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Abstract

We investigate judgment aggregation by assuming that some formulas of the
agenda are singled out as premisses, and the Independence condition (formula-wise
aggregation) holds for them, though perhaps not for others. Whether premiss-based
aggregation thus de�ned is non-degenerate depends on how premisses are logically
connected, both among themselves and with other formulas. We identify necessary
and su¢ cient conditions for dictatorship or oligarchy on the premisses, and investigate
when these results extend to the whole agenda. Our theorems recover or strengthen
several existing ones and are formulated for in�nite populations, an innovation of this
paper. JEL identi�cation numbers: D70, D71.

Keywords: Premiss-based aggregation, judgment aggregation, impossibility theo-
rems, in�nite populations, majority voting

1 Introduction

Imagine that a group of individuals needs to form collective ("yes" or "no") judgments
on certain propositions, e.g., that smoking is harmful (a), smoking should be banned
in public places (b), if smoking is harmful, then it should be banned in public places
(a ! b), and so on. Assume further that the collective judgments are obtained by
aggregating the individual judgments - this is the judgment aggregation problem. A
natural approach consists in singling out those propositions - to be called premisses
- which are in some sense basic to the other judgments, aggregating them in some
way, and then see what eventually results for the others. We will assume that if a
formula p represents a premiss, a decision on p is made independently of all other
formulas, for instance, but not necessarily, by majority voting. By contrast, if '
represents a non-premiss, the decision on ' will typically take into account those
made on other formulas; for instance, though again not necessarily, ' or its negate
:' logically follows from the accepted premisses. In the smoking case, if only a and
a ! b count as premisses, they are subjected, say, to majority vote, while b follows
or does not follow, depending on the result of the poll. We call such an aggregation
procedure locally independent, because it limits the independence condition of logical
aggregation theory to a subset of formulas.

What is called a premiss-based procedure in this theory is not quite de�nite. When
it is discussed at all, it is construed in terms of typically several of the following
conditions: (i) premisses are subjected to a majority vote; (ii) they are logically
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independent from each other; (iii) if judgments are made for or against each premiss,
they entail judgments for or against each non-premiss; (iv) only one formula is not a
premiss; (v) the independence condition holds globally on the agenda. The present
aggregation functions, which require neither of these restrictions, can then be viewed
as an abstraction of the common meanings given to the premiss-based approach.

We ask whether and when locally independent aggregation functions are suitably
well-behaved. Our answers take the form of characterizing how the premisses should
be interrelated, both among themselves and with the other propositions. As an
innovation in the �eld, we allow the population to be in�nite, and show that neither
our, nor the existing impossibility results hold in this case if the possibility criterion is
not adapted to the new assumption. Depending on how thoroughly it is reformulated,
the negative results may or may not be upheld.

Our research was originally motivated by Mongin�s (forthcoming) requirement
that the aggregation function be independent on the propositional variables �a spe-
cial case of local independence. While we share the scepticism expressed in this paper
about taking separate votes on composite Boolean expressions �why should the deci-
sion on a disjunction a_ b care only about how the individuals judge a_ b, not about
how they judge the "building blocks" a and b? �, we do not take this as a reason to
restrict the independence condition to such a special case as the propositional vari-
ables. As the smoking example straightforwardly illustrates, a set of premisses may
both exclude some propositional variables and include some Boolean formulas, and
be nonetheless perfectly intuitive. When the logic includes non-Boolean connectives,
say the conditional logic operator of Dietrich (2007), the case for allowing compound
formulas is further strengthened.

Our results are general enough to cover Mongin�s theorem as a particular case.
They also cover several existing theorems, which correspond to another particular
case, in which every formula is a premiss; see, e.g., Dietrich and List (2007, forth-
coming), Dokow and Holzman (2005, 2006), Gärdenfors (2006), all connected with
Nehring and Puppe�s (2002) social-choice-theoretic investigation and inspired by List
and Pettit�s (2002) original analysis. We actually strengthen these results on di¤erent
scores, in particular showing how they can or cannot be extended to the novel case of
in�nite populations. Beside unifying a large chunk of the literature, our framework
and results make it possible to address unexplored sets or premisses, i .e, those which
consist neither of propositional variables, nor of the whole agenda, and these are the
truly salient cases for premiss-based aggregation.

2 The logic and the aggregative framework

By assumption, the propositions on which the individuals and society make judgments
can be expressed by formulas in some logical language; henceforth, we will treat
the latter as being themselves the objects of judgment. As in Dietrich (2007), we
do not specify the logical language entirely, and just impose general restrictions on
it; in this way, many well-known languages of either classical or non-classical logic
will be included without saying. Let L be the non-empty set of formulas of the
language. We may assume that L is inductively constructed from a given set P of
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propositional variables (p.v.), which may be �nite or in�nite, using a �nite number of
connectives, among which the negation symbol :; in addition, there may be symbols
of other Boolean connectives (^, _, !, $, standing for "and", "or", "implies", "is
equivalent to") as well as non-Boolean ones (e.g., a unary modal operator O standing
for "it ought to be that", or a binary modal operator standing ,! for "implies in the
counterfactual sense").1

A formula is a literal if it is a p.v. or the negate of a p.v., and molecular otherwise.
It is Boolean if all connectives it involves are Boolean. The Latin letters a; b; c::: will
be used for p.v., and the Greek letters '; ; �::: for formulas of any kind.

The logical language comes with a logic, which we capture by means of its notion
of consistency; entailment is a derivative notion in the present framework. Thus, by
assumption, all subsets S � L are classi�ed into consistent or inconsistent ones, and
by de�nition, S � L entails a formula ' 2 L - formally, S ` ' - if S [ f:'g is
inconsistent. A formula ' 2 L is a theorem if f:'g is inconsistent, a contradiction if
f'g is inconsistent, a contingent formula if both f:'g and f'g are consistent. Any
partition of 2L can serve as a primitive distinction between consistent and inconsistent
sets, provided it satis�es the following conditions:2

(L1) ; is consistent.
(L2) For all ' 2 L, f';:'g is inconsistent.
(L3) For all S � L and all ' 2 L, if both S [ f'g and S [ f:'g are inconsistent,

so is S.

(L4) If S � L is consistent, all its subsets are consistent; equivalently, if S � L is
inconsistent, all its supersets in L are inconsistent.

(L5) Every consistent S � L has a consistent superset T � L that contains a
member of each pair ';:' 2 L.

(L6) Every inconsistent set S � L has a �nite inconsistent subset S0 � S.
In fact, (L3) follows from (L4) and (L5), hence need not be assumed separately.

The conditions (L1)-(L3) already imply some standard properties of `, e.g., that if
S ` ' and S is consistent, so is S [ f'g, and that if S ` ' and S ` :', then
S is inconsistent. With (L4) added, other standard properties follow, in particular,
the converse of the last-mentioned implication and the monotonicity of `, i.e., the
property that if S ` ', then S [ T ` '.

In view of these logical properties, (L5) implies that any consistent S � L can be
extended to a maximal consistent T � L. It amounts to taking for granted a result
of elementary logic, Lindenbaum�s extension theorem, which is proved by means of
Zorn�s lemma.3

Aside from (L4), the most constraining assumption is (L6), which implies the
compactness of `, i.e., the property that if S ` ', there exists a �nite S0 � S such
that S0 ` '. The propositional calculus is compact, but probabilistic logics are
normally not, and not all modal logics are.4 Accordingly, we will always be careful

1Dietrich (forthcoming) analyses logical aggregation on agendas with subjunctive implications.
2Dietrich�s (2007) conditions are equivalent but take ` as primitive.
3See Chang and Keisler, 1973, p. 26, for a statement and proof of Lindenbaum�s theorem.
4Heifetz and Mongin�s (2001) system is an example, among many, of non-compactness in proba-

bilistic logic. While the most elementary modal logics are compact (see Chellas, 1980), those developed
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to say where (L6) occurs in our proofs, whereas we will use (L1)-(L5) and their many
implications without saying. The issue of compactness arises only if the relevant set
of formulas (i.e., the agenda as de�ned below) is in�nite, but this is a case that we
take to be relevant to logical aggregation.

When we say below that a logic is propositional, we mean that it includes the
standard axiomatization of the Boolean connectives, regardless of what else it con-
tains (e.g., an axiomatization of modal or probabilistic operators). We skip a formal
de�nition, as propositional logics play a role only in our examples.

The agenda contains the formulas on which judgments are passed. Formally, it is
any non-empty set � � L that contains only contingent formulas and takes the form
of a union of pairs f';:'g, where ' does not begin with :. From now on, when we
write ": " with  2 �, we mean the other element of the pair to which  belongs.
For any S � �, we put S� = f';:' : ' 2 Sg, and we call S negation-closed if
S = S�.

Elementary examples of agendas are � = fa; b; a! bg� and � = fa; b; c; c$ (a ^ b)g�
provide elementary examples of agendas in a propositional logic. The latter corre-
sponds to the so-called doctrinal paradox, with c representing the proposition that
the defendant is liable, a and b the two legal conditions of liability, and c $ (a ^ b)
the legal doctrine (see List and Pettit, 2002, for this classic example). A subagenda
(of �) is any non-empty negation-closed set P � �. For instance, P could consist of
the literals contained in the agenda.

By assumption, any individual accepts some set B � � of formulas, his or her
judgment set (JS). The theory of logical aggregation imposes universal constraints on
acceptance, regardless of whether the accepted formulas represent, for instance, norms
or facts. This and further internal distinctions might be re�ected in the formalism,
but we do not aim for this here.

A JS B � � is said to be complete w.r.t. S � � if for all ' 2 S it contains '
or contains :', and to be deductively closed w.r.t. S if for all ' 2 S, it follows from
B ` ' that ' 2 B. When these de�nitions hold for S = �, we just call B complete
(resp. deductively closed).5

If a consistent JS is complete, then by (L2), (L3) and (L4) it is deductively closed,
while the converse does not hold. Accordingly, we will focus on two graded notions
of a JS B � �, one in which B is consistent and complete, and another in which B
is consistent and deductively closed. Let D (resp. D�) be the set of all JS of the
�rst (resp. second) kind. Of course, D ( D�. A JS in D� may be incomplete, even
empty. Thus far, most authors have focused on the demanding case of completeness.
Exceptions are Gärdenfors (2006), Dietrich and List (forthcoming) and Dokow and
Holzman (2006).

Generally speaking, the theory means to investigate how individual judgments
can be summarized into social judgments. In keeping with social choice theory, it
uses mappings to represent aggregative rules, which it then characterizes in terms of

for epistemic applications are sometimes compact, and sometimes not, when they include a common
belief operator (see Lismont and Mongin, 2003).

5Note that consistency and entailment remain de�ned in terms of the whole of L, even when
completeness and deductive closure are relativized to �. A proof of B ` ', where B [ f'g � �, will
involve formulas from Ln� if only because � does not contain any theorem.
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axiomatic conditions put on these mappings. We follow this well-trodden path, but
with a technical innovation: our set of individuals, to be denoted by N , may be of
any cardinality jN j � 2, either �nite or in�nite. The current literature is limited to
the former case. Accordingly, we de�ne a social judgment function (SJF) to be a
mapping

F : DN ! 2�;

with DN ! D and DN ! D� as particular cases. The domain DN contains functions
N ! D, which we typically denote (Ai)i2N and refer to as pro�les. An example
- premiss-based majority voting - is given in a moment. In the �nite case N =
f1; :::; ng, the domain DN reduces to the n-fold Cartesian product Dn, and pro�les
to n-tuples (A1; :::; An). Notice the unrestricted domain assumption that is implicit
in the de�nition of a SJF.

3 Premiss-based aggregation

We represent the propositions singled out as premisses in terms of a �xed subagenda
P � �, and the premiss-based approach in terms of conditions bearing speci�cally on
this set. The Latin letters p; q; r;... will be used for the formulas in P , also referred to
as premisses. While the premiss-based procedure is typically considered restrictedly
(see the introduction), we now de�ne premiss-based majority voting for general �
and P (and �nite N) as the following SJF FPBM : DN ! 2�. For any pro�le
(Ai)i2N 2 DN , we �rst form the set Pmaj = fp 2 P : jfi : p 2 Aigj > jN j=2g of
majority-accepted premisses, and then de�ne FPBM ((Ai)i2N ) as the entailment set
f' 2 � : Pmaj ` 'g throughout the whole agenda. As one can check, FPBM generates
social JS that are deductively closed, and consistent - so that FPBM : DN ! D� - if
P has no minimal inconsistent subset Y with jY j � 3.

A most salient property that FPBM possesses if F : DN ! D� and jN j is odd, is
this

Independence on P . For all p 2 P and all (Ai)i2N ; (A�i )i2N 2 DN , if for all
i 2 N , p 2 Ai , p 2 A�i , then

p 2 F ((Ai)i2N ), p 2 F ((A�i )i2N ):

This condition will be applied throughout the paper. It requires that aggregation
takes place formula by formula on P . It signi�cantly weakens the Independence
condition of the literature, to the e¤ect that aggregation takes place formula by
formula on the whole of �.

We also impose the following classic requirement, this time on the whole of �.

Unanimity-Preservation. For all ' 2 � and all (Ai)i2N 2 DN , if for all i 2 N ,
' 2 Ai, then ' 2 F ((Ai)i2N ).

That unanimity should be preserved on P seems to be a basic requirement on the
premiss-based approach. That it is also preserved on �nP sounds more like a hope,
and a major objective of this section is to investigate whether the condition thus
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extended is compatible with our restricted independence condition. A mechanical
e¤ect of adding it is to exclude constant SJF, which trivially satisfy the latter.

Here are two classes of SJF that satisfy both Independence on P and Unanimity-
Preservation. De�ne F to be an oligarchy on P if there is a non-empty M � N - the
oligarchs on P - such that

F ((Ai)i2N ) \ P = \i2M (Ai \ P ) for all (Ai)i2N 2 DN ;

and to be a dictatorship on P if F is an oligarchy on P with M = fig for some i -
the dictator on P .

In the case P = �, these de�nitions reduce to standard oligarchy and dictatorship
notions; we then simply say "oligarchy" or "dictatorship", dropping "on P".6 Gen-
erally, if a rule, or a condition such as "Independence", is mentioned without adding
"on P", the intended domain of application is P = �.

Whether any SJF for a �nite society degenerates into dictatorship or oligarchy on
P when satisfying Independence on P and Unanimity Preservation depends on how
the premisses are logically connected, both with each other and with other formulas.
As this section will show, three conditions - (a), (b) and (c) below - exactly describe
the frontier between possibility and impossibility - in the sense of local dictatorship
for a D-valued F , and local oligarchy for a D�-valued F . The three conditions capture
interconnections in terms of inconsistent sets and the following derivative notion: for
any '; 2 �, ' conditionally entails  - formally, ' `�  - if there is a set Y � �
such that Y [f'g `  and both Y [f'gand Y [f: g are consistent. The shorthand
Y:Z denotes (Y nZ) [ f:' : ' 2 Zg, i.e., the set obtained from Y by negating the
formulas of one of its subsets Z.

CONDITIONS ON PREMISSES:
(a) There is a minimal inconsistent set Y � � such that jY \ P j � 3.
(b) There is a minimal inconsistent set Y � � such that Y:Z is consistent for

some set Z � Y \ P of even cardinality.

(c) For all p; q 2 P , there is a sequence p1; :::; pk 2 P (k � 2) such that p = p1 `�
p2 `� ::: `� pk = q.

These conditions relate to existing ones, but are unconventionally applied to only
part of the agenda - the premisses. Detailed comparisons will be made in section
5. Importantly, (a), (b), (c) neither require, nor forbid the logical connections they
describe to take place between the premisses alone. At one extreme, there could be
none holding in terms of P alone, except for the trivial ones between p and :p. Then,
all inconsistent Y sets satisfying (a) and (b) contain non-premisses, and similarly with
all the sets Y1; :::; Yk supporting conditional entailments in (c). Such is the case under
Mongin�s (forthcoming) hypothesis that P consists of logically independent p.v., but
there are many other P with the same pattern. To illustrate, take a propositional
logic and � = fa; a ! b; bg�, and P = fa; a ! bg�. Here, the members of P

6 If P = �, our oligarchy notion is that of Dietrich and List (forthcoming) and Dokow and Holzman
(2006). Other writers use di¤erent notions of an oligarchy (Gärdenfors, 2006, Nehring and Puppe,
forthcoming, Nehring, 2006).
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are not logically independent, but they become so when one replaces a ! b by
a ,! b. Here and in later examples, we draw on properties of subjunctive (rather
than material) implications, which hold at least in certain systems of conditional
logic such as that used in Dietrich (forthcoming). The other extreme occurs when all
relevant interconnections take place within P . This is automatically realized if P = �,
which is in e¤ect the assumption of the literature, but again, there are many other
instances.

None of the three conditions appears to be utterly strong. Condition (c) is com-
patible with a highly indirect linkage. Condition (a) is �exible, as the following case
suggests: the logic is propositional and P = fa; b; cg�; then, (a) can be met by taking
� to contain any of a _ b _ c, (a ! (b ! c)); (a $ (b $ c)), etc. As to (b), it is
easy to satisfy it while not satisfying (a) and (c), e.g., if the logic is propositional
and � = fa; b; a ^ bg� with P = fa; bg�. (Here, (b) holds with Y = fa; b;:(a ^ b)g
and Z = fa; bg, while (a) fails as P is too small, and (c) fails as, say, :a does not
conditionally entail any other premiss.)

To get a �rst �avour of why our conditions may narrow down the set of possible
SJF, note that premiss-based majority voting FPBM violates Unanimity-Preservation
if (a) holds (and jN j is �nite and not 2 or 4). Indeed, taking Y as in (a), we can
construct a pro�le (Ai)i2N 2 DN with majorities for all premisses in Y \ P and a
unanimity for each non-premiss in Y nP .

We now state a representation theorem on premiss-based aggregation. It contains
two results that di¤er in whether or not social judgment sets are required to be
complete. Accordingly, the conclusions are graded in strength.

Theorem 1. Suppose that N is �nite with jN j � 3: If and only if (a)-(c) hold,
every SJF F : DN ! D� (resp. D) that is independent on P and unanimity-
preserving is an oligarchy (resp. a dictatorship) on P .

As the proof in the appendix makes clear, the su¢ ciency part of the theorem
also holds for jN j = 2. That part is easier to derive than the necessity part, which
depends on elaborate counterexamples. Our proof is subdivided into nine lemmas
stated in the main text. They make use of two further properties of SJF that need
now introducing.

Systematicity on P . For all p; p� 2 P and all (Ai)i2N ; (A�i )i2N 2 DN , if for all
i 2 N , p 2 Ai , p� 2 A�i , then

p 2 F ((Ai)i2N ), p� 2 F ((A�i )i2N ).

Monotonicity on P . For all p 2 P and all (Ai)i2N ; (A�i )i2N 2 DN , if for all
i 2 N , p 2 Ai ) p 2 A�i , and for some j 2 N , p =2 Aj and p 2 A�j , then

p 2 F ((Ai)i2N )) p 2 F ((A�i )i2N ):

By itself, the proof will bring to light three more results holding under the stated
restriction on N . These are variants, not weakenings of the theorem because they
involve weaker conditions on the premisses.
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(i) If and only if (a) and (b) hold, every SJF F : DN ! D� (resp. D) that is
systematic on P and unanimity-preserving is an oligarchy (resp. a dictatorship)
on P .

(ii) If and only if (a) holds, every SJF F : DN ! D (resp. D�) that is system-
atic on P , monotonic on P , and unanimity-preserving, is an oligarchy (resp. a
dictatorship) on P .

(iii) If and only if (a) and (c) hold, every SJF F : DN ! D� (resp. D) that is
independent on P , monotonic on P , and unanimity-preserving is an oligarchy
(resp. a dictatorship) on P .

In a nutshell, Systematicity on P makes it possible to dispense with condition (c),
and Monotonicity on P with condition (b). Does oligarchy (dictatorship) on P imply
oligarchy (dictatorship) simpliciter? This further question is reserved for section 5.

In preparation of later sections, our lemmas allow N to be in�nite. As a tool,
they use classic set-theoretical notions. For concreteness, we refer to subsets C � N
as coalitions. Now, a set of coalitions D � 2N is superset-closed if for all coalitions
C;C�, C 2 D and C � C� � N imply C� 2 D; intersection-closed if for all coalitions
C;C�, C;C� 2 D ) C \C� 2 D; coherent if for all coalitions C, C 2 D ) NnC =2 D;
complete if for all coalitions C, C =2 D ) NnC 2 D; a �lter if D is superset-closed
and intersection-closed, with ; =2 D; an ultra�lter if D is a �lter that is maximal
for set-inclusion, or equivalently, complete. It follows that any �lter is coherent, and
non-empty only if N 2 D.7

For any SJF F : DN ! 2�, let us say that D � 2N generates F on p 2 P if

(�) 8(Ai)i2N 2 DN ; p 2 F ((Ai)i2N ), fi : p 2 Aig 2 D:
We then denote D by CFp . This functional notation makes sense because there can
be at most one such D. If furthermore the same D generates F on every p 2 P , we
say that D generates F on P and denote it by CF . For concreteness, we call the
members of CF (F -)winning coalitions. When there is no ambiguity, we sometimes
drop reference to F , writing Cp for CFp and C for CF .

To illustrate these notions, suppose that F is an oligarchy on P with a set of
oligarchs M � N ; then, F is generated by CF = fC :M � C � Ng. Less obvious
examples will be introduced in section 4.

Lemma 1. A SJF F : DN ! 2� is (i) independent on P if and only if for every
p 2 P , there is CFp � 2N generating F on p, and (ii) systematic on P if and only if
there is CF � 2N generating F on P .

An example of a SJF that is independent on P but not systematic on P is any
constant rule, given by F ((Ai)i2N ) = A for a �xed A � �. Here, CFp = 2N if p 2 A
and CFp = ; if p =2 A.

Lemma 2. Let a SJF F : DN ! D� be independent on P . Then, CFp is coherent
for all p 2 P , and if moreover F : DN ! D, then CFp is also complete for all p 2 P .
Also, N 2 CFp and ; =2 CFp if F is unanimity-preserving.

7Filters are sometimes de�ned without requiring ; =2 D, in which case our �lters are called proper
�lters. See Chang and Keisler (1973, p. 164).
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Lemma 3. Assume (b). Then, if a SJF F : DN ! D� is systematic on P and
unanimity-preserving, CF is superset-closed.

Lemma 4. Assume (a) and (b). Then, if a SJF F : DN ! D� is systematic on
P and unanimity-preserving, CF is intersection-closed.

Lemma 5. Assume (a) and (b). Then, if a SJF F : DN ! D� (resp. D) is
systematic on P and unanimity-preserving, CF is a �lter (resp. ultra�lter), and if
moreover N is �nite, F is an oligarchy (resp. dictatorship) on P .

Lemma 5 implies the su¢ ciency part of Theorem 1 via a last lemma.

Lemma 6. If a SJF F : DN ! D� is independent on P and unanimity-preserving,
then for all p; q 2 P , p `� q ) Cp � Cq; and if moreover (c) holds, F is systematic on
P .

As to the variants of Theorem 1, the su¢ ciency part of (i) was already proved at
the stage of Lemma 5, while that of either (ii) or (iii) requires one to adapt the proofs
of Lemmas 4 and 5 by replacing the assumption of (b) by the assumption that F is
monotonic on P . Inspection of these proofs show that they carry through.

The necessity part of Theorem 1 follows from the next three lemmas, because, as
the reader can check, an oligarchy (or dictatorship) on P is generated on P by a �lter
CF .

Lemma 7. If jN j � 3 and (a) is violated, a SJF F : DN ! D exists that
is systematic (hence independent) on P and unanimity-preserving, and CF is not a
�lter.

Lemma 8. If jN j � 3 and (b) is violated, a SJF F : DN ! D exists that is
systematic (hence, independent) on P and unanimity-preserving, and CF is not a
�lter.

Lemma 9. If (c) is violated, a SJF F : DN ! D exists that is independent on P
and unanimity-preserving, and CFp is not the same for all p 2 P .

4 Filter rules and ultra�lter rules

This section investigates the consequences for SJF of assuming that the number of
individuals may be in�nite. There are plausible reasons for recommending this step,
which has been taken by social choice theorists already some time ago (in the wake
of pathbreaking papers by Fishburn, 1970, and Kirman and Sonderman, 1972), but
not yet by judgment aggregation theorists. If by "society" is meant a lasting commu-
nity characterized by some non-transient features, such as manhood, the adherence
to democracy, and the like, then social judgments should presumably be related to
individual judgments that range across generations, and the in�nite population as-
sumption is prima facie relevant. Ultimately, our earlier conditions on F should be
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reconsidered according to this intended interpretation, rather than just mechanically
applied to a possibly in�nite N .8 This can be done step by step, and in this paper,
we focus on the matter of (im)possibility under unchanged conditions on the SJF.

To include the in�nite case, Theorem 1 needs reformulating in terms of broader
classes of SJF. Let us de�ne a SJF F : DN ! 2� to be a �lter (resp. ultra�lter) rule
on P if it is generated on P by a CF that is a non-empty �lter (resp. ultra�lter) on
N . In view of what Lemmas 1-9 have achieved, we may reexpress Theorem 1 without
the �niteness assumption in the following way.

Theorem 1�. Suppose that jN j � 3: If and only if (a)-(c) hold, every SJF
F : DN ! D� (resp. D) that is independent on P and unanimity-preserving is a
�lter (resp. an ultra�lter) rule on P .

Theorem 1�has three variants without �niteness; they exactly parallel those of
Theorem 1, with "�lter rule" instead of "oligarchy" and "ultra�lter rule" of "dic-
tatorship". One may now wonder whether for in�nite N , Theorem 1� leaves room
for non-degenerate possibilities under (a)-(c). Social choice theorists have long been
aware that there exist non-empty �lters over an in�nite N that are not principal - i.e.,
not of the form fC � N : M � Cg for any M � N . This follows from the fact that
ultra�lters C over an in�nite N are divided into two non-empty classes, the principal
ones and the so-called free ultra�lters, which satisfy \C2CC = ;. As an immediate
consequence,

� for in�nite N , not all �lter (resp. ultra�lter) rules on P are oligarchic (resp.
dictatorial) on P .

But do these additional rules constitute genuine possibilities? We give a two-step
answer. First, they satisfy the conditions that Theorem 1�places on SJF. To see
that, consider �lter (ultra�lter) rules that are de�ned on the whole of �, and not just
on P . These rules are trivially independent, even systematic, as well as unanimity-
preserving (remember our convention of dropping "on �" when a condition or rule
applies to this whole set). Non-trivially, thanks indeed to the compactness of the
logic, they generate well-behaved social JS:

Proposition 1. Every �lter (resp. ultra�lter) rule F : DN ! 2� is DN ! D�

(resp. DN ! D).

It follows that the conclusion of Theorem 1�admits of a kind of converse. Start
from any �lter or ultra�lter C on N , including the non-principal ones, de�ne the
corresponding �lter (ultra�lter) rule F , and �nally modify it if necessary on �nP to
obtain a �lter (an ultra�lter) rule on P satisfying all the properties required from a
SJF by Theorem 1�.

Second, we wish to exclude the fake possibilities in which an in�nite, but intu-
itively unrepresentative group collectively dictates to the whole of N . In order to
exclude these cases, we propose to use as a possibility criterion the existence of an
anonymous rule, where anonymity will be de�ned in terms of suitable permutations.

8For the related social choice context, see, e.g., Lauwers�s (1998) discussion of the Pareto condition.
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We will discuss anonymity notions that are analogous to ones put forward within
preference aggregation. Since the distinction between premisses and other formulas
is not of a primary importance for this discussion, we will assume that P = � for the
rest of this section.

As a �rst try, we restrict attention to those permutations � : N ! N which keep
all except �nitely many individuals unchanged, i.e., fi : �(i) 6= ig is �nite; we then
call such a � �nite. Our normative requirement reads as follows.

Finite Anonymity. For all pro�les (Ai)i2N 2 DN and all �nite permutations
� : N ! N , F ((Ai)i2N ) = F ((A�(i))i2N ).

Of course, Finite Anonymity excludes oligarchies, hence dictatorships, for what-
ever N , and becomes the plain anonymity condition (without restriction on �) if N
is �nite.9 Far from being an unrealistic target, Finite Anonymity is easily achieved,
as the following equivalence shows:

Proposition 2. If N is in�nite, the set of �nitely anonymous ultra�lter rules is
exactly the set of rules generated by free ultra�lters.

Propositions 1 and 2 together imply that

� if N is in�nite then (regardless of the logical connections within �) there ex-
ist systematic and unanimity-preserving SJF F : DN ! D that are �nitely
anonymous.

But Finite Anonymity may seem too weak a condition on an in�nite N (for a
related comment in social choice theory, see Lauwers and van Liedekerke, 1995). In
response, one might require invariance under permutations that keep unchanged all
but a set of individuals of cardinality at most �, where � can be in�nite but is smaller
than jN j. If for instance N = R and � has countable cardinality, permutations can
change all individuals with rational indexes, a clear improvement. Formally, we call
jfi : �(i) 6= igj the cardinality of a permutation � : N ! N , and for any cardinal
number �, introduce the following requirement:

�-Bounded Anonymity. For all pro�les (Ai)i2N 2 DN and all permutations
� : N ! N of cardinality up to �, F ((Ai)i2N ) = F ((A�(i))i2N ).

This stronger concept of anonymity also supports a possibility result, which, like
the previous one, holds regardless of the logical connections within �.

Proposition 3. If N is in�nite and � is any �nite or in�nite cardinal number
smaller than jN j, there exist systematic and unanimity-preserving SJF F : DN ! D
satisfying �-Bounded Anonymity.

One can be dissatis�ed even with this result, on the ground that the anonymity
concept is still too weak. If N = N, any cardinal � smaller than jN j is �nite, so

9Plain anonymity is used in List and Pettit�s (2002) original theorem.
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that �-Bounded Anonymity reduces to Finite Anonymity,10 hence cannot enforce
the (intuitively desirable) equal treatment of f2k : k 2 Ng and f2k + 1 : k 2 Ng.
This critical observation suggests allowing permutations of any cardinality. But if all
permutations are allowed, Theorem 1�implies a straightforward impossibility. E.g.,
any ultra�lter F onN must contain exactly one of the even and odd subgroups, which
will lead any ultra�lter rule to violate anonymity. (Lauwers and van Liedekerke, 1995,
have similar examples.)

In the hope of a response, one could endow N with the structure of a measure
space (N;A; �) and select those permutations � which are measure-preserving, in the
sense of being measurable and satisfying �(�(C)) = �(C) for all C 2 A. This move
is also commendable in view of the intuition that cardinality-preservation cannot be
all there is to anonymity. For instance, take N = [0; 1], equipped with the Borel-
�-algebra A and the Lebesgue measure �; then, the measure-preserving requirement
rids us of the pointless cardinality-preserving permutations � : N ! N mapping
[0; :9] to [0; :1]. Hence the new requirement:

(A; �)-Preserving Anonymity. For all pro�les (Ai)i2N 2 DN and all measure-
preserving permutations � : N ! N , F ((Ai)i2N ) = F ((A�(i))i2N ).

However, in the related Arrovian context, Kirman and Sonderman (1972, Propo-
sition 5) have pointed out the following consequence of �nite non-atomic measures
�. By the convex-rangedness of property of such a measure, N can be partitioned
into �nitely many cells S1; :::; Sl 2 A with �(S1) = ::: = �(Sl) � �, where � is ar-
bitrarily small.11 Since an ultra�lter must contain exactly one of Sk, an arbitrarily
small coalition will be winning, which is undesirable. We connect this intuitive ar-
gument with our criterion of (A; �)-Preserving Anonymity. For a violation to ensue,
it is enough if some �-preserving permutation � maps the winning Sk to some non-
winning Sk0 . Take N to be a bounded interval, S1; :::; Sl equally long subintervals,
and � the Lebesgue measure on the Borel sets of N .

By contrast, there are atomic measures that still allow for possibilities. A some-
what extreme case is that of a two-valued measure � giving value 1 to all elements
of a free ultra�lter F (this is a feasible example, as the reader will check). Here, the
measurable winning coalitions are large in the chosen measure-theoretic sense, which
distances the example from dictatorships and oligarchies.

An obvious objection to the measure-theoretic approach to anonymity is the po-
tential arbitrariness involved in one�s choosing (A; �). If N = N, no �nite measure
� on A = 2N , except the zero-measure, gives all singletons fig the same measure;
so that each choice of � seems arbitrary if not objectionable. We may cautiously
conclude that the possibility character of our results for in�nite N depends crucially
on the notion of anonymity endorsed, and that much will depend on whether there
exists a canonical choice of a measure space.

10The two conditions are rigorously equivalent for � � 2, despite the restriction that � < jN j. (Use
the fact that every �nite permutation is a composition of permutations of cardinality 2.)
11A measure � on a measurable space (N;A) is non-atomic if for all S 2 A, there is S0 2 A such

that 0 < �(S0) < �(S). The property in the text follows from the more basic one that a non-atomic
� is convex-ranged.
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5 Special sets of premisses and applications

In this section, we �rst consider two special sets of premisses for which our theorems
take a simpler form, and by the same token generalize several existing theorems
to possibly in�nite N and �. Second, we illustrate premiss-based aggregation with
examples of P that are fully general.

First, suppose that P is the entire agenda �. Then Independence on P becomes
standard Independence; (c) becomes total blockedness (introduced by Nehring and
Puppe, 2002, later adopted by Dokow and Holzman, forthcoming); (b) becomes even-
number-negatability (Dietrich, 2007), which can be shown to be equivalent to non-
a¢ neness (Dokow and Holzman) when � is �nite;12 and �nally, (a) can be dropped as
it follows from total blockedness by an argument spelled out in Dokow and Holzman,
after Nehring and Puppe.

Accordingly, the special case P = � of Theorem 1 can be reformulated thus.

Corollary 1. Let jN j � 3. If and only if the agenda is even-number-negatable
and totally blocked, the independent and unanimity-preserving SJF F : DN ! D�

(resp. D) are exactly the �lter (resp. ultra�lter) rules.

Since �lter (resp. ultra�lter) rules are all that can be obtained, Corollary 1 and its
three variants involving Systematicity and/or Monotonicity - their statements are left
to the reader - generalize the corresponding dictatorship and oligarchy results of the
literature. First of all, in the case of a D-valued SJF, Corollary 1 generalizes Dokow
and Holzman�s (forthcoming) important characterization of dictatorial agendas under
Independence and Unanimity-Preservation, while the variants generalize dictatorship
theorems proved under other assumptions. Second, in the case of a D�-valued SJF,
Corollary 1 generalizes oligarchy results by Dietrich and List (forthcoming), Dokow
and Holzman (2006) and Gärdenfors (2006). Several of these results, including the
�rst mentioned, are established for a �nite set of formulas. We have gone beyond
this assumption owing to an occasional use of compactness in the proofs. It is worth
stressing that (L6) is needed only for the necessity part of our theorems.

By contrast, Corollary 1 has no direct bearing on those dictatorship results that
do not include Unanimity-Preservation among their explicit conditions, e.g., those
of Dietrich (2006, 2007), Dietrich and List (2005, 2007), and Pauly and van Hees
(2006), van Hees (2007). Nor does Corollary 1 generalize oligarchy results by Dokow
and Holzman (2006), Nehring (2006) and Nehring and Puppe (forthcoming), which
are based on a di¤erent oligarchy notion. Vieille (2007) is similarly excluded because
of his weak notion of systematicity.

Now we take up a question left unanswered in sections 3 and 4. Theorems 1 and
1�provide representations of the SJF that are local in the sense of being restricted
to P . When do the local dictatorship or ultra�lter �lter results translate into global
ones? Here is the relevant condition:

(d) For all ' 2 � and all S � P that are consistent and complete w.r.t. P , either
S ` ' or S ` :'.
12A proof of this equivalence is available on request.
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In view of the logical conditions on L, it is equivalent to require that for all B 2 D,
B = f' 2 �jB \ P ` 'g, i.e., that any JS B in D can be recovered from its premisses
by entailment. The distinction between whether or not (d) holds is similar to Nehring
and Puppe�s (2007, forthcoming,) distinction between truth-functional and non-truth-
functional agendas; but these authors apply an unrestricted independence condition,
so that no clear connection exists to their results.

Obviously, under (d) a dictator on P is a dictator. Perhaps not so obviously,
under (d) every ultra�lter rule on P is also an ultra�lter rule, as shown below. This
implies the su¢ ciency part of the following theorem.

Theorem 2. Suppose jN j � 3: If and only if (a)-(d) hold, the SJF F : DN ! D
that are independent on P and unanimity-preserving are exactly the ultra�lter rules.

Of course, "ultra�lter rules" can be replaced by "dictatorships" if N is �nite. To
derive the su¢ ciency and necessity parts of Theorem 2 from the corresponding parts
of Theorem 1�, we draw on two more lemmas.

Lemma 10. Assume (d) holds. If a SJF F : DN ! D is an ultra�lter rule on P ,
it is an ultra�lter rule.

Lemma 11. If (d) is violated, a SJF F : DN ! D exists that is systematic
(hence independent) on P and unanimity-preserving, but not a �lter rule.

As before, we leave it for the reader to devise the respective variants after those
of Theorem 1.

A fully generating set of premisses P , in the sense required by (d), should be seen
as an exception rather than the rule, which severely constrains the relevance of Theo-
rem 2 and its variants. With the doctrinal paradox agenda � = fa; b; c$ (a^b); cg�,
(d) fails if P = fa; bg�; but not if P = fa; b; c $ (a ^ b)g. Now, take a proposi-
tional conditional logic, replacing the material biconditional $ by a subjunctive one
 -,!. Then, even the enlarged P does not fully generate �, because, say, of the JS
f:a; b; c -,! (a ^ b);:cg.

For the sake of generality, we may consider a partly generating P , as de�ned by
an existential variant of (d) (i.e., with "some S � P" replacing "all S � P"). Take
N to be �nite. If (a)-(c) and this variant hold, then any F meeting the conditions
will not need to be a dictatorship on the full domain DN , but must be one on the
non-empty subdomain consisting of all pro�les (Ai)i2N the images of which F (Ai)i2N
happen to be entailed by their premisses. For instance, if P = fa; c; c$ (a ^ b)g�, a
case where (d) fails but its existential variant holds, some individual j dictates on �
for pro�les (Ai)i2N 2 DN in which

Aj = fa; c; c$ (a ^ b); :::g ;

but not for pro�les (Ai)i2N 2 DN in which

Aj = f:a;:c; c$ (a ^ b); :::g :
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While the above-discussed literature takes P = �, Mongin (forthcoming) takes
P to be a very restricted subagenda of �, i.e., the set of literals of an agenda � �
L, where L is the language of classical propositional logic. Then, Independence
on P becomes Independence of Irrelevant Propositional Alternatives, which Mongin
shows to imply dictatorship in the presence of Unanimity Preservation. This theorem
can also be recovered from Theorem 2, because its agenda conditions are (a), local
asymmetry, which strengthens (b), (c), and closure under propositional variables,
which implies (d) given the choice of the logical language. The latter closure condition,
which is also used by Pauly and van Hees (2006), requires P to contain every p.v.
a 2 L occurring in some ' 2 �. It becomes equivalent to (d) if "occurring in" is
replaced by "occurring essentially in" (so as to exclude, e.g., a in b ^ (a _ :a)).

We conclude by discussing a type of set of premisses that seems to occur frequently
in e¤ective applications; it will also illustrate that our theorems are fruitful on the
possibility side. For a propositional conditional logic, take � and P such that �nP
contains only literals, typically representing propositions that are policy- or action-
oriented (such as "the defendant is liable", which entails convicting the defendant).
Suppose further that P consists of the following:

1. Literals, typically stating basic facts or norms, or reasons for or against certain
policies or actions.

2. Subjunctive implications p ,! q, or negations thereof, with p a type-1 premiss
or any Boolean expression built from type-1 premisses, and q a member of �nP
or any Boolean expression built from members of �nP .

So type-2 premisses state that certain (combinations of) type-1 premisses p have
implications q on the non-premisses. Note that whether and how judgments on non-
premisses are logically constrained by judgments on premisses depends on what kind
of type-2 premisses are hypothesized in the given JS. By conditional logic, if the
selected premisses are of the negated type 2, nothing can be inferred on �nP . This
already implies that (d) does not hold, hence from Theorem 2 that there exist non-
dictatorial SJF that are independent on P and unanimity-preserving. Condition (c)
does not hold either, because in (many systems of) conditional logic, a negated type-2
premiss cannot conditionally entail any premiss other than a negated type-2 premiss.
Thus, from Theorem 1, there exist SJF that are well-behaved even on P .

By contrast, conditions (a) and (b) can easily be met with the present type of
set of premisses, so that the impossibilities of the �rst two variants of Theorem 1 do
apply. Suppose for instance that p ,! q 2 P and q 2 �. Then there is a consistent
set A of type-1 premisses that is minimal subject to entailing p (e.g. A = fa;:bg if
p is a ^ :b). Then, Y = A [ fp ,! q;:qg (� �) is minimal inconsistent. Condition
(b) holds because there is Z � Y \ P consisting of p ,! q and any one member of
A. If jAj � 2, condition (a) holds too because jY \ P j = jA [ fp ,! qgj � 3. By
the �rst two variants of Theorem 1, various plausible rules degenerate. In particular,
premiss-based majority voting cannot be applied here. However, in other instances of
the same type, including many with logically independent premisses, (a) or (b) fails,
and premiss-based majority voting is well-behaved.
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6 Proofs

Notation. When a pro�le (Ai)i2N is given, we often write A instead of F ((Ai)i2N ),
and for p 2 P , Np instead of fi 2 N : p 2 Aig : For Z � �, we denote f:p : p 2 Zgby
:Z:

Proof of Lemma 1. Associate with the SJF F : DN ! 2� and possibly with p 2 P
the following sets of coalitions:

Dp =
�
C � N : 9(Ai)i2N 2 DN ; fi : p 2 Aig = C & p 2 F ((Ai)i2N )

	
;

Dp =
�
C � N : 8(Ai)i2N 2 DN ; fi : p 2 Aig = C ) p 2 F ((Ai)i2N )

	
;

and

D =
�
C � N : 8p 2 P;8(Ai)i2N 2 DN ; fi : p 2 Aig = C ) p 2 F ((Ai)i2N )

	
:

Clearly, D � Dp � Dp. It is easy to see that F is independent on P if and only if
Dp = Dp. Now, if this equality holds, Dp satis�es condition (�) of the text. Hence, if
F is independent on P , there exists Cp generating F on p. The converse implication
is trivial. By the same token, F is systematic on P if and only if D = Dp for all
p 2 P . But if these equalities hold, condition (�) holds for the same set regardless of
p. Hence, if F is systematic on P , there exists CF generating F on P . The converse
is trivial. �

Proof of Lemma 2. Left to the reader.

Proof of Lemma 3 . Let (b) hold. We �rst derive a consequence of (b), and then
proceed to the proof itself.

Claim. There exist an inconsistent set W � � and disjoint sets V; fpg � W \ P
such that W:V , W:fpg and W:(V [fpg) are consistent.

Let Y be as in (b), and choose a Z � Y \ P of smallest even size subject to Y:Z
being consistent. There are two cases.

Case 1 : Y:Z0 is consistent for some Z 0 � Z of size jZj � 1. Then, the claim holds
for W = Y; V = Z 0 and fpg = ZnZ 0 (where W:fpg is consistent because Y is minimal
inconsistent).

Case 2 : Y:Z0 is inconsistent for all Z 0 � Z of size jZj� 1. Then, jZj � 4, as jZj is
even, and neither zero (since Y is inconsistent) nor 2 (because this and the minimal
inconsistency of Y would lead to a consistent Y:Z0). In particular, Y contains no pair
r;:r (something to be implicitly used later). Consider distinct p; q 2 Z, and put

V = :(Znfp; qg), W = (Y nZ) [ fpg [ V .

The claim holds of W; V and fpg so de�ned for the following reasons:
- fpg and V are disjoint subsets of W \ P ;
- W is inconsistent as W [ fqg = Y:(Znfp;qg) is inconsistent by the minimality

property of Z, and W [ f:qg = Y:(Znfpg) is inconsistent by the case-2 assumption;

- W:fpg is consistent as a subset of the consistent Y:Z ;
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- W:V = Y nfqg and W:(fpg[V ) = Y:fpgnfqg are consistent because Y is minimal
inconsistent (for the latter, consider the superset Y:fpg).

Main proof. Take F as speci�ed, with associated C. We assume that C 2 C and
C � C� � N and show that C� 2 C. Now, the restatement of C in the proof of
Lemma 1 means that it is enough for the proof to select a particular (Ai)i2N 2 DN

and a particular r 2 P s.t.
C = Nr and r 2 A:

Relying on the claim, we extend the consistent sets W:fpg, W:V and W:(V [fpg) to
JS in D, resp. AW:fpg , AW:V and AW:(V [fpg) , and consider the pro�le (Ai)i2N 2 DN

de�ned by

Ai =

8<:
AW:fpg if i 2 C
AW:(V [fpg) if i 2 C�nC
AW:V if i 2 NnC�.

Now, A contains all q 2 V , since then Nq = C 2 C, and all q 2 Wn(V [ fpg), since
then Nq = N 2 C by Lemma 2. So Wnfpg � A. The inconsistency of W ensures that
Wnfpg ` :p, whence :p 2 A by the assumption that A 2 D�. So fi : :p 2 Aig 2 C,
which implies that C� 2 C as desired. �

Proof of Lemma 4. Assume (a) and (b). Take F as speci�ed, the associated C,
and any C;C� 2 C. Take Y � � as in (a). There are at least three pairwise distinct
formulas p; q; r 2 Y \ P , and the sets Y:fpg; Y:fqg and Y:frg are consistent by the
minimal inconsistency of Y . Hence, there is (Ai)i2N 2 DN as follows:

- for all i 2 C \ C�, Ai extends Y:fpg,
- for all i 2 C�nC, Ai extends Y:frg,
- for all i 2 NnC�, Ai extends Y:fqg.
Unanimity Preservation ensures that Y nfp; q; rg � A. Further, q 2 A because

Nq = (C \ C�) [ (C�nC) = C� 2 C, and r 2 A because Nr = (C \ C�) [ (NnC�) �
C 2 C and C is superset-closed by Lemma 3. Thus, Y nfpg � A, and :p 2 A since Y
is inconsistent and A 2 D�. This is su¢ cient for the conclusion that C \ C� 2 C, as
was to be proved. �

Proof of Lemma 5. Assume (a) and (b). Take F as speci�ed and the associated C.
From Lemma 2, C does not contain ;, and from Lemmas 3 and 4, C is superset- and
intersection-closed. Hence C is a �lter. If moreover F : DN ! D, Lemma 2 implies
the stronger conclusion that C is an ultra�lter. As is well-known, if N is �nite, every
�lter is the set of supersets of some M � N , and every ultra�lter the set of supersets
of fig for some i 2 N ; so that F is either an oligarchy or a dictatorship, respectively.
�

Proof of Lemma 6. For F as speci�ed, consider p; q 2 P and the associated Cp; Cq.
Take p `� q, and let C 2 Cp. By de�nition of `�, there is Y � � s.t. Y [fpg and
Y [ f:qg are consistent, and Y [ fp;:qg is inconsistent. As the last claim implies,
Y [fp; qg and Y [f:p;:qg are consistent, and there exists (Ai)i2N 2 DN as follows:

- for all i 2 C, Ai extends Y [ fp; qg;
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- for all i =2 C, Ai extends Y [ f:p;:qg:
With this pro�le, Y � A by Unanimity Preservation, and p 2 A because fi : p 2

Aig 2 Cp. So q 2 A since A 2 D�. By Nq = C and q 2 A, we have that C 2 Cq, as
was to be proved.

Suppose now that (c) holds. Then, for all p; q 2 P , the sequence of conditional
entailments p `� p2; :::; pk�1 `� q made available by this condition leads to a corre-
sponding sequence of inclusions Cp � Cp2 ; :::; Cpk�1 � Cq, and then to Cp = Cq, so that
by Lemma 1, F is systematic on P: �

Proof of Lemma 7. Let jN j � 3, and let (a) be violated. Then there is an odd-sized
coalition M � N with jM j 6= 1. For any (Ai)i2N 2 DN , we de�ne the set

B = (\i2NAi) [ fp 2 P : jfi 2M : p 2 Aigj > jM j =2g:

(In words, B collects all formulas unanimously accepted and all premisses accepted
by a majority within M .) We will show that B is consistent. If not, by (L6), B has a
�nite minimal inconsistent subset Y � B. As (a) does not hold, jY \ P j � 2, hence
jY \ P j = 2 since � contains no contradictions. Say Y \ P = fp; qg. Within M , a
majority accepts p, and a majority accepts q. As two majorities must overlap, there
is an j 2M s.t. fp; qg � Aj . So Y \ P � Aj . Hence, as also Y nP � Aj , Y � Aj . So
Ai is inconsistent, a contradiction.

Having just shown that B is consistent, B can be extended to a set in D; let
F ((Ai)i2N ) be one such extension. Note that, as B is already complete w.r.t. P ,

F ((Ai)i2N ) \ P = B \ P = fp 2 P : jfi 2M : p 2 Aigj > jM j =2g.

So we have de�ned a SJF F : DN ! D that is generated on P by C = fC �M : jCj >
jM j =2g. Lemma 1 implies that F is systematic. Also, F is unanimity-preserving by
construction. And C is not a �lter, because C is not intersection-closed (take, e.g.,
two majorities of jM j+1

2 individuals that intersect on a singleton). �

Proof of Lemma 8. Let jN j � 3; so N contains three distinct individuals, to be
labelled 1,2,3. Let (b) be violated. For any (Ai)i2N 2 DN , we de�ne B = B1 [ B2,
where

B1 = A1 \A2 \A3
and

B2 = fp 2 P : p is in exactly one of A1; A2; A3g:

We prove that B is consistent. Suppose not, then by (L6) there is a �nite minimal
inconsistent subset Y � B. De�ne Y � = Y \ P and A�i = Ai \ P for all i 2 N . We
have Y � 6= ;, as otherwise Y � B1 � A1, an impossibility since Y is inconsistent
and A1 is consistent. Now, Y � can be expressed as the pairwise disjoint union of the
following sets:

Z0 = Y � \A�1 \A�2 \A�3, Z1 = Y � \ [A�1n(A�2 [A�3)] ,
Z2 = Y � \ [A�2n(A�1 [A�3)] , Z3 = Y � \ [A�3n(A�1 [A�2)] .
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There must exist two sets among Z1; Z2; Z3, say w.l.g. Z1; Z2, such that jZ1 [ Z2j
is even and Z1 [ Z2 6= ;. (The �rst claim is simply combinatorial, and the second
one follows by contradiction from the consistency of A3, since Z1 [ Z2 = ; leads to
Y � � A3, hence to Y � A3:) Put Z = Z1 [ Z2: Since (b) does not hold, we will have
derived a contradiction if we show that

Y:Z = (Y nZ) [ :Z

is consistent. Now, Y:Z can be obtained as the union

Y = (Y nY �) [ (Y �nZ) [ :Z;

where (i) Y nY � � B1 � A3, (ii) Y �nZ = Y �\A�3 � A�3, and (iii) :Z = f:p : p 2 Y �; p =2 A�3g �
f:p : p 2 P; p =2 A�3g = A�3: The last equality holds as A

�
3 = A3 \ P contains exactly

one member of each pair p;:p 2 P . Putting (i), (ii) and (iii) together, we see that
Y:Z � A3, hence that Y:Z is consistent, as we aimed at proving.

Having shown B to be consistent, we can extend B to a set in D; this set is our
F ((Ai)i2N ). Note that, as B is already complete w.r.t. P ,

F ((Ai)i2N ) \ P = B \ P = fp 2 P : jNpj is oddg:

So the just-de�ned SJF F : DN 7! D is generated on P by

CF = fC � N : jC \ f1; 2; 3gj is oddg.

Hence, F is systematic on P from Lemma 1; it is also unanimity-preserving since
\i2NAi � B1 � F ((Ai)i2N ). But CF is not a �lter, as it is not superset-closed. �

Proof of Lemma 9. Let (c) be violated. As jN j � 2, N contains distinct indi-
viduals, to be labelled 1 and 2. For p; q 2 P , de�ne pRq if there is a sequence of
conditional entailments from p to q as in the statement of (c). As (c) does not hold,
there are �p; �q 2 P such that not �pR�q, and P can be partitioned into two non-empty
sets

S1 = fp 2 P : �pRpg and S2 = fp 2 P : not �pRpg.

Note that
p 6`� q for all p 2 S1 and all q 2 S2: (1)

We can further partition S1 into the sets

S11 = fp 2 S1 : :p 2 S1g and S12 = fp 2 S1 : :p 2 S2g,

and similarly, S2 into the sets

S21 = fp 2 S2 : :p 2 S1g and S22 = fp 2 S2 : :p 2 S2g.

Now, consider any (Ai)i2N 2 DN . We �rst de�ne B � P as follows: for all p 2 P ,

p 2 B ,

8>><>>:
p 2 A1 if p 2 S11
p 2 A2 if p 2 S22
p 2 A1 [A2 if p 2 S12
p 2 A1 \A2 if p 2 S21.
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We set out to prove that B [ (A1 \A2) is a consistent set. Suppose not; then by
(L6), there is a minimal inconsistent subset Y � B [ (A1 \A2). Hence,

p `� :q for all distinct p; q 2 Y: (2)

We will prove six claims relative to Y � = Y \B, leading eventually to a contradiction.
(i) Y � 6� S11 [ S21. If not, the de�nition of B implies that Y � � A1, and Y � A1,

a consistent set.
(ii) Y � 6� S22 [ S21 by a similar argument.
(iii) Y �\S12 6= ;. If not, Y � � S11[S22[S21, and by (i) and (ii), there are p; q 2 Y �

with p 2 S11 and q 2 S22, hence also :q 2 S22. By (2), p `� :q, contradicting
(1).

(iv) Y � \ S12 = frg. If there were r; s 2 Y � \ S12, r 6= s, (2) would imply that
s `� :r, in contradiction with (1).

(v) Y � \ S11 = ;. If not, by (2) p `� :r, contradicting (1).
(vi) Y � \ S22 = ; by a similar argument.
From (iv), (v) and (vi), Y � � frg [ S21 � frg [ (A1 \ A2), where the second

inclusion follows from the de�nition of B. Since Y � Y � [ (A1 \ A2), it also holds
that Y � frg [ (A1 \A2). The de�nition of B implies that r 2 A1 or r 2 A2, whence
either Y � A1 or Y � A2, a contradiction with the consistency of A1 and A2.

For all (Ai)i2N 2 DN , one can extend the consistent set B [ (A1 \ A2) to one
in D, so as to de�ne a SJF F : DN ! D. As B was already complete w.r.t. P ,
we have F ((Ai)i2N ) \ P = B \ P for all (Ai)i2N 2 DN . It follows that, for every
p 2 P , F is generated on p by some Cp, hence by Lemma 1 that F is independent
on P . F is unanimity-preserving since \i2NAi � A1 \A2 � A. Finally, Cp is not the
same for all p 2 P , because S1 and S2 are each non-empty, and if p 2 S1 then Cp is
fC � N : 1 2 Cg or 2Nnf;g, whereas if p 2 S2 then Cp is fC � N : 2 2 Cg or fNg.
�

Proof of Lemma 10. Suppose (d) holds and F : DN ! D is an ultra�lter rule on
P , with ultra�lter C. Let G : DN ! 2� be the ultra�lter rule generated by C. By
Lemma 2, G : DN ! D. To show that F = G, we consider any (Ai)i2N 2 DN and
show that F ((Ai)i2N ) = G((Ai)i2N ). As F ((Ai)i2N ) and G((Ai)i2N ) and each in
D, it su¢ ces to show that F ((Ai)i2N ) � G((Ai)i2N ). Consider any � 2 F ((Ai)i2N ).
Let S := F ((Ai)i2N ) \ P . By (d), either S ` � or S ` :�. It cannot be that
S ` :�, since otherwise F ((Ai)i2N ) would contain :� (by deductive closure), hence
be inconsistent. So S ` �. By de�nition of G, G((Ai)i2N ) \ P = F ((Ai)i2N ) \ P ,
whence G((Ai)i2N ) \ P = S. So also G((Ai)i2N ) entails �. Hence, as G((Ai)i2N ) is
deductively closed (by Lemma 2), � 2 G((Ai)i2N ), as desired. �

Proof of Lemma 11. If (d) is violated, there is a set S that is complete w.r.t. P
and s.t. for some ' 2 �nP , both S [ f'g and S [ f:'g are consistent. These two
sets can be extended, so that there are B;B0 2 D with B \P = B0 \P , but B 6= B0.
Let 1 be any individual in N , and let F : DN ! D be de�ned by the condition that
for all (Ai)i2N 2 DN ,

A =

�
B if A1 = B0 and Ai = B for all i 2 Nnf1g
A1 otherwise.
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This F is not dictatorial, and it is systematic, hence independent, as well as unanimity-
preserving on P , because 1 is a dictator on P . �

Proof of Proposition 1. Let F be a �lter rule with �lter C. Take (Ai)i2N 2 DN

and consider A. We �rst prove that A is consistent. If not, (L6) implies that A has
a �nite minimal inconsistent subset Y . We have Np 2 C for all p 2 A, hence for all
p 2 Y . From properties of a �lter, \p2YNp 2 C, so \p2YNp 6= ;. Now, an individual
j 2 \p2YNp is s.t. Y � Aj , which contradicts the consistency of JS in D.

We now show that A is deductively closed. Take any q 2 � with A ` q. Among
all subsets of A entailing q, there is a �nite minimal one Z by (L6). By the same
argument as before, Np 2 C for all p 2 Z, and ; 6= \p2ZNp 2 C. All i 2 \p2ZNp are
s.t. Z � Ai, and hence s.t. q 2 Ai because JS in D are deductively closed. Thus,
\p2ZNp � Nq, which implies that Nq 2 C, and hence that q 2 A.

If F is an ultra�lter rule, its images are consistent from what has been shown,
and complete, as one can check using the fact that individual JS in D are complete.
�

Proof of Proposition 2. Let N be in�nite. Clearly, the dictatorial F are the
ultra�lter rules F : DN ! 2� generated by ultra�lters C that are principal, i.e., s.t.
C = fC � N : fig � Cg for some i 2 N . It is known that ultra�lters C on an in�nite
N are either principal or free, i.e., s.t. \C2CC = ;. Now, we show that free ultra�lters
generate �nitely anonymous F . Observe �rst that if C is free, C contains no �nite
set. For, if E = fi1; :::; ikg 2 C, then (we leave this for the reader to check) there is ij
s.t. fijg � C and C is principal. Second, this observation implies that for whatever
C 2 C, CnZ 2 C if Z � N is �nite (we leave this again to the reader).

Now, let F be a SJF generated by a free ultra�lter and � : N ! N a �nite permu-
tation, and for any (Ai)i2N 2 DN , compare A = F ((Ai)i2N ) and A0 = F ((A�(i))i2N ).
By Proposition 1, A;A0 2 D. If we prove that A � A0, we will have proved that
A = A0 because the completeness and consistency of these JS makes A  A0 an im-
possibility. Let � 2 A; then, N� 2 C. Because Z = fi : �(i) 6= ig is �nite, the last
observation implies that N�nZ 2 C. Hence, as a superset, fi : � 2 A�(i)g 2 C, which
implies that � 2 A0, as desired.

It remains to exhibit a free ultra�lter. The classic example takes the collection of
all subsets of N with �nite complementaries. This is clearly a �lter, and as any �lter,
it can be extended to an ultra�lter by using Zorn�s lemma (for a detailed proof, see
Chang and Keisler, 1973, p. 167). The resulting ultra�lter is free; for otherwise it
would be principal, hence with singleton (rather than empty) intersection. �

Proof of Proposition 3. Consider N and � as speci�ed. If � is �nite, the claim
follows from the possibility result on Finite Anonymity remarked in the main text. If
� is in�nite, consider the set of coalitions with complementaries of cardinality at most
�:This is a �lter, which can be extended to an ultra�lter F . Since � < jN j, F can
only contain sets of cardinality greater than than �, and since F is either principal or
free, it is free. Now, if C 2 F , and Z � N has cardinality at most �, then CnZ 2 F
(by a more general form of an observation made in the proof of Proposition 2). That
the SJF generated by F is anonymous up to � follows from the second paragraph in
the proof of Proposition 2. �
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