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Abstract

In this paper we study totally half-modular matrices obtained from {0, £1}-matrices
with at most two nonzero entries per column by multiplying by 2 some of the columns.
We give an excluded-minor characterization of the matrices in this class having strong
Chvatal rank 1. Our result is a special case of a conjecture by Gerards and Schrijver [6].
It also extends a well known theorem of Edmonds and Johnson [5].

1 Introduction

Given a polyhedron P, the Chvdtal rank of P is the smallest number ¢ such that the ¢-th
Chvétal closure of P is integral. The strong Chuvdtal rank of a rational matrix A is the
smallest number ¢ such that the polyhedron defined by the system b < Az < ¢, Il <z < u
has Chvatal rank at most ¢ for all integral vectors b,c,l,u (we refer the reader to [13] for
an exposition on the subject). Matrices with strong Chvatal rank 0 are exactly the totally
unimodular matrices. Matrices with strong Chvatal rank at most 1 are said to have the
Edmonds-Johnson property (EJ property).

While the class of integral matrices with strong Chvatal rank 0 is well understood, no
general characterization is known for integral matrices with the EJ property. Few classes of
matrices with such property are known. Edmonds and Johnson [5] showed that any integral
matrix in which the sum of the absolute values of the entries in each column is at most 2 has
the EJ property (see [14] for a thorough survey). Gerards and Schrijver [7] proved that an
integral matrix in which the sum of the absolute values of the entries in each row is at most 2
has the Edmonds-Jonson property if and only if it does not contain an odd-K4 minor. Recent
results of Conforti et al.[2] and Del Pia and Zambelli [4] imply that any matrix obtained from
a totally unimodular matrix with at most two nonzero entries per row by multiplying by 2
some of the columns has the EJ property.

A vector or matrix A is half-integral if 2A is integral. An integral matrix A is said totally
half-modular if, for each nonsingular square submatrix B of A, B~! is half-integral. All
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the known classes of matrices with the EJ property are totally half-modular. Gerards and
Schrijver [6] conjectured a characterization of the class of totally half-modular matrices with
the EJ property in terms of minimal forbidden minors. We explain the conjecture next.

It is known [7] that the class of totally half-modular matrices with the EJ property is
closed under the following operations:

(i) deleting or permuting rows or columns, or multiplying them by —1;
(ii) dividing by 2 an even row (i.e. a row where all entries are 0, +2);

(iii) pivoting on a +1 entry,

.. 1 g . -1 g ) .
where pivoting on the top-left entry of results in here f is a
p g p y < F D > ( F D-fg (here f

column vector and g a row vector). We say that a matrix A’ is a minor of A if it arises from
A by a series of operations (i)-(iii), and A’ is a proper minor of A if A’ is a minor of A but
A is not a minor of A’. The following totally half-modular matrices are minimal forbidden
minors for the EJ property,

1 20 2110
A= 1 2 2 , Ag:=12 1 0 1
1 0 2 2 011

That is, A3 and A4 do not have the EJ property, but all their proper minors do. Gerards and
Schrijver [6] conjectured that As and A4 are the only minor-minimal totally half-modular
matrices without the EJ property.

Conjecture 1. A totally half-modular matrixz has the EJ property if and only if it has no
minor equal to Az or Ay.

The above conjecture seems to be extremely hard. Furthermore, the matrix Az does not
appear as a forbidden minor in any of the classes of totally half-modular matrices for which
Conjecture 1 has been proven so far. In order to make progress and to gain insight on the
role of the minor As, we prove the conjecture for a special class of matrices. Conforti, Di
Summa, Eisenbrand and Wolsey [1] proved that, if A is a matrix obtained from the node-edge
incidence matrix A of a bipartite graph by multiplying by 2 some of the columns of A, and
if b is an integral vector, deciding if Az = b has a nonnegative integral solution is N/P-hard.
Since incidence matrices of bipartite graphs are totally unimodular, such a matrix A is totally
half-modular. Therefore, even characterizing which of the matrices in this class have the EJ
property is interesting. Furthermore, we know that A4 is never a minor of any of these
matrices (this follows from the fact A4 is obtained from the Fano matroid by multiplying a
column by 2, and the fact that A cannot contain the Fano matroid as a minor since it is
totally unimodular [15]). Thus, according to Conjecture 1, As should be the only forbidden
minor in this class.

In this paper we prove Conjecture 1 for a wider class of totally half-modular matrices.
The following is the main result of our paper.

Theorem 1. Let A be a totally half-modular matriz obtained by multiplying by 2 some of the
columns of a {0, £1}-matriz with at most two nonzero entries per column. The matriz A has
the EJ property if and only if it does not contain As as a minor.



Note that, in the above theorem, the {0, +1}-matrix corresponding to A does not need
to be totally unimodular in order for A to be totally half-modular.

1.1 Bidirected graphs and minors

It will be convenient to state our result in terms of bidirected graphs.

A bidirected graph is a triple G = (V(G), E(G),0(G)), where V(G) is the set of the
nodes of G, E(G) is the set of the edges of G and o(G) is a signing of (V(G), E(G)), i.e. a
map that assigns to each e € E(G) and v € e a sign 0,(G) € {+1,—1}. The edges in
E(QG) are of three types: ordinary edges, having two distinct endnodes, half-edges, having
only one endnode, and loops, having two identical endnodes. Let Ey(G), H(G) denote the
sets of ordinary edges, half-edges, and loops, respectively. Parallel edges are allowed. For
convenience, we define o, .(G) := 0 if v ¢ e. When it is clear from the context, we write E,
o, Ey, H and L instead of E(G), 0(G), Eo(G), H(G) and L(G). The incidence matriz of G
is the |V| x |E| matrix Ag = (ay.) such that a, . = o, for all e € E\ L, a, = 20y, for
all e € L. Given a bidirected graph G and a subset F' of Ey(G), we denote by A(G, F') the
matrix obtained from Ag by multiplying by 2 the columns relative to edges in F.

Given U C V(G), we denote by 0¢(U) (or 6(U) when there is no ambiguity) the set
containing the edges F that have exactly one endnode in U (in particular, half-edges and
loops belong to dg(U) if their endnode is in U). The subgraph of G induced by U is the
bidirected graph G’ = (U, E’,¢’) where E’ is the set of edges of G whose endnodes are all in
U and o’ is the restriction of o to E’.

Paths and cycles in G are defined in the standard way in the undirected graph (V, Ey).
In particular, cycles have always length at least 2. The odd edges of G are the edges vw € Ejy
such that oy vy = Owww- A cycle or path @ in G is even if the number of odd edges in it is
even, odd otherwise. Note that a cycle @) is even if and only if the sum of the signs on the
edges in @ is divisible by 4 (i.e. ZUweE(Q)(vaw + Owaw) =4 0).

A bidirected graph is said bipartite if it does not contain any odd cycle. (Note that, when
E = Fy and all edges are odd, this notion coincides with the usual definition of bipartite
graph.) By a theorem of Heller and Tompkins [9], G = (V, E, o) is bipartite if and only V
can be partitioned into sets Vi, Vs such that, for every e € Ey, e has one endnode in V; and
the other in V5 if e is odd, and e has both endnodes in either V; or V5 if e is even.

We will show in Lemma 4 that a matrix A(G, F) is totally half-modular if and only if
(G, F) satisfies the following.

Cycles condition: mno odd cycle of G contains edges in F. (1)

Next we restate the notion of minor of a matrix A(G, F') in terms of operations on the

pair (G, F).

Switching signs. Given a node v € V, the signing ¢’ obtained from o by setting 0@76 = —0Ope
for all e € F is said to be obtained by switching signs on the node v.
Given e € E, the signing ¢’ obtained from o by setting o}, , = 0 for all v € V, is said to

be obtained by switching signs on the edge e.

Deletion. Given a node v € V, the pair (G', F’) obtained from (G, F) by deleting node v
is defined as follows. V(G') = V' \ {v}, E(G’) contains all edges of E(G) not incident to v
and, for each edge vw € Ey(G), E(G’) contains a loop on w if vw € F, or a half-edge on



w otherwise. We will identify such new loops and half-edges in G’ with the corresponding
edges incident to v in G. The signing on the edges of G’ coincides with ¢ on G \ v, while
F' = FN Ey(G"). (Note that our definition of node deletion is non-standard, since we do not
remove all the edges incident to v, but we replace them with loops or half-edges.)

Given a subset of nodes U C V, the pair (G',F’) is obtained from (G, F) by deleting the
nodes in U if (G', F") is obtained from (G, F) by deleting one by one the nodes in U. Note
that G’ may be different from the subgraph of G induced by V \ U.

Given an edge e € E, (G', F’) is obtained from (G, F) by deleting edge e if G' = (V, E\{e},o")
and F' = F \ {e}, where o’ coincides with o on E \ {e}.

Contraction. Let e = vw € Ey(G) and possibly after switching signs assume o, . # 0y e.
We say that (G', F’) is obtained from (G, F) by contracting edge e if G’ is the bidirected
graph obtained by replacing the nodes v,w with one new node r ¢ V', by deleting all the
edges vw such that o, vy # Ow,vw, by replacing each edge vw such that oy 4w = Tww by a
loop in r with sign o, 4, by replacing each edge uv, u # w, or uw, u # v, in Ey(G) by an
edge ur in E(G"), by replacing each half-edge (resp. loop) on v or w by a half-edge (resp.
loop) in r, and by letting the signing in G’ coincide with o on E(G’). Let F' = F N Ey(G').
We will identify each edge of G’ incident to r with the original edge of G.

Note that, if (G, F') satisfies the cycles condition (1), then contracting one by one the edges
of an odd cycle C results in a new loop on the node obtained by the contraction of C.

Given a pair (G, F) satisfying the cycles condition (1), a pair (G', F') is a minor of (G, F)
if it is obtained from the latter through some of the following operations:

O1) Switching signs on a node or on an edge of Gj

(O1)
(O2) Deleting a node or an edge in (G, F);

(O3) Contracting an edge e = vw in Ey(G) \ F}

(O4) Contracting an edge e = vw in F such that 6(v) C F U L(G).

We observe that the class of pairs (G, F') such that A(G, F') is half-modular and has the
EJ property is closed under taking minors. Clearly operations (O1),(02) correspond to
multiplying by —1 or removing rows and columns of A(G, F). Assuming that (G, F') satisfies
the cycles condition (1), operation (O3) corresponds to pivoting on the entry (v, e) in A(G, F')
and removing the row corresponding to v and the column corresponding to e, while operation
(O4) corresponds to dividing by 2 the row of A(G,F) corresponding to v (which is even
because §(v) C F'UL), pivoting on the entry (v, e), and then removing the row corresponding
to v and the column corresponding to e.

Let 9y = (G4, Fy) be defined as follows: V(Gy) = {v1,v2,v3}, E(Gy) = {e1,e2,e3,€4},
with e; = v1v9, ea = v1U3, e3 = v1v1, €4 = vous, Fy = {e4}, and G4 has +1 sign on all edges,
except 0y, ¢, = —1. See Figure 1.

Note that ¥, satisfies the cycles condition (1). One can verify that the matrix A(%,)
contains Az as a minor (pivot on the +1 entry (v1,e1) and delete the column corresponding
to e1). Thus, if a pair (G, F) satisfying the cycles condition contains ¢, as a minor, then
A(G, F) does not have the EJ property.
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Figure 1: Representation of ¢4, and corresponding matrix A(%,). Boldfaced edges represent
edges in Fy.

In the remainder of the paper, we denote by % the family of pairs (G, F), where G is a
bidirected graph, F' C Ey(G) and (G, F') satisfies the cycles condition and does not contain
%, as a minor. We will prove the following.

Theorem 2. Given a pair (G,F) that satisfies the cycles condition, A(G,F) has the EJ
property if and only if (G, F') does not contain 9, as a minor.

We show that Theorem 2 implies Theorem 1. Indeed, let A be a totally half-modular
matrix obtained by multiplying by 2 some of the columns of a {0, £1}-matrix with at most
two nonzero entries per column. If A contains Az as a minor, then A does not have the EJ
property, because Az does not have the EJ property. Vice versa, assume A does not contain
As as a minor, and let (G, F') be a pair such that A = A(G, F). Since A(¥,) contains A3 as a
minor, (G, F') does not contain ¢, as a minor. Thus, by Theorem 2, A has the EJ property.

Theorem 2 extends a theorem of Edmonds and Johnson [5], mentioned in the introduction,
stating that incidence matrices of bidirected graphs have the EJ property.

In Section 2 we show that we can reduce ourselves to studying systems of the form Ax = ¢,
x > 0, and we describe the irredundant nontrivial Chvatal inequalities for such systems.
Section 3 describes structural properties of the pairs (G, F') € €, while Section 4 introduces
the concept of balanced bicoloring of the edges of (G, F') and discusses when elements in ¢
admit such a bicoloring. The results of Sections 3 and 4 are needed in the proof of Theorem 2,
given in Section 5.

2 Chvatal closure

We show that, to prove Theorem 2, we can reduce ourselves to studying systems in standard
forms.

Lemma 3. If, for every (G, F) in € and every c € ZFS) | the system

AG,F)x=c
(xZ)O. (2)

has Chvdtal rank at most 1, then A(G, F') has the EJ property for every (G, F) in €.

Proof. Let us assume that (2) has Chvétal rank at most 1 for every (G, F) in ¢ and every
integral vector c¢. Given (G, F) € €, let b,c,l,u be integral vectors. Let A := A(G, F). We



need to show that the polyhedron P := {z : b < Az < ¢, | < x < u} has Chvatal rank at
most 1. Observe first that, if we define b = b — Al,é = ¢ — Al, @ = u — [, the polyhedron
P:={z :V <Az <,0 <z <} is the translate of P by —I, i.e. P = P —[. Since
[ is integral, it follows that the first Chvatal closure of P is integral if and only if the first
Chvatal closure of P is integral. Therefore we may assume that [ = 0, thus P = {z :b<
Az < ¢, 0 <z < u}.

By a standard argument, it can be shown that P has Chvatal rank 1 if and only if the
polyhedron P := {(x,s) : Az4+s=¢, 0<z <wu, 0<s<c—b} has Chvatal rank 1. Observe
that the constraint matrix (A, I) of the system Ax + s = c¢ is of the form A(é, F), where G is
the bidirected graph obtained from G by introducing a half-edge with sign +1 on every node
of G.

Thus, it suffices to show that, for every (G, F) € €, for every ¢ € 7V we 7P and
for all I C E(G), the polyhedron {x € RE(G) : A(G,F)x = ¢, e < Ue, e € I} has Chvatal
rank at most 1.

The proof is by induction on |I|, where by assumption the statement holds for |I| = 0.
Let (G,F) € €,ce V@ ueZFC and I C E(G) such that I # (). Let P := {z € RE(G) :
Az = ¢, o < ue, e € I} and let T be a point in the first closure P’ of P. We need to show
that Z is a convex combination of integral points in P.

Let @ € I. Assume first that & € Eo(G), say € = vw. Let (G,5) be the bidirected
graph defined as follows; let V(G) = V(G) U {z}, where z is a new node, let E(G) =
E(G)\ {e} U{ey,ew}, where e, = vz, €, = wz, and let 6., = 0., = +1, Fpe, = Ope,
Fw,e = —Owe If € ¢ F, let F=F, else F=FU {ey,ew}. It can be easily verified that
(G,F) € €. Define i,, = T¢, Fe, := Ue — Te, and &, := T, for all e € E \ {€}. Finally, let
¢ := A(G,F)i Observe that é, = ¢y — oy ele, ¢, = ug if € ¢ F, while &, = ¢y — 20 gUe,
¢, =2ug if € € F. Furthermore, ¢, = ¢, for all t € V(G) \ {w}.

We prove that 7 is in the first closure P’ of the polyhedron P := {y : A(G,F)y=¢, y >
0, Yo < e, e € I\ {€}}. Consider a valid inequality oy < 8 for P, where « is an integral
vector. We need to show that Z satisfies the corresponding Chvatal inequality ay < [3]. By
construction, the inequality ., xz+ ae,, (uz — xz) +Ze€E(G)\{é} Qexe < B 1is valid for P. Since
z € P, it follows that T satisfies the Chvatal inequality (o, — e, )Tz + DoecB(G)\fe} QeTe <
|8 — ae,uz|. Since a and w are integral, |5 — ac, uz| = |B] — e, ug, therefore T satisfies
ay < |B]. Thus & € P'. By induction, P’ is an integral polyhedron, thus Z is a convex
combination of integral points in P. It follows that Z is a convex combination of integral
points in P.

If ¢ € H(G) (resp. & € L(G)), where e is incident to a node v, define (G,&) as follows.
Let V(G) = V(G)U{z}, where z is a new node, let E(G) = E(G)\ {€} U{é,(}, where é = vz
and £ is a half-edge on z (resp. a loop on z2), let 6,6 = 6,0 = +1, Gy = 0pe. Let F:=F
(resp. F := FU{é}). It can be easily verified that (G,F) € €. Define ¥z = Tz, &y = ue,
and Z, = Z, for all e € E\ {&¢}. Finally, let ¢ := A(G, F)Z. Observe that &, = ug (resp.
¢, = 2ug), while ¢ = ¢ for all t € V(G). One can show that Z is in the first closure P’ of
the polyhedron P := {y : A(G,F)y=2¢,y >0, ye < u e € I\ {e}}. The proof is similar to
the previous case. As before, this implies that Z is a convex combination of integral points
in P. U



Lemma 4. Given a pair (G, F), the matriz A(G, F) is totally half~-modular if and only if
(G, F) satisfies the cycles condition (1).

Proof. For the “if” direction, suppose G contains an odd cycle C' such that F’ := E(C)NF #
0. Let ¥ = (0ve)vev(c),ecr()- Since C is odd, all entries of Y1 are i%. The matrix
A(C,F N E(C))~! is obtained from ¥~! by multiplying by % the rows corresponding to
elements in F’. It follows that some of the entries of A(C, F N E(C))~! have value 1.

For “the only if” direction, assume (G, F') satisfies the cycles condition, and let A :=
A(G, F). We may assume that G is connected, otherwise it suffices to prove the statement for
each connected component of G. Since any submatrix A’ of A is of the form A" = A(G', F”)
for some pair (G’, F’) that satisfies the cycles condition, it suffices to show that, if A is
square and nonsingular, then A~! is half-integral. Suppose A is a k x k nonsingular matrix.
Then V(G) = {v1,...,v;} and E(G) = {e1,...,ex}. Since G is connected, we may assume
that ej,...,ex—1 induce a spanning tree of G. Let ¥ := (0y.¢)vev,ece. The matrix A1l is
obtained from ¥ by multiplying the rows corresponding to elements in F'U L(G) by % If
ex € H(G) U L(G), then the matrix ¥ is totally unimodular, thus ¥ ! is integral and A~ is
half-integral.

If e, € Ep(G), then it is contained in the unique cycle C' of G. If C is even, then X
is singular, and so is A. Therefore C' is odd. Up to permuting rows and columns, ¥ =

( ]OD g >, where P is the incidence matrix of the cycle C'. It can be readily verified that

det(P) = £2 and R is totally unimodular, therefore P! is half-integral while R~! is integral.
Also, ¥71 = ( P~ —PQR™
’ 0 R
while the other rows are integral. Since (G, F) satisfies the cycles condition, E(C)NF = 0,
therefore A~! is obtained from ¥~ by multiplying by 3 some of the last k — |C| rows. It
follows that A~! is half-integral. O

, therefore the first |C| rows of ¥ 7! are half-integral,

Let P be a polyhedron and let P’ be its Chvétal closure. A Chvétal inequality ax < 3 for
P is nontrivial if it is not valid for P, and is irredundant if it is not the sum of two inequalities
that are valid for P’ and that define faces of P’ different from the one defined by ax < §.
Two inequalities ax < 3 and o’z < 3’ valid for P’ are equivalent if they define the same face
of P’. The proof of the next lemma is standard.

Lemma 5. If A is a totally half-modular matriz and b, u are integral vectors, any irredundant
nontrivial Chvdtal inequality for Ax = b, 0 < x < u is equivalent to an inequality of the form
(pA+~° — )2 > [ub — y*u] such that u,+°,v* have 0, % entries, pA +~° — 4% is integral,
and pub — ~v"u is not integral.

In the remaining of this paper, whenever Z is a set, Y C Z, and z is a vector in R?, we
denote by 2(Y) = >,y zi-

At some point in our proof of Theorem 2 it will be necessary to introduce upper bounds
on the edges in F'UL(G). Hence in the following Lemma we describe the Chvatal inequalities
for these more general systems.



Lemma 6. Let (G, F) be a pair satisfying the cycles condition, ¢ € ZV, and u € ZF. Let
ax > B be an irredundant nontrivial Chvdtal inequality for

AG,F)x =c¢
x>0 (3)
T < uf, feFUL.

Then, for some U C V(G) such that c(U) is odd, ax > 3 is equivalent to
z(6(U)\ (FUL)) > 1. (4)
Furthermore, for every S C U, S # 0, there exists vw € Eg\ F such thatv € S and w € U\S.

Proof. Let A = A(G,F). By Lemma 5, ax > f is equivalent to an inequality of the form
(LA +7° — )z > [uc — y"u], where p € {0,231V, 49, 4% € {0,3}F, % = 0 for all e €
E\(FUL), pA+~° —4* € ZF and pc—~y"u ¢ 7. Let U := {v € V : p, # 0}. Observe that
all entries of pA are integer, except for the entries corresponding to edges in §(U) \ (F'U L),
which have value 3. Hence 70 = 1 for every e € §(U) \ (F U L), 42 = 0 for every other
edge, and 4 = 0 for every e € F'U L. Since uc ¢ Z, ¢(U) is odd. Since [pc] = pc+ 3 and
Az = puc for every x that satisfies (3), ax > j is equivalent to 4%z > % Multiplying the
latter by 2, one obtains (4).

Finally, suppose there exists S C U, S # (), such that all the edges between S and U \ F
are in F'. Then 6(U)\ (FUL) = (6(S)Ud(U\S))\(FUL) and (6(S)NS(U\S))\(FUL) = 0.
Also, since ¢(U) is odd, by symmetry we may assume ¢(.5) is odd and ¢(U \ S) is even. Hence
z(6(S) \ (FUL)) > 1is a Chvétal inequality, while z(6(U \ S) \ (F U L)) > 0 is implied
by (3). The sum of the two latter inequalities is precisely (4), contradicting the assumption
that ax > B is irredundant. O

We will refer to inequalities of the form (4) as odd-cut inequalities (relative to U). When
G is an undirected simple graph, F' = (), and c is the vector of all 1s, the odd-cut inequalities
reduce to the well known ones for the perfect matching polytope. The odd cut inequalities
can be separated in polynomial time, since the separation problem reduces to a minimum
weight odd-cut. Thus, using the reductions in the proof of Lemma 3, linear optimization over
the first Chvéatal closure of b < A(G, F)x < ¢, | < x < u, can be solved in polynomial time
for all integral b, ¢,l,u whenever (G, F) has the cycles property. If A(G, F') does not contain
As as a minor, by Theorem 1 linear optimization over the integer hull of b < A(G, F)z < ¢,
I <z < u is polynomial.

The following lemma will be useful in the proof of Theorem 2.

Lemma 7. Let G be a bidirected graph, let F© C Egy, and let I C F U L. If the system
A(G, F)x = ¢,x > 0 has Chvdtal rank at most 1 for every c € ZV, then the system A(G, F)x =
c,v > 0,2y <1,Vf €1 has Chvdtal rank at most 1 for every c € YA

Proof. Let A := A(G, F). Assume that the system Ax = ¢,z > 0 has Chvatal rank at most 1
for every integral vector c¢. Suppose by contradiction that there exists a fractional vertex
of the first closure of {x : Az =c, 2 > 0,2y <1 f e I}. Let Z. := 2. foralle € E'\ I,
Ty =25 — |Zs] for all e € I. Let ¢ := Az. Note that ¢ is integer. Since I C F UL, &,



is congruent modulo 2 to ¢, for all v € V, therefore, for every U C V, ¢(U) is odd if and
only if ¢(U) is odd. Thus, by Lemma 6, the odd-cut inequalities for Az = ¢, > 0 and for
Axr = ¢,z > 0,25 < 1, f € I are the same. Since Z, = Z, for every e € E\ (FUL), T is a
fractional vertex of the first closure of {z : Az = ¢, > 0}, a contradiction. O

Given a set X of vectors, let span{X} denote the linear space generated by the vectors
in X. Given a set F and R C E, we denote by x(R) € {0,1}¥ the characteristic vector of R.
Given a graph G = (V, E), a family .£ of subsets of V is called laminar, if and only if, for
any U, U’ € £ such that U NU’ # 0, it follows that U C U’ or U’ C U.

The next lemma is used in the proof of Theorem 2. Its proof, which we do not report
here, adopts standard uncrossing arguments (see for example [3, 8, 10, 11, 12]).

Lemma 8 (Uncrossing Lemma). Let G = (V, E) be a graph, let c € ZV, # € RF with & > 0.
Let # :={U CV : ¢(U) odd and z(6(U)) = 1}. Then there exists a laminar subfamily £
of F such that span{x(6(U)) : U € L} =span{x(d(U)) : U € F}.

3 Structure of (G, F)

The purpose of this section is to derive structural properties of pairs (G, F') € € that will be
used in the proof of Theorem 2. We recall that a cutset of G is a set of nodes N such that
G \ N is not connected. A cutnode of G is a node v such that {v} is a cutset. A block of G
is maximal subgraph of G that does not have a cutnode. The following conditions will play
an important role in our proof.

(C1): No block of G\ F contains two disjoint edges in F,
(C2): F is acyclic.

Given a cycle C and a family {f;,7 € I} of chords of C, we say that {f;,i € I} is a family
of non-crossing chords of C'if for every pair of chords f;, f;,4,j € I, there exists a path in C
between the two endnodes of f; that contains both the endnodes of f;.

Lemma 9. Let (G, F) € € that does not satisfy (C1). Then G is bipartite, L(G) = 0, and
F is a family of non-crossing chords of a cycle in G\ F.

Proof. Let f = vw and f’ = v'w’ be two edges in F such that v,w,v’,w’ are distinct and
in a same block B of G\ F. Clearly B is 2-connected. Let P; be a shortest path in G \ F
from f to f’. W.lo.g. the extremes of P, are v and v'. Now let P, be a path in G \ F
from w’ to w that does not pass through v. P, does not intersect P;, as otherwise we can
obtain ¢, as a minor by deleting all edges in E\ (E(P;)UE(P)U{vw,v'w’}) and by deleting
node w’, which contradicts (G, F) € €. Now let P; be a path in G\ F from w to v that
does not pass through v’. We observe that P3 does not intersect P; and P, except on v
and w. Indeed, if P; intersects Pp, then we obtain ¥, as a minor by deleting all edges in
E\ (E(P1)UE(Ps;)U{vw,v"w'}) and by deleting node w'; if P intersects P, then we obtain
9, as a minor by deleting all edges in E'\ (F(P)U E(P3)U{vw,v'w'}) and by deleting node
v'. Now let Py be a path in G\ F from v’ to w’ that does not pass through v. Symmetrically,
Py does not intersect P, or Py except on v' and w’. P, does not intersect P3 either, otherwise



we obtain ¢, as a minor by deleting all edges in E \ (E(P1) U E(Ps) U {vw,v'w'}), and by
deleting node v. Hence C := v, P;,v', Py,w', Py,w, P3,v is a cycle in G\ F, and f and f’ are
non-crossing chords of C.

We show that the edges in F are chords of C. Let f” = o"w" € F\A{f,f'}. We
show that f” is a chord of C. If not, let P be a shortest path from an endnode of f” to
a node in C. W.lo.g. the extreme of P in f” is v”, and let u be the extreme of P in C.
By symmetry, assume that v ¢ {v,w}. The pair (G', F’) obtained by deleting all edges in
E\ (E(C)U E(P) U {vw,v"w"}) and by deleting w” has ¥, as a minor.

We show that the edges in F' form a family of non-crossing chords of C. Suppose there
exist f,g € F such that no path in C' between the two endnodes of f contains both the
endnodes of g. Thus there exists a subpath P of C' between the endnodes of f that contains
exactly one endnode v of g, where v is an internal node of P. Let w be the other endnode
of g. The pair (G’, F’') obtained by deleting all edges in E'\ (E(P)U{f,g}) and by deleting
node w has ¥; as a minor.

We show that L = ). If not, let £ € L, let P be a shortest path from the endnode of ¢ to
C, and let u be the extreme of P in C. Let f € F such that u ¢ f, and let Py be the subpath
of C between the endnodes of f such that u € V(Py). The pair (G', F') obtained by deleting
all edges in E\ (E(P)UE(Pf) U{f,¢}) and by contracting all the edges in E(P) has ¥, as
a minor.

We show that G is bipartite. If not, let C' be an odd cycle. If there exist two different

nodes v,w € V(C)NV(C), it can be verified that there exists a path P in C from v to w
containing edges in F. Hence the graph spanned by the edges in E(C) U E(P) contains an
odd cycle with edges in F, contradicting (G, F) € €. Thus |V(C)NV(C)| < 1. Let P be a
shortest path from C to C, and let f € F so that no endnode of f is in P. The pair (G', F')

obtained by deleting all edges in E'\ (E(C)UE(C)UE(P)U{f}) and by contracting all edges

in E(P)U E(C) has 9, as a minor. O

A set S C E(G) is a star if all edges in S are incident to one node v, called the center of
the star S, and S does not contain parallel edges.

For f = vw, f' = v'w' in F, we say that f’ is nested in f if every path in G\ F from v
to w contains the nodes v/, w’. We say that f and f’ are nested if f’ is nested in f or f is
nested in f’.

Lemma 10. Let (G, F) € € that satisfies (C1) and (C2), and let B be a block of G such
that B\ F is connected and E(B) N F # (. One of the following holds.

(i) B is bipartite and E(B) N (F U L(Q)) is a star;

(ii) There exists an edge f in E(B)NF such that all other edges in E(B) N F are nested
mn f.
Proof. We may assume |E(B) N F| > 2 otherwise (ii) is trivially satisfied.
10.1. Given two edges f = vw, f' =v'w' in E(B)NF, one of the following holds:

a) f and f’ are adjacent, say v ="', and for any two distinct nodes s,t € {v,w,w'} there
exists a path in B\ F between s and t that does not pass through {v,w,w'} \ {s,t};
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b) f and f' are nested;
¢) one among v and w, say v, is a cutnode of G \ F separating w from {v',w'} \ {v}.

Assume first that f and f’ are adjacent, w.l.o.g. v = v'. By (C2), w # w'. If f, f’ do not
satisfy a), by symmetry every path in B\ F' from v to w passes through w’, or every path in
B\ F from w to w’ passes through v. In the first case f’ is nested in f, thus case b) applies.
In the second case v is a cutnode of G \ F separating w from w’, which means that case c)
applies.

Thus we assume that all the nodes v, w,v',w’ are pairwise different. Suppose that f, f’
do not satisfy b). As B\ F' is connected, there is a path P from v to w in B\ F' that does
not contain both v' and w’. P does not contain any node among v’ and w’, otherwise the
pair (G’, F') obtained by deleting all edges in F(G) \ (E(P)U{f, f'}), and by deleting the
endnode of f’ that is not in V(P) has ¢, as a minor. Analogously, there exists a path P’
from v’ to w’ in B\ F that does not contain any node among v and w.

Let S be a shortest path in B\ F' with one extreme in V(P) and the other extreme in
V(P'). One extreme of S is an endnode of f, and the other extreme of S is an endnode of
f'. If not, by symmetry, we may assume that one extreme of S is an internal node of P. The
pair (G, F") obtained by deleting all edges in E(G) \ (E(P)U E(S)U E(P")U{f, f'}), by
contracting the edges in E(S) U E(P’), and by deleting one endnode of f’ not in V(S), has
%, as a minor. Thus w.l.o.g. the extremes of S are v,v'.

We show that f, f’ satisfy ¢). If not, v is not a cutnode of G\ F separating w from
{v/,w'}. Hence let S’ be a shortest path in B\ F with one extreme in V(P) and the other
in V(P') that does not contain v. As above, one extreme of S’ is an endnode of f, in this
case w, and the other extreme of S’ is an endnode of f’. We have that V(S) NV (S") = 0,
otherwise the pair (G’, F') obtained by deleting all edges in E(G) \ (E(S)UE(S")U{f, f'})
and by deleting w’ has ¢, as a minor. In particular the endnodes of S” are w,w’. Thus f and
f! are chords of the cycle v, P,w,S",w', P',v in G\ F, thus they are contained in the same
block of G\ F, contradicting (C1). o<

10.2. If no two edges in E(B) N F satisfy 10.1a), then statement (ii) holds.

Let f = vw be an edge in E(B) N F that is not nested in any other edge of F. We show that
all other edges in E(B)NF are nested in f. Assume by contradiction that there exists an edge
f"in E(B) N F not nested in f. As f, f’ do not satisfy 10.1a) or 10.1b), f, f’ satisfy 10.1c).
W.lo.g. v is a cutnode of G\ F separating w from {v',w'} \ {v}. Since B is 2-connected,
there exists an edge f” = v"w” in E(B)N F such that v” is in the component of G\ F'\ {v}
containing w, and w” is in the component of G\ F'\ {v} containing {v',w'} \ {v}.

By assumption, f, f” do not satisfy 10.1a). v” is not a cutnode of G \ F separating w”
from {v,w} \ {v"}, as there exists a path in G\ F from v to w” that does not contain v”. w”
is not a cutnode of G \ F separating v” from {v,w}, as there exists a path in G \ F' from v
to v” that does not contain w”. Thus f, f” do not satisfy 10.1c). f” is not nested in f, since
no path in G\ F from w to v contains w”. Hence by 10.1, f is nested in f”, contradicting
the choice of f. ¢

By 10.2, we may assume that there exist two edges f = vw and f' = vw’ in E(B)NF
satisfying 10.1a). It follows that there exists a cycle, say H, in B\ F passing through v, w
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and w'; or there exist a node z # v, w,w’ and three paths in B\ F from z to v, w and v/,
respectively, such that their union is a tree, say H.

We show that (i) holds. Suppose by contradiction that there exists an edge or loop
1" € E(B)N(FUL(Q)) such that v ¢ f”. By (C2), we have that f” # ww’.

Assume first that f” has at most one endnode in H. Since B has no cutnode, there exists
a path P from one endnode of f” to H that does not contain v. If we choose f” and P so
that P is shortest possible, it follows that P does not contain any edge in F'. Thus P is a
path in B\ F, V(P) U V(H) contains exactly one endnode of f”, and P does not contain
both w,w’, say w' ¢ V(P). One can now easily find a ¢, minor in the graph spanned by the
edges in E(P)U E(H) U{f, f"}, a contradiction.

Suppose then that f” has two endnodes in H. In particular f” € F. If H is a cycle,
then this contradicts (C1), since at least one among f and f’ is disjoint from f”, and they
are all contained in the same block of G \ F, since all their endnodes are in the cycle H.
Thus H is a tree. A straightforward case analysis shows that the graph spanned by the edges
EH)U{f, f', f"} contains ¥4, as a minor. Thus F(B) N (F U L(G)) is a star centered at v.

We only need to show that B is bipartite. Suppose by contradiction that there is an odd
cycle C' in B.

10.3. Either v is a cutnode of B\ F separating w from V(C) \ {v}, or w is a cutnode of
B\ F separating v from V(C) \ {w}.

The cycle C' does not contain both v and w, otherwise one can readily verify that the graph
induced by E(C)U{f} has an odd cycle containing f, contradicting that (G, F') € €. Suppose
by contradiction that 10.3 does not hold. Then there exists a path P, in B\ F from w to
a node in V(C) \ {v} that does not contain v and a path P, in B\ F from v to a node in
V(C)\ {w} that does not contain w. If C' contains exactly one among v and w, say v, then
the graph induced by F(C) U E(P,) U {f} has an odd cycle containing f, a contradiction.
Thus V(C) N {v,w} = 0.

Let (G', F') be obtained from (G, F) by contracting all the edges of C. Let £ be the new
loop obtained from contracting C'. The subgraph of G’ induced by the edges in F(P,) U
E(P,)U{f,{} contains ¢, as a minor, a contradiction. <

Suppose that v is a cutnode of B \ F. Since B does not have a cutnode, there must
exist an edge in F' not containing v, a contradiction. Thus, by 10.3, w is a cutnode of B\ F
separating v from V(C) \ {w}. Consider the path P, € B\ F between w and v that does
not pass through w’ and the path P, € B\ F between w and w' that does not pass through
v, and let P be a shortest path between w and a node of C. Let (G, F’) be obtained from
(G, F) by contracting all the edges of C'. Let £ be the new loop obtained from contracting C.
The subgraph of G’ induced by the edges in E(Py) U E(P2) U{f’, ¢} contains ¥, as a minor,
a contradiction. O

In the proof of Theorem 2, we will be able to prove that the pair (G, F') satisfies the
following.

(C3): For every block B of G, each connected component of B\ F has at least two nodes.
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Lemma 11. Let (G,F) € € that satisfies (C3) and let W be the set of edges in F with
endnodes in distinct connected components of G\ F. Let B be a block of G such that B\ F is
not connected, let Q be a connected component of B\ F, and Q be the subgraph of G induced
by V(Q). Denote by V the set of nodes in Q incident to edges in W N E(B). The following
hold.

(i) the nodes in V = {vy,..., v} can be ordered in such a way that v; is a cutnode of Q
separating vi—1 and viy1, 1 =2,...,k —1;

(i) let viw € WNE(B) for somei € {2,...,k—1}. Then {v;,w} is a cutset of B separating

vi—1 from vigq;

(iii) for any i,j € {1,...,k}, i # j, there exists a path of length at least 2 in B from v; to
vj that does not contain any node in V(Q) \ {vi,v;}.

Let T'(Q) be the subgraph of G induced by the nodes v € V(Q) for which there are paths in Q
from v to v and from v to vy that do not pass through vy and vy, respectively. Then.

(iv) each edge in L(G)U (W \ E(B)) with one endnode in T'(Q) is incident to v1 or vy;
(v) T(Q) is bipartite;

(vi) For any f € FNE(I'(Q)) and every v € F, either v € {vi,v;}, or v is a cutnode of
G\ F separating v1 and vg.

Proof. We first prove the following.

11.1. Given pairwise distinct nodes v,v',v" € V, one among v,v',v" is a cutnode of Q
separating the other two.

Suppose by contradiction that there are three distinct nodes v,v’,v” € V and paths P, from
vto v in Q\ V"5 Py from o' to v” in Q \ v; P, from v to v” in Q \ v'. As v,v',0v" €V,
there exist edges vw,v'w’,v"w” € W N E(B).

We show that w,w’, w” are pairwise distinct, and that there exists a node s ¢ {v,v",v"}
that is in at least two paths among P, ./, Py 7, P, . Suppose not.

Assume first that w = w’ = w”. As (G, F) satisfies the condition (C3), there exists a node
W # w in the connected component of B\ F' containing w. Since B is 2-connected, let P be a
shortest path in B\ w from @ to V (P, )UV (Py ,)UV (P, ), and let u be the extreme of P
distinct from w. W.lo.g. u ¢ {v,v'}, thus there exist paths P, ,, from u to v, and P, s, from
u to v', so that E(Pu,v), E(Puﬂ/) - E(Pvﬂ/) U E(Pv/ﬂ//) U E(Pvﬂ//), E(Pu,v) N E(Puﬂ/) =0,
and |E(Py)|, |E(Pyw| > 1. Since w and u are in different connected components of B\ F,
the path P contains at least one edge in F. Let 9w be the edge in F' N E(P) so that node
w and ¢ have minimum distance in P, and let P be the subpath of P from u to #. The pair
(G', F') obtained by deleting all edges in E(G)\ (E(Py.y)UE(Py.)UE(P)U{vw,v'w,#0}),
by deleting node @, and by contracting all edges of P, has % as a minor.
If exactly two of the nodes w, w’ and w” are identical, say w = w”, w # w’, then the pair
(G, F') obtained by deleting all edges in E(G) \ (E(Py ) U E(Py y) U {vw,v"w,v'w'}) and
by deleting node w’ has %, as a minor.
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It follows that w, w' and w” are pairwise distinct. Assume that the paths P, v/, Py,
P, ,» pairwise intersect only in their extremes. Then E(P, ) U E(Py ,»)UE(P, ) induce a
cycle C. Let P be a shortest path in B\ v from w to V(C)U{w’,w"}. By symmetry, we may
assume that the nodes v" and w" are not in V(P). Let C' be the unique cycle in the graph
spanned by the edges in E(C) U E(P) U {vw,v"w"} that contains node v" and edge vw. The
pair (G', F’) obtained by deleting all edges in E(G) \ (E(C) U {v'w'}) and by deleting node
w' has ¢, as a minor. Hence there exists a node s ¢ {v,v’,v”} that is in at least two paths
among PUW/, Pv/ﬂ//, PUW//.

It follows that the graph spanned by the edges in E(P, /) U E(Py ,»)UE(P,,») contains

three paths Py, for ¢ = v,v’,v”, where these three paths pairwise intersect only in node s.
For t = v,v',v”, we may assume that V(Ps;) NV C {s,t}, otherwise we may replace ¢ with
the node t € V(Ps4) NV, T # s, that is closest to s in Ps;. We consider two cases.
Case 1: s ¢ V. Since B is two connected, there exists a path from w’ to V(Ps,,) UV (Ps ) U
V(Ps) U{w,w"} in B\ v'. Let P be such a path such that |E(P) N F| is smallest possible
and, subject to that, so that |E(P)] is smallest possible. Let u be the extreme of P different
from w’, and let «’ be the node adjacent to u in P. W.lo.g. u € V(Ps,) UV (Ps,) U {w}.
We show that u € V(Ps,) and wu’ € F. If not, let C' be the unique cycle in the graph
spanned by the edges in E(P;s,) U E(Psy) U E(Ps,v) U E(P) U {ow,v'w'}, and let P be
the shortest path from v” to C. Since u € V(Ps,) or uu’ ¢ F, the extreme of P in C is
incident in C' to two edges in Fy \ F. Thus the pair (G', F’) obtained by deleting all edges in
E(G)\ (E(C)U E(P) U {v"w"}), by contracting all the edges in F(P), and by deleting node
w”, has ¥, as a minor.

Thusu € V(Ps,) and uv’ € F. Sinceu € V(P )\{v'}, u ¢ V, thusuu’ ¢ W, andso ' €

V(Q). As Q is connected, let R be a shortest path in @ from v’ to V/( Py, ) UV (Py 4 UV (Ps ).
Since R contains no edge in F, the extreme of R distinct from u' must be v/, otherwise
E(P)\ {uv'} U E(R) induces a path P’ from w’ to V(Ps,) UV (Ps,) UV (Psr) in B\ v/,
and E(P")NF = (E(P)NF)\ {uu'}, a contradiction to the minimality of P. Let C' be the
unique cycle in the graph spanned by the edges in E(Ps,) U E(R) U {uu'}. Note that C
contains the edge uu’ € F and the node v/, and that both edges incident to v' in C are in
Ey \ F. Thus the pair (G’, F’") obtained by deleting all edges in E(G) \ (E(C) U {v'w'}) and
by deleting node w’ has %, as a minor.
Case 2: s € V. Since B is 2-connected, let P be the shortest path in B\ {s} with extremes
in two distinct sets among V' (Ps,) U{w}, V(Ps,) U{w'}, V(Ps,) U{w"}. W.lo.g. P has
one extreme in V(Ps,) U {w}, and the other in V(Ps,) U {w'}. By the minimality of P,
V(P) N (V(Psyr) U{w"}) = 0. Let C be the unique cycle in the graph spanned by the
edges in E(P;,) U E(Ps,y) U E(P) U {vw,vw'}. If E(C)NF # 0, then the pair (G', F')
obtained by deleting all edges in E(G) \ (E(C) U E(P;,) U {v"w"}), by contracting all the
edges in E(Ps,~), and by deleting node w”, has ¢ as a minor. It follows that P has both
extremes in V(Ps,) UV(Ps,), and that E(P) N F # (. In particular, P is a path in Q. If
the extremes of P are v and v/, then E(P)U E(Py,)U E(Ps,y) induces a cycle in @ containing
s,v,v" € V, which we already showed is not possible. Thus, by symmetry, we may assume
that the extreme of P in P, is a node s’ # v'. If we let Py, and Py, be the paths in Py,
from s’ to s and v, respectively, then (V(Py,) UV (Pyy) UV (Pys)) NV = {s,v,v'}, which
is precisely Case 1. ©
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Since @ is connected, by statement 11.1 there exists a path P in @Q such that V C V(P).
Furthermore, if we let vy, ...,v; be the nodes in V in the order they appear in P, it follows
that v; is a cutnode of @ separating {vy,...,v;—1} and {viy1,..., 05}, i =2,...,k— 1.
(i)(ii) Let vyw € W N E(B) for some i € {2,...,k — 1}. It suffices to show that {v;, w} is a
cutset of B separating v;_; and v; 1, since in this case v; must be a cutnode of Q) separating
vi—1 and v;4+1, because w ¢ V(Q). Suppose by contradiction that there exists a path R
from v;_1 to viy1 in B\ {v;,w}. Note that E(R) cannot be contained in F(Q), therefore
E(R)NF # (. Let e1, es be the two edges in E(P) incident to v;. Let C be the unique cycle
in the graph spanned by the edges in F(R)U E(P) containing v;. Then C' contains also eq, €3
and E(C)N F # (The pair (G, F') obtained by deleting all edges in E(G) \ (E(C) U {v;w})
and by deleting node w has ¥, as a minor.

(iii) It is sufficient to prove that for i = 1,...,k — 1, for every edge v;w € W N E(B) there
exists a path in B from w to v;41 that does not contain any node in V(Q) \ {vi+1}. In fact,
the last edge of such path is in WN E(B), and the statement follows by induction. Let P be a
shortest path from w to v; 41 in B\ {v;}. We show that P contains no node in V(Q)\ {vi41}-
Otherwise, let v; € V(Q) \ {vi+1} be the closest node in P to w. Let Py be the subpath of P
from w to v, and P, be the subpath of P from v; to v;41. Note that ¢t > i 4 1 since, by (ii),
{v;, w} is a cutset of B separating v;;1 from v, but v;, w ¢ V(P). Given v;1w’ € WNE(B),
{vi31,w'} is a cutset of B separating v; from v, thus w’ € V(P;). The path from w to v;11
spanned by E(Py) U {v; 41w} is shorter than P, a contradiction.

(iv) Suppose f = vw is an edge in L(G) U (W \ E(B)) such that v is in I'(Q) but v # vy, vg.
By (iii) there exists a path Pjj in B from v; to vy that does not contain any node in
V(Q)\{v1,v;}. Note that E(P; )N F # (. By definition of I'(Q), there exist a path P; from
v to v1 and a path Py from v to v in G\ F' that do not pass through vy and vy, respectively.
The pair (G', F') obtained by deleting all edges in E(G) \ (E(Py ) U E(P1) U E(Py) U{vw})
and by deleting node w if v # w has ¢, as a minor.

(v) Suppose that there exists an odd cycle C in I'(Q). If vi, v, ¢ V(C), then by contracting all
the edges of C results in a loop £ that is not incident to v; or vk, and we obtain ¥, as a minor as
in the proof of (iv). W.Lo.g. we assume v; € V(C'). By definition of I'(Q)) there exists a path
(possibly of length 0) between C and v in T'(Q) \ F' that does not pass through v;. Let Py
be one such path of minimum length. By (iii) there exists a path Py  in B from v; to vy, that
does not contain any node in V(Q)\{v1, v }. Note that V(Px )NV (P ) = {vr}. As Cisodd,
there exists a path Po in C' so that the graph spanned by the edges in E(Pc)UE(P,)UE(Py k)
is an odd cycle C. Note however that E(C) N F # (), contradicting (G, F) € €.

(vi) Let f =vw € FN E(I'(Q)). By contradiction assume that w # vy, v and w is not
a cutnode of G \ F separating v; and vg. Suppose first that v # vy, vE. Given two paths in
G\ F from v, to v; and vy, respectively, that do not contain w, we obtain ¢, as a minor as
in the proof of (iv). Hence we assume, w.l.o.g., that v = v;. Let P, (resp. P,) be a path in
G\ F from vy to v (resp. w) that does not pass through w (resp. v). Let vyw’ € W. The
pair (G', F’) obtained by deleting all edges in E(G) \ (E(P,) U E(P,) U {vw,vpwg}) and by
deleting node w’ has ¢, as a minor. U

Given two adjacent edges uw,vw € W, u # v, such that oy yw # Owww, We say that

(G', F') is obtained from (G, F') by shrinking uvw and vw if V(G') = V(G), E(G') = E(G) \
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{uw,vw} U {uwv}, F' = F \ {uw,vw} U {uv}, and the signing o’ on E(G’) is defined by
T = Ouiws Tpup = Ovpws 05 ¢ = 0z for every e € E(G') \ {uv}, z € e.

Observe that (G', F') satisfies the cycles condition. Indeed, given a cycle C' in G’ that
contains uv, the corresponding cycles (one if w ¢ V(C), two if w € V(C)) in G obtained
from C' by replacing uv with the two edges wu,wv, are even because they contain edges in
F. Since 0y yw + Owuw + Twow + Tvow =4 O';Nw + 0'1,}71“), C is even.

However, (G',F') may contain the minor ¢;. We say that two edges uw,vw in W are
shrinkable if the graph obtained from (G, F') by shrinking uw and vw does not contain ¥, as

a minor.

Lemma 12. Let (G, F) € € that satisfies (C3). Let B be a block of G such that B\ F is not
connected. If some node w in B is incident to at least two edges in W N E(B), then there

exist two shrinkable edges in W N E(B) incident to w.

Proof. We say that two adjacent edges wu,wv € W N E(B), u # v, are consecutive if
there is no edge rw € W N E(B) such that {r,w} is a cutset of B separating u and v. If
wu € WNE(B) and w is incident to other edges in W N E(B), then there exists at least
one edge wv € W N E(B) so that wu,wv are consecutive. We start by proving the following
claim.

12.1. Let uw,vw be consecutive edges in W N E(B) and let (G', F") be obtained by shrinking
uw, vw. Suppose that (G, F') contains 9y as a minor. Then there exists a cycle C in B such
that, up to switching the roles of uw and v, v,w € V(C), u ¢ V(C), v is incident to two edges
in E(C)\ F, w is incident to at least one edge in E(C)NF and {v,w} is a cutset of B.

Since (G', F') contains ¥, as a minor, in G’ there is a cycle C' that contains at least one edge
in F’, a node ¢ € V(C) incident to two edges in F(C) \ F’, and a path P from ¢ to a node
d such that V(P)NV(C) = {c}, E(P)NF’' =0, and d is either incident to an edge f = dt
(possibly t = d) in F U L(G") such that ¢t ¢ V(C) U V(P), or it belongs to an odd cycle H
such that (V(C)UV(P))NV(H) = {d}. Since (G, F) does not contain ¢, as a minor and
wv € F', then wv € E(C)U{f} and w € V(C)UV(P)U{t} (if d is incident to f = dt € F'),
oruv € E(C) and w € V(C)UV(P)UV(H) (if d belongs to the odd cycle H).

If wv € E(C), then u,v € V(B) implies V(C) C V(B). Otherwise, if uv = dt, w.l.o.g. v =
d, and w € V(C) \ {c}, otherwise the graph spanned by the edges in F(C)U E(P) U {vw}
contains ¢ as a minor. Thus in this case v,w € V(B) implies V(C) U V(P) C V(B). Note
that in both cases V(C) C V(B).

Let Q be the connected component of B\ F containing ¢, and let Q be the subgraph of
G induced by V(Q). Let V be the set of nodes of Q incident to some edge in W N E(B). As
c is incident to two edges in E(C) \ F’, let C be the shortest subpath of C' containing ¢ as
an internal node and with endnodes, say ¢’ and ¢”’, ¢ # ¢’ that are incident in G' with edges
in W N E(B). Note that such path C must exist, otherwise uv ¢ E(C), thus V(C)UV (P) C
V(B), and so V(C)UV(P) C V(Q), in which case f = uwv and w € V(C)UV (P), implying that
w and one among u, v belong to V(Q), contradicting the fact that uww,vw € W. Furthermore,
d,deV.

We show that d is incident to the edge f = dt and that f = uv. If not, then uwv € E(C).
If w € V(C)\ {c}, then the edges in E(C)\ {uv} U {uw,vw} form two cycles in G. Let C’ be
the one passing through ¢. Note that E(C’) N F # (), ¢ is incident to two edges in E(C") \ F,
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and V(C"YN(V(P)U{t}) ={c} (or V(C")N(V(P)UV(H)) = {c}). Thus the graph spanned
by the edges in E(C") U E(P)U{f} (or E(C")U E(P)U E(H)) contains ¥, as a minor, a
contradiction. Thus w € V(P) U {t} (if d is incident to f = dt € F') or w € V(P) UV (H)
(if d belongs to the odd cycle H). By Lemma 11(iii), there exists a path S in B from ¢
to ¢’ that contains no node in V(Q) \ {¢,’}. The subgraph of G spanned by the edges in

E(C)UE(S)UE(P)U{f} (or by E(C)U E(S)U E(P)U E(H)) contains ¢, as a minor,
unless d is incident to f = dt € F and t € V(S) \ {¢,¢’}. In particular, since d € V(Q)
and t ¢ V(Q), dt € WN E(B) and ¢,c’,d € V. By Lemma 11(i) one among ¢,c”,d is a
cutnode of Q separating the other two. The only possibility is that d = ¢ and d is a cutnode
of Q separating ¢ and ¢’. So P has length zero. Since w € V(P) U {t}, then w € {d,t}. By
Lemma 11(ii), {d,t} is a cutset of B separating ¢ and ¢”, thus {d, ¢} separates u and v, but
this contradicts the choice of wu,wv to be consecutive.

Thus d is incident to the edge f = dt and f = wv. W.lo.g.,, v = d, and we saw that
w € V(C)\{c}, and V(C)UV(P) U {u} C V(B). Moreover w is incident to at least one
edge in E(C) N F, otherwise the graph spanned by E(C) U {uw} contains ¥, as a minor.
By Lemma 11(i), one among ¢, c”,v is a cutnode of @ separating the two others. The only
possibility is that v = ¢, and v is a cutnode of Q separating ¢’ and ¢”. By Lemma 11(ii), this
implies that {v,w} is a cutset of B separating ¢ and ¢’. ¢

12.2. Let uw,vw be two consecutive edges in WNE(B). If {v,w} is a cutset of B separating
two nodes r' and r" such that wr',wr” € E(B) \ F, then uw,vw are shrinkable.

Since B is 2-connected, there exist paths P’ and P” in B\ w from v to r’ and r”, respectively.
Let Q be the connected component of G\ F containing w and V be the set of nodes in Q
incident to edges in W N E(B). Since vw € WNE(B) and r',7" € V(Q), P’ and P” contain
some nodes ¢’ and ¢”, respectively, in V, such that the subpaths of P’ and P” from 7’ to ¢’
and from r” to ¢, respectively, are in Q). By Lemma 11(ii), {w, u} is a cutset of B separating
d and ¢’, and so u € V(P") UV (P").

Let V,, (resp. V,,) be the set of nodes in the connected component of B\ {v, w} (resp. B\
{u, w}) containing u (resp. v), and let V,,,, :== V;,NV,. We show that w is not adjacent to any
node in V,,,. Suppose by contradiction that there exists an edge ws with s € V,, ,,. Clearly
ws ¢ W N E(B), otherwise by Lemma 11(ii), {w, s} is a cutset of B separating u and v,
contradicting the fact that the edges uww and vw are consecutive. Hence s € V(Q). Let By,
be the subgraph of B induced by the nodes in V,,, U {u,v}. Note that B, , is connected.
Let s’ be the first node incident with edges in W N E(B) in a path from s to u in B, ,.
As s € V(Q) and u ¢ V(Q), s’ € V. Moreover, ¢/, ¢ V., thus s’ ¢ {¢/,c"} Then s, ¢
and ¢’ are three distinct nodes in V' but none is a cutnode of @) separating the other two,
contradicting Lemma 11(i).

Let (G', F') be the pair obtained from (G, F') by shrinking ww, vw. Suppose by contra-
diction that (G’, F’) contains the minor ¢;. By 12.1, there exists a cycle C' in B such that,
up to switching the roles of u and v, we have v,w € V(C), u ¢ V(C) and v is incident
to two edges in E(C) \ F. Since ws ¢ E(G) for all s € V,,, and u ¢ V(C), each node
in V(C) \ {v,w} is contained in the connected component of B\ {v,w} not containing u.
It follows that V(C) NV (P’) = {v}. Since P’ contains an edge in F, because ¢ € V(Q)
and v ¢ V(Q), the graph spanned by the edges in E(P’) U E(C) contains ¥, as a minor,
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contradicting (G, F) € €. ¢

Let w € V(B) be a node incident to at least two edges in W N E(B). Suppose by
contradiction that no two edges in W N E(B) incident to w are shrinkable. By 12.2, for all
edges e = vw € WNE(B) such that {v, w} is a cutset of B, there exists at least one connected
component H of B\ {v,w} such that wr ¢ Ey\ F for all r € H. Let H,. be the smallest
such component, and let € = vw be in W N E(B) such that {7, w} is a cutset of B and Hp is
smallest possible. Note that one such edge exists by 12.1. Denote by G the subgraph of G
induced by Hz U {v,w}. By construction, no node of Hg is in the connected component of
G\ F containing w. Since B is 2-connected, w has at least a neighbor in Hg distinct from v,

say u € V(G). Tt follows that vw € W N E(B).

We show that uw and 9w are the only edges in E(G) adjacent to w. If not, then there
exist v’ € Hz such that w'w € W, v/ # v,u, and uw, v are consecutive. By 12.1 and by
to symmetry, {u,w} is a cutset of B, thus one of the connected components of B\ {u,w} is
contained in Hg, contradicting the definition of e.

Hence uw and 9w are the only edges in G incident to w. In G\ {uw} every path from
u to w passes through v, thus by 12.1 there exists a cycle C passing through v and w and
not through u such that the two edges in C' incident to © are not in F' and w is incident to
at least one edge in E(C) N F. Hence V(C) C V(B) \ He. since G\ {w, v} is connected by
definition of G, and since w is not a cutnode of B, the graph G \ {w} is connected, so there
exists a path P in G\ {w} from u to ¥. We observe that E(P) N F = (), otherwise the graph
spanned by the edges in F(C) U E(P) contains ¢, as a minor, a contradiction.

Since tw € W N E(B), each of the two disjoint paths in C' from o to w contains an edge
in W N E(B). Let C be the shortest subpath of C' containing ¥ as an internal node and with
endnodes that are incident in G to edges in W N E(B). Let @ be the connected component of
G\ F containing ¥ and let V be the set of nodes of V(Q) incident to an edge in W N E(B). It
follows that ©,u,c’,¢” € V. Note however that E(C)U E(P) contain three disjoint paths in
@, all of length at least one, from o to u,c, ¢’ respectively, contradicting Lemma 11(i). O

4 Balanced bicolorings

The following concept will be crucial in the proof of Theorem 2. Given (G, F'), where F' C Ej,
we say that a partition (R, B) of E(G) in two (possibly empty) sets, referred to as colors, is
a balanced bicoloring of (G, F), if for every v € V(G), we have

Ov,ow - Ov,ow
Z —2 + Z Ovow = Z 9 + Z Ov,ow- (5)
vweR\(FUL(Q)) vw€RN(FUL(G)) vw€B\(FUL(G)) vw€BN(FUL(Q))

Lemma 13. Let G be a bidirected graph and F C Ey(G). If (G, F) has a balanced bicoloring,
then it satisfies the following parity conditions.

a) [0g(v) \ (FUL(G))| is even for every v € V(G);

b) For every component Q of G\ F such that H(Q) = 0, [0¢(V(Q))| is congruent modulo
2 to the number of odd edges in Eg(Q) \ F'.
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Proof. a) Given v € V(G), X yern(rur) Tvow — 2pweBn(Fur) Tvow € Z, thus by (5) also

%(ZUwER\(FUL) Tvow = DpweB\(FuL) Ovow) € Z. Hence |6 (v) \ (FFUL)] is even.

b) Let @ be a component of G\ F such that H(Q) = 0. By (5),

Z < Z 0'1}7% + Z Ovow — Z 0'1}7% - Z Uv,vw) =0.

veV(Q) “wvweR\(FUL) vweRN(FUL) vweB\(FUL) vweBN(FUL)
(6)

The edges that contribute to the sum in (6) can abe partitioned into 6(V(Q)), Eo(Q) N F,
and Ey(Q) \ F. Since H(Q) = 0, §(V(Q)) € F U L. Thus edges in §(V(Q)) and odd edges
in Eo(Q)\ F Ep(Q) \ F contribute +1 to the sum, while edges in Ey(Q) N F and even edges
in Ep(Q) \ F contribute 0,+2. As the sum in (6) equals zero, the total number of edges
contributing +1 to the sum must be even, thus |dg(V(Q))| is congruent modulo 2 to the
number of odd edges in Ey(Q) \ F. O

The main goal of this section is to prove the following lemma.

Lemma 14. Let (G, F) € € satisfying (C3). If (G, F) satisfies the parity conditions a) and
b) of Lemma 13, then (G, F) has a balanced bicoloring.

The next lemma gives a useful way to construct balanced bicolorings.

A trail in a bidirected graph (G, F) is an alternating sequence 7' of nodes and edges
T = (ep),v1,€1,...,V_1,€k_1, Vg, (ex) — starting either with the node v; or with the half-
edge ey on v1, and ending either with the node vy or with the half-edge e on v, — such that,
fori=1,...,k—1, e; = v;v;41, and where the edges are all distinct. The edges ey, ..., e can
be either ordinary edges or loops. Trail T is closed if it its first and last element are nodes
v1, Uk, respectively, and v; = v,. Note that nodes can be repeated and, if ey, is a loop in the
trail, then v, = vpy1. A sub-trail of T is a subsequence T" = v;, €;, Vi1, . - - JVj—1,€5-1,Vj,
where 1 <1 < j < k.

We denote by V(T') and E(T) the sets of nodes and edges in T', and define Ey(T"), L(T),
and H(T) accordingly. We remark that the set Ey(7) can be partitioned into a path P
between v; and v; and cycles.

We say that the trail T' is balanced if either both extremes of T" are half-edges, or T is a
closed trail such that |L(T)| is congruent modulo 2 to the number of odd edges in E(T).

Lemma 15. Let (G, F) be a pair in € such that G \ F is connected. Suppose that there
exists a family 7 of balanced trails in G\ F such that {E(T), T € J} defines a partition of
E(G)\ F, and such that, for every f € F, there exists T € T such that V(T) contains both
endnodes of f.

Then there ezists a balanced bicoloring (R, B) of (G, F) with the following property: for
any T € T and any subtrail T' = v;,e;,...,ej—1,vj of T such that e; and ej_1 are loops, e;
and ej_1 have the same color if and only if Zi;1i+1(0vh,eh71 + 0y, .e,) @5 a multiple of four.

Proof. Let T1,...,Ty be the elements in 7. Since for every f € F there exists T' € 7 such
that V(T") contains both endnodes of f, we may partition F' into sets F1,. .., Fj so that every
edge in F; has both endnodes in V(T;), i = 1,...,h. If there exists a balanced bicoloring
(R;, B;) of the edges of E(T;) U F; for i = 1,...,h as in the statement, then R := U | R;,
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B := Ul B; define a balanced bicoloring of (G, F) as in the statement. In particular, we
may assume that .7 consists of only one element T = (eg), v1, €1, ..., €k_1, Uk, (ex) (where the
extremes of T" may be the half-edges eqg, e on v; and v, or the nodes vy and vg).

We show next that (G, F) has a balanced bicoloring (R, B) as in the statement, and
with the additional property that given any subtrail 7" = v;, e;,...,ej_1,v; of T such that
Vit1, .-, Vj—1 are not incident to edges in F, e; and e;_1 have the same color if and only if
Zh z+1(0vhveh . + 04, ¢,) is a multiple of four.

We proceed by induction on |F|. If F' = (), define a bicoloring (R, B) of E(G) as follows;
two consecutive edges e; and ej1; in T" have the same color if and only if oy ¢; # 0, e;4,-
Since T is balanced, it follows that (R, B) is a balanced bicoloring of E(G). Furthermore,
given any subtrail 7" = v;,e;,...,ej_1,v; of T, a simple counting argument shows that e;
and ej_1 have the same color if and only if zh z+1(0vh en_y + Ou,.e,) is a multiple of four.
Thus (R, B) satisfies the inductive hypothesis.

We now assume F # (). For every f € F, let j(f) be the minimum index in {1,...,k}
such that the subtrail of 7" from v; to vj(y) contains both endnodes of f. In particular v](f) is
an endnode of f. Let i(f) be the largest index such that i(f) < j(f) and v;(5) is the endnode
of f distinct from v;(s). Note that the subtrail T'(f) of T from i(f) to j(f) does not contain
any endnode of f except the two extremes. By the choice of i(f) and j(f) the first edge e;y)
and the last edge e;(y)_ in T'(f) are ordinary edges.

Let f,g € F with i(f) # i(g), and assume by symmetry that i(f) < i(g). We show that
either j(f) < i(g) or j(g) < j(f). If not, then i(f) < i(g9) < 7(f) < j(g). By the choice
of j(g), the node v does not appear in T'(f). Therefore, the pair (G', F') obtained by
deleting all edges in E(G) \ (E(T(f)) U{f,g}), deleting node vj(,), and contracting all edges
in E(T(f)) \ {eis)»ej(s)—1}> has 94 as a minor .

Choose f € F such that j(f) —i(f) is smallest possible. By induction, there exists a
balanced bicoloring (R’, B') of E(G) \ {f}. Possibly by switching sign on the endnodes of
f, we may assume that the sign of f on both endnodes is +1. Let i := i(f), j := j(f),
T = T(f). By the previous argument, no node vy, i < h < j, is an endnode of an edge in F'.
We next note that 7" does not contain any loop and there is no odd cycle contained in E(T”).
Indeed, if 7" contains a loop, then such loop must be on a vertex in V/(T") distinct from v;, vj,
while any cycle in E(T”) does not contain any of v;,v;. Therefore, we obtain ¢, as a minor
by deleting all edges in E(G) \ (E(T") U{f}) and contracting all edges in E(T") except for
ei, ej—1 (note that, if E(7”) contains an odd cycle, after contracting this becomes a loop).
The edges in E(T") can therefore be partitioned into a path P from i to j and even cycles.
Furthermore, since (G, F') satisfies the cycles condition, the cycle defined by P and f is even.
This shows that (0u,.e; + 0w, f) + (v ;4 uj,f) + Zh Z_H(JU,”% , + 0w, e,,) is @ multiple
of four. We assume that o, ., = Ovjejq = 1y the other cases being similar. In this case, it
follows that Zh p +1(0vh,eh . + 0, .e,) is a multiple of four, thus by inductive hypothesis e;
and e;_; have the same color in (R, B’), say color R’. We claim that the bicoloring (R, B)
defined by R = (R’ A E(T")) U{f} and B = B’ A E(T’) is balanced. We need to show that
(5) holds for every v € V(G). If v # v;,v;, then the condition holds because it was verified
also by (R’, B"). Thus we only need to verify (5) for v = v; and v = v;. We consider the case
v = v;, the remaining case being identical. Observe that the only edge in E(7”) incident to
v; is e;. Thus the only edge incident to v; that has changed color is e;, which had color R’
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and now has color B. Therefore, the left-hand-side of (5) decreases by 1/2 because of e;, and
it increase by 1 because of f which has color R, while the right-hand-side increases by 1/2
because of e;. This shows that (R, B) is balanced.

Finally, (R, B) satisfies the inductive hypothesis because of the inductive hypothesis on
(R, B'), and because no loop changed color. O

Proof of Lemma 14. We prove the statement by double induction, first on |V(G)|, and then
on |E(G)|. By property (C3), |V(G)| > 2. We can assume that G is connected, otherwise by
induction we can bicolor each of the connected components.

14.1. If (G, F) does not satisfy (C1), then it has a balanced bicoloring.

By Lemma 9, G is bipartite, L(G) = ), and F is a family of non-crossing chords of a cycle C
in G\ F. Note that the trail Ty := C' is balanced because it contains no loops and because
C is even since G is bipartite. Note that every edge in F' has both endnodes in C'. By parity
property a) and because L(G) = 0, every node of V(G) is incident to an even number of
edges in E(G)\ (E(C)UF), thus E(G)\ (E(C)UF) can be partitioned into cycles and trails
whose extremes are both half-edges. Let T1,...,T, be such a partition in cycle and trails.
Since G is bipartite, all cycles are even, thus all trails 71, ..., T} are balanced. By Lemma 15
applied to the family 7 = {Tp,...,Tx}, (G, F) has a balanced bicoloring. ¢

14.2. If G contains a cycle C' such that E(C) C F, then (G, F) has a balanced bicoloring.

Let G = G\ E(C) and F' = F \ E(C). Clearly (G',F’) € C and it satisfies (C3) and the
parity conditions, so by induction it has a balanced bicoloring (R’, B’). Since no odd cycle
in (G, F) has an edge in F, C is an even cycle, thus E(C) can be partitioned into two sets
(R”, B") such that for every node v € V(C), the two edges e, e’ incident to v in C have the
same color if and only if 0y # 0. Thus R := R'UR”, B := B’ U B”, define a balanced
bicoloring of (G, F). <

By the above two claims, we may assume that (G, F) satisfies (C1) and (C2).
14.3. If G has a cutnode, then (G, F') has a balanced bicoloring.

Let u be a cutnode of (G,F). Then there exist two connected subgraphs Gi,Gs of G,
both with at least two nodes, such that V(G1) N V(Gsa) = {u}, V(G1) UV (Gy) = V(G),
E(Gl) N E(Gg) = @, E(Gl) U E(Gg) = E(G) Let Fy := E(Gl) NF and Fy := E(Gg) NnFE.
Then (Gi, F1) and (Ge, F3) are in C and they both satisfy condition (C3). For i = 1,2, let
Q; be the connected component of G; \ F; containing u. Note that all components of G; \ F;
satisfy condition b) except, possibly, @Q;, and all nodes of G; satisfy a) except, possibly, w.

If (G1, F1) and (G2, F») satisfy conditions a) and b), then by induction there exist balanced
bicolorings of (R, B1), (R2, Bs) of (G1, F1) and (Ga, Fy), thus R := Ry U Re, B := B1 U By
defines a balanced bicoloring of (G, F)).

If one of (G, F1) and (Ga, F») does not satisfy condition a), then |dg, (u) \ (F1 U L(G1)|
and |0g, (u) \ (Fo UL(Gy)| are both odd. For i = 1,2, let (G;, F;) be obtained from (Gj, F;) by
appending a half-edge h; on node u, with sign +1. Observe that (G, F};) satisfies condition
a), and it trivially satisfies condition b). By induction, there exist a balanced bicoloring
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(R;, B;) of (G;, F;), i =1,2. Assuming that hy € Ry and hy € Bs, then R = Ry \ {h1} U Ry,
B = By U By \ {ha} defines a balanced bicoloring of (G, F').

Lastly, assume that (G1, Fy) and (Ge, F3) satisfy condition a), but one of the two, say
(G1, F1), does not satisfy condition b). In particular, H(Q;) = (. Let (G, Fi) be obtained
from (Gp,Fy) by appending two half-edges h,h’ on node u, both with sign +1. Clearly
(Gy, Fy) is in C, and it satisfies (C3) and the parity conditions. Thus (Gy, F}) has a balanced
bicoloring (R, B). Note that h, h’ have the same color, say R, otherwise (R\{h,h'}, B\{h,h'})
is a balanced bicoloring of (Gy, F1), which by Lemma 13 contradicts the fact that (Gy, F)
violates b). Let (G, F») be obtained from (Ge, F3) by appending a loop ¢ on node u, with
sign +1. Clearly (Gg, F») satisfies condition (C3) and the parity condition a). We will argue
that (Go, F) is in C and satisfies condition b); this will imply that (G2, Fb) has a balanced
bicoloring (R2, B2), say with £ € B, and thus R = Ry \ {h,h'}URy, B = B1U By \ {¢} defines
a balanced bicoloring of (G, F').

To show that (Go, F2) € C, it suffices to show that (Ga, F) is a minor of (G, F). First we

prove that Fy U L(G1) # 0 or (G1, Fy) contains an odd cycle C. Indeed, if F; UL(Gy) =0,
then G; = @1, and so G has an odd number of odd edges. Since E(G1) = Ey(G1) and all
nodes in G7 have even degree, E(G1) is the disjoint union of cycles, at leats one of which
must be odd because G has an odd number of odd edges.
Consider a shortest possible path P in G \ Fi from u to either an edge f € F U L(G1) or to
an odd cycle C. Then (G2, Fy) can be obtained from (G, F) as a minor by contracting the
edges in P, and possibly deleting the endnode of f not in P, if f is not a loop, or contracting
all the edges in the odd cycle C.

We finally show that (Ga, F») satisfies property b). Let Q2 be the component of Go \ F
induced by V(Q2). Note that E(Q2) = E(Q2) U {¢}. If H(Q2) # 0, then Q2 satisfies b).
If H(Q2) = 0, then the connected component @ of G induced by V(Q1) U V(Q2) has no
half-edges, therefore [0(V(Q)) N (F U L(QG))| plus the number of odd edges in Ey(Q) \ F is
even. Since [0¢, (V(Q1)) N (F1 U L(G1))| plus the number of odd edges in E(Q1) \ F is odd,
it follows that |6a,(V(Q2)) N (F» U L(Q2))| plus the number of odd edges in E(Q2) \ F» is
even. Thus G, satisfies b). ©

By the above claim, we may assume that G does not have any cutnode. Thus G is a

block. Since (G, F) satisfies a), |H(G)| is even, say |H(G)| = 2k.

Case 1: G\ F is connected. If k = 0, then, by property a), there exists a closed trail T'
in G\ F such that E(T) = E(G) \ F. As (G, F) satisfies b), T satisfies the hypotheses of
Lemma 15. Thus (G, F') has a balanced bicoloring. We assume k£ > 1. Furthermore, we may
assume that F' # (), otherwise by property a) the edges of G can be partitioned into k trails
whose extremities are half-edges of G, and by Lemma 15 (G, F) has a balanced bicoloring.
By Lemma 10, we need to consider two cases.

i) (G, F) satisfies Lemma 10(i). Let hy,...,hog_1) be 2(k — 1) half-edges of G, and let
v1,...,Uyk-1) be the corresponding endnodes. Since in this case G is bipartite, there exists
a partition V;,V5 of V(G) such that every odd edge has one endnode in Vi and one in
Vo and every even edge has both endnodes in either V; or V5. Consider the bidirected
graph G obtained from G by introducing a dummy node u and replacing the half-edges
hl,...,hg(k_l) with the edges UV, ..., Wk 1)- We let oy, uo; = Ou;his Cujuw; = Tvihi if
v; € Vi, Ouuw; = —0Op,p, if v; € Vo, 0 =1,...,2(k — 1). Observe that, by construction, G is

22



bipartite. Note also that (G, F') does not contain ¢, as a minor because F' is a star centered
at a node v, all loops of G are incident to v, and G does not contain any odd cycle. It
follows that (G, F) € C. Since G has only two half-edges, there exits a trail 7' in G'\ F' whose
extremes are the two half-edges and such that E(T) = E(G) \ F. It follows from Lemma 15
that (G, F) has a balanced bicoloring.

ii) (G, F) satisfies Lemma 10(ii). Let f = vw € F such that any other edge in F' is nested in
f. Let P be a path in G \ F between v and w. Then P contains all endnodes of edges in F.
One can verify that the edges of E(G) \ F' can be partitioned in trails 77, ..., Ty such that
all extremities are half-edges and such that E(P) C E(T1). It follows from Lemma 15 that
(G, F) has a balanced bicoloring,.

Case 2: G\ F is not connected. Let W be the set of edges in F' with endnodes in distinct
connected components of G \ F.

If there is w € V(G) incident to at least two edges in W, then by Lemma 12 there exist
two shrinkable edges €', ¢” € W incident to w, say ¢/ = uw, ¢’ = vw. Up to switching sign on
wu, we may assume that oy, 4w # Owww- Let (G, F',0’) be obtained from (G, F') by shrinking
¢/, ¢’  and let € = uv be the new edge. It follows immediately that (G’, F') satisfies (C3), a),
and b), thus by induction (G’, F") has a balanced bicoloring (R’, B'). Assuming € € R/, it
follows that R := R'U{e, e’} \ {€} and B := B’ define a balanced bicoloring of (G, F).

Thus we may assume that W is a matching in G. By switching signs on the endnodes of
the edges in W, we may assume that, for all vw € W, 04 o = O pw = +1.

Let Q1,...,Q¢ be the connected components of G\ F. For i =1,...,t, let F; be the set
of edges of F with both endnodes in V(Q;), and let V; = {v,... ,vzi} be the set of nodes in
V(Q;) that are incident to some edge in W. Let G be the graph obtained from G by replacing
each edge vw in W with two loops ¢, and ¢,, on v and w, both with sign +1. For vw € W, we
refer to £, £,,, as the “new loops” of G, and denote by L such set. For i = 1,...,t, let W; be
the set of new loops with one endnode in V(Q;), that is, W; = {£, : v € V;}. Note that G is
not connected, and its connected components are the graphs Q; := (V(Q;), E(Q;) U F;UW;),
i=1,...,t. Also, for every v € V;, there is exactly one new loop on v. Note that (Q;, F}) is
in C, since it is the pair obtained from (G, F') by deleting all nodes in V(G) \ V(Q,).

By Lemma 11(i), the nodes in V; can be ordered so that v§ is a cutnode in Q; separating
;71 and v§+1, i=1,...,t,j =2,...,k; — 1. Let P’ be a path from v} to v,ii in Q;. Note
that P* passes through vj,... v ;.

v

14.4. For every v € V(Q;), there exists a path in Q; from v to vi that does mot pass through
v,i% and a path in Q; from v to vy that does not pass through vl

Suppose not. Since @Q; is connected, we may consider the shortest path P from v to {v}, v}%}
Up to symmetry, P does not contain v,iﬂ, and its extremes are v and vi. Since G is 2-
connected, there exists a shortest path P’ in G from v to V(P?) \ {vi} that does not pass
through vi. Note that, since no intermediate node of P’ is an element of V;, then P’ does
not cross any edge of W, thus P’ is entirely contained in Q;. Let u be the endnode of P’ in
V(P \ {vi}, and let P” be the path contained in P’ from u to vi. Let w be the node in
V(P)NV (P') that is closest to v} in P, and let P be the path contained in P between v} and
w, and P’ be the path contained in P’ between u and w. Note that w # v%, because P’ does
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not pass through v, and that P’ contains an edge in F, otherwise there exists a path from v
to v,i% in Q; that does not pass through vi. Thus v¢, P,w, P’,u, P" v form a cycle C such
that E(C) N F # 0, and the two edges of C incident to v} are not elements of F'. It follows
that the graph induced by E(C) U Evi has a ¢, minor, contradicting the fact that Q; € C. ©

By 14.4 and by Lemma 11(iv)(v)(vi), it follows that Q; is bipartite, every loop of @Q; that
is not an element of W; is incident to either v¢ or v,i%, and every edge in F; has both endnodes
in P°.

We observe that, if Q; has no half-edges, then ]L( ;)| must be even. Indeed, by condition
b), if there are no half-edges in E(Q;) then |L(Q;)| is congruent modulo 2 to the number
of odd edges in Eg(Q;) \ F. By condition a) every node of V(Q;) is incident to an even
number of edges in Eq(Q;) \ F, therefore Eq(Q;) \ F can be partitioned into cycles. Since Q;
is bipartite, each of these cycles is even, therefore the number of odd edges in Ey(Q;) \ F is
evern.

For j=1,...,k; — 1, denote by Pf the path contained in P’ from v;. to véﬂ. Note that,
since W is a matching, vé # vé 41, thus P]’ has length at least one.

14.5. For i = 1,...,t, there exists a balanced bicoloring (R;, B;) of (Qi, F;) such that, for
j=1,...,k; — 1, the loops EU; and EU;H have the same color if and only if path Pf has an
odd number of odd edges.

Note that T¢ := vi,ﬁvi,v%,Pf,vé,ﬁvé,vé,PQi,vg,...,v,ii_l,P,ﬁi_l,v};i,ﬁvii,v};i is a trail that
contains all loops in W;. Since all the elements of L(Q;)\ W; are incident to vi or v,i%, there
exists some trail 7% in @Q; \ F such that T is a subtrail of T%, every loop of Q; is in T%, and T*
is either closed or its extremes are half-edges. Furthermore, we can choose 1% so that, if Q;
has some half-edge, then both extremes of T% are half-edges. We argue that 7% is a balanced
trail. Indeed, if 7" is closed, then E(T") is the disjoint union of loops and cycles, and each
of these cycles is even because Q; is bipartite. It follows that, if T is closed, then E(T") has
an even number of odd edges. Since |L(Q;)| is even and L(Q;) C E(T?), it follows that T° is
balanced.

Observe that, since (G, F') satisfies condition a), every node in Q; is incident to an even
number of edges in E(Q;) \ (E(T%) U F), therefore E(Q;) \ (E(T*) U F;) can be partitioned
into trails whose extremes are half-edges and cycles, and all cycles must be even because
Q; is bipartite. It follows that there exists a family F; of trails such that 7; € F; and
such that {E(T) : T € F} is a partition of E(Q;) \ F;. Since all edges in F; have both
endnodes in V (T?), it follows from Lemma 15 that (Q;, F;) has a balanced bicoloring (R;, B;).
Furthermore, since T° is a subtrail of 7%, Lemma 15 ensures that we can choose (R;, B;)
so that, for j = 1,...,k; — 1, the loops ¢, i and £ Vi have the same color if and only if

z“rO'z

vir1b, Ly

Vi1
2, because all new loops of G have sign +1, this is equivalent to the statement 14.5. ¢

¢ —i—szeE(P,) (w0 +0w Uw) is congruent to four. Since Tuie +0yi »
+1 J )

We finally show how to recombine the bicolorings (RZ, B;) into a balanced bicoloring of
(G,F). Note that R :== R{U...URy, B = By U...U B, define a balanced bicoloring of
(G,F\W).
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Since G is connected and G\W has ¢ components, there exist W C W such that [W| = t—1
and (G\W)UW is connected. We may assume that, for every edge vw € W, both new loops
{, and £,, in G have the same color in (R, B). We will show that, for every vw € W\ W, both
new loops ¢, and £,, in G have the same color in (R, B). This concludes the proof because
the bicoloring (R, B) defined by (R, B) by assigning to every vw € W the common color of
£, and ¢,, is balanced.

Let W™ be the set of edges vw € W such that £, and £, have the same color in (R, B),
and let W~ = W \ W*. We need to show W~ = ). Suppose not. Note that G\ W~ is
connected, because W C W™ and by the choice of W. Thus, for every vw € W™, there
exists a path P(v,w) between v and w in E(P')U...UE(P!)UW™. Among all elements of
W=, choose vw € W~ and P(v,w) so that P(v,w) is shortest possible, and let P := P(v,w).
Let C be the cycle in (G, F') defined by P and by vw. Up to changing the indices, we may
assume that v € V(Q1), w € V(Qp), and P = v, PY,wy, wyve, P2, ..., wy_1,wp_1vp, P, w,
where w;v;+1 € W,i=1,...,h—1, and P’ is the path between v; and w; in P fori =1,....h
(where v; = v, w, = w). We notice that, for i = 1,...,h — 1, V(P)NV; = {v;,w;}. Indeed,
suppose for some i there exists a node u € V; distinct from v; and w;. In particular, u is
an intermediate node in P?, thus both edges incident to u in P are in E(G) \ F. Since
u € V;, there exists v’ € V(G) such that uv’ € W. If v’ ¢ V(P), then ¢, is a minor of the
graph defined by the cycle C' and the loop obtained by deleting u'. If v’ € V(P), then either
uu’ € W, in which case the unique path in P from u to v is shorter than P, contradicting
our choice of vw € W, or ue/ € W7, in which case the path in E(P) U {uu’} between v
and w is shorter than P, contradicting the choice of P. By 14.5, for i = 2,...,h — 1, edges
w;_1v; and w;v;41 have the same color if and only if P; has an odd number of odd edges,
¢, and wivy have the same color if and only if P! has an odd number of odd edges, and £,
and wy,_ v, have the same color if and only if P* has an odd number of odd edges. Since ¢,
and ¢, have distinct colors, and since we are assuming that all edges in W are odd, a simple
parity argument shows that P has an even number of even edges. Since vw is an odd edge,
it follows that the cycle C' is odd, a contradiction since no odd cycle of G contains edges in

F. O

5 Proof of Theorem 2

For the “if” direction of the statement, assume (G, F') contains ¥, as a minor. As observed
in the introduction, As is a minor of A(%,), thus As is a minor of A(G,F) as well. Since
A3 does not have the EJ property, and since such property is closed under taking minors, it
follows that A(G, F') does not have the EJ property.

The remainder of the section is devoted to proving the “only if” direction. For any bidi-
rected graph G, F C E(G), and any ¢ € ZV(OI let P(G,F,c) = {z € RE(G) : AG,F)z =
¢}, and let P'(G, F, c) be its first closure. We will prove that, for every (G, F') € € and every
cezlVEl P'(G, F,c) is an integral polyhedron. By Lemma 3, this will imply Theorem 2.

By contradiction, suppose that there exists a pair (G, F') in ¢ and an integral vector ¢ such
that P'(G, F, ¢) has a fractional vertex Z. Among all such counterexamples, choose (G, F), ¢, T
such that the quadruple (|V(G)I, [Eo(G)|, |E(G)|, [Xcep() Tel) 18 lexicographically minimal.
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It is straightforward to verify that G must have at least two nodes. Throughout the proof,
let A:=A(G,F), E:=E(G), Ey := Ey(G), L:=L(G), H:= H(G), 6(-) :=da(").

Most of the proof is devoted to showing that z. = % for all e € E. Afterwards, we will
argue that (G, F') has a balanced bicoloring (R, B). This will conclude the proof of Theorem 2,
since the points y and z defined by y := 7 + %X(R) — %X(B), z:=T— %X(R) + %X(B), are
integral points in P(G, F, c) such that Z = 3(y + z), contradicting the fact that Z is a vertex
of P'(G,F,c).

Given a node v, if G’ is obtained from G by switching sign on node v and ¢ € RV(@) is
defined by ¢, = ¢,, u € V(G) \ {v}, ¢, = —cy, then T is a vertex of P'(G', F,c') because,
for every U C V(G), ¢(U) is odd if and only if ¢/(U) is odd. So, if (G, F), ¢, T is a minimal
counterexample, then also (G, F), ¢/, T is a minimal counterexample. Hence, throughout the
proof we will perform such switching whenever convenient.

Note that F' # (), since, by the theorem of Edmonds and Johnson [5], P'(G, 0, ¢) is integral.
Furthermore, G is connected; otherwise, let G’ be a component of G such that z, ¢ Z for some
e € E(G'),let F/ = FNE(G'), and let T’ and ¢ be the restrictions of Z and ¢, respectively, to
E(G") and V(G'). Note that (G', F’) is in ¢ and that |V (G’)| < |[V(G)], hence P'(G', F', )
is integral. However, T’ is a vertex of P'(G’, F’, ), a contradiction.

Claim 1. Z, > 0 for every e € E.

If Z. = 0 for some e in E(G), let (G',F’) be obtained from (G, F) by deleting e, and
7 € RE(G) be obtained from z by removing the component corresponding to e. The point z’
is a fractional vertex of P'(G’, F’, ¢), which contradicts our choice of (G, F') since (G, F') € C,
V(G = VI, [Eo(G")] < |Eol, and [E(G)] < |E(G)]. ©

Note that A has full rank, otherwise deleting a redundant constraint from Ax = ¢, which
corresponds to deleting a node from (G, F'), gives a smaller counterexample. Since Z is a
vertex of P'(G, F, ¢), it must satisfy at equality |E| linearly independent inequalities valid for
P'(G, F,c). By Claim 1 and Lemma 8, there exists a laminar family £ of sets in {U C V :
c(u) odd } such that |.£| = |E| — |V| and Z is the unique solution of the system defined by
the |E| linearly independent equations

Ar = ¢
@O\ (FUL) = 1 Uef (™)

By Lemma 6, we can also assume the following.
For every S C U, S # 0, 3vw € Ey \ F such that v € S and w € U\ S. (8)

Claim 2. For every e € E, 0 < T, < 1. Furthermore, for every e € E\ (F' U L), there exists
U e L such that e € 6(U).

By Claim 1, Z. > 0 for every e in E. First we show that ; < 1 for any f in FFU L. Let

f € FUL, and suppose Zy > 1. Possibly by switching the signs on the endnodes of f, we
can assume that f has a sign +1 on its endnodes. Let ' be obtained from T by decreasing
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by 1 the component corresponding to f and let ¢ be obtained from ¢ by decreasing by 2
the component /s corresponding to the endnodes of f. Since |, pZL] < [D.cpTel, by
minimality of (G, F'), ¢, Z the polyhedron P'(G, F, ') is integral. Note that, for every U C V,
d(U) is odd if and only if ¢(U) is odd, thus the odd-cut inequalities for Az = ¢/, x > 0
are exactly the odd-cut inequalities Ax = ¢, x > 0. Since variables indexed by elements in
F U L do not appear in the odd-cut inequalities, Z’' is a fractional vertex of P(G, F,c), a

contradiction.

We show next that, for all e in E'\ (F'U L), there exists U € .Z such that e € §(U).
Suppose not. Then there exists e € E'\ (F'U L) such that e ¢ 6(U) for all U € .Z.

We first consider the case where e = vw € Ejy. Possibly by switching signs on v we
may assume that o, # oye. Let (G',F’) be obtained from (G, F) by contracting e, let
r be the node obtained from the contraction of vw, and let A’ = A(G',F’). Let ' be the
restriction of Z to the components relative to edges in E(G'), and let ¢ be obtained from ¢
by removing the components corresponding to v and w and introducing a component relative
to r with value ¢, = ¢, + ¢,. Since (G',F') is in € and |V(G')| < |V, the polyhedron
P'(G',F',) is integral. Note that z’ € P(G',F’,¢). Furthermore, the odd-cut inequalities
for A2’ = ¢, 2’ > 0 are precisely the odd-cut inequalities for Ax = ¢, x > 0 relative to sets
U C V that either contain both v and w or none of them. This shows that ' € P'(G', F’', ).
Since the equation (A’'z’), = . is the sum of (Az), = ¢, and (Ax), = ¢y, the equations
in A’z = ¢ are linearly independent. For every U € ., either v,w € U or v,w ¢ U, since
e ¢ §(U). Thus ¥’ satisfies at equality the |F| — 1 linearly independent inequalities defined
by A’z = ¢ and by the odd-cut inequalities corresponding to sets in .#. Therefore, since
|E| — 1> |E(G")], ' is a vertex of P'(G', F',), so it is an integral point. It follows that .
must be the only fractional entry in &, which is impossible since (AZ), = ¢, and ¢, is integer.

If e is a half-edge on node v € V, the column relative to e in the constraint matrix M
of the system (7) is the vector of all zeros except in row A,. Since the columns of M are
linearly independent, e is the only half-edge of G on v. Analogously, there are no loops on
v. Let (G, F’) be obtained from (G, F) by deleting node v and let A" := A(G', F’). Let
%' € ZF(@) be the vector obtained from z by removing the component relative to e, and let
¢ € ZV(G) be obtained from ¢ by removing the component corresponding to v. Since (G',F")
is in € and |V(G’)| < |V, the polyhedron P'(G’, F’,) is integral. Note that A’ is obtained
from A by removing the row corresponding to v and the column relative to e, and that the
odd-cut inequalities for P(G’, F', ') are the odd-cut inequalities for P(G, F, c¢) relative to sets
UCV\{v}. Thusz' € P(G',F',d). For every U € £, U C V\ {v} since e ¢ §(U), thus all
odd-cut inequalities in (7) are valid for P'(G’, F’, ). Tt follows that Z’ satisfies at equality the
|E| — 1 = |E(G’")| linearly independent inequalities defined by A’z’ = ¢’ and by the odd-cut
inequalities in (7), thus it is a vertex of P/(G’, F’, ). This implies that, Z’ is integral and .
is the only fractional entry of Z, which is impossible since (AZ), = ¢, and ¢, is integer.

We now prove that, given e in E\ (FUL), Z. < 1. Let U € £ such that e € 6(U). Note
that Z, < 1 since Z(6(U) \ (F U L)) = 1. Suppose, by contradiction, that Z, = 1. It follows
that e is the only edge in §(U) \ (F U L), and that the odd-cut inequality relative to U is
x. > 1. Possibly by switching signs on the endnode/s of e, we may assume that e has sign +1

on its endnode/s. Let (G, F) be obtained from (G, F') by deleting e, and let A’ := A(G', F).
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Let ¢ be obtained from ¢ by subtracting 1 to the entries relative to the endnode/s of e,
and let ' be the vector obtained from Z by removing the component corresponding to e.
Since (G, F) is in &, |V(G")| = |V, |Eo(G")| < |Ey|, and |E(G')| < |E|, the polyhedron
P'(G', F,) is integral.

We show that @ € P'(G',F,d). Clearly ¥’ € P(G',F,c), so we need to show that it
satisfies the odd-cut inequalities. Let U C V(G’) such that ¢/(U) is odd and such that
the odd-cut inequality z(d¢/(U) \ (F U L)) > 1 is not redundant for P'(G’, F,c'). Since
5¢/(U) C FUL(G"), it follows from Lemma 6 that either U CU or U CV \ U. If e ¢ §(U),
then ' (6 (U) \ (F U L(G"))) = 2(6(U) \ (FUL)) > 1. Assume e € §(U). Then ¢(U) =
d(U) + 1, which is even. If U C U, then ¢(U \ U) is odd, hence z'(dq/(U) \ (F U L)) =
z(O(U\U)\(FUL)) > 1. IfU C V\U, then ¢(UUU) is odd, hence #’'(6c(U) \ (FUL)) =
(U UU)\ (FUL)) > 1. Thus & € P'(G', F,c).

Finally, since ' € P(G',F,d) and P(G',F,c) is integral, T’ is a convex combination
of integral vectors y',...,y* € P(G',F,d). Thus & = (%,) is a convex combination of
(yll), e (ylk), which are integral points in P(G, F c¢), contradicting the fact that z is a frac-
tional vertex of P'(G,F,c). ©

Claim 3. G does not contain a cycle in F' (i.e. (G, F) satisfies condition (C2)).

Suppose C'is a cycle in F'. Since (G, F') € €, the cycle C is even, hence the edges of C' can be
partitioned in two subsets R and B so that any two adjacent edges uv, uw in C' are contained
in the same side of the partition if and only oy uy # Ty uw. Let y := T + ex(R) — ex(B) and
z =17 —ex(R) + ex(B), where € = min.c () Te- By Claim 2, € > 0. By the choice of R and
B, it follows that y, z € P(G, F, c¢). Moreover, both y and z satisfy all the odd-cut inequalities
for Az = ¢, x > 0, since these only involve variables relative to edges in E'\ (F' U L). Thus
Y,z € P'(G,F,c) and T = %(y + 2), contradicting the fact that Z is a vertex of P'(G, F,c).
o

Claim 4. Each node in V is incident to at least one edge in E'\ (F'U L).

By contradiction, let v be a node in V' incident only with edges in F'U L. Since |V| > 2 and
G is connected, there exists an edge f = vw in F incident to v. Possibly by switching sign on
v, we may assume that o, y # o0, s. Notice that ¢, is even, otherwise the odd-cut inequality
corresponding to the set {v} is not satisfied.

Let (G', F’) be obtained from (G, F') by contracting f (operation (O4)), let r be the node
obtained from the contraction of vw, and let A" := A(G’, F"). Let T’ be the restriction of =
to the component relative to edges in F(G’), and let ¢’ be obtained from ¢ by removing the
components corresponding to v and w and introducing a new component relative to r with
value ¢, := ¢, + ¢y

Since (G',F’) is in € and |V(G')| < |V]|, the polyhedron P'(G’, F’,c’) is integral. We
show that ' € P'(G', F',d). Clearly ¥’ € P(G',F’,), so we need to show that it satisfies
the odd-cut inequalities. Since ¢, is even, ¢/ has the same parity as c,.

Let U’ be a subset of V(G') = V' \ {v,w} U {r} such that ¢/(U’) is odd. If r ¢ U’ then
cU") = d(U') and 6 (U') \ (F' U L(G")) = 6(U")\ (FUL). If r € U, then, if we let
U:=U\{r}U{w}, ¢U) is odd and o¢/(U’) \ (F' UL(G")) = 6(U) \ (FUL). It follows
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that every odd cut inequality for P(G’, F’,c/) is an odd cut inequality for P(G,F,c), so
¥ e P(G'F' ).

By (8), U C V \ {v} for every U € .Z, therefore all odd cut inequalities in (7) are valid
for P'(G', F’, ) and they are satisfied at equality by Z’. Since the inequality (A’2’), = ¢} is
the sum of (Ax), = ¢, and (Ax), = ¢,, T’ satisfies at equality the |E| — 1 = |E(G’)| linearly
independent inequalities defined by A’z = ¢ and by the odd-cut inequalities in (7). Hence Z’
is a vertex of P(G', F’,¢’), and it is therefore integral, contradicting Claim 2. <

Claim 5. If G\ F is connected and V ¢ &£, then Z. = % for all e € G.

Let U be a maximal set in the laminar family .. Since .Z is laminar, for every S € &
either S CU or SCV\U. Since V¢ %, UcCV. As G\ F is connected, there exists e €
S(U)N(Ep\F). Let e = vw, where v € U, and let (G, F') be obtained from (G, F') by deleting
e and introducing half-edges h, and h,, on v and w with signs o, . and oy, ., respectively.
Let A" := A(G', F). One can readily verify that (G', F) is in the class €, |[V(G')| = |V|, and
|Eo(G")| < |Ep|, thus the polyhedron P'(G', F, ¢) is integral. Now let Z’ be obtained from & by
removing the component corresponding to e and introducing two components relative to h,
and hy, with ), =z} = Z.. Clearly 7’ € P(G', F,c). Each odd-cut inequality of the latter
system is satisfied by #’ since, for every S C V, ¥ (6 (S) \ (F U L(G"))) > z(6(S) \ (FU L)),
where equality holds if and only if |S N {v,w}| < 1. Thus ' € P'(G', F,¢). Furthermore, for
every S € £, |SN{v,w}| <1, since either S C U or S C V' \ U. Thus Z’ satisfies at equality
the odd-cut inequalities

' (6 (S)\ (FUL(G"))) > 1 forevery S € .Z. 9)

Since 7’ satisfies at equality |E| = |E(G’)| — 1 linearly independent inequalities, Z’ lies on a
face @ of dimension 1 of P'(G’, F, ¢), thus there exist two vertices y, z of P'(G’, F,¢) in @ such
that &’ = Ay + (1 — \)z, where 0 < A < 1. Since P'(G', F,c) is integral, the points y and z
are integral and 0 < A < 1. Since y, z € @, y, z satisfy (9) at equality. By Claim 2, each edge
h € E\(FUL) isin §(S) for some set S € &, thus each edge h € E(G')\ (FUL(G")U{hy}) is
in §(S) for some set S € .£. Therefore yy, zj, € {0,1} for every h € E(G")\ (FUL(G")U{hw}).

Since :E;lv = :E’hw = T, < 1, we can assume that y,, = 1 and z;,, = 0 and that precisely one
among yp,, and zp, is 0. Hence z, = A. If 2, = 0, then y,, = 1 because f;lw = AYp,,, thus
if we define two points 7,z € R¥ by g, = yn, h € E\ {e}, % = 1, and 2z, = 2z, h € E \ {e},
Ze = 0, then y and z are integral points in P(G, F,c) and T = Ay + (1 — A)Z, contradicting
the fact that Z is a vertex of P'(G, F,c). Therefore y,, = 0 and 25, = k for some positive
integer k. Since A = T, = A\yp, + (1 —N)zp, = (L =Nk, A=Fk/(k+1). If £ = 1, then all
components of T are equal to 1/2 and we are done. Thus we may assume that k > 2.

Note also that, since z(dg/(U) \ (F U L(G"))) = 1 and zp,, = 0, there exists g # e in
dcr(U) \ (F UL(G")) such that z; = 1. Thus §(U) \ (FUL) = {e,g} and 7, = 1 — X =
1/(k+1) < 1/2. If g € Ey, then by applying to g the same argument we used for e, we will
obtain that Z, > 1/2, a contradiction. Therefore g € H. In particular, ¢ (U) N Ey(G') C F.

Let G” be the bidirected graph obtained from G’ by switching the sign of h,. Let
A" = A(G",F), ¢ € RV be defined by ¢! = ¢, for all u € V' \ {w}, and ¢, = ¢,, — 1. Clearly,
(G",F) is in the class ¢ and P'(G”, F,c") is integral.
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Let y”, 2" and 7" be defined by y; = yn, 2j, = 2z, and &) = T}, for all h € E(G’) \ {ew},
yp. =1,z =1—kandZ; =1-7. Observethat y” and 2" are integral, they satisfy the
system A”z" =’ and 77 = \y" 4+ (1 — \)2”. Since y” > 0, it follows that y’ € P(G", F,"),
and therefore y" € P'(G", F,c"). Since z;; <0, 2" ¢ P'(G", F,c").

We prove next that 2”7 € P/(G",F,c"). Tt suffices to show that ¥’ satisfies all odd-cut
inequalities for P(G”, F,c"). Let S CV such that ¢’(S) is odd. If w ¢ S, then ¢’(S) = ¢(S5)
and z”(0¢ (S) \ (FUL(G"))) = z(6(S) \ (FUL)) > 1. Otherwise, since d¢/(U) N Ey(G') C F,
it follows by (8) that S C V(G’) \ U. Note that ¢(U U S) = c¢(U) + ¢(S) = ¢(U) + "(S) + 1,
hence ¢(U U S) is odd. Since 7, = 1— Z. = Ty, it follows that z”(d¢/(S) \ (F U L(G"))) =
Z(OUUS)\(FUL)) > 1.

Observe next that, for every S € £, w ¢ S, otherwise hy, € d¢/(S) and z(dg(S) \
(FUL(G"))) =1 would imply zp, = 1 < k. It follows that Z” and y” satisfy at equality the
|E| = |E(G")|—1 constraints A”z" = ", 2" (66 (S))\ (FUL(G")) > 1. Tt follows that Z” and
y” both belong to a face Q" of P'(G”, F, ") of dimension 1. Recall that 2”7 = A\y” + (1—\)2",
thus &’ belongs to the line segment joining y” and 2”. Since 2" ¢ P'(G",F,c"), it follows
that there exists a vertex z of Q' in the line segment joining y” and 2”. Thus there exists
A, 0 < A < 1such that 2 = Ay” + (1 — A)z”, and so zZ; = 1 — X since yy = 0 and 27 = 1.
Note however that the point z should be integral, because it is a vertex of Q’, and thus also
a vertex of P'(G", F,c"), a contradiction. ¢

Claim 6. If G is bipartite, G \ F is connected and L = (), then T, = % for every e € E.

Since G is bipartite, it follows by a theorem of Heller and Tompkins [9] that the nodes in
G can be partitioned into two subsets Vi, Vs such that, for every e = vw € Fy, v and w are
in the same side of the bipartition if and only if 0, ¢ # 0. By symmetry, we may assume
c(V1) > ¢(Va). For i = 1,2, let H;" and H; be the sets of half-edges of G with endnode in V;
having, respectively, +1 and —1 sign.

Since G\ F is connected, by Claim 5 we can assume that V' € Z. The odd-cut inequality
relative to V' is x(H) > 1, and it is satisfied at equality by Z. Since L = (), by summing the
equations in Az = ¢ corresponding to nodes in V; and subtracting the equations relative to
nodes in V5, we obtain z(H;" U H; ) — z(H; UHS) = (V1) — (V).

Since ¢(V) is odd, ¢(Vi) — (Vo) > 1, thus 1 = #(H) > z(H{ U H, ) — z(H; UH)) > 1,
because z > 0. It follows that Z(H; U H)) = 0, so H; U Hy” = () because & > 0. So the
equation z(H) = 1 can be obtained as a linear combination of the equations in Az = ¢,
contradicting the fact that the inequalities in (7) are linearly independent. <

Given a star A C F U L, let G® be obtained from G\ A by introducing, for every node
v € V incident to at least one edge of A, a loop ¢, on v, with sign +1 if ZfeA oy fTp >0
and sign —1 otherwise. Let L® be the set of these new loops in G®. Let FA := F \ A
and A := A(G?,F?). Let z° ¢ RE(G®) be obtained from z by removing the components
corresponding to the edges in A, and by setting, for every loop ¢, in L2, ifv = | ZfeA Ty, fZfl.

Claim 7. Let A C F UL be a star centered at node vo € V with ANF # (. If (GA, F?)
does not contain G4 as a minor, then the following hold.

(i) ANL = 0;
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(i) G\ A is connected;

(iii) T2 = Ay + (1 — \)z for some 0 < X\ < 1, where y, z are integral points in P(G> ,C)
satisfying ye, ze < 1 Ve € E(GA)\{&,O}. Moreover, for every U € £, |6(U )\(FUL)\ =
2.

(i) If |A] =1, then T is half-integral.

By assumption we have that (G2, F2) is in €. Since |V(G?)| = |V, and |Eo(G?)| < |Eol,
it follows that P'(G2, F2,c) is integral.

The matrix A2 is obtained from A by deleting the columns relative to the edges in A, and
by introducing columns relative to the loops in L®. These columns are zero everywhere except
for the entry relative to v, with value 20, 4,. Observe that the space spanned by the columns
of A® contains the space spanned by the columns of A. Since A has full row-rank, it follows
that A® and A have rank |V|. The odd cut inequalities for P(G, F,¢) and for P'(G®, F2,¢)
are the same, since they do not involve elements in F'U L and F~ U L(G?), therefore 22 €
P’ (GA,FA,C) and it satisfies the odd cut inequalities in (7) at equality. In particular, A
satisfies at equality | E| linearly independent inequalities valid for P'(G®, F2, ¢). This implies,
E(G?) > |E|. Furthermore, E(G?) > |E|, otherwise Z2 is a vertex of P'(G®, F2, ¢) and it
is therefore integral, a contradiction.

(i) Since the number of nodes incident to some element of A is |A N F| — 1, it follows that
E(G?) = |E|—|A|+|L?| = |E| - |ANL|+1. Since E(G?) > |E|, it follows that [ANL| < 1.

(ii) From the above, |E(G?)| = |E| + 1, therefore 72 belongs to a face @ of dimension 1 of
P'(GA,F?,¢). Suppose G'\ A is not connected. Clearly also G\ A is not connected. Let G’ be
a connected component of G® and let G” be the union of all the other connected components
of GA. Let F' = FANE(G"), F" = FANE(G"), let ' and " be the restriction of 2 to the
edges of G’ and G”, respectively, and let ¢ and ¢ be the restriction of ¢ to V(G') and V(G")
respectively. Then P'(G2, F2,¢c) = P/(G',F',d) x P'(G",F",") (where “x” indicates the
cartesian product of two sets). In particular, Q@ = Q' x Q" where @’ and Q" are faces of
P'(G',F',d) and P"(G",F", "), respectively. Since dim(Q) = dim(Q’) + dim(Q"), either @’
or Q" has dimension 0. Since ¥’ € ' and 7" € Q”, 7’ is a vertex of Q' or 7" is a vertex of
@". Thus at least one among Z’ and Z” are integral points. By Claim 4, E(G’)\ L> # {) and
E(G")\ L* # (), thus there exists some edge e € E '\ A such that Z, is integer, contradicting
Claim 2.

(111) The point Z* belongs to the polyhedron P := P/(GA FA c)n{z? € REGS) 5 <
[z2], e € FA U L(G?)}. By Lemma 6, P is the first Chvatal closure of the polyhedron

defined by the system A%z® = ¢,z > 0 xf < 1,Vf € FAUL(G?)\ {{,}. By Lemma 7,

P is an integral polyhedron. Since o belongs to a face of dlmensmn 1 of P/(GR,F~ ¢), 2

belongs to a face Q of dimension 1 of P. Tt follows that z2 is a convex combination of two
integral vertices y and z of Q, i.e. Z2 = Ay + (I = A)z for some 0 < A < 1.

By Claim 2, [2°] = 1 for all e € FAUL(G?)\{£y, }, and each edge in E(G?)\(FAUL(G?))
belongs to 6(U) for some U € Z. Since y,z are in Q, they satisfy at equality all odd cut
inequalities in (7). Tt follows that y,z. € {0,1} for every e in E(G?)\ {f,}, and that
[0(U)\ (FUL)| =2 for every U € Z.
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(iv) Assume |A| = 1. Then A = {f} for some f = vw € F and E(G®) = E\ {f} U {{y, 4}
Since szv = jéAw = Ty, it follows that [:EZAJ = [i“fw] = 1, therefore the points y, z defined in
(iii) have all 0,1 components. Assume, by symmetry, that ys, = 0, and z,, = 1. Then y,, =1
and z,, = 0, otherwise the points 7,z € Z” | obtained from y and z by replacing the two
components relative to ¢, and £, with one component relative to f of value 4y = y,, = Y,
Zy = 2z, = 2,, are in P'(G,F,c) and Z = Ay + (1 — \)Z, a contradiction. It follows that

zy, =1—XAand @Aw = \. Since Efv =If= @Aw, A =1/2, thus 7 is half-integral. <

Claim 8. If G\ F is connected, then T, =1/2 for every e in E.

By Claim 3, we know that (G, F') satisfies condition (C2). Suppose that this pair does not
satisfy condition (C1). By Lemma 9, we have that L = () and (G, F) is bipartite. Then, by
Claim 6, . = 1/2 for every e in E.

Assume that (G, F) satisfies condition (C1). Since F # 0, let B be a block of G such that
BN F # (. Block B must satisfy i) or ii) of Lemma 10. If it satisfies ii), then there exists
an edge f € F such that every other edge in E(B) N F' is nested in f. If we let A := {f},
it is easy to check that (G2, F?) does not contain G4 as a minor. Hence, by Claim 7(iv),
Z. =1/2 for every e in E.

Thus we may assume that B satisfies Lemma 10(i). That is, E(B)N(FUL) is the edge set
of a star in B, centered at some node vy € V(B). Let A = E(B)N(FUL). It is easy to check
that (G2, F2) is in €. Hence by Claim 7(iii), 22 = Ay + (1 — A)z for some 0 < A < 1, where
y and z are integral points in P(G®, F®, ¢) such that y., z, € {0,1} for all e € E(G?)\ {£y, }.
It follows that 72 € {\,1 — A} for all e € E(G?)\ {fy,}, hence Z, € {\,1 — A} for every e in
E, since for every edge in E there exists an edge in E(G?) \ {£,,} with the same value. It
suffices to show that A = 1/2. Suppose by contradiction that A # 1/2.

_ B - |1 ifze=2X

Define g,z € {0,1}" by g, = 0 othorwise
of gand z, = Ay + (1 — A)z. Furthermore, (Ay), = (A2), = ¢, for every u # vy. We will
show that (Ay)y, = (AZ)y, = ¢y, thus showing that g,z € P(G, F, c), which contradicts the
fact that z is a vertex.

We recall that, by Claim 7,

and zZ, = 1 —y, for all e € E. By definition

|0(U)\ (FUL)| =2, for every set U € .Z. (10)

By Claim 5, V € %, otherwise Z is half-integral. Since 6(V')\ L = H, by (10) it follows
that |H| = 2, say H = {h1, ha}, and that Tp, + Tp, = 1.

By (10), the constraint matrix M of the odd-cut inequalities z(6(U) \ (F U L)) > 1,
U € %, has exactly two ones in every row. Therefore M is the edge-node incidence matrix of
an undirected graph I', whose vertex set is E'\ (F'U L) and where two elements e, ey € V(T')
are adjacent if and only if there exists U € £ with eq, es € §(U). Note that I" has no parallel
edges since the inequalities in (7) are linearly independent. We show that there exists an
edge € = vw in Ep \ F such that there is only one set U in . with e € §(U). Suppose not.
Then, by Claim 2, every element e € Ey \ F' has degree at least 2 in I". Assume first that T" is
acyclic. Since every node of I" has degree at least two except for hq, hs, it follows that hq, ho
have degree one and that I' is a path from h; to hg. Since V € %, hy and ho are adjacent
in I, thus T" contains only one edge. This implies that . = {V'}. By Claim 2, there exists
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U € Z such that e € §(U) for every e € E\ (FUL), thus E\ (FUL) = {hy,ha}. Since G\ F
is connected, G' contains only one node, a contradiction since F # ().

It follows that I' contains a cycle C. Let eq,...,ex € V(I') be the nodes of " in C, and let
Ui, ...,Ug be the sets in .Z corresponding to the edges in C, say {e;,e;11} = 0(U;) \ (FUL),
i=1,....k =1, {er,er} = 0(Ux) \ (FUL). Thus Z satisfy the equations z., + z¢,,, = 1,
t=1,...,k—1, ., + x,, = 1. Since these k equations are linearly independent, it follows
that the unique solution is ., = -+ = x,, = 1/2. It follows that A = 1/2 and z. = 1/2 for
every e € F, a contradiction.

Consider now € = vw € Eg and U € % such that € € §(U) and é ¢ §(U) for every U € L,
U # U. By switching signs on the endnodes of &, we can assume that 0,z # 0, Now let
(G', F") be obtained from (G, F) by contracting €, and let 7 be the node obtained from the
contraction of e. Let A’ = A(G', F").

Let Z' be the restriction of Z to the components relative to F(G’), and let ¢’ be obtained
from ¢ by removing the components corresponding to v and w and introducing a component
relative to r with value ¢, := ¢, +¢,. Since (G', F') is in € and |V (G')| < |V, the polyhedron
P'(G',F',) is integral. Clearly ' € P(G', F',c). Furthermore, the odd-cut inequalities for
P(G', F', ) are exactly the odd-cut inequalities for P(G, F, c) relative to sets U C V such that
either v,w € U or v,w ¢ U, thus they are satisfied by z’. It follows that ¥’ € P'(G',F’,c).
Furthermore, the equation (A’z’), = ¢, is the sum of (Az), = ¢, and (Az), = ¢y, and, for
every U € £\ {U}, either v,w € U or v,w ¢ U. It follows that 7’ satisfies at equality
|E| — 2 = |E(G")| — 1 linearly independent inequalities valid for P'(G', F’, ).

It follows that Z’ is in a face of dimension 1 of P'(G’, F’, '), thus there exist two vertices y’
and 2’ of P'(G', F’, ) such that ’ = Ny/'+ (1—X)2/, for some 0 < X' < 1. Since P'(G', F’, )
is integral, ¢/, 2" are integral. By Claim 2, y.,z, € {0,1} for every e in E. Since iﬁl =T,
(possibly by switching the roles of ¢’ and 2’), it follows that A’ = A. This implies that, for
every e € E(G'), y. = Ye, 2. = Z.. Hence, (Ay)y, = (AZ), = ¢, for all u € V \ {v,w},
and (A7), + (A7)w = (A'Y)r = ¢y + cu, (AZ)y + (AZ)y = (A'2)), = ¢y + . Without loss
of generality we can assume that v # vg. Since (Ay), = (AZ2), = ¢, for every u # vy, we
deduce that (A9)w = ¢y + cw — (AY)y = ¢. Similarly, (AZ), = ¢,. Hence g,z € P(G, F,¢),

a contradiction. ©
Claim 9. For every block B of G, every connected component of B\ F' has at least two nodes.

Let B be a block of G such that a component of B\ F' consist of only one node, say v € V(B).
Let A := 6(v) N E(B) N F. Since {v} is a component of B\ F, one can easily show that
(GA,FA) € C. This is contradicts Claim 7(ii). ©

Claim 10. If G\ F is not connected, then T, = 1/2 for every e in E.

Let B be a block of G such that B\ F' is not connected. We denote by @1, ..., Q¢ the connected
components of B\ F. Let W be the set of edges in F' with endnodes in distinct components
of G\ F, and let V; be the set of nodes in Q; that are incident to some edge in W N E(B),
j=1,...,t. By Claim 9, condition (C3) is satisfied, thus nodes in V; = {v{, e ,vij} can be
ordered in such a way that they satisfy the properties i) and ii) of Lemma 11.
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Forj=1,...,t let Z; = {v{, vij}. We show next that there exists an edge vw € F such
that v € Z; and w € Zj, where 1 < j,5' <t, j # j'. By property ii) of Lemma 11, for every
f=vwe WNE(B), {v,w} is a node-cutset of B. Denote by C a connected components of
B\ F that has the smallest number of nodes. Choose f = vw € W N E(B) so that |V (Cy)|
is smallest possible. We claim that v, w € U;Zle. Suppose not. Then, up to changing the
indices, v = vl-l where 2 < i < k; — 1. By symmetry, we may assume that v{ € V(Cy). Since
v} € Vi, there exists an edge f' € W N E(B) incident to vi, say f’ = viw'. It follows that
w' € V(Cy). Since {v{,w'} is a node-cutset of B, it follows that there exists a connected
component of B\ {v},w'} whose nodeset is contained in V(Cy) \ {v},w'}. This implies that
[V(Cyp)| < |V(Cy)|, contradicting the choice of f.

Thus, up to changing indices, f = v{v? is an edge in W N E(B). Let A := {f}. We claim
that (G2, F®) does not contain % as a minor, which by Claim 7 implies that Z, = % for all
ec k.

Let ¢; and ¢y be the new loops in G2 incident to v} and v} respectively. Suppose by
contradiction that (G2, F2) contains %, as a minor. Since (G, F) does not contain ¥ as a
minor, by symmetry we can assume that the loop of ¥, is £, and that v is contained in the
minor. Thus in G? there exists a cycle C that passes through v? and that contains an edge
in F, and a path P in G\ F from v{ to a node u of C such that V(P) NV (C) = {u}, where
both edges in C' incident to u are in Ey \ F'. It follows that u € V(Q;).

Since v} ¢ V(Q1) and u € V(Q1), there exist 7,7/, 1 <i < i’ < ky, such that v}, v} € V(C)
and such that C' contains paths P, P, from u to vil and from u to vil,, respectively, such that
V(P)NV(P;) = {u} and such that P; and P are contained in the subgraph @ of G induced
by V(Q1). It follows that v{ and v} are in the same connected component of @ \ {v}},
contradicting property i) of Lemma 11. ¢

Claim 11. The pair (G, F) satisfies the parity conditions of Lemma 13.

By Claims 8 and 10, we have that z. = % for every e € E. Since AT = ¢, it follows that
Z(d(v) \ (F U L)) is an integer for every v € V. Hence |§(v) \ (F'U L)| is even and parity
condition a) is satisfied.

Given a connected component @ of G\ F such that H(Q) = 0, ¢(V(Q)) is even since
V(@) \ (FUL(Q)) = 0, otherwise V(Q) defines an odd-cut inequality violated by Z. Since
AZ = ¢, it follows that

1
C(V(Q)) = 5 Z (Uv,vw + O'w,vw) + Z (Uv,vw + O'w,vw) + Z Ovow-
vweE(Q)\F vweFNE(Q) vweé‘(/\(/c(g?))
ve

Even edges of E(Q) contribute 0 to the right-hand-side of the latter expression, each odd
edge of E(Q)\ F contributes 1, edges in F' with both endnodes in V' (Q) contribute 0 or 42,
while edges in §(V (Q)) contribute £1. Hence the number of odd edges in E(Q) is congruent
modulo 2 to [§(V(Q))]. <

Claim 12. (G, F) has a balanced bicoloring.

It follows by Claims 9 and 11 and by Lemma 14. o
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