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Three large and nationally representative datasets (NCDS, N=5225, NLSY′79,N=7598 and Project Talent,N=
76,150) are here examined in order to determine if models incorporating negative quadratic effects of IQ on fer-
tility (which would indicate the presence of stabilizing phenotypic selection) improve model fit, relative to ones
that only consider linear effects (which indicate directional phenotypic selection). Also consideredwere possible
interactions among these terms and sex and race. For two datasets (NCDS and NLSY′79) the best fitting models
did not include quadratic terms, however significant sex*IQ and race*IQ interactions were found respectively.
Only in Project Talent did the inclusion of a quadratic effect (along with IQ*sex and IQ2* sex interactions) yield
the best-fitting model. In this instance a small magnitude, significant negative quadratic termwas found in addi-
tion to a largermagnitude linear term. Post hocpower analysis revealed that powerwas lacking in the two smaller
samples (NCDS and NLSY′79) to detect the quadratic term, however the best fitting and most parsimonious
models selected for these datasets did not include the quadratic term. The quadratic termswere furthermore sev-
eral times smaller in magnitude than the linear terms in all models incorporating both terms. This indicates that
stabilizing phenotypic selection is likely only very weakly present in these datasets. The dominance of linear ef-
fects across samples therefore suggests that phenotypic selection on IQ in these datasets is principally directional,
although the magnitude of selection is relatively small, with IQ explaining at most 1% of the variance in fertility.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

A common assumption in studies examining the negative associa-
tion between fertility and IQ in contemporary populations is that the re-
lationship between the two can best be described using a linear term,
whereby fertility (the numbers of offspring produced) scales negatively
as a function of level of IQ. On this basis it has been argued that IQ, or at
least its more heritable variance components, should be declining over
time – consistent with the action of directional phenotypic selection (i.e.
Lynn, 2011; Meisenberg, 2010; Meisenberg & Kaul, 2010; Woodley of
Menie, Figueredo, Dunkel, & Madison, 2015; Reeve, Lyerly, & Peach,
2013; Vining, 1982, 1995). The possibility that there may be indications
of non-directional phenotypic selection in the association between trait-
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levels and fitness outcomes (i.e. the genetic contribution made by indi-
viduals to subsequent generations, as measured by fertility) is seldom
considered in studies of human populations however (Stearns, Byars,
Govindaraju, & Ewbank, 2010, p.6). To the best of our knowledge, and
consistentwith this observation, no studies on the relationship between
IQ and fertility have explicitly considered the possibility of non-direc-
tional selection operating on IQ.

In the case of IQ, there are indications that among those that fall into
the intellectually disabled (ID) range (i.e. IQ ≤ 70), fertility may in fact
scale positively with IQ (e.g. Meisenberg, 2010; Meisenberg & Kaul,
2010; Vining, 1995), however among thosewith higher IQ, the relation-
ship becomes negative. The apparent sharp drop-off in fertility among
those whose IQ is lower than the fitness optimum, might specifically
be consistent with the operation of purifying selection (i.e. selection
against deleterious mutations) - an important cause of ID-range IQ
being rare de novomutationswith deleterious effects on cognitive func-
tioning (Rauch et al., 2012). This suggests that the relationship between
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IQ and fertilitymay bemore complex than is currently assumed in stud-
ies examining the linear relationship between the two.

The Chicago School approach to categorizing and quantifying different
types of phenotypic selection (Kingsolver & Pfennig, 2007; Lande, 1979;
Lande & Arnold, 1983; Stearns et al., 2010) recommends the use of linear
and quadratic terms to differentiate between directional and non-direc-
tional formsof selection. There are two categories of non-directional selec-
tion; stabilizing selection (where selection promotes the fitness of the
mean of the trait-distribution) and disruptive selection (where selection
acts to promote thefitness of the extremes of the distribution). The former
non-directional selection type can be captured via thefinding of a negative
quadratic (inverse U-shaped) effect of trait level on fitness outcomes,
whereas the latter can be captured via the finding of a positive quadratic
(U-shaped) effect. Proponents of this approach sometimes use the term
quadratic selection to refer collectively to the two forms of non-directional
selection (e.g. Kingsolver & Pfennig, 2007).

Virtually no traits are purely under one or the other form of selection.
In most cases selection is mixed, however one type of selection will typ-
ically predominate. In instances where the dominant selection pressure
is directional (i.e. linear term N quadratic term), the optimum trait
level will be skewed towards one or the other extremes (depending on
the direction of the selection), with a sharp drop-off in fitness when
the optimum level is exceeded, whereas in the case of dominant qua-
dratic selection (i.e. quadratic term N linear term), the optimum trait
levels will either correspond to the population mean, or to the extremes
of the distribution, depending on the direction of the quadratic selection
(Kingsolver & Pfennig, 2007). In the case of IQ, it is expected that the lin-
ear effect should predominate however there may be a weaker negative
quadratic effect of IQ on fertility present in sufficiently population repre-
sentative datasets, owing to the aforementioned finding of positive asso-
ciations between IQ and fertility among those with ID range levels of the
trait.

To test for the presence of possible stabilizing selection in the IQ-fer-
tility relationship, the degree to which the addition of quadratic effects
enhances model fit once the linear component and other covariates
have been included, will here be examined utilizing three, large and
population representative samples from the US and UK.
2. Methods

2.1. Data

Three large, population representative datasets (National Child De-
velopment Study, National Longitudinal Survey of Youth′79 and Project
Talent), all of which have a) been utilized in previous studies examining
the negative association between fertility and measures of cognitive
ability (i.e. Kanazawa, 2014; Meisenberg, 2010; Meisenberg & Kaul,
2010; Peach, Lyerly & Reeve, 2013), and b) contain data on a broad
array of cognitive ability measures, spanning a wide range of domains,
were selected in order to determine the presence of non-linearity in
the IQ-fertility relationship. Two of the three studies selected (NCDS
andNLSY′79) employed cohorts that had either completed their fertility
(i.e. finished producing offspring), or were very near to having done so.
In modern Western countries fertility is typically completed between
the ages of 40 and 50 (with the onset of menopause) in women
(Monte & Ellis, 2014). In the case of men, while those over the age of
50 are able to conceive, in practice the vast majority (96.5% to 97.5%)
of males in Western countries complete their fertility by 45 (Fieder &
Huber, 2007; Boschini, Håkanson, Rosén, & Sjögren, 2011). The partici-
pants in the third dataset (Project Talent) were not at completed fertil-
ity (they were in their late teens to early 30s) however.

What follows is a more detailed description of the three datasets
employed in the present study. The particulars of these datasets (i.e.
the variable codes, details of variable construction and participant ex-
clusion criteria etc.) are included in the Appendix:
i) National Child Development Study (NCDS) (UK): A prospective
longitudinal study that has tracked an entire population (born in
Britain during the week of 03–09 March 1958) for more than
half a century. The respondents were interviewed in eight
sweeps (Sweep 1=age 7 to Sweep 8=age 50–51). Various cog-
nitive ability measures were administered to NCDS respondents
at ages 7 (Sweep 1), 11 (Sweep 2), and 16 (Sweep 3). At age 7,
the respondents took four tests: the Copying Designs Test, the
Draw-a-Man Test, the Southgate Group Reading Test and the
Problem Arithmetic Test. At age 11, they took a further five
tests: the Verbal General Ability Test, the Nonverbal General
Ability Test, the Reading Comprehension Test, the Mathematical
Test, and the Copying Designs Test. At age 16, they took two ad-
ditional cognitive tests: the Reading Comprehension Test and
Mathematics Comprehension Test. Fertility data were obtained
among the subset of individuals aged between 41.5 and
50.5 years (Sweeps 6 to 8;M=48.77, SD=3.31). For themajor-
ity of participants (76.29%), Sweep 8 (age 50.5) fertility values
were available. In 23.71% of instances, participants only report
fertility in Sweep 6 (age 41.5; 65.7%) or 6 and 7 (age 46.5;
34%), in which case the values from the next most recent Wave
were used instead. In total, data were available for 2492 White
males and 2733 White females. Non-White minorities are rare
in NCDS (2.2% of respondents); these along with those for
whom race is not reported were excluded from the analysis.
For further information on this dataset see Kanazawa (2014).

ii) National Longitudinal Survey of Youth 1979 (NLSY′79) (US): All
subjects were aged between 14 and 22 (born between 1957
and 1965) at the inception of the study in 1979. Data on cogni-
tive ability were obtained using the Armed Services Vocational
Aptitude Battery, which includes five academic tests (Science,
Arithmetic, Word Knowledge, Paragraph Comprehension, Math-
ematics Knowledge), three vocational tests (Auto & Shop Info,
Mechanical Comprehension, Electronics Info), and two speeded
tests (Numerical Operations, Coding Speed). Fertility data (num-
ber of children) were collected among those aged between 39
and 47 years in 2004 (M = 42.54, SD = 2.24). Data were avail-
able for 3812 males and 3786 females, and are available for
three different racial groups (Blacks N = 2195, Hispanics N =
1216 and Whites N = 4187). For further information on this
dataset seeMeisenberg (2010) andMeisenberg and Kaul (2010).

iii) Project Talent (US): Cognitive ability datawere collected between
1960 and 1963 from among a large sample of students enrolled
in high-school aged between 8 and 21 years (born between
1939 and 1952), utilizing the Project Talent Ability Battery,
which evaluates fluid intelligence (Abstract Reasoning, Arith-
metic Reasoning, Mechanical Reasoning, Reading Comprehen-
sion, 2D Rotation, 3D Rotation, and Table Reading) and
crystallized intelligence (Vocabulary, Biological Sciences Knowl-
edge, Social Sciences Knowledge, and Literature Knowledge).
Fertility data were collected among those aged from 19 to 32
(M=26.87, SD=1.24) in an 11 year follow-up study conducted
between the years 1971 and 1974. Data are available for 36,001
males and 40,149 females, and are available for three different
racial groups (Asians N = 420, Blacks N = 1976 and Whites
N = 73,754). For further information on this dataset see Peach
et al. (2013) and Reeve et al. (2013).
2.2. Covariates and model selection

We computed an IQ score via extraction of the principal axis factor
from the set of tests within each sample. As count data were used for
the dependent variable (numbers of children), zero inflated negative bi-
nomial regression (NLSY′79 and Project Talent) and zero inflated



Table 2
Model parameters for the zero inflated Poisson regression analysis of NCDS (N = 5225).

Predictor b (s.e.) NDF, DDF

IQ 0.004a (0.016) 1,5219
Female (Sex) 0.052⁎ (0.021) 1,5219
IQ*Female −0.073⁎ (0.021) 1,5219
Age 0.003 (0.003) 1,5219

⁎ p b 0.05.
a Effect estimated for men as the comparison group. Relative effects for women are

displayed in the IQ*Female interaction term.

Table 3
Model parameters for the zero inflated Negative Binomial Regression analysis of NLSY′79
(N = 7598).

Predictor b (s.e.) NDF, DDF

IQ −0.029a,⁎ (0.014) 1,7590
Black (Race) 0.067⁎ (0.025) 1,7590
Hispanic (Race) 0.137⁎ (0.027) 1,7590
IQ*Black −0.072⁎ (0.025) 1,7590
IQ*Hispanic −0.147⁎ (0.026) 1,7590
Age 0.011⁎ (0.004) 1,7590

⁎ p b 0.05.
a Effect estimated for Whites as the comparison group. Relative effects for Blacks and

Hispanics are displayed in the interaction terms.

Table 4
Model parameters for the Zero Inflated Negative Binomial Regression analysis of Project
Talent (N = 76,150).

Predictor b (s.e.) NDF, DDF

IQ −0.165a,⁎ (0.005) 1,76142
IQ2 −0.034⁎ (0.004) 1,76142
Female (Sex) 0.202⁎ (0.008) 1,76142
IQ*Female 0.022⁎ (0.007) 1,76142
IQ2*Female 0.004 (0.005) 1,76142
Age 0.063⁎ (0.003) 1,76142

⁎ p b 0.05.
a Effect estimated for men as the comparison group. Relative effects for women are

displayed in the IQ*Female interaction term.
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Poisson regression (NCDS) analyses were performed using Proc
Genmod in SAS 9.3. Poisson regressions were used in place of negative
binomial regression in instances were convergencewas an issue, as rec-
ommended by Silvestrini et al. (2011). A zero order Poisson model was
selected in this instance as the NCDS data contained indications of
overdispersion (variance N mean).

To estimate possible quadratic effects of IQ upon fertility, each IQ-
score was first standardized (thus mean-centered), with the quadratic
term being computed from the standardized first order term, consistent
with the recommendations of Cohen, Cohen, West, and Aiken (2003).
Centering helps enhance themeaning of the first order regression coef-
ficients when multiplicative terms are entered into a regression model
and also helps to reduce non-essential multi-collinearity.

A potentially important confound stems from the fact that the Pro-
ject Talent and NLSY′79 cohorts were not of uniform age evaluation,
this might be problematic as average numbers of children increase as
both men and women approach completed fertility. While the NCDS
participants were all born in the same year (1958), fertility data were
obtained from the participants at three different ages 41.5 (Wave 6),
46.5 (Wave 7) and 50.5 (Wave 8), thus age may still be a factor in
predicting fertility. The effects of age can be controlled by entering it
into each model as an independent predictor of fertility.

Given that there exist both sex and race differences in the apparent
strength of the association between IQ and fertility (e.g. Meisenberg,
2010; Meisenberg & Kaul, 2010; Vining, 1982, 1995), more complex
models (involving sex and race differences in fertility, IQ2, and interactions
of sex and race with IQ and IQ2) were constructed in order to determine
whether they better explained the variance in fertility thanwhen it is sim-
ply predicted with IQ and age. Several models, each with increasing com-
plexitywere tested. Firstwe added sex and race and their interactionwith
IQ. The subsequent andmore complexmodels also included IQ2 and its in-
teractions with sex and race. Finally, the most complex models combined
all terms included in all previous models. Model fit to the data was
assessed with the Akaike (1973) Information Criterion (AIC) and was
compared against alternatives with Akaike weights (i.e. the relative likeli-
hood of a model, on a scale of 0 to 1, compared to the alternative models
tested; Wagenmakers & Farrell, 2004). The results are presented in Table
1. In each sample, themodel with the highest Akaikeweight was retained
as the better fitting model for the data, except in instances where there
was no significant difference in fit between two values, in which case
the more parsimoneous model was selected.
3. Results

3.1. Main analyses

Tables 2, 3 and 4 present the selected models showing the results of
the regression analyses for each sample (NCDS,NLSY′79 and Project Tal-
ent respectively).
Table 1
Comparison of fit amongmodels including different possible predictors and combinations
of predictors of fertility for each of the datasets.

Models NCDS
NLSY′
79

Project
talent

IQ, age b0.001 0.000 b0.001
IQ, age, sex, IQ*sex 0.581 0.000 b0.001
IQ, age, sex, IQ*sex, IQ2, IQ2*sex 0.419a 0.000 N0.999
IQ, age, race, IQ*race 0.483 b0.001
IQ, age, race, IQ*race, IQ2, IQ2*race 0.486a b0.001
IQ, age, sex, race, IQ*sex, IQ*race, IQ2, IQ2*sex,
IQ2*race

0.031 b0.001

Note: The Akaike weight for the model that was retained for each sample is bolded.
a The difference between the two models (computed based on their respective log

likelihoods) is not statistically significant; thus themodelwith fewer assumptions (i.e. the
more parsimonious model) was selected.
3.2. Post hoc power analyses

Post hoc power analyses were conducted using G*Power v.3.1 (Faul,
Erdfelder, Lang, & Buchner, 2007) in order to determine the degree to
which analyses involving the two smaller samples (NCDS and NLSY′
79) had the power to detect quadratic terms, once the other predictors
are considered. In the case of NCDS, the regression model that included
the following covariates: IQ, age, sex, IQ*sex, IQ2, IQ2*sex, yielded an IQ2

β1 of −0.018, which given a sample size of 5225, yielded a power esti-
mate (1-β error probability) of 0.240 to detect a significant quadratic ef-
fect. In order to detect a significant quadratic effect with a power
estimate of N0.80 (considered high power), the sample size would
have needed to have been ≥26,200. In the case of NLSY′79, the regres-
sionmodel that included the following covariates: IQ, age, race, IQ*race,
IQ2, IQ2*race, yielded an IQ2 β of −0.007, which given a sample size of
7598, yielded a (very low) power of 0.095 to detect a significant effect.
In order to detect a significant effect with a power estimate of N0.80, a
sample size of ≥157,000 would be needed.

3.3. Visualizing the IQ-fertility relationship

As was mentioned in the introduction, previous studies (e.g.
Meisenberg, 2010) have considered the IQ-fertility relationship across
a large range of IQ values. In some studies attempts have even been
1 These coefficients were computed from b values derived from the regression models
using the formula β = b(SDx/SDy).



Fig. 1. Scatter plot of numbers of children by IQ level (mean=100) (Full Sample, NCDS dataset,N=5225). The linear regression line is shown in red (Spearman's Rho=−0.042, p b 0.05).
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made to visualize the relationships using bar charts in which IQ is
binned based on deciles and the fertility of each IQ decile is represented
via the height of each bin. A higher resolutionmethod for visualizing the
IQ-fertility relationship involves generating scatter plots of the numbers
of children on the y-axis against the IQ of the participants on the x-axis
(Figs. 1, 2, and 3). These plots potentially allow for the density of fertility
as a function of participant IQ-level to be visualized. The IQ-scores from
each of the three datasets were standardized such that the mean score
on IQ was 100 and the standard deviation was 15 in all cases. Fertility
declines at the extremes of the distribution in all three datasets, which
would be consistent with previous observations that those with very
low levels of IQ, especially values lower than 70, exhibit lower than av-
erage fertility. The positive (leftward) skew in fertility as a function of
level of IQ is especially visually prominent in the NLSY′79 dataset, con-
sistent with the finding that directional selection is the dominant mode
of phenotypic selection in these data. The gradient of directional selec-
tion in these graphs is illustrated via the inclusion of a linear regression
line through the scatter and the computation of Spearman's Rho corre-
lations for each sample.
4. Discussion

The pattern of magnitudes among the Spearman's Rho correlations
computed for the combined samples in Fig.s 1, 2 and 3 are consistent
with the expectation that the strength of the negative IQ-fertility rela-
tionship declines as fertility reaches completion, with the biggest
value of Rho being found among the youngest cohort (Project Talent),
and the smallest being found among the oldest (NCDS). This trend is
driven by the tendency for higher-IQ individuals to postpone fertility
Fig. 2. Scatter plot of numbers of children by IQ level (mean = 100) (Full Sample, NLSY’79 da
p b 0.05).
untill later in life, which leads to them registering as childless when
younger cohorts are examined (Vining, 1995).

In the regression analyses, the level of IQ had no effect on fertility
among men in the NCDS dataset, whereas a negative effect was ob-
served among females. Moreover, females had significantly more chil-
dren on average than males. In the NLSY′79 dataset, among the White
reference sample IQ had a negative effect on fertility. The best-fitting
model did not include IQ2, sex differences or interactionswith sex; how-
ever, the negative effect of IQ on fertility was strongest among His-
panics, intermediate among Blacks, and weakest among Whites.
Hispanics also had on average the largest numbers of children, Blacks
were intermediate, and Whites had the fewest. Finally, in the Project
Talent dataset, among themale reference population, IQwas associated
with a negative effect on fertility. This was significantly but slightly
weaker (as indicated by the positive term), among females, and the
best fitting model did not include race differences or interactions. As
with NCDS, females had significantlymore children thanmales, howev-
er the effectwas stronger than inNCDS,which is consistentwith the lat-
ter population being at completed fertility. This may furthermore help
to account for the observation that the sign of the IQ*Female interaction
was negative in the case of NCDS vs. positive in the case of Project Tal-
ent, as higher-IQ males take longer to complete their fertility and may
ultimately produce proportionately more children than females of
equivalent IQ, by virtue of beingmore willing to engage in hypogamous
mating (Johnson, McGue & Iacono, 2012), which would have the effect
of attenuating the apparent magnitude of the correlation between IQ
and fertility at completion in this sex.

A weak but statistically significant negative quadratic effect of IQ on
fertility was also found in Project Talent, indicating that those with in-
termediate levels of IQ tended to have slightly more children than
taset, N = 7598). The linear regression line is shown in red (Spearman's Rho= −0.115,



Fig. 3. Scatter plot of numbers of childrenby IQ level (mean=100) (Full Sample, Project Talent dataset,N=76,150). The linear regression line is shown in red (Spearman'sRho=−0.192,
p b 0.05).

NCDS

Variable codes Description

Cognitive ability measures
N457 Copying designs test (Sweep 1)
N1840 Draw a Man Test (Sweep 1)
N92 Southgate group reading test (Sweep 1)
N90 Problem arithmetic test (Sweep 1)
N914 Verbal general ability test (Sweep 2)
N917 Nonverbal general ability test (Sweep 2)
N923 Reading comprehension test (Sweep 2)
N926 Mathematical test (Sweep 2)
N929 Copying designs test (Sweep 2)
N2928 Reading comprehension test (Sweep 3)
N2930 Mathematics comprehension test (Sweep 3)

Sociodemographics
N1612 Sample race/ethnicity
N622 Sample sex
Custom variable 1 Number of biological children (Sweep 6)
Custom variable 2 Number of biological children (Sweep 7)
Custom variable 3 Number of biological children (Sweep 8)
Custom variable 4 Sweep 6, 7 and 8 participant ages

Project talent
Fluid intelligence
R290 Abstract reasoning
R311 Arithmetic reasoning,
R270 Mechanical reasoning
R250 Reading comprehension

(continued on next page)
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others all else being equal, this termwas not observed to interact signif-
icantly with sex however.

It is important to note that whilst present in samples for which the
analyses had the requisite power (i.e. Project Talent), consistent with
the expectation that there should be some stabilizing selection operat-
ing on IQ, the extremely small magnitude of the negative quadratic
term nevertheless implies that any gradient of stabilizing selection op-
erating on IQ is very weak. Consistent with this, IQ explained 15.77
times more variance in fertility than IQ2. Post hoc power analyses re-
vealed that given the very small effect size of the quadratic term in
the NLSY’79 and NCDS samples, only samples of 26,200 and 157,000 in-
dividuals respectively would have confidently yielded a significant qua-
dratic term. It is important to note furthermore that theNCDS andNLSY′
79 models incorporating quadratic effects of IQ on fertility and their
higher-order interaction with sex, while exhibiting equal goodness-of-
fit to models that excluded the terms, were nonetheless less parsimoni-
ous, thus were prima facie excluded from consideration.

The results of the regressions suggest that linear effects of IQ on fer-
tility (indicating directional selection) are predominant in these sam-
ples. This should not be taken to mean however, that the linear effect
of IQ has a large impact on fertility: in fact, even though it was consis-
tently identified across samples, its magnitude was weak, explaining
at most 1% of the variance in fertility.

Age also appears to have an independent and significant, but small
magnitude positive effect on fertility in NLSY′79 and Project Talent.
This is consistent with the observation that age and fertility should be
positively associated up to the point atwhich fertility is complete, fertil-
ity beingmuch closer to completion in NLSY′79, hence the smallermag-
nitude effect.

In summation, these findings indicate that a gradient of stabilizing
selection on IQ, whilst present, is weak, with the negative quadratic
term capturing it being of very small magnitude in the one model
where its inclusion boosted (rather than reduced) model fit, these find-
ings indicate that IQ is primarily under directional selection in modern
Western populations.

Finally, it is important to note that it has likely not always been the
case that directional selection favours lower IQ, as prior to 1800 poten-
tial proxies for IQ such as wealth and occupational status were positive-
ly predictive of reproductive success inWestern populations, suggesting
that historically, in theperiod leadingup to the Industrial Revolution, di-
rectional selection may actually have favoured higher IQ (as suggested
by the presence of positive correlations between cognitive ability prox-
ies such as occupational and social status and fertility inWestern popu-
lations living prior to the 19th century; Skirbekk, 2008). Furthermore,
no inferences can be drawn about the future of this relationship in
these populations from the present findings. There are certain indica-
tions that the strength of selection operating on IQ and its proxies
may have weakened in some Western populations (such as the UK
throughout the first half of the 20th century; Lynn, 2011), but not in
others (such as the USwhere the selection strength appears to be stable
over decades; Conley et al., 2016; Lynn & van Court, 2004, or in Sweden,
where the selection pressure operating on IQ shifted in direction from
positive to negative in the space of just a couple of decades; Madison,
Woodley ofMenie & Sänger, 2016) . In any case, the picturewith respect
to the future of these trends is unclear.
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Appendix. Codes and descriptions for variables used in the analyses.
R281 2D rotation
R282 3D rotation



(continued)

Variable codes Description

F420 Table reading

Crystallized intelligence
R102 Vocabulary
R108 Biological sciences knowledge
R105 Social sciences knowledge
R103 Literature knowledge

Sociodemographics
Race Sample race
Sex Sample sex
P331 Number of biological children
Age-SR Age

NLSY′79

Academic tests
R06150 Science
R06151 Arithmetic
R06152 Word knowledge
R06153 Paragraph comprehension
R06157 Mathematics knowledge

Vocational tests
R06156 Auto and shop information
R06158 Mechanical comprehension
R06159 Electronics information

Speed tests
R06154 Numerical operations
R06155 Coding speed

Sociodemographics
R00096 Sample race (S01Q30A)
R02148 Sample sex

Number of biological children ever born
T22177 (2008)
R02165 Age

Note: For Project Talent andNLSY′79, participantswere selected if they had complete data on
g, sex, race and fertility. For NCDS, participants were selected if they were White and had
complete data on IQ, sex, and fertility. In NCDS Sweep 6 fertility is derived from the total
numbers of children reported by respondents at Sweep 5, which was computed by going
through and summing the entire list of biological children that the respondents have ever
had up to that point. Adding to this the numbers of additional children reported by the
participants at Sweeps 7 and 8, yielded Sweep 7 and 8 fertility respectively. In NLSY′79, the
category of Hispanic was created by merging the Chicano, Cuban, Mexican, Mexican Ameri-
can, Puerto Rican, Other Hispanic and Other Spanish categories. The category of White was
created bymerging the American, English, French, German, Greek, Irish, Italian, Polish, Portu-
guese, Russian, Scottish and Welsh categories.
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