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Abstract

In this paper I propose a regime-switching approach to explain why the U.S. nomi-

nal yield curve on average has been steeper since the mid-1980s than during the Great

Inflation of the 1970s. I show that, once the possibility of regime switches in the

short-rate process is incorporated into investors’beliefs, the average slope of the yield

curve generally will contain a new component called ‘level risk’. Level-risk estimates,

based on a Markov-Switching VAR model of the U.S. economy, are then provided. I

find that the level risk was large and negative during the Great Inflation, reflecting a

possible switch to lower short-rate levels in the future. Since the mid-1980s the level

risk has been moderate and positive, reflecting a small but still relevant possibility of

a return to the regime of the 1970s. I replicate these results in a Markov-Switching

dynamic general equilibrium model, where the monetary policy rule followed by the

Fed shifts between an active and a passive regime. The model also explains why in

recent decades the U.S. yield curve on average has been steeper than the yield curve

in countries that adopted explicit inflation targeting frameworks.
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1 Introduction

The U.S. nominal yield curve on average has been steeper since the mid-1980s than during

the Great Inflation of the 1970s. This is puzzling because, in general, the average slope of

the yield curve is thought to reflect risk premia demanded by bond investors. Therefore,

in periods of high macroeconomic uncertainty such as the Great Inflation, in principle one

should expect bonds to pay higher premia —that is, term premia —than they would from the

mid-1980s until 2007 when macroeconomic uncertainty had reached historically low levels

(the ‘Great Moderation’). I refer to this apparently inconsistent relation between the yield

curve’s slope and macroeconomic uncertainty as the ‘Slope-Volatility Puzzle’. In this paper,

I propose a theory that is based on switching macroeconomic regimes to explain this puzzle.

In the proposed framework, investors incorporate the possibility that the economy switches

across different regimes into their beliefs. In particular, if the nominal short-rate fluctuates

around different means across regimes, then the average slope of the yield curve in general

will reflect not only the standard term premium, but also a new term attributable to the

Expectations Hypothesis in the presence of regime shifts. I call this ‘level risk’, and it re-

flects the risk that, conditional on the economy being in a low short-rate regime, long-term

bonds will lose value in the case of a shift to higher short-rate regimes. The level risk will be

positive in this case. Similarly, a negative level risk occurs when the short-rate is currently

high and there is a possibility of switching to low short-rate regimes, which represents gains

for bond holders.

I estimate the level risk during the post-World War II period using a simple Markov-

Switching Vector Autoregression of the U.S. economy. This model identifies a high macro-

economic volatility regime that corresponds broadly to the Great Inflation of the 1970s. This

regime is also characterized by a high average short-rate (and high inflation) and is not very

persistent, with an average duration of only 7.7 years. On the other hand, the Great Mod-

eration period appears in the model as the realization of a highly persistent regime (average

duration of almost 35 years) associated with low macroeconomic volatility and a low average

short-rate. If investors form beliefs according to this model, then the level risk was large

and negative during the Great Inflation. Intuitively, because agents perceived this regime as
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relatively short-lived, there was as high probability that the short-rate would switch to lower

levels in the future, causing nominal bonds to gain value. Since the mid-1980s, in contrast,

the level risk has been more moderate in magnitude and positive. In this case, investors

ascribed a relatively low probability to a switch back to the high short-rate regime of the

1970s, which would have caused nominal bonds to lose value. Extracting the estimated level

risks from observed yield curve slope measures, I find that term premia on average were

substantially higher during the Great Inflation of the 1970s than they have been since the

mid-1980s. Therefore, my first main conclusion in this paper is that the Slope-Volatility

Puzzle can be explained by differences in level risks across regimes.

One important implication of the level risk is that term structure models that do not allow

for Markov-Switching regimes tend to generate biased estimates of term premia. In other

words, if agents consider the possibility of regime shifts when forming expectations, then

models that do not take this into account will have the term premium explain too much

of the yield curve’s slope. Because the level risk operates exclusively through investor’s

expectations, this bias will appear even if the term structure model is fitted to particular

subsamples of the data that correspond to a single economic regime.

Next I ask: what fundamental macroeconomic changes could reproduce the Slope-

Volatility Puzzle? My answer is based on a simple Markov-Switching dynamic general

equilibrium model, calibrated to replicate the U.S. economy. Following Clarida, Galí, and

Gertler (2000), Lubik and Schorfheide (2004) and many others, I assume that monetary

policy switches between a regime where the central bank accommodates inflation pressures

(passive policy) and a regime where the central bank fights these pressures in a proactive

manner (active policy). What sets this model apart from standard ones is that here, as in

Davig and Leeper (2007), agents incorporate into their expectations the possibility of regime

switches. In this model, agents acquire different levels of precautionary savings depending

on the current policy regime. As a result, the average short-term interest rate differs across

regimes, giving rise to potentially sizeable level risks over the yield curve.

Under my calibration, households hold more precautionary savings when the passive

regime occurs. The intuition behind this is that consumption growth is more volatile in
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the passive than in the active regime; therefore, risk averse agents will want to hold more

"insurance" when the passive regime realizes. Thus, the nominal short-rate in the passive

policy regime is higher than in the active regime, giving rise to level risks. In the passive

regime, level risks are large and negative as I estimated for the Great Inflation regime. In

the active regime, level risks are moderate and positive, replicating my estimate for the

post-1985 period. Therefore, my second main conclusion in this paper is that a general

equilibrium model with a Markov-Switching monetary policy rule is capable of explaining

the Slope-Volatility Puzzle.

Many economists, including Gürkaynak, Levin, and Swanson (2006, 2010), Wright (2008),

and Capistrán and Ramos-Francia (2010), have highlighted gains from the adoption of an

explicit inflation targeting framework. Under this policy arrangement, improved communica-

tion between the central bank and the public would reduce uncertainty about the particular

way that the monetary authority will deal with inflationary pressures. This can be ratio-

nalized in the context of the model I present here. All else constant, agents would perceive

a change from the active towards the passive regime as less likely under explicit inflation

targeting than if the central bank did not adopt this framework. According to the model,

increasing the persistence of the active regime on average flattens the yield curve in that

regime, because both level risks and term premia fall. Using the Wright (2008) interna-

tional dataset, I show that this prediction of the model is corroborated by the data. That is,

measures of average yield curve slope in developed economies that adopted explicit inflation

targeting are systematically lower than in economies that did not adopt such a framework.

I interpret this as additional evidence supporting the model with a Markov-Switching mon-

etary policy rule.

This paper is organized as follows. Section 2 includes a brief review of the literature.

Section 3 documents the Slope-Volatility puzzle. Section 4 describes how allowing for a

regime switching approach gives rise to the level risk. Section 5 provides level risk estimates

for the United States which are shown to explain the Slope-Volatility Puzzle. In Section

6, the general equilibrium term-structure model with a Markov-Switching monetary policy

rule is presented and shown to replicate the main features of this puzzle. I also show that
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the model replicates the yield curve evidence from inflation targeting countries. Section 7

concludes.

2 Related Literature

In this paper, I focus on how level risks on average affect the nominal U.S. yield curve. Level

risks naturally emerge from the Expectations Hypothesis component of the term structure,

once the short-rate is modelled as a Markov-Switching (MS) process. This insight draws on

two important earlier contributions.

Hamilton (1988) pioneered in studying term structure behavior when the short rate fol-

lows a simple autoregressive MS process. He found that when regime shifts were incorporated

into agents’beliefs, violations of the Expectations Hypothesis of the term structure were

less severe than in single regime models. Bekaert, Hodrick, and Marshall (2001) proposed

the peso problem theory which I also draw on. They noted that violations of the Expecta-

tions Hypothesis in the United States, to a large extent, are due to a ‘peso problem’which

is associated with the short-rate process: observed long-term yields in the United States

largely can be reconciled with short-rate behavior if investors’beliefs allow for short-rate

levels not observed ex-post in the data. This theory can be formalized by first assuming a

reduced-form MS process for the short rate and then letting long-term bonds be priced by

rational agents who form beliefs taking this MS process into account.

Both Hamilton (1988) and Bekaert, Hodrick, and Marshall (2001) focus on reduced-form

short-rate processes, but I go one step further here and, in a no-arbitrage general equilibrium

framework, relate the behavior of short- and long-term nominal yields in the United States

to macro factors. In a structural micro-founded framework, I claim that changes in monetary

policy regimes can explain observed changes in key U.S. macro and term structure moments

over time.

There is substantial reduced-form empirical evidence in the literature showing that

changes in monetary policy did affect the behavior of the U.S. term structure (and the

macroeconomy) over time1. For example, Bikbov and Chernov (2008) have shown that the

1The literature on term-structure models with only yield-related factors also provides ample support for
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information contained in the nominal term structure can be crucial in identifying regimes in

which the Fed adopted an active or passive stance for inflation. Similarly, in the context of

identified time-varying VARs with no-arbitrage bond prices, both Ang, Boivin, Dong, and

Loo-Kung (2009) and Mumtaz and Surico (2009) find evidence of large movements in the

Fed’s response to inflation over the last six decades. Bianchi, Mumtaz, and Surico (2009)

find evidence for the United Kingdom that monetary policy shocks contributed significantly

more to the variability of key macro and term structure time series before than after the

adoption of inflation targeting2. My contribution to this strand of the literature is a struc-

tural, micro-founded no-arbitrage approach to modelling the term structure in the presence

of monetary policy shifts.

Interestingly, my proposed level-risk theory is related to the peso problem (or ‘rare

disaster’) as suggested by both Rietz (1988) and Barro (2006) in the context of the equity

premium puzzle. In their formulation, equity becomes very risky because there is a small

probability in every period of a sudden and very sharp drop in the economy’s productive

capacity. In my case, a change from an active to a passive monetary policy regime, where

holding nominal bonds involves significantly more risk, could be seen as a rare disaster by

bond traders. As in Bansal and Yaron (2004), I also show that when shifts to a passive

monetary policy regime are possible, the amount of long-run risk in the economy during the

active regime is substantially higher than in a single active regime model.

The available literature on MS Dynamic Stochastic General Equilibrium (MS-DSGE)

models, including Davig and Leeper (2007), Farmer, Waggoner, and Zha (2007), Davig and

Doh (2008), Liu, Waggoner, and Zha (2009) and Liu and Mumtaz (2010), relies on linear

approximations to the true model solution, which by construction rule out precautionary

the view that the stochastic behavior of the U.S. yield curve has varied over the past decades. See, for
example, the latent-factors, regime-shifting, no-arbitrage frameworks of Bansal and Zhou (2002) and Dai,
Singleton, and Yang (2007). Without relying on no-arbitrage restrictions, Ang and Bekaert (2002) show
that regime shifts in the nominal term structure are present in the US, UK and Germany datasets. Evidence
of regime shifts in real term structures in the US and the UK respectively also has been provided by Ang,
Bekaert, and Wei (2008) and Evans (2003).

2The existence of shifts in the U.S. monetary policy regime are supported by a well-known macro literature
that tries to identify the main reason behind the Great Moderation of the post mid-1980s. See, for example,
Clarida, Galí, and Gertler (2000), Lubik and Schorfheide (2004) and Boivin and Giannoni (2006). Romer and
Romer (2004) also produce compelling narrative evidence of changes in the Fed’s monetary policy conduct
during the 20th century. For other explanations for the Great Moderation, see for example, McConnell and
Perez-Quiros (2000), Primiceri (2005), Sims and Zha (2006), and Justiniano and Primiceri (2008).
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savings and premia in financial assets. Amisano and Tristani (2010a,b) considered non-

linear solutions to MS-DSGE models with MS shocks’volatilities, but their method does

not allow for changes in the Fed’s response to inflationary pressures. I also contribute to

this branch of the literature by offering a non-linear perturbation solution method to the

standard New-Keynesian model with a Markov-Switching monetary policy rule3.

3 The Slope-Volatility Puzzle

I now document the ‘Slope-Volatility Puzzle’. In the following subsection I derive results

from the no-arbitrage theory linking the slope of the nominal yield curve to the underlying

level of uncertainty in the economy. I then go on to show that these theoretical predictions

are at odds with the U.S. data.

3.1 The Slope of the Yield Curve and Macroeconomic Uncer-

tainty

Consider a long-term nominal bond that costs Bτ ,t at time t and promises to repay the

investor one dollar in t+τ (throughout this paper, I assume that bonds are zero-coupon and

default-free). The continuously compounded τ -period yield to maturity is defined as iτ ,t ≡

− 1
τ

logBτ ,t. The economy’s short-term nominal interest rate is given by it ≡ i1,t. Following

Dai and Singleton (2002) and letting Et be the expectations operator conditional on date t

information, I define the τ -period nominal term premium as NTPτ ,t ≡ iτ ,t− 1
τ

∑τ−1
j=0 Et [it+j].

This measure captures the deviations of iτ ,t from the pure expectations hypothesis and is

positive when it is riskier to invest in the long-term bond than to invest in a sequence of

short-term bonds for τ periods.

Rearranging the term premium definition, it follows that the τ -period yield curve slope,

3Chib, Kang, and Ramamurthy (2011) estimate a MS-DSGE model for the US nominal term structure.
Their solution method relies on the linear/log-normal approach of Bekaert, Cho, and Moreno (2010), which
assumes that the short-rate is not affected by precautionary savings effects (i.e. the average short rate is
the same across regimes). As a result, their solution method by construction rules out the existence of level
risks along the yield curve.
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iτ ,t − it, can be written as4

iτ ,t − it =

(
1

τ

τ−1∑
j=0

Et [it+j]− it

)
+NTPτ ,t . (1)

I call the term in parentheses in equation (1) the expectations hypothesis (EH) compo-

nent of the slope. If the nominal term premium remains constant, then whenever investors

revise their short-rate forecasts up (down), the EH component of the slope increases (de-

creases). Similarly, if the EH component remains unchanged, then an increase (decrease) in

the nominal term premium increases (decreases) the slope.

The term premium definition can be used to gain some insights about the determinants

of the yield curve slope in the long run. Taking unconditional expectations on both sides of

equation (1), I obtain

E [iτ ,t − it] =
1

τ

τ−1∑
j=0

(E [it+j]− E [it]) + E [NTPτ ,t]

because of the law of iterated expectations. From the assumption that the short rate follows

a covariance-stationary process it follows that
∑τ−1

j=0 (E [it+j]− E [it]) = 0 ∀j. Intuitively,

when calculating the mean, periods where the short rate is expected to increase will cancel

out those where the short rate is expected to decrease, and the EH component of the slope

is equal to zero on average. As a result E [iτ ,t − it] = E [NTPτ ,t], which means that if the

nominal yield curve is unconditionally positively sloped, it is because the term premium

is positive on average. Therefore, to understand why yield curves in general are positively

slopped, it is important to understand the determinants of the term premium.

It can be shown that the no-arbitrage price of a τ -period bond is given by

Bτ ,t = Et

[
Mt,t+1

1

Πt,t+1

Bτ−1,t+1

]
(2)

where Mt,t+1 and Πt,t+1 are the real stochastic discount factor (SDF) and the inflation rate

between periods t and t+ 1. All else constant, an increase in the expected rate of inflation
4This slope definition sometimes has been refered to in the literature as ‘term spread’, but is not to be

confused with the ‘term premium’.

8



will reduce the price of the bond today because its expected resale value, measured in real

terms, falls.

Taking a second-order expansion of the Euler condition above around the deterministic

steady state, the nominal term premium is given by5

NTPτ ,t ∼= RTPτ ,t + Convexityπτ,t (3)

+

(
1

τ
Covt [m̂t,t+τ , π̂t,t+τ ]−

1

τ

τ−1∑
j=0

Et {Covt+j [m̂t+j,t+j+1, π̂t+j,t+j+1]}
)

where for any variable Xt with steady state X define x̂t ≡ log
(
Xt/X

)
, while Covt represents

the conditional covariance operator. Therefore, the nominal term premium can be separated

into three parts. The first corresponds to the τ -period real term premium. This is defined as

RTPτ ,t ≡ rτ ,t − 1
τ

∑τ−1
j=0 Et [rt+j], where rτ ,t is the yield to maturity on a τ -period inflation

indexed bond6 and rt is the real short-rate. The real term premium captures deviations

of the long-term real yield from the EH which, as shown in Appendix A, depends only on

the autocorrelation structure of the SDF7. The second component of NTPτ ,t, Convexityπτ,t,

represents an inflation convexity term that in practice is not very relevant.

The third component appearing in parenthesis in equation (3) is what I focus on. This

term corresponds to compensation for inflation risk. Its first part is positive when inflation

from t until maturity co-varies positively with the investor’s SDF. In this case, nominal bonds

lose value exactly when wealth is most important to the investor. The second component

of the inflation premium measures the (average expected) one-period-ahead inflation co-

variability risk. Because inflation uncertainty is relatively low in such a short horizon, the

first part of the inflation premium tends to dominate.

I use these results to relate the term premium to the underlying level of uncertainty in

the economy. The dominant part of the inflation premium in equation (3) can be rewritten

5The following expression holds exactly if SDF and inflation are jointly log-normally distributed. Detailed
derivations can be found in Appendix A.

6Inflation indexation is assumed to be perfect.
7There is evidence that the real term premium over the US term structure is close to zero or slightly

negative. Compared to premia related to inflation, however, real premia are thought to be quantitatively
less relevant. See Buraschi and Jiltsov (2005), Piazzesi and Schneider (2006) and Ang, Bekaert, and Wei
(2008).
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as
1

τ
Covt [m̂t,t+τ , π̂t,t+τ ] =

1

τ
Corrt [m̂t,t+τ , π̂t,t+τ ] (V art [m̂t,t+τ ]V art [π̂t,t+τ ])

1/2 (4)

where V art and Corrt are the conditional variance and correlation coeffi cient. The square

root term on the right hand side of this equation represents the product of the ex-ante

volatilities of inflation and the SDF. If the conditional correlation between the SDF and

inflation is positive (i.e. if the inflation premium is positive) and relatively constant over

time, then periods associated with higher levels of inflation uncertainty will also be associated

with higher inflation compensations and higher term premia. Intuitively, when inflation

uncertainty is high, the future payoffs from investing in long-term nominal bonds are very

uncertain if evaluated in real terms. As a result, investors will demand higher premia to

hold long-term nominal bonds than when uncertainty is low.

Equation (4) also reveals that, in addition to inflation uncertainty, real uncertainty mat-

ters for term premia. To see this, note that macro models usually have the SDF be a

function of real variables, such as consumption, hours worked, etc. Therefore, an increase in

the level of uncertainty surrounding these real variables will increase the ex-ante volatility

of the SDF, which in turn will have an impact on the nominal term premium through its

inflation compensation component8. Intuitively, the investor cares about how the real pay-

off from investing in the long-term bond co-varies with his future path of consumption. If

consumption becomes more diffi cult to predict, then investors will perceive long-term bonds

as riskier and demand higher premia.

3.2 Evidence for the US

From the discussion above follows that periods characterized by high levels of macroeconomic

uncertainty should be associated with higher term premia than periods of low uncertainty.

Accordingly, differences in average term premia across periods are entirely reflected in the

yield curve slope (provided that there are enough observation from each period)9. Do these

8The real term premium component of NTP τt may also respond to the increase in real uncertainty. See
Appendix A.

9In Section 3.1 I characterized the relation between the slope of the yield curve and macroeconomic
volatility in terms of unconditional moments, resulting in E [iτ,t − it] = E [NTPτ,t]. Although applying
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theoretical predictions hold for the post-World War II U.S. data?

To address that question, I construct slope measures using the 5 and 10-year zero-

coupon nominal yields from the CRSP Fama-Bliss and the Gurkaynak, Sack, and Wright

(2007) databases10. To measure the short-rate I use the 3-month T-Bill returns taken from

the CRSP Fama riskfree rate file. All of the series are arranged at a quarterly frequency,

and the sample goes from 1952:2 to 2008:4. Interest rates are continuously compounded,

expressed in annualized terms, and observed on the last working day of each quarter.

The measures of macroeconomic uncertainty that I focus on are based on real consump-

tion growth and inflation. The former is measured by the quarterly growth in the Real

Personal Consumption Expenditures index (PCE); the latter is measured by the quarterly

growth in the core PCE deflator11. All growth rates are continuously compounded and mul-

tiplied by 400 to be expressed in percent per annum. Consumption growth is intended as a

proxy for the unobservable SDF.

Because bond prices are fully forward looking, inflation and consumption uncertainty

must be quantified according to an ex-ante concept (only using information up to t to

measure uncertainty from period t + 1 onwards). Therefore I estimate univariate GARCH

processes for the inflation and consumption growth series over the 1952:2-2008:4 sample,

and then measure uncertainty by the GARCH-based one-quarter-ahead forecast for the

conditional variance12.

The 5- and 10-year slope measures, together with the conditional variance forecasts for

unconditional moments simplifies the exposition, it fails to agree precisely with my empirical analysis,
which is interested in the co-movements between the slope and macro volatility across different subsamples
of the U.S. data. A more appropriate characterization would then be the following. Assume that the
economy switches across different regimes over time, and yet private agents believe the current regime to last
indefinitely. This is the implicit assumption in a great number of papers in the macro literature, such as Lubik
and Schorfheide (2004) and Smets and Wouters (2007). It then follows that E [iτ,t − it/st] = E [NTPτ,t/st],
that is the slope and term premium are on average equal conditional on each regime st. Section 4 shows
that this equality is not true once agents incorporate the possibility of regime shifts into their beliefs, which
will help to explain the Slope-Volatility Puzzle.
10Although the Gurkaynak, Sack, and Wright (2007) database also contains the 5-year zero-coupon yield,

it only starts in 1961. The CRSP Fama-Bliss file starts in 1952, but does not contain the 10-year maturity.
11Consumption growth is measured by the quarterly change in the real PCE index (series code:

PCECC96). For inflation I use the ‘PCE deflator excluding food and energy’obtained from the St. Louis
Fed webpage (series code: JCXSE). For the latter, the observations from 1952 until 1959 were estimated
using the ‘CPI excluding food and energy’and the ‘PCE deflator all items’(series codes: CPILFESL and
PCECTPI) and applying the principal components method suggested by Walczak and Massart (2001).
12The conditional mean of inflation and consumption growth are modelled respectively as an AR(2) and

an ARMA(1,4) process. For both series the best fitting model for the conditional variance was a GARCH
(1,1).
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inflation and consumption growth, are shown in Figure 1. The vertical dashed lines in

this figure identify subperiods of the U.S. sample where, according to Romer and Romer

(2004), the Fed followed different monetary policy regimes. Each subsample is identified

with the names of the Federal Reserve chairmen in offi ce at the time13. I abandon these

pre-specified subsamples in Section 5 and use more rigorous statistical methods to identify

the U.S. regimes.

The two bottom charts in Figure 1 show a well-known stylized fact in the macro liter-

ature: from the mid-1980s until 2007, a period that corresponds roughly to my Greenspan

/ Bernanke subsample, the levels of macroeconomic uncertainty (in this case inflation and

consumption growth uncertainty) were historically low. This is referred to in the literature

as the Great Moderation14, and usually is portrayed in terms of ex-post measures of uncer-

tainty, such as the realized standard deviation of key macro time series. Figure 1 makes a

similar point but uses GARCH-based volatilities which, as discussed before, better capture

the level of ex-ante uncertainty faced by forward looking bond traders.

The subsamples depicted in Figure 1 can be interpreted as different regimes characterized

by different levels of macroeconomic uncertainty. The Greenspan / Bernanke subsample

might be viewed as a low uncertainty state, whereas the Burns / Miller and the Volcker

subsamples can be seen as high uncertainty regimes. This classification is in line with the

more rigorous estimates shown in Section 5. According to the theory developed in subsection

3.1, term premia and consequently yield curve slope measures in principle should reflect the

underlying level of macro uncertainty. Following this logic, the yield curve slope on average

should be flatter in the Greenspan / Bernanke subsample than in the Burns / Miller and

Volcker subsamples.

As the top chart in Figure 1 shows, this does not hold in the data. During the Greenspan

/ Bernanke years, both the 5 and 10-year slope measures on average seem higher than in

all three previous subsamples. If the theory above is correct, then these slope measures

13Romer and Romer (2004) view monetary policy in the years where Paul Volcker and Alan Greenspan
were Federal Reserve chairmen as based on the same principles. Here, I separate the Volcker era from
the subsequent one, because the general macroeconomic environment in the two periods was substantially
different. In particular, while Volcker inherited an ambience of high/volatile inflation where credibility in
monetary policy was very weak (see Goodfriend and King (2005)), the same is not true for Greenspan.
14See Kim and Nelson (1999) and McConnell and Perez-Quiros (2000). In addition, Stock and Watson

(2002) conduct a detailed review of the literature and present some new evidence.
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Figure 1: The Yield Curve Slope and Macroeconomic Uncertainty in the U.S.
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tell us that investing in nominal bonds during the Greenspan / Bernanke period is riskier

than in all previous subsamples. However, this is diffi cult to reconcile with the low levels of

macroeconomic uncertainty that characterize this subsample.

This point is reinforced in Table 1, which displays in more detail certain properties

of the slope, inflation, and consumption growth time series across the previously defined

subsamples. The first two lines of this table show the average 5 and 10-year slope measures

in each subsample, together with their associated standard errors. Two alternative measures

of ex-post uncertainty are shown in lines three through six. These can be compared to the ex-

ante GARCH-based measures for the sake of robustness. In particular, the third line displays

the realized standard deviation of inflation, whereas lines four through six display the root

mean squared forecast error (RMSFE) of inflation at three different horizons, based on a

simple random-walk model15. The same measures of uncertainty for the case of consumption

growth are shown in lines seven to ten. Finally, the last line shows the contemporaneous

correlation coeffi cient between consumption growth and inflation.

Note that the 10-year slope on average is 179 basis points during the Greenspan /

Bernanke period, the highest across all subsamples. At the same time, all ex-post measures

of inflation and consumption growth uncertainty are unambiguously lower in this period

than in all other subsamples.

I can now formulate the main stylized fact that motivates the remainder of this paper:

• The Slope-Volatility Puzzle:

Although the inflation and consumption-based uncertainty measures suggest that the

Greenspan / Bernanke subsample is the least risky for investors holding long-term

nominal bonds, the nominal yield curve on average is steeper during that period than

in the Martin, Burns / Miller and Volcker subsamples.

Returning to equation (4), one possible explanation for the puzzle is thatCorrt [m̂t,t+τ , π̂t,t+τ ]

on average is suffi ciently higher during the Greenspan / Bernanke subsample than in the
15The RMSFE we report are based on Atkeson and Ohanian (2001) and Stock and Watson (2007). To be

more precise, let πt be the annualized quarterly inflation rate at time t. To compute the forecast errors for

inflation accumulated h periods ahead, I use the following model: Et
[
h−1

∑h
j=1 πt+j

]
= 1

4 (πt + ...+ πt−3).

An equivalent methodology is used for consumption growth.
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Table 1: The Slope-Volatility Puzzle

Martin Burns / Volcker Bernanke /
Miller Greenspan

(52:2-69:4) (70:1-79:2) (79:3-87:2) (87:3-08:4)

E(i5Y − i) 0.61 0.93 1.10 1.19
(0.06) (0.21) (0.31) (0.13)

E(i10Y − i) 0.51† 1.09 1.32 1.79
(0.11) (0.25) (0.35) (0.18)

SD(π) 1.23 2.00 2.16 1.01

RMSFE (π) h = 4 0.75 1.88 1.11 0.48
h = 8 0.83 2.10 1.40 0.48
h = 12 0.93 2.04 1.67 0.55

SD(∆c) 3.26 3.30 3.50 2.10

RMSFE (∆c) h = 4 3.10 3.16 2.26 1.49
h = 8 2.54 3.39 2.15 1.55
h = 12 2.31 3.10 2.37 1.62

Corr (∆c, π) −0.25 −0.51 −0.46 −0.17

Notes: The measures of average slope are expressed in percent per annum and the values in parenthesis are Newey-West HAC

consistent standard errors, calculated using monthly slope series. SD(∆c) and inflation SD(π) are the standard deviation of
consumption growth (∆c) and inflation (π), also expressed in percent per annum. RMSFE (π) and RMSFE (∆c) are the
random-walk-based, root mean squared forecast errors h periods ahead for consumption growth and inflation. Corr(π,∆c)
is the contemporaneous correlation coeffi cient between inflation and consumption. † sample starts in 1961:2.
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previous ones. An increase in this correlation coeffi cient might offset the drop in ensuing

uncertainty as the economy moves from the Volcker to the Greenspan / Bernanke periods.

To rule out this possibility, the last line of Table 1 reports the realized contemporaneous

correlation coeffi cient between inflation and consumption growth across all subsamples. This

measure is a proxy for the unobserved conditional correlation in equation (4). Because the

SDF is negatively related to consumption growth in most economic models, the correla-

tion coeffi cient being negative in all subsamples is consistent with positive term premia.

Note that the absolute value of the correlation coeffi cient changes across subsamples in the

same direction as changes in uncertainty. This suggests that movements in the correlation

coeffi cient across subsamples reinforce the puzzle, rather than helping to explain it.

4 The Level Risk

This section puts forth a theoretical approach that potentially can explain the Slope-

Volatility Puzzle. It hinges on the assumption that, over time, the economy switches across

different macroeconomic regimes characterized by different short-rate levels. By letting in-

vestors explicitly incorporate into their beliefs the possibility of regime shifts, I show that

this assumption has important implications for the EH component of the yield curve slope.

Section 4.1 begins by assuming, for simplicity, that regimes evolve according to an ex-

ogenous Markov chain. Section 4.2 then incorporates the MS process into investors’beliefs.

Conditional on a given regime, I show that in general the mean slope and term premium

are not equal. The wedge between the two is what I call ‘level risk’: that is, the risk of a

level shift in the short-rate process in case the economy switches to a new regime. I conclude

by showing that the level risk potentially can explain the Slope-Volatility Puzzle.

4.1 A Simple Markov-Switching Environment

Suppose that the short-rate, it, follows a regime-switching process. In particular, I assume

that:
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• Assumption (1) —Markov-Switching Environment:

The short-rate it follows a Markov-Switching process with two possible states: st ∈

{1, 2}. Regimes evolve according to an exogenous Markov Chain with constant regime-

switching probabilities arranged in the 2×2 matrix P . The element in the ith row and

jth column of P represents Pr (st+1 = j/st = i) ≡ pij for i, j ∈ {1, 2}. Accordingly,

each line of P must sum to one. The regime-switching probabilities are known to all

agents, who are also assumed to observe the realization of st in the beginning of period

t. 16

Assumption (1) implies that the short rate follows a potentially different dynamic, con-

ditional on each regime. Particularly important for the results below, the short rate may

fluctuate around different means across regimes. The assumptions that the Markov Chain

is exogenous and features a constant transition matrix are made in order to simplify the

derivations below. Additionally, I focus on the 2-regime case for expositional purposes;

generalizations for an arbitrary number of regimes are simple to obtain.

I further assume that:

• Assumption (2) —Past State Dependence:

The MS process for the short-rate is covariance-stationary in each regime and has the

following property:

E [it/St] = E [it/st] for t = 1, 2, 3, ...

where St ≡ {s0, s1, ..., st} corresponds to the history of regimes realized up to period

t− 1.

Assumption (2) means that the average level of the short rate depends only on the

current regime, not on regimes realized in previous periods. The intuition is: if, for example,

regime shifts imply changes of chairman of the Fed, then the average short-rate level chosen

by a new chairman does not depend on the economic dynamics during previous regimes.

16This is different from empirical applications of the Hamilton (1989) filter, where agents use the available
information to filter out the probability of being in each regime. See Hamilton (1993).
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Although this assumption is debatable, I adopt it on the grounds that it greatly simplifies

the derivations that follow. Additionally, this assumption arises naturally as a property of

the reduced form of the model which I analyze in Section 6. 17

4.2 Accounting forMarkov-Switching Probabilities in Agents’Be-

liefs

Given the proposed MS environment, I now compute the average yield curve slope, condi-

tional on each regime. Let Ωt represent the complete information set available to investors

in period t, which summarizes all aspects of history that are relevant to the economy’s future

evolution, including st. To build the intuition, I start by considering the 2-period slope and

later generalize for the slope at the τ -period horizon. In case τ equals 2, taking expectations

on both sides of equation (1), conditional on st = s, yields:

E [i2,t − it/st = s] =
E [it/st = s] + E [E [it+1/Ωt] /st = s]

2
−E [it/st = s]+E [NTP2,t/st = s]

for s = 1, 2. Since st is contained in Ωt, the law of iterated expectations implies that:

E [E [it+1/Ωt] /st = s] = E [it+1/st = s]

= ps1E [it+1/st = s, st+1 = 1] + ps2E [it+1/st = s, st+1 = 2]

where the second equality uses the probabilities contained in P to parameterize expectations

so that regime switches are taken into account explicitly. Combining the last two equations

and using the Assumption (2) above18 yields:

E [i2,t − it/st = s] = E [NTP2,t/st = s] (5)

+

(
ps1E [it+1/st+1 = 1] + ps2E [it+1/st+1 = 2]− E [it/st = s]

2

)
17See equation (17).
18See Appendix C for the case where Assumption 2 is dropped.
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for s ∈ {1, 2}. Therefore, unlike the case analyzed in Section 3.1, once investors’beliefs

incorporate the regime-switching probabilities, the mean slope conditional on regime s in

general is not equal to the mean term premium in that particular regime. Instead, it is

equal to the mean term premium plus the expression in parentheses in equation (5). This

new term arises from the EH component of the slope definition in equation (1). Unlike the

case analyzed in Section 3.1, conditional on a given regime, the EH component now does

not cancel out in expectations. Intuitively, the new term takes into account the risk that

the average level of the short-rate process switches due to a regime change. I refer to the

expression in parentheses in equation (5) as the‘level risk’.

For a short-rate process that is covariance-stationary in each regime, it is easy to show

that equation (5) can be written more compactly as:

E [i2,t − it/st = 1] =
(1− p11)DsE [it/st]

2
+ E [NTP2,t/st = 1] (6)

E [i2,t − it/st = 2] =
− (1− p22)DsE [it/st]

2
+ E [NTP2,t/st = 2] (7)

whereDsE [it/st] is defined as the average short-rate differential across regimes, i.e. DsE [it/st] ≡

E [it/st = 2] − E [it/st = 1]. Without loss of generality, let E [it/st = 2] ≥ E [it/st = 1],

which implies that DsE [it/st] is non-negative. It follows that, because p11, p22 ∈ [0, 1], the

level risk is non-negative in the low-average short-rate regime 1 and non-positive in the high-

average short-rate regime 2. Intuitively, conditional on the economy being in regime 1, the

possibility of future regime changes introduces a risk of increase in the average short-rate

level, which would in turn reduce bond prices. Conditional on regime 2, the opposite would

be true: regime switches would represent a risk of reduction in the average level of the short

rate, which would increase bond prices. If p11 increases, everything else being constant,

then the level risk associated with regime 1 falls, because switching from regime 1 becomes

less likely. Similarly, the level risk associated with regime 2 falls in absolute value as p22

increases.

Note that only in two particular cases does the level risk equal zero. First, ifE [it/st = 2] =

E [it/st = 1], then switching regimes implies no change in the average level of the short rate.
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As a result level risks are zero in each regime. Also, if investors believe regime s ∈ {1, 2}

to be an absorbing state, that is if pss = 1, then the level risk conditional on this regime

is zero: once regime s is reached, investors perceive it as lasting indefinitely; consequently,

further regime shifts are not considered when investors form beliefs about the future.

Generalizing equations (6) and (7) for τ > 2 is simple. Following Hamilton (1994), the

probability that an observation of regime i will be followed k periods ahead by an observation

of regime j, that is Pr (st+k = j/st = i), is the element in the ith row and jth column of Pk.

I denote this probability by
[
Pk
]
ij
. The generalizations of equations (6) and (7) for the case

τ ≥ 2 are then:

E [iτ ,t − it/st = 1] =

(
(τ − 1)

τ
− 1

τ

τ−1∑
k=1

[
Pk
]
11

)
DsE [it/st] + E [NTP τ

t /st = 1] (8)

E [iτ ,t − it/st = 2] = −
(

(τ − 1)

τ
− 1

τ

τ−1∑
k=1

[
Pk
]
22

)
DsE [it/st] + E [NTP τ

t /st = 2] . (9)

It can be shown that as τ → ∞, the factors multiplying the interest rate differential

DsE [it/st] in equations (8) and (9) converge to 1 − perg and −perg respectively, where perg

is the ergodic probability associated with regime 1 (and the one associated with regime 2 is

1− perg). In case p11 = p22 < 1, the ergodic probability of the Markov-Chain is perg = 0.5,

which implies that in the limit, where τ → ∞, half of the interest rate gap DsE [it/st] is

reflected in the average slope in each regime. For example, for an interest rate differential

of 4% across the two regimes, in the limit as τ → ∞ the level risk in regimes 1 and 2 will

be sizeable —namely 2% and -2% respectively.

Is the level risk quantitatively relevant for values of τ far form the limit? Figure 2

plots on the vertical axis the factors multiplying the interest rate differential DsE [it/st]

in equations (8) and (9) against the slope horizon τ on the horizontal axis. Each full line

corresponds to factors associated with equation (8) for a particular choice of the regime-

switching probabilities. The dashed lines show the same, but in case of equation (9). Figure

2 displays only the case where p11 = p22, which implies that the level risk associated with

regime 2 is the mirror image of that associated with regime 1. For example, the line labeled
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Figure 2: The Level Risk for Different Slope Horizons
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Notes: Each full line corresponds to the factors multiplying the mean interest rate gap from equation (8) as a function of τ
for a different choice of regime-switching probabilities. The dashed lines represent the same for equation (9).

p11 = p22 = 0.90 says that, at the 5-year horizon (i.e. τ = 20), slightly less than 40% of the

interest rate differential DsE [it/st] is going to be reflected in the average slope conditional

on regime 1. The dashed line shows that the same quantity, but with a negative sign,

appears in the slope conditional on regime 2.

Note that the level risk increases in absolute value as the slope horizon increases. Intu-

itively, the probability of a regime switch happening during the life of the long-term bond

considered in the slope measure increases in τ . Additionally, as the probability of remaining

in the same regime gets closer and closer to one, the level risk takes longer to reach its

limiting value as τ → ∞. As a result, it becomes quantitatively less relevant for values of

τ far from the limit. However, even for the case where p11 = p22 = 0.99, the magnitude of

the level risk at the 10-year horizon corresponds to a sizeable 15% of the mean interest rate

differential across regimes.

One important implication of the level risk is that, when the true data-generating process

displays regime switches, term structure models that do not allow for MS regimes probably
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will generate biased term premia estimates. In other words, if in reality agents consider the

possibility of regime shifts when forming expectations, then models that do not take this into

account will tend to force the term premium to explain too much of the cross section of yields.

I emphasize that, because the level risk operates exclusively through investor’s expectations,

this bias appears even if the term structure model is fitted to particular subsamples of the

data that correspond to a single economic regime. Consider, for example, the case where

a researcher tries to fit a model that does not allow for regime switches to a particular

subsample of the data encompassing a regime characterized by a relatively low short rate.

If this regime is not an absorbing state, then the existence of a positive level risk implies

that term premia estimates based on this model could be biased upwards.

To conclude, let me return to Figure 1. Can the level risk help to explain the Slope-

Volatility Puzzle? In principle the answer is yes. When agents incorporate the MS short-rate

process into their beliefs, the average slope in each subsample depicted in this figure may

represent a combination of term premium and level risk. If, for example, there was a negative

level risk during the Burns / Miller and Volcker subsamples and a positive level risk in the

Greenspan / Bernanke years, then the puzzle potentially could be resolved. For this to

be true, the mean short-rate in the regime represented by the Burns / Miller and Volcker

subsamples must be higher than in the Greenspan / Bernanke regime. Additionally, both

regimes must not be perceived by investors as absorbing states.

5 Level Risks and the Slope-Volatility Puzzle

This section provides level-risk estimates for different regimes of the U.S. economy. Sub-

section 5.1 models the dynamics of the U.S. economy according to a two-states Markov-

Switching Vector Autoregression (MS-VAR). Subsection 5.2 demonstrates that, if investors

form expectations based on the estimated MS-VAR, the level risks were moderate and pos-

itive in the Greenspan / Bernanke years and large and negative in the Burns / Miller and

Volcker subsamples. After controlling for the level risk, the term premium in the Greenspan

/ Bernanke years were substantially smaller than in the Burns / Miller and Volcker periods.
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Accounting for level risks thus solves the Slope-Volatility Puzzle.

5.1 A Simple MS-VAR of the U.S. Economy

I model the dynamics of the U.S. economy during the post-World War II period according

to a quarterly MS-VAR which includes three variables: the inflation rate πt; the growth

rate of consumption ∆ct; and the short-term nominal interest rate it. The MS-VAR can be

written as

Yt = Φ0(st) + Φ1(st)Yt−1 + ...+ Φq(st)Yt−q + ut (10)

ut ∼ N
(
0,Σ(st)

)
where Yt ≡ (πt,∆ct, it)

′ and ut is a 3 × 1 vector of iid reduced-form innovations. The

unknown regime-switching parameters are organized in the 3× 1 vector of intercepts Φ0(st),

in the 3 × 3 matrices of autoregressive coeffi cients Φk(st) for k = 1, ..., q and finally in the

3×3 covariance matrix of error terms Σ(st). In this empirical application I consider the more

general case where there are potentially more than two regimes indexed by st ∈ {1, 2, ..., K}.

As before, regimes switch over time according to an exogenous and ergodic Markov-Chain

with a K ×K transition matrix given by P.

This MS-VAR can be viewed as a reduced form of the general equilibrium model that I

develop in Section 6, where regime switches trigger changes in the coeffi cients of the monetary

policy rule followed by the monetary authority. As noted by Benati and Surico (2009),

changes in the coeffi cients of the monetary policy rule can affect both the autoregressive

coeffi cients and the covariance matrix of the innovations in the model’s reduced-form19.

The time series included in the MS-VAR were described in Section 3.2 and are shown in

Figure 3. I use data from 1952:2 until 2008:4 in order to be consistent with the available

yield curve slope data shown previously. I also include in the dataset q observations before

1952:2 as an initial condition for the MS-VAR.
19In reality, the reduced form associated with the DSGE model from Section 6 has both linear and

quadratic terms (the model is solved to a 2nd order approximation), while for simplicity the MS-VAR has
only linear terms. This does not represent a serious problem, because in the context of the DSGE model
the variables included in the MS-VAR are well approximated by a linear solution.
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Figure 3: Time Series Included in the MS-VAR
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Assuming that agents form expectations based on the knowledge of the current regime

realization and all of the parameters in equation (10), the level risk can be computed easily

using the method discussed in Section 4. In the two-regimes case, the estimated transition

matrix and the expected value of the variables included in the MS-VAR, E [Yt/st], can be

used to evaluate the level risk terms in equations (8) and (9).

5.2 Estimation Results

I estimated equation (10) via Maximum Likelihood by applying the Hamilton (1989)20 fil-

ter. To choose the number of regimes K and the MS-VAR lag length q, I used standard

information criteria. Table 2 shows some important model selection information for different

choices of K and q. The first column reports the number of estimated parameters in each

specification. The second through fourth columns respectively report the maximized value

20It was assumed in Section 4.2 that the agents in the economy observe the current and all past regime re-
alizations. The econometrician, on the other hand, needs to filter out probabilities for the regime realizations
conditional on the available information. That is, since at any point in the time series the researcher does
not know ex-ante the state of the Markov-Chain, the best she can do is to use an optimal filter to ascribe
probabilities for each state. This filter is described in Hamilton (1989). Here, the estimation algorithm was
implemented via Krolzig’s MSVAR package for OX that uses the EM methods discussed in Krolzig (1997).
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Table 2: MS-AR Model Selection Criteria

number of Log- AIC BIC
parameters likelihood

K = 1 q = 1 15 −1136.8 10.18 10.45
q = 2 21 −1121.8 10.12 10.53
q = 3 27 −1112.6 10.12 10.66
q = 4 33 −1092.9 10.03 10.70

K = 2 q = 1 38 −1030.1 9.41 9.98
q = 2 56 −1007.6 9.37 10.22
q = 3 74 −992.9 9.40 10.52
q = 4 92 −965.7 9.32 10.71

K = 3 q = 1 60 −989.8 9.25 10.15

q = 2 87 −939.0 9.04 10.35
q = 3 114 −939.4 9.28 11.00
q = 4 141 −917.6 9.33 11.45

Notes: In the lines, K is the number of regimes and q is the MS-VAR’s lag-length. In the columns, AIC is the Akaike

Information Criterion and BIC is the (Schwartz) Bayesian Information Criterion.

of the log-likelihood, the Akaike Information Criterion (AIC) and the Bayesian Informa-

tion Criterion (BIC). According to the AIC and BIC criteria, the best fitting models are

highlighted in the table.

Both the AIC and BIC select models with K > 1. Note that the number of estimated

parameters in caseK > 1 increases dramatically with the MS-VAR’s lag-length. As a result,

both information criteria point to models with low lag-lengths. It is important to note that

as the number of estimated parameters increase, it is more likely that the optimization

algorithm used to estimate the model will get stuck in local maxima. In Table 2, for the

model with K = 3, when I increase the lag length from q = 2 to q = 3, the log-likelihood

decreases. This is a sign that the algorithm is stuck in a local maximum. To avoid this

problem, I choose the best fitting model according to the BIC criterion (K = 2 and q = 1).

Apart from having desirable large sample properties, this criterion penalizes models with an

excessive number of parameters more heavily than does the AIC.

All of the parameter estimates for the best fitting MS-VAR with K = 2 and q = 1
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Table 3: MS-VAR Conditional Moments

Regime 1 Regime 2

Average regime 34.6 7.7
duration in years

Ergodic 0.818 0.182
Probabilities

E [πt/st] 2.38 4.93
E [∆ct/st] 3.30 4.33
E [it/st] 3.96 6.80

SD [πt/st] 1.39 2.90
SD [∆ct/st] 2.65 3.73
SD [it/st] 2.23 3.29

Notes: The conditional moments were computed using numerical simulation of the MS-VAR with K=2 and q=1. The

average regime duration and ergodic probabilities were computed according to Hamilton (1994).

are reported in Appendix B. Some selected conditional moments for the MS-VAR also are

shown in Table 3, while the filtered and smoothed regime probabilities are shown in Figure

4.

For convenience I reproduce here the estimated MS-VAR transition matrix

p̂11 p̂12

p̂21 p̂22

 =

 0.993
(0.007)

0.007

0.033 0.967
(0.023)


where the numbers in parentheses are standard errors. Note that, since p11 is close to unity,

regime 1 is very persistent and close to being an absorbing state. According to Table 3, this

regime has an average duration of about 35 years. On the other hand, the probability of

remaining in regime 2, p22, is considerably smaller, implying an average duration of only 7.7

years for regime 2. Note, however, that the estimate for p22 is not very precise.

Based on the smoothed regime probabilities, regime 1 almost exactly encompasses the

Martin and the Greenspan / Bernanke subsamples from Section 3. In particular, the MS-

VAR interprets the Great Moderation years as realizations of this regime. On the other
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Figure 4: MS-VAR Filtered and Smoothed Probatilities of Regime 1
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Notes: Probabilities computed using the filters described in Hamilton (1994) for the MS-VAR with K=2 and q=1.

hand, regime 2 roughly covers the Burns / Miller and Volcker subsamples from Section 3

(this regime also appears with a high probability very briefly from 1952:2 to 1953:1) - it

therefore encompasses the Great Inflation years. The conditional moments in Table 3 reveal

that when regime 1 occurs, the inflation rate and the short-term interest rate fluctuate

around significantly lower levels than when regime 2 is realized. Moreover, confirming the

results obtained in Section 3.2, the economy conditional on regime 1 is substantially more

stable than when regime 2 realizes21.

I now use the mean short-rate gap across regimes and the regime-switching probabili-

ties estimated above to parameterize investors’beliefs. Using equations (8) and (9), it is

straightforward to compute the level risk conditional on each regime.

Using the information reported in Table 3, we note that the mean interest rate differ-

ential across regimes 1 and 2, DsE [it/st], is equal to 2.84%. Using the estimated ergodic

probabilities reported in the same table, it is easy to show that in the limit as τ → ∞

the level risk conditional on regime 1 is given by (1 − 0.818) × 2.84% = 0.52%. A similar

calculation for regime 2 yields a limiting level risk of −0.818× 2.84% = −2.32%. Therefore,

21Interestingly, the regime classification that emerges from Figure 4 is very similar to the one estimated
by Ang and Bekaert (2002).
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Table 4: Yield Curve Slope Decomposition

Regime 1 Regime 2 Great Great
Moderation Inflation
(85:3-08:4) (70:3-85:2)

(1) Average τ = 1 year 0.38 0.46 0.40 0.48
Slope τ = 3 years 0.75 0.78 0.92 0.80

τ = 5 years 0.99 0.91 1.25 0.94
τ = 10 years 1.47 1.08 1.84 1.08

(2) Level τ = 1 year 0.03 -0.14 0.03 -0.14
Risk τ = 3 years 0.10 -0.45 0.10 -0.45

τ = 5 years 0.16 -0.70 0.16 -0.70
τ = 10 years 0.26 -1.15 0.26 -1.15

(3) Residual τ = 1 year 0.35 0.60 0.37 0.61
[(1)-(2)] τ = 3 years 0.65 1.22 0.82 1.25

τ = 5 years 0.84 1.61 1.09 1.64
τ = 10 years 1.22 2.23 1.58 2.23

Notes: Average slope measures conditional on regimes 1 and 2 were computed for the sample 1985:3-2008:4 and 1970:3-1985:2

respectively. Level risk measures are based on the estimated MS-VAR.

in the limit the estimated level risk becomes sizeable, especially for the less persistent regime

2. Observe the sign of the level risk in each regime. In regime 2 investors anticipate that a

future switch to regime 1 is possible. This switch would imply that the short rate fluctuates

around a significantly lower level than the current one. As a result, there is a negative level

risk. In regime 1, on the other hand, investors believe that there is a possibility of switching

to the highly volatile regime 2, which implies a shift towards higher levels of the short rate.

In this case a positive level risk arises. Because regime 1 is more persistent than regime 2,

the level risk is larger in absolute value in the latter than in the former regime.

For values of τ far away from the limit, the estimated level risks at different maturities

are reported in the second (regime 1) and third (regime 2) columns of Table 4. In both

regimes, the level risk is relevant in terms of magnitude: in regime 2, the level risk grows

quickly to −115 basis points at the 10-year horizon, while in regime 1 it is still capable of

increasing the average 10-year slope by 26 basis points.
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By rearranging equations (8) and (9), we can see that subtracting the estimated level

risk from the average slope in each regime makes it possible to recover the term premium.

However, because my MS-VAR does not include the yield curve slope, I cannot directly

obtain the mean value of the slope conditional on each regime. I therefore use the sample

average of observed slope measures as a proxy.

Sample averages of slope measures at different maturities22 are reported in panel (1) of

Table 4. In the second column I report average yield curve slopes for the quarters when

regime 1 was associated with a smoothed probability greater that 50%. The third column

reports the same measures for quarters where regime 2 was the predominant regime according

to the smoothed probabilities. The fourth and fifth columns of the table report average

slope measures for two particular subsamples of the data of interest: first, the 1985:3-2008:4

subsample, which is the portion of regime 1 that corresponds to the ‘Great Moderation’;

second, the 1970:3-1985:2 subsample, which corresponds to the ‘Great Inflation’years of

regime 2. Panel (3) of Table 4 shows the residuals obtained after subtracting the level risk

from these average slope measures.

The slope averages across regimes restate the puzzle from Section 3: conditional on the

high volatility regime 2, the slope on average is lower than in regime 1. This is true for

the 5- and 10-year maturities reported in the second and third columns of Table 4, but if

we restrict our attention to the Great Inflation and Great Moderation subsamples (fourth

and fifth columns of Table 4), this is true for almost all reported maturities. Importantly,

once I control for the level risk, the puzzle disappears completely. That is, once level risks

are subtracted from the slope measures, regime 2 displays substantially higher premia than

regime 1 at all maturities analyzed23. The same is true when I restrict my attention to the

Great Inflation and Great Moderation subsamples. In other words, based on slope measures

nominal bonds seem less risky in the Great Inflation than in the Great Moderation not

because of a seemingly abnormal pattern of term premia across regimes, but rather simply

because of an outcome of beliefs that incorporate the possibility of regime switches.

22In addition to the 5 and 10-year slope measures discussed before, I consider in this section the 1, 2, 3,
and 4-year slope measures calculated again using the CRSP database.
23This is similar to Bekaert, Hodrick, and Marshall (2001). They find that some term structure ‘anomalies’

can be explained by a combination of term premia and a ‘peso problem’in the short-rate process.
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Figure 5: Decomposing the Observed Mean Slope
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An alternative way to illustrate this last result is shown in Figure 5. In the top chart,

the full line plots the estimated level risks in regime 1 against increasing maturities in the

horizontal axis. The diamond markers correspond to the average slope measures from Table

4 for the ‘Great Moderation’subsample. The bottom chart shows the same analysis but for

the level risks conditional on regime 2 and the average slope measures that correspond to

the ‘Great Inflation’subsample.

Although the yield curve in both regimes on average is positively sloped at all available

horizons, the decomposition of the slope is quite different. In regime 1 the slope measures

are a combination of positive term premia and positive level risks, but in regime 2 the
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yield curve is positively sloped in spite of substantially negative level risks. Conditional on

regime 2, it takes very high term premia to offset the negative level risks and to generate

the observed slope. The residual term premia, indicated in Figure 5 by the curly brackets,

are in fact significantly larger in regime 2 than in regime 1.

6 Level Risks in a Structural Model with MS Mone-

tary Policy Regimes

In the MS-VAR estimated in the previous section, what makes the short-rate fluctuate

around different levels across regimes, giving rise to level risks? Similarly, what makes the

economy less volatile in regime 1 than in regime 2? The reduced-form MS-VAR is silent

about the possible structural changes experienced by the macroeconomy once it switches to

a new regime.

In this section, I investigate whether differences in how the Fed conducts monetary policy

jointly can explain the different macro dynamics and the yield curve shape across regimes. I

find that the main features of the data explored in the previous sections can be replicated in

a simple MS-DSGE that allows the economy to switch over time between active and passive

monetary policy regimes. Private agents incorporate the MS possibility into their beliefs,

which in turn has important implications for both the macroeconomic equilibrium and the

yield curve.

In Section 6.1 I start by describing the MS-DSGE model and proposing an approximate

non-linear solution method. The proposed solution method allows agents to accumulate

precautionary savings, thus giving rise to non-trivial bond premia. In particular, the model

endogenously generates a short-rate differential across regimes as private agents acquire dif-

ferent levels of precautionary savings depending on the monetary policy stance. As a result,

level risks appear along the yield curve. In Section 6.2 I show that under a plausible choice of

parameters the model is able to replicate the Slope-Volatility Puzzle. In other words, when

there is a passive policy regime, the amount of macro uncertainty is substantially higher

than in the active regime; as a result, term premia are higher. However, because of level
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risks generated endogenously through precautionary savings, during the passive regime the

yield curve is less steep than in the active one, thus reproducing the Slope-Volatility Puzzle.

6.1 Model Description and Solution

6.1.1 Monetary Policy Regimes

Following Davig and Leeper (2007) and many others24, I assume that the Fed sets the

short-term nominal interest rate it according to the following MS feedback rule

it = i+ φπ(st)π̂t + φy(st)ŷt

where π̂t and ŷt are the log deviations of aggregate inflation and output from the deter-

ministic steady state25. The crucial difference between this formulation and more standard

Taylor rules is that here the policy reaction coeffi cients φπ(st) and φy(st) at time t depend

on the regime realization st ∈ {1, 2}. 26 As a result, a regime switch can trigger changes

in how the Fed sets the short rate in order to fight deviations of inflation and output from

their steady-state levels.

Without loss of generality, I set φπ(1) ≥ φπ(2), meaning that monetary policy in regime 1

is at least as ‘active’with respect to inflation deviations as in regime 2. In particular, when

φπ(1) > φπ(2), regime 2 is considered ‘less active’than regime 1. When φπ(2) < 1, policy in

regime 2 is said to be ‘passive’.

In a model with fixed parameters, a passive monetary policy rule implies indeterminacy

of the equilibrium solution27. In that case, the policy rate increases less than one-to-one

with an increase in inflation; consequently, the ex-post short-term real interest rate falls.

However, in the case of a regime-switching Taylor rule, this is not necessarily true. As

24See, for example, Farmer, Waggoner, and Zha (2007), Davig and Doh (2008), Liu, Waggoner, and Zha
(2009) and Liu and Mumtaz (2010).
25Adding an autocorrelated monetary policy shock to the monetary policy rule does not significantly

change any of my results.
26A potentially interesting extension would be to analyze models with a regime-dependent inflation target.

However, in a recent study, Liu, Waggoner, and Zha (2010) found no empirical support for this specification
in the U.S. data.
27When φy 6= 0, the threshold above which φπ respects the Taylor principle is slightly below but still very

close to unity for reasonable Taylor-rule parameterizations. See Bullard and Mitra (2002).

32



Davig and Leeper (2007) show, although monetary policy is passive in one regime, if the

probability of switching to an active enough regime is suffi ciently high, then the model has

a unique stable solution.

For consistency with my previous results, I assume an MS environment in line with

Assumption (1) from Section 5. That is, I again let the economy switch between two different

regimes over time. These regimes evolve according to an exogenous Markov Chain indexed

by st ∈ {1, 2}, with transition matrix P. Finally, private agents again are assumed to

observe the current regime realization st before making decisions; accordingly, the complete

information set available to private agents at date t will be denoted by Ωt = Ω−st ∪ {st}.

6.1.2 Private Agents

The macro model contains four agents: households, final and intermediate good producers

and a monetary authority. The latter was described in the previous section. I now analyze

the behavior of each remaining agent in turn. Detailed model derivations can be found in

Appendix D.

Following Rudebusch and Swanson (2008), the household sector has a representative

infinitely-lived agent endowed with Epstein and Zin (1989, 1991) andWeil (1990) preferences.

Letting Ct andNt represent the household’s consumption and labor supply, those preferences

are described by:

Vt =


u (Ct, Nt) + β

[
EtV

1−α
t+1

] 1
1−α if u (Ct, Nt) ≥ 0 everywhere

u (Ct, Nt)− β
[
Et (−Vt+1)1−α

] 1
1−α if u (Ct, Nt) ≤ 0 everywhere

(11)

where Vt+1 denotes the utility continuation value to the household. The period utility is given

by u (Ct, Nt) = ebt
(
C1−γt

1−γ − χ
N1+η
t

1+η

)
, where bt represents a time-preference shock. As Epstein

and Zin (1989) show, these preferences disentangle the coeffi cient of risk aversion from the

elasticity of intertemporal substitution (EIS), which are constrained in standard expected

utility preferences to be the reciprocal of one another. In the particular parametrization

above, the degree of risk aversion is associated with (but not equal to) α ∈ R, whereas the
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EIS is given by 1/γ. When α = 0, the standard expected utility case is recovered.

The representative household maximizes (11) subject to the budget constraint

PtCt + EtM̃t+1Xt+1 ≤ Xt + PtWtNt + Tt

where Pt is the aggregate price level and EtM̃t+1Xt+1 is the value of a complete portfolio of

state-contingent assets with M̃t+1 representing the nominal stochastic discount factor and

Xt+1 the portfolio holdings from period t to t + 1. Additionally, Wt represents the real

wage rate and Tt summarizes all lump-sum transfers to the household. It follows from the

household’s optimization problem that the one-period real SDF and the labor supply are

respectively given by

Mt,t+1 = β

 Vt+1(
EtV

1−α
t+1

) 1
1−α

−α(Ct+1
Ct

)−γ
ebt+1−bt (12)

Wt = χ
Nη
t

C−γt

where, under complete markets, the SDF can be used to price nominal bonds of different

maturities recursively. More specifically, letting Πt+1 ≡ Pt+1/Pt, the price of a τ -period

nominal bond is given by Bτ ,t = Et
[
Mt,t+1Bτ−1,t+1Π

−1
t+1

]
. In the specific case of a one-

period bond, the pricing condition becomes B1,t = Et
[
Mt,t+1Π

−1
t+1

]
. Note that the term in

parenthesis in the SDF expression, which also appears in expected utility models, captures

the current consumption risk. The term in square brackets containing the continuation

utility value introduces aversion to long-run consumption and labor risks.

Final good firms operate under perfect competition, and the representative producer is

endowed with the following technology

Yt =

(∫ 1

0

Y
1

1+λt

t(f) di

)1+λt

where Yt is the quantity of final goods produced through a combination of Yt(f) of each

intermediate good f ∈ [0, 1]. Following Steinsson (2003) and Smets and Wouters (2003), I
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allow the degree of substitutability across differentiated intermediate goods λt to vary over

time. A decrease in λt reduces the monopoly power of intermediate producers, which in turn

reduces their price markup. Profit maximization in the final-good sector yields a demand

curve for each intermediate good

Yt(f) =

(
Pt(f)
Pt

)− 1+λt
λt

Yt (13)

where Pt(f) is the price of intermediate good f . The aggregate price level is then given by

Pt =

(∫ 1
0
P
− 1
λt

t(f) di

)−λt
.

In the intermediate-good sector, all firms have identical Cobb-Douglas production func-

tions given by

Yt(f) = AtK
θ
N1−θ
t(f) (14)

where the level of capital K is assumed for simplicity to be fixed, Nt(f) is the amount of

labor employed by firm f , and Yt(f) is its level of output. The aggregate level of technology

is denoted by At. As in Rotemberg (1982), firms can reset the prices of each differentiated

good in every period, but incur intangible quadratic adjustment costs in doing so

ξ

2

(
Pt(f)
Pt−1(f)

1

Π
− 1

)2
PtYt

where Π is the steady state rate of inflation. These costs do not affect the firm’s cash-flows,

but must be considered in the optimization problem. Therefore, each intermediate firm f

chooses Pt(f) so as to maximize the expected discounted sum of future profits corrected by

the adjustment costs

Et

{ ∞∑
j=0

Mt,t+j
Pt
Pt+j

[
Dt+j(f) −

ξ

2

(
Pt+j(f)
Pt+j−1(f)

1

Π
− 1

)2
Pt+jYt+j

]}

where Dt(f) represents the period t profit which is given by Pt+j(f)Yt+j(f)−Pt+jWt+jNt+j(f).

Since firms are owned by households,Mt,t+j ≡
∏j

k=1
Mt+k is used to discount future profits.

The optimization problem is constrained by sequences of equations (13) and (14) starting

from period t onwards.
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The market clearing condition in the final good market is given by

Yt = Ct +Gt + δK

where Gt represents a shock to the market clearing condition and, following Rudebusch and

Swanson (2008), a constant amount δK of the final good is used to repair the depreciated

capital. If Gt is interpreted as government purchases, then it is assumed that the government

runs a balanced budget financed through lump-sum taxes obtained from the household

sector.

To complete the model description, assume that the four exogenous shocks follow AR(1)

processes:

bt = ρbbt−1 + σbε
b
t

logAt = ρA logAt−1 + σAε
A
t

log (1 + λt) = (1− ρλ) log
(
1 + λ

)
+ ρλ log (1 + λt−1) + σλε

λ
t

logGt = (1− ρG) logG+ ρG logGt−1 + σGε
G
t

with independently and identically distributed innovations εkt ∼ N (0, 1) for k ∈ {b, A, λ,G}.

6.1.3 Model Solution

The macro model has five (exogenous) predetermined variables: bt, At, λt, Gt and st.

The first four are standard continuously differentiable variables, whereas the last is a dis-

crete variable that follows a Markov chain with transition matrix P. In order to write

the Markov chain compactly, I define a 2 × 1 vector ξt ≡ (1 [st = 1] , 1 [st = 2])′ where

1 [st = j] is an indicator function which is equal to one if st = j. Hamilton (1994) shows

that the Markov chain can be represented in terms of ξt by the autoregressive process

ξt+1 = Pξt+νt, where νt is a heteroskedastic zero mean vector of innovations that can only

assume discrete values. Collecting the differentiable predetermined variables in a nx×1 vec-

tor xt ≡ (bt, logAt, log (1 + λt) , logGt)
′ and letting yt represent the ny×1 vector of (natural
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logarithms of the) non-predetermined variables, the macroeconomic system together with

the bond pricing equations can be written as

Et [f (yt+1,yt,xt, ξt)] = 0

xt+1 = (I4 −Λ) x + Λxt + Σσεt+1

ξt+1 = Pξt + νt

(15)

where εt ≡
(
εbt , ε

A
t , ε

λ
t , ε

G
t

)′
is the vector of i.i.d. standard normal shocks. The coeffi -

cient matrices are given by Λ = diag(ρb, ρA, ρλ, ρG), Σ = diag (σb, σA, σλ, σG) and x =(
0, 0, log

(
1 + λ

)
, logG

)′
, while σ is a perturbation parameter that scales uncertainty in the

model.

The model above forms a system of Markov-Switching non-linear rational expectations

equations for which an analytical solution is not known. Solution methods based on stan-

dard linear approximations have been proposed in the literature —e.g. Davig and Leeper

(2007) and Farmer, Waggoner, and Zha (2010b)—, but they would give rise to zero risk

premia implied in the prices of financial assets and therefore are not useful in my context.

I will therefore look for a second-order approximation to the true model solution using the

perturbation techniques suggested by Schmitt-Grohe and Uribe (2004)28.

In order to be able to apply perturbation techniques to the system (15), one needs to

be able to differentiate it with respect to all state variables. But because ξt is discrete, it

is impossible to apply these techniques directly to the system above. Therefore I define an

extended system29 of equations in which the dependence of the control variables on regimes

is made explicit. It is then straightforward to implement perturbation methods to the

extended system, because it is fully differentiable in the state variables.

In order to write the extended system, I introduce a state-contingent notation. That is,

28In a model where only the shock volatilities follow exogenous MS processes, Amisano and Tristani
(2010a,b) show that the perturbation solution is particularly easy to obtain. However, their solution method
does not apply to the general case where other model parameters, such as the ones in the policy rule, are
allowed to follow MS processes.
29Note that I rewrite the non-linear Markov Switching model represented by system (15) into the extended

form. Davig and Leeper (2009) apply a similar transformation to a Markov-Switching model after log-
linearizing the equilibrium conditions and refer to this as the "linear representation". Since here the model
remains non-linear after being transformed into the extended form, I refer to it as the "extended system"
to avoid confusion.
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I denote the value of the vector of endogenous variables yt contingent on st = s ∈ {1, 2} by

yt(s). Using this notation, the expected value of yt+1 conditional on Ωt can be parameterized

as follows: E
[
yt+1/Ω

−s
t , st = s

]
= ps1E

[
yt+1(1)/Ω

−s
t

]
+ ps2E

[
yt+1(2)/Ω

−s
t

]
. The extended

non-linear system therefore can be written as:30

F
(
yt+1(1),yt+1(2),yt(1),yt(2),xt

)
≡ E

 f1
(
yt+1(1),yt+1(2),yt(1),xt

)
f2
(
yt+1(1),yt+1(2),yt(2),xt

) /Ω−st
 = 0

xt+1 = (I4 −Λ) x + Λxt + Σσεt+1

ξt+1 = Pξt + νt

(16)

where each equilibrium condition in the original system (15) is represented by two entries in

F (·), each contingent on one possible realization of ξt. Note that the expectations operator

does not condition on st because the MS probabilities are already dealt with by the state-

contingent notation. Observe too that f1 (•), for example, depends on the t + 1 vector of

control variables contingent on regime 1 and 2. Writing the system this way makes explicit

the fact that, in general, the solution in each regime will depend crucially on the behavior

of the economy in the alternative regime. Expectations that policy may switch in the future

will affect households’and firms’decisions today and will lead to a different equilibrium

relative to a model without switching regimes. Only when both regimes are absorbing

states, that is p11 = p22 = 1, will the solution in each regime be independent of the behavior

of the economy in the alternative regime. Unlike in (15), the extended system only has

differentiable predetermined variables. Therefore a perturbation solution can be obtained

easily31.

30See Appendix E for more details on the extended non-linear system.
31To write the extended system, it is crucial that there be no regime-dependent state variables in the

model. Imagine, for example, that time-varying capital is included in the model. Then, in order to rewrite
the system in extended form, we would need to keep track of all the history of realized regimes. It then
would be impossible to solve the model using the method proposed here.
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The model solution I seek takes the form

(
yt(1)
yt(2)

)
=

(
g1 (xt, σ)

g2 (xt, σ)

)
xt+1 = (I4 −Λ) x + Λxt + Σσεt+1

ξt+1 = Pξt + νt .

My aim is to approximate g1 (•) and g2 (•) around the deterministic steady state defined

by xt+1 = xt = x and σ = 0, which implies that gj = gj (x, 0) for j ∈ {1, 2}. This is a

convenient approximation point because an analytical solution to the non-linear system can

be found easily. Note that the regime-switching parameters φπ(st) and φy(st) do not affect

the economy in the deterministic steady state, which implies that g1 = g2 = g.

Using insights from Schmitt-Grohe and Uribe (2004), a second-order approximate solu-

tion to the vector of control variables conditional on st = s is given by

yt(s) ∼= g + gsx (xt − x) +
1

2


(xt − x)′ gsxx[1] (xt − x)

· · ·

(xt − x)′ gsxx[ny ] (xt − x)

+
1

2
gsσσσ

2 for s = 1, 2 (17)

where gsx is a ny × nx matrix of first derivatives of gs (•) with respect to the state variables

and gsxx[k] for k = 1, ..., ny are symmetric nx×nx matrices of second derivatives of gs (•) again

with respect to the state variables. The ny × 1 vector gsσσ denotes the second derivatives of

gs (•) with respect to the scalar σ. All matrices of first and second derivatives are evaluated

at the deterministic steady state. Finally, note that the gsσ and g
s
xσ terms omitted from

equation (17) are proven to be equal to zero by Schmitt-Grohe and Uribe (2004).

From equation (17), some important properties of the model solution emerge. First,

uncertainty as measured by σ only shifts the constant term of the policy function by gsσσ.

This shift causes the control variables to fluctuate around a stochastic steady state, which

corrects for the precautionary savings motive and gives rise to risk premia in financial assets.

Because the cross derivatives between the state variables and σ are all zero up to a second-

order, the risk premia within any given regime are constant. Note, however, that the second
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derivative term with respect to σ will in general depend on the current regime realization

which in turn will give rise to discrete changes in risk premia as regimes alternate.

Standard perturbation methods solve for the unknown coeffi cients of the above Taylor

expansion by taking derivatives of (16) with respect to xt and σ, which are equal to zero

and can be evaluated easily at the deterministic steady state. All unknown coeffi cients of

equation (17) are then determined by solving relatively simple systems of equations32.

6.2 Model Analysis

Here I start by calibrating the parameters of the MS-DSGE model. I then analyze how well

the model that is based on switching monetary policy regimes is able to replicate the key

empirical macro and yield curve moments analyzed in Section 5.

For convenience, the empirical moments I focus on in this section are reproduced in

Table 5. In particular, I am interested in simultaneously replicating two sets of empirical

moments. First, the MS-DSGE model should be able to reproduce the variances of inflation,

consumption growth, and the short rate, conditional on each regime of the MS-VAR. These

are displayed in the top panel of Table 5. Second, I require that the MS-DSGE replicates

the yield curve slope decomposition based on the MS-VAR, which I reproduce in the bottom

panel of Table 5 (for simplicity, I focus here only on the 10-year maturity). For the latter

set of moments, I focus in this section on the empirical moments shown in the fourth and

fifth columns of Table 4, which correspond to the Great Inflation and Great Moderation

subsamples.

The objective of this calibration exercise is to verify whether the model implied moments,

conditional on the monetary policy regimes 1 (more active) and 2 respectively, replicate the

empirical moments for the Great Moderation and Great Inflation subsamples shown in Table

5. Put more formally:

32Conditions for uniqueness of a bounded solution in Markov-Switching DSGE models have been estab-
lished by Farmer, Waggoner, and Zha (2010a), but apply to the case of linearized models. More general
conditions that apply to our original non-linear system (15) are not yet available in the literature. In what
follows, I consider only bounded equilibria that are unique for a linearized version of the model using the
Farmer, Waggoner, and Zha (2010a) method.
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Table 5: Summary of the Empirical Moments

Great Moderation Great Inflation

(1) Macro Moments:

SD [πt/st] 1.39 2.90

SD [∆ct/st] 2.65 3.73

SD [it/st] 2.23 3.29

(2) Yield Curve Moments:

E [i10Y,t − it/st] 1.84 1.08

of which:
E [NTP10Y,t/st]

LevelRisk10Y

1.58

0.26

2.23

−1.15

Notes: The macro moments in panel (1) are reproduced from table 3, whereas the decomposition of the 10-year average slope

in panel (2) is reproduced from the fourth and fifth columns of table 4.
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• The Proposed Calibration Exercise:

Consider the MS-DSGE model described above where φπ(1) > φπ(2). Do the model im-

plied moments conditional on regime 1 (regime 2) replicate the empirical Great Mod-

eration (Great Inflation) moments shown in Table 5?

The spirit of this exercise is to study how well the model, relying only on shifts in

monetary policy, replicates the macro and yield curve moments in Table 5. To keep the

results easy to interpret I refrain from analyzing models with MS volatilities, even though

this extra feature potentially could improve the model’s fit.

6.2.1 Choice of Parameters

I calibrate the model such that, conditional on regime 1, it fits the Great Moderation

moments in Table 5. The parameter choices shown in Table 6 follow estimated DSGE

models such as Lubik and Schorfheide (2004), Smets and Wouters (2007) and Justiniano

and Primiceri (2008).

The parameters in the monetary policy rule conditional on the more active regime are

set according to the post-1982 estimates in Lubik and Schorfheide (2004), i.e. φπ(1) = 2.19

and φy(1) = 0.075. In regime 2, the Fed’s response to inflation is set to the lowest value

that guarantees the existence of a unique stable model equilibrium, i.e. φπ(2) = 0.948. For

simplicity, I also set φy(2) = 0.075. 33 As in Section 5, the transition probabilities were set

to p11 = 0.993 and p22 = 0.967.

For the household’s preferences, I choose β = 0.99 that implies an annualized real dis-

count rate of 4% in the deterministic steady state. The utility consumption curvature γ is

set to 2: this implies an EIS of one half, in line with micro data estimates such as Vissing-

Jorgensen (2002). Following Smets and Wouters (2007), I set the inverse Frisch elasticity of

the labor supply η to 0.4. I set α according to the ‘best fit’specification in Rudebusch and

Swanson (2008). A traditional measure of risk aversion suggested by Epstein and Zin (1989),

33In a reduced form macro-term structure model, Ang, Boivin, Dong, and Loo-Kung (2009) find that the
Fed’s policy response to the output gap was roughly stable over the sample period I analyze.
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Table 6: The Benchmark Calibration

Monetary Policy Rule: Exogenous Processes:

φπ(1) 2.19 φπ(2) 0.948 ρb 0.83 σb 0.020
φy(1) 0.075 φy(2) 0.075 ρA 0.98 σA 0.005
p11 0.993 p22 0.967 ρλ 0.18 σλ 0.051

ρG 0.94 σG 0.008

Structural Parameters: The Steady State:

β 0.99 θ 0.33 Π 1.004

γ 2 λ 0.2 K/
(
4Y
)

2.5
η 0.40 ξ 233 G/Y 0.2
α −108 δ 0.02

γ+α (1− γ), would then imply a coeffi cient of relative risk aversion of 110. Although high,

this risk aversion measure applies only to endowment economies and, in models with a flex-

ible labor supply, suffers from a substantial upward bias (see Swanson (2009)). Moreover,

estimated DSGE models with recursive preferences fitted to U.S. bond prices usually fea-

ture a high level of risk aversion (e.g. Andreasen, Fernández-Villaverde, and Rubio-Ramírez

(2011)).

The capital share in the production function θ is set to 0.33. Also, I choose λ = 0.2,

implying a steady-state price markup of 20%. The price adjustment costs parameter ξ is

set to 233 which, for a linearized version of my model, corresponds to a Calvo coeffi cient of

0.75. 34

The four exogenous shock processes were calibrated as follows: the parameters associated

with the shocks to the household’s preferences and to the price markup follow the estimates

in Justiniano and Primiceri (2008) and Smets and Wouters (2007) respectively for the post-

Great Inflation subsamples35. For the technology and government expenditure shocks, I

34Setting ξ =
ϕ
(

1−θ+θ 1+λ
λ

)
1
λ

(1−ϕ)(1−ϕβ)(1−θ) in the model considered here yields the same linearized Phillips curve slope
as in a Calvo (1983) version of this model where a fraction ϕ of the intermediate good producers are not
able to reset prices in each period. See Keen and Wang (2007).
35Although the markup shock in Smets and Wouters (2007) follows an ARMA(1,1) process, here I consider

a more standard AR(1) process. The parameters ρλ and σλ are calibrated so that the dynamics of the
AR(1) are as close as possible to the ARMA(1,1) in Smets and Wouters (2007). None of the results change
significantly if I had used instead the ARMA(1,1) process.
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fit an AR(1) model to a constructed Solow-residuals series and to the Real Government

Consumption series over the 1985:3-2008:4 sample.

Finally, the non-stochastic steady state of the model is set as: K/
(
4Y
)

= 2.5, G/Y =

0.20 and δ = 0.02. The value of χ makes labor in the deterministic steady state equal to

one. In the stochastic steady state, Π makes the model fit the average short-rate in the

Great Moderation regime.

6.2.2 Results

Result I: The nominal term premium is higher in the passive than in the active monetary

policy regime.

Table 7 shows the empirical moments discussed above alongside comparable moments

implied by the calibrated MS-DSGE model. Panel (1) focuses on the macro moments,

while panels (2) and (3) focus on yield curve moments. In particular, panel (2) explores

the decomposition of the average slope into term premium and level risk, whereas panel

(3) decomposes the nominal term premium into a real term premium component and a

compensation for inflation risk (see equation (3)). 36

As expected, conditional on the active policy regime, the model replicates the relatively

low macro volatilities observed during the Great Moderation period fairly well (the cali-

bration above was tailored to fit these moments). When the model economy switches to

the passive policy regime, however, both real and nominal volatilities become substantially

higher. Although the model conditional on regime 2 overshoots the level of nominal volatil-

ity observed in the Great Inflation period, it qualitatively replicates the empirical macro

moments in each subsample of the data adequately.

Note that the model-implied 10-year nominal term premium in regime 2 is 35 basis points

higher than in regime 1. Even though the nominal term premium conditional on regime 2

36The model-implied nominal term premium decomposition was obtained as follows: let B̃τ,t ≡
exp(−τrτ,t) represent the period t price of a bond that pays one unit of the final good at t + τ . I in-

clude in the MS-DSGE model the following recursive pricing conditions: B̃τ,t = Et

[
Mt,t+1B̃τ−1,t+1

]
for

τ ≥ 1 with initial condition B̃0,t = 1 ∀t. The real term premium is then computed using the definition in
Section 3.1.
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is not as high as my estimate for the Great Inflation regime, the model generates a higher

nominal term premium in the regime associated with higher levels of macro uncertainty.

Thus it replicates an important result obtained in Section 5.

To better understand this result, I explore the decomposition shown in panel (3) of

Table 7. Consider, for example, an economy that switches from a passive to an active

regime. Two forces pressure the 10-year nominal term premium in opposing directions. On

the one hand, as the level of nominal uncertainty falls, the inflation risk portion of the

nominal term premium —the inflation risk shown in table 7 includes an inflation convexity

term, as shown in equation (3) —drops by 62 basis points. On the other hand, the 10-

year real term premium increases by 27 basis points. Intuitively, as the Fed becomes more

aggressive in fighting inflationary pressures, the volatility of the short-term real interest

rate increases, making long-term real bonds riskier. Given my choice of parameters, the

first effect dominates and, as a result, the nominal term premium decreases as the economy

goes from an active to a passive regime.

Result II: The model endogenously generates realistic level risks along the yield curve.

Perhaps the most striking feature of Table 7 is that the MS-DSGE model is able to

endogenously generate level risks very much in line with the ones estimated in Section 5.

As discussed above, for this to be true the nominal short-rate process that results from

the model must fluctuate around a different mean conditional on each regime. That is,

DsE [it/st] must be different from zero. Because the short-rate in both regimes is equal

to log
(
Π/β

)
in the deterministic steady state (in fact, the deterministic steady state is

the same across regimes for all variables in the model), the existence of level risks implies

that the model generates a short-rate differential DsE [it/st] endogenously in the stochastic

steady state.

Returning to equation (17), note that uncertainty causes the constant term in the ap-

proximate policy function to shift from the deterministic steady state g to the stochastic

steady state g + 1
2
gsσσ for s = 1, 2. The size of this shift for any given variable may depend

upon the monetary policy regime. That is, each regime may be characterized by differ-
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Table 7: Actual vs. Model-Based Moments

US Data MS-DSGE Model

Great Great Regime 1 Regime 2
Moderation Inflation φπ(1) = 2.19 φπ(2) = 0.95

(1) Macro volatility:

SD [πt/st] 1.39 2.90 1.27 4.92

SD [∆ct/st] 2.65 3.73 2.57 3.41

SD [it/st] 2.23 3.29 2.72 4.62

(2) Slope decomposition:

E [i10Y,t − it/st] 1.84 1.08 1.61 0.95
=

E [NTP10Y,t/st] 1.58 2.23 1.43 1.78
+

Level Risk10Y 0.26 −1.15 0.18 −0.83

(3) Term Premium decomposition:

E [NTP10Y,t/st] 1.58 2.23 1.43 1.78
=

E [RTP10Y,t/st] − − 0.66 0.39
+

Inflation Risk10Y − − 0.77 1.39

Notes: E [x] and SD (x) respectively represent the mean and standard deviation of x. The empirical moments from Table 5

are reproduced here. The two last columns display model implied theoretical moments, except for the standard deviation of

consumption growth, which was simulated. All variables are expressed in percent per annum. The inflation risk shown in the

last row includes an inflation convexity term (see equation (3)).
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ent levels of precautionary savings. Accordingly, the conditional mean of the short rate in

general will be different across regimes37.

To better understand this mechanism, Table 8 displays first moments of key macro

variables conditional on each regime. The model generates a nominal short-rate differential

of 2.04%, close to the 2.84% estimate based on the MS-VAR from Section 5. This differential

is a result of three mechanisms in the model:

1. The real short-rate mechanism:

In Table 8, the real short-rate rt on average is 0.79% higher in the passive than in

the active regime, producing an upward pressure on it in the former regime. To

understand this mechanism, remember that consumption uncertainty is higher in the

passive than the active regime. The risk-averse household thus responds by forming

more precautionary savings in the passive than in the active regime (in Table 8, the

average level of consumption is lower in the passive regime), implying that the expected

growth rate of consumption is positive in the passive, and negative in the active,

regime. The short-term real rate therefore is higher in the passive regime in order to

counter the household’s desire to smooth consumption over time.

2. The inflation level mechanism:

The short-term nominal rate is also higher in the passive than in the active regime

because inflation on average is 2.04% higher in the former regime. Due to the real short-

rate mechanism explained above, intermediate good producers face a higher discount

on their future profits in the passive than in the active regime. Because current profit

has a higher weight in their objective function, firms choose higher optimal prices in

the passive than in the active regime. In other words, intermediate firms are more

concerned with the future implications of their pricing decision today in the active

regime.

37Even though level risks are associated with the EH component of the slope in the presence of a MS short-
rate process, they only appear in the MS-DSGE model because of the second-order term gsσσ in equation
(17). It follows that level risks are zero if one considers a standard first order approximation to the model
solution, or if private agents are risk-neutral. Therefore, in the MS-DSGE model, level risks behave very
much like standard premia.
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Table 8: Understanding the Nominal Short-Rate Differential Across Regimes

(a) (b) (b) - (a)
Regime 1 Regime 2
φπ(1) = 2.19 φπ(2) = 0.95

E [it/st] 3.90% 5.94% 2.04%

E [rt/st] 2.93% 3.72% 0.79%

E [πt/st] 0.87% 2.01% 1.14%

E [Ct/st] 1.90 1.89 −0.01

E
[
Ct+1
Ct
/st

]
−0.01% 0.06% 0.07%

Notes: Model-implied theoretical moments are expressed in percent per annum, except for consumption which is expressed in

level.

3. The inflation risk mechanism:

As discussed above, the difference between it and rt represents compensation for infla-

tion risk (again including an inflation convexity term). Because inflation uncertainty

is higher in the passive than in the active regime, short-term nominal bonds pay higher

premia in the former than in the latter regime. Using the moments reported in Table

8, note that the compensation for inflation risk falls from 0.21% to 0.10% as policy

switches from passive to active.

What happens to the 10-year average yield curve slope when the economy switches from

a passive to an active regime? First, as a result of the three channels explained above, the

level risk switches from being highly negative to moderately positive, imposing an upward

pressure on the 10-year slope. At the same time, because the short-term real rate is more

volatile in the active than in the passive regime, the real term premium increases, also

putting upward pressure on the 10-year slope. Finally, going in the opposite direction, the

drop in inflation uncertainty as the economy switches to the active regime results in a sharp

drop in the compensation for inflation risk that is paid by 10-year nominal bonds. Under the
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proposed calibration, the first two effects dominate and the 10-year slope actually increases

as the economy switches from a passive to an active policy regime. Therefore I conclude

that the MS-DSGE model in which monetary policy switches between active and passive

regimes is able to replicate the Slope-Volatility Puzzle.

Result III: The MS economy in the active regime is riskier than a corresponding economy

with a fixed active policy.

Table 9 compares the active regime of the MS-DSGE model under two different assump-

tion for p11: in the second column, p11 is set as in the benchmark calibration to 0.993, while

in the third column the active regime is assumed to be an absorbing state, that is p11 = 1.

All other model parameters are kept at the values showed in Table 6. In the case of p11 = 1,

once the economy reaches regime 1 the MS-DSGE model behaves exactly as a simpler model

with a fixed active monetary policy rule.

Note that the 10-year nominal term premium is higher in the active regime with p11 =

0.993 than with p11 = 1. This can be explained by a combination of two mechanisms. The

first, in line with the Barro-Rietz rare disasters theory, is as follows. When p11 = 0.993

there is a risk that during the life of the bond a (relatively) rare bad event will occur and

the economy switch to the passive regime in which nominal bonds are very risky. The risk

of a sudden change in policy is priced into nominal bonds. As a result, term premia in the

active regime are higher when p11 = 0.993 than when p11 = 1.

A second mechanism, which resembles the long-run risk theory of Bansal and Yaron

(2004), operates in parallel to the one just described. In order to explain this newmechanism,

Figure 6 plots impulse response functions to a negative technological shock38. The solid

lines represent the active regime when p11 = 1, whereas the dashed lines correspond to

the active regime when p11 = 0.993. In both cases, the technological shock reduces the

price of the 10-year nominal bond (inflation expectations increase) exactly when the level

of consumption falls, making this bond a risky asset. Comparing models under different p11

values, observe that both consumption and the bond price suffer more pronounced drops

38As Rudebusch and Swanson (2008) show, technological shocks are the most important determinants of
the term premium in general equilibrium models like the one considered here.
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Table 9: Absorbing vs. Non-Absorbing Active Monetary Policy Regimes

MS-DSGE conditional on st = 1

p11 = 0.993 p11 = 1.000
(1) Macro volatility:

SD [πt/st] 1.27 1.20

SD [∆ct/st] 2.57 2.46

SD [it/st] 2.72 2.60

(2) Slope decomposition:

E [i10Y,t − it/st] 1.61 1.19
=

E [NTP10Y,t/st] 1.43 1.19
+

Level Risk10Y 0.18 0.00

(3) Term Premium decomposition:

E [NTP10Y,t/st] 1.43 1.19
=

E [RTP10Y,t/st] 0.66 0.67
+

Inflation Risk10Y 0.77 0.52

Notes: E [x] and SD (x) respectively represent the mean and standard deviation of x. The empirical moments are reproduced

here from table 5. The two last columns display model implied theoretical moments, except for the standard deviation of

consumption growth which was simulated. All variables are expressed in percent per annum. The inflation risk shown in the

last row includes an inflation convexity term (see equation (3)).
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when this parameter is set to 0.993 than to 1, implying that investing is this bond is riskier

in the former case39. Intuitively, when p11 = 0.993 the model equilibrium in the active

regime is affected through private agents’ expectations by the possibility of switching to

the passive regime, generating more pronounced inflation responses than when p11 = 1. 40

Therefore, following the shock, an equally active central bank has to fight higher inflationary

pressures when p11 = 0.993 than when p11 = 1, resulting in sharper drops in consumption in

the former case. As in the case analyzed by Rudebusch and Swanson (2008), the possibility

of regime switches can be seen as increasing the amount of long-run risk in the economy

relative to a situation in which the active policy regime is perceived as an absorbing state41.

Result IV: The average yield curve slope is higher in IT than in non-IT countries.

On Table 9, note that the 10-year yield curve slope is 42 basis points higher in an economy

with p11 = 0.993 than in a similar economy with p11 = 1. Why? First, in light of Result III

described above, the nominal term premium is higher when p11 is set to 0.993 than when

it is set to 1. This channel alone is responsible for 24 out of the 42 basis-points difference

in the slope across models. The remaining 18 basis points are explained by the level risk,

which is positive when p11 = 0.993, but is equal to zero in an absorbing state (see Section

4.2).

To verify this model’s prediction in the data, I compare the observed average yield curve

slope across IT and non-IT countries. I focus only on developed economies after the mid-

1980s, a period characterized by particularly benign inflation developments in both groups

of countries. The general idea here is that, relative to the case where IT is not adopted,

private agents in IT countries may believe that future switches to passive monetary policy

regimes are less likely to occur42. In terms of the MS-DSGE model, the probability that the

economy remains in the active regime, p11, therefore would be higher when IT is adopted

39This also can be observed in Table 9, which shows that the MS-DSGE model generates more macroeco-
nomic volatility in the active regime with p11 = 0.993 than with p11 = 1.
40See Davig and Leeper (2007).
41It is interesting to note that the extra premium charged by investors when p11 is lower comes in the

form of an extra compensation for bearing inflation risk, whereas the real term premium remains almost
the same; see panel (3) of Table 9.
42This exercise implicitly assumes that, within an IT regime, the monetary authority responds to infla-

tionary pressures actively.
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Figure 6: Impulse Responses to a Negative Technological Shock in the Active Regime
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Notes: Impulse response functions to a negative one standard deviation shock to technology. Full and dashed lines correspond

respectively to the MS-DSGE model under p11= 1 and p11= 0.993. The vertical axes represent percentage deviations
from the stochastic steady state, where the deviations of the inflation rate and the policy rate are expressed in percent per

annum. The numbers in the horizontal axes represent years following the shock.
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than otherwise. So, assuming all else constant, the yield curve in IT countries should be

flatter on average than in non-IT countries.

There are many ways to justify why p11 would tend to be higher in active regimes

with than without IT43. First, a higher p11 could represent improvements in communication

between the Fed and the general public once IT is in place. According to this view, IT

would make clearer to the public that shifts in inflation away from the objective are going to

be dealt with actively. Second, in IT countries emphasis is shifted away from the particular

individuals conducting monetary policy in a given point in time to the monetary policy

framework itself. A higher p11 therefore could signal that, with IT, changes in the individuals

in charge of the central bank are less likely to significantly modify the way that policy is

conducted. Finally, increases in p11 could represent the gain in central bank accountability

prompted by IT. Under IT, a central bank that decides to adopt a passive stance with

respect to inflation would have to explain to the public the short and long-term implications

of its decision; as a result, the probability of switching from the active regime decreases.

Using the Wright (2008) database of international monthly zero-coupon yields of up

to ten years maturity, I compute slope measures for ten different countries: three non-IT

countries (Germany44, Japan, and US) and seven countries that adopted IT (New Zealand,

Canada, UK, Sweden, Australia, Switzerland, and Norway). For the non-IT countries, I

compute the average 10-year slope for the sample which corresponds to the Great Moderation

subsample from Section 5, specifically Sep/1985 - Dec/2008. For each IT country, I instead

consider the average 10-year slope from the month of IT adoption until Dec/2008.

Table 10 shows the results. The top panel reports the 10-year average slope for the non-

IT countries; the bottom panel shows the measure for the IT countries. Also, to facilitate

comparisons between IT and non-IT countries, I show in parentheses the average slope

in each of the non-IT countries taken over the same sample as for the IT country. For

example, the values in parentheses for New Zealand correspond to the average slope in the

43See, for example, Bernanke, Laubach, Mishkin, and Posen (1999).
44Bernanke, Laubach, Mishkin, and Posen (1999) consider Germany as an early case of inflation targeting.

I decided to include Germany in the non-IT group because there an explicit inflation objective only has been
set for the long run whereas short- to medium-term inflation targets have not been announced (this is also
true after the ECB started to operate in 1999).

53



Table 10: Yield Curve Slope in non-IT vs. IT Countries

Non-IT Countries:

Sample 10-Year Slope

US Sep/85 - Dec/08 1.90
Germany Sep/85 - Dec/08 1.25
Japan Sep/85 - Dec/08 1.23

Avg. non-IT 1.46

IT Countries:

Sample 10-Year Slope

IT Country (US, Germany, Japan)

New-Zealand Feb/90 - Dec/08 -0.01 (1.91∗, 1.19∗, 1.37∗)
Canada Mar/91 - Dec/08 1.60 (1.95∗, 1.24 , 1.49 )
United Kingdom Oct/92 - Dec/08 0.26 (1.81∗, 1.48∗, 1.61∗)
Sweden Jan/93 - Dec/08 1.35 (1.78∗, 1.51∗, 1.61∗)
Australia Sep/94 - Dec/08 0.64 (1.62∗, 1.65∗, 1.58∗)
Switzerland Jan/00 - Dec/08 1.28 (1.83∗, 1.23 , 1.26 )
Norway Apr/01 - Dec/08 0.77 (2.07∗,1.30∗ , 1.22∗)

Average IT 0.89

Notes: The average measures of yield curve slope were computed using the Wright (2008) database of international

zero-coupon yields. As a proxy for the short-rate, the 3-month zero-coupon yield was used in the slope computation.

US, Germany and Japan taken over the Feb/90 - Dec/08 sample.

If the model’s predictions are correct, then the non-IT countries should be associated

with steeper yield curves than the IT countries. Indeed, Table 10 reveals that the average

10-year slope across the non-IT countries was 1.46%, more than 60% higher than in the

IT countries. Using the numbers in parentheses shown in Table 10, I can compare pairs of

IT and non-IT countries while fixing the same sample. Each time the slope in the non-IT

country is higher than that of the IT country, I indicate it with a ∗ in the table. I find that

in the great majority of the pair-wise comparisons, the IT countries had flatter yield curves

than the non-IT countries.
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When making cross-country comparisons, it should be noted that country-specific factors

potentially could influence the results. For example, there could be specific features of some

IT countries that make the yield curve flatter in those countries, even though perceptions

about monetary policy are not significantly different there from in the non-IT countries.

However, it is reassuring that in almost all pair-wise comparisons the model prediction was

verified. That is, the results shown in Table 10 appear to be robust enough across different

pairs of IT and non-IT countries, thus providing evidence in favor of the explanation that I

propose which is based on monetary policy regimes.

7 Conclusions

In this paper I studied how shifts in the monetary policy regime might have affected the

average slope of the U.S. nominal term structure in the past decades. My first contribution

was to show that, in the presence of a Markov-Switching short-rate process, measures of the

average yield curve slope reflect not only term premia but also level risks. I provide level risk

estimates based on a simple reduced form Markov-Switching Vector Autoregression: they

are large and negative during the Great Inflation and moderate and positive after 1985.

Controlling for level risks, the average slope measures imply that term premia in the Great

Inflation were substantially higher than after 1985.

My second contribution was to show that a calibrated dynamic general equilibrium

model, where the Taylor rule shifts between an active and a passive stance for inflation,

replicates my U.S. level risks and term premia estimates. Because the model was solved

using a second-order rather than a standard first-order approximation method, I can ana-

lyze the different levels of precautionary savings that characterize each policy regime. The

model-implied differences in term premia and level risks across regimes are a result of the

optimal behavior of private agents and therefore are entirely endogenous.
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A No-Arbitrage Bond Prices
In this appendix I will show how to derive the approximate no-arbitrage bond pricing formulas discussed
in section 3.1. I will start by pricing inflation protected bonds and then will move on to nominal bonds.

(i) Pricing Inflation Protected Bonds:

Let B̃τ,t represent the period t price of a bond that pays one unit of the consumption good at t+ τ .
Because their payoffs are already expressed in terms of consumption, these bonds are not subject to

inflation risk. Under no-arbitrage B̃τ,t is determined by B̃τ,t = Et

[
Mt+1B̃τ−1,t+1

]
. Denote the τ -period

real yield to maturity by rτ,t ≡ − 1
τ log B̃τ,t. Then, taking a second order approximation to the Euler

equation above we get:

r̂τ,t = −1

τ

τ∑
j=1

Et [m̂t+j ]−
1

2τ
V art

 τ∑
j=1

m̂t+j

+O
(
ε3
)

(18)

where O
(
ε3
)
contains the terms of order higher than two that are ignored.

Using the equation above, it can be shown that the second order approximate real term premium is given
by:

RTPτ,t ≡ r̂τ,t − 1
τ

∑τ
j=1Et [rt+j−1] ∼= − 1

2τ V art

[∑τ
j=1 m̂t+j

]
+ 1

2τ

∑τ
j=1Et {V art+j−1 [m̂t+j ]}

where I made use of the law of iterated expectations to eliminate the first moments of the SDF. It is
important to note that Et {V art+j−1 [m̂t+j ]} 6= V art [m̂t+j ] for j ≥ 1. I can also rewrite the real term
premium as:

RTPτ,t ∼= − 1
2τ V art

[∑τ
j=1 m̂t+j

]
+ 1

2τ

∑τ
j=1Et {V art+j−1 [m̂t+j ]}

= − 1
2τ

∑τ
j=1 V art [m̂t+j ]− 2

2τ

∑τ−1
j=1

∑τ
k=j+1 Covt [m̂t+j , m̂t+k]

+ 1
2τ

∑τ
j=1Et {V art+j−1 [m̂t+j ]}

But note that:

(1) V art+j−1 [m̂t+j ] = Et+j−1

[
m̂2
t+j

]
− (Et+j−1 [m̂t+j ])

2

⇓
Et [V art+j−1 [m̂t+j ]] = Et

[
m̂2
t+j

]
− Et

[
(Et+j−1 [m̂t+j ])

2
]

(2) V art [Et+j−1 [m̂t+j ]] = Et

[
(Et+j−1 [m̂t+j ])

2
]
− (Et [Et+j−1 [m̂t+j ]])

2

= Et

[
(Et+j−1 [m̂t+j ])

2
]
− (Et [m̂t+j ])

2

⇓
V art [Et+j−1 [m̂t+j ]] + (Et [m̂t+j ])

2
= Et

[
(Et+j−1 [m̂t+j ])

2
]

Combining the two results above I get

Et [V art+j−1 [m̂t+j ]] = Et
[
m̂2
t+j

]
− V art [Et+j−1 [m̂t+j ]]− (Et [m̂t+j ])

2

= V art [m̂t+j ]− V art [Et+j−1 [m̂t+j ]]

Then the real term premium can be written as:
RTPτ,t ∼= − 1

2τ

∑τ
j=1 V art [m̂t+j ]− 1

τ

∑τ−1
j=1

∑τ
k=j+1 Covt [m̂t+j , m̂t+k]

+ 1
2τ

∑τ
j=1 {V art [m̂t+j ]− V art [Et+j−1 [m̂t+j ]]}

= − 1
τ

∑τ−1
j=1

∑τ
k=j+1 Covt [m̂t+j , m̂t+k]− 1

2τ

τ∑
j=1

V art [Et+j−1 [m̂t+j ]]︸ ︷︷ ︸
SDF convexity term

Which implies that:
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RTPτ,t ∼= − 1
τ

∑τ−1
j=1

∑τ
k=j+1 Covt [m̂t+j , m̂t+k]− 1

2τ

∑τ
j=1 V art [Et+j−1 [m̂t+j ]]

Therefore the real term premium depends on the autocorrelation structure of the SDF and a convexity
term.

(ii) Pricing Nominal Bonds:

Taking a second order approximation to equation (2) I obtain:

(
iτ,t − iτ

)
= − 1

τ

∑τ
j=1Et [m̂t+j ] + 1

τ

∑τ
i=1Et [π̂t+j ]

− 1
2τ V art

[∑τ
j=1 m̂t+j

]
− 1

2τ V art

[∑τ
j=1 π̂t+j

]
+ 1
τCovt

[∑τ
j=1 m̂t+j ,

∑τ
j=1 π̂t+j

]
+O

(
ε3
)

Combining this equation with equation (18) yields:

(
iτ,t − iτ

)
= (rτ,t − rτ ) + 1

τ

∑τ
i=1Et [π̂t+j ]

− 1
2τ V art

[∑τ
j=1 π̂t+j

]
+ 1

τCovt

[∑τ
j=1 m̂t+j ,

∑τ
j=1 π̂t+j

]
+O

(
ε3
)

which is a Fisher-type equation extended to take into account the risk premia implied in long-term bond
prices. The nominal term premium according to the definition in the text can therefore be written as:

NTPτ,t ∼= RTPτ,t + Convexityπτ,t

+ 1
τCovt

[∑τ
j=1 m̂t+j ,

∑τ
j=1 π̂t+j

]
− 1

τ

∑τ
j=1Et {Covt+j−1 [m̂t+j , π̂t+j ]}

where the first moments of inflation drop out due to the law of iterated expectations. The inflation
convexity term is given by

Convexityπτ,t ≡ − 1
τ

∑τ−1
j=1

∑τ
k=j+1 Covt [π̂t+j , π̂t+k]− 1

2τ

∑τ
j=1 V art [Et+j−1 [π̂t+j ]]

B MS-VAR Parameter Estimates
The parameter estimates for the best fitting MS-VAR model from Section 5 together with their respective
standard errors (in parenthesis) are reported below:

P̂ =

 0.993
(0.007)

0.007

0.033 0.967
(0.023)

 Φ̂0(1) =


0.01
(0.14)
3.09
(0.59)
−0.17
(0.13)

 Φ̂0(2) =


0.80
(0.65)
9.15
(1.61)
0.44
(0.81)



Φ̂1(1) =


0.76
(0.06)

0.04
(0.02)

0.10
(0.03)

−0.53
(0.24)

0.27
(0.08)

0.14
(0.14)

0.08
(0.05)

0.07
(0.02)

0.93
(0.03)

 Φ̂1(2) =


0.77
(0.09)

−0.02
(0.05)

0.07
(0.06)

−0.47
(0.23)

0.01
(0.13)

−0.39
(0.14)

0.15
(0.12)

0.03
(0.07)

0.82
(0.07)



Σ̂(1) =

 0.36 −0.18 0.04
−0.18 5.75 0.39
0.04 0.39 0.28

 Σ̂(2) =

 1.51 −1.22 0.21
−1.22 9.32 0.99
0.21 0.99 2.55


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C Level Risks Without Assumption 2
I show in this appendix that without imposing assumption 2 from Section 4.1 level risks become
substantially less tractable. For the case of τ = 2, I showed in Section 4.2 it is easy to see that the level
risk is given by:

LR
(s)
τ=2 =

ps1E
[
it+1/

st=s
st+1=1

]
+ps2E

[
it+1/

st=s
st+1=2

]
−E[it/st=s]

2

where LR(s)
τ ≡ E [iτ,t − it/st = s]− E [NTPτ,t/st = s] is the level risk at the 2-period horizon conditional

on regime s. For the case τ = 3 the expressions get significantly more complicated. Start from the 3-period
slope definition:

i3,t − it = it+E[it+1/Ωt]+E[it+2/Ωt]
3 − it +NTP3,t

Taking conditional expectations on both side I get:

E [i3,t − it/st] = −2E[it/st]+E[E[it+1/Ωt]/st]+E[E[it+2/Ωt]/st]
3 + E [NTP3,t/st]

= −2E[it/st]+E[it+1/st]+E[it+2/st]
3 + E [NTP3,t/st]

where the second equality follow from the law of iterated expectations. But the conditionally expected
short-rates can be written as:

E [it+1/st = s] = ps1E
[
it+1/

(st,st+1)
=(s,1)

]
+ ps2E

[
it+1/

(st,st+1)
=(s,2)

]
and

E [it+2/st = s] = ps1p11E
[
it+2/

(st,st+1,st+2)
=(s,1,1)

]
+ ps2p21E

[
it+2/

(st,st+1,st+2)
=(s,2,1)

]
+ps1p12E

[
it+2/

(st,st+1,st+2)
=(s,1,2)

]
+ ps2p22E

[
it+2/

(st,st+1,st+2)
=(s,2,2)

]
As a result the 3-period level risk becomes:

LR
(s)
τ=3 = 1

3


−2E [it/st] + ps1E

[
it+1/

st=s
st+1=1

]
+ ps2E

[
it+1/

st=s
st+1=2

]
+ps1p11E

[
it+2/

(st,st+1,st+2)
=(s,1,1)

]
+ ps2p21E

[
it+2/

(st,st+1,st+2)
=(s,2,1)

]
+ps1p12E

[
it+2/

(st,st+1,st+2)
=(s,1,2)

]
+ ps2p22E

[
it+2/

(st,st+1,st+2)
=(s,2,2)

]


I will stop at τ = 3, but for the usual long-term maturities of interest such as τ = 3 or τ = 40 it is easy to
see that the level risk expressions become prohibitively large. In other words, without assumption 2 the
number of different conditional expectations terms one needs to keep track of in order to compute an
expression for the level risk increases very fast with maturity.

D The New-Keynesian Model —Detailed Derivations
This appendix reports some more detailed derivations for the MS-DSGE model described in Section 6.1.
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D.1 Households
Assuming u

(
Ct(h), Nt(h)

)
≥ 0 everywhere, the representative household solves the following problem:

V (Xt) = maxCt,Nt,Xt+1

{
u (Ct, Nt) + β

[
EtV (Xt+1)

1−α
] 1
1−α

−Λt

[
PtCt + EtM̃t,t+1Xt+1 −Xt − PtWtNt −Dt

]}
Letting V (Xt) ≡ Vt, I take first order conditions (FOCs) to get:

ΛtPt = ∂u(Ct,Nt)
∂Ct

−ΛtPtWt = ∂u(Ct,Nt)
∂Nt

ΛtM̃t,t+1 = β
(
EtV

1−α
t+1

) α
1−α V −αt+1

∂Vt+1
∂Xt+1

where the envelope condition is given by ∂V (Xt)
∂Xt

= Λt. Note that the optimized value function is given by

Vt = u (Ct, Nt) + β
[
EtV

1−α
t+1

] 1
1−α . Therefore, substituting the Envelope Condition into the FOCs I get:

ΛtPt = ∂u(Ct,Nt)
∂Ct

−ΛtPtWt = ∂u(Ct,Nt)
∂Nt

ΛtM̃t,t+1 = β
(
EtV

1−α
t+1

) α
1−α V −αt+1Λt+1

Combining the first and second FOCs above yields the labor supply equation χ Nηt
C−γ
t

= Wt, whereas

combining the first and third FOCs yields the nominal stochastic discount factor:

M̃t,t+1 = β

(
Vt+1

(EtV 1−α
t+1 )

1
1−α

)−α ∂u(Ct+1,Nt+1)
∂Ct+1

∂u(Ct,Nt)
∂Ct

1
Πt+1

Imposing u (Ct, Nt) = ebt
(
C1−γ
t

1−γ − χ
N1+η
t

1+η

)
one obtains equations (12) in the text, where

M̃t,t+1 ≡Mt,t+1/Πt+1.

D.2 Firms

(a) Final Good Producers:
The representative final good producer chooses Yt(f) for f ∈ [0, 1] to solve:

maxYt(f) PtYt −
∫ 1

0
Pt(f)Yt(f)df s.t. Yt =

(∫ 1

0
Y

1
1+λt

t(f) di

)1+λt

The first order condition can be seen as the demand curve for the differentiated good f , i.e.

Yt(f) =
(
Pt(f)
Pt

)− 1+λt
λt

Yt. Zero-profit in the final good sector implies that Pt =

(∫ 1

0
P
− 1
λt

t(i) di

)−λt
.

(b) Intermediate Good Producer:
Since capital is fixed, the real marginal cost of each firm f is given by Wt divided by the marginal product
of labor, i.e. MCt(f) = Wt

(1−θ)AtK
θ
N−θ
t(f)

. Using the demand for Yt(f), the real marginal cost of firm f can be

written as:

MCt(f) =
(
Pt(f)
Pt

)− θ
1−θ

1+λt
λt

[
1

(1− θ)K
θ

1−θ

Wt

At

(
Yt
At

) θ
1−θ
]

︸ ︷︷ ︸
≡MCt

where MCt represents the average real marginal in the intermediate good sector. In period t each firm f
faces the following price-setting problem:
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maxPt(f) Et

{∑∞
j=0Mt,t+j

Pt
Pt+j

[
Pt+j(f)Yt+j(f) − Pt+jWt+jNt+j(f) − ξ

2

(
Pt+j(f)
Pt+j−1(f)

1
Π
− 1
)2

Pt+jYt+j

]}

subject to Yt+j(f) = At+jK
θ
N1−θ
t+j(f) and Yt+j(f) =

(
Pt+j(f)
Pt+j

)− 1+λt+j
λt+j

Yt+j , where Mt,t+j is the real SDF

between periods t and t+ j. The FOC with respect to Pt(f) is:[(
1− 1+λt

λt

)(
Pt(f)
Pt

)− 1+λt
λt Yt

Pt
+ 1+λt

λt

(
Pt(f)
Pt

)− 1+λt
λt

1
1−θ−1

MCt
Yt
Pt
− ξ

(
Pt(f)
Pt−1(f)

1
Π
− 1
)

1
Pt−1(f)

1
Π
Yt

]
+Et

{
Mt+1

[
ξ
(
Pt+1(f)
Pt(f)

1
Π
− 1
)
Pt+1(f)
P 2
t(f)

1
Π
Yt+1

]}
= 0

where to simplify notation I let Mt+1 ≡Mt,t+1.

D.3 Market Clearing Conditions

(a) Symmetric Equilibrium:
Since firms in the intermediate good sector are identical in every aspects, I can now impose the condition
for a symmetric equilibrium Pt(i) = Pt∀i to get:

MCt = 1
1+λt

+ λt
1+λt

ξ
(

Πt
Π
− 1
)

Πt
Π
− λt

1+λt
Et

{
Mt+1

[
ξ
(

Πt+1
Π
− 1
)

Πt+1
Π

Yt+1
Yt

]}
(b) Labor Market Clearing Condition:
The labor market clears when:

Nt ≡
∫ 1

0
Nt(f)df =

(
Yt

AtK
θ

) 1
1−θ ∫ 1

0

(
Pt(f)
Pt

)− 1+λt
λt(1−θ)

df

Solving the last expression for Yt one gets Yt =

[∫ 1

0

(
Pt(f)
Pt

)− 1+λt
λt(1−θ)

df

]−(1−θ)

AtK
θ
N1−θ
t , where the term

in square brackets is the index of price dispersion across firms. Under Rotemberg (1982) adjustment costs,
all firms charge the same price and therefore this index is equal to one so that aggregate output follows
Yt = AtK

θ
N1−θ
t .

(c)Final Goods Market:
The goods market clearing condition is simply Yt = Ct +Gt + δK.

E The Extended Non-Linear System
This appendix describes in detail the equations that form the extended system as in equation (16) from
Section 6.1.3. For s ∈ {1, 2}:

1: Household’s Preferences

Vt(s) =
C1−γ
t(s)

1−γ − χ
N1+η
t(s)

1+η + β
{
ps1E

[
V 1−α
t+1(1)/Ω

−s
]

+ ps2E
[
V 1−α
t+1(2)/Ω

−s
]} 1

1−α

2: Labor Supply

Wt(s) = χ
Nη
t(s)

C−γ
t(s)

3: Short-term Nominal Bond Euler Equation

e−it(s) = ps1E

β [ Vt+1(1)(
ps1E

[
V 1−α
t+1(1)

/Ω−s
]
+ps2E

[
J1−α
t+1(2)

/Ω−s
]) 1

1−α

]−α (
Ct+1(1)
Ct(s)

)−γ
1

Πt+1(1)
/Ω−s


+ps2E

β [ Vt+1(2)(
ps1E

[
V 1−α
t+1(1)

/Ω−s
]
+ps2E

[
V 1−α
t+1(2)

/Ω−s
]) 1

1−α

]−α (
Ct+1(2)
Ct(s)

)−γ
1

Πt+1(2)
/Ω−s


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4: Optimal Pricing Equation in the Intermediate Sector

MCt(s) = 1
1+λt

+ ξ λt
1+λt

(
Πt(s)

Π
− 1
)

Πt(s)

Π

−ps1 λt
1+λt

E

β [ Vt+1(1)(
ps1E

[
V 1−α
t+1(1)

]
+ps2E

[
V 1−α
t+1(2)

]) 1
1−α

]−α (
Ct+1(1)
Ct(s)

)−γ [
ξ
(

Πt+1(1)

Π
− 1
)

Πt+1(1)

Π

Yt+1(1)
Yt(s)

]
/Ω−s


−ps2 λt

1+λt
E

β [ Vt+1(2)(
ps1E

[
V 1−α
t+1(1)

]
+ps2E

[
V 1−α
t+1(2)

]) 1
1−α

]−α (
Ct+1(2)
Ct(s)

)−γ [
ξ
(

Πt+1(2)

Π
− 1
)

Πt+1(2)

Π

Yt+1(2)
Yt(s)

]
/Ω−s


5: Real Marginal Cost

MCt(s) = 1

(1−θ)K
θ

1−θ

Wt(s)

At

(
Yt(s)
At

) θ
1−θ

6: Monetary Policy Rule
it(s) = log Π

β + φπ(s)

(
πt(s) − π

)
+ φy(s)

(
yt(s) − y

)
7: Market Clearing Condition in the Final Good Sector
Yt(s) = Ct(s) +Gt + δK

8: Market Clearing Condition in the Labor Market
Yt(s) = AtK

α
N1−α
t(s)

9: No-Arbitrage Bond Prices

Bτt(s) = ps1E

β [ Vt+1(1)(
ps1E

[
V 1−α
t+1(1)

]
+ps2E

[
V 1−α
t+1(2)

]) 1
1−α

]−α (
Ct+1(1)
Ct(s)

)−γ
1

Πt+1(1)
Bτ−1
t+1(1)/Ω

−s


+ps2E

β [ Vt+1(2)(
ps1E

[
V 1−α
t+1(1)

]
+ps2E

[
V 1−α
t+1(1)

]) 1
1−α

]−α (
Ct+1(2)
Ct(s)

)−γ
1

Πt+1(2)
Bτ−1
t+1(2)/Ω

−s


for τ = 1, ..., T
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