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Abstract

We consider a model that arises in integer programming, and show that all irredundant
inequalities are obtained from maximal lattice-free convex sets in an affine subspace. We
also show that these sets are polyhedra. The latter result extends a theorem of Lovász
characterizing maximal lattice-free convex sets in Rn.

1 Introduction

The study of maximal lattice-free convex sets dates back to Minkowski’s work on the geom-
etry of numbers. Connections between integer programming and the geometry of numbers
were investigated in the 1980s starting with the work of Lenstra [21]. See Lovász [22] for a
survey. Recent work in cutting plane theory [1],[2],[3],[4],[5],[8],[10],[13],[14],[15],[17],[19],[24]
has generated renewed interest in the study of maximal lattice-free convex sets. In this paper
we further pursue this line of research. In the first part of the paper we consider convex sets in
an affine subspace of Rn that are maximal with the property of not containing integer points
in their interior. When this affine subspace is rational, these convex sets are characterized
by a result of Lovász [22]. The extension to irrational subspaces appears to be new.

The second part of the paper contains our main result. We consider a model that arises in
integer programming, and show that all irredundant inequalities are obtained from maximal
lattice-free convex sets in an affine subspace. The relation between lattice-free convex sets
and valid inequalities in integer programming was first observed by Balas [6].

∗Supported by NSF grant CMMI0653419, ONR grant N00014-03-1-0188 and ANR grant BLAN06-1-138894.
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Let W be an affine subspace of Rn. Assume that W ∩Zn 6= ∅. We say that a set B ⊂ Rn

is a maximal lattice-free convex set in W if B ⊂ W , B is convex, has no integer point in its
relative interior, and it is inclusionwise maximal with these three properties. The subspace
W is said to be rational if it is generated by the integer points in W . So, if we denote by V
the affine hull of the integer points in W , V = W if and only if W is rational. If W is not
rational, then the inclusion V ⊂ W is strict. When W is not rational, we will also say that
W is irrational.

Theorem 1. Let W ⊂ Rn be an affine space containing an integral point and V the affine
hull of W ∩ Zn. A set S ⊂W is a maximal lattice-free convex set of W if and only if one of
the following holds:

(i) S is a polyhedron in W whose dimension equals dim(W ), S∩V is a maximal lattice-free
convex set of V whose dimension equals dim(V ), and for every facet F of S, F ∩ V is
a facet of S ∩ V ;

(ii) S is an affine hyperplane of W such that S ∩ V is an irrational hyperplane of V ;

(iii) S is a half-space of W that contains V on its boundary.

Figure 1: Maximal lattice-free convex sets in a 2-dimensional subspace (Theorem 1(i)).

A characterization of maximal lattice-free convex sets of V , needed in (i) of the previous
theorem, is given by the following.

Theorem 2. (Lovász [22]) Let V be a rational affine subspace of Rn containing an integral
point. A set S ⊂ V is a maximal lattice-free convex set of V if and only if one of the following
holds:

(i) S is a polyhedron of the form S = P + L where P is a polytope, L is a rational linear
space, dim(S) = dim(P ) + dim(L) = dim(V ), S does not contain any integral point in
its interior and there is an integral point in the relative interior of each facet of S;

(ii) S is an irrational affine hyperplane of V .

The polyhedron S = P + L in Theorem 2(i) is called a cylinder over the polytope P and
can be shown to have at most 2dim(P ) facets [16].

Theorem 1 is new and it is used in the proof of our main result, Theorem 3. It is also used
to prove the last theorem in [10]. Theorem 2 is due to Lovász ([22] Proposition 3.1). Lovász
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only gives a sketch of the proof and it is not clear how case (ii) in the above theorem arises in
his sketch or in the statement of his proposition. Therefore in Section 2 we will prove both
theorems for the sake of completeness.

Figure 1 shows examples of maximal lattice free convex sets in a 2-dimensional affine
subspace W of R3. We denote by V the affine space generated by W ∩Z3. In the first picture
W is rational, so V = W , while in the second one V is a subspace of W of dimension 1.

In the second part of the paper, we show a connection between maximal lattice-free convex
sets in affine subspaces and mixed-integer linear programming. Suppose we consider q rows of
the optimal tableau of the LP relaxation of a given MILP, relative to q basic integer variables
x1, . . . , xq. Let s1, . . . , sk be the nonbasic variables, and f ∈ Rq be the vector of components
of the optimal basic feasible solution. The tableau restricted to these q rows is of the form

x = f +

k
∑

j=1

rjsj, x ≥ 0 integral, s ≥ 0, and sj ∈ Z, j ∈ I,

where rj ∈ Rq, j = 1, . . . , k, and I denotes the set of integer nonbasic variables. Gomory
[18] proposed to consider the relaxation of the above problem obtained by dropping the
nonnegativity conditions x ≥ 0. This gives rise to the so called corner polyhedron. A further
relaxation is obtained by also dropping the integrality conditions on the nonbasic variables,
obtaining the mixed-integer set

x = f +

k
∑

j=1

rjsj, x ∈ Zq, s ≥ 0.

Note that, since x ∈ Rq is completely determined by s ∈ Rk, the above is equivalent to

f +

k
∑

j=1

rjsj ∈ Zq, s ≥ 0. (1)

We denote by Rf (r
1, . . . , rk) the set of points s satisfying (1). The above relaxation was

studied by Andersen et al. [1] in the case of two rows and Borozan and Cornuéjols [10]
for the general case. In these papers they showed that the irredundant valid inequalities
for conv(Rf (r

1, . . . , rk)) correspond to maximal lattice free convex sets in Rq. In [1, 10] data
are assumed to be rational. Here we consider the case were f, r1, . . . , rk may have irrational
entries.

Let W = 〈r1, . . . , rk〉 be the linear space generated by r1, . . . , rk. Note that, for every
s ∈ Rf (r

1, . . . , rk), the point f +
∑k

j=1 r
jsj ∈ (f +W )∩Zq, hence we assume f +W contains

an integral point. Let V be the affine hull of (f + W ) ∩ Zq. Notice that f + W and V
coincide if and only if W is a rational space. Borozan and Cornuéjols [10] proposed to study
the following semi-infinite relaxation. Let Rf (W ) be the set of points s = (sr)r∈W of RW

satisfying

f +
∑

r∈W
rsr ∈ Zq

sr ≥ 0, r ∈W (2)

s ∈ W
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where W is the set of all s ∈ RW with finite support, i.e. the set {r ∈ W | sr > 0} has finite
cardinality. Notice that Rf (r

1, . . . , rk) = Rf (W ) ∩ {s ∈ W | sr = 0 for all r 6= r1, . . . , rk}.
Given a function ψ : W → R and α ∈ R, the linear inequality

∑

r∈W
ψ(r)sr ≥ α (3)

is valid for Rf (W ) if it is satisfied by every s ∈ Rf (W ).
Note that, given a valid inequality (3) for Rf (W ), the inequality

k
∑

j=1

ψ(rj)sj ≥ α

is valid for Rf (r
1, . . . , rk). Hence a characterization of valid linear inequalities for Rf (W )

provides a characterization of valid linear inequalities for Rf (r
1, . . . , rk).

Next we observe how maximal lattice-free convex sets in f+W give valid linear inequalities
for Rf (W ). Let B be a maximal lattice-free convex set in f +W containing f in its interior.
Since, by Theorem 1, B is a polyhedron and since f is in its interior, there exist a1, . . . , at ∈ Rq

such that B = {x ∈ f +W | ai(x− f) ≤ 1, i = 1 . . . , t}. We define the function ψB : W → R

by
ψB(r) = max

i=1,...,t
air.

Note that the function ψB is subadditive, i.e. ψB(r) + ψB(r′) ≥ ψB(r + r′), and positively
homogeneous, i.e. ψB(λr) = λψB(r) for every λ ≥ 0. We claim that

∑

r∈W
ψB(r)sr ≥ 1

is valid for Rf (W ).
Indeed, let s ∈ Rf (W ), and x = f +

∑

r∈W rsr. Note that x ∈ Zn, thus x /∈ int(B). Then

∑

r∈W
ψB(r)sr =

∑

r∈W
ψB(rsr) ≥ ψB(

∑

r∈W
rsr) = ψB(x− f) ≥ 1,

where the first equation follows from positive homogeneity, the first inequality follows from
subadditivity of ψB and the last one follows from the fact that x /∈ int(B).

We will show that all nontrivial irredundant valid linear inequalities for Rf (W ) are indeed
of the type described above. Furthermore, if W is irrational, we will see that Rf (W ) is
contained in a proper affine subspace of W, so each inequality has infinitely many equivalent
forms. Note that, by definition of ψB , ψB(r) > 0 if r is not in the recession cone of B,
ψB(r) < 0 when r is in the interior of the recession cone of B, while ψB(r) = 0 when r is on
the boundary of the recession cone of B. We will show that one can always choose a form of
the inequality so that ψB is a nonnegative function. We make this more precise in the next
theorem.
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Given a point s ∈ Rf (W ), then f +
∑

r∈W rsr ∈ Zq ∩ (f + W ). Thus conv(Rf (W )) is
contained in the affine subspace V of W defined as

V = {s ∈ W | f +
∑

r∈W
rsr ∈ V }.

Observe that, given C ∈ Rℓ×q and d ∈ Rℓ such that V = {x ∈ f +W |Cx = d}, we have

V = {s ∈ W |
∑

r∈W
(Cr)sr = d− Cf}. (4)

A linear inequality
∑

r∈W ψ(r)sr ≥ α that is satisfied by every element in {s ∈ V | sr ≥
0 for every r ∈W} is said to be trivial.

We say that inequality
∑

r∈W ψ(r)sr ≥ α dominates inequality
∑

r∈W ψ′(r)sr ≥ α if
ψ(r) ≤ ψ′(r) for all r ∈ W . Note that, for any s̄ ∈ W such that s̄r ≥ 0 for all r ∈ W , if s̄
satisfies the first inequality, then s̄ also satisfies the second. A valid inequality

∑

r∈W ψ(r)sr ≥
α for Rf (W ) is minimal if it is not dominated by any valid linear inequality

∑

r∈W ψ′(r)sr ≥ α
for Rf (W ) such that ψ′ 6= ψ. It is not obvious that nontrivial valid linear inequalities are
dominated by minimal ones. We will show that this is the case. Note that it is not even
obvious that minimal valid linear inequalities exist.

We will show that, for any maximal lattice-free convex set B of f + W with f in its
interior, the inequality

∑

r∈W ψB(r)sr ≥ 1 is a minimal valid inequality for Rf (W ). The
main result of this paper is a converse, stated in the next theorem.

Given two valid inequalities
∑

r∈W ψ(r)sr ≥ α and
∑

r∈W ψ′(r)sr ≥ α′ for Rf , we say
that they are equivalent if there exist ρ > 0 and λ ∈ Rℓ such that ψ(r) = ρψ′(r) + λTCr and
α = ρα′ + λT (d−Cf).

Theorem 3. Every nontrivial valid linear inequality for Rf (W ) is dominated by a nontrivial
minimal valid linear inequality for Rf (W ).
Every nontrivial minimal valid linear inequality for Rf (W ) is equivalent to an inequality of
the form

∑

r∈W
ψB(r)sr ≥ 1

such that ψB(r) ≥ 0 for all r ∈W and B is a maximal lattice-free convex set in f +W with
f in its interior.

This theorem generalizes earlier results about the case when W is a rational space
(Borozan and Cornuéjols [10]). However the proof is much more complicated. In the ra-
tional case it is immediate that all valid linear inequalities are of the form

∑

r∈W ψ(r)sr ≥ 1
with ψ nonnegative. From this, it follows easily that ψ must be equal to ψB for some maximal
lattice-free convex set B. In the irrational case, valid linear inequalities might have negative
coefficients. For minimal inequalities, however, Theorem 3 shows that there always exists an
equivalent one where all coefficients are nonnegative. The function ψB is nonnegative if and
only if the recession cone of B has empty interior. Although there are nontrivial minimal
valid linear inequalities arising from maximal lattice-free convex sets whose recession cone is
full dimensional, Theorem 3 states that there always exists a maximal lattice-free convex set
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whose recession cone is not full dimensional that gives an equivalent inequality. A crucial
ingredient in showing this is a new result about sublinear functions proved in [9].

In light of Theorem 3, it is a natural question to ask what is the subset of W obtained by
intersecting the set of nonnegative elements of V with all half-spaces defined by inequalities
∑

r∈W ψ(r)sr ≥ 1 as in Theorem 3. In a finite dimensional space, the intersection of all
half-spaces containing a given convex set C is the closure of C. Things are more compli-
cated in infinite dimension. First of all, while in finite dimension all norms are topologically
equivalent, and thus the concept of closure does not depend on the choice of a specific norm,
in infinite dimension different norms may produce different topologies. Secondly, in finite
dimensional spaces linear functions are always continuous, while in infinite dimension there
always exist linear functions that are not continuous. In particular, half-spaces (i.e. sets of
points satisfying a linear inequality) are not always closed in infinite dimensional spaces (see
Conway [12] for example).

To illustrate this, note that if W is endowed with the Euclidean norm, then 0 = (0)r∈W
belongs to the closure of conv(Rf (W )) with respect to this norm, as shown next. Let x̄ be
an integral point in f +W and let s̄ be defined by

s̄r =

{

1
k

if r = k(x̄− f),
0 otherwise.

Clearly, for every choice of k, s̄ ∈ Rf (W ), and for k that goes to infinity the point s̄ is
arbitrarily close to 0 with respect to the Euclidean distance. Now, given a valid linear
inequality

∑

r∈W ψ(r)sr ≥ 1 for conv(Rf (W )), since
∑

r∈W ψ(r)0 = 0 the hyperplane H =
{s ∈ W :

∑

r∈W ψ(r)sr = 1} separates strictly conv(Rf (W )) from 0 even though 0 is in
the closure of conv(Rf (W )). This implies that H is not a closed hyperplane of W, and in
particular the function s 7→ ∑

r∈W ψ(r)sr is not continuous with respect to the Euclidean
norm on W.

A nice answer to our question is given by considering a different norm on W. We endow
W with the norm ‖ · ‖H defined by

‖s‖H = |s0| +
∑

r∈W\{0}
‖r‖|sr|.

It is straightforward to show that ‖ · ‖H is indeed a norm. Given A ⊂ W, we denote by Ā
the closure of A with respect to the norm ‖ · ‖H .

Let BW be the family of all maximal lattice-free convex sets of W with f in their interior.

Theorem 4.

conv(Rf (W )) =

{

s ∈ V |
∑

r∈W ψB(r)sr ≥ 1 B ∈ BW
sr ≥ 0 r ∈W

}

.

Note that Theorems 3 and 4 are new even when W = Rq. Even though data of integer
programs are typically rational and studying the infinite relaxation (2) for W = Qq seems
natural, some of its extreme inequalities arise from maximal lattice free convex sets with
irrational facets [13]. Therefore the more natural setting for (2) is in fact W = Rq.
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The paper is organized as follows. In Section 2 we will state and prove the natural
extensions of Theorems 1 and 2 for general lattices. In Section 3 we prove Theorem 3, while
in Section 4 we prove Theorem 4.

2 Maximal lattice-free convex sets

Given X ⊂ Rn, we denote by 〈X〉 the linear space generated by the vectors in X. The
underlying field is R in this paper. The purpose of this section is to prove Theorems 1 and 2.
For this, we will need to work with general lattices.

Definition 5. An additive group Λ of Rn is said to be finitely generated if there exist vectors
a1, . . . , am ∈ Rn such that Λ = {λ1a1 + . . .+ λmam |λ1, . . . , λm ∈ Z}.

If a finitely generated additive group Λ of Rn can be generated by linearly independent
vectors a1, . . . , am, then Λ is called a lattice of the linear space 〈a1, . . . , am〉. The set of
vectors a1, . . . , am is called a basis of the lattice Λ.

Definition 6. Let Λ be a lattice of a linear space V of Rn. Given a linear subspace L of V ,
we say that L is a lattice-subspace of V if there exists a basis of L contained in Λ.

Given y ∈ Rn and ε > 0, we will denote by Bε(y) the open ball centered at y of radius
ε. Given an affine space W of Rn and a set S ⊆W , we denote by intW (S) the interior of S
with respect to the topology induced on W by Rn, namely intW (S) is the set of points x ∈ S
such that Bε(x) ∩W ⊂ S for some ǫ > 0. We denote by relint(S) the relative interior of S,
that is relint(S) = intaff(S)(S).

Definition 7. Let Λ be a lattice of a linear space V of Rn, and let W be a linear space of Rn

containing V . A set S ⊂ Rn is said to be a Λ-free convex set of W if S ⊂W , S is convex and
Λ ∩ intW (S) = ∅, and S is said to be a maximal Λ-free convex set of W if it is not properly
contained in any Λ-free convex set.

The next two theorems are restatements of Theorems 1 and 2 for general lattices.

Theorem 8. Let Λ be a lattice of a linear space V of Rn, and let W be a linear space of Rn

containing V . A set S ⊂ Rn is a maximal Λ-free convex set of W if and only if one of the
following holds:

(i) S is a polyhedron in W , dim(S) = dim(W ), S ∩ V is a maximal Λ-free convex set of
V , and for every facet F of S, F ∩ V is a facet of S ∩ V ;

(ii) S is an affine hyperplane of W of the form S = v + L where v ∈ S and L ∩ V is a
hyperplane of V that is not a lattice subspace of V ;

(iii) S is a half-space of W that contains V on its boundary.

Theorem 9. Let Λ be a lattice of a linear space V of Rn. A set S ⊂ Rn is a maximal Λ-free
convex set of V if and only if one of the following holds:
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(i) S is a polyhedron of the form S = P + L where P is a polytope, L is a lattice-subspace
of V , dim(S) = dim(P ) + dim(L) = dim(V ), S does not contain any point of Λ in its
interior and there is a point of Λ in the relative interior of each facet of S;

(ii) dim(S) < dim(V ), S is an affine hyperplane of V of the form S = v + L where v ∈ S
and L is not a lattice-subspace of V .

2.1 Proof of Theorem 8

We assume Theorem 9 holds. Its proof will be given in the next section.

(⇒) Let S be a maximal Λ-free convex set of W . We show that one of (i) − (iii) holds.
If V = W , then (iii) cannot occur and either (i) or (ii) follows from Theorem 9. Thus we
assume V ⊂W .

Assume first that dim(S) < dim(W ). Then there exists a hyperplane H of W containing
S, and since intW (H) = ∅, then S = H by maximality of S. Since S is a hyperplane of W ,
then either V ⊆ S or S ∩ V is a hyperplane of V . If V ⊆ S, then let K be one of the two
half spaces of W separated by S. Then intW (K) ∩ Λ = ∅, contradicting the maximality of
S. Hence S ∩ V is a hyperplane of V . We show that P = S ∩ V is a maximal Λ-free convex
set of V . Indeed, let K be a convex set in V such that intV (K) ∩ Λ = ∅ and P ⊆ K. Since
conv(S∪K)∩V = K, then intW (conv(S∪K)∩Λ) = ∅. By maximality of S, S = conv(S∪K),
hence P = K.
Given v ∈ P , S = v + L for some hyperplane L of W , and P = v + (L ∩ V ). Applying
Theorem 9 to P , we get that L ∩ V is not a lattice subspace of V , and case (ii) holds.

So we may assume dim(S) = dim(W ). Since S is convex, then intW (S) 6= ∅. We consider
two cases.

Case 1. intW (S) ∩ V = ∅.
Since intW (S) and V are nonempty disjoint convex sets, there exists a hyperplane sepa-

rating them, i.e. there exist α ∈ Rn and β ∈ R such that αx ≥ β for every x ∈ S and αx ≤ β
for every x ∈ V . Since V is a linear space, then αx = 0 for every x ∈ V , hence β ≥ 0. Then
the half space H = {x ∈ W |αx ≥ 0} contains S and V lies on the boundary of H. Hence
H is a maximal Λ-free convex set of W containing S, therefore S = H by the maximality
assumption, so (iii) holds.

Case 2. intW (S) ∩ V 6= ∅.
We claim that

intW (S) ∩ V = intV (S ∩ V ). (5)

To prove this claim, notice that the direction intW (S)∩V ⊆ intV (S ∩V ) is straightforward.
Conversely, let x ∈ intV (S ∩ V ). Then there exists ε > 0 such that Bε(x) ∩ V ⊆ S. Since
intW (S)∩V 6= ∅, there exists y ∈ intW (S)∩V . Then there exists ε′ such that Bε′(y)∩W ⊆ S.
Since S is convex, the set K = conv((Bε(x) ∩ V ) ∪ (Bε′(y) ∩W )) is contained in S. Clearly
x ∈ intW (K), thus x ∈ intW (S) ∩ V .

Let P = S ∩ V . By (5) and because intW (S) ∩ Λ = ∅, we have intV (P ) ∩ Λ = ∅. We
show that P is a maximal Λ-free convex set of V . Indeed, let K be a convex set in V such
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that intV (K) ∩ Λ = ∅ and P ⊆ K. Since conv(S ∪ K) ∩ V = K, Claim (5) implies that
intW (conv(S ∪K)) ∩ Λ = ∅. By maximality, S = conv(S ∪K), hence P = K.

Since dim(P ) = dim(V ), by Theorem 9 applied to P , P is a polyhedron with a point of Λ
in the relative interior of each of its facets. Let F1, . . . , Ft be the facets of P . For i = 1, . . . , t,
let zi be a point in relint(Fi) ∩ Λ. By (5), zi /∈ intW (S). By the separation theorem, there
exists a half-space Hi of W containing intW (S) such that zi /∈ intW (Hi). Notice that Fi is
on the boundary of Hi. Then S ⊆ ∩ti=1Hi. By construction intW (∩ti=1Hi)∩Λ = ∅, hence by
maximality of S, S = ∩ti=1Hi. For every j = 1, . . . , t, intW (∩i6=jHi) contains zj . Therefore
Hj defines a facet of S for j = 1, . . . , t.

(⇐) Let S be a set in Rn satisfying one of (i), (ii), (iii). Clearly S is a convex set in W
and intW (S) ∩ Λ = ∅, so we only need to prove maximality. If S satisfies (iii), then this is
immediate. If S satisfies (i) or (ii), suppose that there exists a closed convex set K ⊂ W
strictly containing S such that intW (K)∩Λ = ∅. Let w ∈ K \ S. Then conv(S ∪ {w}) ⊆ K.
We claim that the inclusion S ∩ V ⊂ conv(S ∪ {w}) ∩ V is strict. This is clear when S is
a hyperplane satisfying (ii). When S is a polyhedron satisfying (i), the claim follows from
the fact that each facet F of S has the property that F ∩ V is a facet of S ∩ V . Thus
S ∩ V ⊂ conv(S ∪ {w}) ∩ V . By maximality of S ∩ V , the set intV (conv(S ∪ {w}) ∩ V )
contains a point in Λ. Now conv(S ∪ {w}) ⊆ K implies that intW (K) contains a point of Λ,
a contradiction.

2.2 Proof of Theorem 9

Throughout this section, Λ is a lattice of a linear space V . To simplify notation, given S ⊆ Rn,
we denote intV (S) simply by int(S).

The following standard result in lattice theory provides a useful equivalent definition of
lattice (see Barvinok [7], p. 284 Theorem 1.4).

Theorem 10. Let Λ be the additive group generated by vectors a1, . . . , am ∈ Rn. Then Λ is
a lattice of the linear space 〈a1, . . . , am〉 if and only if there exists ε > 0 such that ‖y‖ ≥ ε
for every y ∈ Λ \ {0}.

In this paper we will only need the “only if” part of the statement, which is easy to prove
(see [7], p. 281 problem 5).

The following lemma proves the “only if” part of Theorem 9 when S is bounded and
full-dimensional.

Lemma 11. Let Λ be a lattice of a linear space V of Rn. Let S ⊂ V be a bounded maximal
Λ-free convex set with dim(S) = dim(V ). Then S is a polytope with a point of Λ in the
relative interior of each of its facets.

Proof. Since S is bounded, there exist integers L,U such that S is contained in the box
B = {x ∈ Rd |L ≤ xi ≤ U}. For each y ∈ Λ ∩B, since S is convex there exists a closed half-
space Hy of V such that S ⊆ Hy and y /∈ int(Hy). By Theorem 10, B ∩Λ is finite, therefore
⋂

y∈B∩ΛH
y is a polyhedron. Thus P =

⋂

y∈B∩ΛH
y ∩ B is a polytope and by construction

Λ ∩ int(P ) = ∅. Since S ⊆ B and S ⊆ Hy for every y ∈ B ∩ Λ, it follows that S ⊆ P . By
maximality of S, S = P , therefore S is a polytope. We only need to show that S has a point
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of Λ in the relative interior of each of its facets. Let F1, . . . , Ft be the facets of S, and let
Hi = {x ∈ V |αix ≤ βi} be the closed half-space defining Fi, i = 1, . . . , t. Then S =

⋂t
i=1Hi.

Suppose, by contradiction, that one of the facets of S, say Ft, does not contain a point of Λ
in its relative interior.

We will also need the following famous theorem of Dirichlet.

Theorem 12 (Dirichlet). Given real numbers α1, . . . , αn, ε with 0 < ε < 1, there exist
integers p1, . . . , pn and q such that

∣

∣

∣

∣

αi −
pi
q

∣

∣

∣

∣

<
ε

q
, for i = 1, . . . , n, and 1 ≤ q ≤ ε−1. (6)

The following is a consequence of Dirichlet’s theorem.

Lemma 13. Given y ∈ Λ and r ∈ V , then for every ε > 0 and λ̄ ≥ 0, there exists a point of
Λ at distance less than ε from the half line {y + λr |λ ≥ λ̄}.

Proof. First we show that, if the statement holds for λ̄ = 0, then it holds for arbitrary λ̄.
Given ε > 0, let Z be the set of points of Λ at distance less than ε from {y + λr |λ ≥ 0}.
Suppose, by contradiction, that no point in Z has distance less than ε from {y + λr |λ ≥ λ̄}.
Then Z is contained in Bε(0) + {y + λr | 0 ≤ λ ≤ λ̄}. By Theorem 10, Z is finite, thus there
exists an ε̄ > 0 such that every point in Z has distance greater than ε̄ from {y + λr |λ ≥ 0},
a contradiction. So we only need to show that, given ε̄, there exists at least one point of Λ
at distance at most ε̄ from {y + λr |λ ≥ 0}.

Let m = dim(V ) and a1, . . . , am be a basis of Λ. Then there exists α ∈ Rm such that
r = α1a1 + . . . , αmam. Denote by A the matrix with columns a1, . . . , am, and define ‖A‖ =
supx : ‖x‖≤1 ‖Ax‖ where, for a vector v, ‖v‖ denotes the Euclidean norm of v. Choose ε > 0
such that ε < 1 and ε ≤ ε̄/(‖A‖√m). By Dirichlet’s theorem, there exist p ∈ Zm and λ > 0
such that

‖α− p

λ
‖ =

√

√

√

√

m
∑

i=1

∣

∣

∣
αi −

pi
λ

∣

∣

∣

2
≤ ε

√
m

λ
≤ ε̄

‖A‖λ.

Let z = Ap+ y. Since p ∈ Zm, then z ∈ Λ. Furthermore

‖(y + λr) − z‖ = ‖λr −Ap‖ = ‖A(λα − p)‖ ≤ ‖A‖‖λα − p‖ ≤ ε̄.

Given a linear subspace of Rn, we denote by L⊥ the orthogonal complement of L. Given
a set S ⊆ Rn, the orthogonal projection of S onto L⊥ is the set

projL⊥(S) = {v ∈ L⊥ | v + w ∈ S for some w ∈ L}.

We will use the following result (see Barvinok [7], p. 284 problem 3).

Lemma 14. Given a lattice-subspace L of V , the orthogonal projection of Λ onto L⊥ is a
lattice of L⊥ ∩ V .
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Lemma 15. If a linear subspace L of V is not a lattice-subspace of V , then for every ε > 0
there exists y ∈ Λ \ L at distance less than ε from L.

Proof. The proof is by induction on k = dim(L). Assume L is a linear subspace of V that is
not a lattice-subspace, and let ε > 0. If k = 1, then, since the origin 0 is contained in Λ, by
Lemma 13 there exists y ∈ Λ at distance less than ε from L. If y ∈ L, then L = 〈y〉, thus L
is a lattice-subspace of V , contradicting our assumption.
Hence we may assume that k ≥ 2 and the statement holds for spaces of dimension k − 1.
Suppose L contains a nonzero vector r ∈ Λ. Let

L′ = proj〈r〉⊥(L), Λ′ = proj〈r〉⊥(Λ).

By Lemma 14, Λ′ is a lattice of 〈r〉⊥ ∩ V . Also, L′ is not a lattice subspace of 〈r〉⊥ ∩ V
with respect to Λ′, because if there exists a basis a1, . . . , ak−1 of L′ contained in Λ′, then
there exist scalars µ1, . . . , µk−1 such that a1 + µ1r, . . . , ak−1 + µk−1r ∈ Λ, but then r, a1 +
µ1r, . . . , ak−1 + µk−1r is a basis of L contained in Λ, a contradiction. By induction, there
exists a point y′ ∈ Λ′ \ L′ at distance less than ε from L′. Since y′ ∈ Λ′, there exists a scalar
µ such that y = y′ + µr ∈ Λ, and y has distance less than ε from L.
Thus L ∩ Λ = {0}. By Lemma 13, there exists a nonzero vector y ∈ Λ at distance less than
ε from L. Since L does not contain any point in Λ other than the origin, y /∈ L.

Lemma 16. Let L be a linear subspace of V with dim(L) = dim(V )−1, and let v ∈ V . Then
v + L is a maximal Λ-free convex set if and only if L is not a lattice subspace of V .

Proof. (⇒) Let S = v + L and assume that S is a maximal Λ-free convex set. Suppose by
contradiction that L is a lattice-subspace. Then there exists a basis a1, . . . , am of Λ such
that a1, . . . , am−1 is a basis of L. Thus S = {∑m

i=1 xiai |xm = β} for some β ∈ R. Then,
K = {∑m

i=1 xiai | ⌈β − 1⌉ ≤ xm ≤ ⌈β⌉} strictly contains S and int(K)∩Λ = ∅, contradicting
the maximality of S.

(⇐) Assume L is not a lattice-subspace of V . Since S = v + L is an affine hyperplane of
V , int(S) = ∅, thus int(S)∩Λ = ∅, hence we only need to prove that S is maximal with such
property. Suppose not, and let K be a maximal convex set in V such that int(K) ∩ Λ = ∅
and S ⊂ K. Then by maximality K is closed. Let w ∈ K \ S. Since K is convex and closed,
then K ⊇ conv({v,w}) + L. Let ε be the distance between v + L and w + L, and δ be the
distance of conv({v,w})+L from the origin. By Lemma 15, since L is not a lattice-subspace
of V , there exists a vector y ∈ Λ \ L at distance ε̄ < ε from L. Let z = (⌊ δ

ε̄
⌋ + 1)y. By

definition, z is strictly between v + L and w + L, hence z ∈ int(K). Since z is an integer
multiple of y ∈ Λ, then z ∈ Λ, a contradiction.

We are now ready to prove Lovász’s Theorem.

Proof of Theorem 9. (⇐) If S satisfies (ii), then by Lemma 16, S is a maximal Λ-free convex
set. If S satisfies (i), then, since int(S) ∩ Λ = ∅, we only need to show that S is maximal.
Suppose not, and let K be a convex set in V such that int(K) ∩ Λ = ∅ and S ⊂ K. Given
y ∈ K \ S, there exists a hyperplane H separating y from S such that F = S ∩H is a facet
of S. Since K is convex and S ⊂ K, then conv(S ∪ {y}) ⊆ K. Since dim(S) = dim(V ),
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F ⊂ S hence the relint(F ) ⊂ int(K). By assumption, there exists x ∈ Λ ∩ relint(F ), so
x ∈ int(K), a contradiction.

(⇒) Let S be a maximal Λ-free convex set. We show that S satisfies either (i) or (ii).
Observe that, by maximality, S must be closed.

If dim(S) < dim(V ), then S is contained in some affine hyperplane H. Since int(H) = ∅,
we have S = H by maximality of S, therefore S = v + L where v ∈ S and L is a hyperplane
in V . By Lemma 16, (ii) holds.

Therefore we may assume that dim(S) = dim(V ). In particular, since S is convex,
int(S) 6= ∅. By Lemma 11, if S is bounded, (i) holds. Hence we may assume that S is
unbounded. Let C be the recession cone of S and L the lineality space of S. By standard
convex analysis, S is unbounded if and only if C 6= {0} (see for example Proposition 2.2.3
in [20]).

Claim 1. L = C.

Let r ∈ C, r 6= 0. We only need to show that S + 〈r〉 is Λ-free; by maximality of S
this will imply that S = S + 〈r〉. Suppose there exists y ∈ int(S + 〈r〉) ∩ Λ. We show that
y ∈ int(S) + 〈r〉. Suppose not. Then (y + 〈r〉) ∩ int(S) = ∅, which implies that there is a
hyperplane H separating the line y+ 〈r〉 and S+ 〈r〉. This contradicts y ∈ int(S+ 〈r〉). This
shows y ∈ int(S) + 〈r〉. Thus there exists λ̄ such that ȳ = y + λ̄r ∈ int(S), i.e. there exists
ε > 0 such that Bε(ȳ) ∩ V ⊂ S. Since y ∈ Λ, then y /∈ int(S), and thus, since ȳ ∈ int(S)
and r ∈ C, we must have λ̄ > 0. Since r ∈ C, then Bε(ȳ) + {λr |λ ≥ 0} ⊂ S. Since y ∈ Λ,
by Lemma 13 there exists z ∈ Λ at distance less than ε from the half line {y + λr |λ ≥ λ̄}.
Thus z ∈ Bε(ȳ) + {λr |λ ≥ 0}, hence z ∈ int(S), a contradiction. ⋄

Let P = projL⊥(S) and Λ′ = projL⊥(Λ). By Claim 1, S = P + L and P ⊂ L⊥ ∩ V is a
bounded set. Furthermore, dim(S) = dim(P )+dim(L) = dim(V ) and dim(P ) = dim(L⊥∩V ).
Notice that int(S) = relint(P )+L, hence relint(P )∩Λ′ = ∅. Furthermore P is inclusionwise
maximal among the convex sets of L⊥∩V without points of Λ′ in the relative interior: if not,
given a convex set K ⊆ L⊥ ∩ V strictly containing P and with no point of Λ′ in its relative
interior, we have S = P + L ⊂ K + L, and K + L does not contain any point of Λ in its
interior, contradicting the maximality of S.

Claim 2. L is a lattice-subspace of V .

By contradiction, suppose L is not a lattice-subspace of V . Then, by Lemma 15, for every
ε > 0 there exists y ∈ Λ′ \ {0} such that ‖y‖ < ε. Let Vε be the linear subspace of L⊥ ∩ V
generated by the points in {y ∈ Λ′ | ‖y‖ < ε}. Then dim(Vε) > 0.

Notice that, given ε′ > ε′′ > 0, then Vε′ ⊇ Vε′′ ⊃ {0}, hence there exists ε0 > 0 such that
Vε = Vε0 for every ε < ε0. Let U = Vε0.

By definition, Λ′ is dense in U (i.e. for every ε > 0 and every x ∈ U there exists y ∈ Λ′

such that ‖x − y‖ < ε). Thus, since relint(P ) ∩ Λ′ = ∅, we also have relint(P ) ∩ U = ∅.
Since dim(P ) = dim(L⊥ ∩ V ), it follows that relint(P ) ∩ (L⊥ ∩ V ) 6= ∅, so in particular U is
a proper subspace of L⊥ ∩ V .
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Let Q = proj(L+U)⊥(P ) and Λ′′ = proj(L+U)⊥(Λ′). We show that relint(Q) ∩ Λ′′ = ∅.
Suppose not, and let y ∈ relint(Q) ∩ Λ′′. Then, y + w ∈ Λ′ for some w ∈ U . Furthermore,
we claim that y +w′ ∈ relint(P ) for some w′ ∈ U . Indeed, suppose no such w′ exists. Then
(y + U) ∩ (relint(P ) + U) = ∅. So there exists a hyperplane H in L⊥ ∩ V separating y + U
and P + U . Therefore the projection of H onto (L + U)⊥ separates y and Q, contradicting
y ∈ relint(Q). Thus z = y + w′ ∈ relint(P ) for some w′ ∈ U . Since z ∈ relint(P ), there
exists ε̄ > 0 such that Bε̄(z) ∩ (L⊥ ∩ V ) ⊂ relint(P ). Since Λ′ is dense in U and y +w ∈ Λ′,
it follows that Λ′ is dense in y + U . Hence, since z ∈ y + U , there exists x̄ ∈ Λ′ such that
‖x̄− z‖ < ε̄, hence x̄ ∈ relint(P ), a contradiction. This shows relint(Q) ∩ Λ′′ = ∅.

Finally, since relint(Q)∩Λ′′ = ∅, then int(Q+L+U)∩Λ = ∅. Furthermore P ⊆ Q+U ,
therefore S ⊆ Q+ L+ U . By the maximality of S, S = Q+ L+ U hence the lineality space
of S contains L+U , contradicting the fact that L is the lineality space of S and U 6= {0}. ⋄

Since L is a lattice-subspace of V , Λ′ is a lattice of L⊥ ∩ V by Lemma 14. Since P is a
bounded maximal Λ′-free convex set, it follows from Lemma 11 that P is a polytope with a
point of Λ′ in the relative interior of each of its facets, therefore S = P + L has a point of Λ
in the relative interior of each of its facets, and (i) holds.

From the proof of Theorem 9 we get the following.

Corollary 17. Every Λ-free convex set of V is contained in some maximal Λ-free convex set
of V .

Proof. Let S be a Λ-free convex set of V . If S is bounded, the proof of Lemma 11 shows that
the corollary holds. If S is unbounded, Claim 1 in the proof of Theorem 9 shows that S+ 〈C〉
is Λ-free, where C is the recession cone of S. Hence we may assume that the lineality space
L of S is equal to the recession cone of S. The projection P of S onto L⊥ is bounded. If L
is a lattice-subspace, then Λ′ = projL⊥Λ is a lattice and P is Λ′-free, hence it is contained
in a maximal Λ′-free convex set B of L⊥ ∩ V , and B + L is a maximal Λ-free convex set of
V containing S. If L is not a lattice-subspace, then we may define a linear subspace U of
L⊥ ∩ V and sets Q and Λ′′ as in the proof of Claim 2. Then proof of Claim 2 shows that Q
is a bounded Λ′′-free convex set of V ∩ (L+U)⊥ and Λ′′ is a lattice, thus Q is contained in a
maximal Λ′′-free convex set B of V ∩ (L+U)⊥, and B+ (L+U) is a maximal Λ-free convex
set of V containing S.

3 Minimal Valid Inequalities

In this section we will prove Theorem 3. For ease of notation, we denote Rf (W ) simply by
Rf in this section. A linear function Ψ : W → R is of the form

Ψ(s) =
∑

r∈W
ψ(r)sr, s ∈ W (7)

for some ψ : W → R. Throughout the rest of the paper, capitalized Greek letters indicate
linear functions from W to R, while the corresponding lowercase letters indicate functions
from W to R as defined in (7).
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A function σ : W → R is positively homogeneous if σ(λr) = λσ(r) for every r ∈ W
and scalar λ ≥ 0, and it is subadditive if σ(r1 + r2) ≤ σ(r1) + σ(r2) for every r1, r2 ∈ W .
The function σ is sublinear if it is positively homogeneous and subadditive. Note that if σ is
sublinear, then σ(0) = 0. One can easily show that a function is sublinear if and only if it is
positively homogeneous and convex. We also recall that convex functions are continuous on
their domain, so if σ is sublinear it is also continuous [20].

Lemma 18. Let Ψ(s) ≥ α be a valid linear inequality for Rf . Then Ψ(s) ≥ α is dominated
by a valid linear inequality Ψ′(s) ≥ α for Rf such that ψ′ is sublinear.

Proof: We first prove the following.

Claim 1. For every s ∈ W such that
∑

r∈W rsr = 0 and sr ≥ 0, r ∈ W , we have
∑

r∈W ψ(r)sr ≥ 0.

Suppose not. Then there exists s ∈ W such that
∑

r∈W rsr = 0, sr ≥ 0 for all r ∈W and
∑

r∈W ψ(r)sr < 0. Let x̄ be an integral point in W . For any λ > 0, we define sλ ∈ W by

sλr =

{

1 + λsr for r = x̄− f
λsr otherwise.

Since f +
∑

r∈W rsλr = x̄, it follows that sλ is in Rf . Furthermore
∑

r∈W ψ(r)sλr = ψ(x̄ −
f) + λ(

∑

r∈W ψ(r)sr). Therefore
∑

r∈W ψ(r)sλr goes to −∞ as λ goes to +∞. ⋄

We define, for all r̄ ∈W ,

ψ′(r̄) = inf{
∑

r∈W
ψ(r)sr | r̄ =

∑

r∈W
rsr, s ∈ W, sr ≥ 0 for all r ∈W}.

By Claim 1,
∑

r∈W ψ(r)sr ≥ −ψ(−r̄) for all s ∈ W such that r̄ =
∑

r∈W rsr and sr ≥ 0
for all r ∈ W . Thus the infimum in the above equation is finite and the function ψ′ is well
defined. Note also that ψ′(r̄) ≤ ψ(r̄) for all r̄ ∈ W , as follows by considering s ∈ W defined
by sr̄ = 1, sr = 0 for all r ∈W , r 6= r̄.

Claim 2. The function ψ′ is sublinear

Note first that ψ′(0) = 0. Indeed, Claim 1 implies ψ′(0) ≥ 0, while choosing sr = 0 for
all r ∈W shows ψ′(0) ≤ 0.

Next we show that ψ′ is positively homogeneous. To prove this, let r̄ ∈ W and s ∈ W
such that r̄ =

∑

r∈W rsr and sr ≥ 0 for all r ∈ W . Let γ =
∑

r∈W ψ(r)sr. For every
λ > 0, λr̄ =

∑

r∈W r(λsr), λsr ≥ 0 for all r ∈ W , and
∑

r∈W ψ(r)(λsr) = λγ. Therefore
ψ′(λr̄) = λψ′(r).

Finally, we show that ψ′ is convex. Suppose by contradiction that there exist r′, r′′ ∈ W
and 0 < λ < 1 such that ψ′(λr′ + (1 − λ)r′′) > λψ′(r′) + (1 − λ)ψ′(r′′) + ǫ for some positive
ǫ. By definition of ψ′, there exist s′, s′′ ∈ W such that r′ =

∑

r∈W rs′r, r
′′ =

∑

r∈W rs′′r ,
s′r, s

′′
r ≥ 0 for all r ∈ W ,

∑

r∈W ψ(r)s′r < ψ′(r′) + ǫ and
∑

r∈W ψ(r)s′′r < ψ′(r′′) + ǫ. Since
∑

r∈W r(λs′r+(1−λ)s′′r ) = λr′+(1−λ)r′′, it follows that ψ′(λr′+(1−λ)r′′) ≤ ∑

r∈W ψ(r)(λs′r+
(1 − λ)s′′r) < λψ′(r′) + (1 − λ)ψ′(r′′) + ǫ, a contradiction. ⋄
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Claim 3. The inequality
∑

r∈W ψ′(r)sr ≥ α is valid for Rf .

Suppose there exists s̄ ∈ Rf such that
∑

r∈W ψ′(r)s̄r ≤ α − ǫ for some positive ǫ. Let
{r1, . . . , rk} = {r ∈ W | s̄r > 0}. For every i = 1, . . . , k, there exists si ∈ W such that
ri =

∑

r∈W rsir, s
i
r ≥ 0, r ∈W , and

∑

r∈W ψ(r)sir < ψ′(ri) + ǫ/(ks̄ri).

Let s̃ =
∑k

i=1 s̄ris
i. Then

∑

r∈W
rs̃r =

∑

r∈W

k
∑

i=1

rs̄ris
i
r =

k
∑

i=1

s̄ri
∑

r∈W
rsir =

k
∑

i=1

ris̄ri =
∑

r∈W
rs̄r,

hence s̃ ∈ Rf . Therefore
∑

r∈W ψ(r)s̃r ≥ α since
∑

r∈W ψ(r)sr ≥ α is valid for Rf . Now

∑

r∈W
ψ(r)s̃r =

∑

r∈W

k
∑

i=1

ψ(r)s̄ris
i
r =

k
∑

i=1

s̄ri
∑

r∈W
ψ(r)sir

<

k
∑

i=1

s̄ri(ψ
′(ri) + ǫ/(ks̄ri)) =

∑

r∈W
ψ′(ri)s̄ri + ǫ ≤ α,

a contradiction. 2

Lemma 19. Let Ψ(s) ≥ α and Ψ′(s) ≥ α′ be two equivalent valid linear inequalities for Rf .
(i) The function ψ is sublinear if and only if ψ′ is sublinear.
(ii) Inequality Ψ(s) ≥ α is dominated by a minimal valid linear inequality if and only if
Ψ′(s) ≥ α′ is dominated by a minimal valid linear inequality. In particular, Ψ(s) ≥ α is
minimal if and only if Ψ′(s) ≥ α′ is minimal.

Proof. Since Ψ(s) ≥ α and Ψ′(s) ≥ α′ are equivalent, by definition there exist ρ > 0 and
λ ∈ Rℓ, such that ψ(r) = ρψ′(r) + λTCr and α = ρα′ + λT (d− Cf). This proves (i).

Point (ii) follows from the fact that, given a function ψ̄′ such that ψ̄′(r) ≤ ψ′(r) for every
r ∈ W , then the function ψ̄ defined by ψ̄(r) = ρψ̄′(r) + λTCr, r ∈ W , satisfies ψ̄(r) ≤ ψ(r)
for every r ∈W . Furthermore ψ̄(r) < ψ(r) if and only if ψ̄′(r) < ψ′(r).

Given a nontrivial valid linear inequality Ψ(s) ≥ α for Rf such that ψ is sublinear, we
consider the set

Bψ = {x ∈ f +W |ψ(x − f) ≤ α}.
Since ψ is continuous, Bψ is closed. Since ψ is convex, Bψ is convex. Since ψ defines

a valid inequality, Bψ is lattice-free. Indeed the interior of Bψ is int(Bψ) = {x ∈ f +W :
ψ(x − f) < α}. Its boundary is bd(Bψ) = {x ∈ f +W : ψ(x − f) = α}, and its recession
cone is rec(Bψ) = {x ∈ f +W : ψ(x − f) ≤ 0}. Note that f is in the interior of Bψ if and
only if α > 0 and f is on the boundary if and only if α = 0.

Remark 20. Given a linear inequality of the form Ψ(s) ≥ 1 such that ψ(r) ≥ 0 for all
r ∈W ,

ψ(r) = inf{t > 0 | f + t−1r ∈ Bψ}, r ∈W.
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Proof. Let r ∈W . If ψ(r) > 0, let t be the minimum positive number such that f+t−1r ∈ Bψ.
Then f + t−1r ∈ bd(Bψ), hence ψ(t−1r) = 1 and by positive homogeneity ψ(r) = t. If
ψ(r) = 0, then r ∈ rec(Bψ), hence f + t−1r ∈ Bψ for every t > 0, thus the infimum in the
above equation is 0.

This remark shows that, if ψ is nonnegative, then it is the gauge of the convex set Bψ− f
(see [20]).

Before proving Theorem 3, we need the following general theorem about sublinear func-
tions. Let K be a closed, convex set in W with the origin in its interior. The polar of K is
the set K∗ = {y ∈ W | ry ≤ 1 for all r ∈ K}. Clearly K∗ is closed and convex, and since
0 ∈ int(K), it is well known that K∗ is bounded. In particular, K∗ is a compact set. Also,
since 0 ∈ K, K∗∗ = K (see [20] for example). Let

K̂ = {y ∈ K∗ | ∃x ∈ K such that xy = 1}. (8)

Note that K̂ is contained in the relative boundary of K∗. Let ρK : W → R be defined by

ρK(r) = sup
y∈K̂

ry, for all r ∈W. (9)

It is easy to show that ρK is sublinear.

Theorem 21 (Basu et al. [9]). Let K ⊂ W be a closed convex set containing the origin in
its interior. Then K = {r ∈ W | ρK(r) ≤ 1}. Furthermore, for every sublinear function σ
such that K = {r |σ(r) ≤ 1}, we have ρK(r) ≤ σ(r) for every r ∈W .

Remark 22. LetK ⊂W be a polyhedron containing the origin in its interior. Let a1, . . . , at ∈
W such that K = {r ∈W | air ≤ 1, i = 1, . . . , t}. Then ρK(r) = maxi=1,...,t air.

Proof. The polar of K is K∗ = conv{0, a1, . . . , at} (see Theorem 9.1 in Schrijver [23]). Fur-
thermore, K̂ is the union of all the facets of K∗ that do not contain the origin, therefore

ρK(r) = sup
y∈K̂

yr = max
i=1,...,t

air

for all r ∈W .

Remark 23. Let B be a closed lattice-free convex set in f +W with f in its interior, and
let K = B − f . Then the inequality

∑

r∈W ρK(r)sr ≥ 1 is valid for Rf .

Proof: Let s ∈ Rf . Then x = f +
∑

r∈W rsr is integral, therefore x /∈ int(B) because B is
lattice-free. By Theorem 21, ρK(x− f) ≥ 1. Thus

1 ≤ ρK(
∑

r∈W
rsr) ≤

∑

r∈W
ρK(rsr) ≤

∑

r∈W
ρK(r)sr,

where the second inequality follows from the subadditivity of ρK and the last from the positive
homogeneity. 2
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Lemma 24. Given a maximal lattice-free convex set B of f+W containing f in its interior,
ΨB(s) ≥ 1 is a minimal valid inequality for Rf .

Proof. Let Ψ(s) ≥ 1 be a valid linear inequality for Rf such that ψ(r) ≤ ψB(r) for all r ∈W .
Then Bψ ⊃ B and Bψ is lattice-free. By maximality of B, B = Bψ. By Theorem 21 and
Remark 22, ψB(r) ≤ ψ(r) for all r ∈W , proving ψ = ψB.

Proof of Theorem 3.
Let Ψ(s) ≥ α be a nontrivial valid linear inequality for Rf . By Lemma 18, we may assume
that ψ is sublinear.

Claim 1. If int(Bψ) ∩ V = ∅, then Ψ(s) ≥ α is trivial.

Suppose int(Bψ) ∩ V = ∅ and let s ∈ V such that sr ≥ 0 for every r ∈ W . Let
x = f +

∑

r∈W rsr. Since s ∈ V, x ∈ V , so x /∈ int(Bψ). This implies

α ≤ ψ(x− f) = ψ(
∑

r∈W
rsr) ≤

∑

r∈W
ψ(r)sr = Ψ(s),

where the last inequality follows from the sublinearity of ψ. ⋄

Claim 2. If f ∈ V and α ≤ 0, then int(Bψ) ∩ V = ∅.
Suppose f ∈ V , α ≤ 0 but int(Bψ) ∩ V 6= ∅. Then dim(int(Bψ) ∩ V ) = dim(V ), hence

int(Bψ)∩V contains a set X of dim(V )+1 affinely independent points. For every x ∈ X and
every λ > 0, ψ(λ(x− f)) = λψ(x− f) < 0, where the last inequality is because x ∈ int(Bψ).
Hence the set Γ = f + cone{x − f |x ∈ X} is contained in int(Bψ). Since Γ has dimension
equal to dim(V ) and V is the convex hull of its integral points, Γ∩Zq 6= 0, contradicting the
fact that Bψ has no integral point in its interior. ⋄

Claim 3. If f /∈ V , then there exists a valid linear inequality Ψ′(s) ≥ 1 for Rf equivalent to
Ψ(s) ≥ α.

Since f /∈ V , Cf 6= d, hence there exists a row ci of C such that di − cif 6= 0. Let
λ = (1 − α)(di − cif)−1, and define ψ′(r) = ψ(r) + λcir for every r ∈ W . The inequality
Ψ′(s) ≥ 1 is equivalent to Ψ(s) ≥ α. ⋄

Thus, by Claims 1, 2 and 3 there exists a valid linear inequality Ψ′(s) ≥ 1 for Rf equivalent
to Ψ(s) ≥ α. By Lemma 19, ψ′ is sublinear and Ψ(s) ≥ α is dominated by a minimal valid
linear inequality if and only if Ψ′(s) ≥ α′ is dominated by a minimal valid linear inequality.
Therefore we only need to consider valid linear inequalities of the form Ψ(s) ≥ 1 where ψ is
sublinear. In particular the set Bψ = {x ∈W |ψ(x− f) ≤ 1} contains f in its interior.

Let K = {r ∈W |ψ(r) ≤ 1}, and let K̂ be defined as in (8).

Claim 4. The inequality
∑

r∈W ρK(r)sr ≥ 1 is valid for Rf and ψ(r) ≥ ρK(r) for all r ∈W .
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Note that Bψ = f +K. Thus, by Remark 23,
∑

r∈W ρK(r)sr ≥ 1 is valid for Rf . Since
ψ is sublinear, it follows from Theorem 21 that ρK(r) ≤ ψ(r) for every r ∈W . ⋄

By Claim 4, since ρK is sublinear, we may assume that ψ = ρK .

Claim 5. There exists a valid linear inequality Ψ′(s) ≥ 1 for Rf dominating Ψ(s) ≥ 1 such
that ψ′ is sublinear, Bψ′ is a polyhedron, and rec(Bψ′ ∩ V ) = lin(Bψ′ ∩ V ).

Since Bψ is a lattice-free convex set, it is contained in some maximal lattice-free convex
set S by Corollary 17. The set S satisfies one of the statements (i)-(iii) of Theorem 8. By
Claim 1, int(S) ∩ V 6= ∅, hence case (iii) does not apply. Case (ii) does not apply because
dim(S) = dim(Bψ) = dim(W ). Therefore case (i) applies. Thus S is a polyhedron and S ∩V
is a maximal lattice-free convex set in V . In particular, by Theorem 9, rec(S∩V ) = lin(S∩V ).
Since S is a polyhedron containing f in its interior, there exists A ∈ Rt×q and b ∈ Rt such
that bi > 0, i = 1, . . . , t, and S = {x ∈ f +W |A(x− f) ≤ b}. Without loss of generality, we
may assume that supx∈Bψ ai(x− f) = 1 where ai denotes the ith row of A, i = 1, . . . , t. By
our assumption, supr∈K air = 1. Therefore ai ∈ K∗, since air ≤ 1 for all r ∈ K. Furthermore
ai ∈ cl(K̂), since supr∈K air = 1.

Let S̄ = {x ∈ f + W |A(x − f) ≤ e}, where e denotes the vector of all ones. Then
Bψ ⊆ S̄ ⊆ S. Let Q = {r ∈ W |Ar ≤ e}. By Remark 22, ρQ(r) = maxi=1,...,t air for all
r ∈ W . Since S̄ ⊆ S, S̄ is lattice-free, by Remark 23 the inequality

∑

r∈W ρQ(r)sr ≥ 1 is

valid for Rf . Furthermore, since {a1, . . . , at} ⊂ cl(K̂), by Claim 4 we have

ψ(r) = sup
y∈K̂

yr ≥ max
i=1,...,t

air = ρQ(r)

for all r ∈W . Let ψ′ = ρQ. Note that Bψ′ = S̄. So, rec(Bψ′) = rec(S̄) = {r ∈W |Ar ≤ 0} =
rec(S). Since rec(S ∩ V ) = lin(S ∩ V ), then rec(Bψ′ ∩ V ) = lin(Bψ′ ∩ V ). ⋄

By Claim 5, we may assume that Bψ = {x ∈ f +W |A(x− f) ≤ e}, where A ∈ Rt×q and
e is the vector of all ones, and that rec(Bψ ∩ V ) = lin(Bψ ∩ V ). Let a1, . . . , at denote the
rows of A. By Claim 4 and Remark 22,

ψ(r) = max
i=1,...,t

air, for all r ∈W. (10)

Let G be a matrix such that W = {r ∈ Rq |Gr = 0}.
Claim 6. There exists λ ∈ Rℓ such that ψ(r) + λTCr ≥ 0 for all r ∈W .

Given λ ∈ Rℓ, then by (10) ψ(r)+λTCr ≥ 0 for every r ∈W if and only if minr∈W (maxi=1,...,t air+
λTCr) = 0. The latter holds if and only if

0 = min{z + λTCr | ez −Ar ≥ 0, Gr = 0}.

By LP duality, this holds if and only if the following system is feasible

ey = 1

AT y + CTλ−GTµ = 0

y ≥ 0.
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Clearly the latter is equivalent to

AT y + CTλ−GTµ = 0 (11)

y ≥ 0, y 6= 0.

Note that rec(Bψ∩V ) = {r ∈ Rq |Ar ≤ 0, Cr = 0, Gr = 0} and lin(Bψ∩V ) = {r ∈ Rq |Ar =
0, Cr = 0, Gr = 0}. Since rec(Bψ ∩ V ) = lin(Bψ ∩ V ), the system

Ar ≤ 0

Cr = 0

Gr = 0

eTAr = −1

is infeasible. By Farkas Lemma, this is the case if and only if there exists γ ≥ 0, λ, µ̃, and τ
such that

ATγ + CTλ+GT µ̃+AT eτ = 0, τ > 0.

If we let y = γ + eτ and µ = −µ̃, then (y, λ, µ) satisfies (11). By the previous argument, λ
satisfies the statement of the claim. ⋄

Let λ as in Claim 6, and let ψ′ be the function defined by ψ′(r) = ψ(r) + λTCr for all
r ∈ W . So ψ′(r) ≥ 0 for every r ∈ W . Let α′ = 1 + λT (d − Cf). Then the inequality
Ψ′(s) ≥ α′ is valid for Rf and it is equivalent to Ψ(s) ≥ α. If α′ ≤ 0, then Ψ′(s) ≥ α′ is
trivial. Thus α′ > 0. Let ρ = 1/α′ and let ψ′′ = ρψ′. Then Ψ′′(s) ≥ 1 is equivalent to
Ψ(s) ≥ 1. By Lemma 19(i), ψ′′ is sublinear.

Let B be a maximal lattice-free convex set of f +W containing Bψ′′ . Such a set B exists
by Corollary 17.

Claim 7. ψ′′(r) ≥ ψB(r) for all r ∈W .

Let r ∈ rec(Bψ′′). Since ψ′′ is nonnegative, ψ′′(r) = 0. Since rec(Bψ′′) ⊆ rec(B), ψB(r) ≤
0 = ψ′′(r). Let r /∈ rec(Bψ′′). Then f + τr ∈ bd(Bψ′′) for some τ > 0, hence ψ′′(τr) = 1
and, by positive homogeneity, ψ′′(r) = τ−1. Because Bψ′′ ⊂ B, f + τr ∈ B. Since B = {x ∈
f +W |ψB(x− f) ≤ 1}, it follows that ψB(τr) ≤ 1, implying ψB(r) ≤ τ−1 = ψ′′(r). ⋄

Claim 7 shows that Ψ′′(s) ≥ 1 is dominated by ΨB(s) ≥ 1, which is minimal by Lemma 24.
By Lemma 19(ii), Ψ(s) ≥ 1 is dominated by a minimal valid linear inequality which is
equivalent to ΨB(s) ≥ 1.

Example. We illustrate the end of the proof in an example. Suppose W = {x ∈ R3 |x2 +√
2x3 = 0}, and let f = (1

2 , 0, 0). Note that f +W = W . All integral points in W are of the
form (k, 0, 0), k ∈ Z, hence V = {x ∈W |x2 = 0}. Thus V = {s ∈ W | ∑

r∈W r2sr = 0}.
Consider the function ψ : W → R defined by ψ(r) = max{−4r1 − 4r2, 4r1 − 4r2}. The

set Bψ = {x ∈W | − 4(x1 − 1
2)− 4x2 ≤ 1, 4(x1 − 1

2)− 4x2 ≤ 1} does not contain any integer
point, hence Ψ(s) ≥ 1 is valid for Rf . Note that Bψ is not maximal (see Figure 2).

Given λ = 4, let ψ′(r) = ψ(r)+λr2 for all r ∈W . Note that ψ′(r) = max{−4r1, 4r1} ≥ 0
for all r ∈ W . The set Bψ′ = {x ∈ W | − 4(x1 − 1

2) ≤ 1, 4(x1 − 1
2) ≤ 1} is contained in the
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maximal lattice-free convex set B = {x ∈ W | − 2(x1 − 1
2) ≤ 1, 2(x1 − 1

2) ≤ 1}, hence ψ′ is
pointwise larger than the function ψB defined by ψB(r) = max{−2r1, 2r1} and ΨB(s) ≥ 1 is
valid for Rf .

Figure 2: Lattice-free sets in the 2-dimensional space W .

By construction, the function ψ̄ defined by ψB(r)−λr2 for all r ∈W is pointwise smaller
than ψ and Ψ̄(s) ≥ 1 is valid for Rf . Moreover, Bψ̄ = {x ∈W | −2(x1 − 1

2)−4x1 ≤ 1, 2(x1 −
1
2) − 4x1 ≤ 1} is a maximal lattice-free convex set containing Bψ. Note that the recession
cones of Bψ and Bψ̄ are full dimensional, hence ψ and ψ̄ take negative values on elements

of the recession cone. For example ψ(0,−1, 1√
2
) = ψ̄(0,−1, 1√

2
) = −4. The recession cones

of Bψ′ and B coincide and are not full dimensional, thus ψ′(0,−1, 1√
2
) = ψB(0,−1, 1√

2
) = 0,

since the vector (0,−1, 1√
2
) is in the recession cone of B.

4 The intersection of all minimal inequalities

In this section we prove Theorem 4. First we need the following.

Lemma 25. Let ψ : W → R be a continuous function that is positively homogeneous. Then
the function Ψ : W → R, defined by Ψ(s) =

∑

r∈W ψ(r)sr, is continuous with respect to
(W, ‖ · ‖H).

Proof: Define γ = sup{|ψ(r)| : r ∈ W, ‖r‖ = 1}. Since the set {r ∈ Rf (W ) : ‖r‖ = 1} is
compact and ψ is continuous, γ is well defined (that is, it is finite). Given s, s′ ∈ W, we will
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show |Ψ(s′) − Ψ(s)| ≤ γ‖s′ − s‖H , which implies that Ψ is continuous. Indeed

|Ψ(s′) − Ψ(s)| = |
∑

r∈W
ψ(r)(s′r − sr)|

≤
∑

r∈W
|ψ(r)| |s′r − sr|

=
∑

r∈W : ‖r‖=1

∑

α>0

|ψ(αr)| |s′αr − sαr|

=
∑

r∈W : ‖r‖=1

|ψ(r)|
∑

α>0

α|s′αr − sαr| (by positive homogeneity of ψ)

≤ γ
∑

r∈W : ‖r‖=1

∑

α>0

α|s′αr − sαr|

= γ
∑

r∈W\{0}
‖r‖|s′r − sr| ≤ γ‖s′ − s‖H

2

Proof of Theorem 4. “⊆” By Lemma 25, ΨB is continuous in (W, ‖ · ‖H) for every B ∈ BW ,
therefore {s ∈ W : ΨB(s) ≥ 1} is a closed half-space of (W, ‖ · ‖H). It is immediate to
show that also {s ∈ W : sr ≥ 0, r ∈ W} is a closed set in (W, ‖ · ‖H). Since V = {s ∈
W | ∑

r∈W (Cr)sr = d− Cf}, and since for each row ci of C the function r 7→ cir is positive
homogeneous, then by Lemma 25 V is also closed. Thus

{s ∈ V : ΨB(s) ≥ 1, B ∈ BW ; sr ≥ 0, r ∈W}

is an intersection of closed sets, and is therefore a closed set of (W, ‖ · ‖H). Thus, since it
contains conv(Rf (W )), it also contains conv(Rf (W )).

“⊇” We only need to show that, for every s̄ ∈ V such that s̄ /∈ conv(Rf (W )) and s̄r ≥ 0 for
every r ∈W , there exists B ∈ BW such that

∑

r∈W ψB(r)s̄r < 1.
The theorem of Hahn-Banach implies the following.

Given a closed convex set A in (W, ‖ · ‖H) and a point b /∈ A, there exists a

continuous linear function Ψ : W → R that strictly separates A and b, i.e. for

some α ∈ R, Ψ(a) ≥ α for every a ∈ A, and Ψ(b) < α.

Therefore, there exists a linear function Ψ : W → R such that Ψ(s̄) < α and Ψ(s) ≥ α
for every s ∈ conv(Rf ). By the first part of Theorem 3, we may assume that Ψ(s) ≥ α is a
nontrivial minimal valid linear inequality. By the second part of Theorem 3, this inequality
is equivalent to an inequality of the form

∑

r∈W ψB(r)sr ≥ 1 for some maximal lattice-free
convex set B of W with f in its interior.
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[13] G. Cornuéjols, F. Margot, On the Facets of Mixed Integer Programs with Two Integer
Variables and Two Constraints, to appear in Mathematical Programming.

[14] S.S. Dey, L.A. Wolsey, Lifting Integer Variables in Minimal Inequalities Corresponding
to Lattice-Free Triangles, IPCO 2008, Bertinoro, Italy (May 2008), Lecture Notes in
Computer Science 5035, 463-475.

[15] S.S. Dey, L.A. Wolsey, Constrained Infinite Group Relaxations of MIPs, manuscript
(March 2009).

[16] J. P. Doignon, Convexity in crystallographic lattices, Journal of Geometry 3 (1973)
71-85.

[17] D. Espinoza, Computing with Multi-Row Gomory Cuts, Proceedings of IPCO XIII,
Bertinoro, Italy, (2008).

22



[18] R.G. Gomory, Some Polyhedra Related to Combinatorial Problems, Linear Algebra and
Applications 2 (1969) 451-558.

[19] R.E. Gomory, Thoughts about Integer Programming, 50th Anniversary Symposium of
OR, University of Montreal, January 2007, and Corner Polyhedra and Two-Equation
Cutting Planes, George Nemhauser Symposium, Atlanta, July 2007.
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