Derivation of Wage Elasticity of Labour

Demand and Profits

The production function is assumed to be given by:
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where Y, is output, N; employment, K;; capital and A, labour-augmenting technical progress.

Assume the demand curve for the firm's product is given by:
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where P;, is the firm's own price, P, the aggregate price level and G, some measure of aggregate
demand.
From (a2) we can write real profits as:
_ W,
o, = GXy}?° - —Pﬁ (1 +1)N, (a3)
t

By differentiating (al) we obtain:
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By differentiating (a3), the first-order condition for profit maximisation is:
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Substitute (a4) in (a5), take logs and differentiating with respect to the log of w, yields:
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Re-arranging, we obtain:
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Now, using (a2) in (a5) we can derive:
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Substituting (a8) in (a7) and imposing symmetry yields (18).

From the envelope condition,
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which, imposing symmetry, is (19).

y‘,,:‘&;,;




