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SUMMARY

We consider the problem of segmented linear regression with a single break-point, with the focus on

estimating of the location of the break-point. Let n be the sample size, we show that the global minimax

convergence rate for this problem in terms of the mean absolute error is O(n−1/3). On the other hand, we

demonstrate the construction of a super-efficient estimator that achieves the pointwise convergence rate of

either O(n−1) or O(n−1/2) for every fixed parameter value, depending on whether the structural change

is a jump or a kink. The implications of this example and a potential remedy are discussed.
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1. INTRODUCTION

Asymptotic analysis is commonly used to facilitate comparison between different statistical estima-

tors from a frequentist’s perspective. Once the consistency of an estimator is established, the focus then

naturally moves onto its rate of convergence. In general, statements concern the following two types of

rates: the pointwise rate where the limit is taken when the unknown parameter is fixed, and the uniform

rate where the limit is taken as the supremum over some or all of the parameter space. In addition, the

convergence rate of the estimator that achieves the fastest uniform rate among all the estimators is known

as the minimax rate. Often the (global) minimax rate is used to characterise the hardness of the problem.

In many settings, the pointwise rate, the uniform rate and the minimax rate are the same, in which

case the corresponding estimator is usually regarded as rate-optimal. However, there are exceptions where

caution must be exercised. A notable example arises from the phenomenon of super-efficiency, first docu-

mented by Joseph L. Hodges, Jr. in 1951. This topic was later treated comprehensively by Le Cam (1953)

and Hájek (1972), among many others, in the settings of regular parametric models. See Stigler (2007) and

Vovk (2009) for excellent reviews of the turbulent history of early studies. More recently, super-efficiency

has also been investigated in other more complicated settings. For instance, Brown et al. (1997) studied it

in nonparametric function estimation, Heinrich & Kahn (2018) studied it in mixture models, and Banerjee

et al. (2019) studied it in the setting of isotonic regression.

Mathematically, let’s denote the parameter space of interest by Θ, any estimator of θ ∈ Θ by θ̂, the

loss function by L(θ, θ̂), and the corresponding risk function by R(θ, θ̂) = EθL(θ, θ̂). For every θ ∈ Θ,

suppose that there exists some γθ > 0 such that

0 < lim inf
ǫ→0+

lim inf
n→∞

inf
θ̂

sup
‖θ′−θ‖≤ǫ

nγθ R(θ′, θ̂) ≤ lim sup
ǫ→0+

lim sup
n→∞

inf
θ̂

sup
‖θ′−θ‖≤ǫ

nγθ R(θ′, θ̂) < ∞,
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then n−γθ is known as the local minimax rate at θ. In this context, an estimator θ̂ is super-efficient in its

convergence rate if

lim sup
n→∞

nγθ R(θ, θ̂) < ∞ for every θ ∈ Θ and lim sup
n→∞

nγθ R(θ, θ̂) = 0 for some θ ∈ Θ.

The purpose of this short note is to demonstrate that super-efficiency can occur in the setting of seg-

mented linear regression, even with only a single break-point. In spite of the popularity of segmented

regression in statistics and econometrics literatures, to our knowledge, this phenomenon has not been

widely understood in these contexts. In particular, since the class of segmented linear regression mod-

els is not regular (e.g. not differentiable in quadratic mean), existing results regarding super-efficiency in

regular parametric models cannot be immediately applied. By focusing on estimating the location of the

single break-point and taking the loss function to be the Euclidean distance between the true location and

estimated location of the break-point, we show that the global minimax convergence rate of the risk is at

least O(n−1/3), i.e.

lim inf
n→∞

inf
θ̂

sup
θ∈Θ

n1/3 R(θ, θ̂) > 0.

We then illustrate super-efficiency by constructing an estimator θ̂S that for every fixed θ ∈ Θ, depending

on whether the break-point is a jump or a kink, satisfies either

nR(θ, θ̂S) < ∞ or n1/2 R(θ, θ̂S) < ∞.

These findings point to an interesting and dramatic scenario in which the break-point can be estimated

at the rate of Op(n
−1/3) in the minimax sense. However, as long as we are willing to assume that the

truth does exist (i.e. the location, as a proportion of the data sequence, and the size of change do not

vary with n), the break-point can then be estimated at a much faster rate of either Op(n
−1) or Op(n

−1/2).

Consequently, for this particular break-point estimation problem, caution must be taken when one uses the

global minimax rate to characterise its difficulty, and when one compares and interprets the convergence

rates of different estimators.

Here our focus is on the segmented linear regression with a single break-point with the aim of il-

lustrating super-efficiency. These results also hold in the setting of multiple break-points under suitable

conditions. There has been a number of recent work on estimating the number and locations of unknown

break-points in the settings of both continuous and discontinuous piecewise inear mean signals. See Bai

and Perron (1998), Muggeo (2003), Das et al. (2016), Maidstone et al. (2019), Baranowski et al. (2019),

to name but a few. In particular, with less stringent spacing conditions between consecutive break-points

in the setting of a continuous piecewise linear mean signal, Maidstone et al. (2019) and Baranowski et al.

(2019) proposed estimators that could achieve within a logarithmic factor of Op(n
−1/3) in estimating the

locations of all unknown break-points. The estimator’s convergence rate was further improved to within

a logarithmic factor of Op(n
−1/2) in Baranowski et al. (2019) under more restrictive assumptions. See

also Hansen (2017) for inference in the presence of a kink, Hidalgo et al. (2019) for a test of continu-

ity at the break-point, and Dong (2018) for a related problem on treatment effect evaluation. There have

also been work on kink location estimation in various univariate nonparametric regression settings. See

Raimondo (1998), Goldenshluger et al. (2006), Cheng and Raimondo (2008), Wishart & Kulik (2010),

Wishart (2011) and references therein. Finally, we mention the work of Korostelev & Lepski (2008) who

investigated a version of jump location estimation problem with a growing dimension.

The rest of the manuscript is organised as follows. We formulate the break-point estimation problem

mathematically in Section 2. The corresponding minimax rates are given in Section 3. Section 4 gives a

super-efficient estimator, followed by a numerical experiment in Section 5. We discuss its implications

and a potential remedy in Section 6. All proofs are deferred to the appendix.
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2. MODEL SETUP: SEGMENTED LINEAR REGRESSION WITH A SINGLE BREAK-POINT

Suppose that we observe (Xni, Yni) for i = 1, . . . , n. Consider the fixed design setting where

Xni = i/(n+ 1)

Yni = fθ(Xni) + σεni

for some σ > 0 and some function fθ : [0, 1] → R. Here εn1, . . . , εnn are independent and identically

distributed N(0, 1) random variables. Furthermore, fθ is a piecewise linear function indexed by θ =

(τθ, α
−
θ , α

+
θ , β

−
θ , β+

θ ) ∈ Θ ⊂ [0, 1]× R
4 of the form

fθ(x) =

{
α−
θ + β−

θ (x− τθ) if x ∈ [0, τθ]

α+
θ + β+

θ (x− τθ) if x ∈ (τθ, 1]
.

In other words, fθ has a single break-point at τθ, with its linear part over [0, τθ) determined by the slope

β−
θ and the intercept α−

θ at (τθ)− , and its linear part over (τθ, 1] determined by the slope β+
θ and the

intercept α+
θ at (τθ)+. For simplicity, we have assumed that fθ is left-continuous, so fθ(τθ) = α−

θ . If

|α+
θ − α−

θ | 6= 0, then we refer to τθ as a jump. Otherwise, if |α+
θ − α−

θ | = 0 but |β+
θ − β−

θ | 6= 0 , then we

call τθ a kink.

To asymptotically analyse the break-point estimator based on (Xn1, Yn1), . . . (Xnn, Ynn), it is common

to assume that the actual break-point does not occur too close to the boundary at x = 0 or x = 1, and

the structural change is “noticeable”, so at least one of the following two quantities, |α+
θ − α−

θ | and

|β+
θ − β−

θ |, is reasonably large. As such, it is natural to restrict ourselves to the parameter space of

Θ =
{
θ ∈ [0, 1]× R

4
∣∣∣ τθ ∈ [δ, 1− δ], max

(
|α+

θ − α−
θ |, |β+

θ − β−
θ |

)
≥ δ

}

for some fixed but perhaps unknown small δ > 0. Here the dependence of Θ on δ is suppressed.

As mentioned previously, our main focus is on estimating the location of the break-point. In a sense,

we treat α−
θ , α

+
θ , β

−
θ and β+

θ as nuisance parameters. For any estimator θ̂ = (τθ̂, α
−
θ̂
, α+

θ̂
, β−

θ̂
, β+

θ̂
), we

evaluate its performance based on the estimated break-point’s absolute loss, namely, with the loss func-

tion L(θ, θ̂) = |τθ̂ − τθ| and the risk function R(θ, θ̂) = EθL(θ, θ̂). Analogous conclusions could also be

made under other losses, such as L(θ, θ̂) = |τθ̂ − τθ|q for some q > 1.

Finally, we remark that this particular fix design is selected with the aim to better connect to the existing

change-point detection literature.

3. MINIMAX RATE OF CONVERGENCE

First, we investigate the local minimax rate of convergence. We separate the parameter space into two

disjoint sets ΘK and Θ\ΘK , where ΘK is the parameter space representing functions with a kink, i.e.

ΘK =
{
θ ∈ Θ

∣∣∣ α−
θ = α+

θ

}
.

THEOREM 1. Under the setup mentioned in Section 2,

lim inf
ǫ→0+

lim inf
n→∞

inf
θ̂

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

n R(θ′, θ̂) > 0 for every θ ∈ Θ\ΘK

and

lim inf
ǫ→0+

lim inf
n→∞

inf
θ̂

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

n1/3 R(θ′, θ̂) > 0 for every θ ∈ ΘK . (1)

Theorem 1 implies that when τθ is a jump, the local minimax rate for estimating the location of the

break-point in terms of the magnitude of τθ̂ − τθ is at least of Op(n
−1). However, this rate slows down

considerably to Op(n
−1/3) when τθ is a kink.
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The next corollary concerns the global minimax rate, which immediately follows from Theorem 1.

COROLLARY 1. Under the setup mentioned in Section 2,

lim inf
n→∞

inf
θ̂

sup
θ∈Θ

n1/3 R(θ, θ̂) > 0.

Although it is known that when the exact type of the break-point is given a priori, a jump could be

estimated at Op(n
−1) and a kink could be estimated at Op(n

−1/2), we emphasize that these facts alone

are far from implying the minimax rate of Op(n
−1/3) for τθ̂ − τθ as shown above. It is also interesting

to note that the Op(n
−1/3) rate also appears in Raimondo (1998) who considers a related problem in the

nonparametric setting where there is a jump in the first derivative of a continuous mean. However, the

class of functions he considered in deriving this rate is different from ours.

On the other hand, if we further constrain the parameter space from Θ to ΘK , then the following

minimax result for kink location estimation in the setting of continuous segmented linear regression holds.

THEOREM 2. Under the setup mentioned in Section 2,

lim inf
n→∞

inf
θ̂

sup
θ∈ΘK

n1/2 R(θ, θ̂) > 0. (2)

Note that Op(n
−1/2) implied by (2) is faster than Op(n

−1/3) implied by (1). This seemingly counter-

intuitive difference in the rates is due to the different choices of the parameter spaces in their derivations

and can be explained by examining the proofs of Theorem 1 and Theorem 2 in the online supplementary

materials. Our proofs follow from Le Cam’s two-point method. See Le Cam (1986) or Yu (1997).

To give some intuitions, we first confine ourselves to θ1 = (1/2, 0, 0,−1, 1) and θ2 = (1/2 +

∆,−∆,∆,−1, 1) for some small ∆ > 0, with θ1, θ2 ∈ Θ. Denote the distribution of (Yn1, . . . , Ynn) us-

ing the data generating process described in Section 2 with θ1 as Pn
θ1

, and that with θ2 as Pn
θ2

. Then

break-point estimation could be viewed as the problem of differentiating between Pn
θ1

and Pn
θ2

based

on the observations, whose hardness is dictated by the squared total variation distance between them. In

the meantime, this squared total variation distance, denoted by ‖Pn
θ1

− Pn
θ2
‖2TV, can be bounded under

suitable conditions as follows, with
∫ 1

0

{
fθ1(x)− fθ2(x)

}2
dx playing a crucial role in characterising the

hardness of the original problem:

‖Pn
θ1 − Pn

θ2‖
2
TV ≤ 2− 2

n∏

i=1

[
1− d2hel

{
N
(
fθ1

(
i/(n+ 1)

)
, σ2

)
, N

(
fθ2

(
i/(n+ 1)

)
, σ2

)}]

= 2− 2 exp

[
− 1

8σ2

n∑

i=1

{
fθ1

(
i/(n+ 1)

)
− fθ2

(
i/(n+ 1)

)}2
]

→ 2− 2 exp

[
− n

8σ2

∫ 1

0

{
fθ1(x)− fθ2(x)

}2
dx

]
.

Here dhel is the Hellinger distance and d2hel
{
N(µ1, σ), N(µ2, σ)

}
= 1− exp{−(µ1 − µ2)

2/(8σ2)}. For

this particular pair of θ1 and θ2,
∫ 1

0

{
fθ1(x)− fθ2(x)

}2
dx = O(∆3) for ∆ → 0. See Fig. 1(a). Here

fθ1(x) and fθ2(x) only differ over x ∈ (1/2, 1/2 + ∆], meaning that the problem can be viewed as a

local one as most pairs of the observations, namely, (Xni, Yni) with Xni /∈ (1/2, 1/2 + ∆], are irrele-

vant. In contrast, with the same value of θ1, if we only consider parameters in ΘK we are then unable to

find a θ2 ∈ ΘK with the corresponding break-point at 1/2 + ∆ such that fθ1(x) and fθ2(x) only differ

over a small neighbourhood. In fact, fθ1(x) and fθ2(x) will have to differ over a substantial interval that

does not shrink as ∆ → 0, so the problem of distinguishing between fθ1 and fθ2 appears more global

than before. By taking, for example, θ2 = (1/2 + ∆,−∆,−∆,−1, 1) (while keeping the same θ1), we

obtain
∫ 1

0

{
fθ1(x)− fθ2(x)

}2
dx = O(∆2), as demonstrated in Fig. 1(b). In fact, we can further show

that infθ2∈ΘK

∫ 1

0

{
fθ1(x)− fθ2(x)

}2
dx = O(∆2). This order difference of

∫ 1

0

{
fθ1(x)− fθ2(x)

}2
dx
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in ∆ implies that the cases of θ ∈ Θ and θ ∈ ΘK are fundamentally different! To give more details, in Le

Cam’s method, the minimax rate can be derived by picking ∆ such that ‖Pn
θ1

− Pn
θ2
‖TV ≤ C for some

constant C < 1. In our settings, as derived as above, this roughly amounts to requiring
∫ 1

0

{
fθ1(x)−

fθ2(x)
}2

dx = O(n−1). As such, ∆ would be taken as O(n−1/3) in Fig. 1(a), and O(n−1/2) in Fig. 1(b),

which are also the minimax convergence rates for break-point estimation under θ ∈ Θ and θ ∈ ΘK re-

spectively in terms of the expected absolute loss. Finally, for completeness, we also illustrate the case

of a “noticeable” jump in Fig. 1(c), where θ1 = (1/2,−1/2, 1/2,−1, 1) (i.e. with jump size of 1) and

θ2 = (1/2 + ∆,−1/2−∆, 1/2 + ∆,−1, 1). Since here
∫ 1

0

{
fθ1(x)− fθ2(x)

}2
dx = O(∆), the mini-

max rate for estimating break-point of this type is O(n−1).
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Fig. 1. Plots of fθ1 and fθ2 with their difference shaded in light grey. In (a), θ1 =
(1/2, 0, 0,−1, 1) and θ2 = (1/2 + ∆,−∆,∆,−1, 1). In (b), the continuity constraint is
enforced with the same θ1 but θ2 = (1/2 + ∆,−∆,−∆,−1, 1). Finally, (c) demonstrates
the case of a non-vanishing jump with θ1 = (1/2,−1/2, 1/2,−1, 1) and θ2 = (1/2 +
∆,−1/2−∆, 1/2 + ∆,−1, 1). In all the plots, the difference between fθ1 and fθ2 at

x = 1/2 + ∆ is highlighted using a curly bracket.
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4. A SUPER-EFFICIENT ESTIMATOR

Write Θ̄ = [0, 1]× R
4 and Θ̄K = {θ ∈ Θ̄| α−

θ = α+
θ }. For notational convenience, in Section 4 and

Section 5, θ̂ is denoted as the least squares estimator satisfying

θ̂ := θ̂LS ∈ argminθ∈Θ̄

n∑

i=1

{Yni − fθ(Xni)}2. (3)

Here we minimise over Θ̄ instead of Θ, because δ of Θ is not always known a priori. Equivalently, we can

write

τθ̂ ∈ argminτ∈[0,1]

{
min
α,β

n∑

i=1

(Yni − βXni − α)21{Xni∈[0,τ ]} +min
α,β

n∑

i=1

(Yni − βXni − α)21{Xni∈(τ,1]}

}
.

Similarly, for kink estimation where we further restrict ourselves to ΘK , we denote the corresponding

least squares estimator by θ̂K ∈ argminθ∈Θ̄K

∑n
i=1{Yni − fθ(Xni)}2, with

τθ̂K ∈ argminτ∈[0,1]

[
min

α,β−,β+

n∑

i=1

{
Yni − α− β−(Xni − τ)1{Xni∈[0,τ ]} − β+(Xni − τ)1{Xni∈(τ,1]}

}2
]
.

For uniqueness, we take τθ̂ and τθ̂K to be the smallest element in the respective sets of minima.

As we shall see, τθ̂ achieves Op(n
−1) for fixed θ ∈ Θ\ΘK , but slows down to Op(n

−1/3) when θ ∈
ΘK . Meanwhile, τθ̂K achieves Op(n

−1/2) for θ ∈ ΘK . Therefore, making the correct extra assumption

of continuity at the break-point and using the corresponding estimator could improve the convergence rate

from Op(n
−1/3) to Op(n

−1/2) for θ ∈ ΘK . This motivates us to shrink θ̂ towards ΘK in certain cases to

improve the pointwise rate. In particular, we could estimate the break-point by τθ̂S , where

θ̂S =

{
θ̂K if |α+

θ̂
− α−

θ̂
| ≤ n−1/6

θ̂ if |α+

θ̂
− α−

θ̂
| > n−1/6

. (4)

We are now in the position to discuss the pointwise and local uniform convergence rates of τθ̂S .

THEOREM 3. Under the setup mentioned in Section 2, τθ̂S is a super-efficient estimator for τθ. In

particular, we have

lim sup
n→∞

nR(θ, θ̂S) < ∞ for every θ ∈ Θ\ΘK

and

lim sup
n→∞

n1/2R(θ, θ̂S) < ∞ for every θ ∈ ΘK .

It follows from Theorem 3 that supθ∈Θ lim supn→∞ n1/2R(θ, θ̂S) < ∞, i.e. the pointwise rate of break-

point estimation via θ̂S for every θ ∈ Θ is faster than the global minimax rate of O(n−1/3).

THEOREM 4. Under the setup mentioned in Section 2, we have that

lim sup
ǫ→0+

lim sup
n→∞

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

nR(θ′, θ̂S) < ∞ for every θ ∈ Θ\ΘK

and

lim inf
ǫ→0+

lim inf
n→∞

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

n1/3R(θ′, θ̂S) = ∞ for every θ ∈ ΘK .

Theorem 4 implies that the global uniform rate of τθ̂S in terms of the absolute loss is worse than the

global minimax rate of O(n−1/3), which could actually be achieved by τθ̂. This type of behaviour is
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typical for super-efficient estimators that tend to achieve better pointwise convergence rates at the cost of

worse uniform convergence rates.

In addition, the construction of the super-efficient estimator is by no means unique. In fact, here the

threshold n−1/6 in (4) can be replaced by cn−γ for any fixed c > 0 and γ ∈ (0, 1/3). Alternatively, one

could replace |α+

θ̂
− α−

θ̂
| in (4) by the difference between residual sum of squares from fitting the model

over either Θ̄K or Θ̄, and then choose the cut-off decision boundary accordingly.

5. NUMERICAL EXPERIMENT

We run a small simulation study to compare the behaviour of τθ̂ and τθ̂S . Two different scenarios are

considered under the settings of Section 2:

(a) θ1 = (0.5, 0, 0,−1, 1) ∈ ΘK , i.e. fθ1(x) = |x− 0.5|;
(b) θ2 = (0.5, 0, 0.5,−1, 1) ∈ Θ\ΘK , i.e. fθ2(x) = |x− 0.5|+ 1{x>0.5}.

Here we take σ = 0.5 and n = 100, 200, 500, 1000, 2000. All experiments are repeated 1000 times. The

estimated values of R(θ, θ̂) and R(θ, θ̂S), also known as the mean absolute errors (MAEs) of τθ̂ and τθ̂S ,

are reported in Fig. 2 on a log-log scale.

In Fig. 2(a), the super-efficiency phenomenon is visible, where the super-efficient estimator τθ̂S per-

forms better than the least squares estimator τθ̂ in the presence of a kink, especially for large n. It is also

evident from the plot that τθ̂S and τθ̂ have different pointwise convergence rates there, as indicated in Sec-

tion 4. Meanwhile, Fig. 2(b) demonstrates that in the presence of a jump, τθ̂S and τθ̂ perform similarly. In

particular, for large n = 2000, they are exactly the same in all the 1000 runs. Finally, Fig. 2 confirms that

in terms of pointwise rates, estimating the location of a jump is easier than estimating that of a kink.
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Fig. 2. Estimated MAEs of τ
θ̂

and τ
θ̂S

for n = 100, 200, 500, 1000, 2000 on a log-log scale

under different scenarios: (a) θ1 with a kink; (b) θ2 with a jump.

6. DISCUSSION

Although the super-efficient estimator τθ̂S achieves a pointwise rate faster than the global minimax rate

for every θ ∈ Θ, it is clear that in our example super-efficiency only occurs over ΘK , which is a Lebesgue

null set in comparison to Θ. However, if we were to focus solely on τθ by treating α−
θ , α

+
θ , β

−
θ and β+

θ

as nuisance parameters, then super-efficiency could occur at every τθ ∈ [δ, 1− δ]. Here [δ, 1− δ] is no

longer a Lebesgue null set in comparison to [0, 1].

On the other hand, whilst τθ̂S achieves a better pointwise convergence rate for locating the

break-point, like Hodges’ estimator, it is penalised at local neighbouring points. In particular,

lim supn→∞ supθ∈Θ n1/3 R(θ, θ̂S) = ∞, but lim supn→∞ supθ∈Θ n1/3 R(θ, θ̂) < ∞, where θ̂ is taken
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as the least squares estimator defined in (3). Thus, in terms of the uniform convergence rate, τθ̂S actually

performs worse than τθ̂.

However, it is useful to think about whether this perspective of uniformity is what we are really in-

terested in. In this break-point estimation problem, the global minimax convergence rate is derived by

considering alternatives with the jump size → 0 as n → ∞. It is entirely possible that these alternatives

might violate the modeller’s real brief in practice, whose intention dictates that whenever there is a jump

or a change in slope (or both), the corresponding change size has to be significant. Mathematically, this

plausibly more appropriate parameter space would be a restricted version of Θ, given by

Θ∗ =

{
θ ∈ Θ

∣∣∣∣∣ min

(
1{α−

θ
=α+

θ
} +

∣∣∣α+
θ − α−

θ

∣∣∣1{α−

θ
6=α+

θ
}, 1{β−

θ
=β+

θ
} +

∣∣∣β+
θ − β−

θ

∣∣∣1{β−

θ
6=β+

θ
}

)
≥ δ

}
.

It can then be shown that for every θ ∈ ΘK ,

lim inf
ǫ→0+

lim inf
n→∞

inf
θ̂

sup
θ′∈Θ∗:‖θ′−θ‖≤ǫ

n1/2 R(θ′, θ̂) > 0,

implying that the local minimax convergence rate for estimating the kink over Θ∗ is Op(n
−1/2), and thus

θ̂S is no longer super-efficient over Θ∗.

Besides, one interesting feature of this break-point estimation problem is that the local minimax conver-

gence rates are different across the parameter space. In this circumstance, it might not be entirely adequate

to summarise the hardness of the problem by a single global minimax rate. See also Donoho et al. (1995).

Our example can be generalised in more complex settings, such as segmented polynomial regression

with higher order polynomials, as well as those with heterogeneous sub-Gaussian errors and multiple

break-points. It shows the importance of choosing suitable parameter spaces for the calculation of uniform

or minimax convergence rates. We hope that it also demonstrates the need of interpreting different types

of convergence rates and the practical meaning of rate-optimality with care and caution.

APPENDIX: PROOFS

Proof of Theorem 1

Proof. For any θ = (τθ, α
−
θ , α

+
θ , β

−
θ , β+

θ ) ∈ Θ, without loss of generality, we assume that τθ ≤ 1/2.

Now consider θ∆ = (τθ +∆, α−
θ + β−

θ ∆, α+
θ + β+

θ ∆, β−
θ , β+

θ ). For sufficiently small ∆ > 0, θ∆ ∈ Θ.

As will become clearer later, fθ∆ corresponding to this particular form of θ∆ does not necessarily give

the closest approximation to fθ over the restricted parameter space while fixing the break-point location

as τθ +∆. Nevertheless, using it does allow us to establish the correct minimax convergence rate, which

is sufficient for our purpose here.

Now denote the distribution of (Yn1, . . . , Ynn) using the data generating processes with θ and θ∆ by

Pn
θ and Pn

θ∆
, respectively. Then the Total Variation (TV) distance between Pn

θ and Pn
θ∆

is bounded above

by

‖Pn
θ − Pn

θ∆‖
2
TV ≤ 2− 2

n∏

i=1

[
1− d2hel

{
N
(
fθ
(
i/(n+ 1)

)
, σ2

)
, N

(
fθ∆

(
i/(n+ 1)

)
, σ2

)}]

= 2− 2 exp


− 1

8σ2

n∑

i:i/(n+1)∈(τθ,τθ+∆]

{
fθ∆(i/(n+ 1))− fθ(i/(n+ 1))

}2




where dhel is the Hellinger distance, and recalling that d2hel

{
N(µ1, σ), N(µ2, σ)

}
= 1− exp{−(µ1 −

µ2)
2/(8σ2)}. We also used the fact that the values of fθ(x) and fθ∆(x) are only different over the interval

(τθ, τθ +∆].
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If θ ∈ Θ\ΘK (i.e. with a jump), then for any small ∆ > 0, say with ∆ < 0.5|α+
θ − α−

θ |/|β+
θ − β−

θ |,

‖Pn
θ − Pn

θ∆‖
2
TV ≤ 2− 2 exp

{
− 1

8σ2

(
α+
θ − α−

θ

2

)2⌊
∆n

2

⌋}
.

Since θ is fixed, so is |α+
θ − α−

θ |, which is strictly positive because θ ∈ Θ\ΘK . By taking ∆ = cn−1

for sufficiently small c > 0, we have ‖Pn
θ − Pn

θ∆
‖2TV ≤ 1/4. Now it follows from Le Cam’s two-point

method (cf. Le Cam (1986) or Yu (1997)) that for any ǫ > 0 and large n,

inf
θ̂

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

R(θ′, θ̂) ≥ ∆

2

(
1− ‖Pn

θ − Pn
θ∆‖TV

)
≥ c

4
n−1.

On the other hand, if θ ∈ ΘK (i.e. with a kink), then

‖Pn
θ − Pn

θ∆‖
2
TV ≤ 2− 2 exp

{
− 1

8σ2

(
∆

2

)2⌊
∆n

2

⌋
(β+

θ − β−
θ )2

}
≤ 2− 2 exp

{
− δ2

8σ2

(
∆

2

)2⌊
∆n

2

⌋}
.

By taking ∆ = cn−1/3 for sufficiently small c > 0, we still have ‖Pn
θ − Pn

θ∆
‖2TV ≤ 1/4. Hence,

Le Cam’s two-point method yields

inf
θ̂

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

R(θ′, θ̂) ≥ ∆

2

(
1− ‖Pn

θ − Pn
θ∆‖TV

)
≥ c

4
n−1/3.

The proof is completed by simple rearrangements of the terms. �

Proof of Theorem 2

Proof. This proof is similar to that of Theorem 1. Here only the differences are highlighted.

For any θ = (τθ, αθ, αθ, β
−
θ , β+

θ ) ∈ ΘK , without loss of generality, we again assume that τθ ≤ 1/2 and

consider θ∆ = (τθ +∆, αθ + β−
θ ∆, αθ + β−

θ ∆, β−
θ , β+

θ ). Here θ∆ ∈ ΘK for small ∆ > 0. Furthermore,

‖Pn
θ − Pn

θ∆‖
2
TV ≤ 2− 2 exp


− 1

8σ2

n∑

i:i/(n+1)∈[τθ+∆,1]

{
fθ∆(i/(n+ 1))− fθ(i/(n+ 1))

}2




≤ 2− 2 exp

{
− 1

8σ2
(β+

θ − β−
θ )2∆2

⌊
(0.5−∆)n

⌋}
≤ 2− 2 exp

(
− δ2

32σ2
∆2n

)

for small ∆, say < 0.25. By taking ∆ = cn−1/2 for sufficiently small c > 0, we have that ‖Pn
θ −

Pn
θ∆

‖2TV ≤ 1/4. The result then follows as previously. �

Proof of Theorem 3

Proof. We assume that θ is fixed, and shall use C, c > 0 as generic constants. For notational con-

venience, we now write fθ =
(
fθ(1/(n+ 1)), . . . , fθ(n/(n+ 1))

)
(where the dependence on n is su-

pressed), let 〈x, y〉 = ∑n
i=1 xiyi for any x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ R

n, ‖x‖2 = 〈x, x〉
and ‖x‖2n = ‖x‖2/n. It follows from the definition of θ̂ := θ̂LS (cf. Lemma 4.7 of van de Geer (2000))

that

‖fθ̂ − fθ‖ ≤ 2σ

〈
εn,

fθ̂ − fθ

‖fθ̂ − fθ‖

〉
(5)

where εn = (εn1, . . . , εnn). Here fθ̂ − fθ can be viewed as a piecewise linear vector with at most two

break-points (i.e. three components). For any s ∈ {0, . . . , n− 1} and e ∈ {1, . . . , n} satisfying s < e

or s+ 1 < e, respectively write ξ(s,e] =
(
ξ(s,e](1), . . . , ξ(s,e](n)

)
and γ(s,e] =

(
γ(s,e](1), . . . , γ(s,e](n)

)
,
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with

ξ(s,e](i) =

{
1√
e−s

i = s+ 1, . . . , e

0 otherwise
, γ(s,e](i) =





i−(e+s+1)/2√
(e−s−1)(e−s)(e−s+1)/12

i = s+ 1, . . . , e

0 otherwise
.

Once defined, it is easy to check that ξ(0,s], ξ(s,e], ξ(e,n], γ(0,s], γ(s,e] and γ(e,n] are mutually orthonormal

in the Euclidean space. Hence,
∣∣∣∣
〈
εn,

fθ̂ − fθ

‖fθ̂ − fθ‖

〉∣∣∣∣ ≤ sup
s,e

(
|〈εn, ξ(0,s]〉|+ |〈εn, ξ(s,e]〉|+ |〈εn, ξ(e,n]〉|

+ |〈εn, γ(0,s]〉|+ |〈εn, γ(s,e]〉|+ |〈εn, γ(e,n]〉|
)
. (6)

Each of the six terms on the right hand side of (6) follows |N(0, 1)| for any pre-given 0 < s− 1 < e <

n+ 1; for other pairs of s and e, some of these terms will simply degenerate to zero. Using a standard

union bound argument (cf. proof of Theorem 1 of Baranowski et al. (2019)), we obtain

P (Bc
n) ≤

√
3√

π log n
n−1 < n−1, where the event Bn =

{
2 sup

θ′

〈
εn,

fθ′ − fθ
‖fθ′ − fθ‖

〉
≤ 12

√
6 log n

}
.

(7)

Plugging (7) back to (5), we have that when Bn holds, there exists some C > 0 such that

‖fθ̂ − fθ‖2n ≤ C log n/n. (8)

For any θ ∈ Θ\ΘK (i.e. with a jump), ‖fθ̂ − fθ‖2n → 0 as n → ∞ implies consistency of θ̂. Further-

more, due to the presence of the jump, there exists C, c > 0 (independent of n, but might depend on θ)

such that ‖fθ′ − fθ‖2n ≥ C|τθ′ − τθ| for any θ′ with |τθ′ − τθ| > c/n. Comparing this with (8), we have

|τθ̂ − τθ| ≤ C log n/n. Similarly, we obtain
∣∣(α+

θ̂
− α−

θ̂
)− (α+

θ − α−
θ )

∣∣ ≤ C
√

log n/n, which yields

∣∣α+

θ̂
− α−

θ̂

∣∣ ≥
∣∣α+

θ − α−
θ

∣∣− C
√
log n/n > n−1/6

for sufficiently large n. This implies θ̂S = θ̂ under Bn. Next, to fine-tune the convergence rate (i.e. getting

rid of the factor of log n), we shall resort to empirical process theory. Let Qn be the empirical distribution

of {1/(n+ 1), . . . , n/(n+ 1)} and let

Fn
Θ̄(R) = {fθ′ | θ′ ∈ Θ̄, ‖fθ′ − fθ‖n ≤ R, |τθ′ − τθ| ≤ ǫ′}

for some fixed ǫ′ ∈
(
0,min(τθ, 1− τθ)/2

)
. Then, for any fθ′ ∈ Fn

Θ̄
(R), we also have that

sup
x∈[0,1]

|fθ′(x)− fθ(x)| ≤ sup
x∈{0,(τ

θ′
)±,(τθ)±,1}

|fθ′(x)− fθ(x)| ≤ CR.

Thus, Fn
Θ̄
(R) (for L2(Qn)-metric) can be bounded above as

H2(2u,Fn
Θ̄(R), Qn) ≤ C log

(CR+ u

u

)
.

Here one could derive this by construction, using the fact that for every fθ′ ∈ Fn
Θ̄
(R), fθ′ − fθ is piece-

wise linear, bounded by CR, and with at most two break-points, as well as Corollary 2.6 of van de Geer

(2000). Let θ̃ be the least squares estimator defined like θ̂ in (3) in Section 4 but being optimised over

[τθ − ǫ′, τθ + ǫ′]× R
4 instead, then it follows from Theorem 9.1 and Example 9.3.1 of van de Geer (2000)

that Eθ

∥∥fθ̃ − fθ‖2n ≤ Cn−1. Note that θ̂S = θ̂ = θ̃ under Bn. Also recall that ‖fθ′ − fθ‖2n ≥ C|τθ′ − τθ|
for any θ′ with |τθ′ − τθ| > cn−1. Simple manipulation entails

Eθ

(
n|τθ̂S − τθ|

)
= Eθ

(
n|τθ̃ − τθ|

)
− Eθ

(
n|τθ̃ − τθ|

∣∣ Bc
n

)
P (Bc

n) + Eθ

(
n|τθ̂S − τθ|

∣∣ Bc
n

)
P (Bc

n) ≤ C,

which completes our proof for the case of θ ∈ Θ\ΘK .
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Now for any θ ∈ ΘK (i.e. with a kink), there exists some ǫ′ > 0 such that ‖fθ′ − fθ‖2n ≥ C|τθ′ − τθ|3
for any θ′ ∈ Θ̄ with |τθ′ − τθ| ∈ (c/n, ǫ′]. See for instance, Lemma 7 of Baranowski et al. (2019). More-

over, comparing that with (8) leads to |α+

θ̂
− α−

θ̂
| =

∣∣(α+

θ̂
− α−

θ̂
)− (α+

θ − α−
θ )

∣∣ ≤ C(log n/n)1/3. So

under Bn, θ̂S = θ̂K for sufficiently large n. Our next ingredient is the following statement: there exists

some ǫ′ > 0 such that ‖fθ′ − fθ‖2n ≥ C|τθ′ − τθ|2 for any θ′ ∈ Θ̄K satisfying |τθ′ − τθ| ∈ (c/n, ǫ′]. See

for example, Lemma 8 of Baranowski et al. (2019). Since Fn
Θ̄K (R) ⊂ Fn

Θ̄
(R), we could again use Theo-

rem 9.1 and Example 9.3.1 of van de Geer (2000) to see that Eθ

∥∥fθ̂K − fθ‖2n ≤ Cn−1. Consequently,

Eθ

(√
n|τθ̂K − τθ|

)
≤

√
Eθ

(
n|τθ̂K − τθ|2

)
≤ C

√
Eθ

(
n
∥∥fθ̂K − fθ‖2n

)
≤ C,

where C > 0 are generic constants. Finally, the proof is complete by noting that

Eθ

(√
n|τθ̂S − τθ|

)
= Eθ

(√
n|τθ̂K − τθ|

)
− Eθ

(√
n|τθ̂K − τθ|

∣∣ Bc
n

)
P (Bc

n) + Eθ

(√
n|τθ̂S − τθ|

∣∣ Bc
n

)
P (Bc

n)

≤ C +
√
n(n−1) +

√
n(n−1) ≤ C.

Ancillary Lemmas

Some ancillary results are required for the proof of Theorem 4. They concern the approximation of

fθ∆ for θ∆ ∈ Θ\ΘK using fθ′ with θ′ ∈ ΘK , and the distance between θ∆ and θ′ when ‖fθ∆ − fθ′‖n is

sufficiently small. In particular, for the reason that will become clear later in the proof of Theorem 4, in the

remaining we shall focus solely on θ∆ = (1/2 + ∆,−∆,∆,−1, 1) with ∆ = n−γ for some γ ∈ (0, 1/3).

All the lemmas presented below can be easily modified to handle more general cases.

LEMMA 1. Let θ∆ = (1/2 + ∆,−∆,∆,−1, 1) with ∆ = n−γ for some γ ∈ (0, 1/3). In addition,

let ∆′ = n−γ′

with 0 < γ < γ′ < 1/3 and write ΘK
∗ =

{
θ
∣∣ θ ∈ Θ̄K , τθ ∈ [1/2 + ∆−∆′, 1/2 + ∆+

∆′]
}

. Then there exists c > 0 such that

inf
θ′∈ΘK

∗

‖fθ′ − fθ∆‖2n ≥ cn−2γ .

for every sufficiently large n.

Proof. This proof can be divided into three parts.

First, we claim that infθ′∈ΘK
∗

‖fθ′ − fθ∆‖2n → 0 as n → ∞. This is due to the fact that

inf
θ′∈ΘK

∗

‖fθ′ − fθ∆‖2n ≤ ‖fθ′

∆
− fθ∆‖2n ≤ ∆2 = n−2γ → 0,

as n → ∞, where we have taken θ′∆ = (1/2 + ∆, 0, 0,−1, 1).

Second, let Bǫ(θ) denote the (closed) ǫ−Ball around θ = (1/2, 0, 0,−1, 1), since

lim inf
n→∞

inf
θ′∈Θ\Bǫ(θ)

‖fθ′ − fθ∆‖2n > 0

for any fixed ǫ > 0, it now follows that for any sufficiently large n,

inf
θ′∈ΘK

∗

‖fθ′ − fθ∆‖2n = inf
θ′∈ΘK

∗
∩Bǫ(θ)

‖fθ′ − fθ∆‖2n.

This also implies that
∣∣∣fθ′(1/2 + ∆−∆′)− fθ′(1/2 + ∆+∆′)

∣∣∣ ≤ 2(1 + ǫ)∆′.

for any θ′ ∈ ΘK
∗ ∩Bǫ(θ). Thanks to the fact that

∣∣∣fθ∆(1/2 + ∆−∆′)− fθ∆(1/2 + ∆+∆′)
∣∣∣ = 2∆,
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we have that

inf
θ′∈ΘK

∗
∩Bǫ(θ)

max
{∣∣∣fθ∆(1/2 + ∆−∆′)− fθ′(1/2 + ∆−∆′)

∣∣∣,
∣∣∣fθ∆(1/2 + ∆+∆′)− fθ′(1/2 + ∆+∆′)

∣∣∣
}

≥ {2∆− 2(1 + ǫ)∆′}/2 ≥ ∆/2

for any sufficiently large n.

Finally, note that for any θ′ ∈ ΘK
∗ ∩Bǫ(θ), both fθ′ and fθ∆ are linear over [0, 1/2 + ∆−∆′] and

[1/2 + ∆+∆′, 1], with both segments having non-vanishing width (i.e. > 1/4 for sufficiently large n).

Consequently,

inf
θ′∈ΘK

∗

‖fθ′ − fθ∆‖2n = inf
θ′∈ΘK

∗
∩Bǫ(θ)

‖fθ′ − fθ∆‖2n ≥ 1

3
(∆/2)2 × 1

4
≥ cn−2γ .

LEMMA 2. Let θ∆ = (1/2 + ∆,−∆,∆,−1, 1) with ∆ = n−γ for some γ ∈ (0, 1), and let C > 0 be

a constant. For any sequence of θ′ ∈ Θ̄ (N.B. here for notation convenience, the element-wise dependence

of this sequence on n is suppressed), if θ′ satisfies

‖fθ∆ − fθ′‖2n ≤ C log n/n,

for all sufficiently large n, then there exists some C ′ > 0 such that

max
(
|τθ′ − τθ∆ |, |α−

θ′ − α−
θ∆

|, |α+
θ′ − α+

θ∆
|
)
≤ C ′(log n/n)1/3

for every sufficiently large n.

Proof. We divide the proof into four steps.

First, it follows from ‖fθ∆ − fθ′‖2n → 0 that ‖θ′ − θ∆‖ → 0 as n → ∞. Let θ = (1/2, 0, 0,−1, 1).

Thus, θ′ → θ, i.e. ‖fθ∆ − fθ′‖2n ≤ C log n/n implies that θ′ ∈ Bǫ(θ) for any small ǫ ∈ (0, 1) for suffi-

ciently large n. Note that by construction we also have θ∆ ∈ Bǫ(θ).

Second, without loss of generality, consider the case of τθ′ ≥ τθ∆ . Note that over the interval [τθ∆ , τθ′ ],

fθ∆ is linear with a slope of 1, fθ′ is linear with a slope between [−1− ǫ,−1 + ǫ]. Since the difference

between the slopes is non-vanishing, thanks to the linearity, by restricting ourselves to [τθ∆ , τθ′ ], we have

that the absolute difference between fθ′ and fθ∆ is at least (τθ′ − τθ∆)(2− ǫ)/4 over a subinterval of

length (τθ′ − τθ∆)/4. Consequently, there exists a c > 0 such that given τθ′ − τθ∆ > cn−1,

C log n/n ≥ ‖fθ∆ − fθ′‖2n ≥ (τθ′ − τθ∆)
34−3/2.

Note that the above claim is also true under the case where τθ′ < τθ∆ , which can be established by an

almost identical argument. As a result, we have that there exists a generic constant C ′ > 0 such that

|τθ′ − τθ∆ | ≤ C ′(log n/n)1/3 for any sufficiently large n.

Third, with regard to |α−
θ′ − α−

θ∆
|, we again consider two scenarios. If τθ′ ≥ τθ∆ , we shall use the

following inequality:

|α−
θ′ − α−

θ∆
| = |fθ′(τθ′)− fθ∆(τθ∆)| ≤ |fθ′(τθ∆)− fθ∆(τθ∆)|+ |fθ′(τθ∆)− fθ′(τθ′)|. (9)

To bound |fθ′(τθ∆)− fθ∆(τθ∆)|, note that both fθ′ and fθ∆ are linear over [0, θ∆], thus for sufficiently

large n,

C log n/n ≥ ‖fθ∆ − fθ′‖2n ≥ {|fθ′(τθ∆)− fθ∆(τθ∆)|/2}2(1/2− ǫ)/4,

which implies that |fθ′(τθ∆)− fθ∆(τθ∆)| ≤ C ′(log n/n)1/2 for some generic constant C ′ > 0. More-

over, to bound |fθ′(τθ∆)− fθ′(τθ′)|, we have that

|fθ′(τθ∆)− fθ′(τθ′)| ≤ (1 + ǫ)|τθ′ − τθ∆ | ≤ C ′(log n/n)1/3
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where the bound on |τθ′ − τθ∆ | follows from our result from Step 2 as above. By putting things together,

we now have that |α−
θ′ − α−

θ∆
| ≤ C ′(log n/n)1/3 if τθ′ ≥ τθ∆ . Otherwise, if τθ′ < τθ∆ , we could use

|α−
θ′ − α−

θ∆
| = |fθ′(τθ′)− fθ∆(τθ∆)| ≤ |fθ′(τθ′)− fθ∆(τθ′)|+ |fθ∆(τθ′)− fθ∆(τθ∆)|

instead of (9) to derive the same conclusion.

Finally, using an argument similar to that presented in Step 3, we could also establish that |α+
θ′ −

α+
θ∆

| ≤ C ′(log n/n)1/3. Consequently, we have that

max
(
|τθ′ − τθ∆ |, |α−

θ′ − α−
θ∆

|, |α+
θ′ − α+

θ∆
|
)
≤ C ′(log n/n)1/3

for all sufficiently large n.

Proof of Theorem 4

Proof. In this proof, we again use C, c > 0 as generic constants.

First, we prove the first part of the statement where we fix θ ∈ Θ\ΘK . It builds upon the proof of

Theorem 3. Note that here a closer inspection reveals that (7) and (8) in the proof of Theorem 3 hold

uniformly for all θ ∈ Θ. More specifically, we have

P (B̃c
n) < n−1, where the event B̃n =

{
2 sup

θ
sup
θ′

〈
εn,

fθ′ − fθ
‖fθ′ − fθ‖

〉
≤ 12

√
6 log n

}

and, when B̃n holds,

sup
θ

‖fθ̂ − fθ‖2n ≤ C log n/n,

where θ̂ := θ̂LS is the least squares estimator defined in (3). Moreover, for any fixed θ ∈ Θ\ΘK and every

θ′ with ‖θ′ − θ‖ ≤ ǫ, we always have that |α+
θ′ − α−

θ′ | > c for some c > 0, as ǫ → 0. In other words,

by picking a sufficiently small neighbourhood of θ, it only contains θ′ with a jump of significant size.

Combining these facts entails consistency of θ̂ for estimating θ′, and that θ̂S = θ̂ over B̃n for every θ′,
where the true parameter is taken as θ′ ∈ Θ that lies in a small neighbourhood of θ. Furthermore, it is

straightforward to verify that the rest of the arguments in the proof of Theorem 3, when applied uniformly

over a small neighbourhood of θ, would go through. In particular, by taking a sufficiently small ǫ, we have

that

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

Eθ′

∥∥fθ̃ − fθ′‖2n ≤ Cn−1.

Consequently,

lim sup
n→∞

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

nR(θ′, θ̂S) < ∞.

For the proof of the second part, to simplify our arguments, we shall fix θ = (1/2, 0, 0,−1, 1) and take

the truth parameter as θ∆ = (1/2 + ∆,−∆,∆,−1, 1) with ∆ = n−γ and γ = 1/4. We first establish that

under the truth θ∆, θ̂S = θ̂K with arbitrarily high probability even though θ∆ /∈ ΘK . To see this, recall

that ‖fθ̂ − fθ∆‖2n ≤ C log n/n under B̃n. Therefore, it follows from Lemma 2 that

max
(
|α−

θ̂
− α−

θ∆
|, |α+

θ̂
− α+

θ∆
|
)
≤ C ′(log n/n)1/3.

Since |α+
θ∆

− α−
θ∆

| = 2∆ = 2n−1/4, we have that |α+

θ̂
− α−

θ̂
| ≤ 3n−1/4 < n−1/6 for sufficiently large

n. Therefore, by construction, θ̂S = θ̂K . Next, let’s fix γ′ ∈ (1/4, 1/3). Our goal is to show that θ̂K /∈
[θ∆ − n−γ′

, θ∆ + n−γ′

] under B̃n for any sufficiently large n. We prove this by contradiction. Suppose



14

that θ̂K ∈ [θ∆ − n−γ′

, θ∆ + n−γ′

], then

n∑

i=1

{
Yni − fθ̂K (Xni)

}2
=

n∑

i=1

{
σεni + fθ∆(Xni)− fθ̂K (Xni)

}2

= σ2‖εn‖2 + ‖fθ̂K − fθ∆‖2 − 2σ〈εn, fθ̂K − fθ∆〉
≥ σ2‖εn‖2 + ‖fθ̂K − fθ∆‖2 − 12σ

√
6 log n ‖fθ̂K − fθ∆‖

≥ σ2‖εn‖2 + ‖fθ̂K − fθ∆‖2/2
≥ σ2‖εn‖2 + cn1/2

for some c > 0. Here the third last inequality holds under B̃n, the second inequality is due to the fact

that ‖fθ̂K − fθ∆‖ ≥ 24σ
√
6 log n which follows from Lemma 1, and the final inequality follows from

Lemma 1 (all with γ = 1/4). On the other hand, since θ := (1/2, 0, 0,−1, 1) ∈ ΘK , under the truth θ∆,

n∑

i=1

{
Yni − fθ̂K (Xni)

}2 ≤
n∑

i=1

{
Yni − fθ(Xni)

}2
= σ2‖εn‖2 + ‖fθ − fθ∆‖2 + 2σ2〈εn, fθ∆ − fθ〉

≤ σ2‖εn‖2 + ‖fθ − fθ∆‖2 + 12σ2
√

6 log n ‖fθ − fθ∆‖
≤ σ2‖εn‖2 + Cn1/4

for some c > 0, where the second last inequality holds under B̃n, while the last inequality is derived from

straightforward computation as illustrated below for sufficiently large n:

‖fθ − fθ∆‖2 = n‖fθ − fθ∆‖2n ≤ nC∆3 ≤ Cn1−3γ = Cn1/4.

Putting things together, we see that

σ2‖εn‖2 + cn1/2 ≤
n∑

i=1

{
Yni − fθ̂K (Xni)

}2 ≤ σ2‖εn‖2 + Cn1/4,

leading to a contradiction. This entails that τθ̂K /∈ [τθ∆ − n−γ′

, τθ∆ + n−γ′

] under B̃n for any sufficiently

large n. Consequently, for any ǫ > 0,

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

n1/3R(θ′, θ̂S) ≥ n1/3R(θ∆, θ̂
S) ≥ n1/3n−γ′

(1− n−1) → ∞

as n → ∞, from which the second claim of this theorem follows immediately.

As a final remark, we note that the second part of the proof would also go through if we pick any γ

and γ′ such that 1/6 < γ < γ′ < 1/3. In particular, we could take both of them to be sufficiently close

to 1/6 (so ∆ would be of order close to n−1/6). This implies that for any fixed γ ∈ (1/6, 1/3) and every

θ ∈ ΘK , our proposed super-efficient estimator θ̂S satisfies

lim inf
ǫ→0+

lim inf
n→∞

sup
θ′∈Θ:‖θ′−θ‖≤ǫ

nγR(θ′, θ̂S) = ∞,

i.e. its uniform convergence rate is worse than O(n−γ) for any fixed γ > 1/6.
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