Colorings of k-balanced matrices and integer decomposition property of related polyhedra

Giacomo Zambelli*

March, 2006
Revised June, 2006

Abstract

We show that a class of polyhedra, arising from certain 0,1 matrices introduced by Truemper and Chandrasekaran, has the integer decomposition property. This is accomplished by proving certain coloring properties of these matrices.

1 Introduction

For any positive integer k, we say that a $0, \pm 1$ matrix A is k-balanced if it does not contain any square submatrix B with at most $2 k$ nonzero entries in each row, such that each row and each column of B has an even number of nonzero entries, and the sum of all entries in B equals 2 modulo 4. This notion was introduced by Truemper and Chandrasekaran [11] in the 0,1 case and generalized by Conforti, Cornuéjols and Truemper [4]. The name " k balanced matrices" was first adopted in [6].

A rational polyhedron P is said to have the integer decomposition property if, for every positive integer h and for every integral vector $y \in h P:=$ $\{h x \mid x \in P\}$, there exist h integral vectors $x^{1}, \ldots, x^{h} \in P$ such that $y=$ $x^{1}+\ldots+x^{h}$. The integer decomposition property was introduced by Baum and Trotter [1] (see [10]). The following is the main result of the paper. (For any integer k, we denote by \mathbf{k} a vector with all entries equal to k.)

[^0]Theorem 1 Let A be an $m \times n k$-balanced 0,1 matrix with rows $a^{i}, i \in[m]$, and let S_{1}, S_{2} be a partition of $[m]$. Then the polyhedron

$$
P=\left\{x \in \mathbb{R}_{+}^{n}: \begin{array}{ll}
a^{i} x \leq b_{i} & i \in S_{1} \tag{1}\\
a^{i} x \geq b_{i} & i \in S_{2}
\end{array}\right\}
$$

has the integer decomposition property for every vector $b \in \mathbb{Z}^{m}$ such that $\mathbf{0} \leq b \leq \mathbf{k}$.

The class of k-balanced matrices is related to the theory of totally unimodular matrices, as we briefly explain. A real matrix is totally unimodular (t.u.) if each of its square nonsingular submatrices has determinant ± 1.

Theorem 2 (Camion [3] and Gomory [cited in [3]], Ghouila-Houri [8]) A $0, \pm 1$ matrix A is totally unimodular if and only if A does not contain a square submatrix B with an even number of nonzero entries in each row and each column, such that the sum of all entries in B equals 2 modulo 4.
A $0, \pm 1$ matrix which is not totally unimodular but whose proper submatrices are all totally unimodular is said almost totally unimodular. By Theorem 2, a $0, \pm 1$ matrix is k-balanced if and only if it has no almost totally unimodular submatrix with at most $2 k$ nonzero entries in each row.

Similarly to the case of totally unimodular matrices, several polyhedra arising from k-balanced matrices have only integral vertices, as the next theorem shows. For any $m \times n 0, \pm 1$ matrix A, we denote by $n(A)$ the vector with m components whose $i^{\text {th }}$ component is the number of -1 's in the $i^{\text {th }}$ row of A, and let $p(A)=n(-A)$.
Theorem 3 (Conforti, Cornuéjols and Truemper [4]) Let A be an $m \times n k$ balanced $0, \pm 1$ matrix with rows $a^{i}, i \in[m]$. Let b be a vector in \mathbb{Z}^{m} such that $-n(A) \leq b \leq \mathbf{k}-n(A)$, and S_{1}, S_{2} be a partition of $[m]$. Then the polytope $\left\{x \in \mathbb{R}_{+}^{n}: a^{i} x \leq b_{i}\right.$ for $i \in S_{1}, a^{i} x \geq b_{i}$ for $\left.i \in S_{2}, x \leq \mathbf{1}\right\}$ is integral.
Theorem 3 generalizes a result of Truemper and Chandrasekaran [11] valid for 0,1 -matrices. Notice that, in the latter case, Theorem 1 is a strengthening of Theorem 3. A natural question is whether the polyhedra defined in Theorem 3 have the integer decomposition property even when the k-balanced matrix A has negative entries.

See also Gijswijt [9] for results on the integer decomposition of polyhedra arising from other matrices related to total unimodularity.

The proof of Theorem 1 will follow from certain coloring properties of the class of k-balanced matrices, that we present in the next section.

$2 k$-equitable colorings

Given a $0, \pm 1$ matrix A with rows $a^{1}, \ldots a^{m}$, let $\alpha_{i}:=\min \left\{k,\left\lfloor\frac{p_{i}(A)+n_{i}(A)}{2}\right\rfloor\right\}$. We say that A has a k-equitable bicoloring if its columns can be partitioned into blue columns and red columns so that the matrix A^{\prime}, obtained from A by multiplying its blue columns by -1 , has at least α_{i} positive entries and at least α_{i} negative entries in row i, for every $i \in[m]$. This concept is related to that of k-balancedness as follows.

Theorem 4 (Conforti, Cornuéjols, Zambelli [6]) A $0, \pm 1$ matrix A is k balanced if and only if every submatrix of A has a k-equitable bicoloring.

Given a matrix A and an integer $\lambda \geq 2$, a λ-coloring of A is a partition of the columns of A into λ sets (colors) $I_{1}, \ldots, I_{\lambda}$ (some color may be empty). Given a $0, \pm 1$ matrix A and positive integers k and λ, a k-equitable λ-coloring of A is a λ-coloring $I_{1}, \ldots, I_{\lambda}$ of A such that I_{j}, I_{h} is a k-equitable bicoloring of the matrix $A_{I_{j} I_{h}}$ induced by the columns in $I_{j} \cup I_{h}$ for every $1 \leq j<h \leq \lambda$. We show the following.

Theorem 5 An $m \times n 0,1$ matrix A is k-balanced if and only if every submatrix of A has a k-equitable λ-coloring for every integer $\lambda \geq 2$.

Proof: If $\lambda=2$, then the statement is equivalent to Theorem 4. We only need to show that, if A is k-balanced, then A has a k-equitable λ-coloring. Assume $\lambda \geq 3$. Let $S_{1} \subseteq[m]$ be the set of indices i such that a^{i} has less than $k \lambda$ nonzero entries, and $S_{2}=[m] \backslash S_{1}$. Given a partition $I_{1}, \ldots, I_{\lambda}$ of the columns of A, let $n_{i j}=\left|\left\{h \in[n] \mid a_{h}^{i}=1, h \in I_{j}\right\}\right|$, for every $i \in[m], j \in[\lambda]$. Define

$$
\mu_{i j}=\left\{\begin{array}{ll}
\max \left(n_{i j}-\left\lceil p_{i}(A) / \lambda\right\rceil,\left\lfloor p_{i}(A) / \lambda\right\rfloor-n_{i j}\right) & \text { for } i \in S_{1} \\
\max \left(0, k-n_{i j}\right) & \text { for } i \in S_{2}
\end{array} .\right.
$$

Choose $I_{1}, \ldots, I_{\lambda}$ minimizing $\mu=\sum_{i=1}^{n} \sum_{j=1}^{\lambda} \mu_{i j}$. Observe that $I_{1}, \ldots, I_{\lambda}$ is a k-equitable λ-coloring if and only if $\mu=0$. Suppose $\mu_{s t}>0$ for some $s \in[m], t \in[\lambda]$. Clearly, there exists $t^{\prime} \in[\lambda]$ with the following property:

- If $s \in S_{1}$ and $n_{s t}<\left\lfloor p_{s}(A) / \lambda\right\rfloor$, then $n_{s t^{\prime}}>\left\lfloor p_{s}(A) / \lambda\right\rfloor$;
- If $s \in S_{1}$ and $n_{s t}>\left\lceil p_{s}(A) / \lambda\right\rceil$, then $n_{s t^{\prime}}<\left\lceil p_{s}(A) / \lambda\right\rceil$;
- If $s \in S_{2}$, then $n_{s t^{\prime}}>k$.
W.l.o.g., $t=1, t^{\prime}=2$. By Theorem 4, $A_{I_{1} I_{2}}$ admits a k-equitable bicoloring $I_{1}^{\prime}, I_{2}^{\prime}$. For $i \in[n]$ and $j=1,2$, let $n_{i j}^{\prime}=\left|\left\{h \in[n] \mid a_{h}^{i}=1, h \in I_{j}^{\prime}\right\}\right|$, and $\mu_{i j}^{\prime}=\max \left(n_{i j}^{\prime}-\left\lceil p_{i}(A) / \lambda\right\rceil,\left\lfloor p_{i}(A) / \lambda\right\rfloor-n_{i j}^{\prime}\right)$ for $i \in S_{1}, \mu_{i j}^{\prime}=\max (0, k-$ $\left.n_{i j}^{\prime}\right)$ for $i \in S_{2}$. Clearly, $n_{i 1}^{\prime}+n_{i 2}^{\prime}=n_{i 1}+n_{i 2}$.
Claim: $\mu_{i 1}^{\prime}+\mu_{i 2}^{\prime} \leq \mu_{i 1}+\mu_{i 2}$ for every $i \in[m]$, and $\mu_{s 1}^{\prime}+\mu_{s 2}^{\prime}<\mu_{s 1}+\mu_{s 2}$.
Case 1: $i \in S_{1}$.
If $2\left\lfloor p_{i}(A) / \lambda\right\rfloor \leq n_{i 1}+n_{i 2} \leq 2\left\lceil p_{i}(A) / \lambda\right\rceil$, then $\left\lfloor p_{i}(A) / \lambda\right\rfloor \leq n_{i j}^{\prime} \leq\left\lceil p_{i}(A) / \lambda\right\rceil$ for $j=1,2$, so $\mu_{i 1}^{\prime}+\mu_{i 2}^{\prime}=0 \leq \mu_{i 1}+\mu_{i 2}$, where the inequality is strict if $i=s$. If $n_{i 1}+n_{i 2}>2\left\lceil p_{i}(A) / \lambda\right\rceil$, then $n_{i j}^{\prime} \geq\left\lceil p_{i}(A) / \lambda\right\rceil$ for $j=1,2\left(\right.$ since $\left\lceil p_{i}(A) / \lambda\right\rceil \leq$ $k)$, so $\mu_{i 1}^{\prime}+\mu_{i 2}^{\prime}=\left(n_{i 1}^{\prime}-\left\lceil p_{i}(A) / \lambda\right\rceil\right)+\left(n_{i 2}^{\prime}-\left\lceil p_{i}(A) / \lambda\right\rceil\right)=\left(n_{i 1}-\left\lceil p_{i}(A) / \lambda\right\rceil\right)+$ $\left(n_{i 2}-\left\lceil p_{i}(A) / \lambda\right\rceil\right) \leq \mu_{i 1}+\mu_{i 2}$. If $i=s$, the inequality is strict since, by the choice of t and t^{\prime}, there exists $j \in[2]$ such that $n_{i j}-\left\lceil p_{i}(A) / \lambda\right\rceil<0 \leq \mu_{s j}$. If $n_{i 1}+n_{i 2}<2\left\lfloor p_{i}(A) / \lambda\right\rfloor$, then $n_{i j}^{\prime} \leq\left\lfloor p_{i}(A) / \lambda\right\rfloor$ for $j=1,2$, thus $\mu_{i 1}^{\prime}+\mu_{i 2}^{\prime}=$ $\left(\left\lfloor p_{i}(A) / \lambda\right\rfloor-n_{i 1}^{\prime}\right)+\left(\left\lfloor p_{i}(A) / \lambda\right\rfloor-n_{i 2}^{\prime}\right)=\left(\left\lfloor p_{i}(A) / \lambda\right\rfloor-n_{i 1}\right)+\left(\left\lfloor p_{i}(A) / \lambda\right\rfloor-n_{i 2}\right) \leq$ $\mu_{i 1}+\mu_{i 2}$. If $i=s$, the inequality is strict since, by the choice of t and t^{\prime}, there exists $j \in[2]$ such that $\left\lfloor p_{i}(A) / \lambda\right\rfloor-n_{i j}<0 \leq \mu_{s j}$. Case 2: $i \in S_{2}$.
If $n_{i 1}+n_{i 2}<2 k$, then $n_{i j}^{\prime} \leq k$ for $j=1,2$, thus $\mu_{i 1}^{\prime}+\mu_{i 2}^{\prime}=\left(k-n_{i 1}^{\prime}\right)+\left(k-n_{i 2}^{\prime}\right)=$ $\left(k-n_{i 1}\right)+\left(k-n_{i 2}\right) \leq \mu_{i 1}+\mu_{i 2}$. If $i=s$, the inequality is strict since $k-n_{s 2}<0=\mu_{s 2}$.
If $n_{i 1}+n_{i 2} \geq 2 k$, then $n_{i j}^{\prime} \geq k$ for $j=1,2$, thus $\mu_{i 1}^{\prime}+\mu_{i 2}^{\prime}=0 \leq \mu_{i 1}+\mu_{i 2}$, where the inequality is strict if $i=s$. This concludes the proof of the claim.

For $i \in[m]$ and $3 \leq j \leq \lambda$, let $\mu_{i j}^{\prime}=\mu_{i j}$. By the previous Claim, $\mu^{\prime}=\sum_{i=1}^{n} \sum_{j=1}^{\lambda} \mu_{i j}^{\prime}<\sum_{i=1}^{n} \sum_{j=1}^{\lambda} \mu_{i j}=\mu$, thus $I_{1}^{\prime}, I_{2}^{\prime}, I_{3}, \ldots, I_{\lambda}$ contradicts the choice of $I_{1}, \ldots, I_{\lambda}$.

We do not know if Theorem 5 holds in general for all k-balanced matrices; an answer in the affirmative was conjecture by Conforti and Zambelli for the case $k=1$, that is for the class of balanced matrices (see [5]).

Theorem 5 relates previous results of Berge [2], who proved it for balanced matrices, and De Werra [7], who showed that every $m \times n$ totally unimodular matrix (hence $\left\lfloor\frac{n}{2}\right\rfloor$-balanced) has a $\left\lfloor\frac{n}{2}\right\rfloor$-equitable λ-coloring for every integer $\lambda \geq 2$ (in this case the result holds for matrices with negative entries as well).

A reduction from 1-equitable λ-colorings to 1 -equitable bicolorings, similar to the one used in the proof above, was described in [5] to prove the theorem of Berge we mentioned above for 0,1 balanced matrices.

The proof of Theorem 5 can be turned into a strongly polynomial time algorithm to find a k-equitable λ-coloring as follows: start from an arbitrary partition $I_{1}, I_{2}, I_{3}, \ldots, I_{\lambda}$ and compute the corresponding μ. At each iteration, if $\mu=0$ stop, else find a new partition with a smaller value of μ by computing a k-equitable bicoloring of $A_{I_{t} I_{t^{\prime}}}$ for some appropriate choice of $t, t^{\prime} \in[\lambda]$. Since computing a k-equitable bicoloring can be done in strongly polynomial time, as observed in [6], and $\mu \leq n m$ for any possible partition, then the above algorithm is strongly polynomial.

Proof of Theorem 1

Let h be a positive integer, and let y be and integral vector in $h P$. We need to show that y is the sum of exactly h integral vectors in P. For $h=1$, the statement is trivial. If $h \geq 2$, consider the matrix \bar{A} obtained from A by replicating y_{j} times the $j^{\text {th }}$ column of A for every $j \in[n]$ (in particular, if $y_{j}=0$, we remove the corresponding column). For each $j \in[n]$, let C_{j} be the set of indices of columns of \bar{A} that are a copy of column j of A (if $y_{j}=0$, let $C_{j}=\emptyset$). Thus $\left|C_{j}\right|=y_{j}$. Denote by $\bar{a}^{i}, i \in[m]$, the rows of \bar{A}. Clearly, \bar{A} is still k-balanced, so by Theorem 5 there exists a k equitable h-coloring $I_{1} \ldots, I_{h}$ of \bar{A}. Let z^{1}, \ldots, z^{h} be the characteristic vectors of I_{1}, \ldots, I_{h}, respectively. Let x^{1}, \ldots, x^{h} be the vectors in \mathbb{R}^{n} defined by $x_{j}^{s}=\sum_{t \in C_{j}} z_{t}^{s}$ for $s \in[h], j \in[n]$. Clearly, $y=x^{1}+\ldots+x^{h}$. We only need to show that $x^{s} \in P$ for every $s \in[h]$. Observe that $p\left(\bar{a}^{i}\right)=a^{i} y$ for every $i \in[m]$. Thus, if $i \in S_{1}$, then $a^{i} x^{s}=\bar{a}^{i} z^{s} \leq\left\lceil p\left(\bar{a}^{i}\right) / h\right\rceil=\left\lceil\left(a^{i} y\right) / h\right\rceil \leq\left\lceil\left(h b_{i}\right) / h\right\rceil=b_{i}$. If $i \in S_{2}$, then $a^{i} x^{s}=\bar{a}^{i} z^{s} \geq \min \left(\left\lfloor p\left(\bar{a}^{i}\right) / h\right\rfloor, k\right) \geq b_{i}$, since $k \geq b_{i}$ and $\left\lceil p\left(\bar{a}^{i}\right) / h\right\rceil=\left\lceil\left(a^{i} y\right) / h\right\rceil \geq b_{i}$.

Note that, since a k-equitable λ-coloring can be found in polynomial time, the proof of Theorem 1 gives a polynomial time algorithm that, given a positive integer h and an integral point y in $h P$, returns integral vectors $x^{1}, \ldots, x^{h} \in P$ such that $y=x^{1}+\ldots+x^{h}$.

References

[1] S. Baum, L.E. Trotter, Integer Rounding and Polyhedral Decomposition of Totally Unimodular Systems, in: Optimization and Operations Research (Proc. Bonn 1977; R. Henn, B. Korte and W. Oettli, eds.), Lecture Notes in Economics and Math. Systems, Springer, Berlin, 1977, 15-23.
[2] C. Berge, Notes sur les Bonnes Colorations d'un Hypergraphe, Cahiers du Centre d'études de Recherche Opérationnelle 15 (1973), 219-223.
[3] P. Camion, Characterization of totally unimodular matrices, Proceedings of the American Mathematical Society, 16 (1965), 1068-1073.
[4] M. Conforti, G. Cornuéjols and K. Truemper, From Totally Unimodular to Balanced $0, \pm 1$ Matrices: A Family of Integer Polytopes, Mathematics of Operations Research 19 (1994), 21-23.
[5] M. Conforti, G. Cornuéjols and K. Vušković, Balanced Matrices, Discrete Mathematics (A. Bondy, V. Chvàtal ed.), to appear.
[6] M. Conforti, G. Cornuéjols, G. Zambelli, Bicolorings and Equitable Bicolorings of Matrices, The Sharpest Cut, MPS/SIAM Series on Optimization (M. Groetschel, ed.) (2004), 33-36.
[7] D. De Werra, On some Characterization of Totally Unimodular Matrices, Mathematical Programming 20 (1981), 14-21.
[8] A. Ghouila-Houri, Charactérisations des Matrices Totalement Unimodulaires, Comptes Rendus de l'Académie des Sciences, 254 (1962), 11921193.
[9] D. Gijswijt, Integer decomposition for polyhedra defined by nearly totally unimodular matrices, to appear in SIAM Journal on Discrete Mathematics.
[10] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.
[11] K. Truemper and R. Chandrasekaran, Local Unimodularity of MatrixVector Pairs, Linear Algebra and its Applications, 22 (1978), 65-78.

[^0]: *Dipartimento di Matematica Pura e Applicata, Universitá di Padova, Via Belzoni 7, 35131 Padova, Italy. giacomo@math.unipd.it

