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Abstract

We show that a class of polyhedra, arising from certain 0, 1 ma-

trices introduced by Truemper and Chandrasekaran, has the integer

decomposition property. This is accomplished by proving certain col-

oring properties of these matrices.

1 Introduction

For any positive integer k, we say that a 0,±1 matrix A is k-balanced if it
does not contain any square submatrix B with at most 2k nonzero entries
in each row, such that each row and each column of B has an even number
of nonzero entries, and the sum of all entries in B equals 2 modulo 4. This
notion was introduced by Truemper and Chandrasekaran [11] in the 0, 1 case
and generalized by Conforti, Cornuéjols and Truemper [4]. The name “k-
balanced matrices” was first adopted in [6].

A rational polyhedron P is said to have the integer decomposition property

if, for every positive integer h and for every integral vector y ∈ hP :=
{hx |x ∈ P}, there exist h integral vectors x1, . . . , xh ∈ P such that y =
x1 + . . . + xh. The integer decomposition property was introduced by Baum
and Trotter [1] (see [10]). The following is the main result of the paper. (For
any integer k, we denote by k a vector with all entries equal to k.)
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Theorem 1 Let A be an m×n k-balanced 0, 1 matrix with rows ai, i ∈ [m],
and let S1, S2 be a partition of [m]. Then the polyhedron

P =

{

x ∈ R
n
+ :

aix ≤ bi i ∈ S1

aix ≥ bi i ∈ S2

}

(1)

has the integer decomposition property for every vector b ∈ Z
m such that

0 ≤ b ≤ k.

The class of k-balanced matrices is related to the theory of totally uni-

modular matrices, as we briefly explain. A real matrix is totally unimodular
(t.u.) if each of its square nonsingular submatrices has determinant ±1.

Theorem 2 (Camion [3] and Gomory [cited in [3]], Ghouila-Houri [8])
A 0,±1 matrix A is totally unimodular if and only if A does not contain a

square submatrix B with an even number of nonzero entries in each row and

each column, such that the sum of all entries in B equals 2 modulo 4.

A 0,±1 matrix which is not totally unimodular but whose proper submatrices
are all totally unimodular is said almost totally unimodular. By Theorem 2, a
0,±1 matrix is k-balanced if and only if it has no almost totally unimodular
submatrix with at most 2k nonzero entries in each row.

Similarly to the case of totally unimodular matrices, several polyhedra
arising from k-balanced matrices have only integral vertices, as the next
theorem shows. For any m×n 0,±1 matrix A, we denote by n(A) the vector
with m components whose ith component is the number of −1’s in the ith

row of A, and let p(A) = n(−A).

Theorem 3 (Conforti, Cornuéjols and Truemper [4]) Let A be an m× n k-

balanced 0,±1 matrix with rows ai, i ∈ [m]. Let b be a vector in Z
m such that

−n(A) ≤ b ≤ k − n(A), and S1, S2 be a partition of [m]. Then the polytope

{x ∈ R
n
+ : aix ≤ bi for i ∈ S1, aix ≥ bi for i ∈ S2, x ≤ 1} is integral.

Theorem 3 generalizes a result of Truemper and Chandrasekaran [11] valid
for 0, 1-matrices. Notice that, in the latter case, Theorem 1 is a strengthening
of Theorem 3. A natural question is whether the polyhedra defined in The-
orem 3 have the integer decomposition property even when the k-balanced
matrix A has negative entries.

See also Gijswijt [9] for results on the integer decomposition of polyhedra
arising from other matrices related to total unimodularity.

The proof of Theorem 1 will follow from certain coloring properties of the
class of k-balanced matrices, that we present in the next section.
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2 k-equitable colorings

Given a 0,±1 matrix A with rows a1, . . . am, let αi := min{k, ⌊pi(A)+ni(A)
2

⌋}.
We say that A has a k-equitable bicoloring if its columns can be partitioned
into blue columns and red columns so that the matrix A′, obtained from A
by multiplying its blue columns by −1, has at least αi positive entries and at
least αi negative entries in row i, for every i ∈ [m]. This concept is related
to that of k-balancedness as follows.

Theorem 4 (Conforti, Cornuéjols, Zambelli [6]) A 0,±1 matrix A is k-

balanced if and only if every submatrix of A has a k-equitable bicoloring.

Given a matrix A and an integer λ ≥ 2, a λ-coloring of A is a partition of
the columns of A into λ sets (colors) I1, . . . , Iλ (some color may be empty).
Given a 0,±1 matrix A and positive integers k and λ, a k-equitable λ-coloring

of A is a λ-coloring I1, . . . , Iλ of A such that Ij, Ih is a k-equitable bicoloring
of the matrix AIjIh

induced by the columns in Ij∪Ih for every 1 ≤ j < h ≤ λ.
We show the following.

Theorem 5 An m × n 0, 1 matrix A is k-balanced if and only if every sub-

matrix of A has a k-equitable λ-coloring for every integer λ ≥ 2.

Proof: If λ = 2, then the statement is equivalent to Theorem 4. We only
need to show that, if A is k-balanced, then A has a k-equitable λ-coloring.
Assume λ ≥ 3. Let S1 ⊆ [m] be the set of indices i such that ai has less than
kλ nonzero entries, and S2 = [m] \ S1. Given a partition I1, . . . , Iλ of the
columns of A, let nij = |{h ∈ [n] | ai

h = 1, h ∈ Ij}|, for every i ∈ [m], j ∈ [λ].
Define

µij =

{

max(nij − ⌈pi(A)/λ⌉, ⌊pi(A)/λ⌋ − nij) for i ∈ S1

max(0, k − nij) for i ∈ S2
.

Choose I1, . . . , Iλ minimizing µ =
∑n

i=1

∑λ

j=1 µij. Observe that I1, . . . , Iλ is
a k-equitable λ-coloring if and only if µ = 0. Suppose µst > 0 for some
s ∈ [m], t ∈ [λ]. Clearly, there exists t′ ∈ [λ] with the following property:

• If s ∈ S1 and nst < ⌊ps(A)/λ⌋, then nst′ > ⌊ps(A)/λ⌋;

• If s ∈ S1 and nst > ⌈ps(A)/λ⌉, then nst′ < ⌈ps(A)/λ⌉;

• If s ∈ S2, then nst′ > k.
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W.l.o.g., t = 1, t′ = 2. By Theorem 4, AI1I2 admits a k-equitable bicoloring
I ′

1, I ′

2. For i ∈ [n] and j = 1, 2, let n′

ij = |{h ∈ [n] | ai
h = 1, h ∈ I ′

j}|, and
µ′

ij = max(n′

ij − ⌈pi(A)/λ⌉, ⌊pi(A)/λ⌋ − n′

ij) for i ∈ S1, µ′

ij = max(0, k −
n′

ij) for i ∈ S2. Clearly, n′

i1 + n′

i2 = ni1 + ni2.

Claim: µ′

i1 + µ′

i2 ≤ µi1 + µi2 for every i ∈ [m], and µ′

s1 + µ′

s2 < µs1 + µs2.

Case 1: i ∈ S1.
If 2⌊pi(A)/λ⌋ ≤ ni1 + ni2 ≤ 2⌈pi(A)/λ⌉ , then ⌊pi(A)/λ⌋ ≤ n′

ij ≤ ⌈pi(A)/λ⌉
for j = 1, 2, so µ′

i1 +µ′

i2 = 0 ≤ µi1 +µi2, where the inequality is strict if i = s.
If ni1+ni2 > 2⌈pi(A)/λ⌉, then n′

ij ≥ ⌈pi(A)/λ⌉ for j = 1, 2 (since ⌈pi(A)/λ⌉ ≤
k), so µ′

i1 +µ′

i2 = (n′

i1−⌈pi(A)/λ⌉)+(n′

i2−⌈pi(A)/λ⌉) = (ni1−⌈pi(A)/λ⌉)+
(ni2 − ⌈pi(A)/λ⌉) ≤ µi1 + µi2. If i = s, the inequality is strict since, by the
choice of t and t′, there exists j ∈ [2] such that nij − ⌈pi(A)/λ⌉ < 0 ≤ µsj.
If ni1 + ni2 < 2⌊pi(A)/λ⌋, then n′

ij ≤ ⌊pi(A)/λ⌋ for j = 1, 2, thus µ′

i1 + µ′

i2 =
(⌊pi(A)/λ⌋−n′

i1)+(⌊pi(A)/λ⌋−n′

i2) = (⌊pi(A)/λ⌋−ni1)+(⌊pi(A)/λ⌋−ni2) ≤
µi1 + µi2. If i = s, the inequality is strict since, by the choice of t and t′,
there exists j ∈ [2] such that ⌊pi(A)/λ⌋ − nij < 0 ≤ µsj.
Case 2: i ∈ S2.
If ni1+ni2 < 2k, then n′

ij ≤ k for j = 1, 2, thus µ′

i1+µ′

i2 = (k−n′

i1)+(k−n′

i2) =
(k − ni1) + (k − ni2) ≤ µi1 + µi2. If i = s, the inequality is strict since
k − ns2 < 0 = µs2.
If ni1 + ni2 ≥ 2k, then n′

ij ≥ k for j = 1, 2, thus µ′

i1 + µ′

i2 = 0 ≤ µi1 + µi2,
where the inequality is strict if i = s. This concludes the proof of the claim.

For i ∈ [m] and 3 ≤ j ≤ λ, let µ′

ij = µij. By the previous Claim,

µ′ =
∑n

i=1

∑λ

j=1 µ′

ij <
∑n

i=1

∑λ

j=1 µij = µ, thus I ′

1, I
′

2, I3, . . . , Iλ contradicts
the choice of I1, . . . , Iλ. 2

We do not know if Theorem 5 holds in general for all k-balanced matrices;
an answer in the affirmative was conjecture by Conforti and Zambelli for the
case k = 1, that is for the class of balanced matrices (see [5]).

Theorem 5 relates previous results of Berge [2], who proved it for balanced
matrices, and De Werra [7], who showed that every m×n totally unimodular
matrix (hence ⌊n

2
⌋-balanced) has a ⌊n

2
⌋-equitable λ-coloring for every integer

λ ≥ 2 (in this case the result holds for matrices with negative entries as well).
A reduction from 1-equitable λ-colorings to 1-equitable bicolorings, sim-

ilar to the one used in the proof above, was described in [5] to prove the
theorem of Berge we mentioned above for 0, 1 balanced matrices.
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The proof of Theorem 5 can be turned into a strongly polynomial time
algorithm to find a k-equitable λ-coloring as follows: start from an arbitrary
partition I1, I2, I3, . . . , Iλ and compute the corresponding µ. At each itera-
tion, if µ = 0 stop, else find a new partition with a smaller value of µ by
computing a k-equitable bicoloring of AItIt′

for some appropriate choice of
t, t′ ∈ [λ]. Since computing a k-equitable bicoloring can be done in strongly
polynomial time, as observed in [6], and µ ≤ nm for any possible partition,
then the above algorithm is strongly polynomial.

Proof of Theorem 1

Let h be a positive integer, and let y be and integral vector in hP . We need
to show that y is the sum of exactly h integral vectors in P . For h = 1,
the statement is trivial. If h ≥ 2, consider the matrix Ā obtained from A
by replicating yj times the jth column of A for every j ∈ [n] (in particular,
if yj = 0, we remove the corresponding column). For each j ∈ [n], let
Cj be the set of indices of columns of Ā that are a copy of column j of
A (if yj = 0, let Cj = ∅). Thus |Cj| = yj. Denote by āi, i ∈ [m], the
rows of Ā. Clearly, Ā is still k-balanced, so by Theorem 5 there exists a k-
equitable h-coloring I1 . . . , Ih of Ā. Let z1, . . . , zh be the characteristic vectors
of I1, . . . , Ih, respectively. Let x1, . . . , xh be the vectors in R

n defined by
xs

j =
∑

t∈Cj
zs

t for s ∈ [h], j ∈ [n]. Clearly, y = x1 + . . .+xh. We only need to

show that xs ∈ P for every s ∈ [h]. Observe that p(āi) = aiy for every i ∈ [m].
Thus, if i ∈ S1, then aixs = āizs ≤ ⌈p(āi)/h⌉ = ⌈(aiy)/h⌉ ≤ ⌈(hbi)/h⌉ = bi.
If i ∈ S2, then aixs = āizs ≥ min(⌊p(āi)/h⌋, k) ≥ bi, since k ≥ bi and
⌈p(āi)/h⌉ = ⌈(aiy)/h⌉ ≥ bi. 2

Note that, since a k-equitable λ-coloring can be found in polynomial
time, the proof of Theorem 1 gives a polynomial time algorithm that, given
a positive integer h and an integral point y in hP , returns integral vectors
x1, . . . , xh ∈ P such that y = x1 + . . . + xh.
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[4] M. Conforti, G. Cornuéjols and K. Truemper, From Totally Unimodular
to Balanced 0,±1 Matrices: A Family of Integer Polytopes, Mathematics
of Operations Research 19 (1994), 21-23.
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[8] A. Ghouila-Houri, Charactérisations des Matrices Totalement Unimod-
ulaires, Comptes Rendus de l’Académie des Sciences, 254 (1962), 1192-
1193.

[9] D. Gijswijt, Integer decomposition for polyhedra defined by nearly to-
tally unimodular matrices, to appear in SIAM Journal on Discrete Math-
ematics.

[10] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New
York, 1986.

[11] K. Truemper and R. Chandrasekaran, Local Unimodularity of Matrix-
Vector Pairs, Linear Algebra and its Applications, 22 (1978), 65-78.

6


