
A Polynomial Recognition Algorithm

for Balanced Matrices

Giacomo Zambelli∗

May, 2003
Revised February 2005

Abstract

A 0,±1 matrix is balanced if it does not contain a square submatrix with two
nonzero elements per row and column in which the sum of all entries is 2 modulo 4.
Conforti, Cornuéjols and Rao [9], and Conforti, Cornuéjols, Kapoor and Vušković
[6], provided a polynomial algorithm to test balancedness of a matrix. In this
paper we present a simpler polynomial algorithm, based on techniques introduced
by Chudnovsky and Seymour in [3] for Berge graphs.

1 Introduction

A 0,±1 matrix A is balanced if it does not contain a square submatrix with two nonzero
elements per row and column in which the sum of all entries is 2 modulo 4. This no-
tion was introduced by Berge [1] for 0, 1 matrices and extended to 0,±1 matrices by
Truemper [16]. The first known polynomial time recognition algorithm for 0, 1 balanced
matrices is due to Conforti, Cornuéjols and Rao [9], followed by a similar algorithm for
the general 0,±1 case due to Conforti, Cornuéjols, Kapoor, Vušković [5, 6]. Balanced
matrices are of special interest in integer programming, as several polytopes arising in
classical optimization problems have only integral vertices when the constraint matrix
is balanced. Particularly important examples are the generalized set packing, set cov-

ering and set partitioning polytopes, which are defined, respectively, by the systems
{x ∈ IRn |Ax ≤ 1 − n(A),0 ≤ x ≤ 1}, {x ∈ IRn |Ax ≥ 1 − n(A),0 ≤ x ≤ 1} and
{x ∈ IRn |Ax = 1 − n(A),0 ≤ x ≤ 1}, where A is an m × n 0,±1 matrix, and n(A)
is the m-dimensional vector whose ith entry is the number of −1s in the ith row of A.
All these polytopes are integral when A is balanced, as proven by Berge [2] for the 0, 1
case, and by Conforti and Cornuéjols [4] for 0,±1 matrices. More generally, Fulkerson,
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Hoffman and Oppenheim [14], showed that the inequalities defining such polytopes form
totally dual integral systems if A is a 0, 1 balanced matrix, and an analogous statement
was proven by Conforti and Cornuéjols [4] for the 0,±1 case.

The recognition algorithms in [6] and [9] are both based on decomposition theorems
characterizing the class of balanced matrices. This decomposition approach was used
in the literature for other classes of matrices related to balanced matrices, such as, for
example, Seymour’s decomposition of regular matroids [15]. A novelty element in the
recognition algorithm for balanced matrices, was the use of “weak” decompositions, such
as multiple star-cutsets, which do not preserve balancedness. To overcome this prob-
lem, Conforti and Rao [12, 13] devised a pre-processing technique, called cleaning, which
consists of generating polynomially many submatrices of the input matrix A, with the
property that A is balanced if and only if all the matrices generated are balanced, and,
if A is not balanced, then there exists an unbalanced matrix in this family for which the
“natural” decomposition algorithm would give the correct answer. The same approach
has been successfully applied to other problems such as deciding whether a graph con-
tains a chordless cycle of even length [8] or recognizing perfect graphs [3]. Interestingly,
Chudnovsky and Seymour observed in [3], in their version of the algorithm for recogniz-
ing perfect graphs, that there was no need to apply any decomposition, but cleaning by
itself would allow to test perfection in a more direct way.

A natural question is whether techniques used by Chudnovsky and Seymour in [3]
could also be applied to the problem of recognizing balanced matrices, to design algo-
rithms that do not make use of any structural knowledge about such class. In this paper
we answer to this question positively, by providing a self-contained exposition of a poly-
nomial time recognition algorithm for balancedness. This is desirable for several reasons.
The main reason is that proving the validity of the decomposition based algorithm re-
quires to prove a structural theorem for the class of balanced matrices, which is extremely
difficult, technical, and lengthy. From this point of view, the new algorithm is simpler
and more transparent. Also, avoiding to use decomposition is beneficial for the running
time, since the algorithm which will be presented in the remainder runs in time O(n9)
(n being the number of rows and columns of the input matrix) for the 0, 1 case, which,
although not implementable by any means, is significantly lower than the running time
of the previously known algorithm.

1.1 Notations and definitions

It will be convenient, in the remainder of the paper, to work with the bipartite repre-
sentation of a matrix. Given a 0, 1 matrix A, the bipartite representation of A is the
bipartite graph G where the two sides of the bipartition are the sets R and C of rows
and columns of A, respectively, and there is an edge between i ∈ R and j ∈ C if and
only if aij = 1. Clearly, A is balanced if and only if its bipartite representation does
not contain a hole of length 2 modulo 4 as an induced subgraph (a hole is a chordless
cycle). A bipartite graph is balanced if it does not contain any hole of length 2 modulo
4. For general 0,±1, matrices, the most convenient setting to work with, is their signed
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bipartite representation. A signed bipartite graph is a pair (G, σ) where G is a bipartite
graph and σ is a signing of the edges, that is a function from E(G) to {1,−1}. Given
a 0,±1 matrix A, the signed bipartite representation of A is the signed bipartite graph
(G, σ) where G is the bipartite representation of the 0, 1 matrix underlying A and σ is
defined, for each edge ij, by σ(ij) = aij. For any subgraph F of G, we define

σ(F ) =
∑

e∈E(F )

σ(e).

It is immediate to verify that a 0,±1 matrix A is balanced if and only if its signed
bipartite representation does not contain a hole H such that σ(H) ≡ 2 mod 4 as an
induced subgraph. We will say that such a hole is unbalanced, and a signed bipartite
graph is balanced if it contains no unbalanced hole. Observe that, given a cut (S, S̄) of
G (where S is a subset of the nodes of G), if we define a signing σ′ by

σ′(ij) =

{

σ(ij) if ij /∈ (S, S̄)
−σ(ij) if ij ∈ (S, S̄)

,

it is easy to see that (G, σ) is balanced if and only if (G, σ′) is balanced (since, for any
hole H, σ(H) ≡ σ′(H) mod 4). We call this operation scaling along the cut (S, S̄).

In the remainder, G will always be a bipartite graph. Every time we say that a graph
G contains a graph F , we will always mean that G contains a graph isomorphic to F as
an induced subgraph. Given a set X of nodes of G, we denote by G[X] the subgraph
of G induced by X. Given a subgraph F of G and a node x of G, we denote the set of
neighbors of x in F by NF (x).
Given a path or a hole Q, we will denote by |Q| the length of Q, that is the number of
its edges. Given a graph F and two nodes x and y of F , dF (x, y) denotes the length of
the shortest path between x and y contained in F . Also, if P is a chordless path and x
and y are two nodes of P , we will denote by P (x, y) the unique subpath of P between x
and y. The interior of P is the set of all nodes of P except the endpoints of P .

The following two graphs will play an important role in the remainder of the paper.
Given two nonadjacent nodes a and b in distinct sides of the bipartition, a 3-path config-

uration between a and b is a graph consisting of three chordless paths P1, P2, P3 between
a and b such that, for every 1 ≤ i < j ≤ 3, no node in the interior of Pi belongs to or
has a neighbor in the interior of Pj. We say that P1, P2, P3 form a 3-path configuration.
A wheel consists of a hole H and a node v outside H with at least 3 distinct neighbors
in H, and is denoted by (H, v). A wheel (H, v) for which v has k neighbors in H is said
to be a k-wheel. A sector of (H, v) is a maximal subpath of H with no neighbors of v in
its interior. The spokes of (H, v) are the edges of G of the form uv where u is a neighbor
of v in H. (H, v) is an odd wheel if it is a wheel and v has an odd number of neighbors in H.

The importance of 3-path configurations and odd wheels is explained by the next
remark.
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Figure 1: A 3-path configuration and a wheel.

1.1 If G is a bipartite graph containing a 3-path configuration or an odd wheel, then

(G, σ) is not balanced for any signing σ.

Proof: Let σ be a signing of G. If P1, P2, P3 form a 3-path configuration in G between
nodes a and b of G, then, w.l.o.g., σ(P1) = σ(P2). Since a and b are in distinct sides of
the bipartition, then Pi has odd length for every i ∈ [3], hence σ(P1) ≡ k mod 4 for some
k ∈ {1, 3}, but then H = a, P1, b, P2, a is an unbalanced hole of (G, σ).
Let(H, v) be a wheel. We may assume, by scaling along (S, S̄) where S ⊇ {u ∈
NH(v) |σ(uv) = −1} and S̄ ⊇ {v} ∪ {u ∈ NH(v) |σ(uv) = 1}, that all spokes of (H, v)
have sign 1. If σ(H) ≡ 2 mod 4 then we are done, so assume σ(H) ≡ 0 mod 4. Since
(H, v) has an odd number of sectors and there is an even number of sectors with total
sign 2 modulo 4, then there exists a sector Q, say with endpoints u and u′, such that
σ(Q) ≡ 0 mod 4, but then H ′ = v, u,Q, u′, v is an unbalanced hole. 2

1.2 Outline of the paper

We will provide two algorithms: one to recognize balanced graphs, and one to solve the
more general problem of recognizing balanced signed graphs. In section 2 we will provide
an algorithm to recognize whether a bipartite graph has a 3-path configuration, while
in section 3 an algorithm is presented, to recognize if a bipartite graph not containing
any 3-path configuration, contains a detectable 3-wheel (which is a special type of odd
wheel). In these two sections we will not be concerned with signing, since 1.1 guarantees
that, whenever we find any of these configurations, the graph will not be balanced with
respect to any signing. In section 4 we show how to produce, from a graph G, a family of
polynomially many induced subgraphs of G, in which the recognition problem is “easy”
(we will give a rigorous definition of cleaning in section 4, while in 5 it will be explained
what “easy” means) with the property that G is balanced if and only if every member of
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the family is balanced. In particular, section 4 deals separately with cleaning in bipartite
graphs and in signed bipartite graphs, since in the unsigned case we will be able to give
a more efficient algorithm (i.e. the family of graphs it produces in the unsigned case is
smaller, thus improving the overall running time in this case). For cleaning in the signed
case, we will use an algorithm of Conforti, Cornuéjols, Kapoor and Vušković [6]. Finally,
section 5 shows how to solve directly the recognition problem in a clean graph which
does not contain any 3-path configuration or detectable 3-wheel. In section 6 we put all
the pieces together by giving a formal description of the two algorithms for the signed
and the unsigned case.

2 Detecting a 3-path configuration

We say that a 3-path configuration is smallest in G if it contains the minimum number
of nodes among all 3-path configurations in G.

2.1 Let Π be a smallest 3-path configuration in G = (R,C; E). Assume Π is formed

by the paths Pi = a, ai, . . . , bi, b, i ∈ [3], where a ∈ R, b ∈ C. For every i ∈ [3], let

mi be a node of Pi such that |dPi
(ai,mi) − dPi

(bi,mi)| ≤ 1. Let X be the set of nodes

of G with no neighbors in {a, b, a2, a3, b2, b3}, and P be a shortest path between a1 and

m1 in G[X ∪ {a1,m1}]. Then P ′

1 = a, a1, P,m1, P1(m1, b1), b1, b is a chordless path and

P ′

1, P2, P3 form a smallest 3-path configuration.

Symmetrically, analogous statements hold for every Pi, i ∈ [3], and all possible pairs

ai,mi and mi, bi.

Proof: Let P = p1, . . . , pk where a1 = p1 and m1 = pk. If a1 = m1 or a1 is adjacent
to m1, then the statement holds trivially, hence we may assume |P1| ≥ 5 and m1 6= b1,
therefore m1 has no neighbors in P2 or P3.

If no node in the interior of P belongs to or has a neighbor in P2 or P3 then, given
the shortest path P ′

1 between a and b with interior in V (P ∪ P1(m1, b1)), P ′

1, P2, P3 form
a 3-path configuration between a and b which, by the minimality of Π and the choice of
P , must have the same cardinality as Π, hence P ′

1 = a, a1, P,m1, P1(m1, b1), b1, b and we
are done.

Assume, then, that there exists h, 2 ≤ h ≤ k − 1, such that ph belongs to or has a
neighbor in P2 or P3, and let h be maximum with this property. Note that, by definition
of h, ph does not belong to P2 or P3.
Suppose ph has at least two distinct neighbors in P2 ∪ P3. If ph ∈ R, let P ′

1 be the
shortest path between ph and b in P (ph, pk) ∪ P1(m1, b), let P ′

2 be the (unique) shortest
path between ph and b in (ph∪P2∪P3)\ b3 and P ′

3 be the (unique) shortest path between
ph and b in (ph∪P2∪P3)\b2. Then P ′

1, P
′

2, P
′

3 form a 3-path configuration between ph and
b which is strictly shorter than Π since |P ′

1| < |P1| and |P ′

2|+ |P ′

3| ≤ |P2|+ |P3|. Similarly,
if ph ∈ C, let P ′

1 be the shortest path between a and ph in P (ph, pk)∪P1(a,m1), let P ′

2 be
the (unique) shortest path between a and ph in (ph ∪P2 ∪P3)\a3 and P ′

3 be the (unique)
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shortest path between a and ph in (ph ∪ P2 ∪ P3) \ a2. Then P ′

1, P
′

2, P
′

3 form a 3-path
configuration Π′ between a and ph. Since |P1(a1,m1)| ≤ |P1(b1,m1)|+ 1 and h ≥ 2, then

|P ′

1| ≤ |P | − 1 + |P1(a,m1)| ≤ |P1(a,m1)| + |P1(a1,m1)| − 1

≤ |P1(a,m1)| + |P1(m1, b1)| < |P1|. (1)

Furthermore, |P ′

2| + |P ′

3| ≤ |P2| + |P3|, hence Π′ has cardinality strictly smaller than Π,
a contradiction.
Therefore, we may assume that ph has a unique neighbor x in P2 ∪ P3, say x ∈ V (P2).
If x ∈ R, then let P ′

1 be the shortest path between x and b in x ∪ P (ph,m1) ∪ P1(m1, b),
let P ′

2 = x, P2(x, b), b and P ′

3 = x, P2(x, a), a, P3, b. Then P ′

1, P
′

2, P
′

3 form a 3-path config-
uration between x and b which has cardinality strictly smaller than Π since |P ′

2|+ |P ′

3| =
|P2| + |P3| and

|P ′

1| ≤ |P | − 1 + |P1(m1, b)| + 1 ≤ |P1(a1,m1)| + |P1(m1, b)| < |P1|.

If x ∈ C, then let P ′

1 be the shortest path between x and a in x∪ P (ph,m1)∪ P1(a,m1),
let P ′

2 = a, P2(a, x), x and P ′

3 = a, P3, b, P2(b, x), x. Then P ′

1, P
′

2, P
′

3 form a 3-path con-
figuration Π′ between x and a. If h = 2, then |P ′

1| = 3 < |P1|, otherwise h ≥ 3 and
|P ′

1| ≤ |P |+ |P1(a,m1)|− 1 < |P1|. Since |P ′

2|+ |P ′

3| = |P2|+ |P3|, then Π′ has cardinality
strictly smaller than Π, a contradiction. 2

2.2 There exists a O(|V (G)|9) algorithm with the following specifications:

• Input A bipartite graph G.

• Output Either:

1. a 3-path configuration Π, or

2. it determines that G does not contain any 3-path configurations.

Algorithm:

For every 6-tuple a1, a2, a3, b1, b2, b3 such that:

• ai ∈ R, bi ∈ C for every i ∈ [3],

• ai is nonadjacent to bj for every i 6= j,

• there exist nonadjacent nodes x and y such that x is adjacent to a1, a2, a3 and y is
adjacent to b1, b2, b3;

do the following:

1. For i = 1, 2, 3, compute the set X(i) of nodes that are not adjacent to any of x, y,
aj or bj for j 6= i.
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2. For i = 1, 2, 3, for every node m ∈ X(i), compute the paths P ′

i (m) and P ′′

i (m) (if
they exist), where P ′

i (m) is the shortest path between ai and m in G[X(i)∪ai] and
P ′′

i (m) is the shortest path between bi and m in G[X(i) ∪ bi].

3. For i = 1, 2, 3, for every node m ∈ X(i)∪ai, define Pi(m) as follows: if ai is adjacent
to bi, then Pi(ai) = ai, bi and Pi(m) is undefined for every m ∈ X(i); else Pi(ai) is
undefined and for every m ∈ X(i) satisfying the following

(i) P ′

i (m) and P ′′

i (m) both exist

(ii) No node in P ′

i (m), except m, belongs to or has a neighbor in P ′′

i (m)

let Pi(m) = x, ai, P
′

i (m),m, P ′′

i (m), bi, y, else, if P ′

i (m) and P ′′

i (m) do not satisfy (i)
and (ii), Pi(m) is undefined.

4. For every m ∈ X(i)∪ai such that Pi(m) is defined, compute the set Yi(m) of nodes
that do not belong or have a neighbor in the interior of Pi(m).

5. For every 1 ≤ i < j ≤ 3, and for every mi ∈ X(i) ∪ ai and every mj ∈ X(j) ∪ aj,
verify that the interior of Pj(mj) is contained in Yi(mi). If this is the case, say that
the pair mi,mj is (i, j)-good.

6. Verify if there exists a triple m1,m2,m3 such that mi ∈ X(i) ∪ ai for i ∈ [3] and
such that mi,mj is (i, j)-good for every 1 ≤ i < j ≤ 3. If such a triple exists,
output the graph Π induced by P1(m1), P2(m2), P3(m3) and stop.

Otherwise output the fact that G contains no 3-path configuration.

Correctness: It takes time O(|V (G)|)8 to compute all possible 6-tuples a1, a2, a3, b1,
b2, b3 as above, and there are O(|V (G)|)6 of them. For each 6-tuple, each step from 1
through 6 takes time O(|V (G)|)3, therefore the total running time is O(|V (G)|)9.
If for some 6-tuple, in step 6 the algorithm outputs a graph Π induced by P1(m1), P2(m2),
P3(m3), then Π is a 3-path configuration between x and y, since step 3 ensures that Pi(mi)
is a chordless path between x and y for every i ∈ [3], while steps 5 and 6 guarantee that
no node in the interior of Pi(mi) belongs to or has a neighbor in the interior of Pj(mj)
for every 1 ≤ i < j ≤ 3.
We only need to verify that, if G contains some 3-path configuration, then the algorithm
will detect one. Let Π̃ be a smallest 3-path configuration in G. Let P̃1, P̃2, P̃3 be the
3-paths inducing Π̃, where P̃i = a, ai, . . . , bi, b. Then there exist nonadjacent nodes x
and y such that x is adjacent to ai and y is adjacent to bi for every i ∈ [3] (since x = a
and y = b would satisfy such condition). For i = 1, 2, 3, let Pi be the shortest path
between x and y with interior contained in the interior of P̃i. Then P1, P2, P3 form a
3-path configuration Π with at most as many nodes as Π̃, hence Π and Π̃ must have
the same cardinality and Pi = x, ai, . . . , bi, y. For every i ∈ [3], let mi be a node of Pi

such that |dPi
(ai,mi) − dPi

(bi,mi)| ≤ 1, in particular we may assume that, when ai and
bi are adjacent, mi = ai. Then, by 2.1, given P ′

1 = x, a1, P
′

1(m1),m1, P1(m1, b1), b1, x,
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where P ′

1(m1) is the path computed in step 2 of the algorithm, P ′

1, P2, P3 forms a 3-path
configuration between x and y. By repeating the argument, we conclude that the paths
P1(m1), P2(m2), P3(m3) computed by the algorithm form a 3-path configuration between
x and y, hence the algorithm would have output the correct answer. 2

3 Detectable 3-wheels

A 3-wheel (H, v) is detectable if two of the neighbors of v in H have distance two in H.
If (H, v) has the minimum number of nodes among all possible detectable 3-wheels, we
say that (H, v) is a smallest detectable 3-wheel.

3.1 Let G = (R,C; E) be a bipartite graph containing no 3-path configurations. Let

(H, v) be a smallest detectable 3-wheel in G. Let u, v1 and v2 be the neighbors of v in H,

where v1 and v2 are both adjacent to a node w in H. Let u1 and u2 be the two neighbors

of u in H such that the two maximal paths P1 and P2 in H \ {u,w} have endpoints

u1, v1 and u2, v2, respectively. Let s be the neighbor of u1 in P1. Let X be the set of

nodes with no neighbors in {u, v, w, u2, v2}. Let P be a shortest path between v1 and s in

G[X∪{v1, s}]. Then H ′ = v1, P, s, u1, u, u2, P2, v2, w, v1 is a hole and (H ′, v) is a smallest

detectable 3-wheel.

Proof: Let P = p1, . . . , pk, where p1 = v1 and pk = s. W.l.o.g., v ∈ R and u ∈
C. If no node in the interior of P belongs to or has a neighbor in P2, then H ′ =
v1, P, s, u1, u, u2, P2, v2, w, v1 is a hole, hence by construction (H ′, v) is a detectable 3-
wheel which is smallest since |P | ≤ |P1| − 1. We may therefore assume that there exists
h, 2 ≤ h ≤ k−1, such that ph belongs to or has a neighbor in P2. Assume h is the highest
such index. Then ph does not belong to P2. Suppose ph has exactly one neighbor in P2,
say x. If x ∈ R, then let Q1 be the shortest path between x and u in P (ph, pk)∪ x, u1, u,
let Q2 = x, P2(x, v2), v2, v, u and Q3 = x, P2(x, u2), u2, u. Then |Qi| ≥ 3 for i ∈ [3] (since
x 6= u2, because ph ∈ X is nonadjacent to u2), and Q1, Q2, Q3 form a 3-path configuration
between x and u, a contradiction. If x ∈ C, then let Q1 be the shortest path between x
and v in P (ph, pk)∪P1(s, v1)∪{v, x}, Q2 = x, P2(x, v2), v2, v and Q3 = x, P2(x, u2), u2, u, v.
Q1, Q2, Q3 form a 3-path configuration between x and v. Hence we may assume that ph

has at least 2 neighbors in P2. Let x and y be the neighbors of ph in P2 that are closest,
respectively, to v2 and u2. If ph ∈ R, let Q1 be the shortest path between ph and u in
P (ph, pk) ∪ u1, u, let Q2 = ph, x, P2(x, v2), v2, v, u and Q3 = ph, y, P2(y, u2), u2, u. Then
Q1, Q2, Q3 form a 3-path configuration between ph and u. If ph ∈ C, then let Q1 be the
shortest path between ph and v in P (ph, pk)∪P1(s, v1)∪v, Q2 = ph, x, P2(x, v2), v2, v and
Q3 = ph, y, P2(y, u2), u2, u, v. Q1, Q2, Q3 form a 3-path configuration between x and v, a
contradiction. 2

3.2 There exists a O(|V (G)|9) algorithm with the following specifications:

• Input A bipartite graph G containing no 3-path configuration.
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• Output Either:

1. a detectable 3-wheel, or

2. it determines that G does not contain any detectable 3-wheel.

Algorithm:

For every 7 tuple u1, u2, v, v1, v2, w, s such that:

• v and w are both adjacent to v1 and v2

• there exists a node x such that x is adjacent to v, u1, u2 but not to w or s

• s is adjacent to u1

• either s = v1 or no node in {u2, v, v2, x, w} is coincident with or adjacent to s.

do the following:

1. Compute the set X of nodes that do not belong to or have a neighbor in {u2, v, v2, x, w}.

2. Compute the shortest path P , if one exists, between v1 and s in G[X ∪{v1}]. If no
such path exists, select a different 7-tuple.

3. Verify that the only neighbor of u1 in P is s, if this is the case let P1 = v1, P, s, u1,
otherwise select a different 7-tuple.

4. Compute the set Y of all nodes that do not belong to or have a neighbor in P1 ∪
{w, x}.

5. Compute, if one exists, a chordless path P2 between u2 and v2 with interior con-
tained in Y . If P2 exists, then let H = w, v1, P1, u1, x, u2, P2, v2, w, output (H, v)
and stop.

Otherwise output the fact that G does not contain any detectable 3-wheel.

Correctness: It takes time O(|V (G)|)8 to compute all possible 7-tuples u1, u2, v, v1, v2,
w, s as above, and there are O(|V (G)|)7 of them. For every 7-tuple, steps 2 and 4 take
time O(|V (G)|2), while all other steps take linear time, thus the overall running time is
O(|V (G)|)9.
Obviously, when the algorithm outputs a graph (H, v), such graph is a detectable 3-wheel.
Suppose that G contains some detectable 3-wheel. We want to show that the algorithm
will output one. Let (H̃, v) be a smallest detectable 3-wheel in G. Let u, v1 and v2 be the
neighbors of v in H̃, where v1 and v2 are both adjacent to a node w in H̃. Let u1 and u2

be the two neighbors of u in H̃ such that the two maximal paths P̃1 and P̃2 in H̃ \{u,w}
have endpoints u1, v1 and u2, v2, respectively. Let s be the neighbor of u1 in P̃1. Then
the 7-tuple u1, u2, v, v1, v2, w, s satisfies the properties described in the algorithm, hence
at some stage the algorithm will examine it. Let x be a node adjacent to v, u1, u2 but
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not to w or s (such a node exists since x = u satisfies such condition). Let u′

1 and u′

2 be
neighbors of x in H̃, such that u′

i is closest possible to vi in P̃i, i = 1, 2, and let P ′

i be
the path between vi and u′

i in P̃i. Then H ′ = w, v1, P
′

1, u
′

1, x, u′

2, P
′

2, v2, w is a hole and
(H ′, v) is a detectable 3-wheel with at most as many nodes as (H̃, v), therefore P ′

i = P̃i,
for i = 1, 2. Let P be the shortest path between v1 and s in G[X ∪ v1] computed by the
algorithm in step 2. Then, by 3.1, P1 = v1, P, s, u1 is a path and the algorithm will verify
this in step 3. Finally, there exists a chordless path P2 between u2 an v2 with interior
in the set Y computed at step 5 of the algorithm, since P̃2 is such a path, therefore
H = w, v1, P1, u1, x, u2, P2, v2, w is a hole and (H, v) is detectable 3-wheel. 2

4 Cleaning a smallest unbalanced hole

Given a signed graph (G, σ), an unbalanced hole is smallest if it has minimum length
among all unbalanced holes. Let H be an unbalanced hole. We say that a vertex
x ∈ V (G) \ V (H) is major for H if NH(x) is not contained in a subpath of H of length
2. Let M(H) be the set of major vertices for H. We say that H is clean if M(H) = ∅.
A set X ⊆ V (G) \ V (H) is a cleaner for H if M(H) ⊆ X (i.e. if H is clean in G \ X).
A signed bipartite graph (G, σ) is clean if G is either balanced or it contains a clean
smallest unbalanced hole.

It should be noted here that this definition of a clean graph is slightly different from the
one proposed by Conforti, Cornuéjols and Rao [9]. Their definition is more demanding,
in that it requires for the property we described above to hold not just for one smallest
unbalanced hole H, but for a family of smallest unbalanced holes that can be derived from
H by some simple operation. However, this stronger property will hold in clean graphs
(according to our definition) that do not contain 3-path configurations or detectable 3-
wheels. Therefore, in light of sections 2 and 3, this more restrictive concept of cleaning
will be sufficient for our purposes.

4.1 Let H be a smallest unbalanced hole in (G, σ). If x ∈ V (G) \ V (H) has a positive

even number of neighbors in H, then there exists a subpath u, v, w of H of length 2 such

that u and w are the only neighbors of x in H and H ∪ x \ v is an unbalanced hole. In

particular, all major nodes for H have an odd number of neighbors in H.

Proof: Possibly by scaling, we may assume that σ(xu) = 1 for every u ∈ NH(x). Since x
has an even number of neighbors and H is unbalanced, then there exists a subpath Q of
H such that σ(Q) ≡ 0 mod 4, containing no neighbor of x except the endnodes u and v
that are adjacent to x. But then H ′ = x, u,Q, v, x is an unbalanced hole strictly smaller
than H unless Q has length |H|− 2, hence u and v have a common neighbor w in H and
Q = H \ w. 2
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4.1 Cleaning unsigned graphs

In this section we will deal with unsigned graphs (or, if you prefer, signed graphs where
all the edges have sign 1). We will provide an algorithm running in time O(n5) that will
construct a family C of subsets of V (G) containing O(n4) elements such that if H is a
smallest unbalanced hole in G, then C contains a cleaner for H. The following is due to
Conforti and Rao [11].

4.2 Let H be a smallest unbalanced hole in G. There exist a ∈ V (H) ∩ R and b ∈
V (H) ∩ C such that N(a) ⊃ M(H) ∩ C and N(b) ⊃ M(H) ∩ R.

Proof: The statement is obvious if |H| = 6, hence we may assume |H| ≥ 10. By
symmetry, we only need to prove the statement for M(H)∩C. The proof is by induction
on |M(H)∩C|. If |M(H)∩C| = 2, let x, y be the two nodes in M(H)∩C and suppose,
by contradiction, that x and y have no neighbor in common in H. Let I be the family
of all maximal subpaths of H with no neighbor of x or y in the interior. By definition
the endnodes of every element I in I are neighbors of x or y and every path in I has
even length. Since every major node for H has an odd number of neighbors in H, then
I has an even number of elements and, since H has length 2 modulo 4, then there is
an odd number of paths of I of length 2 modulo 4. Also, one can readily verify that
there is an even number of paths I in I such that both endnodes a, a′ of I are adjacent
either to x or to y, and every such path I must have length 2 modulo 4, otherwise
x, a, I, a′, x or y, a, I, a′, y would be an unbalanced hole of length strictly smaller than
H. Therefore there is an odd number of paths of I of length 2 modulo 4 having one
endnode adjacent to x and the other adjacent to y. If there are exactly 2 paths I1 and I2

with one endnode adjacent to x, say a1 and a2, respectively, and the other adjacent to y,
say b1 and b2 respectively, then one of the two has length 2 modulo 4 and the other has
length 0 modulo 4, and one can easily verify that I1 and I2 have no nodes in common,
therefore H ′ = x, a1, I1, b1, y, b2, I2, a2, x is an unbalanced hole strictly smaller than H,
a contradiction. Therefore there are at least 4 elements in I, say I1, I2, I3, I4, such that
Ii has an endpoint, say ai, adjacent to x and the other, say bi, adjacent to y, for every
i ∈ [4], and such that I1 has length k modulo 4, for some k ∈ {0, 2} while I2, I3, I4 have
length k + 2 modulo 4. Without loss of generality, I1 and I2 do not have any node in
common, hence H ′ = x, a1, I1, b1, y, b2, I2, a2, x is an unbalanced hole strictly smaller than
H, a contradiction.
Thus |M(H) ∩ C| ≥ 3. Let x, y, z be 3 distinct nodes in M(H) ∩ C. By induction,
there are nodes x′, y′ and z′ in H that are adjacent to all nodes in M(H) ∩ C \ x,
M(H) ∩ C \ y and M(H) ∩ C \ z respectively. We may assume that x′, y′ and z′ are all
distinct, otherwise, if x′ = y′, then x′ is adjacent to every node in M(H)∩C and we are
done. But then H ′ = x, y′, z, x′, y, z′, x is a 6 hole, a contradiction. 2

For the sake of the running time, we will also need the following.

4.3 Let H be a smallest unbalanced hole in G. Then one of the following holds:

11



(i) Every node in M(H) ∩ R is adjacent to every node in M(H) ∩ C.

(ii) There exist two adjacent nodes a and b in H such that every major node for H is

adjacent to a or b.

Proof: If |H| = 6, case (ii) must always occur, hence we may assume |H| ≥ 10. Assume
that there exist a ∈ M(H) ∩ R and b ∈ M(H) ∩ C such that a and b are not adjacent.
Fix an orientation on H and let a1, . . . , ak be the neighbors of a in H in the order they
appear according to such orientation starting from a1. For 1 ≤ i ≤ k let Ak be the
subpath of H between ai and ai+1 (where ak+1 = a1) containing no neighbors of a in its
interior.

(4.3.1) Up to symmetry, b is adjacent to the neighbor of a1 in A1, say b1, all neighbors

of b distinct from b1 are contained in Ak and the neighbor of b closest to ak in Ak has

distance 3 modulo 4 from ak.

Let I be the family of all maximal subpaths of H with no neighbor of a or b in the
interior. By definition the endnodes of every element I in I are neighbors of a or b.
Since every major node for H has an odd number of neighbors in H, then I has an even
number of elements. Every path in I of even length has both endnodes adjacent either to
a or b and it must have length 2 modulo 4 (else either I ∪a or I ∪ b induce an unbalanced
hole strictly smaller than H). Since H has length 2 modulo 4, then there must be an
even number of paths in I with odd length, and the sum of all lengths of such paths must
be 2 modulo 4. Obviously, every odd path must have one endnode adjacent to a and
the other adjacent to b. Suppose there are exactly 2 odd paths in I, say I ′ and I ′′ with
endnodes a′ ∈ N(a), b′ ∈ N(b) and a′′ ∈ N(a), b′′ ∈ N(b) respectively. Then a′, b′, a′′, b′′

are all distinct otherwise, w.l.o.g., a′ = a′′ and the subpath of H between b′ and b′′ not
containing a′ contains at least one neighbor of a, therefore there exists another path
in I of odd length. Also, a′ and b′′ are not adjacent, otherwise a′, b′′ would be an odd
path in I. Analogously a′′ and b′ are not adjacent, hence H ′ = a, a′, I ′, b′, b, b′′, I ′′, a′′, a
is an unbalanced hole smaller than H. Thus there are at least 4 paths of odd length in
I. Furthermore there exist 3 paths I1, I2, I3 in I each of length q modulo 4 for some
q ∈ {1, 3} (since either I contains at least 6 odd paths, or I contains exactly 4 odd
paths whose total length must be 2 modulo 4). Since I contains at least 6 elements,
we may assume that I2 and I3 have no node in common. If no node in I2 is adjacent
to a node in I3, then I2 ∪ I3 ∪ {a, b} induces an unbalanced hole strictly smaller than
H. Thus an endnode of I2, say a1 w.l.o.g., is adjacent to an endnode of I3, say b1. If
I1 6= a1, b1, then by the previous argument one endnode of I1 must be either coincident
or adjacent to the endnode of I2 distinct from a1, and the other endnode of I1 must be
either coincident or adjacent to the endnode of I3 distinct from b1. Since I has at least 6
elements, then it must be the case that I has exactly 6 elements, namely I1, I2, I3 and 3
sectors of length 1, say I4, I5, I6. Thus I1, I2, I3 also have length congruent to 1 modulo
4, and there exist 1 ≤ i < j ≤ 6 such that no node of Ii belongs to or has a neighbor in
Ij, a contradiction. Thus I1 = a1, b1, I2 and I3 have length 1 modulo 4, and there are
no other paths in I of length congruent to 1 modulo 3. This argument also shows that
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there exists a unique path I4 in I of length 3 modulo 4, therefore we may assume that
b1 is in A1, all neighbors of b distinct from b1 are in Ak, and I4 is the shortest path in Ak

between ak and a neighbor of b. This proves 4.3.1.

If every major node for H is adjacent to a1 or b1, then we are done. Hence we may
assume that there exists x ∈ M(H) ∩ C nonadjacent to b1.

(4.3.2) x and b are both adjacent to the neighbor of a1 in Ak, say b2, and |A1| > 2.

By 4.2 there exists a node b′ in H adjacent to both b and x. Assume first that x is
adjacent to a, then b′ = b2, else a, x, b′, b, b1, a1, a is a 6-hole. If x has no neighbors in A1,
then H ′ = a, a2, A1(a2, b1), b1, b, b2, x, a is an unbalanced hole strictly smaller than H, as
one can readily verify. Hence x has a neighbor in A1, distinct from b1 by assumption,
therefore |A1| > 2. Hence we may assume that x is not adjacent to a. Since b′ 6= b1 and
all neighbors of b in H distinct from b1 are contained in Ak, then b′ ∈ Ak. Since a and x
are not adjacent, then by 4.3.1 we have two cases.
Case (1): every neighbor of x in H except one, say b′′, is contained in Ak, and b′′ is either
the neighbor of a1 in A1 or the neighbor of ak in Ak−1. Since b′′ 6= b1 by assumption,
then b′′ is the neighbor of ak in Ak−1, but then, given the path I between b1 and b′′ in
H \ Ak, b, b1, I, b′′, x, b′, b is an unbalanced hole strictly smaller than H, a contradiction.
Case (2): b′ is the only neighbor of x in Ak. In this case, either b′ = b2 and all neighbors
of x in H distinct from b2 are contained in A1, hence |A1| > 2 and we are done, or b′

is the neighbor of ak in Ak, contradicting 4.3.1, since b′ is also adjacent to b and the
neighbor of b closest to ak in Ak has distance 3 modulo 4 from ak itself.
This conclude the proof of 4.3.2.

By 4.3.2, every node in M(H)∩C is adjacent to b1 or b2. If there exists y ∈ M(H)∩C
such that y is not adjacent to b2, then by 4.2, x and y have a common neighbor b′ in H
and x, b′, y, b1, a1, b2, x is a 6 hole, a contradiction. Thus b2 is adjacent to every node of
M(H)∩C. If a1 is adjacent to every node of M(H)∩R then we are done, therefore, by
4.3.2 and by symmetry, every node in M(H) ∩ R is adjacent to the neighbor of b1 in H
distinct from a1, say a′. In particular a′ = a2 and |A1| = 2, contradicting 4.3.2. 2

4.4 There exists a O(|V (G)|5) algorithm with the following specifications:

• Input A bipartite graph G.

• Output A family C of O(|V (G)|4) subsets of V (G) such that, if H is a smallest

unbalanced hole in G, then there exists an element of C that is a cleaner for H.

Algorithm:

1. For every chordless path P of length 3, P = u1, u2, u3, u4 define
X(P ) = (N(u2) ∪ N(u3)) \ V (P ) and
Y (P ) = (N(u1) ∩ N(u3)) ∪ (N(u2) ∩ N(u4)).
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2. Let C be the family containing X(P ) and Y (P ) for every chordless path P of length
3.

Correctness: The running time of the algorithm is obviously O(|V (G)|5) and C has
O(|V (G)|4) elements. We only need to show that, if G contains a smallest unbalanced
hole H, then C contains a cleaner for H. If H contains two adjacent nodes u2 and u3 such
that every major node for H is adjacent to u2 or u3, then let u1 be the neighbor of u2 in
H distinct from u3, and u4 be the neighbor of u3 in H distinct from u2. X(u1, u2, u3, u4)
is obviously a cleaner for H.
Otherwise, by 4.3, every node in M(H) ∩R is adjacent to every node in M(H) ∩C. By
4.2, there exist nodes u1 and u4 in H such that u1 is adjacent to every node in M(H)∩R
and u4 is adjacent to every node in M(H)∩C. Let a′, a′′ be the neighbors of u1 in H and
b′, b′′ the neighbors of u4 in H. Then there exist x′, x′′ ∈ M(H) ∩ C such that x′ is not
adjacent to a′ and x′′ is not adjacent to a′′. If x′ 6= x′′, then u4, x

′, a′′, u1, a
′, x′′, u4 is a 6-

hole, a contradiction. Let u3 = x′ = x′′. Analogously, there exists a node u2 ∈ M(H)∩R
that is nonadjacent to both b′ and b′′. It is immediate to verify that Y (u1, u2, u3, u4) is a
cleaner for H. 2

4.2 Cleaning signed graphs

Let (G, σ) be a signed bipartite graph. We state, without proving it, the following lemma
due to Conforti, Cornuéjols, Kapoor and Vušković [6].

4.5 Let (G, σ) be a signed graph. Let G be the smallest unbalanced hole of (G, σ). Then

there exist two edges u1u2 and v1v2 of H such that every major node for H is adjacent

to one of u1, u2, v1, v2.

This provides the following cleaning algorithm.

4.6 There exists a O(|V (G)|9) algorithm with the following specifications:

• Input A signed bipartite graph (G, σ).

• Output A family C of O(|V (G)|8) subsets of V (G) such that, if H is a smallest

unbalanced hole in G, then there exists an element of C that is a cleaner for H.

Algorithm:

For every pair (P1, P2) of chordless paths of length 3, where P1 = u0, u1, u2, u3, P2 =
v0, v1, v2, v3, define

X(P1, P2) = (N(u1) ∪ N(u2) ∪ N(v1) ∪ N(v2)) \ (V (P1) ∪ V (P2)).

Let C be the family containing X(P1, P2) for every pair (P1, P2) of chordless paths of
length 3.

Correctness: follows immediately from 4.5. 2
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5 Detecting a clean smallest unbalanced hole

5.1 Let (G, σ) be a signed bipartite graph containing no 3-path configuration and no

detectable 3-wheel. Let H be a clean smallest unbalanced hole of (G, σ), u and v be two

nonadjacent nodes of H and P1, P2 be the two internally node-disjoint subpaths of H
between u and v, where |P1| ≤ |P2|. Let P be a shortest path between u and v in G. Then

the following hold:

(i) |P | = |P1|

(ii) Either σ(P ) = σ(P1) and H ′ = u, P, v, P2, u is a clean smallest unbalanced hole, or

|P1| = |P2|, σ(P ) = σ(P2) and H ′′ = u, P, v, P1, u is a clean smallest unbalanced

hole.

Proof: The statement is obvious if H is an unbalanced hole of length 4, hence we may
assume |H| ≥ 6. Let H = h1, . . . , h2s, (h2s+1 = h1) where h1 = u, s ≥ 3. Let

−→
H be the

directed cycle obtained by orienting the edges of H from hi to hi+1 for every 1 ≤ i ≤ h2s.
For any two distinct nodes x and y in H, let H(x, y) be the underlying graph of the

directed path from x to y in
−→
H . W.l.o.g., P1 = H(u, v) and P2 = H(v, u), and v = hm

for some 3 ≤ m ≤ s+1. Let P = p0, . . . , pk+1, where p0 = u and pk+1 = v. We will prove
5.1 by induction on k.

If k = 1, then p1 has exactly two neighbors in H, namely u and v (since H is clean),
and they are contained in a subpath of H of length 2, say u,w, v. Hence, by 4.1, H ′ =
u, p1, v, P2, u is a an unbalanced hole of the same length as H. We only need to prove
that H ′ is clean. Assume not and let x be a major node for H ′. Since x is not major for
H, then x is adjacent to p1 but not to w, x has exactly 2 neighbors in P2 and they are
contained in a path of length 2. But then (H ′, x) is a detectable 3-wheel, a contradiction.
Hence we may assume k ≥ 2.

(5.1.1) Either:

(i) no node of P (p1, pk) belongs to or has a neighbor in H(hm+1, h2s), or

(ii) |P | = |H(u, v)| = |H(v, u)| = s, σ(P ) = σ(H(v, u)) and no node of P (p1, pk)
belongs to or has a neighbor in H(h2, hm−1).

Assume that there is a node of P (p1, pk) that belongs to or has a neighbor in H(hm+1, h2s),
then there exists a j, m + 1 ≤ j ≤ 2s, such that there are chordless paths Q1 and Q2

between hj and u and hj and v, respectively, with interior contained in the interior of P .
Therefore

|Q1| + |Q2| ≤ k + 3 ≤ m + 1 ≤ 2s + 3 − m = (2s + 2 − j) + (j − m + 1)

≤ (|H(hj, u)| + 1) + (|H(v, hj)| + 1).

Since |Q1| has the same parity as |H(hj, u)| and |Q2| has the same parity as |H(v, hj)|,
then, by symmetry, we may assume |Q1| ≤ |H(hj, u)|. We can also argue that either
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|Q1| < |P | and j < 2s, or |Q2| ≤ |H(v, hj)|, |Q2| < |P | and j > m + 1. In fact, if
|Q1| = |P |, then Q1 = u, p1, . . . , pk, hj and Q2 = hj, pk, v, hence |Q2| ≤ |H(v, hj)| and
|Q2| < |P |. Furthermore, if j = 2s, then |Q2| < |P | ≤ |H(v, hj)| + 1 (since h2s cannot
be adjacent to both h1 and p1) and j > m + 1. Thus, by symmetry, we may assume
|Q1| ≤ |H(hj, u)|, |Q1| < |P | and j < 2s. By inductive hypothesis,

dG(hj, u) = dH(hj, u) = min(2s + 1 − j, j − 1)

and dG(hj, u) ≤ |Q1| < |P | ≤ m − 1 < j − 1, hence dG(hj, u) = 2s + 1 − j = |Q1| < s.
By induction, σ(Q1) = σ(H(hj, u)) and H ′ = u,H(u, hj), hj, Q1, u is a clean smallest

unbalanced hole. We obtain a directed cycle
−→
H ′ by orienting the edges of H ′ to agree

with the orientation of the edges in H(u, hj), and define H ′(x, y) for every x, y in H ′ as
before.
Let u′ be the neighbor of hj in Q1. Then there exists a subpath P ′ of P between u′ and
v of length k+2−|Q1| = k+ j +1−2s < k+1. By induction, |H ′(u′, v)| ≤ k+ j +1−2s
or |H ′(v, u′)| ≤ k + j + 1 − 2s. But |H ′(u′, v)| > |H(u, v)| ≥ k + 1 > |P ′|, hence
|H ′(v, u′)| ≤ k + j + 1 − 2s. This implies j − m + 1 ≤ k + j + 1 − 2s, so 2s ≤ k + m,
but m ≤ s + 1 and k ≤ s − 1, hence m = s + 1, k = s − 1, dG(u′, v) = dH′(u′, v) = |P ′|
and σ(P ′) = σ(H ′(v, u′)). By induction, H ′′ = u′, H ′(u′, v), v, P ′, u′ is a clean smallest
unbalanced hole. Since H(u, v) is contained in H ′(u′, v), then no node in the interior of
P ′ belongs to or has a neighbor in H(h2, hm−1). Since every node in P (p1, pk) is either
a node of Q1 or a node of P ′, then no node of P (p1, pk) belongs to or has a neighbor in
H(h2, hm−1). Finally

σ(P ) = σ(P (u, u′)) + σ(P (u′, v)) = σ(Q1) − σ(u′hj) + σ(P ′)

= σ(H(hj, u)) − σ(u′hj) + σ(H ′(v, u′))

= σ(H(hj, u)) − σ(u′hj) + σ(H(v, hj)) + σ(u′hj)

= σ(H(v, u)) (2)

This concludes the proof of 5.1.1.

By 5.1.1 and symmetry, we may assume that no node of P (p1, pk) belongs to or has
a neighbor in H(hm+1, h2s).

(5.1.2) Either

(i) |H(u, v)| = |P | and σ(H(u, v)) = σ(P ), or

(ii) |P | = |H(u, v)| = |H(v, u)| = s, σ(P ) = σ(H(v, u)) and no node of P (p1, pk)
belongs to or has a neighbor in H(h2, hm−1).

Clearly, if σ(H(u, v)) = σ(P ), then H ′ = u, P, v,H(v, u, ), u is an unbalanced hole
of length at most |H|, hence |P | = |H(u, v)| and 5.1.2 holds. Suppose then that
σ(H(u, v)) 6= σ(P ). If no node in P (p1, pk) belongs to or has a neighbor in H(h2, hm−1),
then u and v must be on the same side of the bipartition, else H(u, v), H(v, u), P
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would induce a 3-path configuration between u and v. Thus P has even length and
H ′′ = u,H(u, v), v, P, u is an unbalanced hole strictly smaller than H unless |P | =
|H(u, v)| = |H(v, u)| = s, thus case (ii) holds. Therefore there exists j, 2 ≤ j ≤ m − 1,
such that there are chordless paths Q1 and Q2 between hj and u and hj and v, respec-
tively, with interior contained in the interior of P . By 5.1.1 and symmetry, we may
assume m ≤ s. We have

|Q1| + |Q2| ≤ k + 3 ≤ m + 1 = j + (m + 1 − j) = (|H(u, hj)| + 1) + (|H(hj, v)| + 1)

and, by the same argument as in 5.1.1, we may assume |Q1| ≤ j − 1, |Q1| < |P | and
j > 2. By induction, |Q1| = dG(u, hj) = dH(u, hj) = j − 1, σ(Q1) = σ(H(u, hj) and
H ′ = u,Q1, hj, H(hj, u), u is a clean smallest unbalanced hole.
Let u′ be the neighbor of hj in Q1 and let P ′ be the path between u′ and v in P . Then

|P ′| = k + 2 − |Q1| = k − j + 3

thus, by induction, σ(P ′) = σ(H ′(u′, v)). Finally, with a calculation very similar to the
one in (2),

σ(P ) = σ(P (u, u′)) + σ(P (u′, v))

= σ(H(u, hj)) − σ(u′hj) + σ(H(hj, v)) + σ(u′hj)

= σ(H(u, v)).

This completes the proof of 5.1.2.

By 5.1.1, 5.1.2 and by symmetry, we may assume that H ′ = u, P, v,H(v, u), u is a
smallest unbalanced hole. To conclude the proof of 5.1 we only need to show that H ′ is
clean. Suppose, by contradiction, that H ′ is not clean, and let x be a major vertex for
H ′. If x has at least two neighbors in H(v, u), then such neighbors are contained in a
subpath of H of length 2, thus x is adjacent to hi and hi+2 for some m ≤ i ≤ 4s + 1 and
has no other neighbors in H. Thus H ′′ = hi, x, hi+2, H(hi+2, hi), hi is a clean smallest
unbalanced hole and the interior of P contains a neighbor of x, whence, by 5.1.1 applied
to H ′′ and P , it must be the case that |P | = s, σ(P ) = σ(H ′(v, u)) = σ(H(v, u)) and
no node of P (p1, pk) belongs to or has a neighbor in H ′(h2, hm−1) = H(h2, hm−1). Since
σ(H) ≡ 2 mod 4, and σ(H(u, v)) = σ(P ) = σ(H(v, u)), then u and v are in distinct sides
of the bipartition and H(u, v), H(v, u), P induce a 3-path configuration between u and
v. Thus x has at most one neighbor in H(v, u) and at least 2 neighbors in the interior
of P . Let pi and pj be the neighbors of x in P of lowest and highest index, respectively.
Then j = i + 2, else u, P (u, pi), pi, x, pj, P (pj, v), v is a path between u and v strictly
shorter than P . But then x has exactly 3 neighbors in H ′, and two of these neighbors
have distance 2 in H ′, so (H ′, x) is a detectable 3 wheel, a contradiction. 2

5.2 There exists a O(|V (G)|4) algorithm with the following specifications:

• Input A clean signed bipartite graph (G, σ) containing no 3-path configuration and

no detectable 3-wheel.
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• Output Either

(i) An unbalanced hole H, or

(ii) determines that (G, σ) is balanced.

Algorithm:

For every quadruple of nodes, check if they induce an unbalanced hole H. If this is the
case, then output H and stop.

For every possible pair of nodes u1, u2, do the following:

1. compute the shortest path P between u1 and u2.

2. compute the set X of nodes that do not belong to or have a neighbor in the interior
of P .

3. for every node u3 in X at distance 2 from u1 in G[X ∪ {u1}], compute the shortest
paths P1(u3) and P2(u3) between u1 and u3 in G[X ∪ {u1}] and between u2 and u3

in G[X ∪ {u2}] (if one exists), respectively.

4. for every such u3 ∈ X, verify that no node in P1(u3)\u3 belongs to or has a neighbor
in P2(u3)\u3. If this is the case, define H(u1, u2, u3) = u1, P, u2, P2(u3), u3, P1(u3), u1,
otherwise let H(u1, u2, u3) be undefined.

5. If σ(H(u1, u2, u3)) ≡ 2 mod 4, then output the unbalanced hole H = H(u1, u2, u3)
and stop.

Otherwise output that G is balanced.

Correctness: checking if (G, σ) has an unbalanced hole of length 4 takes time O(|V (G)|4).
For every possible pair u1 and u2, the running time of steps 1 through 4 is O(|V (G)|2)
(in fact, step 4 takes linear time for every choice of u3 since P1(u3), by definition, has
constant length 2). Hence the overall running time is O(|V (G)|4). Obviously, when the
algorithm outputs an unbalanced hole it is correct. We need to verify that the algo-
rithm is always correct when it outputs that G is balanced. Assume G is not balanced.
Since G is clean, there exists a clean smallest unbalanced hole H, with |H| = 2s, and
s ≥ 3 since |H| ≥ 6. Let u1, u2, u3 be three nodes in H such that dH(u1, u3) = 2,
while dH(u1, u2) = dH(u2, u3) = s − 1. Let P , P1(u3), P2(u3) be the paths computed
by the algorithm for the triple u1, u2, u3. Let Q1 and Q2 be the subpaths of H between
u1 and u2 such that Q1 does not contain u3 and Q2 contains u3. Then, by our choice
of u1, u2, u3, |Q1| < |Q2|, hence, by 5.1, H ′ = u1, P, u2, Q2, u1 is a clean smallest un-
balanced hole. By repeating the same argument for P1(u3) and P2(u3), we argue that
H(u1, u2, u3) = u1, P, u2, P2(u3), u3, P1(u3), u1 is a clean smallest unbalanced hole, hence
the algorithm would have output it correctly. 2
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6 The recognition algorithm

6.1 Unsigned graphs

6.1 There exists a O(|V (G)|9) algorithm with the following specifications:

• Input A bipartite graph G.

• Output Determines whether G is balanced or not.

Algorithm:

1. Apply the algorithm in 2.2. If G contains a 3-path configuration, then output the
fact that G is not balanced and stop.

2. Apply the algorithm in 3.2. If G contains a detectable 3-wheel, then output the
fact that G is not balanced and stop.

3. Apply the algorithm in 4.4 to obtain a family C of subsets of V (G).

4. For every element X of C apply the algorithm in 5.2 to G \ X. If, for some X, the
algorithm outputs an unbalanced hole, then output the fact that G is not balanced;
else output the fact that G is balanced.

Correctness: The running time of the algorithm is O(|V (G)|9). In fact both step 1
and step 2 takes time O(|V (G)|9), step 3 takes time O(|V (G)|5), while step 4 takes time
O(|V (G)|4) for each of the O(|V (G)|4) elements of C, hence it takes time O(|V (G)|8)
overall.
The correctness follows immediately by 1.1 and by the correctness of the algorithms in
2.2, 3.2, 4.4 and 5.2. 2

6.2 Signed graphs

The algorithm in 6.1 can be generalized to an algorithm to test balancedness for signed
bipartite graphs simply by using the cleaning step 4.6 instead of 4.4. Since the family
of sets produced this way is of order O(n8), then the overall running time is O(n12).
One can reduce the running time by combining algorithms 4.6 and 5.2 to obtain an
O(n11) algorithm to test for balancedness for signed bipartite graphs with no 3-path
configurations or detectable 3-wheels as follows.

6.2 There exists a O(|V (G)|11) algorithm with the following specifications:

• Input A signed bipartite graph (G, σ) containing no 3-path configuration and no

detectable 3-wheel.

• Output Determines whether G is balanced or not.
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Algorithm: For every pair (P1, P2) of chordless paths of length 3, where P1 = u0, u1, u2, u3,
P2 = v0, v1, v2, v3, compute X(P1, P2) = (N(u1)∪N(u2)∪N(v1)∪N(v2))\(V (P1)∪V (P2)).
For every x ∈ V (G) \ X(P1, P2), do the following:

1. In G \ X(P1, P2), compute the shortest paths Q and Q′ between x and v0 and x
and v2, respectively.

2. Verify that v1 does not belong to or has a neighbor in Q \ v0, and Q′ \ v2, and
that no node of Q \ v0 belongs to or has a neighbor in Q′ \ v2. In this case let
H = v0, v1, v2, Q

′, x,Q, v0.

3. If σ(H) ≡ 2 mod 4, then output the unbalanced hole H.

Otherwise output the fact that G is balanced.

Correctness: The running time is O(|V (G)|11), since there are O(|V (G)|9) choices for
P1, P2 and x, and each of the steps 1-3 takes at most O(|V (G)|2). If the algorithm
outputs an unbalanced hole, then clearly it answers correctly, hence we only need to
verify that the algorithm is always correct when it outputs that G is balanced. Suppose
G is not balanced and let H ′ be a smallest unbalanced hole. By Lemma 4.5, there exist
two edges v1v2 and u1u2 of H ′, such that every major node for H ′ is adjacent to a node in
{u1, u2, v1, v2}. If P1 = u0, u1, u2, u3 and P2 = v0, v1, v2, v3 are subpaths of H ′, then H ′ is
clean in G \ X(P1, P2). Let x be the node of H ′ such that dH′(v0, x) = dH′(v2, x). Then,
by 5.1, given the paths Q and Q′ computed by the algorithm, H = v0, v1, v2, Q

′, x,Q, v0

is an unbalanced hole, thus the algorithm would have output it in the iteration relative
to P1, P2, x. 2

The following is an immediate consequence of the previous claim.

6.3 There exists a O(|V (G)|11) algorithm with the following specifications:

• Input A signed bipartite graph (G, σ).

• Output Determines whether G is balanced or not.

Algorithm:

1. Apply the algorithm in 2.2. If G contains a 3-path configuration, then output the
fact that G is not balanced and stop.

2. Apply the algorithm in 3.2. If G contains a detectable 3-wheel, then output the
fact that G is not balanced and stop.

3. Apply the algorithm in 6.2. If (G, σ) contains an unbalanced hole, then output the
fact that (G, σ) is not balanced; else output the fact that (G, σ) is balanced.
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