing

performance metrics would have difficulty in ranking such funds.

Relation to the literature. This paper is closely related to Grinblatt and Titman (1989),

Cohen, Coval, and Pastor (2005), and Shi, Stoffman, Zhu, and Yuan (2007). Grinblatt

and Titman (1989) also propose a “belief accuracy” measure. They compute the change in

portfolio weights between two immediate quarters for a stock in a given fund’s portfolio and

use the change as a proxy for the manager’s belief of the stock’s expected return: A large
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positive (negative) change indicates that the fund manager believes the expected return of

this stock is higher (lower). They then correlate these weight changes with realized returns

to compute the accuracy of a manager’s belief. This logic is very similar to the BAI proposed

in this paper. However, unlike the approach proposed in this paper, the information across

fund managers’ holdings – how similarities and differences may reveal some information

about fund managerial skills is not used in Grinblatt and Titman (1989). In this sense,

our paper is closely related to Cohen, Coval, and Pastor (2005). Cohen, Coval, and Pastor

(2005) propose a performance metric based on the similarity of funds’ holdings to that of

the best performing funds. They start with a performance ranking that is based on the

past return performance and then assign a performance ranking for the current period based

on the similarity of funds’ holdings to that of the best performing funds. By comparison,

this paper starts with a cross-section of holdings of the current period to back out the

heterogeneous beliefs and then assess the accuracy of these beliefs without using any data

of past performance. Therefore, the major differences are that 1) the BAI does not use

the information in historical alpha to rank funds, and 2) the BAI explores similarities and

differences across fund holdings to extract information on the variance-covariance structures

of returns in addition to expected returns. Shi, Stoffman, Zhu, and Yuan (2007) view stocks

and funds as a network where the link structure is defined by the portfolio holdings of funds.

They apply well-researched ranking algorithms in networks to generate ranking measures of

funds (FundRanks) and of stocks (StockRanks). This paper differs by assuming that fund

managers are mean-variance optimizers while Shi, Stoffman, Zhu, and Yuan (2007) assume

that fund managers engage in some risk-return tradeoffs that are common among themselves

– the functional form of this trade-off is not assumed. By assuming fund managers are mean-

variance optimizers, the approach suggested in this paper put clear interpretations on the

ranking measure while the FundRank measure proposed by Shi, Stoffman, Zhu, and Yuan

(2007) captures a fund quality measure that is general but without clear interpretations.2

2Kacperczyk, Sialm, and Zheng (2005) also motivate their study based on portfolio theory and use only

holding data to construct a performance measure. They find funds that have more industry-concentrated

portfolios, intuitively, are funds that have superior information, and hence perform better. This paper can

be also thought of as a generalized version of Kacperczyk, Sialm, and Zheng (2005) in a mean-variance

framework by adding a risk-return trade-off: Funds prefer to concentrate on stocks that they know are likely

to perform better but at same time want to diversify away the risk. The characteristic selectivity (CS) metric

and the characteristic timing (CT) measure proposed in Daniel, Grinblatt, Titman, and Wermers (1997) can

be thought also as related. The major difference is, however, that they rely also on historical return data
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Wermers (2000); Ferson and Khang (2002); Kacperczyk, Sialm, and Zheng (forthcoming);

and Cremers and Petajisto (2006) also contribute to the performance evaluation literature

in investigating the use of the information in the portfolio holdings. However, unlike this

paper, they do not explore the information across mean-variance optimizing fund managers’

holdings – how similarities and differences in their holdings may reveal some information

about fund managers’ belief about the risk-return trades of stocks in their portfolio.

Although this paper is the first to elicit beliefs on expected returns and variance-covariance

matrix from portfolio holdings, it is not the first attempt to look beyond price or return data

to back out return-generating factors. Lo and Wang (2000; 2001) find the turnover satisfies

an approximately linear k-factor structure and Goetzmann and Massa (2006) identify factors

through a sample of net flows to nearly 1000 U.S. mutual funds over a year and a half period.

In general, this paper differs from the existing literature by treating portfolio holdings as

solutions to an investment optimization problem. Building on a simple model of portfolio

choice, this paper proposes a new way to infer variance-covariance matrix, as well as investor

heterogeneous beliefs from portfolio holdings.

Besides improving or adding another dimension to the existing performance metrics, this

paper contributes to the finance literature by highlighting a revealed preference approach

to extract information on investor expected return and on return generating process from

portfolios and potentially improving empirical asset pricing tests. For example, the variance-

covariance matrix is inferred in the observed portfolio weights in this paper. In the existing

literature, the variance-covariance matrix is estimated based on historical returns. The

information provided in portfolio holdings could potentially improve the existing estimation

and hence has implications for tests involving cross-sectional stock returns. There is also

an extensive body of empirical asset pricing literature that explores how to estimate the

number of factors using price and return data (Connor and Korajczyk (1986; 1988), Bai

and Ng (2002; 2006), Ludvigson and Ng (forthcoming), and Jones (2001)). The revealed Σ

matrix from portfolio holdings could potentially contributes to this set of tests as well.

The remainder of this paper is organized as follows. In Section 2, I present a partial

equilibrium model of portfolio holdings. Section 3 describes the data used in the empirical

implementation of the model and outlines the computation of SBAI and BAI. In Section 4,

and three characteristic factors to measure performances while the BAI proposed in this paper is based on

holding only. Wermers, Yao, and Zhao (2007) use portfolio information to predict stock returns, similar to

Shi, Stoffman, Zhu, and Yuan (2007).
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I analyze SBAI and BAI results. In Section 5, I examine whether SBAI and BAI contain

valuable information to predict fund performance, especially over and above that contained

in the existing performance measures. I conclude in Section 6.

2 Portfolio Allocation under Heterogeneous Beliefs

In this section, I develop a standard portfolio choice model. In this model, investors have

heterogeneous beliefs about the excess returns of n risky stocks but possess common knowl-

edge about the variance-covariance matrix of their returns. I solve for optimal portfolio

allocation for heterogeneous investors. However, the objective of this model is not to obtain

a set of optimal portfolio weights given heterogeneous beliefs, but to see whether observ-

ing a set of optimal portfolio weights, one can back out heterogeneous investor beliefs and

the variance-covariance matrix of returns. In the model, portfolio optimization by investors

results in a portfolio matrix that reveals both the perceived variance-covariance matrix as

well as heterogeneous beliefs about future excess returns. In what follows, I first detail the

return-generating process for risky and risk-free assets and the information structure among

the investors. I then solve the portfolio optimization problem for mean-variance investors

and show the variance-covariance matrix as well as investor beliefs can be identified up

to a constant through a decomposition of the portfolio matrix. Finally, I define portfolio

(revealed) beliefs to construct the belief accuracy index (BAI).

2.1 Assets

To develop the model, I first focus on a standard portfolio allocation problem. In this

problem, the available investment opportunities consist of a risk-free asset with a constant

return, rf , and n risky assets where ith asset’s excess return over the risk-free rate (rf ) is

denoted as r̃i. I assume that k(< n) assets are non-redundant. The n risky assets have the

following variance-covariance matrix:

Σ =


σ2

1,1 . . . σ2
1,n

...
. . .

...

σ2
n,1 . . . σ2

n,n

 , (1)
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which is of rank of k.3 I assume that the spectral decomposition of the Σ matrix has the

following form:

Σ =
[
b1 · · · bk

]
σ2

f1

. . .

σ2
fk




b′1
...

b′k

 , (2)

where Σ has k eigenvectors. Intuitively, one can think this economy has k basis assets. Let

Σf denote the following:
σ2

f1

. . .

σ2
fk

 .
Then, the spectral structure of the Σ matrix can be re-written as:

Σ = bΣfb
′. (3)

Corresponding to the above spectral structure, I use V to denote a subspace in Rn, which is

the span of {b}l=1,...,k. Intuitively, one can think that there are k orthogonal basis assets in

this economy that spans the risky-asset space.

2.2 Beliefs

I assume that there are m investors in this economy, where m > k. These investors possess

a common knowledge of Σ, but are heterogeneously informed about the risky assets’ excess

returns. As mentioned in the introduction, this assumption is motivated by the fact that the

second moments can be better estimated than the first moments by using high-frequency

historical return data, as shown in the empirical asset pricing literature.

I use µmi to denote investor m’s belief of asset i’s expected excess return. Investor m’s

belief of the n assets’ expected excess returns can be written as µm = [µm1, ..., µmn]′, and

total m investors’ beliefs on n assets can be written as µ = [µ1, ..., µm]′, which is m × n

matrix.

To explore the spectral decomposition of the Σ matrix, I decompose µ on the same basis

3The models in the Appendix deal with the case where the variance-covariance is of full rank and the

case where the variance-covariance is of two components – a part of the risk that investors can form beliefs

of expected return on, and a part of risk of which investors do not demand expected return when exposed

to. The results remain the same.
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by projecting µ to the subspace V spanned by b, namely,

µ = µ̂b′, (4)

where µ̂ is a m × k matrix and µ̂ = [µ̂1, ..., µ̂m]′. That is, µ̂m, a k × 1 vector, describes

investor m’s belief on the k basis assets.

With this characterization, I make one assumption regarding the belief structure. Specifi-

cally, I assume that the column vectors of µ̂ are orthonormal. The orthogonality assumption

is basically a rationality assumption since the columns of µ̂ reflect beliefs about different

orthogonal eigenfactors (or basis assets).4 This assumption simplifies the derivation for in-

vestors’ beliefs, as shown later.

2.3 Investor Portfolio Optimization Problem

Let wm0 denote the percentage of wealth (or portfolio weight) invested by investor m in the

riskless asset and wm = [wm1, · · · , wmn]′ denote the vector of portfolio weights in each of the

n risky assets by investor m. The portfolio weights satisfy the following equation:

wm0 +
n∑

i=1

wmi = 1, (5)

where w = [w1, ...,wm]′ and is a m× n matrix.

In this economy, investors choose portfolio weights to obtain a standard mean-variance

optimization for expected returns. Investor m, conditional on his beliefs, chooses his portfolio

weights, wm, to maximize the following:

max
{wm}

(
w
′

mµm −
1

2
γw

′

mΣwm

)
, (6)

where γ is assumed to be the same across investors.5

4In reality, investors may have different degrees of disagreement about the returns for different assets.

That is, the length of µ̂ for different eigenfactors (basis assets) could be different. This possibility can be

addressed from both theoretical and empirical perspectives. Theoretically, in general equilibrium settings,

a larger perceived uncertainty about an asset would result in decreased investor demand. Therefore, it

would affect the return distribution of the asset itself. However, the return distribution must be taken as a

given in this partial equilibrium model, because investors do not have price impacts. Hence, it is reasonable

to assume that any differences in perceived uncertainty (or the length of µ̂) are absorbed in the return

distribution. Empirically, one can normalize µ̂ by empirical measures of degrees of perceived uncertainties,

such as dispersion of analysis forecasts.
5This objective function is commonly used in the literature and can be thought of as a reduced form

of the investor portfolio optimization problem. For example, it can be obtained in a standard Merton’s

9



The first-order condition for investor m yields a mean-variance efficient portfolio:

wm =
1

γ
Σ†

′
µm (7)

where † denotes Moore-Penrose generalized inverse. Finally, the matrix of optimal portfolio

weights by all m investors in this economy can be written as:

w =
1

γ
µΣ†

′
. (8)

2.4 Heterogeneous Beliefs Revealed in Portfolio Holdings

For a given Σ, investor private beliefs can be immediately revealed by w. This result is

stated in the following lemma, which is immediate from Equation (8).

Lemma 1 Once observing a portfolio holding matrix w, investor private beliefs on expected

return of risky assets for a given Σ can be computed as

µ = γwΣ. (9)

Since the variance-covariance matrix Σ can be estimated from historical return data, this

leads immediately to the extraction of heterogeneous beliefs from portfolio holdings.

Result 1 For a given portfolio holding matrix w and a Σ estimated from historical returns,

investor private beliefs on expected return of risky assets are revealed up to a constant (which

is the risk aversion coefficient):

µ = γwΣ. (10)

Note that the degree of risk aversion only affects the allocation across risky and risk-free

assets and does not affect the allocation within risky assets. I term these sets of beliefs “semi-

portfolio (revealed) beliefs” because these beliefs are revealed by corresponding portfolio

holdings as well as the variance-covariance matrix estimated using past return data. One

potential issue with the semi-portfolio (revealed) beliefs is that one may argue that the

estimated Σ used in formulating these semi-portfolio revealed beliefs, is not forward-looking

and is subject to various estimation biases. Next, I show that instead of estimating Σ using

(1971) problem where the investment opportunity set is constant (see also Aı̈t-Sahalia, Cacho-Diaz, and

Hurd (2007)). Note that assuming all investors have the same risk aversion coefficient γ does not affect the

results since difference in γ affects the allocation among risky and risk-free assets but does not affect the

allocation among risky assets for a given set of beliefs.
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historical return data, one can also elicit the common belief on Σ among investors from

w. This Σ matrix, unlike the variance-covariance matrix estimated using return data, is

forward-looking.

To see that, let us first denote the spectral decomposition of w
′
w as:

w
′
w = ueu′ =

[
u1 · · · uk

]
e1

. . .

ek




u′1
...

u′k

 . (11)

The next proposition shows how w reveals Σ up to a constant.

Proposition 1 Σ = aue−
1
2u′ where a is a constant.

PROOF OF PROPOSITION 1:

Since the column vectors of µ̂ are orthogonal. The following is immediate from Equation

(8):

w
′
w =

1

γ2
Σ†

′
bµ̂′µ̂b′Σ† =

1

γ2
Σ†

′
bb′Σ†. (12)

Note that since Σ = bΣfb
′, Equation (12) can be written as:

w
′
w =

1

γ2
(b(Σfb

′))†
′
bb′((bΣf )b)† =

1

γ2
(Σfb

′)†b†
′
bb′b

′†(bΣf )†

=
1

γ2
(Σfb

′)†(bΣf )† =
1

γ2
b′†Σ−2

f b† =
1

γ2
bΣ−2

f b
′

(13)

where 1/γ2 is a constant. The last three equalities are obtained by repeatedly using the facts

that 1) b† = b′ (because b are orthogonal) and 2) a property of Moore-Penrose generalized

inverse: If rank(A) = rank(B), then (AB)† = B†A† (Theorem 5.9 in Schott (2005)). The

last equality gives a spectral decomposition of w
′
w, and so does Equation (11) Therefore,

b = a1

[
u1 · · · uk

]
and Σf = a2e

− 1
2 where a1 and a2 are two constants. The rest follows

since Σ = bΣfb
′.�

Since b and Σ are revealed by portfolio matrix, I term them “portfolio (revealed) betas”

and “portfolio (revealed) variance-covariance matrix” respectively. After obtaining b and Σ,

the investor beliefs, µ, can be computed by Equation (9). This result is stated below.

Result 2 For a given portfolio holding matrix w, investor private beliefs on expected return

of risky assets for a given Σ can be computed as

µ = γwaue−
1
2u′. (14)
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I term these beliefs “portfolio (revealed) beliefs” because these beliefs are revealed by

corresponding portfolio holdings only.

It may seem magical that I am able to obtain b, Σ, and µ from a single m × n matrix

w. Equation (8) may provide some intuition. Notice that the investors possess a common

knowledge of Σ and hence their portfolio should exhibit k fund separation. The fact that

their weights are increasing in µ means they tilt their portfolios toward funds with higher

expected returns.

Since portfolio belief captures a fund manager’s ex ante belief about future stock returns,

how accurate his beliefs about future stock returns are compared to the realized subsequent

returns is an intuitive measure of his forecasting ability. Specifically, the correlation between

the realized excess returns and the revealed beliefs about excess returns using all stocks

in fund m’s portfolio, expressed as corr (µm, r̃), captures how closely fund m’s manager’s

expectation of excess returns matches the corresponding subsequent realized returns. I term

the correlation between the semi-portfolio (revealed) beliefs, as computed in Result 1, and

the realized return the “semi-belief accuracy index (SBAI);” the correlation between the

portfolio (revealed) beliefs, as computed in Result 2, and the realized return the “belief

accuracy index (BAI).” In the rest of the paper, I test the empirical relevance of SBAI and

BAI.

3 Empirical Analysis

3.1 Data

For the empirical tests, I employ four databases: CRSP stock daily return from January 1981

to December 2005, CRSP stock monthly return, CRSP mutual fund monthly return and the

stock holdings of mutual funds from the CDA/Spectrum mutual fund holdings database

maintained by Thomson Financial from January 1981 to September 2006. For the mutual

fund returns, I use net returns, i.e., returns after fees, expenses, and brokerage commissions

but before any front-end or back-end loads. The mutual fund holding database comprises

mandatory SEC filings as well as voluntary disclosures by mutual funds. It is typically

available quarterly. Wermers (2000) describes this database in more detail.

For this study, I focus on domestic all-equity funds. To construct the sample for this

analysis, I first merge the CRSP mutual fund database with the CDA/Spectrum holdings
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using the MFLINKS programs provided by Wermers (2000).

Finally, I include only funds with equity holdings greater than $5 million, with at least

10 stocks and with stocks that can be matched with the CRSP stock return database.

The final sample for the mutual fund holdings includes the period 1981-2006 (103 quarters

in total). However, note that monthly stock and fund return data only cover periods until

September 2006 and daily stock return data are available until December 2005.

3.2 Eliciting Beliefs and Variance-Covariance Matrix

For each quarter in the sample, I construct a portfolio weight matrix w, with the row indexing

the funds and the column indexing the stocks. Since there are 103 quarters in the sample,

there are 103 w matrices.

Results 1 and 2 show that, to compute portfolio revealed beliefs, besides w, Σ is also

needed. Result 1 indicates to use Σ estimated from historical return data and correlate the

resulting beliefs with the realized returns to form SBAI; while Result 2 depends on extracting

Σ from w and correlating the elicited beliefs with the realized returns to form BAI.

To construct SBAI, I experiment with two estimators for Σ using non-overlapping three-

month weekly stock return data before each quarter-end. Since the sample size is smaller

relative to the dimension of the variance-covariance matrix, I adopt the shrinkage approach

as highlighted in Schäfer and Strimmer (2007). The advantage of this shrinkage approach is

that the optimal shrinkage intensity is calculated analytically. I also try to get around the

dimensionality problem by estimating the covariance matrix of a smaller number of assets

such as Fama-French three factors and estimating the corresponding factor loadings using

weekly data based on Scholes-William approach. However, SBAI computed using the latter

approach has performed poorly and therefore the results are not reported. This finding

indicates that the covariances among Fama-French factors do not capture the covariance

among stocks well.

To construct BAI, I need to deal with an empirical issue – in reality some assets may be

redundant and the variance-covariance matrix may not be full rank. That is, the number of

non-redundant assets, k is unknown. Hence, one needs to first determine k, the rank of Σ or

equivalently the number of eigenfactors in Σ. Since the Σ matrix is revealed from observed

data and is not estimated as in the existing literature, a straightforward application of

Bayesian information criterion is sufficient to obtain k. In fact, Bai and Ng (2002) have shown
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that the eigenvalue scree diagram analysis yields a similar result to Bayesian information

criterion.6 A scree diagram analysis shows that top 6-7 factors explain most of variation in

the weight matrix. Further, a principal component analysis shows that, on average, 10 to 20

factors explain about 30 to 40% of the variation in the weight matrix. Beyond 20 factors,

each factor explains less than 1% variation of the matrix. Given these findings, I conduct

analyses based on k of 10, but perform robustness checks using k up to 20 and find the

results are robust for k > 10.

After computing semi-portfolio revealed beliefs according to Equation 10 and portfolio

revealed beliefs according to Equation 14, for every stock in the portfolio matrix w of each

manager at the quarter when he or she makes the portfolio decision, I calculate semi-belief

accuracy index (SBI) and belief accuracy index (BAI) for each fund manager by correlating

revealed beliefs with immediate future (e.g., one-month ahead) excess returns r̃.7 Therefore,

SBAI and BAI for a fund manager presented in this paper measures how closely his or her

beliefs about excess returns for stocks in his or her portfolio mimic the one-month ahead

realized returns for these stocks.

4 Can Mutual Fund Managers Predict Returns?

Since active portfolio management, based on the idea that managers can predict returns, is

so widespread, it is worthwhile to examine whether fund managers can, on average, forecast

stock returns. The results in Table 1 show that, for an average mutual fund manager, the

correlation between private beliefs and one-month ahead returns (SBAI or BAI) is close to

zero and statistically insignificant. This indicates that fund managers, on average, cannot

forecast factor returns. This result is not surprising given that Grinblatt and Titman (1989)

also find the average performance based on their benchmark-free GT measure is close to

zero.

However, after sorting funds into deciles according to SBAI and BAI, I find that fund

6There is an extensive body of empirical asset pricing literature that explores how to determine the

number of factors using price/return data (Connor and Korajczyk (1986; 1988), Bai and Ng (2002; 2006),

Ludvigson and Ng (forthcoming), and Jones (2001)).
7Since the fund manager’s information should last at least one month, the most obvious testing period

is the subsequent one-month period. However, the results also hold if correlating beliefs with the returns

in the subsequent two-month or three-month period. For expositional clarity, only one-month ahead results

are presented.
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managers in the top half deciles are able to predict future returns to some extent. For

example, the beliefs of those with the top decile funds sorted according to BAI, on average,

have a positive and statistically significant correlation of about 0.0402, while the beliefs of

those with the bottom decile funds have a negative and statistically significant correlation of

about -0.0377. This difference between the bottom and the top deciles is about 0.0778 and

is statistically significant at the one-percent level. Similar results hold when sorting funds

according to SBAI.

**** Insert Table 1 about here ***

The results in Table 1 also show that the size of funds is not statistically different across

the top and bottom SBAI and BAI deciles. The average fund size in the SBAI (BAI) sample

is around $417.1913 ($424.67) million, with the average size in the top decile at about

$429.356 ($469.525) million and that in the bottom decile at around $389.0151 ($394.533)

million. This indicates that the size of the funds is unlikely to be related to the ability to

forecast future returns.

I also compute the Spearman rank correlation between the ranking based on a fund’s

average SBAI or BAI during the previous one year and the current SBAI or BAI, respec-

tively, during the sample period. The ranking based on BAI is more persistent than that

based on SBAI. For example, the Spearman rank correlation between the ranking based on a

fund’s average BAI during the previous one year and the one-quarter ahead BAI is 0.64226.

This correlation is 0.39191 for two-quarter ahead BAI, 0.19905 for three-quarter ahead. All

Spearman correlation correlation coefficients are statistically significant at the one-percent

level. This correlation turns negative and insignificant for the four-quarter ahead BAI and

back to positive and statistically significant for the five-quarter ahead BAI. By comparison,

the Spearman rank correlation for rankings based on SBAI remains positive and statistically

significant for one to three-quarter ahead windows but turns negative and statistically sig-

nificant for four to five-quarter ahead windows. These results are presented in Table 2. This

indicates a persistence of forecasting ability.

**** Insert Table 2 about here ***
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5 Predicting Mutual Fund Returns Using SBAI and

BAI

I have shown that although, on average, managers cannot forecast factors returns, managers

of some funds can do so. Given that the SBAI and BAI are persistent, one should expect

funds with higher SBAIs or BAIs to outperform funds with lower SBAIs or BAIs, respectively.

Next, I test whether SBAI and BAI for each manager indeed contain valuable information

that can be used to predict future fund performance.

5.1 Trading Strategy Using SBAI and BAI

To examine the performance of a trading strategy based on a manager’s SBAI/BAI, I first

sort all funds in the sample into deciles according to their most recent SBAI/BAI. The decile

portfolios are formed by weighting all the funds in the decile either equally or according to

their size. To evaluate the performance of the decile portfolios, I compute the returns of these

decile portfolios for the subsequent three-month period. Figure 1 outlines an example of the

timeline for this trading strategy based on SBAI/BAI. It includes the strategy formation

period (including belief extraction and belief accuracy index formation) and the subsequent

(three-month) strategy testing period. Since holdings are not disclosed immediately after

the effective holding date, correlating the subsequent stocks introduces a one-month lag in

computing SBAI/BAI.8 Also note that the return observations for the testing periods in this

trading strategy do not overlap.

For SBAIs, since the weekly return is available from January 1981 to December 2005, I

can estimate variance-covariance matrices for 100 quarters during this period and hence there

are in total 100 strategy-formation dates. The first portfolio formation date is April 1981 and

the last portfolio formation date is December 2005. There are 100 strategy formation dates

from April 1981 (inclusive) to December 2005 (inclusive). For each of these 100 strategy-

formation dates, there are three month-observations of returns for each decile portfolio. In

total, there are 300 non-overlapping monthly return observations for each decile portfolio in

the sample.

For BAIs, since the holding data is available quarterly from January 1981 to September

2006, I can form in total 102 strategy-formation periods. The first portfolio formation date

8The results are robust to lags varying from one month to three months.
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Figure 1: Timeline. This figure presents an example of the timeline for forming a trading

strategy and testing this strategy.

is April 1981 and the last portfolio formation date is July 2006. There are 102 strategy

formation dates from April 1981 (inclusive) to July 2006 (inclusive). For each of these

102 strategy-formation dates, there are three month-observations of returns for each decile

portfolio. For the last quarter portfolio formation (July 2006), there are only two month-

observations (August 2006 and September 2006) of returns for each decile portfolio. In total,

there are 305 non-overlapping monthly return observations for each decile portfolio in the

sample.

The risk- and style-adjusted net returns for each value- and equal-weighted decile portfolio

using SBAI are reported in Tables 3 and 4, respectively. The third column in Tables 3 and

4 reports the average returns for funds in each decile. The next column reports the excess

returns (that is, returns over the risk-free rate).9 The next three columns report the intercepts

from a time-series regression based on the one-factor CAPM model, the three-factor model

of Fama and French (1993), and the four-factor model of Carhart (1997), respectively.

The risk- and style-adjusted net returns for each value- and equal-weighted decile portfolio

using BAI (based on ten eigenfactors) are similarly reported in Tables 5 and 6, respectively.

*** Insert Table 5 about here***

9The t-statistics in this column are the corresponding Sharpe ratios.
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*** Insert Table 6 about here***

The results in these tables indicate that funds with the best forecasting skills in the

immediate past quarter (decile ten) significantly outperform funds with the worst forecasting

skills (decile one) in the subsequent three-month testing period. In other words, investing in

equal-weighted (value-weighted) decile-ten SBAI funds generates an additional 37 (35) basis

points per month, or about 4.44% (4.2%) per year compared to investing in decile-one SBAI

funds. Similarly, investing in the equal-weighted (value-weighted) decile-ten funds would

generate an additional 34 (42) basis points per month, or about 4.08% (5.16%) per year

compared to investing in decile-one funds. The relationship between the past BAI and the

future fund performance is highly monotonic for the equal-weighted trading strategy and

slightly less so for the value-weighted trading strategy. These results are not influenced by

variations in the risk or style factors, as reported in the next four columns of Tables 3 to 6.

Tables 7 and 8show characteristics of equal-weighted decile SBAI and BAI funds, respec-

tively. The results show that all decile funds have a statistically significant positive CAPM

beta, invest statistically more in small stocks, hold more value stocks (but statistically signif-

icant only for decile-5 BAI funds), and have a negative (statistically insignificant) exposure

to the momentum factor (except decile-9 and decile-10 SBAI funds).

Tables 7 and 8 also show that the top performing SBAI and BAI funds invest less in high

market-beta, small or momentum stocks; and the top performing BAI funds invest more in

value stocks, although these results are not statistically significant. The top performing BAI

funds, as shown in Table 7 , however, has a significantly lower beta than bottom performing

BAI funds and the statistical significance of this difference is at the ten-percent level.

Next to see whether SBAI and BAI have different information in predicting future fund

returns, or equivalently, whether Σ estimated from historical returns and portfolio revealed

Σ elicit portfolio beliefs differently, I perform a series of conditional sorts. For each portfolio

formation period, I first sort funds into quintiles based on their SBAIs. I then sort funds into

quintiles based on their BAIs within each SBAI. Finally, I examine the subsequent three-

month returns for the resulting 25 (equal-weighted) portfolios, which are reported in Panel

A of Table 9. Controlling for SBAI, the average differences between the top and bottom

quintiles of the funds ranked by their BAIs range from 18 to 36 basis points per month or

2.16% to 4.32% per year. Two of these difference are strongly statistically significant at the

one-percent level and one at five-percent level. This indicates that the BAI measure contains

much more additional information about future fund performance that is not included in the
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SBAI index.

I also examine how much information about future fund returns is contained in the

SBAI index but not captured in the BAI measure. To do so, I sort funds into quintiles in

reverse, first by BAI and then by the SBAI measure. These results are reported in Panel

B of Table 9. Controlling for BAI, the 5-1 spreads produced by the SBAI measure are

statistically significant only for the 4th BAI quintile (at five-percent level). This indicates

that most information contained in the SBAI index about better-performing and worse-

performing funds is already contained in the BAI index. These results indicate that the

portfolio revealed variance-covariance matrix Σ indeed contains some unique information

about the future returns.

For robustness check, the performance of a trading strategy based on twenty eigenfactors

is reported in Tables 10 and 11. The results are similar to (and in many cases slightly

stronger than) those based on ten eigenfactors. These results are reasonable since principal

component analysis indicates that most variations in the portfolio are captured by 10 factors.

*** Insert Table 10 about here***

*** Insert Table 11 about here***

5.2 Do SBAI and BAI Contain Valuable Information in Predicting

Future Fund Performance?

One way to assess the usefulness of SBAI and BAI in capturing true managerial skills is

to conduct a simulation analysis. However, if the simulation environment follows the theo-

retical model in Section 2, SBAI and BAI measures, by construction, dominate all existing

performance metrics. Therefore, such an assessment must come from the empirical relevance

of SBAI and BAI measures.

One may also question whether SBAI and BAI measures contain more information than

the existing holding-based performance measures. The comparable one is the benchmark-free

GT measure in Grinblatt and Titman (1989), which does not use any past return information.

To implement this test, for a given quarter, I compute the GT measure by correlating

the changes in a fund’s holdings with the realized excess returns in the following month.

To see whether SBAI and BAI contain any additional information that is not in the

GT measure, I perform a series of conditional sorts. For each portfolio formation period, I

first sort funds into quintiles based on their SBAIs. I then sort funds into quintiles based
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on their GTs within each SBAI. Finally, I examine the subsequent three-month returns

for the resulting 25 (equal-weighted) portfolios, which are reported in Panel A of Table

12. Controlling for the GT measure, the average differences between the top and bottom

quintiles of the funds ranked by their SBAIs range from 5 to 34 basis points per month or

0.6% to 4.98% per year. Three of these differences are strongly statistically significant at

or above the five-percent level. This indicates that the SBAI measure contains much more

additional information about future fund performance that is not included in the GT index.

I also examine similarly how much information about future fund returns is contained in

the BAI index but not captured in the GT measure. To do so, I sort funds into quintiles,

first by GT and then by BAI. These results are reported in Panel B of Table 12. Controlling

for GT, the 5-1 spreads produced by BAI are also statistically significant for three BAI

quintiles (one at ten-percent and two are at five-percent level). This indicates that the BAI

measure contains much more additional information about future fund performance that is

not included in the GT index.

**** Insert Table 12 about here ***

I also compare SBAI/BAI with the FundRank measure of Shi, Stoffman, Yuan, and Zhu

(2007), another holding-based performance measures. Since Shi, Stoffman, Yuan, and Zhu

(2007) have shown the FundRank measure is similar to the measure in Cohen, Coval, and

Pastor (2005), this doublesort is an indirect comparison between SBAI/BAI and Cohen,

Coval, and Pastor (2005). To do so, I perform a series of conditional sorts. For each

portfolio formation period, I first sort funds into quintiles based on their SBAIs. I then

sort funds into quintiles based on their FundRank within each SBAI. Finally, I examine

the subsequent three-month returns for the resulting 25 (equal-weighted) portfolios, which

are reported in Panel A of Table 13. Controlling for the FundRank measure, the average

differences between the top and bottom quintiles of the funds ranked by their SBAIs range

from 20 to 36 basis points per month or 2.4% to 4.32% per year. Two of these differences

are strongly statistically significant at the five-percent level. This indicates that the SBAI

measure contains much more additional information about future fund performance that is

not included in the FundRank index.

Similarly, I also examine how much information about future fund returns is contained

in the BAI index but not captured in the FundRank measure. To do so, I sort funds into

quintiles, first by GT and then by BAI. These results are reported in Panel B of Table 13.

Controlling for FundRank, the 5-1 spreads produced by BAI are also statistically significant
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for two BAI quintiles at five-percent level, range from 19 to 41 basis points per month or

2.28% to 4.92% per year. This also indicates that the BAI measure contains much more

additional information about future fund performance that is not included in the FundRank

index.

I also compare BAI with the characteristic selectivity (CS) measure of Daniel, Grinblatt,

Titman, and Wermers (1997); the 5-1 spreads produced by the BAI measure are statistically

significant for one quintile. These results, presented in Table 14, show that SBAI and BAI

have some unique information in predicting next three-month stock returns.

6 Conclusion

This paper proposes new fund performance measures based on how closely fund managers’

beliefs regarding future stock returns match realized returns. These measures are constructed

by correlating beliefs about future returns revealed from historical holdings of funds with

subsequent realized returns. To infer the revealed beliefs, this paper assumes that managers

are rational mean-variance optimizers. The key idea is that managers tilt their portfolios

toward stocks with better risk-return tradeoffs, according to their private beliefs. Hence, ob-

serving their holdings, one can determine whether fund managers’ beliefs on future returns

are accurate. The evidence in this paper suggests that although, on average, fund managers

may not be able to predict future returns, some fund managers do possess forecasting abil-

ities. Therefore, mutual fund investors could benefit significantly from investing in funds

selected through the proposed SBAI and BAI measure. Further, the SBAI and BAI measure

contains the information that is not in the existing performance measures. Theoretically,

these performance metrics contribute to the existing performance measures by exploring in-

formation contained in the cross-sectional similarities and differences of fund holdings with

the guidance of a mean-variance preference optimizing framework.

In addition to the contribution to the performance evaluation literature, the paper con-

tributes to the general finance literature by pointing out a new angle from which to study

asset pricing questions. That is, instead of estimating investor expectation regarding risk and

risks from historical returns, one can extract their expectations regarding risks and returns in

portfolio holdings using a revealed preference approach. For example, the variance-covariance

matrix estimated in the observed portfolio weights is dynamic and quarter-to-quarter es-

timates are different. In the existing literature, it is challenging to estimate a dynamic
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variance-covariance matrix based on historical returns. The information provided in port-

folio holdings could potentially improve the existing estimation and hence has important

implications for tests involving cross-sectional stock returns.

22



References

Aı̈t-Sahalia, Yacine, Julio Cacho-Diaz, and Tom Hurd, 2007, Portfolio choice with a jumps:

A closed form solution, Princeton University Working Paper.

Bai, Jushan, and Serena Ng, 2002, Determining the number of factors in approximate factor

models, Econometrica 70, 191–221.

Bai, Jushan, and Serena Ng, 2006, Confidence intervals for diffusion index forecasts and

inference for factor-augmented regressions, Econometrica 74, 1133–1150.

Basak, Suleyman, 2005, Asset pricing with heterogeneous beliefs, Journal of Banking and

Finance 29, 2849–2881.

Black, Fisher, and Bob Litterman, 1992, Global portfolio optimization, Financial Analysts

Journal 48, 28–43.

Carhart, Mark M., 1997, On persistence in mutual fund performance, Journal of Finance

50, 679–698.

Carhart, Mark M., Ron Kaniel, David K. Musto, and Adam V. Reed, 2002, Learning for

the tape: Evidence of gaming behavior in equity mutual funds, Journal of Finance 57,

661–693.

Cohen, Randy B., Joshua D. Coval, and L. Pastor, 2005, Judging fund managers by the

company they keep, Journal of Finance 60, 1057–1096.

Connor, Gregory, and Robert A. Korajczyk, 1986, Performance measurement with the arbi-

trage pricing theory: A new framework for analysis, Journal of Financial Economics 15,

373–394.

Connor, Gregory, and Robert A. Korajczyk, 1988, Risk and return in an equilibrium APT:

Application of a new test methodology, Journal of Financial Economics 21, 255–289.

Cremers, Martijn, and Antti Petajisto, 2006, How active is your fund manager? A new

measure that predicts performance, Yale International Center for Finance Working Paper.

Daniel, Kent, M. Grinblatt, Sheridan Titman, and Russ Wermers, 1997, Measuring mutual

fund performance with characteristic-based benchmarks, Journal of Finance 52, 1035–

1058.

23



Fama, Eugene, and Kenneth French, 1993, Common risk factors in returns on stocks and

bonds, Journal of Financial Economics 51, 3–56.

Ferson, Wayne E., and Kenneth Khang, 2002, Conditional performance measurement using

portfolio weights: Evidence for pension funds, Journal of Financial Economics 65, 249–

282.

Goetzmann, William N., and Massimo Massa, 2006, Behavior factors in mutual fund flows,

Yale International Center for Finance Working Paper.

Grinblatt, M., and Sheridan Titman, 1989, Mutual fund performance: An analysis of quar-

terly portfolio holdings, Journal of Business 62, 393–416.

Haugen, Robert A., and Josef Lakonishok, 1988, The incredible January effect: The stock

market’s unsolved mystery. (Dow Jones - Irwin Homewood, IL).

Huang, Chifu, and R. Litzenberger, 1988, Foundations for Financial Economics. (North-

Holland NY).

Jones, Christopher S., 2001, Extracting factors from heteroskedastic asset returns, Journal

of Financial Economics 62, 293–325.

Kacperczyk, Marcin T., Clemens Sialm, and Lu Zheng, 2005, On industry concentration of

actively managed equity mutual funds, Journal of Finance 60, 1983–2011.

Kacperczyk, Marcin T., Clemens Sialm, and Lu Zheng, forthcoming, Unobserved actions of

mutual funds, Review of Financial Studies.

Lo, Andrew, and Jiang Wang, 2000, Trading volume: Definition, data analysis, and impli-

cations of portfolio theory, Review of Financial Studies 13, 257–300.

Lo, Andrew, and Jiang Wang, 2001, Trading volume: Implications of an intertemporal

capital asset pricing model, MIT Sloan School of Management Working Paper.

Ludvigson, Sydney, and Serena Ng, forthcoming, The empirical risk-return relation: A factor

analysis approach, Journal of Financial Economics.

Markowitz, Harry, 1952, Portfolio selection, Journal of Finance 7, 77–91.

24



Merton, Robert C., 1971, Optimum consumption and portfolio rules in a continuous-time

model, Journal of Economic Theory 3, 373–413.

Merton, Robert C., 1980, On estimating the expected return on the market: An exploratory

investigation, Journal of Financial Economics 8, 323–362.

Musto, David K., 1997, Portfolio disclosures and year-end price shifts, Journal of Finance

52, 1563–1588.

Musto, David K., 1999, Investment decisions depend on portfolio disclosures, Journal of

Finance 54, 935–952.

Preuschoff, Kerstin, Steve Quartz, and Peter Bossaerts, 2006, Markowtiz in the brain?,

California Institute of Technology Working Paper.

Samuelson, Paul A., 1938, A note on the pure theory of consumer’s behavior, Economica 5,

61–71.
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Table 1: Summary Statistics for Decile Funds Formed Based on SBAI and BAI

Table 1 reports the means and the standard errors for SBAI and BAI and the corresponding total

net asset (TNA) for funds in each SBAI or BAI decile. The SBAI (BAI) is the correlation between

a fund manager’s beliefs, computed using Result 1 (Result 2), at each quarter-end and the following

month realized excess returns for all stocks in the fund manager’s portfolio. We compute means of

the SBAI (BAI) and the corresponding TNA for funds in each decile for each portfolio formation

date and then average these means across 103 portfolio formation dates over the period of January

1981 to September 2006 for BAI and across 100 portfolio formation dates over the period of January

1981 to January 2006 for SBAI.

SBAI BAI

Decile N Mean Mean TNA N Mean Mean TNA

1 100 -0.028 389.0151 103 -0.0377 395.4141

(0.0012) (34.1083) (0.0029) (34.8588)

2 100 -0.017 391.7293 103 -0.0258 412.9296

(0.0011) (31.6804) (0.0029) (35.5099)

3 100 -0.011 392.2132 103 -0.0179 389.0201

(0.0010) (31.8428) (0.0030) (32.0562)

4 100 -0.0063 401.9889 103 -0.0106 426.7532

(0.0010) (34.1151) (0.0029) (33.6422)

5 100 -0.0021 421.2617 103 -0.0036 390.1184

(0.0010) (36.8365) (0.0028) (26.2115)

6 100 0.0019 464.8567 103 0.0033 457.2082

(0.0010) (38.8423) (0.0028) (35.9811)

7 100 0.006 443.5446 103 0.0106 445.107

(0.0009) (37.2056) (0.0029) (29.8550)

8 100 0.0107 407.1994 103 0.0183 424.4548

(0.0009) (29.9629) (0.0031) (33.7275)

9 100 0.0166 430.7482 103 0.0271 436.7588

(0.0010) (35.4613) (0.0032) (33.1155)

10 100 0.0278 429.356 103 0.0402 469.7214

(0.0011) (36.6736) (0.0031) (41.8781)

Average -0.0001 417.1913 0.0004 424.7485

(0.0009) (10.9741) (0.0027) (10.7075)

Top Decile - 0.0557 40.3409 0.0779 74.3073

Bottom Decile (0.0015)∗∗ (48.6280) (0.0033)∗∗ (47.0552)
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Table 2: Persistence of SBAI and BAI

Table 2 reports the Spearman rank correlation for SBAI and BAI. The Spearman rank correlation

is computed by correlating the ranking based on the fund’s current SBAI (BAI) with the ranking

based on the fund’s average lagged SBAI (BAI) during the previous one to four quarters over the

period of January 1981 to September 2006 for SBAI (over the period of January 1981 to January

2006 for SBAI).

Spearman Rank Correlation Coefficient

SBAI BAI

1-Quarter Lead 0.70371 ∗∗ 0.64226 ∗∗

2-Quarter Lead 0.44372 ∗∗ 0.39191 ∗∗

3-Quarter Lead 0.18164 ∗∗ 0.19905 ∗∗

4-Quarter Lead -0.05294∗∗ -0.00153

5-Quarter Lead -0.04465∗∗ 0.05987 ∗∗
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Table 3: Equal-Weighted Portfolio Returns Based on SBAI

At the end of each quarter, fund managers’ beliefs regarding excess stock returns are elicited

according to Result 1. For each fund, these beliefs are then correlated with the following month’s

excess returns to form its semi-belief accuracy index (SBAI). Funds are next sorted into decile

portfolios according to their SBAIs. Table 3 reports the average monthly return, return over risk-

free rate (excess return), and CAPM alpha, Fama-French alpha (1993), and Carhart alpha (1997)

with corresponding Newey-West standard errors for the equal-weighted decile portfolios in the

subsequent three-month testing period. The table also reports the performance spread between the

top and bottom deciles. The portfolio formation period is from January 1981 to January 2006.

Decile N Average Excess CAPM Fama-French Carhart

Return Return Alpha Alpha Alpha

1 300 0.0079 0.0034 -0.0029 -0.0029 -0.0027

(0.0028)∗∗ (0.0028) (0.0009)∗∗ (0.0010)∗∗ (0.0008)∗∗

2 300 0.0086 0.0041 -0.0020 -0.0021 -0.0018

(0.0026)∗∗ (0.0026) (0.0007)∗∗ (0.0007)∗∗ (0.0006)∗∗

3 300 0.0090 0.0044 -0.0016 -0.0016 -0.0016

(0.0025)∗∗ (0.0025)† (0.0006)∗∗ (0.0005)∗∗ (0.0006)∗∗

4 300 0.0095 0.0049 -0.0009 -0.0011 -0.0011

(0.0024)∗∗ (0.0025)∗ (0.0005)† (0.0004)∗∗ (0.0004)∗∗

5 300 0.0092 0.0047 -0.0012 -0.0013 -0.0012

(0.0024)∗∗ (0.0024)† (0.0005)∗∗ (0.0004)∗∗ (0.0004)∗∗

6 300 0.0099 0.0053 -0.0006 -0.0008 -0.0007

(0.0025)∗∗ (0.0025)∗ (0.0005) (0.0004)† (0.0005)

7 300 0.0101 0.0056 -0.0003 -0.0006 -0.0006

(0.0024)∗∗ (0.0025)∗ (0.0005) (0.0004) (0.0005)

8 300 0.0097 0.0051 -0.0008 -0.0011 -0.0009

(0.0025)∗∗ (0.0025)∗ (0.0005) (0.0004)∗∗ (0.0005)†

9 300 0.0108 0.0062 0.0003 0.0001 -0.0001

(0.0026)∗∗ (0.0026)∗ (0.0007) (0.0005) (0.0006)

10 300 0.0116 0.0071 0.0010 0.0011 0.0006

(0.0028)∗∗ (0.0028)∗ (0.0011) (0.0011) (0.0009)

Top 10% - 300 0.0037 0.0037 0.0039 0.0040 0.0033

Bottom 10% (0.0015)∗ (0.0015)∗ (0.0015)∗ (0.0018)∗ (0.0014)∗

Top 20% - 300 0.0029 0.0029 0.0031 0.0031 0.0025

Bottom 20% (0.0011)∗∗ (0.0011)∗∗ (0.0011)∗∗ (0.0014)∗ (0.0011)∗

Top 30% - 300 0.0022 0.0022 0.0023 0.0023 0.0019

Bottom 30% (0.0009)∗ (0.0009)∗ (0.0009)∗ (0.0010)∗ (0.0009)∗

Top 40% - 300 0.0018 0.0018 0.0019 0.0018 0.0016

Bottom 40% (0.0007)∗ (0.0007)∗ (0.0007)∗ (0.0008)∗ (0.0007)∗
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Table 4: Value-Weighted Portfolio Returns Based on SBAI

At the end of each quarter, fund managers’ beliefs regarding excess stock returns are elicited

according to Result 1. For each fund, these beliefs are then correlated with the following month’s

excess returns to form its belief accuracy index (SBAI). Funds are next sorted into decile portfolios

according to their SBAIs. Table 4 reports the average monthly return, return over risk-free rate

(excess return), and CAPM alpha, Fama-French alpha (1993), and Carhart alpha (1997) with

corresponding standard errors for the value-weighted decile portfolios in the subsequent three-

month testing period. The table also reports the performance spread between the top and bottom

deciles. The portfolio formation period is from January 1981 to January 2006.

Decile N Average Excess CAPM Fama-French Carhart

Return Return Alpha Alpha Alpha

1 300 0.0078 0.0033 -0.0030 -0.0028 -0.0025

(0.0028)∗∗ (0.0028) (0.0009)∗∗ (0.0010)∗∗ (0.0009)∗∗

2 300 0.0084 0.0038 -0.0023 -0.0018 -0.0016

(0.0026)∗∗ (0.0027) (0.0008)∗∗ (0.0008)∗ (0.0008)∗

3 300 0.0085 0.0040 -0.0021 -0.0017 -0.0017

(0.0026)∗∗ (0.0026) (0.0007)∗∗ (0.0008)∗ (0.0007)∗

4 300 0.0096 0.0051 -0.0007 -0.0007 -0.0007

(0.0024)∗∗ (0.0024)∗ (0.0005) (0.0006) (0.0006)

5 300 0.0089 0.0044 -0.0017 -0.0015 -0.0016

(0.0025)∗∗ (0.0026)† (0.0004)∗∗ (0.0004)∗∗ (0.0005)∗∗

6 300 0.0094 0.0049 -0.0009 -0.0009 -0.0011

(0.0024)∗∗ (0.0025)∗ (0.0005) (0.0005)† (0.0006)†

7 300 0.0098 0.0052 -0.0007 -0.0004 -0.0007

(0.0025)∗∗ (0.0025)∗ (0.0005) (0.0005) (0.0005)

8 300 0.0100 0.0055 -0.0006 -0.0004 -0.0000

(0.0026)∗∗ (0.0026)∗ (0.0006) (0.0005) (0.0006)

9 300 0.0101 0.0056 -0.0005 -0.0000 -0.0003

(0.0026)∗∗ (0.0026)∗ (0.0007) (0.0006) (0.0006)

10 300 0.0113 0.0068 0.0005 0.0008 0.0003

(0.0029)∗∗ (0.0029)∗ (0.0011) (0.0011) (0.0010)

Top 10% - 300 0.0035 0.0035 0.0035 0.0037 0.0028

Bottom 10% (0.0016)∗ (0.0016)∗ (0.0017)∗ (0.0020)† (0.0016)†

Top 20% - 300 0.0026 0.0026 0.0026 0.0027 0.0021

Bottom 20% (0.0012)∗ (0.0012)∗ (0.0012)∗ (0.0014)† (0.0012)†

Top 30% - 300 0.0022 0.0022 0.0022 0.0022 0.0019

Bottom 30% (0.0010)∗ (0.0010)∗ (0.0011)∗ (0.0012)† (0.0010)†

Top 40% - 300 0.0017 0.0017 0.0017 0.0017 0.0014

Bottom 40% (0.0008)∗ (0.0008)∗ (0.0009)† (0.0010)† (0.0009)†
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Table 5: Equal-Weighted Portfolio Returns Based on BAI

At the end of each quarter, fund managers’ beliefs regarding excess stock returns are elicited

according to Result 2. For each fund, these beliefs are then correlated with the following month’s

excess returns to form its belief accuracy index (BAI). Funds are next sorted into decile portfolios

according to their BAIs. Table 5 reports the average monthly return, return over risk-free rate

(excess return), and CAPM alpha, Fama-French alpha (1993), and Carhart alpha (1997) with

corresponding Newey-West standard errors for the equal-weighted decile portfolios in the subsequent

three-month testing period. The table also reports the performance spread between the top and

bottom deciles. The sample period is from January 1981 to September 2006.

Decile N Average Excess CAPM Fama-French Carhart

Return Return Alpha Alpha Alpha

1 305 0.0076 0.0031 -0.0035 -0.0032 -0.0030

(0.0030)∗ (0.0030) (0.0012)∗∗ (0.0012)∗∗ (0.0012)∗

2 305 0.0085 0.0039 -0.0023 -0.0022 -0.0023

(0.0028)∗∗ (0.0028) (0.0009)∗∗ (0.0009)∗ (0.0009)∗∗

3 305 0.0089 0.0043 -0.0017 -0.0015 -0.0018

(0.0026)∗∗ (0.0026)† (0.0007)∗ (0.0008)† (0.0008)∗

4 305 0.0086 0.0040 -0.0019 -0.0022 -0.0024

(0.0026)∗∗ (0.0026) (0.0007)∗∗ (0.0007)∗∗ (0.0007)∗∗

5 305 0.0088 0.0042 -0.0013 -0.0018 -0.0020

(0.0023)∗∗ (0.0023)† (0.0006)∗ (0.0006)∗∗ (0.0006)∗∗

6 305 0.0090 0.0044 -0.0011 -0.0014 -0.0014

(0.0024)∗∗ (0.0024)† (0.0006)† (0.0005)∗∗ (0.0005)∗∗

7 305 0.0096 0.0050 -0.0006 -0.0010 -0.0011

(0.0024)∗∗ (0.0024)∗ (0.0007) (0.0006)† (0.0006)†

8 305 0.0107 0.0062 0.0007 0.0004 0.0005

(0.0024)∗∗ (0.0024)∗ (0.0007) (0.0006) (0.0006)

9 305 0.0114 0.0068 0.0012 0.0012 0.0011

(0.0026)∗∗ (0.0026)∗∗ (0.0009) (0.0009) (0.0009)

10 305 0.0110 0.0064 0.0005 0.0008 0.0013

(0.0027)∗∗ (0.0027)∗ (0.0012) (0.0012) (0.0012)

Top 10% - 305 0.0034 0.0034 0.0040 0.0039 0.0043

Bottom 10% (0.0019)† (0.0019)† (0.0020)∗ (0.0021)† (0.0019)∗

Top 20% - 305 0.0031 0.0031 0.0037 0.0037 0.0039

Bottom 20% (0.0016)∗ (0.0016)∗ (0.0016)∗ (0.0018)∗ (0.0016)∗

Top 30% - 305 0.0027 0.0027 0.0033 0.0031 0.0034

Bottom 30% (0.0013)∗ (0.0013)∗ (0.0014)∗ (0.0015)∗ (0.0014)∗

Top 40% - 305 0.0023 0.0023 0.0028 0.0026 0.0028

Bottom 40% (0.0012)† (0.0012)† (0.0012)∗ (0.0014)† (0.0013)∗
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Table 6: Value-Weighted Portfolio Returns Based on BAI.

At the end of each quarter, fund managers’ beliefs regarding excess stock returns are elicited accord-

ing to Result 2. For each fund, these beliefs are then correlated with the following month’s excess

returns to form its belief accuracy index (BAI). Table 6 reports the average monthly return, return

over risk-free rate (excess return), CAPM alpha, Fama-French alpha (1993), and Carhart alpha

(1997) with corresponding Newey-West standard errors for the value-weighted decile portfolios in

the following three-month testing period. The table also reports the performance spread between

the top and bottom deciles. The sample period is from January 1981 to September 2006.

Decile N Average Excess CAPM Fama-French Carhart

Return Return Alpha Alpha Alpha

1 305 0.0073 0.0027 -0.0038 -0.0032 -0.0031

(0.0029)∗ (0.0030) (0.0012)∗∗ (0.0012)∗∗ (0.0012)∗

2 305 0.0078 0.0032 -0.0031 -0.0029 -0.0029

(0.0028)∗∗ (0.0028) (0.0008)∗∗ (0.0009)∗∗ (0.0008)∗∗

3 305 0.0086 0.0041 -0.0019 -0.0015 -0.0016

(0.0026)∗∗ (0.0026) (0.0007)∗∗ (0.0008)† (0.0008)∗

4 305 0.0081 0.0036 -0.0024 -0.0026 -0.0027

(0.0026)∗∗ (0.0026) (0.0007)∗∗ (0.0008)∗∗ (0.0008)∗∗

5 305 0.0092 0.0046 -0.0011 -0.0014 -0.0013

(0.0024)∗∗ (0.0024)† (0.0006)† (0.0007)∗ (0.0007)†

6 305 0.0096 0.0050 -0.0005 -0.0004 -0.0006

(0.0023)∗∗ (0.0023)∗ (0.0005) (0.0005) (0.0005)

7 305 0.0102 0.0056 -0.0000 -0.0001 -0.0002

(0.0025)∗∗ (0.0025)∗ (0.0007) (0.0007) (0.0007)

8 305 0.0109 0.0063 0.0006 0.0007 0.0006

(0.0026)∗∗ (0.0026)∗ (0.0007) (0.0008) (0.0008)

9 305 0.0108 0.0062 0.0005 0.0007 0.0003

(0.0027)∗∗ (0.0027)∗ (0.0010) (0.0011) (0.0010)

10 305 0.0115 0.0070 0.0010 0.0013 0.0017

(0.0027)∗∗ (0.0027)∗ (0.0012) (0.0012) (0.0012)

Top 10% - 305 0.0042 0.0042 0.0048 0.0045 0.0047

Bottom 10% (0.0019)∗ (0.0019)∗ (0.0021)∗ (0.0021)∗ (0.0020)∗

Top 20% - 305 0.0036 0.0036 0.0042 0.0041 0.0040

Bottom 20% (0.0016)∗ (0.0016)∗ (0.0017)∗ (0.0018)∗ (0.0017)∗

Top 30% - 305 0.0032 0.0032 0.0036 0.0035 0.0034

Bottom 30% (0.0014)∗ (0.0014)∗ (0.0014)∗ (0.0016)∗ (0.0014)∗

Top 40% - 305 0.0029 0.0029 0.0033 0.0032 0.0032

Bottom 40% (0.0012)∗ (0.0012)∗ (0.0013)∗∗ (0.0014)∗ (0.0012)∗
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Table 7: Characteristics of Equal-Weighted Decile Portfolios Based on SBAI

At the end of each quarter, fund managers’ beliefs regarding excess stock returns are elicited

according to Result 1. For each fund, these beliefs are then correlated with the following month’s

excess returns to form its semi-belief accuracy index (SBAI). Funds are next sorted into decile

portfolios according to their SBAIs. This table reports Carhart betas (1997) in the subsequent

three-month period with corresponding Newey-West standard errors for the equal-weighted decile

portfolios. It also reports the beta spread between the top and bottom deciles. The portfolio

formation period is from January 1981 to January 2006.

Decile N Alpha Market SMB HML UMD

1 300 -0.0027 0.9895 0.2075 -0.0018 -0.0207

(0.0008)∗∗ (0.0326)∗∗ (0.0769)∗∗ (0.0586) (0.0457)

2 300 -0.0018 0.9650 0.1828 0.0109 -0.0303

(0.0006)∗∗ (0.0180)∗∗ (0.0396)∗∗ (0.0442) (0.0331)

3 300 -0.0016 0.9591 0.1410 0.0037 -0.0038

(0.0006)∗∗ (0.0171)∗∗ (0.0347)∗∗ (0.0428) (0.0291)

4 300 -0.0011 0.9380 0.1532 0.0230 0.0066

(0.0004)∗∗ (0.0125)∗∗ (0.0236)∗∗ (0.0350) (0.0214)

5 300 -0.0012 0.9440 0.1202 0.0156 -0.0087

(0.0004)∗∗ (0.0122)∗∗ (0.0260)∗∗ (0.0308) (0.0199)

6 300 -0.0007 0.9420 0.1572 0.0287 -0.0041

(0.0005) (0.0148)∗∗ (0.0211)∗∗ (0.0294) (0.0204)

7 300 -0.0006 0.9499 0.1430 0.0387 0.0047

(0.0005) (0.0120)∗∗ (0.0200)∗∗ (0.0286) (0.0189)

8 300 -0.0009 0.9561 0.1332 0.0345 -0.0180

(0.0005)† (0.0119)∗∗ (0.0235)∗∗ (0.0333) (0.0214)

9 300 -0.0001 0.9457 0.2103 0.0194 0.0211

(0.0006) (0.0136)∗∗ (0.0267)∗∗ (0.0381) (0.0248)

10 300 0.0006 0.9431 0.3081 -0.0098 0.0526

(0.0009) (0.0237)∗∗ (0.0487)∗∗ (0.0646) (0.0440)

Top 10% - 300 0.0033 -0.0465 0.1006 -0.0080 0.0733

Bottom 10% (0.0014)∗ (0.0493) (0.1175) (0.1096) (0.0797)

Top 20% - 300 0.0025 -0.0329 0.0641 0.0002 0.0624

Bottom 20% (0.0011)∗ (0.0360) (0.0838) (0.0850) (0.0601)

Top 30% - 300 0.0019 -0.0229 0.0401 0.0104 0.0369

Bottom 30% (0.0009)∗ (0.0282) (0.0666) (0.0706) (0.0489)

Top 40% - 300 0.0016 -0.0142 0.0275 0.0117 0.0272

Bottom 40% (0.0007)∗ (0.0235) (0.0536) (0.0581) (0.0403)
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Table 8: Characteristics of Equal-Weighted Decile Portfolios Based on BAI

At the end of each quarter, fund managers’ beliefs regarding excess stock returns are elicited

according to Result 2. For each fund, these beliefs are then correlated with the following month’s

excess returns to form its belief accuracy index (BAI). Funds are next sorted into decile portfolios

according to their BAIs. This table reports Carhart betas (1997) in the subsequent three-month

period with corresponding Newey-West standard errors for the equal-weighted decile portfolios.

It also reports the beta spread between the top and bottom deciles. The sample period is from

January 1981 to September 2006.

Decile N Alpha Market SMB HML UMD

1 305 -0.0030 1.0435 0.2025 -0.0440 -0.0136

(0.0012)∗ (0.0434)∗∗ (0.0738)∗∗ (0.0750) (0.0570)

2 305 -0.0023 1.0036 0.2035 -0.0111 0.0099

(0.0009)∗∗ (0.0237)∗∗ (0.0504)∗∗ (0.0477) (0.0355)

3 305 -0.0018 0.9688 0.2616 -0.0124 0.0281

(0.0008)∗ (0.0218)∗∗ (0.0279)∗∗ (0.0429) (0.0280)

4 305 -0.0024 0.9705 0.2326 0.0487 0.0230

(0.0007)∗∗ (0.0187)∗∗ (0.0246)∗∗ (0.0443) (0.0275)

5 305 -0.0020 0.9199 0.2023 0.0785 0.0173

(0.0006)∗∗ (0.0146)∗∗ (0.0205)∗∗ (0.0392)∗ (0.0206)

6 305 -0.0014 0.9189 0.1327 0.0436 -0.0037

(0.0005)∗∗ (0.0124)∗∗ (0.0233)∗∗ (0.0368) (0.0205)

7 305 -0.0011 0.9432 0.1317 0.0641 0.0020

(0.0006)† (0.0199)∗∗ (0.0328)∗∗ (0.0433) (0.0231)

8 305 0.0005 0.9123 0.1264 0.0438 -0.0124

(0.0006) (0.0145)∗∗ (0.0337)∗∗ (0.0421) (0.0272)

9 305 0.0011 0.9216 0.1221 0.0015 0.0055

(0.0009) (0.0172)∗∗ (0.0401)∗∗ (0.0597) (0.0377)

10 305 0.0013 0.9434 0.1316 -0.0421 -0.0526

(0.0012) (0.0243)∗∗ (0.0460)∗∗ (0.0763) (0.0493)

Top 10% - 305 0.0043 -0.1001 -0.0710 0.0019 -0.0390

Bottom 10% (0.0019)∗ (0.0532)† (0.0889) (0.1346) (0.0889)

Top 20% - 305 0.0039 -0.0910 -0.0762 0.0072 -0.0217

Bottom 20% (0.0016)∗ (0.0397)∗ (0.0739) (0.1105) (0.0710)

Top 30% - 305 0.0034 -0.0795 -0.0959 0.0236 -0.0280

Bottom 30% (0.0014)∗ (0.0331)∗ (0.0602) (0.0915) (0.0595)

Top 40% - 305 0.0028 -0.0665 -0.0971 0.0215 -0.0262

Bottom 40% (0.0013)∗ (0.0282)∗ (0.0496)† (0.0801) (0.0498)
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Table 9: Double Sorts Comparing SBAI with BAI

At the end of each quarter, fund managers’ beliefs are extracted based on either Result 1 (to

form semi-portfolio revealed beliefs) or Result 2 (to form portfolio revealed beliefs). These beliefs

are correlated with the following month’s excess returns to form SBAI and BAI respectively. In

Panel A, funds are sorted into quintile portfolios according to the SBAI and then sorted within the

quintiles according to the BAI. Panel B reverses the order. The portfolio formation period is from

January 1981 to January 2006.

Panel A: Sorting funds first by SBAI and then by BAI

Quintile of Quintile of BAI

SBAI

1 2 3 4 5 5-1

300 300 300 300 300 300

1 0.0075 0.0081 0.007 0.008 0.01 0.0025

(0.0033)∗ (0.0028)∗∗ (0.0028)∗ (0.0025)∗∗ (0.0024)∗∗ (0.0019)

2 0.0075 0.0088 0.0091 0.0093 0.0109 0.0034

(0.0030)∗ (0.0026)∗∗ (0.0024)∗∗ (0.0024)∗∗ (0.0025)∗∗ (0.0016)∗

3 0.0076 0.0092 0.0088 0.0102 0.0111 0.0036

(0.0027)∗∗ (0.0026)∗∗ (0.0024)∗∗ (0.0024)∗∗ (0.0025)∗∗ (0.0016)∗∗

4 0.0088 0.01 0.0091 0.0098 0.0108 0.002

(0.0027)∗∗ (0.0025)∗∗ (0.0024)∗∗ (0.0025)∗∗ (0.0026)∗∗ (0.0015)∗∗

5 0.0101 0.0099 0.0116 0.0116 0.0119 0.0018

(0.0026)∗∗ (0.0026)∗∗ (0.0028)∗∗ (0.0027)∗∗ (0.0029)∗∗ (0.0015)

Panel B: Sorting funds first by BAI and then by SBAI

Quintile of Quintile of SBAI

BAI

1 2 3 4 5 5-1

300 300 300 300 300 300

1 0.0078 0.0078 0.0082 0.0074 0.0092 0.0015

(0.0031)∗ (0.0029)∗∗ (0.0029)∗∗ (0.0028)∗∗ (0.0028)∗∗ (0.0011)

2 0.0083 0.0084 0.0091 0.0098 0.0092 0.0009

(0.0028)∗∗ (0.0026)∗∗ (0.0026)∗∗ (0.0026)∗∗ (0.0027)∗∗ (0.0011)

3 0.0085 0.0086 0.0089 0.0089 0.01 0.0015

(0.0024)∗∗ (0.0023)∗∗ (0.0024)∗∗ (0.0024)∗∗ (0.0026)∗∗ (0.0012)

4 0.0092 0.0099 0.0097 0.0109 0.0115 0.0022

(0.0024)∗∗ (0.0024)∗∗ (0.0024)∗∗ (0.0025)∗∗ (0.0026)∗∗ (0.0011)∗

5 0.0107 0.0111 0.011 0.0114 0.0114 0.0007

(0.0025)∗∗ (0.0025)∗∗ (0.0026)∗∗ (0.0027)∗∗ (0.0028)∗∗ (0.0011)
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Table 10: Robustness Check of Equal-Weighted Portfolio Returns Based on BAI

At the end of each quarter, fund managers’ beliefs regarding excess stock returns are elicited

according to Result 2 where k = 20. For each fund, these beliefs are then correlated with the

following month’s excess returns to form its belief accuracy index (BAI). Funds are sorted into

decile portfolios according to their BAIs. Table 10 reports the average month return, return over

risk-free rate (excess return), CAPM alpha, Fama-French alpha (1993), and Carhart alpha (1997)

with corresponding Newey-West standard errors for the equal-weighted decile portfolios in the

subsequent three-month testing period. The table also reports the performance spread between the

top and bottom deciles. The sample period is from January 1981 to September 2006.

Decile N Average Excess CAPM Fama-French Carhart

Return Return Alpha Alpha Alpha

1 305 0.0068 0.0023 -0.0043 -0.0037 -0.0036

(0.0029)∗ (0.0029) (0.0013)∗∗ (0.0014)∗∗ (0.0014)∗∗

2 305 0.0081 0.0035 -0.0024 -0.0023 -0.0025

(0.0026)∗∗ (0.0026) (0.0008)∗∗ (0.0008)∗∗ (0.0008)∗∗

3 305 0.0082 0.0037 -0.0022 -0.0024 -0.0023

(0.0025)∗∗ (0.0025) (0.0007)∗∗ (0.0007)∗∗ (0.0006)∗∗

4 305 0.0091 0.0046 -0.0012 -0.0012 -0.0012

(0.0024)∗∗ (0.0025)† (0.0006)† (0.0006)∗ (0.0006)∗

5 305 0.0092 0.0047 -0.0010 -0.0011 -0.0012

(0.0024)∗∗ (0.0024)† (0.0005)† (0.0005)∗ (0.0005)∗

6 305 0.0095 0.0050 -0.0007 -0.0011 -0.0014

(0.0024)∗∗ (0.0024)∗ (0.0006) (0.0004)∗ (0.0005)∗∗

7 305 0.0102 0.0057 -0.0000 -0.0004 -0.0003

(0.0025)∗∗ (0.0025)∗ (0.0006) (0.0005) (0.0005)

8 305 0.0103 0.0058 0.0001 -0.0001 -0.0002

(0.0025)∗∗ (0.0025)∗ (0.0007) (0.0006) (0.0006)

9 305 0.0111 0.0066 0.0008 0.0005 0.0005

(0.0027)∗∗ (0.0027)∗ (0.0010) (0.0009) (0.0009)

10 305 0.0113 0.0068 0.0008 0.0011 0.0014

(0.0028)∗∗ (0.0028)∗ (0.0012) (0.0012) (0.0012)

Top 10% - 305 0.0045 0.0045 0.0050 0.0048 0.0050

Bottom 10% (0.0020)∗ (0.0020)∗ (0.0021)∗ (0.0023)∗ (0.0021)∗

Top 20% - 305 0.0037 0.0037 0.0042 0.0038 0.0040

Bottom 20% (0.0016)∗ (0.0016)∗ (0.0017)∗ (0.0019)∗ (0.0017)∗

Top 30% - 305 0.0032 0.0032 0.0036 0.0033 0.0034

Bottom 30% (0.0013)∗ (0.0013)∗ (0.0014)∗ (0.0016)∗ (0.0014)∗

Top 40% - 305 0.0027 0.0027 0.0029 0.0027 0.0027

Bottom 40% (0.0011)∗ (0.0011)∗ (0.0011)∗∗ (0.0013)∗ (0.0012)∗
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Table 11: Robustness Check of Value-Weighted Portfolio Returns Based on BAI.

At the end of each quarter, fund managers’ beliefs on excess stock returns are extracted based on

the algorithm in Section 2.4 where k = 20. For each fund, these beliefs are then correlated with the

following month’s excess returns to form its BAI. Funds are sorted into decile portfolios according

to their BAIs. Table 11 reports the average monthly return, return over risk-free rate (excess

return), CAPM alpha, Fama-French alpha (1993), and Carhart alpha (1997) with corresponding

Newey-West standard errors for value-weighted decile portfolios in the following three-month testing

period. The table also reports the performance spread between the top and bottom deciles. The

sample period is from January 1981 to September 2006.

Decile N Average Excess CAPM Fama-French Carhart

Return Return Alpha Alpha Alpha

1 305 0.0065 0.0020 -0.0045 -0.0038 -0.0038

(0.0029)∗ (0.0029) (0.0013)∗∗ (0.0014)∗∗ (0.0013)∗∗

2 305 0.0074 0.0029 -0.0033 -0.0030 -0.0029

(0.0026)∗∗ (0.0027) (0.0008)∗∗ (0.0009)∗∗ (0.0008)∗∗

3 305 0.0081 0.0035 -0.0024 -0.0025 -0.0023

(0.0025)∗∗ (0.0026) (0.0007)∗∗ (0.0008)∗∗ (0.0008)∗∗

4 305 0.0092 0.0047 -0.0011 -0.0006 -0.0007

(0.0024)∗∗ (0.0024)† (0.0006)† (0.0007) (0.0008)

5 305 0.0098 0.0053 -0.0003 -0.0002 -0.0005

(0.0025)∗∗ (0.0025)∗ (0.0006) (0.0006) (0.0006)

6 305 0.0095 0.0049 -0.0007 -0.0009 -0.0010

(0.0024)∗∗ (0.0024)∗ (0.0005) (0.0005)† (0.0006)†

7 305 0.0105 0.0060 0.0002 0.0001 0.0001

(0.0025)∗∗ (0.0025)∗ (0.0006) (0.0006) (0.0007)

8 305 0.0105 0.0059 0.0001 0.0001 -0.0002

(0.0026)∗∗ (0.0026)∗ (0.0008) (0.0007) (0.0007)

9 305 0.0109 0.0064 0.0006 0.0002 0.0002

(0.0026)∗∗ (0.0026)∗ (0.0009) (0.0009) (0.0008)

10 305 0.0109 0.0064 0.0002 0.0005 0.0007

(0.0028)∗∗ (0.0029)∗ (0.0013) (0.0013) (0.0012)

Top 10% - 305 0.0043 0.0043 0.0047 0.0043 0.0045

Bottom 10% (0.0020)∗ (0.0020)∗ (0.0021)∗ (0.0023)† (0.0021)∗

Top 20% - 305 0.0040 0.0040 0.0043 0.0038 0.0038

Bottom 20% (0.0016)∗ (0.0016)∗ (0.0018)∗ (0.0019)∗ (0.0017)∗

Top 30% - 305 0.0034 0.0034 0.0037 0.0034 0.0032

Bottom 30% (0.0014)∗ (0.0014)∗ (0.0015)∗ (0.0016)∗ (0.0014)∗

Top 40% - 305 0.0029 0.0029 0.0031 0.0027 0.0026

Bottom 40% (0.0012)∗ (0.0012)∗ (0.0012)∗ (0.0013)∗ (0.0012)∗
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Table 12: Double Sorts Comparing SBAI and BAI with GT (Grinblatt and Titman (1989))

At the end of each quarter, fund managers’ beliefs are extracted based on either Result 1 (to form

semi-portfolio revealed beliefs) or Result 2 (to form portfolio revealed beliefs). These beliefs are

correlated with the following month’s excess returns to form semi-portfolio revealed belief accuracy

index (SBAI) and portfolio revealed belief accuracy index (BAI) respectively. Similarly, at the

end of each quarter, change of portfolio weights of stocks in a given fund’s portfolio positions are

observed and correlated with the following month’s excess returns to form a fund’s GT measure (as

in Grinblatt and Titman (1989)). In Panel A, funds are sorted into quintile portfolios according

to the GT measure and then sorted within the quintiles according to SBAI. In Panel B, funds are

sorted into quintile portfolios according to the GT measure and then sorted within the quintiles

according to BAI. The portfolio formation period (sample period) is from January 1981 to January

2006 (September 2006) for SBAI (BAI).

Panel A: Sorting funds first by GT and then by SBAI

Quintile of Quintile of SBAI

GT

1 2 3 4 5 5-1

1 0.0074 0.0080 0.0092 0.0086 0.0094 0.0020

(0.0029) ∗ (0.0028) ∗∗ (0.0027) ∗∗ (0.0027) ∗∗ (0.0027) ∗∗ (0.0012)

2 0.0093 0.0093 0.0092 0.0093 0.0100 0.0005

(0.0026) ∗∗ (0.0026) ∗∗ (0.0024) ∗∗ (0.0025) ∗∗ (0.0026) ∗∗ (0.0010)

3 0.0093 0.0095 0.0102 0.0101 0.0113 0.0022

(0.0026) ∗∗ (0.0025) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0025) ∗∗ (0.0011) ∗

4 0.0087 0.0101 0.0097 0.0106 0.0121 0.0034

(0.0026) ∗∗ (0.0025) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0027) ∗∗ (0.0013) ∗∗

5 0.0092 0.0097 0.0106 0.0107 0.0124 0.0032

(0.0028) ∗∗ (0.0026) ∗∗ (0.0026) ∗∗ (0.0026) ∗∗ (0.0029) ∗∗ (0.0014) ∗

Panel B: Sorting funds first by GT and then by BAI

Quintile of Quintile of BAI

GT

1 0.0078 0.0090 0.0084 0.0080 0.0098 0.0020

(0.0030) ∗∗ (0.0029) ∗∗ (0.0027) ∗∗ (0.0026) ∗∗ (0.0027) ∗∗ (0.0017)

2 0.0094 0.0086 0.0097 0.0096 0.0102 0.0008

(0.0027) ∗∗ (0.0027) ∗∗ (0.0024) ∗∗ (0.0025) ∗∗ (0.0025) ∗∗ (0.0014)

3 0.0081 0.0093 0.0107 0.0101 0.0110 0.0032

(0.0027) ∗∗ (0.0025) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0025) ∗∗ (0.0015) ∗

4 0.0082 0.0094 0.0092 0.0102 0.0110 0.0031

(0.0027) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0025) ∗∗ (0.0025) ∗∗ (0.0015) ∗

5 0.0082 0.0100 0.0100 0.0107 0.0126 0.0044

(0.0029) ∗∗ (0.0027) ∗∗ (0.0026) ∗∗ (0.0027) ∗∗ (0.0028) ∗∗ (0.0017) ∗∗
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Table 13: Double Sorts Comparing SBAI and BAI with FundRank (SSYZ (2007))

At the end of each quarter, fund managers’ beliefs are extracted based on either Result 1 (to form

semi-portfolio revealed beliefs) or Result 2 (to form portfolio revealed beliefs). These beliefs are

correlated with the following month’s excess returns to form semi-portfolio revealed belief accuracy

index (SBAI) and portfolio revealed belief accuracy index (BAI) respectively. Similarly, at the end

of each quarter, the FundRank measure of Shi, Stoffman, Yuan, and Zhi (2007) is formed using

the quarter-end holding data. In Panel A, funds are sorted into quintile portfolios according to the

FundRank measure and then sorted within the quintiles according to the SBAI. In Panel B, funds

are sorted into quintile portfolios according to the FundRank measure and then sorted within the

quintiles according to the BAI. The portfolio formation (sample) period is from January 1981 to

January 2006 (September 2006) for SBAI (BAI).

Panel A: Sorting funds first by FundRank and then by SBAI

Quintile of Quintile of SBAI

FundRank

1 2 3 4 5 5-1

1 0.0064 0.0085 0.0095 0.0085 0.0100 0.0036

(0.0027) ∗ (0.0025) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0026) ∗∗ (0.0013) ∗∗

2 0.0081 0.0091 0.0092 0.0095 0.0101 0.0020

(0.0027) ∗∗ (0.0025) ∗∗ (0.0024) ∗∗ (0.0025) ∗∗ (0.0026) ∗∗ (0.0013)

3 0.0094 0.0088 0.0094 0.0100 0.0103 0.0009

(0.0027) ∗∗ (0.0026) ∗∗ (0.0025) ∗∗ (0.0025) ∗∗ (0.0026) ∗∗ (0.0012)

4 0.0081 0.0095 0.0092 0.0097 0.0106 0.0025

(0.0027) ∗∗ (0.0026) ∗∗ (0.0025) ∗∗ (0.0026) ∗∗ (0.0027) ∗∗ (0.0012) ∗

5 0.0089 0.0089 0.0093 0.0108 0.0120 0.0031

(0.0029) ∗∗ (0.0027) ∗∗ (0.0027) ∗∗ (0.0027) ∗∗ (0.0029) ∗∗ (0.0016) †

Panel B: Sorting funds first by FundRank and then by BAI

Quintile of Quintile of BAI

FundRank

1 0.0063 0.0084 0.0080 0.0084 0.0104 0.0041

(0.0029) ∗ (0.0026) ∗∗ (0.0025) ∗∗ (0.0023) ∗∗ (0.0025) ∗∗ (0.0017) ∗

2 0.0078 0.0086 0.0090 0.0096 0.0097 0.0019

(0.0029) ∗∗ (0.0026) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0026) ∗∗ (0.0017)

3 0.0084 0.0089 0.0090 0.0098 0.0109 0.0025

(0.0028) ∗∗ (0.0026) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0026) ∗∗ (0.0016)

4 0.0076 0.0087 0.0085 0.0096 0.0114 0.0038

(0.0029) ∗∗ (0.0027) ∗∗ (0.0024) ∗∗ (0.0024) ∗∗ (0.0026) ∗∗ (0.0016) ∗

5 0.0088 0.0089 0.0084 0.0107 0.0116 0.0028

(0.0030) ∗∗ (0.0028) ∗∗ (0.0027) ∗∗ (0.0026) ∗∗ (0.0027) ∗∗ (0.0019)38



Table 14: Double Sorts Comparing SBAI and BAI with CS (DGTW (1997))

At the end of each quarter, fund managers’ beliefs are extracted based on either Result 1 (to form

semi-portfolio revealed beliefs) or Result 2 (to form portfolio revealed beliefs). These beliefs are

correlated with the following month’s excess returns to form semi-portfolio revealed belief accuracy

index (SBAI) and portfolio revealed belief accuracy index (BAI) respectively. Similarly, at the

end of each quarter, the Characteristic Selectivity (CS) measure of Daniel, Grinblatt, Titman, and

Wermers (1997) is formed using the quarter-end holding data and the month after return data. In

Panel A, funds are sorted into quintile portfolios according to the CS measure and then sorted within

the quintiles according to the SBAI. In Panel B, funds are sorted into quintile portfolios according to

the CS measure and then sorted within the quintiles according to the BAI. The portfolio formation

period (sample period) is from January 1981 to January 2006 (September 2006) for BAI (SBAI).

Panel A: Sorting funds first by CS and then by SBAI

Quintile of Quintile of SBAI

CS

1 2 3 4 5 5-1

1 0.0091 0.0104 0.0121 0.0120 0.0135 0.0045

(0.0032) ∗∗ (0.0032) ∗∗ (0.0030) ∗∗ (0.0032) ∗∗ (0.0032) ∗∗ (0.0015) ∗∗

2 0.0115 0.0107 0.0109 0.0121 0.0130 0.0016

(0.0027) ∗∗ (0.0027) ∗∗ (0.0027) ∗∗ (0.0028) ∗∗ (0.0029) ∗∗ (0.0012)

3 0.0106 0.0117 0.0113 0.0110 0.0134 0.0028

(0.0028) ∗∗ (0.0029) ∗∗ (0.0027) ∗∗ (0.0027) ∗∗ (0.0028) ∗∗ (0.0014) ∗

4 0.0106 0.0119 0.0120 0.0118 0.0134 0.0028

(0.0029) ∗∗ (0.0029) ∗∗ (0.0027) ∗∗ (0.0028) ∗∗ (0.0030) ∗∗ (0.0015) †

5 0.0120 0.0116 0.0111 0.0132 0.0146 0.0026

(0.0033) ∗∗ (0.0031) ∗∗ (0.0031) ∗∗ (0.0032) ∗∗ (0.0035) ∗∗ (0.0018)

Panel B: Sorting funds first by CS and then by BAI

Quintile of Quintile of BAI

CS

1 0.0006 0.0040 0.0063 0.0073 0.0131 0.0125

(0.0033) (0.0033) (0.0033) † (0.0032) ∗ (0.0034) ∗∗ (0.0022) ∗∗

2 0.0070 0.0090 0.0091 0.0116 0.0157 0.0087

(0.0029) ∗ (0.0030) ∗∗ (0.0027) ∗∗ (0.0027) ∗∗ (0.0028) ∗∗ (0.0016) ∗∗

3 0.0091 0.0107 0.0128 0.0139 0.0184 0.0094

(0.0031) ∗∗ (0.0027) ∗∗ (0.0026) ∗∗ (0.0027) ∗∗ (0.0028) ∗∗ (0.0018) ∗∗

4 0.0120 0.0134 0.0143 0.0172 0.0192 0.0071

(0.0030) ∗∗ (0.0028) ∗∗ (0.0028) ∗∗ (0.0028) ∗∗ (0.0029) ∗∗ (0.0020) ∗∗

5 0.0160 0.0189 0.0203 0.0227 0.0254 0.0094

(0.0034) ∗∗ (0.0034) ∗∗ (0.0033) ∗∗ (0.0032) ∗∗ (0.0032) ∗∗ (0.0023) ∗∗39



Appendix A

An Alternative Model: n Non-Redundant Assets

In this section I present a portfolio choice model where all n risky assets are non-

redundant. This is the only difference with the model presented in Section 2 of the paper.

This simple departure turns out to simplify the mathematics a lot. One may argue that this

model may not be as empirically relevant as the model presented in Section 2 since many

risky assets in reality are redundant. However, in either case, the main results of the paper

remain the same.

A.1 Assets

To develop the model, I first focus on a standard portfolio allocation problem. In this

problem, the available investment opportunities consist of a riskless asset with a constant

return, rf , and n non-redundant risky assets where ith asset’s excess return over the risk-free

rate (rf ) is denoted as r̃i. The n risky assets have the following variance-covariance matrix:

Σ =


σ2

1,1 . . . σ2
1,n

...
. . .

...

σ2
n,1 . . . σ2

n,n

 , (A1)

which is assumed to be full rank. I assume that the spectral decomposition of the Σ matrix

has the following form:

Σ =
[
b1 · · · bn

]
σ2

f1

. . .

σ2
fn




b′1
...

b′n

 , (A2)

where Σ has n eigenvectors. Let Σf denote the following:
σ2

f1

. . .

σ2
fn

 .
Then, the spectral structure of the Σ matrix can be re-written as:

Σ = bΣfb
′. (A3)
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A.2 Beliefs

I assume that there are m investors in this economy. These investors possess a common

knowledge of Σ, but are heterogeneously informed about the risky assets’ excess returns.

As mentioned in the introduction, this assumption is motivated by the fact that the second

moments can be better estimated than the first moments by using high-frequency historical

return data, as shown in the empirical asset pricing literature.

I use µmi to denote investor m’s belief of asset i’s expected excess return. Investor m’s

belief of the n assets’ expected excess returns can be written as µm = [µm1, ..., µmn]′, and

total m investors’ beliefs on n assets can be written as µ = [µ1, ..., µm]′, which is m × n

matrix.

To explore the spectral decomposition of the Σ matrix, I decompose µ on the same basis

by projecting µ to the subspace V spanned by b, namely,

µ = µ̂b′, (A4)

where µ̂ is a m × n matrix and µ̂ = [µ̂1, ..., µ̂m]′. That is, µ̂m, a n × 1 vector, describes

investor m’s belief on n eigenfactors.

With this characterization, I make one assumption regarding the belief structure. Specifi-

cally, I assume that the column vectors of µ̂ are orthonormal. The orthogonality assumption

is basically a rationality assumption since the columns of µ̂ reflect beliefs about different

orthogonal eigenfactors. This assumption simplifies the derivation for investors’ beliefs, as

shown later.

A.3 Investor Portfolio Optimization Problem

Let wm0 denote the percentage of wealth (or portfolio weight) invested by investor m in the

riskless asset and wm = [wm1, · · · , wmn]′ denote the vector of portfolio weights in each of the

n risky assets by investor m. The portfolio weights satisfy the following equation:

wm0 +
n∑

i=1

wmi = 1, (A5)

where w = [w1, ...,wm]′ and is a m× n matrix.

In this economy, investors choose portfolio weights to obtain a standard mean-variance

optimization for expected returns. Investor m, conditional on his beliefs, chooses his portfolio
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weights, wm, to maximize the following:

max
{wm}

(
w
′

mµm −
1

2
γw

′

mΣwm

)
, (A6)

where γ is assumed to be the same across investors.

The first-order condition for investor m yields a mean-variance efficient portfolio:

wm =
1

γ
Σ−1µm. (A7)

Finally, the matrix of optimal portfolio weights by all m investors in this economy can be

written as:

w =
1

γ
µΣ−1. (A8)

A.4 Heterogeneous Beliefs Revealed in Portfolio Holdings

For a given Σ, investor private beliefs can be immediately revealed by w. This result is

stated in the following lemma, which is immediate from Equation (A8).

Lemma 2 Once observing a portfolio holding matrix w, investor private beliefs on expected

return of risky assets for a given Σ can be computed as

µ = γwΣ. (A9)

I will demonstrate next that the common belief on Σ among investors, which is forward-

looking, can also be revealed in w. To do so, let us first denote the spectral decomposition

of w
′
w as:

w
′
w = ueu′ =

[
u1 · · · uk · un

]
e1

. . .

ek




u′1
...

u′k

·
u′n


. (A10)

The next proposition shows how w reveals Σ up to a constant.

Proposition A1 Σ = aue−
1
2u′ where a is a constant.

PROOF OF PROPOSITION A1:

Since the column vectors of µ̂ are orthogonal. The following is immediate from Equation

(A8):

w
′
w =

1

γ2
Σ−1bµ̂′µ̂b′Σ−1 =

1

γ2
Σ−1bb′Σ−1. (A11)
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To obtain b, note that since Σ = bΣfb
′, Equation (A11) can be written as:

w
′
w =

1

γ2
(bΣfb

′)−1bb′(bΣfb)−1 =
1

γ2
bΣ−2

f b
′

(A12)

where 1/γ2 is a constant. Therefore, b = a1

[
u1 · · · uk · un

]
and Σf = a2e

− 1
2 where a1

and a2 are two constants. The rest follows since Σ = bΣfb
′. �

Since b and Σ are revealed by portfolio matrix, I term them “portfolio (revealed) betas”

and “portfolio (revealed) variance-covariance matrix” respectively. After obtaining b and Σ,

the investor beliefs, µ, can be computed by Equations (A8). I term these beliefs “portfolio

(revealed) beliefs” because these beliefs are revealed by corresponding portfolio holdings.
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Appendix B

An Alternative Model: n Assets, k Eigen-factors and Idiosyncratic Risks

In this section I present a portfolio choice model where investors do not demand any

returns when exposed to certain types of risks. This is the only difference with the model

presented in Section 2 of the paper. Specifically, here, I decompose the variance-covariance

matrix into two components. Investors form beliefs of expected returns when exposed to the

first component but demand zero expected returns when exposed to the second component.

Intuitively, this decomposition can be thought of as decomposing the risk into a systematic

component and an idiosyncratic component. This simple departure turns out to be quite

mathematically involved as demonstrated later. The appeal of this model versus the one in

Section 2 of the paper is due to consideration that empirically investors may not demand

returns for exposing to certain types of risks. However, the main results of the paper do not

change.

B.1 Assets

In this economy, the available investment opportunities consist of a risk-free asset with a

constant return, rf , and n risky assets where ith asset’s excess return over the risk-free rate

(rf ) is denoted as r̃i. The n risky assets have the following variance-covariance matrix:

Σ =


σ2

1,1 . . . σ2
1,n

...
. . .

...

σ2
n,1 . . . σ2

n,n

 , (B1)

which is assumed to be full rank. I assume that the spectral decomposition of the Σ matrix

has the following form:

Σ =
[
b1 · · · bk

]
σ2

f1

. . .

σ2
fk




b′1
...

b′k


︸ ︷︷ ︸

Σ̂

+Σ⊥, (B2)

where Σ̂ has k eigenvectors and Σ⊥ has n− k eigenvectors. Let Σf denote the following:
σ2

f1

. . .

σ2
fk

 .
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Then, Equation (B2) can be written as:

Σ = bΣfb
′ + Σ⊥. (B3)

Corresponding to the above spectral structure, we have the orthogonal decomposition

Rn = V̂ ⊕ V ⊥, where V̂ , denoting a subspace in Rn, is the span of {b}l=1,...,k, and V ⊥ is its

orthogonal complement.10

Intuitively, this decomposition can be thought of as decomposing the risk into a system-

atic component (characterized by k factors) and an idiosyncratic component; or alternatively,

as we demonstrate later, a part of the risk that investors can form beliefs of expected return

on, and a part of risk of which investors do not demand expected return when exposing to.

B.2 Beliefs

I assume that there are m investors in this economy. These investors possess a common

knowledge of Σ, but are heterogeneously informed about the risky assets’ excess returns.

As mentioned in the introduction, this assumption is motivated by the fact that the second

moments can be better estimated than the first moments by using high-frequency historical

return data, as shown in the empirical asset pricing literature.

I use µmi to denote investor m’s information or belief of asset i’s expected excess re-

turn. Investor m’s belief of the n assets’ expected excess returns can be written as µm =

[µm1, ..., µmn]′, and total m investors’ beliefs on n assets can be written as µ = [µ1, ..., µm]′,

which is m× n matrix.

To explore the spectral decomposition of the Σ matrix, I decompose µ on the same basis

by projecting µ to the subspaces V and V ⊥, namely,

µ = µ̂b′ + µ⊥, (B4)

where µ̂ is a m × k matrix and µ̂ = [µ̂1, ..., µ̂m]′. That is, µ̂m, a k × 1 vector, describes

investor m’s belief on k factors.

With this characterization, I make two important assumptions regarding the belief struc-

ture. First, I assume that the column vectors of µ̂ are orthonormal. This assumption is

10Aı̈t-Sahalia, Cacho-Diaz, and Hurd (2007) use this decomposition to solve the consumption-portfolio

selection problem of an investor facing both Brownian and jump risks. Technically, this decomposition is

useful to deal with idiosyncratic risks (for example, jump risks or asset-specific risks when the number of

assets (n) is greater than the number of factors (k)). When n = k, the decomposition is not necessary and

the derivation of the results in the paper is less involved.
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motivated by the fact that µ̂ reflect beliefs on different eigenfactors. This assumption is

important for extracting the variance-covariance matrix, as shown later. Second, I assume

µ⊥ = 0, that is, investors receive information about expected return on the asset’s systematic

risk component and no such information except the prior regarding the asset’s idiosyncratic

risk component.11 Again, this assumption, as shown later, simplifies derivation on individ-

ual’s heterogeneous beliefs.

B.3 Investor Portfolio Optimization Problem

Let wm0 denote the percentage of wealth (or portfolio weight) invested by investor m in the

riskless asset and wm = [wm1, · · · , wmn]′ denote the vector of portfolio weights in each of the

n risky assets by investor m. The portfolio weights satisfy the following equation:

wm0 +
n∑

i=1

wmi = 1, (B5)

where w = [w1, ...,wm]′ and is a m× n matrix.

In this economy, investors choose portfolio weights to obtain a standard mean-variance

optimization for expected returns. Investor m, conditional on his beliefs, chooses his portfolio

weights, wm, to maximize the following:

max
{wm}

(
w
′

mµm −
1

2
γw

′

mΣwm

)
, (B6)

where γ is assumed to be the same across investors.

To explore the spectral decomposition of the Σ matrix and the belief structure specified

in Equation (B4), I look for the optimal portfolio weights on the same basis (i.e., projecting

the portfolio weights, wm, to the subspaces V and V ⊥) which is of the following form:

wm = ŵm + w⊥m. (B7)

The optimization problem separates into:

(ŵm,w
⊥
m) = arg max

{ŵm,w⊥m}

(
ŵ′mbµ̂m −

1

2
γŵ

′

mΣ̂ŵm

)
+

(
w⊥mµ

⊥
m −

1

2
γw⊥

′

m Σ⊥w⊥m

)
. (B8)

The first-order condition for investor m yields a mean-variance efficient portfolio:

w⊥m = 0, and (B9)

wm = ŵm =
1

γ
Σ̂†

′
bµ̂m, (B10)

11This assumption is reasonable considering that idiosyncratic risks can be diversified away.
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where † denotes Moore-Penrose generalized inverse. Finally, the matrix of optimal portfolio

weights by all m investors in this economy can be written as:

w =
1

γ
µ̂b′Σ̂†. (B11)

B.4 Heterogeneous Beliefs Revealed in Portfolio Holdings

For a given Σ̂, investor private beliefs can be immediately revealed by w. This result is

stated in the following lemma, which is immediate from Equation (B11).

Lemma 3 Once observing a portfolio holding matrix w, investor private beliefs on expected

return of risky assets for a given Σ̂ can be computed as

µ = µ̂b′ = γwΣ̂. (B12)

I will demonstrate next that the common belief on Σ among investors, which is forward-

looking, can also be revealed in w. To do so, let us first denote the spectral decomposition

of w
′
w as:

w
′
w = ueu′ =

[
u1 · · · uk

]
e1

. . .

ek




u′1
...

u′k

 . (B13)

The next proposition shows how w reveals Σ̂ up to a constant.

Proposition B1 Σ̂ = aue−
1
2u′ where a is a constant.

PROOF OF PROPOSITION B1:

Since the column vectors of µ̂ are orthogonal, the following is immediate from Equation

(B11):

w
′
w =

1

γ2
Σ̂†

′
bµ̂′µ̂b′Σ̂† =

1

γ2
Σ̂†

′
bb′Σ̂†. (B14)

To obtain b, note that since Σ̂ = bΣfb
′, Equation (B14) can be written as:

w
′
w =

1

γ2
(b(Σfb

′))†
′
bb′((bΣf )b)† =

1

γ2
(Σfb

′)†b†
′
bb′b

′†(bΣf )†

=
1

γ2
(Σfb

′)†(bΣf )† =
1

γ2
b′†Σ−2

f b† =
1

γ2
bΣ−2

f b
′

(B15)

where 1/γ2 is a constant. The last three equalities are obtained by repeatedly using the facts

that 1) b† = b′ (because b are orthogonal) and 2) a property of Moore-Penrose generalized
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inverse: If rank(A) = rank(B), then (AB)† = B†A† (Theorem 5.9 in Schott (2005)). The

last equality gives a spectral decomposition of w
′
w. Therefore, b = a1

[
u1 · · · uk

]
and

Σf = a2e
− 1

2 where a1 and a2 are two constants. The rest follows since Σ̂ = bΣfb
′.�
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