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Preface

Over the past few years I have been encouraged by colleagues and students
who knew of my interest in Bayesian statistics to write a book that would
explain the Bayesian approach in reasonably simple language, and would serve
as a practical guide to carrying out Bayesian analyses. This book is the result. It
attempts to introduce Bayesian statistics to the professional psychologist, socio-
logist, educational researcher, or economist who seeks alternatives to significance
tests, who wishes to find out more than that his results are not due to chance and
who wants to know how likely his statistical hypotheses are now that the data are
in. The book should also be of interest to the student of the social sciences who
has had some exposure to statistics and who is interested in learning the Bayesian
viewpoint. But the reader I mainly had in mind when writing this book is the
social science student new to statistics. Thus, it assumes that the reader has no
previous acquaintance with statistics, and has perhaps half-forgotten his school
mathematics. Depending on the pace of the course, this book could serve as a
textbook for a statistics class for which the total number of timetabled hours
is at least 45.

Though I am a hearty advocate of the Bayesian viewpoint, I have tried to
provide sufficient explanation of non-Bayesian approaches to enable the reader
to understand non-Bayesian analyses, which still predominate in the social
sciences literature. Enough information is given for the reader to give an exact or
approximate Bayesian interpretation to most parametric tests of significance that
would be encountered in the literature. In addition, the rationale behind current
practice employing confidence intervals, significance tests and hypothesis testing
is explained.

Chapter 1 provides a general introduction to the key ideas of Bayesian
inference. The five chapters that follow (Part 1) lay the foundations: probability
theory, Bayes theorem, and distribution theory. In Part 2 I discuss measurement,
collecting data and the usual descriptive statistics, including correlation and
regression. Part 3 deals entirely with inferential statistics. Chapters 11 and 12
concentrate mainly on estimation, Chapter 13 presents non-Bayesian methods,
while Chapter 14 concludes with Bayesian approaches to hypothesis testing.

My initial contact with Bayesian statistics came about when I was a Ph.D.
student at the University of Michigan in the early sixties. I had excellent teachers:
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William L. Hays, Harold Lindman and especially Ward Edwards to whom I
owe a deep and lasting debt. I have learned much from the writings of L. J.
Savage, Howard Raiffa, Robert Schlaifer and Harold Jeffreys, while the books by
Dennis Lindley (1965) and Samuel Schmitt (1969) have provided much of the
material in Chapters 11 and 12.

Many people have contributed directly to this book. In particular Dennis
Lindley has read and commented on most of an earlier version, and I am most
grateful for his wise and helpful suggestions and for correcting a number of
errors. A. D. Lovie and E. W. Kelley read the entire manuscript and provided
many useful suggestions. Brendan McGuinness and Patrick Humphreys have
helped me in learning to teach Bayesian statistics. To all these people I give my
thanks. They share whatever merits this book has; I alone take responsibility for
any remaining errors.

I am particularly grateful to the first-year social science students at Brunel
University who attended my Bayesian statistics courses from 1968 to 1972. Each
year I learned a little more about how to teach Bayesian ideas, and much of this
experience is contained between these covers. I also owe a great debt to Patrick
Humphreys who wrote the computer programs for two of the tables in the
Appendix, a task that turned out to be more complex than we had anticipated.
Other tables have been reproduced with kind permission from Novick and
Jackson (1974), Pearson and Hartley (1966), and Fisher and Yates (1963). I am
also grateful to Addison-Wesley for permission to reproduce Figs 11-4 and 12-4.

Many people generously gave support, encouragement and help during the
writing of this book. I am very grateful to them all, especially to my wife
Maryann.

LAWRENCE D. PHILLIPS



1- Introduction

‘Did you hear about the man who lived in a room so small that he had to
sleep with his head in the oven and his feet in the refrigerator? On the average
he was very comfortable.” That old story well illusirates the distrust many
people feel about statistics. Sometimes that distrust is justified, as when we hear
the exhortation to buy a particular brand of toothpaste because it reduces tooth
decay by 609, or when a television announcer claims that his product is 409,
more effective than brand X. The political party in office produces figures to
prove that national unemployment is at an all-time low, while the opposition
party uses the same figures in a different way to show that unemployment is
rapidly increasing. The smooth-talking salesman honestly tells you that his
product has an average life of five years, but he does not tell you that quality
control during manufacture is so poor that some of the products can be
expected to wear out after only six months’ use, while others may last for nine
or ten years. Surely anything can be proved with statistics.

Another criticism of statistics comes from people who feel that the ineffable
aspects of human behaviour are what make us uniquely human. They insist that
people and societies cannot be reduced to numbers, that something essential is
lost by the social scientist who in his fervour to classify, count, and measure
misses the subtleties of human behaviour and interaction. At best, statistics can
only express the obvious; at worst they hide the truly important aspects of
human experience.

Both these criticisms are, to some extent, justified. Statistics can be misused
to prove just about anything. But this is hardly an argument for abandoning
statistics; rather it argues for the intelligent use of statistics, for educating the
reader so he can tell when statistics are being used properly and when they are
being used inappropriately, and for educating the user of statistics so he will not
mislead his readers.

The second criticism, that statistics obscure the subtle and complex aspects
of human and societal behaviour, is taken very seriously by social scientists.
Anyone who has tried to reduce data to numbers feels that he has lost some-
thing in the translations. Again, this is not an argument for avoiding statistics;
it points to the necessity for understanding the limitations of statistics. Let me
amplify this point.

The physicist is interested in, for example, temperature, voltage, weight,
and length; he has developed instruments for measuring these, thermometers,



2 Introduction

voltmeters, scales, and metre-sticks. Some of these devices measure directly as
a metre-stick measures length, but others measure only indirectly as the height
of a column of liquid in a glass tube indicates temperature, or as the deflection
of a pointer indicates voltage. These last two examples are instances of derived
measurement, the former of fundamental measurement. Fundamental measure-
ments are made in terms of themselves, for example, length is measured in
terms of length, weight in terms of a standard weight on a balance. Derived
measurements are related to the quantity being measured only through some
law; temperature relates to the height of the column of liquid through the
operation of laws describing the expansion and contraction of liquids and solids
brought about by changes in temperature, and voltage is related to the needle’s
deflection through the operation of laws describing the amount and interaction of
electromagnetic forces set up in a coil by the passage of current through the coil.

The social sciences are in the unfortunate position of having to rely solely
on derived measurements with little underlying theory and fewer laws than
would allow the scientist to relate the measurements he is making to the real
subject of his investigation. Nobody has found a way to measure directly
anxiety, love, aggressiveness, conflict, hope, and all the aspects of the behaviour
of people and societies that we feel are important. Rather than measure anxiety
directly, we measure amount of sweating, increase in heartbeat, change in
breathing rate, change in chemical composition of the blood, or any of many
other indices of anxiety. Not only are these measurements indirect, but we do
not even know for sure how they relate to anxiety. Sweating may indicate a
state of anxiety or it may be caused by an increase in the room temperature;
changes in heartbeat or in the chemical composition of the blood may be caused
by fear or anger. So without a satisfactory theory relating anxiety to these
physiological changes, we cannot be sure that a measurable change in one of the
indices reflects a change in the anxiety of the person being studied.

More will be said about this dilemma in Chapter 7. For now the important
point is that the meaninglessness of some statistics is often not a problem in
statistics, but a problem in measurement. If a social scientist carelessly attaches
numbers to his observations or to his data, no amount of sophisticated statis-
tical manipulation of those numbers will make them any more meaningful than
the original assignment. What comes out of the statistical mill is no better than
what goes in.

The emphasis in this book is on the intelligent use of statistics; the con-
ditions under which particular statistical analyses are appropriate or inappro-
priate will be stressed. If statistics are used appropriately, and if measurements
are meaningful, then statistical results can be intelligently interpreted in a
useful and meaningful way. Cold, impersonal numbers may or may not obscure
the meaning behind the numbers—that is up to the scientist. Used intelligently,
statistics can illuminate meaning, even magnify and enrich it.

1.1 Scope of the book

Purposes

This book is intended primarily for undergraduate students who are taking
a first course in statistics. But it should also serve to satisfy the curiosity of the
post-graduate student or the professional social scientist who has heard of
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Bayesian statistics, wants to know what it is about, but whose limited mathe-

matical background does not permit his reading presently available Bayesian

treatises. nearly all of which require intermediate to advanced level mathematics.
By the time you have finished this book, you should be able to

carry out simple statistical analyses of data;
recognize when a particular analysis is appropriate and when it is not;
understand simple statistical analyses reported in the literature.

You will not meet these objectives merely by reading the text; doing the exer-
cises at the end of each chapter is essential to a full understanding of the material
in the chapter. Also, you will find that even though you have understood a
chapter, it will require periodic review, for most students find that statistical
topics have a strange tendency to slip away or suddenly to become unclear. The
summaries at the end of the chapters will help you in your reviews.

Mathematical background needed

This book assumes only very modest mathematical ability on the part of
the reader. You should feel comfortable with fractions, decimals, percentages,
and simple algebra. You should be able to handle positive and negative numbers,
and you should be able to deal with logarithms. If you are not sure of your
abilities in any of these areas, you can brush up with the help of either of two
books. If you like programmed texts, get 4 First Program in Mathematics by
Arthur Heywood, Belmont, California: Dickenson Publishing Company, 1967
(distributed in Great Britain by Prentice-Hall). This text contains diagnostic
tests which you can use to spot your mathematical weaknesses. The tests guide
you to only those programmes in the book which you need. The programmes
are written in non-trivial frames and employ both linear and branching tech-
niques. The book does not, however, contain sections on positive and negative
numbers or on logarithms. If you do not like programmed texts, try Helen
Walker’s Mathematics Essential for Elementary Statistics, New York: Holt,
Rinehart and Winston, 1957. This text also contains diagnostic tests; each
chapter begins with a test, and if you pass the test you do not need to read the
chapter.

1.2 Key ideas of Bayesian statistics

What is statistics?

Perhaps I should say, ‘What are statistics?” Most of us are familiar with
statistics in the plural sense. Average amounts of rainfall, mean incomes of
residents in a particular suburb, rise in the gross national product, rate of change
in the cost of living, proportions of people preferring this candidate to that one,
all these are statistics. Numbers attached to data, these are statistics. On the
other hand, statistics in the singular sense refers to a body of knowledge whose
application enables the scientist to make sense out of the data he has collected
In particular, he is interested in going beyond the data he has collected so that
he can make a generalization. He is not interested so much in the data at hand
as in the wider meaning of that data. The sociologist is only marginally inter-
ested in the behaviour of the working-class families he has observed; he would
really like to generalize his findings at least to the wider community his families
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came from. The psychologist studying memory does not wish to confine his
findings to the people he has observed; he is looking at the behaviour of a few
people in his search for general laws governing the operation of memory.

Statistics that summarize data, that enable whole masses of data to be
communicated with a few numbers, are called descriptive statistics. These wi!l
be treated only briefly in this book because the main topic of interest 1s
inferential statistics, the making of generalizations or inferences beyond the
data immediately at hand. You must know something about both these kinds
of statistics in order to read the literature in your field, and you must know
how to use statistics if you are to complete the laboratory and applied aspects
of your course successfully.

Controversies in statistics

Most statistics texts and courses give the impression that there is little
controversy among statisticians about statistical methods. That simply is not
true. A heated dialogue continues among statisticians about the very founda-
tions of their subject, and the controversy is far from being resolved. This
book takes the more controversial point of view, usually referred to as the
Bayesian school. The battle lines have been too clearly drawn between the
Bayesians and the ‘traditionalists’, but just as the traditionalists do not speak
with a single voice, so the Bayesians find differences among themselves. The
differences among the Bayesians are sufficiently small that this book need not
bother much with them, but I will occasionally suggest that the last word on a
particular topic has not yet been heard. Readers who are acquainted with
‘traditional’ statistics, if such a subject exists, will find much that is familiar in
this book. Often the Bayesians arrive at the same end point as the traditionalists,
but the route is very different. What the Bayesian does when he is making
statistical calculations is often identical to what the traditionalist does, only the
meaning is different. There are times when the two points of view differ, however,
and these will be mentioned.

I have kept in mind that the reader will want to be able to read the literature
in his discipline and to understand the meaning of non-Bayesian statistical
analyses. The points of agreement between the two schools make it possible for
you to understand the results of traditional analyses, even though you have
learned only Bayesian statistics. Rather than explain the traditional approach
to the analysis in question, I have given the Bayesian interpretation of the tra-
ditional analysis. You will not learn how to do traditional statistical analyses
but you will be able to see what assumptions and procedures would lead a
Bayesian to the traditional results. In all fairness I should warn you that not all
traditional procedures have Bayesian counterparts, at least not yet. The tradi-
tionalists have had a head start of several decades, so the traditional methods
are more extensively developed. However, Bayesian methods are appearing with
increasing frequency in the statistician’s journals, so the gap will become
narrower within the next few years. Enough is now known about Bayesian
procedures to justify writing this book.

As with any controversial point of view, the Bayesians find they have
vociferous detractors. You will undoubtedly come across some. I do not propose
here to answer the critics; most of the common criticisms are answered, some-
times implicitly, sometimes explicitly, in the chapters to follow. Bayesian
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statistical procedures are as defensible as (and I think more than) any tradi-
tional procedures. This book merely presents some of the Bayesian methods.
The decision to become a ‘traditionalist’ or a ‘Bayesian’ is left to you.

Elements of Bayesian Statistics

One theme occurs throughout this book: revision of opinion in the light
of new information. The Bayesian statistician is concerned first with expressing
his opinions about some theoretical matter in an open, public way, then with
collecting data that bear on this opinion, and finally with using Bayes’ theorem
to revise his prior opinion in the light of the data. His revised opinion is then
taken as his current opinion, which he can communicate to others, or which
he can modify after the collection of more data. For example, suppose that an
unscrupulous gambler places his biased coin in his pocket. From past experience
with this coin, he knows that it has a bias in favour of ‘heads’. Later, as he
takes it out of his pocket, he discovers another identically appearing coin; one
of the two coins is the biased one, but the other is fair, for it is the change he
received earlier. How can he decide which coin is which?

A Bayesian statistician might approach the problem in the following
manner. First, he would say, examine the coins to see if you can get any clue
as to which is biased. Suppose there is no clue, so you arbitrarily choose one of
the coins. Then what is your current opinion about whether or not you have
chosen the biased coin? If you have no reason to think it is one coin or the
other, you might say that your current opinion is equally divided between the
two possibilities. You are as certain that it is biased as unbiased, or there is a
50-50 chance of it being biased. You might also say that if you placed a bet
on whether or not the coin was biased, you would be utterly indifferent between
betting on the coin being biased or betting on it being unbiased. Your prior
opinion leads you to give even odds on the coin being biased.

Next, the statistician would conduct a simple experiment:; he would toss
the coin a few times. Suppose he tosses it 10 times, and it comes up heads
8 times. The data from the experiment are ‘8 heads out of 10 tosses’. He would
then combine these data with your prior opinion, using Bayes’ theorem, to
arrive at the revised or posterior odds. In Chapter 4 Bayes’ theorem will be
introduced, and its application to this example will be given. For now, it is
enough to say that the posterior opinion would be expressed in probabilities or
odds, just as the prior opinion was. The posterior opinion might now be 75-25
or odds of 3 to 1 in favour of the coin being biased. The actual posterior opinion
would depend on whether or not the gambler knew the degree of bias, and if so,
what it actually was.

Opinions are expressed in probabilities, data are collected, and these data change
the prior probabilities, through the operation of Bayes’ theorem, to yield posterior
probabilities.

That is the essence of Bayesian methods.

This key idea has dictated the organization of the book. In Part I, we
learn how to quantify prior opinion. Part II is concerned entirely with describing
data. Bayesian methods for combining prior opinions and data form the subject

of Part III.
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It is easy to lose your way when learning statistics. You will bp less likely
to if you remember that the entire book is an expansion of the key idea:

Prior opinions are changed by data to yield posterior opinions.

That is what Bayesian statistics is all about.

1.3 Problems to be covered

I have already said that this book is mainly concerned with making
inferences. But inferences about what? Two sorts of inferences dominate the
experimental literature in the social sciences:

inferences about uncertain quantities;
inferences about hypotheses or events.

Inferences about one uncertain quantity

What proportion of the population approves of the way the president (or
prime minister) is handling governmental affairs? What is the average score of
machinists on a particular test of mechanical aptitude? How much variation
in [.Q. from one person to the next can be expected from college students?
None of these questions can be answered with certainty because it simply is
not possible to ask all people their opinion of the capability of their country’s
leader, or to test a/l machinists, or to measure the 1.Q.’s of all college students.

From our point of view, the proportion of all people, the average score
of all machinists, and the variation in 1.Q. of all college students are all uncer-
tain quantities. We suppose that they exist as single values, but we are uncertain
of those values. We may have a vague idea, or even a fairly precise notion, as
to the values, but as scientists we would like to collect data to enable us to be
more confident of the values of those uncertain quantities. The best we can do
is take a representative sample of people from the larger group and then let
the data from this sample be applied against our prior opinions, using Bayes’
theorem, to give us our new, posterior opinions about the uncertain quantity.

These three examples illustrate the sorts of uncertain quantities we will
be dealing with in this book:

proportions averages variations

You should know what proportions and averages are, but you probably do not
know very precisely what is meant by variation. Later, in Chapter 9, we will
show how variation can be expressed as a single number.

Inferences about two uncertain quantities

Just as a scientist may want to make inferences about some uncertain
quantity, so he may wish to know whether or not two uncertain quantities are
different from one another. Is the proportion of people in Kansas approving the
president’s activities different from the proportion approving in California ?
Do machinists and clerks differ in their scores on the mechanical aptitude test ?
Is the variation in 1.Q. amongst English college students different from the
variation in America? To answer these questions, the scientist must collect
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data from representative samples of people and use these data to revise his
prior opinions about the uncertain differences.

We could go on to examine differences among more than two uncertain
quantities; such inferences are possible but beyond the scope of this book. Here
we shall deal with no more than two uncertain quantities.

Inferences about the relationships between quantities

The social sciences are still in their infancy and so a great deal of experi-
mental effort is spent in trying to discover what goes with what. Does the level
of a person’s achievement motivation have any relationship to whether or not
the person is engaged in an entrepreneurial profession? Is the age of a child
when the mother begins toilet training related to the mother’s social class? Is
there any relationship between creative ability and neurosis ? Statistics can help
us to make inferences about whether or not two quantities are related.

Increasingly, social scientists are interested in the degree to which one
quantity goes with another one, or the degree of relationship between two
quantities. To what extent is approval of the president’s (or prime minister’s)
behaviour related to the age of the respondent? What is the degree of relation-
ship between scores on the mechanical aptitude test and ratings of success as a
machinist? To what extent are 1.Q. and grades at university related? In the
social sciences, relationships are seldom perfect; we can rarely say that when
one quantity increases, a related quantity will increase in direct proportion,
but we can say that as one quantity increases the other tends to increase also.
If the tendency is weak, that is, there are many exceptions to the rule, then we
say that the degree of relationship is weak, but if there are few exceptions then
the relationship is strong. The social scientist learns to formulate statements
like this last one in a precise manner through the use of statistics. He can use
Bayesian methods to revise prior opinions about the uncertain degree of
relationship.

Since one of the aims of science is prediction, it follows that scientists
often try to formulate the rule for predicting one quantity from knowledge of
another, related quantity. I can come closer, on the average, to predicting your
true weight if I know your height than if I do not know it. Height and weight
are related quantities; even though the relationship is not perfect, I can use
knowledge of one to help in predicting the other.

In this book we will discuss one particular type of rule, and will learn
how our prior uncertainty about that rule can be modified with data to give
us posterior opinions about the rule.

Inferences about hypotheses and events

Scientists are often interested in testing their theories. Whatever the
scientist’s statistical persuasion, he first derives from theory specific, testable
hypotheses. sometimes called statistical hypotheses, only one of which could
be true. The Bayesian will then express prior opinions about the relative truth
of those hypotheses, collect data which bear on the truth, and then use
Bayes’ theorem to revise the prior opinions. The resulting posterior opinions
give the scientist’s judgement, in the light of the data, about which hypothesis
is more likely to be true than the others. Usually social scientists formulate
hypotheses which are not capable of conclusive proof or disproof, but which
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are sufficiently different that the data can be expected to favour one or the
other.

For example, one theory about children of normal intelligence who.are
having difficulty in learning to read relates the reading disability to an emotion-
ally-taxing experience, such as divorce of the parents, that the child has recently
experienced. From that theory, one might derive this statistical hypothesis:
A higher proportion of recently-broken homes will be found among children
with reading problems than among children who are learning to read without
difficulty. A second, alternative, hypothesis, derived from the notion that
reading problems are not associated with emotionally-taxing experiences, would
state that the proportions of broken homes for the two groups of children would
show no difference other than one attributable to chance. The investigator
collects data on say, 50 reading-problem children and 50 non-reading problem
children, all of normal intelligence, and finds that broken homes occur twice
as frequently among families of reading-problem children than the families of
the other children. Obviously these data do not conclusively prove or disprove
either theory, but the data could be used to revise the investigator’s opinions
held before the data were collected so that now his posterior opinions express
his judgement about the relative likelihood of the truth of the two hypotheses.

Hypothesis testing has become one of the hallmarks of social science and
is very much in vogue these days amongst social scientists. Students often come
to believe that unless an experiment tests an hypothesis it is not really scientific.
One reason is that conventional methods of statistical inference lay heavy
emphasis on hypothesis testing, so that the scientist using conventional statis-
tics is forced to formulate his experiment in terms of hypotheses to be tested.

Bayesian methods, on the other hand, place more emphasis on inferences
about unknown quantities than on hypothesis testing. In the example just given,
one might look at the difference between the proportion of broken homes
among reading-problem children and the proportion among normal children.
Bayesian methods could be applied to make an inference about the difference
between those proportions. If that difference were found to be very small, then
one could conclude that breaking up of the home has little influence. But the
point is that by focussing interest directly on the difference between proportions
the scientist is conveying more information and information which is more
useful than he would if he confined his attention solely to the hypotheses. After
all, if he had concluded that home background did make a difference, the
next reasonable question to ask would be, ‘Yes, but how much of a difference ?’
To answer that he would have to make an inference about the difference in
proportions of broken homes, so why not start with that question in the first
place.

In practice, Bayesian statisticians make rather more inferences about
hypotheses than they would like, but they often do so for the sake of mathe-
matical convenience, not because the logic of the experiment or statistical
method demands it. There are times, however, when inferences about hypotheses
are entirely appropriate. This is especially true when the scientist is concerned
with predicting events.

Events which have already occurred but whose outcomes are still unknown
to us and events that have yet to occur may be the subject of a scientist’s pre-
dictions or inferences. Will this patient commit suicide ? Is this person brain-
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damaged or functionally il1? Will the next toss of this coin result in ‘heads’ or
‘tails’? Is this the person who committed the crime ? As you can see from these
examples, events are a special type of hypothesis, for, after all, I can talk of a
patient’s committing suicide as either an event that has not yet happened or an
hypothesis about the patient’s future behaviour. Also, none of these examples
involves an uncertain quantity. It is the event itself which is of interest and
about which we wish to make an inference. Particularly in Chapter 4 we will
be making inferences about events, while in later chapters interest will centre
mainly on uncertain quantities, though we will show how inferences can be
made about hypotheses based on uncertain quantities.

1.4 Decision theory and statistics

Suppose that a new drug is being tested. How great must the posterior
odds favouring the drug’s effectiveness be before the drug is put on the market ?
Odds of 2 to 1 may be great enough if the drug will be used to treat a dying
cancer patient, while odds of 100 to 1 may not be enough if the drug is to be
administered to a baby suffering from a minor ailment that can be treated by
other, possibly less effective but proven, drugs. The decision to use the drug
or not will be influenced not only by the odds, but also by the benefit to be
gained from making a correct decision and the possible loss from making the
wrong one.

Posterior probabilities are relevant to the decision, but alone they do not
solve the decision problem. You would have to know something about the
relative values of being right or wrong, and you would have to know the formal
rules for combining these values with the probabilities of being right or wrong.
Theories of decision making exist for this purpose, but this book will not
discuss them. Here we will confine our attention to making inferences, and to
revising these inferences in the light of new information. What you learn from
this book is part of what the decision theorist does: to learn the rest you could
hardly do better than to read either Schlaifer (1969), who provides an elemen-
tary yet thorough grounding in the basics of decision making, Raiffa (1968),
who covers roughly the same ground from a more theoretical point of view, or

Lindley (1971).

1.5 Summary

This book emphasizes the intelligent use of statistics. Its purpose is to
enable you to carry out simple Bayesian analyses, to recognize the conditions
under which a particular analysis is appropriate, and to understand simple
statistical analyses appearing in the literature. Your mathematical ability can
be very modest indeed, yet you should find the book comprehensible.

Two major points of view about statistics are current. I have adopted the
more controversial, the Bayesian school. While you will learn only Bayesian
methods in this book, you will be able to understand traditional statistical
analyses, which are still far more frequently found in the social science literature.

Bayesians believe that a scientist should quantify his opinions as proba-
bilities before performing an experiment, then do the experiment so as to collect
data bearing on those opinions, and then use Bayes’ theorem formally to revise
those prior probabilities to yield new, posterior probabilities. These posterior
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probabilities are taken as the scientist’s revised opinions in the light of the
information provided by the data. That is the key idea behind all Bayesian
methods, and it is the major theme of this book.

Variations on the theme will include making inferences about one or two
uncertain quantities, where the uncertain quantities are either proportions,
averages, or measures of variation. I will also include methods for making
inferences about the relationships between quantities and inferences about
hypotheses and events. The book will not be concerned with decision making.



Part 1
Quantifying prior
opinion






2 - Probability

Probabilities quantify opinion. This chapter shows how uncertainty about
events and hypotheses can be expressed in the form of probabilities. By the
time you have finished the chapter, and that includes doing the problems at the
end, you should understand

what a probability is;

how to measure probability;

the difference between Bayesian and ‘traditional’ views of probability;
how odds and probabilities are related.

If you understand these points, you should be able to assign meaningful proba-
bilities to any events or hypotheses, and your probabilities should be consistent
with one another.

2.1 Meaning of probability

Probability defined

The unique feature of Bayesian statistics that distinguishes it from the
traditional approach is the definition of a probability. (The traditional view
will be discussed under the section headed ‘Relative Frequency’ in this chapter.)

For a Bayesian,

a probability is a degree of belief held by a person about some hypothesis, event,
or uncertain quantity.

By convention, we restrict probabilities to numbers between 0 and 1. The bigger
the number, the greater the degree of belief. I think there is a 0-55 chance that
some form of extra-sensory perception is possible by some people, a 0-6 chance
that I will someday own a television receiver so flat it can be hung on the wall,
a 0-7 chance that a person convicted of a crime in England is under 21 years
of age rather than 21 or older, a 0-85 chance that people in entrepreneurial
occupations generally take more risks than people who work in bureaucratic
organizations, and a 0-99 chance that a man will set foot on one of the planets

before the end of this century.
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Each of these statements is a degree of belief that says something about
me as well as about the event, hypothesis, or uncertain quantity in question.
You may disagree with some of the probabilities I have assigned. Nothing.m
Bayesian statistics says your probability is any better than mine. When prior
opinions differ, then prior probabilities should be different. When two people
disagree it is because the past experience and information on which they base
their probabilities are different. The point is not whose probability to believe
but rather that differing probabilities reflect differences in information on which
the probabilities are based.

As new evidence becomes available, and as data are collected, two scien-
tists with divergent prior probabilities will come to share common information.
These new data serve to revise the prior opinions, more data will allow further
revision, and so forth. An important point about Bayesian statistics is this:

Initially divergent opinions will be brought more and more into agreement through
the successive application of Bayes’ theorem as more and more data are gathered.

For a Bayesian, a scientific ‘truth’ is established when most scientists come to
share a common belief.

The definition of probability given in this section does not tell you how to
assign numbers to your feelings of uncertainty, so in the next two sections
methods of measuring probability will be presented.

Events

Before I discuss methods for measuring probability, it will be necessary
to introduce the concept of a simple experiment. This idea will not only lead us
to a simple method for quantifying opinion, it will also allow me in later
sections and chapters to use examples in which all readers would assign the
same probabilities. This has the advantage that you can check your answers
against mine; unless we both use the same probabilities yov would have a
difficult time knowing if you were correct in your use of the probabilities.

First, let us be clear about the meaning of a simple experiment.

A simple experiment is any procedure that leads to a single, well-defined, public
outcome.

I am using ‘public’ in the sense that anyone observing the procedure would
agree about the outcome. Tossing a coin, rolling a die, selecting a card at
random, choosing a slip of paper from a hatful of different papers, drawing
straws, and selecting a person at random from a class of students are examples
of simple experiments. Remember that only a single outcome is permissible.
Complex, inter-related outcomes cannot be considered, as would be the case in
the experiment ‘switch off the electricity to the building’.
The next concept is that of an elementary event.

An elementary event is the outcome of a simple experiment.

If T choose a student at random from my statistics class, then the person I
actually get is an elementary event. Obviously, there are as many elementary
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events in this example as there are students in the classroom. Two elementary
events are possible if a coin is flipped (assuming that the coin cannot stand on
its edge), and one of six elementary events can occur when a die is rolled.

Usually the scientist is not interested in elementary events; he wants
to make statements about event classes.

An event class, or more simply, an event, is a collection of elementary events,
all of which have a given shared property.

[f I draw a person at random from the statistics class, getting a particular
person is an elementary event, but getting a blond person is an event. Other
events might be getting a man, getting someone with flat feet, selecting someone
under six feet in height. Consider the simple experiment of selecting a card from
a pack of cards. There are 52 elementary events; 26 of these form the event
class denoted by ‘red card’, 13 fall into the event class ‘heart’, and 4 fall into
the event class ‘queen’. If any one of the elementary events making up an event
class occurs as the outcome of a simple experiment, we say that the event has
occurred. The event ‘red card’ is said to occur when a single red card is drawn,
even though the other 25 elementary events in the event class did not occur.

Exercise 2-1
For the simple experiment of rolling an unbiased, six-sided die:

a List the elementary events.

b How many elementary events are there in the event class ‘an even number
comes up’?

c How many elementary events are there in the event class ‘the number that
comes up is 4 or less’?

d How many elementary events are there in the event class ‘the number that
comes up is greater than 5°?

e How many elementary events are there in the event class ‘the number that comes

up is less than 1’?

Answers

1, 2, 3,4, 5, 6. An elementary event can be a number.

Three: 2, 4, 6.

Four: 4, 3, 2, 1.

One: 6.

None: An event class that contains no elementary events is called an ‘empty
event’.

o Q6T

Now consider the case of a simple experiment in which all the elementary
events are equally likely to be chosen. By ‘equally likely’ I mean that if you had
to place a bet on the occurrence of any one particular elementary event, you
would be indifferent about the one on which you actually placed your money.
Suppose, for example, I have two identical balls in an urn, one red and one
blue. One of the balls is to be drawn, blind. If it comes up one colour, I pay
you a valuable prize, but if it comes up the other colour, you pay me the prize.
Now, do you care which colour ball is associated with paying you the prize? If
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you do not, then we say that the drawing is just as likely to result in one colour
as the other. The events are equally likely.

The only trouble with this definition of ‘equally likely’ is that, for the
example just given, it does not admit of any colour preferences you may have.
But that is not a fundamental flaw in the definition, for I could find some other
way of distinguishing the otherwise identical balls, a way that would not involve
preferences which are not really relevant to the simple experiment. Perhaps 1
could find two colours neither one of which you prefer to the other, or possibly
I could identify the balls with two equally preferred numbers. We might call
such an event a ‘neutral’ event. The main point to remember is that the notion
of ‘equally likely’ is defined in terms of your indifference among neutral events.
My example for just two events can easily be extended to any number of events.

If we take all the elementary events to be equally likely, then we can agree
on a basis for assigning probabilities to events. For example, in drawing a
card from a well-shuffled pack, what is the probability of getting a red card?
Since 26 of the 52 elementary events belong to the event class ‘red card’, we
form the ratio 26/52 = 1 to determine the probability of ‘red card’. The proba-
bility of getting a heart is 13/52 = 1., and the probability of getting a queen is
4/52 = 1/13. In general:

In a simple experiment where the elementary events are equally likely to be chosen
the probability of an event can be assumed to be equal to the proportion of ele-
mentary events in the event class,

where

proportion of elementary _ ( number of elementary \ . [ total number of
events in an event class events in an event class elementary events

Exercise 2-2

For the simple experiment of rolling an unbiased, six-sided die, what is the
probability of getting:

An even number?

A 4 or less?

Greater than a 5?

Less thana 1?

a6 TR

Answers

3/6 = 1/2.

4/6 = 2/3.

1/6.

0/6 = 0. The probability of the empty event is O.

an o

2.2 Measuring probabilities

When dealing with events, you will often find that your degrees of belief
are identical to the proportion of elementary events in an event class. Indeed, if
you had not determined the proportion but had relied solely on your intuition
in arriving at a probability, you would most likely change your assessment to
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conform to the actual proportion if someone pointed out to you the numbers of
elementary events involved. For simple experiments the logic leading to a
probability assessment is clear and compelling. Many of the examples and
exercises in this chapter and the next are based on simple experiments, and the
experiments social scientists conduct can often be looked at from the viewpoint
of simple experiments. The outcome of an experiment is data for the scientist.
Because of this close link between simple experiments and the experiments
performed by scientists, elementary events can form the basis for assessing
probabilities of data observed in experiments. More will be said about this in
Section 4.5 of Chapter 4.

Unfortunately, counting elementary events will rarely prove to be useful
as a means of arriving at probabilities of hypotheses or uncertain quantities.
The reason for this is that it will rarely be obvious what the elementary events
are that should be counted; the concepts of elementary events and event classes
just do not seem relevant. Elementary events are used in conjunction with the

(numbers not shown
on the balls)

Fig. 2-1

Standard urn for measuring probability

idea of a simple experiment, and simple experiments do not have much to do
with assessing degrees of belief in hypotheses or uncertain quantities.

At all costs, I wish to avoid the notion that one kind of probability applies
to events and another kind to hypotheses or uncertain quantities. Probabilities
are degrees of belief, whether we are talking about events, hypotheses or uncer-
tain quantities. It may be easier to arrive at a probability in one situation rather
than another, but it is not necessary to have one kind of probability for easy
situations and another for difficult ones. Instead, what we shall next do is
develop a standard device which will allow us to ‘measure’ degrees of belief in
any situation. This standard device will form our measuring instrument for
probabilities in much the same manner as a thermometer is the measuring
instrument for temperature.

Our standard device is an urn filled with 100 identically-shaped balls
(Fig. 2-1). (Sometimes 1000 balls are used if measurement is to be made more
precisely.) Each ball is identified by a number, from 1 to 100. The simple
experiment of drawing, blind, one ball from the urn is to be performed. -

To see how the standard device can be used to measure degrees of belief
we must consider two bets, one involving the event whose probability you wish
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to assess, and one involving the standard device. Suppose, for example, you
want to determine the probability that a manned landing will be made on
Mars before the end of 1985. Imagine that the following bet has been offered
to you:

If a man has set foot on Mars by the end of 1985 you win £5.

If there is no landing by the end of 1985 you win nothing.

If you win, you will be paid on January Ist, 1986.

Bet A{

The tree diagram of Fig. 2-2(a) is a convenient representation of this bet.

L5
<e® 0%
b
® Slue 0.
0
Fig. 2-2

Tree diagrams for the Mars bet and for the reference bet

Now imagine that balls 1 to 80 in the standard urn have been painted red
while the remaining 20 balls have been coloured blue. The balls are thoroughly
mixed, and one is to be drawn on the first day of 1986 by a blindfolded observer.
Now consider this bet.

Bet B If the ball drawn is red you win £5.
If the ball is blue you win nothing.

This bet is shown in Fig. 2-2(b). We would all agree that the probabilities of
drawing a red or a blue ball are 0-8 and 0-2 respectively, and these probabilities
are shown on the branches of the tree. Remember, we are trying to find out
what probabilities should be shown on the branches of the tree representing the
Mars bet.

Consider both bets. Which do you prefer, A or B? Remember that neither
bet pays off until January 1st, 1986. Suppose you prefer B. Then I assume you
must think there is a better chance for you to win £5 with bet B than with A.
From this I infer you think the probability of getting a red ball is greater than
the probability of a Mars landing by 1985. In other words, the probability of a
Mars landing by 1985 is, in your judgement, less than 0-8.

Now suppose I change the composition of the urn to 70 red balls and 30
blue ones; the chance of winning £5 with bet B is reduced to 0-7. Do you still
prefer bet B to A? If you do, then I will continue to reduce the proportion of
red balls in the urn, until I find some mix of red and blue balls that causes you
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to be indifferent between playing either bet A or B. You will actually find several
acceptable mixes which are similar, for the indifference region is usually a bit
fuzzy. You might find it difficult to distinguish between mixes of 67-33, 68-32,
69-31, 70-30, and 71-29; perhaps they all yield bets of type B which feel about
the same as bet A. This fuzziness of the indifference region is common, but need
not be worrying. The region will become narrower as you gain experience in
expressing uncertainty in the form of probabilities, and in any event you can
use the middle of the region as your assessment, in this case 69-31.

When you find a mix that makes you indifferent between the two bets,
then we are justified in assigning the same probability to the event ‘red’ as we
are to the event ‘Mars landing by 1985’. If a 0-69 chance of drawing a red ball
makes you indifferent between bet A and bet B, then we can say that you must
feel there is a 0:69 chance of a Mars landing by 1985 (see Fig. 2-3).

If you are indifferent between playing
this bet
h\

or this bet

then you must believe the probability of a Mars landing
by 1985 to be equal to 0-69

Fig. 2-3

Determining the probability of an evert

Once you have understood the logic of this example, you can use the
standard device directly to assess the probability you would associate with a
hypothesis or event. Perhaps the easiest method is to adjust, mentally, the pro-
portion of red balls in the urn until you find that the uncertainty associated
with drawing a red ball in a simple experiment is identical with your uncertainty
about some hypothesis. If you have adjusted the proportion of red balls cor-
rectly, you should be indifferent between betting on the truth of the hypothesis
and betting (the same amount) on the draw of a red ball from the urn.

Exercise 2-3

Use the standard device of balls in an urn to help you assess probabilities for
each of the following hypotheses:

The next person to greet you will be smoking a cigarette.

The first person to call you by name tomorrow will be under 30 years of age.
A cure for cancer will be found within 15 years.

Someday the Pope will sanction the Pill.

a6 o

Answers

There are no correct or true probabilities for these hypotheses. The values you
assign are acceptable as long as they meet certain consistency requirements
which are discussed in Chapter 3.
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If you are assessing the probabilities of more than two hypotheses, then
you will need to put in the urn balls of as many different colours as there are
different hypotheses. If you wish to consider these hypotheses:

a that the manned landing on Mars will occur before 1985;
b that the manned landing on Mars will occur between 1985 and 2000;
c that the manned landing on Mars will occur after 2000;

then you will need balls of three colours. As before, the proportioq of each
colour represents the probability you assign to the associated hypothesis.
Although the urn and balls is a device that will be most generally helpful
in assessing probabilities, other devices are useful, too. Suppose, for example,
that you have just assigned 0-5-0-5 prior probabilities to two hypotheses; you
consider the hypotheses equally likely. Is your uncertainty about these hypo-
theses exactly the same as your uncertainty about the toss of a fair coin? The
fair coin is the standard device—heads and tails are equally likely. You should
assign equal probabilities to the two outcomes of the toss of the coin, and you
should associate probabilities of 0-5-0-5 to any two equally likely events or

Fig. 2-4
The spinner, a standard device to which
probabilities can be compared

hypotheses. A die is a convenient standard device to which you can compare
probability estimates of 1/6. You should ask yourself this question: ‘Is my
uncertainty about this hypothesis exactly the same as my uncertainty about
whether, say, a six will come up when I roll a fair die ?” If your uncertainty about
the hypothesis 1s the same as your uncertainty about the outcome of the roll
of the die, then you should assign a probability of 1/6 to the hypothesis.

A device similar to the urn and balls is a spinner, shown in Fig. 2-4.
The relative sizes of the white and shaded sectors represent the probabilities
associated with two hypotheses. If the sectors are of equal size, then the device
represents probabilities of 0-5-0-5. If the shaded sector is one quarter the size
of the whole circle, then probabilities of 0-25-0-75 are represented.

In general, the probability represented by the shaded sector is given by

Number of degrees in angle AOB + 360 degrees in whole circle

Suppose you think the probability of some hypothesis is 0-2. To see how this
would look on the spinner, you multiply 360 by 0-2 to get 72 degrees for the
angle of the shaded sector. If you draw the spinner, it should look like Fig. 2-5.

If you could spin the pointer, there would be a 0-2 chance of the arrow
coming to rest over the shaded sector. Do you feel that this device accurately
portrays your feeling of uncertainty about the two hypotheses? If it does not,
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then you should change the sizes of the sectors until you arrive at a representa-
tion that is satisfactory. You could then measure the angle of the shaded sector,
divide by 360, and the result is the probability of the less likely hypothesis.

The spinner can be used for more than two hypotheses by adding more
sectors. Five hypotheses would require five sectors, and the ratio of the angle
of each sector to 360 will give the probabilities you associate with each
hypothesis.

The use of standard devices as an aid in arriving at probabilities is based
on the idea that probabilities can be compared. Probabilities are different from
one another only in their values; we do not have one kind of probability for
events and another kind for hypotheses; we do not have different kinds of
probability for events involving people than for events involving things. Prob-
abilities for unique events can be compared with probabilities for repeated
events because the probabilities are different only in value, not in kind. With
apologies to Gertrude Stein, a probability is a probability is a probability.

Fig. 2-5
Spinner for probabilities of 0-8 and 0-2

The trouble with using standard devices is that even these simple mechani-
cal analogues to probability are not as simple, psychologically, as they seem.
A person may say that a coin is equally likely to come up heads as tails, but
when you ask that person to bet on the outcome for many flips of the coin, he
will probably act as though he had a slight bias favouring either heads or tails.
In other words, his verbal report does not quite correspond with his feelings
about the outcomes. Davidson, Suppes and Siegel (1957), for example, experi-
mented for a long time before they found two events that were truly equally
likely for the subjects in their experiments. One of their devices was a six-sided
die, three sides of which had ZOJ printed on them, and three sides had ZEJ.
To most people, ZOJ is just as likely as ZEJ to come up on a toss of the die.
They found other nonsense syllables that worked just as well.

Similar criticisms apply to the spinner device; the subjective size of the
shaded sector may depend for some people on its position on the spinner. For
the urn a colour bias may operate to cause you to add or subtract a small amount
of probability because the balls are your favourite colour. One way to check
for these biases is to reverse the association between the events represented by
the standard device and the hypotheses or events whose probabilities are being
assessed. In the Mars-landing example we originally associated the red balls
with the hypothesis. We can check for bias in our estimates by associating the
blue balls with the hypothesis, and then seeing what proportion of blue balls
is required. If we arrive at the same answer as before, 0-69, then we can be
reasonably sure no bias is operating.
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Relative frequencies

Suppose you have what looks like a fair coin and you want to find out the
probability of its landing heads when you toss it. So you perform a little experi-
ment: you toss it 10 times. It comes up heads 6 times, but you conclude that
that is close enough to 5 to warrant your assigning the probability of heads
as 0-5. Just to make sure, you toss the coin 100 times, and it comes up heads
46 times. Again, 0-5 seems a reasonable assessment. But to make really certain,
you toss the coin 1000 times. It comes up heads 489 times, and now you are
quite sure that the probability of heads is ;. Why did you do this ? After all, the
proportion of heads on the first experiment was 0-6, on the second 0-46, and on
the third 0-489. You might have noticed that the proportion got closer to 0-5
in each of the experiments, and you assumed that if you flipped the coin an
infinite number of times, an experiment that is possible in theory only, obviously,
then it would turn up heads exactly half of the time. This notion forms the basis
of the definition of probability for the traditional statistician. For him proba-
bilities are objective because they are related to observable events through the
limit of a relative frequency. He defines a probability as the relative frequency of
occurrence of an event after an infinite number of similar trials has occurred.
Now this is not a very useful definition for it says nothing about how to arrive
at probabilities short of making an infinite number of trials. Fortunately, James
Bernoulli in the eighteenth century proved a theorem which says, in essence,
that in the long run, the relative frequency of an event approaches its probability.
This theorem is the mathematical equivalent of most people’s intuitive notion
of the law of averages, that in the long run events occur with relative frequencies
that are very close to their ‘true’ probabilities. In practice you never have to
observe a great many trials; 100, even 50, or 30 may suffice. The relative fre-
quencies observed for even a modest number of trials may come very close to
the long-run relative frequencies. And even if you do not count the relative
frequencies, just observing the events will enable you to make very good prob-
ability estimates. A number of experiments, reviewed by Peterson and Beach
(1967), have shown that people can judge relative frequencies and proportions
very accurately, and, as you would expect, with increasing accuracy as the
number of trials increases.

There are two major troubles with using relative frequencies as the sole
basis for prior probabilities. In the first place, relative frequencies of past events
may not be entirely applicable to future events. In the relative frequency defini-
tion of probability note that I included the requirement of ‘similar trials’.
Identical trials would be absurd, for then the outcome of each trial would be
the same. If each flip of the coin were precisely identical, then the flip would
always result in a heads, or a tails. So to avoid getting all heads or all tails, the
trials must be slightly different. But just how slightly is left undefined, and so a
subjective element enters into this supposedly ‘objective’ definition.

The second trouble with relative frequencies is that they cannot apply to
unique events. If an event can only happen once, it makes little sense to enquire
about its past history or even an imagined repetition of trials on which it could
occur. Horse races, football games, sporting events of all kinds, are unique
events. Yet it seems reasonable to assign degrees of belief to the outcomes of
these games. Scientific hypotheses have this characteristic. If you consider them
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as events, they either occur or they do not, that is, they are either true or not
true. Accordingly, the believer in relative frequencies would assign probabilities
to scientific hypotheses of either 1 or 0. The traditional statistician, who accepts
the notion that probabilities are identified with relative frequencies, never talks
about the probability of a hypothesis, he only talks about the probability of data
given the truth of a hypothesis. Data can be repeated. Do the experiment again,
and you should get the same, or nearly the same, data. Relative frequencies
make sense in terms of repeated observations in which data can occur, so it makes
sense to talk about the probability of data. The Bayesian is willing to attach
probabilities to both data and hypotheses, for it is meaningful for him to assign
probabilities to the occurrence of data as well as to the truth of hypotheses.

Whether you view probabilities as relative frequencies or as degrees
of belief can make a practical difference. For example, many social scientists
feel that clinical diagnoses are best left to intuitive, judgemental processes, while
others maintain that statistical methods are superior to intuitive ones. The
clinician frequently makes the complaint that statistics are based on past
occurrences and so do not apply to the unique case that is about to be diagnosed ;
for him, the present ‘trial’ is not ‘similar enough’ to past trials. The statistician,
on the other hand, goes on demonstrating that these past cases are relevant to
the unique one about to be considered, that the trials are sufficiently similar.

Those on both sides of this argument have in mind a relative frequency
definition of probability. For example, a statistician may consult the hospital’s
records before advising a clinical psychologist about the diagnosis of a patient
as either brain-damaged or functionally ill. The statistician is interested in deter-
mining the relative frequencies with which functional illness and brain damage
occurred in that hospital in the past. He finds that 909 of the patients were
functionally ill, and he uses this relative frequency as the basis for his prior
probabilities. But suppose that the hospital has been operating for ten years,
and that in the past three months a new hospital has opened that specializes
in brain-damaged patients. You would expect that the number of brain-damaged
patients referred to the old hospital to have decreased, making the previous
relative frequency data of little use. In more general terms, the ‘trials’ are too
dissimilar; the cases before the opening of the new hospital are not similar to
those after the opening. The clinician feels that he can often detect these dis-
similarities between trials and either make use of them in his diagnosis, or
discard them as irrelevant. In some cases the past relative frequencies may be
adjusted slightly, by using your good judgement, to reflect more accurately
your current assessment of the situation. But this procedure only makes sense
if you believe that probabilities are degrees of belief, which may or may not
be based on relative frequencies, or on modified relative frequencies.

An attempt to resolve this controversy concerning clinical versus statistical
prediction has been given by Pankoff and Roberts (1968). They adopt a
Bayesian point of view.

2.3 Odds

Odds defined

Some readers may have experience in quantifying their opinions about
uncertain events not in the form of probabilities but of betting odds. Why,
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since odds are more familiar than probabilities to many people, did I not use
them ?

The difficulty with betting odds is, as those of you who frequent betting
shops know, that the odds you are offered there reflect not only the events you
are betting on, but also how heavy the betting has been. Odds given in betting
shops are not good estimates of the odds on the event itself, though they do
bear some relationship. Your intuition about odds is contaminated by the
betting habits of other people, so you should be wary of expressing your uncer-
tainty in the form of betting odds.

Another difficulty is that the odds you estimate might be influenced by
the amount of money you have available or by the value you place on the money
you might win, and research has shown that that value is seldom in perfect
correspondence with the amount of money. These are insurmountable diffi-
culties, so we will not attempt to quantify our uncertainty as betting odds.

However, odds (without the ‘betting’ connotation) will occasionally be
useful. To talk of one event being twice as likely as another is sometimes con-
venient. Odds will always refer to an event, E, and its complement, E (read
‘not-E’). When we say E is twice as likely as E, we mean that the probability of
E is twice as large as that of E, that the odds are 2 to | in favour of E (note the
discrepancy from betting-shop parlance).

Let us use the Greek letter omega, €, to represent odds. The odds favour-
ing E over E will be written Q(E). The relationship between the probability of
E, p(E), and the odds favouring E is

p(E)
QUE) = -
(E) 1—p(E)
or, conversely,
B Q(E)
PE) = I oE)

As an example, if E is twice as likely as E, then Q(E) = 2. We find the prob-
ability of E as follows:

p(E) = 142737 0-67
You can check this by turning the probability back to odds:
0-67 0-67
Q E == = =
(E) 1-0-67 033

Exercise 24
a What are the probabilities that correspond to these odds statements ?

i She is three times as likely to succeed as to fail.
ii The letter is 4-5 times as likely to be delivered tomorrow as later than

tomorrow.
iii He is 10 times more likely to marry than to remain single.
b What are the odds that correspond to these probability statements ?

i The probability he will be promoted within a year is 0-6.
il The probability is 0-8 that this hypothesis is true.
iii There is a 0-9 chance of a totally successful cure.
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Answers

a i 3/4 = 0-75.
ii 4-5/5-5 = 0-82.
iii 10/11 = 0-91.

b i 0-6/0-4 = 1-5.
ii 0-8/0-:2 = 4.
iii 0-9/0-1 = 9.

Odds are usually expressed as numbers equal to or greater than one.
What do you do, then, if p(E) = 0-2, for example? This gives Q(E) = 0-2/0-8
= 0-25! The answer is simple: give the resulting odds for E rather than E.
For the example, we would find Q(E) = 0:8/0-2 = 4.

The probability-odds scale

The correspondence between probability and odds is shown by the scale
in Fig. 2-6. With this you can translate odds to probabilities, or probabilities to
odds without having to solve the formulae above. I suggest you study this
carefully; many people are surprised to find what odds correspond to a parti-
cular probability, or vice versa. Repeat Exercise 2-4 using the probability—odds
scale.

2.4 Summary

A probability is a degree of belief held by a person about some hypothesis,
event, or uncertain quantity. This definition of probability contrasts to the more
traditional view in which a probability is seen as the limit of a relative frequency.
The ‘personalist’ rather than the ‘relative frequency’ view is adopted in this
book.

The ‘personalist’ definition of probability does not lead to a subjective
view of statistics, however. Before any data have been observed, opinions will,
naturally, differ. But after data have been collected, it is possible to apply
Bayes’ theorem, and then the revised probabilities will be in closer agreement.
With enough data, initially divergent opinions will become nearly indistin-
guishable. It is the revision of opinion that is linked to observations.

As a basis for agreeing about probabilities, the concept of a simple experi-
ment was introduced. In a simple experiment where the elementary events are
equally likely to be chosen, the probability of an event can be taken as equal
to the proportion of elementary events in the event class. This fundamental
notion allows examples to be constructed in which all readers will have identical
probabilities, and will form the basis in later chapters for determining the
probability of data occurring.

To measure probabilities it is necessary to consider a standard measuring
device, an urn filled with 100 balls. The number of balls of different colours
should be adjusted so that the uncertainty associated with drawing a ball of a
certain colour is the same as the uncertainty of the event whose probability you
are trying to measure. The proportion of balls of that colour represents, then,
the probability of the event. Other standard measuring devices, such as a
spinner, can be helpful, too.
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Sometimes it is useful to express opinion in odds rather than probabilities,

but identification with betting odds must be avoided. Odds are particularly
useful when only two hypotheses or events are being considered.

2-2

[T I — )

= ]

2-4

Problems

Three st-udents who carried out a postal survey of attitudes to traffic were able
to classify their respondents on the basis of occupation into the following
social classes:

Social class Number of replies

1 76
2 136
3 non-manual 80
3 manual 60
4 26
5 7

[f someone were chosen at random from this group, what is the probability
that the person will be
in social class 3?

in the top social class (1)?
classed as both belonging to class 1 and to class 3?

A survey of a rural district shows that 100 families live in the area. The number
of children in the families is shown in the following table.

Number of children Number of families

X with X children
0 20
1 25
2 30
3 15
4 or more 10

If a family is selected at random from the district, what is the probability that
the family will have

at least two children?

exactly three children?

either two or three children?

at most two children?

Four of the florins in my pocket are 10p pieces (which show an older Queen
Elizabeth), 3 are 2-shilling pieces depicting a younger Queen Elizabeth, 2 show
King George VI and 1 shows King George V. If I choose a coin at random
what is the probability that it

is a new coin?

shows a portrait of Queen Elizabeth?

Use one of the standard devices mentioned in the chapter to assess your and
some of your friends’ uncertainty about these events or hypotheses:

The Pope will sanction the Pill in this century.
The smoking of marijuana will be legalized in your country within the next

ten years.
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2-5

2-6

Probability

A woman will be elected president (or prime minister) of your country sometime
this century.

Or invent your own event or hypothesis.

Carry out a class experiment to compare the two main standard devices dis-
cussed in the chapter: the balls in the urn, and the spinner. Let half the class
use one device, the remaining half the other. Carry out measurements on friends,
ensuring that the same person is not assessed twice. Bring the data back to class
and compare measurements to the same questions obtained by the different
devices. Your instructor will help organize the experiment, and will assist in
the analysis of the data. Keep the results and analyze them again after you have
completed Chapter 12, for then you will be able to carry out a more extensive
analysis of the data.

250 people are classified as follows:

Protestant 75
Roman Catholic 100
Other religious affiliation 50
No religious affiliation 25

ToTtAaL 250

If one person is to be chosen at random, what is the probability that the person
will have some religious affiliation?

What is the probability that the person chosen will be either a Protestant or a
Roman Catholic?



3 - Probability laws

Up to now we have been concerned only with showing that probability
1s the language of uncertainty, and some methods have been explained which
should help you to use the language. Now it is time to learn the grammar.
There are restrictions on probabilities that must be clearly understood; these
restrictions are called probability laws.

There are two reasons for knowing these laws. In the first place, the laws
impose requirements of internal consistency on the probabilities you assign to
events that are related. You must ensure that your assessments conform to the
limitations of the laws. Thus, you can use the laws to check on the internal
consistency of the probabilities you assign to related events.

In the second place, some of the laws show how the probabilities of simple
events are related to complex events made up of combinations of the simple
events. You will find occasions when your intuition is clearest about simple
events, yet you are primarily interested in complex events. The probability laws
will enable you to use your probabilities for the simple events as a basis for
calculating the probabilities of the complex events. At other times you will
find that your experience bears only indirectly on the events involved in a
particular problem, so you have no easy way of assessing probabilities. In these
circumstances you will find that you can make assessments about events that
are directly related to your experience and then use the laws to transform those
probabilities into probabilities of events involved in the problem.

I should warn you that this is a difficult chapter. Do not read it all in one
sitting; keep coming back to it, work through the exercises, and eventually it
will fall into place. The grammar of probability does not come easily to most
people, so do not become discouraged if you fail to understand a point on
first reading. Gradually you will begin to feel comfortable with the limitations
imposed by the probability laws.

Before we go on to the laws, it is necessary to introduce some standard

terminology.

3.1 Nomenclature

When we talk about the probability of an event it will often be convenient
to talk of probabilities in general rather than any specific probability. A prob-
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ability assessment says something about the event or hypothesis and also some-
thing about the person making it and the information he had available to him.
We might use this symbol for a probability:

p(E|P, 1)

The E stands for the event, the P for the person making the estimate and the
[ for the information available. The symbol is read ‘the probability of E given
the person P and the information I'. The vertical line stands for ‘given’. Note
that the symbol does not mean p times E divided by P or I'. The short way of
referring to the symbol is ‘the probability of E given P and I'. This is a condi-
tional probability. Strictly speaking, every probability is conditional; it is con-
ditional on the person assigning the probability and on the information.

In most statistical analyses, the person and the information available
before collecting any data remain constant throughout the analysis. When this
is the case, it is convenient to drop the ‘given P and I’ part of the notation.
Then the probability of an event becomes simply

p(E)

Always remember when you see this notation that the conditional person and
information available to the person are understood.

Now we can turn to the probability laws. Each law is stated in terms of
probabilities for events, but remember that there is only one kind of prob-
ability, so all the laws are applicable for hypotheses and uncertain quantities
as well.

3.2 First law

If I told you that the probability of some event was 1-3, or minus 0-6 you
should object. We have already met the restrictions that probabilities cannot
be negative or greater than 1. If I told you that a ‘sure thing’ had a probability
of 0-8, you should also object. A ‘sure thing’ implies a probability of 1.

First law Probabilities cannot be less than zero nor greater than one, and the
probability of the sure event is 1. Put mathematically,

0 < p(E) < 1 and p(sure event) = 1

The symbol < is read ‘less than or equal to’. The first law is read ‘zero is less
than or equal to the probability of E which is less than or equal to 1’. In other
words, the probability of an event lies between 0 and 1 inclusive. The ‘sure
event’ is an event that, in your judgement, is bound to happen. The coin must
come up either heads or tails, so the event ‘heads or tails’ is a sure event. When
[ select a student from the class, the event that I get a person is a sure event.

This law gives the first restrictions on probabilities, and its application
is obvious: be sure your probabilities fall between 0 and 1, inclusive, and assign
a probability of 1 to any event you think is certain to occur.

3.3 Second law

This law and the next are concerned with the relationships between events.
It is these laws that show how probabilities assigned to individual events should
be related to probabilities of combinations of events.
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The second law deals with events that are mutually exclusive, a term which
we define as follows:

Events on a list are mutually exclusive if the occurrence of any one event on the
list means that none of the others can occur.

If a coin comes up heads it cannot also come up tails on the same toss. Heads
and tails are mutually exclusive events. Suppose I select someone from the
statistics class. Are the events on this list mutually exclusive ?

aman a woman a blond a brunette

Man and woman are themselves mutually exclusive, but blond and man (or
blond and woman) are not. It is possible to get both a man and a blond, or
both a woman and a blond, etc. To make the events mutually exclusive, it is
necessary to alter the events:

blond man blond woman brunette man brunette woman

That list qualifies as containing mutually exclusive events. This example also
shows how an event need not be limited to a single descriptor. ‘Man’ may be
an event, but so also may ‘blond man’ or ‘blond man with flat feet’ or ‘blond
man under the age of 25 who is married with two children, both of whom are
blond and have flat feet’.

You cannot just look at a list of events to decide whether or not they are
mutually exclusive, you must also consider the simple experiment. Consider
this list:

heads tails

Those events are mutually exclusive for the simple experiment ‘toss a coin’, but
they are not mutually exclusive for the experiment ‘toss two coins’. Since one
coin could come up heads and the other tails, both heads and tails can occur
as the result of the simple experiment. You would, of course, be correct in
saying that the outcome of this simple experiment is not completely described
by just the two events heads and tails, that four events are necessary for a
complete description:

1st coin 2nd coin

heads and tails
heads and heads
tails and heads
tails and tails

Notice that these four events are mutually exclusive for the simple experiment
‘toss two coins’. If, for example, we get ‘heads and heads’, then none of the
other events can also have occurred as the result of that toss.

The first statement of the second law deals with any two mutually exclusive
events. We will distinguish these events by using a subscript notation; the two
events will be referred to as E, and E,. They could be any two events on a list
of mutually exclusive events.

Now we turn to the second law. It will be given first for two events, later
for any number.
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Second law The probability of either of two mutually exclusive events occurring
is equal to the sum of their individual probabilities. In mathematical notation,

p(E, or E;) = p(E,)+ p(E,)

The probability of either E, or E, occurring is equal to the probability of E,
plus the probability of E,. Let us use the concept of the simple experiment to
arrive at mutually agreed-upon probabilities that can be used in some examples.
Consider a fair die. It has six sides, so there are six elementary events possible.
The die is fair, so we can assume that each elementary event is as likely to occur
as any other. Thus, the probability of any one side must be 1/6. Now, what is
the probability of getting a 1 or a 2? By the second law,

p(lor2)=p(l)+pR)=1/6+1/6 =1/3

Or, consider an even more obvious example. What is the probability of getting
either a head or a tail when a coin is tossed ? Assuming the coin is fair and that
it will not land on its edge, we would probably agree that the two alternatives
each have a probability of 1/2. By the second law,

p(head or tail) = p(head) + p(tail) = 1/2+1/2 =1

The probability of getting one or the other is a certainty.

Exercise 3-1

As you are about to park your car in an illegal spot you see in the distance a
man in uniform. Based on the few cues you can make out at such a distance
and on your knowledge of people likely to be in the area, you quickly assess
these probabilities:

Probability
Event of the event
man is a policeman 0-3

man is a traffic warden 0-4

man is a bus conductor 0-2

other possibility 0-1
What is the probability that the man is

a either a policeman or a traffic warden?
b either a bus conductor or someone not on the list?

Answers

a By the second law,
p(policeman or traffic warden) = p(policeman) + p(traffic warden) =
03 +04=07.

b Also by the second law,

p(bus conductor or someone else) = p(bus conductor) + p(someone else)
=02+401=043.

The second law can be extended to more than two events. Suppose we
wish to consider » mutually exclusive events, where n can be any number. The
first event we wish to consider is E,, the second E,, and so forth to the last
event, E,.
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Second law The probability of any one event occurring from among » mutually
exclusive events is equal to the sum of the probabilities of the individual events.
In mathematical notation,

p(E;orE,or ... orE,) = p(E))+p(E,)+ ... +pE,)

Here the three dots mean ‘and so forth on up to’. The probability of E, or of
E, and so forth on up to E, is equal to the probability of E; plus the prob-
ability of E, and so forth on up to E,. More neatly, the probability of any one
of n events is equal to the sum of their individual probabilities. Remember that
this law only applies to mutually exclusive events. The law is sometimes referred
to as the ‘addition law’.

We will frequently have occasion to refer to the sum of the probabilities
of several events. Rather than write each time

p(E))+p(Ex)+ ...+ p(E,)

a short-cut notation will be used. The Greek letter sigma or ) will be used to
indicate ‘the sum of".

Z p(E) = p(E))+p(E;)+ ... +p(E,)
Now the second law can be written:
p(EyorE,or ... orE) =) p(E)

Exercise 3-2

You and your partner are playing duplicate bridge with five other teams.
Assuming that ties are impossible, you assign the following probabilities to
each team to indicate your degrees of belief about which team will be top scorer
for the evening:

Team Probability
1(yours) 0-3

2 0-25
3 0-15
4 01
5 0-1
6 0-1

What is the probability that the winner will be:
Either team 1, 2, or 3?

a

b An even numbered team?
Answers

a By the second law

p(team 1 or team 2 or team 3) = p(team 1) + p(team 2) + p(team 3)
=03+0254+015=07.
b p(2 or 4 or 6) = p(2) + p(4) + p(6) = 0-25 + 01 + 0-1 = 0-45.

First corollary to the second law

The first and second laws can be put together to form new laws which
are called ‘corollaries’. In this section we will look at one very useful corollary.
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Suppose we have some event like ‘rain tomorrow’. The complement of
that event, ‘no rain tomorrow’, is itself an event. Now, it will either rain tomor-
row or it will not, so the event ‘rain tomorrow or no rain tomorrow’ is the sure
event, which we saw from the first law must have a probability of 1.

p(rain tomorrow or no rain tomorrow) = 1

Let the event ‘rain tomorrow’ be designated by E and its complement
‘no rain tomorrow’ by E. The bar above the E means ‘the complement of E’.
Then by the first law,

p(EorE)=1

But by the second law we know that the probability of either E or E is equal
to the sum of their individual probabilities.

p(E or E) = p(E)+ p(E)
So it follows that
p(E)+p(E) = 1
or, by rearrangement,
p(E) = 1—p(E)
This result is the corollary.

First corollary to the second law The probability of an event is equal to 1 minus
the probability of the complement of the event.

The probability of heads, on the toss of a coin, is equal to 1 minus the prob-
ability of tails. For the toss of a fair die, the probability of rolling a 1, 2, 3,
4, or 5 is equal to 1 minus the probability of a six:

p(lor2or3or4orS)=1—p6)=1—-1/6 =5/6
That agrees with the result you obtain by applying the second law:
p(1 or2or3or4or5)=p(l)+p2)+ p3)+ p(4)+ p(5)
=1/6+1/6+1/6+1/6+1/6 = 5/6

Exercise 3-3

Use the first corollary to the second law to compute the probability of some
team other than your own winning the evening of bridge. Use the probability
assignments from Exercise 3-2. Check your answer by direct application of the

second law.
Answer
p(other than team 1 winning) = 1 — p(team 1 winning)
=1-03=07.
Check:
p(other than team 1 winning) = p(2) + p(3) + p(4) + p(5) + p(6)
= 0254015 4+ 01 + 01 + 01 = 0-7.
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Second corollary to the second law

. The second corollary to the second law is especially useful. It deals with a
list of events which are not only mutually exclusive but also collectively
exhaustive. By ‘collectively exhaustive’ we mean that the list is to be considered
complete; one of the events must happen. This list

rain all day tomorrow
snow all day tomorrow
sunny all day tomorrow

contains events which are mutually exclusive (if one occurs the others cannot)
but not exhaustive (something not on the list may occur). I can think of other
reasonable possibilities to add to the list.

The decision about whether a list is exhaustive is usually made by stopping
short of events whose probabilities are near zero. Considering the toss of a
coin, this list is usually considered exhaustive:

heads tails

But if I am standing over an open grating, and I do not catch flipped coins very
well, then the list could be lengthened:

heads tails falls through grating so result cannot be observed

If the coin is flipped before the beginning of a football game on to the ground,
you would prefer this list:

heads tails stands on edge

Many other events could be included, such as ‘coin disintegrates in mid-air’, but
we do not usually include events whose probabilities of occurrence are very low.

If the events on the list are mutually exclusive and exhaustive, then the
event ‘some event occurs’ is the sure event and has probability 1. But the
probability of ‘some event occurs’ is equal to the sum of the individual prob-
abilities, by the second law. Therefore, the sum of the individual probabilities
must be 1.

Second corollary to the second law The sum of the probabilities of individual
events which are mutually exclusive and collectively exhaustive is 1. In mathe-
matical notation,

Z p(E) =1

Suppose I examine a coin and decide it is slightly biased in favour of heads.
If I assign p(heads) = 0-52 and p(tails) = 0-5, I have violated the second
corollary because the two probabilities do not sum to I. Noting this. I could
apply the first corollary to arrive at

p(tails) = 1 — p(heads) = 1—-0-52 = 0-48

Note that the events in Exercise 3-2 form a mutually exclusive and collectively
exhaustive list, and that the six individual probabilities sum to 1.

The next exercise will show you how the second law and its corollaries
can be used to check on the consistency of your probability assignments.
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Exercise 3-4

Assign probabilities to the following four mutually exclusive and collectively
exhaustive hypotheses:

A man will set foot on Mars for the first time. . .

H, in this decade (the 70s).

H, in the next decade (the 80s).

H; in the last decade of this century (the 90s).
H, sometime later than this century.

a Check the consistency of your assignments by applying the second corollayy.
b On the basis of your assignments, compute the probability that a man will set
foot on Mars:
i sometime this century;
ii sometime other than this decade (the 70s).
¢ Check the probabilities computed in (b) with your intuition. If there is any
discrepancy, you will have to change your original assignments.
Answers
I assigned the following probabilities, though yours may be different:
p(H,) = 0-35
p(Hz) = 06
p(H3) = 0-03
p(H,) = 0-02
a By the second corollary these four probabilities should sum to 1. They do, so
that consistency check is met.
b By the second law,

p(70s or 80s or 90s) = p(70s) + p(80s) + p(90s)
= p(H;) + p(Hz) + p(Hs)
=035 + 06 + 003 =098

p(80s or 90s or later) = p(80s) + p(90s) + p(later)
= p(Hz) + p(Hs) + p(later)
=06 + 003 + 002 =065

I could have used the first corollary:

p(70s or 80s or 90s) = 1 — p(later) = 1 — 0-:02 = 0-98
p(80s or 90s or later) = 1 — p(70s) = 1 — 0-35 = 0-65

¢ Is the probability, for me, 0-98 that a man will set foot on Mars before the last
decade? Yes, that seems reasonable. But a probability of 0-65 does not seem
large enough for the proposition that the landing will occur after the 70s. In
looking again at my original assignments I think I did not give enough prob-
ability to Hz and I gave too much to H;. So, I will add 0-1 to H; and, to keep
the sum equal to 1, I will take away 0-1 from H,. My new assignments are:

p(H;) = 025
p(Hz) = 0-70
p(H3) = 0-03
p(Hys) = 0-02

sum = 1-00
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Now, by the first corollary,
p(70s or 80s or 90s) = 1 — 0-02 = 0-98
p(80s or 90s or later) = 1 — 0-25 = 0-75

Those values seem intuitively reasonable, so I now feel content with my new
assignments and their implications.

3.4 Third law

Assigning a probability to an event can be difficult when you find that the
probability depends on whether or not the occurrence of some other event is
known to you. An example will clarify this problem.

Suppose that a student is contemplating a long trip in his not-so-new
automobile. He has had a number of accidents in his few years of driving and
feels that if he has one more his insurance company will drop him and he will
be unable to get any other company to insure him. He tries to estimate the
probability of his having an accident, but finds that it depends on whether or
not he has a breakdown of his car. The probability of an accident is less if the
car does not break down, and is more if it does. How, then, can he arrive at a
reasonable probability of having an accident ?

no breakdown and no accident

no breakdown and accident

breakdown and no accident

breakdown and accident

Event Event Joint event

Fig. 3-1

Event tree for the student’s driving problem

We can begin to tackle this problem by drawing the event tree shown in
Fig. 3-1. The tree is read from left to right, so that tracing through the various
branches of the tree gives us the four joint events described at the right of the tree.
The events are drawn in the order you wish to consider them, and this order may
or may not correspond to the actual order of occurrence. In this case the
student could not think about the probability of having an accident without
first considering the chance of a breakdown, so the possibility of having a
breakdown is shown first.

The next step is to assign probabilities to the two branches of the first
fork. If the student gives a probability of 0-2 to his having a breakdown, then
the probability of no breakdown must be 0-8. Now we go to the upper right
fork and assign probabilities to ‘no accident’ and ‘accident’ assuming that no
breakdown has occurred. The student decides that if he does not have a break-
down his chance of an accident is only 0-03. Thus, the probability of no accident
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given that the car remains operating is 1—0-03 = 0-97. Now we go to the
lower right fork and assign probabilities assuming that a breakdown has
occurred. This time the student figures he has a 0-3 chance of an accident if
the car breaks down, for the breakdown could be serious enough to lead to a
crash. That leaves a 0-7 probability of no accident, again assuming a breakdown.
These probabilities are shown under the events in Fig. 3-2. Notice that‘a]though
the events on the upper right-hand fork are the same as the lower right-hand
fork, the probabilities are different. This is because the probabilities assigned
on the right-hand forks are conditional on the events in the left-hand fork, so
the probabilities are called conditional probabilities. These are not a different kind
of probability, rather a different kind of event. We should, strictly speaking, not
talk of ‘conditional probabilities’; instead we should refer to the ‘probabilities of
conditional events’.

Fig. 3-2 03

Probability assignments

We have run across conditional probabilities earlier in the chapter when
the statement was made that all probabilities were conditional on the person
making the assignment and the information available at the time. Now we are
saying that it will often be useful to talk of probabilities of events given know-
ledge of other events. For these conditional probabilities we use the notation
p(F|E), which reads ‘the probability of event F given event E’.

In this example we have two lists of events:

Ist List 2nd List
E;: no breakdown F;: no accident
E.: breakdown F,: accident

In this problem we have four conditional probabilities:

p(F,|E;) = p(no accident|no breakdown) = 0:97

p(F,|E,) = p(accident|no breakdown) = 0-03

p(F,|E,) = p(no accident|breakdown) = 0-7

p(F,|E,) = p(accident|breakdown) = 0-3
The remaining two probabilities are called unconditional probabilities because
they were determined without specifying anything about the occurrence or

non-occurrence of any other events in the event tree (although they are, strictly
speaking, conditional on the person doing the assessing and on the information
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availabl'e.to him about events other than those on the event tree). These two
unconditional probabilities are

p(E;) = p(no breakdown) = 0-8
p(E;) = p(breakdown) = 0-2

Recall that our student’s original problem was to find the unconditional
probability of an accident, p(accident). How can this be determined from the
probabilities assessed so far? The first step, whose reason will be obvious to
you in a moment, is to compute the probabilities of the four joint events shown
in Fig. 3-1. The rationale for doing this will be easier to see by introducing a
standard device which is analogous to the event structure of the student’s
problem.

Imagine that I have taken an urn containing 1000 balls and labelled 200
of them with the word ‘breakdown’ and the remaining 800 with ‘no breakdown’.
Now if I mix the balls and perform a simple experiment, the probability of
drawing a ‘breakdown’ ball is 200/1000 = 0-2, the same as on the first fork of
the event tree in Fig. 3-2. Suppose further that I take all the balls labelled ‘no
breakdown’ and add a second label, ‘no accident’ to 0-97 of them and ‘accident’
to 0-03 of them. Then I take all 200 of the ‘breakdown’ balls and add the label
‘no accident’ to 0-7 of them and ‘accident’ to 0-3 of them.

Now we can compute the number of balls that have different double
labels. How many balls are labelled ‘no breakdown, no accident’? We know
that 800 balls show a ‘no breakdown’ label and that 0-97 of these also have a
‘no accident’ label, so 800 x 0-97 = 776 balls must bear the double label. In
similar fashion the number of balls bearing each double label can be found:

Label Number of balls

no breakdown, no accident 800 x 0-97 = 776
no breakdown, accident 800 x 003 = 24
breakdown, no accident 200 x 07 = 140
breakdown, accident 200 x 03 = 60

Total number of balls = 1000

Performing a simple experiment with this urn will result in a joint event (a ball
with two labels) whose probability of occurrence is exactly the same as the
probability of the corresponding joint event shown in Fig. 3—1! So to find the
probabilities of the student’s joint events we have only to compute the corre-
sponding probabilities for the standard device. This can be done easily; simply
divide the number of each type of ball by 1000.

Joint event Probability
no breakdown, no accident 0:776
no breakdown, accident 0-024
breakdown, no accident 0-14
breakdown, accident 0-06

Sum = 1-000

Now look back at Fig. 3-2. You will see that you could have computed
the above probabilities directly, without counting balls, by simply multiplying
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the probabilities on the branches of the event tree. For example, the probability
of the joint event ‘no breakdown and no accident’ is 0-8x0-97 = 0-776.
Finally we have arrived at the third probability law:

Third law The probability of both E and F occurring is equal to the probability
of E times the probability of F given E. In mathematical notation,

p(E and F) = p(E) x p(F|E)
This is the calculation that was made to find the probabilities of the joint events

now shown in the completed diagram of Fig. 3-3. For example, for the joint
event (E, and F,), you must find

p(E, and F,) = p(E;) X P(F1|E1)
By substituting the appropriate probabilities you get
p(E, and F,) = 0-8x0:97 = 0-776

E,and F, 0.776

E,and F, 0-02+4

Ez and Fl 0']4
E,and F, 0-06
Event Event Joint event Probability of
. joint event
Fig. 3-3 ]

Completed event tree

For the next calculation,
p(E, and F,) = p(E,) x P(leEl)
=0-8x0-:03 =0-024

and so forth for the other two joint events.

First Corollary to the third law

We still have not found the unconditional probabilities of accident and
no accident. To do this we will need a corollary to the third law. Let me develop
it intuitively before stating it formally.

Suppose you were not given the original event tree and its associated
probabilities but were given only the probabilities of the joint events in Fig. 3-3
and you were asked to compute the probability of breakdown. You might
observe that ‘breakdown’ appears in the bottom two joint events, so you figure
that if either of those two events occurs, a breakdown has occurred. Now the
second law says that the probability of either of two events occurring is equal
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to the sum of their individual probabilities, so you add the two probabilities
to get the probability of a breakdown:

p(breakdown) = 0-14 4 0-06 = 0-2

The correctness of your reasoning can be verified by checking this probability
against the probability of breakdown that was originally assigned and that
appears in the lower branch of the first fork, 0-2.

You should see now how to compute the probability of an accident. Find
the two joint events in which the word ‘accident’ appears, and add their
probabilities:

p(accident) = 0-024+0-06 = 0-084
And, of course, the probability of no accident can be obtained in the same way,
p(no accident) = 0-776+0-14 = 0-916

or it can be computed by finding 1 minus the probability of accident,
p(no accident) = 1 — p(accident) = 1 —0-084 = 0:916

Notice that this result was obtained by using both the second and third laws.

First corollary to the third law The unconditional probability of F is equal to the
probability of E times the probability of F given E, plus the probability of E times
the probability of F given E. In mathematical notation,

p(F) = p(E) x p(F|E)+ p(E) x p(F|E)

In this form the corollary looks forbidding, but if you will always draw an
event tree and follow the assignments and calculations logically, you should
find it easy to compute the unconditional probability of an event. In applying
this corollary we are finding the probability of an event, F, by extending our
analysis to include opinion about another event, E, and opinion about the
relationship between F and E. Consequently, we can say that applying the
corollary allows us to determine our uncertainty about a single, unconditional
event by ‘extending the conversation’.
You can test your understanding of the corollary with this exercise.

Exercise 3-5

An artist wishes to determine the probability that his next painting, not yet
started, will sell. He decides that he cannot really assess that probability directly,
for the chance of a sale depends on how well the painting turns out. He knows
from past experience that when he feels good about one of his completed works,
he has a 0-7 chance of selling it, but when he feels the work is bad, the chance
of a sale is only about 0-1. In the past, about 0-35 of his paintings have been,
in his opinion, good, but he is reluctant to use this figure as the probability
of producing a good painting because he has lately been going through a difficult
transition period in his career where the quality of his work has been rather poor.
He settles for a probability of only 0-2 as reflecting the chance that his next
painting will turn out well.

a Draw an event tree for the artist’s problem, labelling the branches with the
names of the events and their corresponding probabilities.
b Calculate the probability of a sale.
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Answer
The event tree should look like this (Fig.3-4):

good and sale 0-14

good and no sale  0-06

bad and sale 0-08

bad and no sale 0-72

Event Event Joint event  Probability of

. joint event
Fig. 3-4 !

Event tree for the artist problem

The probability of a sale is found by adding the two probabilities of joint events
that include ‘sale’ as part of their description.

p(sale) = p(good, sale) + p(bad, sale) = 0-14 + 0-08 = 0-22

Suppose the artist in this example felt that the chance of selling a painting

could be assessed more accurately by considering a slightly more refined judge-
ment of the painting’s quality. Instead of just ‘good’ or ‘bad’ he prefers to
consider the events ‘good’, ‘bad’, and ‘indifferent’. He might also be hardpressed
for cash and so is interested in the event ‘immediate sale’ as well as ‘later sale’
and ‘no sale’. The first fork on his event tree would have three branches. How
does the first corollary to the third law apply when an event tree contains
forks of more than two branches ?

The general principles embodied in the third law and its corollary apply

no matter how many branches in each fork. The next exercise will illustrate
this point.

Exercise 3-6

An English scientist wishes to measure, in a particular community, the strength
of opinion favouring the return of capital punishment. He feels that an adequate
measure is represented by the probability that a person selected at random
from the community would favour the proposition. He plans to interview a
sample of people in the community so he can obtain data which will be used to
revise his prior opinions. For now, let us concentrate on those prior opinions.

He finds his prior opinions are rather vague concerning the probability that a
person would favour the return of capital punishment, but he feels in a better
position to quantify his opinions if he considers the person’s political beliefs.
If a person considers himself a Conservative, then the scientist thinks the
probability is 0-8 that the person would favour the return of capital punishment.
He feels the chance is about 0-55 for a Labourite, 0-15 for a Liberal, and 0-25
for a person who would not associate himself with those three political parties.
The scientist completes the task of quantifying his prior opinion by looking up
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figures on the proportions of people affiliated with the different parties (party
records, recent surveys, voting records of the last election, etc.), and using this
information along with his knowledge of recent social and political trends, to
arrive at the following probabilities:

p(Conservative) = 0-35

p(Labour) = 045
p(Liberal) = 0-08
p(Other) = 0-12

Sum = 1:00

Draw and label the scientist’s event tree.
Find the probability that a person would favour the return of capital punishment.

Answers
Here is the event tree:

Conservative and favours 0-2800

Conservative and opposes  0-0700

Labour and favours 0-2475
Labour and opposes 0-2025
Liberal and favours 0-0120
Liberal and opposes 0-0680
Other and favours 0-0300
Other and opposes 0-0900
Probability of
Event Event Joint event joint event

You can see that the probabilities of the joint events are determined by applying
the third law: each conditional probability on a branch of a right fork is
multiplied by the unconditional probability on the preceding branch of the left
fork.
The probabilities of four joint events must be added to obtain the required
probability.
p(favours) = p(Conservative, favours) + p(Labour, favours)
+ p(Liberal, favours) + p(other, favours)
= 0-28 + 0-2475 + 0-012 + 0-03
= 0-5695

So, before gathering any data, the scientist believes there is about a 0-57 chance
that a person in the community would favour the return of capital punishment.
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Occasionally your prior opinion may depend on more than one conditional
event. The scientist in the previous example may feel that the probability of
favouring the proposition depends on the individual’s political preference, that
his data on political preference are unreliable and that his opinions depend
on the person’s sex. Now we have three lists:

List 1 List 2 List 3
male Conservative  favours
female Labour opposes
Liberal
Other
ia\.ou\’S
g OPPOSeS
&
&
&, {avours
o AN\S
o 3\00
)% OPPOSeS
'8
lbel'a/ ia\,o“ts
& )
Ng %c;\ PPoses
g
(a\.our":
OPPOSes
favours
. 0o
{% Y 7 Pposeg
6% i‘}\ S
.o& o fav oo
) OO
Q
\J Opposes
L
lbe,-al (avo\“s
@)
7, O
4‘& ppOSes
favours
Fig- 3—5 Opposes

An event tree

The event tree is shown in Fig. 3-5. The probabilities on the first fork are
unconditional, p(E). Probabilities on the second set of forks are conditional on
the event from the first list: p(F|E). Third-fork probabilities are conditional on
events from both first and second lists: p(G|F, E). In general, probabilities on
any branch are assessed keeping in mind that events on the path from the
origin to the present branch have already occurred.

Joint probabilities are computed as before, by multiplying probabilities
along the paths. In general, the probability of the joint event E, F, G is given by

P(E, F, G) = p(E) x p(F|E) x p(G|F, E)



Third law 45

Ur}conditional probabilities are then found by adding the probabilities
of all joint events that include the event whose probability is desired, the same
procedure as before.

Second corollary to the third law

[magine two urns, the first containing 700 white and 300 black balls, the
second containing 600 red and 400 green balls. Suppose 1 perform the simple
experiment of drawing a ball from the first urn, then one from the second urn.
The possible outcomes of this two-stage experiment are shown in Fig. 3-6.

white and red

white and green

black and red

black and green

Event Event Joint event

Fig. 3-6

Event tree for the two-urn experiment

Now let us use the third law to find the probabilities of the joint events.
First we must assign probabilities to each of the branches of the event tree.
The branches of the first fork should give no trouble; we assign probabilities
equal to the proportions of white and black balls.

p(white) = 0-7
p(black) = 0-3

1-0

Next consider the upper right fork. Remember that the probabilities we place
on these branches are for conditional events; we do not assess p(red) and
p(green), we determine p(red|white) and p(green|white). In other words, we must
find the probabilities of red and green given that a white ball has been drawn
from the first urn. Probabilities on the lower right fork must also be for con-
ditional events; we want to find the probabilities of drawing a red or a green
ball from the second urn given that the ball drawn from the first urn was black.

In the student’s car problem and in the artist’s problem the probabilities
on the branches of the two right forks depended on the preceding event.
The artist assigned a higher probability to ‘sale’ given that he felt good about
his painting than if he felt badly. Here we are saying that when we evaluate the
probability of green or the probability of red we must take into account the
results of the first draw.

If you are feeling a bit confused at this point because you cannot see why
the probability of drawing a green ball should be affected in the slightest by the
results of the first draw, do not worry, you are correct. Clearly the draws from
the separate urns cannot influence one another unless, perhaps, the first ball
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drawn is coated with an instantaneously acting deadly poison, so that the
second ball never is drawn. If the draws cannot influence each other then it
seems reasonable that the probability you assign to green conditional on the
outcome of the first draw will be the same whether a black or a white ball is
drawn first.

Another way to look at this is to imagine that I have made both draws.
I ask you, ‘What is the probability I have drawn a green ball?” You will prob-
ably note the proportion of green balls and reply, ‘0-6’. Now I say, ‘Ah, but
I’'m willing to tell you the result of the draw from the first urn. If I tell you it
was black, will you wish to make a new estimate of the probability I have drawn
a green ball?” Your answer would be, ‘No’. I reply, ‘Well, it was not black
anyway, it was white. Now what do you think the probability of green is?’
Again you would be uninfluenced by this information because it does not tell
you a thing about the second draw, so you answer, ‘Still 0-6’.

In general, if you find when you are assessing the probability of an
event that your opinion is unaffected by knowing whether or not some other
event has occurred, then we say the two events are independent.

Two events are independent if
p(F|E) = p(F)

Event F is independent of event E if the probability of F given E equals the
probability of F. Independence is a symmetric notion; if F is independent
of E, then E is independent of F. Thus, it is also true that p(E|F) = p(E).

Now let us use this definition to simplify the computation required to
find the probabilities of the joint events in the two-urn example. Recall that the
third law gives us the rule we should apply:

p(E and F) = p(E) x p(F|E)

But we have just seen that for independent events,
p(F|E) = p(F)

So if we substitute this last equation into that for the third law, we get
p(E and F) = p(E) x p(F)

This is the second corollary to the third law.

Second corollary to the third law For independent events, the probability of both
E and F occurring is equal to the probability of E times the probability of F.
In mathematical notation,

P(E and F) = p(E) x p(F)

This corollary is sometimes called the ‘multiplication law’.

To apply this corollary to the two-urn problem we follow the same pro-
cedure as in the student’s car problem: multiply the probabilities on the paths
through the tree. The only difference for the two-urn problem is that by recog-
nizing that the two draws are independent, we can put the same probabilities
on the lower right fork as on the upper .right fork, in this case 06 and 0-4.
The complete tree is shown in Fig. 3-7.
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ced white and red 0-42

white and green 028

black and red 0-18

0.7~ black and green  0-12

Event Event Joint event  Probability of

. joint event
Fig. 3-7 J

Complete event tree for the two-urn experiment

We will make frequent use of this corollary so be sure you understand it.
Remember that it is nothing more than the third law with a simplification for
independent events. You can use it only for independent events, so to apply
the corollary you must first decide whether the events are independent. Of
course if you draw a decision tree and find that your probability assessments
for the right forks are the same from one fork to the next whatever the first
event, then you have as a matter of course found the events to be independent.

head and head 0-25

head and tail 0-25

tail and head 0-25

tail and tail 0-25
Event Event Joint event  Probability of

. joint event
Fig. 3-8

Event tree for two flips of a fair coin

However, sometimes independence is more conveniently recognized not
by assessing probabilities, but by noting that knowledge of one event cannot
possibly influence knowledge of the other. Then it is only necessary to assess
the unconditional probabilities of the events and multiply them to obtain the
probability of the joint event. For example, what is the probability that two
successive tosses of a coin judged to be fair will result in a head on the first
toss and a head on the second? Obviously the first and second tosses are
unrelated: the coin does not have a memory! The outcome of the second toss
has nothing to do with the outcome of the first toss, so the two tosses are
independent. Since we would assign a probability of 0-5 to a head coming up on
one toss of a coin, we can find the probability of two heads on two tosses by
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applying the second corollary to the third law. We could draw the event tree
of Fig. 3-8 or we could solve the problem algebraically:

p(head and head) = p(head) x p(head)
=05x05
=025

Notice that doing it algebraically saves drawing the whole tree.

See if you understand this corollary by trying the next two exercises.

Exercise 3-7

I toss a coin and roll a die, both judged to be fair. What is the probability of
getting:

a A head and a four?

b A head and an even number?

c A head and eithera 1, 2, or 3?
Answers
You could draw an event tree and assess probabilities for the relevant branches,
then multiply along the corresponding paths. In the process of assessing
probabilities you would discover that the probabilities you assigned to the out-
comes of the roll of the die were unaffected by knowledge that the coin came up
heads or tails. Or, you could proceed by recognizing that the toss and the roll
are unrelated, so the corresponding events must be independent. Then, the
algebraic approach is simple.

a p(head and four) = p(head) x p(four)

=1/2 x 1/6 = 1/12
b p(head and even number) = p(head) X p(even number)
= p(head) x p(2 or 4 or 6)

Note that at this point you must bring in the second law to find p(2 or 4 or 6).
Since
p(2or4or6)=p_2)+ p@) + p6) =1/6 +1/6 + 1/6 = 3/6 = 1/2,
p(head and even number) = 1/2 x 1/2 = 1/4

C p(head and either 1, 2, or 3) = p(head) X p(1, or 2, or 3)

= p(head) x {p(1) + p(2) + p(3)}
=1/2 <X (1/6 +1/6 +1/6) = 1/2 x 1/2 = 1/4

Exercise 3-8
A psychologist notes that an untrained rat placed in a T-maze has a tendency
to turn right rather than left at the junction of the runways. He estimates the
probability of turning right on any one trial to be 0-6. What probabilities should
the psychologist assign to the following events?

a The rat turns right on each of the next two trials.

b The rat turns left on the next trial and right on the one after that.

c

The rat turns right on the next trial and left on the one after that.
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Answers

a First we must find out if turning right on the next trial and turning right on the
follpwmg one are independent events. We should ask the psychologist, ‘I
noticed that the rat turned right on the last trial. In light of that information

would you still say that his chance of turning right on the next trial is 0-6?’
In other words, if we let

E, represent right turn on first trial
F, represent right turn on second trial

then we are asking the psychologist if he thinks p(F;) = p(F,|E,). If he were
to say yes then we can conclude that he believes the events to be independent
and so we are justified in applying the second corollary to the third law to this
problem. But if he says no, then we must ask him for his estimate of p(F,|E,;)
so we can use the third law itself.

Let us suppose he says the result of the previous trial has no bearing on his
judgement of the chances of turning right on the next trial, that is, p(F,) =
P(F1|E;) = 0-6.

Then the probability of two successive right turns is

p(right then right) = p(right) x p(right)
=06 x 06
= 0-36

b Now ask the psychologist if he would change his probability of a right turn
knowing that the rat turned /eft on the previous trial. You are asking him if he
thinks p(F,) = p(F,|E;) where E; represents left turn on the first trial.

If he says he would stick to 0-6 even if he did know the rat turned left the last
time, then he is saying that F; and E; are independent. Again, you should apply
the second corollary to the third law.

p(left then right) = p(left) X p(right)
= {1 — p(right)} X p(right)
=04 x 06
=024

Notice that we also had to apply the first corollary to the second law to find
the probability of a left turn.
c Now we let E, represent left turn on first trial and ask the psychologist if

p(F2) = P(leEz)-

If he says they are equal then we conclude that F; and E; are independent. We
apply the second corollary to the third law:

p(right then left) = p(right) x p(left)

= p(right) x {1 — p(right)}

=06 x 04

=024
That is the same answer as in the preceding problem where you had to find
p(left then right). From this similarity you would be correct in inferring that the
probability of a sequence of independent events does not depend on their order
of occurrence.

Our method of solving this problem was a bit clumsy because we had to
keep asking whether the two events in question were independent. We could
have simplified the task by asking the psychologist whether the trials were
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independent. In the language we are using here a trial is really a simple experi-
ment, and the rat turning right or left on the trial is the outcome of the simple
experiment; it is an event. If we say that the trials are independent, we are
really saying that knowing the outcomes of the second trial cannot influence
opinion about the outcomes of the first trial and vice versa. That more general
statement implies that all of the second-trial events are independent of all of
the first-trial events.

In other words, the general statement that zrials are independent implies
the specific statements that events are independent from one trial to the next.
If the psychologist had said the trials are independent we could have concluded,
without further questioning, that

p(F,) = p(F,|E,)
p(Fy) = p(F,|E,)
p(F;) = p(F,|E,)
p(F,) = p(F,|E;)

Then we could have applied the second corollary to the third law with no
further ado.

The notion of independence plays an important part in statistical inference.
The scientist is frequently interested in knowing whether ‘things go together’,
whether knowing something about one thing will help to predict something
else. Especially in the social sciences, where we are not even agreed about which
aspects of human and societal behaviour are the right ones to measure, much
experimental work is devoted to finding out whether or not something makes a
difference to, has an effect on, or influences something else. Are race and
intelligence related? Is there a connection between social class and level of
education? Is the taking of soft drugs independent of damage to chromosomes ?
The statistician may use tests of independence on the data derived from experi-
ments addressed to these questions. We will see how to do this in Chapter 14.

Try the next exercise to see if you know when to use the third law and
when to use the second corollary to the third law.

Exercise 3-9

a What is the probability that some time in the next eight hours someone will
offer to buy you a beer and someone (not necessarily the same person) will
offer you a cigarette?

b What is the probability that it will rain tomorrow and you will be in a grouchy
mood?
c What is the probability that tomorrow you will receive a letter bearing a foreign

postmark and that someone will offer to buy you a beer?

d What is the probability that the next person to call you by name will be a
woman and that the next post will bring a letter bearing a foreign postmark ?

e What is the probability that the next two (different) people to call you by name
are both women?

Answers

The safest way to tackle these problems is to start by assuming you will apply
the third law. When you assess p(F|E) you may find that it is the same as p(F),
in which case the third law turns into the second corollary. But if you find p(F|E)
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is not the same as p(F), then you know events E and F are not independent, so
you must use the third law.

First assess the probability that someone will offer you a beer in the next eight
hours. Suppose you feel 0-05 is about right. Now ask yourself if the probability
of being offered a cigarette is different depending on whether or not someone
offers to buy you a beer. For me, the chance of being offered a cigarette is low,
say 0-01, but it is higher if someone has offered to buy me a beer for I would
most likely be in a bar with several friends, one of whom may not know I do
not smoke and so would offer me a cigarette. Let me say, then, that p(offer of
cigarette|offer of beer) = 0-10. Applying the third law gives

p(offers of beer and cigarette)
= p(offer of beer) X p(offer of cigarette|offer of beer)
= 0-05 x 0-10
= 0-005

It would have been inappropriate to use the second corollary to the third law
because the events are not independent. We saw this when we found that
ploffer of cigarette) was not equal to p(offer of cigarette|offer of beer).

These are obviously not independent events for me. I'm more likely to feel
grouchy on a rainy day than, say, a sunny day. My mood is not independent
of the weather, so if the same is true for you, you must assess p(rain) and
p(grouchy|rain), and use the third law, not the second corollary.

c wo‘“"m wife and other woman 0-4

other woman and wife 0-08

other woman

0-1

other woman and other woman 0-01

Event Event Joint event Probability of

joint event
Fig. 3-9

Event tree for the ‘two-women’ problem

At first glance these would seem to be independent events, but look again.
Suppose the foreign letter brought unexpected good news. Is it not possible
that you would tell your friends, one of whom might offer to buy you a beer.
to celebrate ? But perhaps that is so unlikely for you that, for practical purposes,
the events can be treated as independent. If you think so, then use the second
corollary to the third law.

Now here are two events that seem to me completely unrelated, though I suppose
some reader will find a situation where they are not independent. If the events
are independent for you, use the second corollary to the third law.

This is a difficult problem to discuss in general terms because the judgement
about independence of the events depends very much on where you are as you
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read this. As | write this at home | am almost certain that my wife will call me
by my name before the evening is over. But who would the other person be?
Perhaps someone will phone, and call me by my name even if they want to speak
to my wife. That seems fairly likely, but if it does not happen, then when I go
in to University tomorrow someone is bound to call me by name, and I am
equally no more certain the person will be a man than a woman. Of course
cither a man or a woman may phone this evening before my wife calls me by
name. The events that could happen are sufficiently numerous that an event tree
may be helpful. Mine is shown in Fig. 3-9. The branches of the left fork
represent the possible people, one of whom may be the first to call me by my
name, and the numbers below the branches are my probability assignments to
those possibilities. The branches of the right fork show the people who might
be second. The upper right fork does not contain a ‘wife’ branch because the
problem stated the two people must not be the same person, and the branch
that precedes the upper right fork already has ‘wife’ on it. The middle right
fork contains all three possibilities, it being understood that ‘other woman’ on
this fork signifies a different person than ‘other woman’ on the middle branch
of the left fork. I have written out only the joint events of relevance to this
problem; the probabilities of the joint events are obtained by applying the
third law. To find the probability that the next two people to call me by
name will be women, 1 apply the second law, i.e. add the three relevant joint
probabilities.

p(woman and woman) = p(wife and other woman)
+ p(other woman and wife)
+ p(other woman and other woman)
= 0-40 + 0-08 +- 0-01
= 0-49

3.5 Quantifying opinion

Opinion about complex events

The last part of the previous exercise, the ‘two-women problem, illustrates
a very important point about quantifying opinion: do not do it for complex
events. I found it very difficult to express my opinion about the possibility that
the next two people to call me by name will be women, but 1 discovered that
my task was easier if I broke the problem down into simpler events as illustrated
in Fig. 3-9. I felt more comfortable quantifying my opinions about those simple
events, and [ used the probability laws to put those opinions together to give
my opinion about the complex event.

A major point in introducing the third law and its corollaries was to
enable you to quantify your opinion about complex events. We saw in the
capital punishment problem, in the artist’s problem, and in this last problem
that an event about which opinion was vague could be broken down into simpler
events, and that opinions about these simple events could be expressed with
some confidence. Then opinions about the original events could be found by
combining the probabilities of the simple events through application of the
probability laws, particularly the third and its corollaries.

But why bother? Why not directly express opinion about the complex
events? The answer to these questions comes from a considerable body of
research aimed at finding out how good people are at quantifying opinion in the
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form of probabilities. A repeated finding of this research is that the probabilities
people assign to simple events are quite consistent with each other in that they
obey the probability laws, but that probabilities assigned to complex events
are not very consistent. (Summaries of this research can be found in Peterson
and Beach, 1967, and in Edwards, 1968.)

Many statisticians have been reluctant to adopt Bayesian ideas because
they feel that prior opinion is vague and incapable of being quantified. Even
if you could quantify it, they argue, the probabilities are largely meaningless.
I think this criticism should be taken seriously, for it may reflect an accurate
intuitive appreciation of the inconsistencies in our judgements about complex
events. The mathematician and the experimentalist may be saying similar things
in different words. But the research findings suggest a way out of the pessimism
of the traditional statistician. By recognizing that this difficulty may frequently
be caused by our inability to handle complex events, we can try to decompose
the complex events into simpler ones, and then exercise judgement about the
simple events. This we can do with some confidence, and then we reassemble
the pieces by using the probability laws. Indeed, several authors have devised
procedures, even complex man-computer systems, for this decomposition-
judgement-reassembly procedure (Raiffa, 1968; Schlaifer, 1969; Edwards,
Phillips, Hays and Goodman, 1968).

[t is also worth pointing out that some of the difficulty people have in
trying to assess probabilities is simply a matter of inexperience. As I said earlier
in this chapter, probabilities are the language of uncertainty, and the prob-
ability laws are the grammar of that language. When you have gained some
experience in using the language, you will feel more confident that your prob-
ability assessments are meaningful.

3.6 Sumniary

In this chapter we have seen that probabilities are the language of uncer-
tainty, and that the probability laws are the grammar of that language. Uncer-
tainty about events, hypotheses or uncertain quantities can be expressed
numerically in the form of probabilities.

The probability laws impose certain constraints on the probabilities we
may assess: the first law restricts probabilities to numbers between 0 and 1,
inclusive, while the second and third laws, and their corollaries, specify the
consistencies that must exist between probabilities we assign to events and those
we assign to combinations of the events.

Here are the probability laws:
First law: 0 < p(E) < | and p(sure event) = 1

Second law: p(E, or E;) = p(E,)+p(E,)
for mutually exclusive events

First corollary to _
the second law: p(E) = 1 —p(E)

Second corollary to

the second law: Y p(E) =1
for mutually exclusive and exhaustive events
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Third law: p(E and F) = p(E) x p(F|E)

First corollary to B B
the third law: p(F) = p(E) x p(F|E) +p(E) x p(F|E)
Second corollary to

the third law: p(E and F) = p(E) x p(F)

for independent events

Usually your probabilities should be assigned only to simple events. If

your real interest lies in complex events, then you should decompose the com-
plex event into simple ones, assess probabilities for the simple events, then use
the probability laws to find the probability for the complex event.

3-1

3-2

Problems

In a class of 30 men and 20 women, each student writes on a 3-in by 5-in card
whether he or she is left-handed, right-handed, or ambidextrous (three mutually
exclusive and exhaustive categories). Five of the men and 4 of the women are
left-handed and one man is ambidextrous. Suppose the cards are collected and
mixed, and then 3 cards are selected at random with replacement (that is, after
selecting a card and noting what is written on it, the card is returned to the
collection before the next one is selected). What is the probability that

the first card will say ‘left-handed’, the second will say ‘right-handed’, and the
third will say ‘left-handed’.
all three cards will say ‘left-handed’.

A student considering a simple experiment which can result in one of three
mutually exclusive and collectively exhaustive events assigns the following
probabilities to the first two events:

p(E;) =07 p(Eg) = 0-2
Complete these statements:

P(E3) = ¢ p(E,and Ep) =
p(E, or E3) = d p(E3) =

A man has mislaid his wallet. He thinks there is a 0-4 chance that the wallet is
somewhere in his bedroom, a 0-1 chance it is in the kitchen, a 0-2 chance it
is in the bathroom, and a 0-15 chance it is in the living room. What is the
probability that the wallet is

somewhere else ?
in either the bedroom or the kitchen?

Before leaving for a dice game, an unscrupulous gambler places a loaded die
in his pocket. From past experience, he knows that the die comes up a 3 more
often than a fair die. His probabilities for the six possible outcomes are:

p(1) =015 p(2) =015 p3) =030 p4) =01

p(5) =015 p(6) = 0-15

During the game he reaches for the die but discovers another one, indistinguish-
able in appearance, in his pocket. All he knows is that one die is a fair one, while
the other is the loaded one. He chooses one at random and surreptitiously
introduces it into the game. What is the probability that the next throw of that
die will result in a three?
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Spppose tl)at the gambler from the previous problem finds out he has the loaded
die. What is the probability that on the next three throws of the die it will come up

any number other than a 3 on each throw?
a 3 on at least one of the throws?
a 3 on at least two of the throws?

A student figures his chance of passing a history exam is about 0-9 if a question
on the origins of the First World War appears. Otherwise his chance of passing
is only about 0-7. He thinks there is a 0-6 chance that the question will appear.
What is the probability of passing the exam?

A man driving to a distant city wishes to arrive as quickly as possible. He con-
siders taking the shortest route—through the mountains. Since it is winter,
there is some possibility that it will snow hard enough to block the road; he
will not get through if it snows and the mountain road is blocked. He estimates
the probability of it snowing as 0-2 and the probability of the road staying open
given that it snows as 0-6. What is the probability that he will get through if he
takes the mountain road?

I am behind schedule and reckon that I am 3 times as likely to catch the next
underground as to miss it. If I miss it, I am sure to catch the second train that
leaves 15 minutes later. If I get the first train, I reckon that possible delays in
my journey leave me with a 0-7 chance of arriving on time for an appointment.
If I miss the first train, then I assess the odds in favour of my missing the
appointment as 10 to 1. What is the probability that I will be late?

A scientist about to conduct an experiment figures there is about a 0-9 chance
of observing result X if Theory A is true, and about a 0-3 chance of observing
X if Theory B is true. He feels that Theory A is about twice as likely to be true
as Theory B. If theories A and B are the only reasonable contenders, what is the
probability that the scientist will observe X when he carries out the experiment ?
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The present chapter is the most important in this book. If you understand
the logic of this chapter, you will find the rest of the book makes sense, for most
of the remaining material is a variant of the theme developed in this chapter.

You have met the theme before:

Prior opinions are changed by data, through the operation of Bayes’ theorem, to
yield posterior opinions.

In this chapter we see how Bayes’ theorem operates. The previous two chapters
showed how an individual’s uncertainty can be quantified as probabilities and
how these probabilities are governed by the probability laws. Now we are
ready to see how the probability we assign to an event should be revised when
we learn of the occurrence of a related event. In other words, we consider how
our uncertainty about the world changes as we systematically collect data. The
key to this process is given by Bayes’ theorem.

When you have completed this chapter you should

be thoroughly familiar with the operation of Bayes’ theorem and be able
to apply it for a simple datum or for a string of data;

understand the ways in which intuitive revision of opinion is different
from that prescribed by Bayes’ theorem;

have an understanding of the way in which prior opinion contributes to
posterior opinion;

know how to determine the probabilities that go into Bayes’ theorem:

understand the logic of hypothesis testing from a Bayesian point of view.

4.1 Bayes’ theorem

In this section I am going to develop Bayes’ theorem out of the ‘student’s
driving’ example in the previous chapter, then I shall state the theorem formally,
and finally show several ways of calculating it.
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Extension of the student’s driving problem

Suppose our student sets out on the trip but never reaches his destination.
Instead, he wakes up in a hospital and has no recollection of how he got there.
A nurse confirms only that he has had an accident resulting in a nasty blow
on the head and a broken leg. Eventually he becomes accustomed to the head-
ache and to the cast on his leg, and, as boredom sets in, he tries to recollect the
events of the accident, to no avail. He is particularly curious to know if his car
broke down before the accident. He knows that even if his car had broken
down, it may or may not have led to an accident, and that the cause of his
accident may have been an event other than a breakdown. So, how can he

determine the probability of breakdown given that he knows an accident has
occurred ?

no breakdown and no accident 0-776

no breakdown and accident 0-024

breakdown and no accident 0-14

breakdown and accident 0-00
Event Event Joint event Joint probability

Fig. 4-1

Event tree for the ‘car breakdown’ problem

First, let us reconstruct the original event tree we developed in the previous
chapter; it is shown in Fig. 4-1. Let us pick up the development of the problem
at the point where we introduced a standard device which is analogous to the
real problem. That, you recall, was an urn filled with 1000 balls, each ball
showing a double label, as follows:

Label Number of balls
no breakdown, no accident 776
no breakdown, accident 24
breakdown, no accident 140
breakdown, accident 60

The student knows only that he has had an accident. That is equivalent to my
drawing a ball at random, finding that it has an ‘accident’ label on it, and telling
you only this information. What, now, is the probability that it has ‘breakdown’
written on it? If you can answer that question you have solved the student’s
problem, for your uncertainty is an exact analogue of his.

If we go back to first principles, the probability can be found easily.
What is the total number of elementary events we should consider? It is the
number of balls with ‘accident’ on them, that is 24460 = 84. How many of
these elementary events are in the event class ‘breakdown’, that is, how many
of the 84 balls have ‘breakdown’ written on them ? The answer, of course, is 60.
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And so, the probability of breakdown given that an accident has occurred is
given by the proportion 60/84.

60
p(breakdown|accident) = 0= 0-715

That was Bayes’ theorem, in informal guise. Here it is more formally:

. p(breakdown and accident)
p(breakdownlaccident) = =~ b
p(accident)

The probability in the numerator is a joint probability, found at the right of
the event tree. The probability in the denominator is the sum of two joint
probabilities; recall that we have been through this before in Chapter 3 when
we developed the first corollary to the third law. Although I did not actually
state it there, we found that

p(accident) = p(no breakdown and accident)
+ p(breakdown and accident)

in other words, the sum of two joint probabilities. Using this result, we can
write Bayes’ theorem as shown in Fig. 4-2.

p(break and acc)

Bayes' } p(break|acc) =

Theorem p(no break and acc) + p(break and acc)

0-776
Bayes’ p(break|acc) = WY RT3
Theorem 0-024 + 0-06

0-14

0-06
Result p(breakdown‘accident) - 0-715

Fig. 4-2

Joint probabilities in Bayes’ theorem

0-084

A more convenient form of Bayes’ theorem can be obtained by applying
the third law to each of the joint probabilities, so that the probability of each
joint event is given by the product of an unconditional and a conditional
probability. You can see how this works by studying Fig. 4-3.

Bayes’ theorem for two hypotheses

To generalize, first consider just two events about which we are uncertain;
call them H; and H,. For the student’s driving problem H, is ‘breakdown’ and
H, is ‘no breakdown’. I have used the symbols H, and H, because it will be
convenient to refer to these particular events as hypotheses. For example,
the occurrence of a breakdown can be treated as a hypothesis; it is an event
which, from the student’s point of view, may or may not have occurred—it is
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From ] 0-00
Fig. p(break|acc) = 0
) 0-024 -~ 0-06

Breaking down 1
the joint
probabilities |

0-2 - 03

breaklacc) =
p(breaklacc) (0-8 < 0-03) + (02 « 0-3)

Bayes’ p(break)p(acc|break)
7 p(breaklacc)
theorem p(no break)p(accino break) + p(break)p(acclbreak)
Fig. 4-3

Another form of Bayes’ theorem

an hypothesis. Note that H,; and H, are competing hypotheses in the sense that
one must be true and both cannot be true.

Generalizing further, we recognize that an event has occurred which bears
on our uncertainty about the hypotheses. Call this event a datum, and designate
it by D. The student knows he has had an accident. That is an item of data, so
we let “accident’ be designated by D.

Now we can write Bayes’ theorem for two hypotheses. Here it is for H,:

_ p(H,)p(D|H,)

H, D)= """V "" _ _ _ .
P(H,|D) p(H,)p(D[H,)+ p(H,)p(D|H,)

And, again, for H,:

_ P(Hz)P(DIHz)‘___ o
p(H,)p(D|H,) + p(H,)p(D|H,)

The probabilities in Bayes’ theorem are given names. The unconditional
probabilities p(H,) and p(H,) are called prior probabilities because they repre-
sent opinion before any data are observed. On the other hand, p(H,|D) and
p(H,|D) are said to be posterior probabilities; they indicate opinion that has
been revised in the light of the datum, opinion after observing D. Finally,
p(D|H,) and p(D|H,) are called likelihoods. They are the probabilities associated
with a particular datum given that event H, or that event H, has occurred (see

Fig. 4-4).

P(Hle)

prior probability

. - likelihood
posterior probability —— o,
p(H,) x p(DIH,)
P(HllD) o
p(Hy) < p(DIH,) + p(Hy) x p(DIH,)
prior  likelihood prior  likelihood
Fig. 4-4

Names of the probabilities that make up Bayes’ theorem
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Bayes' theorem looks rather forbidding, but it is not really, if you look
closely. Consider it, written for two hypotheses, in Fig. 4-5. First, note that the
denominators are identical; each is the sum of two products. If you look closely
at the two products, you will see that one appears in the numerator of the first
equation, and the other appears in the numerator of the other equation.

Those similarities can be exploited to make computations involving
Bayes® theorem quite simple. We turn to that next.

r—————same r———same
P N e
_ p(H,)p(DIH,) _ p(Hy)p(DIH,)
PHID) = Dty + pgpoty | PP = SGpDIR,) 1 A, )p(DIH))
—-V—' —.,_—/
N ~ J/ - -~ »)
L same —
Fig. 4-5

Similarities in Bayes’ theorem for two hypotheses

Tabular form of Baves' theorem

In applying Bayes’ theorem, you will be aided by setting out your calcu-
lations in tabular form and following the steps shown in Fig. 4-6. Compare
these steps to the operations shown in Fig. 4-3 to make sure you understand
why each step is carried out.

Step 1 Step 2 Step 4 Step 5 Step 7
Specify Assess Determine Multiply Divide Step 5
hypotheses priors likelihoods prior by products by
‘ ‘ likelihood Step 6 sum
l ; ;
Hypotheses Prior Probabilities Likelihoods Prior « Posterior
Likelihood Probabilities
Breakdown 0-2 0-30 0-060 0-060 0-084 = 0-715
No Breakdown 0-8 0-03 0-024 0-024:0-084 - 0-285
/ 1-0 Sum — 0-084 1-000
Step 3 Step 6 Step 8
Check: sum 1-0 Find S_um of _ Check: sum = 10
products in Step 5

Fig. 4-6
Steps in calculating posterior probabilities by applying Bayes’ theorem

What do the calculations mean? Notice that before setting out on the
trip the student thought the chance of a breakdown was only 0-2; that was his
prior probability. But now he has some data—he was in an accident. His prior
opinion has been changed, through the operation of Bayes’ theorem, so that
now the chance of a breakdown is 0-715. That is his posterior opinion. This
revision of opinion in the light of new information is the heart of Bayesian

statistics, so be sure you understand how the theorem operates. Try this
example.
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Exercise 4-1

Page, Rakita, Kaplan and Smith (1957) have used the Archimedes spiral after-
effect illusion to diagnose brain damage. The spiral shown below is rotated and
the patient is asked to stare fixedly at it for a time; it appears to be shrinking
or expanding, depending on the direction of rotation. When it is stopped it
seems to rotate in the opposite direction. There is a sense of movement, yet

there is no actual motion. That is the illusion as seen by most people. However,
Page et al. found that while 859 of people who are functionally ill reported
seeing the illusion, only 409, of brain-damaged people reported seeing it.
Suppose that a psychiatrist makes a preliminary diagnosis of a patient as either
functionally ill or brain-damaged, and that he is about equally sure of either
diagnosis. He shows the rotating spiral to the patient, stops it, and the patient
reports he sees the reverse motion. What degrees of belief should the psychiatrist
now assign to the two possible diagnoses?

Answer

First let us solve this using the equation form of Bayes’ theorem, then the
tabular form.
We can consider the two possible diagnoses as hypotheses. Let

H, = functional illness and H, = brain damage.
The datum is that the patient saw the illusion, so let
D == patient saw illusion.

We wish to find the probability that the patient is functionally ill given that he
reported seeing the illusion, and also the probability he is brain-damaged given
that he reported seeing the illusion. In other words, we wish to find

p(H;|D) and p(H:/D)

We use Bayes’ theorem to do this. A more easily remembered notation will
help. Let H; be replaced by F to denote functional illness, H, by B to denote
brain damage, and D by I to indicate ‘saw illusion’. Now we want to find

p(F[I) and p(B|D),

that is, the probability of functional illness given the patient reported seeing the
illusion and the probability of brain damage given that he saw the illusion.
Writing Bayes’ theorem twice in this more mnemonic notation gives

_ p(F)p(]F)
p(B)p(1|B) + p(F)p(|Fy

p(F[l) =

and
~__p(B)d|B) 4
p(B)p(1|B) + p(F)p(|F)

p(B|I) =
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There are really only four quantities on the right sides of those equations, two
prior probabilities, p(F) and p(B), and two likelihoods, p(l[F) and p(1|B).
Once we know those values we have almost solved the problem.

Let us start with the prior probabilities. What values could be assigned? The
problem states that the psychiatrist is about equally sure of the two diagnoses,
so values of 0-5-0-5 would appear reasonable. We assign

p(F) =05 and p(B) =05

Now consider the likelihoods. First, p(I|F), the probability that a patient who
is functionally ill will report seeing the illusion. Page et al. report that about
859 of the functionally-ill subjects in their study reported seeing the illusion,
so let us take this percentage as our probability. That is, let

p(1|F) = 0-85

Those investigators also reported that 40%, of their brain-damaged patients
reported seeing the illusion, so let

p(l|B) = 04
Now we can apply Bayes’ theorem:
0-5(0-85)
- . ——— e = 06
PEID ™ 4503y + 0-50-85) 8
p(B|1) = 0-3(04) -~ 032

0-5(0-4) + 0-5(0-85)
After seeing the test result, the psychiatrist is 68 % sure the patient is functionally
ill and 329 sure of brain damage. Prior uncertainty of 0-5-0-5 has changed to
posterior uncertainty of 0-68-0-32. Or, to say the same thing in odds. the
psychiatrist is a little more than twice as sure that the patient is functionally
ill as brain damaged.
Next we turn to the tabular form. Follow the steps indicated in Fig. 4-6.

. . o e Priors ~ -
Hypotheses  Priors Likelihoods Likelihoods Posteriors
Functional 0-425
liness 0-5 0-85 0-425 0635 0-68
Brain 0-2
damage 0-5 0-4 02 5625 — 0-32

10 Sum - 0-625 Sum —= 1-00

Some readers may prefer the algebraic form to the tabular, while others may
prefer the tabular form.

Comments on Bayes’ theorem

Many students find initial difficulty in distinguishing p(H|D) from p(D|H).

The first is a posterior probability, the latter a likelihood. As applied to the
previous example, one is the probability of functional illness given that the
patient reports seeing the illusion, while the other is the probability that a
functionally ill patient will report seeing the illusion. These are quite distinct
probabilities and you cannot get one from the other without also considering
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the prior.probabilities and another likelihood. This is an important point that
has_ implications for scientific inference generally, and we will return to the
topic in the last section of this chapter.
o Becapse Bayes’ theorem enables us to determine p(H|D) from p(D|H),
1t 1s sometimes called the ‘theorem of inverse probability’ in the literature.

It is worth noting that Bayes’ theorem is not controversial, for it is derived
from the probability laws. To see this, note that the third law,

p(E and F) = p(E) x p(F|E)
can also be written as
p(F and E) = p(F) x p(E|F)

The probability of E and F occurring is exactly the same as the probability of
F and E; the order of stating the events makes no difference. Thus, the right
sides of the two equations above are equal to each other:

p(E) x p(F|E) = p(F) x p(E|F)
Slight rearrangement gives Bayes’ theorem:
F) x p(E(F
p(F|E) = p(F) x p(E[F)
p(E)

Replacing F by H and E by D gives this general form:

p(H|D) = p(H) x p(D|H)

I leave it as an exercise for the reader to show that this general form of Bayes’
theorem is equivalent to the form given in the section ‘Bayes’ theorem for two
hypotheses’.

Since Bayes’ theorem is a consequence of the probability laws discussed
in the previous chapter, and since statisticians of all persuasions accept those
laws, they also accept Bayes’ theorem. It is the interpretation of probability
that is controversial; if a statistician accepts the personalist view then he makes
heavy use of Bayes’ theorem, but if he does not then Bayes’ theorem is only
occasionally helpful. For a Bayesian, prior probabilities and likelihoods are
degrees of belief; both are the results of human judgement. And since all
inferential procedures in statistics are variations on the general theme of revision
of opinion in the light of new information, Bayes’ theorem plays a central role.
But for the statistician who takes a relative frequency view of probability it is
rare that he can give a relative frequency interpretation to a prior probability,
so he makes little use of Bayes’ theorem.

General form of Bayes’ theorem

You should note that Bayes’ theorem is not limited to just two hypotheses.
Here it is in general form:
p(Hy) p(D[H,)
p(i ) = PO
Z P(Hj)P( | j)
The index i can be 1, 2, . . ., depending on which hypothesis you are considering.
The index jis also 1, 2, . . ., and takes on as many values as there are hypo-
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theses. If you have four hypotheses you will write Bayes’ theorem four times,
and the denominator will contain four products, the product of the prior and
likelihood for each of the four hypotheses. In tabular form, the solution will
require four hypotheses in the first column, four priors (which must sum to 1)
in the second, four likelihoods in the third, four products (whose sum you must
find) in the fourth, and, finally, four posteriors. The steps are the same, the
table is just longer.

Revision of opinion after several items of data

Suppose you have not just one item of data, but a whole list of data.
How should Bayes’ theorem be applied then? Let us use the example of the
unscrupulous gambler (Chapter 1) to show the application. Recall that he is
holding a coin which might be fair or it might be biased toward ‘heads’; he is
equally unsure of those two possibilities. He tosses the coin ten times and it
comes up heads eight times. (The actual sequence is HHTHHHHHTH.) How
sure should he be now?

For the moment, let us restrict attention to just the first two flips. What
posterior opinion should the gambler hold after he has observed two heads?
There are two ways to approach this problem; both arrive at the same end
result.

The first approach is to consider the two heads as a single datum, so we
start with some opinion prior to observing any flips, then we observe the outcome
of two flips and revise opinions in the light of two ‘heads’. The second approach
is to consider the outcome of each flip as a separate datum, so that prior opinion
is revised by the single outcome ‘heads’, and the posterior opinion resulting
from the first flip is taken as the opinion prior to the second flip. Posterior
opinion after the first observation is used as prior opinion for the second
observation. The posterior probabilities following the second flip then become
the opinions in the light of both flips.

Here is how these methods work. We will start with the first one, where
‘heads, heads’ is treated as a single datum.

Step 1: List the hypotheses. They are ‘coin is fair’ and ‘coin is biased’, H, and
H,, respectively.

Step 2: Determine priors; say they are 0-5 and 0-5.
Step 3: Check that sum equals one.

Step 4: Determine likelihoods. How likely are two heads given that they were
the result of flipping the fair coin? We want to find

p(H and H|fair coin)

Clearly the two flips are independent given that we know we have the fair coin,
so we can apply the second corollary to the third law. In fact, we have already
done this. Turn back to page 48 in Chapter 3, and you will see p(H and H)
worked out under the assumption the coin is fair. For a coin judged to be fair,
I think everyone would agree that the probability of heads on one flip is 0-5.
So, the probability of two successive heads must be

p(H and Hlfair coin) = 0-5x0-5 = 0-25
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In other words,
P(DlHl) =025
Now what is p(H and H|biased coin)?

That is hard to answer unless we know the degree of bias. Let us ask the
gambler. His reply: ‘I once checked on that by flipping the coin a great many
times. It came down heads about 609 of the time.” Alternatively, I could
measure his degrees of belief about the probability of heads on a single flip by

using the standard measuring device introduced in Chapter 2. Suppose the
result is that the gambler assigns

p(H|biased coin) = 0-60
Again we note that the two flips are independent given that we know we have
the biased coin, so
p(H and H|biased coin) = 0-6 x 0-6 = 0-36
That gives us
p(D|H,) = 0-36
Step 5: Multfply priors by likelihoods.
p(H,)p(D|H,) = 0:5x0-25 = 0-125
p(H,;) p(D|H,) = 0-5x0:36 = 018
Step 6: Sum the products
0-125+4+0-18 = 0-305

Step 7: Calculate posteriors

0-125
="~ — 041
p(H,|D) = =< = 04
0-180
_— e = ’9
p(H,|D) = o =05

(Check: 0-41 4059 = 1-00.)

After observing two heads, the gambler is now 599 sure he holds the biased
coin.

Now let us see what the result would have been if revision of opinion had
proceeded one datum at a time. The gambler starts with 0-5-0-5 priors, as before,
and observes one flip. It is a ‘head’. His opinion, posterior to that one observa-
tion is calculated as follows:

. o g Priors X .
Hypotheses Priors Likelihoods Likelihoods Posteriors

025

Fair 0-5 0-5 0-25 055 = 0-455
i 0-5 0-6 0-3 0—3— = 0-545
Biased 5355 =

1-0 Sum = 0-55 10
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After observing one ‘head’ the gambler is 0-545 sure he holds a biased coin.
So, he flips again, and another ‘head’ comes up. When we calculate Bayes
theorem this time, we use the posteriors from the last calculation as the priors
for this one.

. g e Priors X .
Hypotheses  Priors Likelihoods Likelihoods Posteriors
. 02275
Fair 0455 05 0-2275 05545 — 0-41
. 0-3270
Biased 0-545 06 0-3270 05545 — 0-59
1-000 Sum = 0-5545 1-00

So, you see, we get the same result as before (except for slight differences in the
third decimal place caused by error due to rounding off).

This second form of Bayes’ theorem is especially useful to the scientist
who wishes to carry out experimental work in stages, for posterior opinion
after one stage can serve as prior opinion to the next stage. The gambler can
decide to keep tossing the coin until he is 0-99 sure if the coin is either biased
or not, but stopping periodically to make the necessary calculations to see
if his posterior opinion has reached that extreme degree. Similarly, the
scientist can design an experiment to enable him to collect data bearing on
certain hypotheses which are in question, and as he gathers evidence he can
stop from time to time to see if his current posterior opinions, determined
by applying Bayes’ theorem, are sufficiently extreme to justify stopping the
experiment. I shall have more to say about this ‘sequential sampling’ procedure
in Part III.

Now we are ready to calculate the posterior probabilities after ten flips
of the coin. The key probabilities are the likelihoods. We need to find

p(H and H and T and H and H and H and H and H and T and H|fair coin)
and

p(H and H and T and H and H and H and H and H and T and H|biased coin)

We can do this by applying the second corollary to the third law, the ‘indepen-
dence rule’:

p(DH;) =4+x3ix3ixixixixixixixi=(05)!°

p(D|H2) =06x06%x04x06x06x06x0:6x06x04x 06 = (0:6)3(0-4)?

A little deft use of logarithms gives these results (to three significant figures):
p(D[H,) = 0-000977
p(D|H,) = 0-00269
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Applying Bayes’ theorem (to two significant figures):

H Othe P . . . Priors X .
yp ses riors Likelihoods Likelihoods Posteriors
Fair 05 0-000977 0-0004 0—00—0—425 =0
04885 0-:0018335 027
) 0-001345
Biased 0-5 0-00269 . — = (-
0-001345 00018335 0-73
10 Sum = 0-0018335 1-00

After observing ten flips, eight of which came out ‘heads’, our gambler is now
73 % sure he holds the biased coin.

See if you understand the two ways of applying Bayes’ theorem [ have
presented in this section by trying the next exercise. Please do not skip the
exercise for I use the results in the next section. Also the exercise is an abstracted
form of a scientific experiment, and some of the lessons learned from the
exercise apply to the conduct of scientific inference.

Exercise 4-2

Imagine that you have just been shown two bags that are identical on the
outside. One contains 70 blue poker chips and 30 red ones while the other
contains 40 blue and 60 red chips. Call them bag B and bag R.

70 blue 40 blue
30 red 60 red
bag B bag R

One bag is chosen by the toss of a fair coin, but, since you cannot see the
contents, you do not know which one it is. Which bag has been chosen? At this
point let me assign prior probabilities of 0:5 and 0-5 to the two possibilities.
Next we shake the chosen bag to mix the chips, and open it just enough to
reach in and draw out a poker chip. We note its colour, return it to the bag,
shake the bag, and draw another chip. This process is repeated until, say,
12 chips have been drawn, 8 of them blue and 4 red.

Before you read any further, turn to Sec. 4.2 and answer the question just under
the section heading, ‘Revising opinion intuitively’. Then, come back to this
exercise.

What are the posterior probabilities that should be assigned to the two bags?
(Note that this is an abbreviated version of the more complete question, ‘What
is the posterior probability that bag B is the chosen bag, and what is the posterior
probability that bag R is the chosen bag?’)

Answer
We have two hypotheses. Let them be designated as follows:

H,: bag B is the chosen bag
H,: bag R is the chosen bag
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The data are 8 blues and 4 reds; consider this as one complex event or datum
and call it D. We wish to calculate

p(bag B is chosen bag given 8 blues and 4 reds were observed)

and p(bag R is chosen bag given 8 blues and 4 reds were observed),

or, more succintly,
p(H;|D) and p(Hz|D).

We use Bayes’ theorem. There should be general agreement about the prior
probabilities:

p(Hy) = p(Hz) = 0-5

The likelihoods can be calculated by applying the independence rule, just as
we did for the gambler’s coin problem. That rule, the second corollary to the
third law, tells us how the probability of a joint event can be calculated if we
know the probabilities of the individual events that make up the joint event.
It says we multiply the individual probabilities.
First, consider p(D|H;). What is the probability of getting that particular
sequence of 8 blues and 4 reds given that they were drawn from bag B? We
can calculate that. but first we have to know the probability of a single blue
from that bag, and the probability of a single red from bag B. Judging from
the composition of the bag, I assume you would assign these probabilities:
p(blue chip|bag B) = 0-7
p(red chip|bag B) = 0-3

Now you can apply the independence rule:
p(D[H;) = (0-7)%(0-3)* = 0-000467

Repeat this exercise for the other bag and you should get
p(D|H;) = (0-4)%(0-6)* = 0-0000849

Apply Bayes’ theorem:

Priors <

Hypotheses Priors Likelihoods Likelihoods Posteriors
Bag B 05 0-000467 0-0002335  0-85
Bag R 0-5 0-0000849  0-00004245 O-15

1-0 Sum = 0-:00027595 1-00

We can now be 859, sure the chosen bag was bag B.

4.2 Revising opinion intuitively

If your prior opinion in Exercise 4-2 is 0-5-0-5, what posterior probabilities

do you feel intuitively are justified in the light of that sample of 8 blues and
4 reds? Do not calculate, just give your intuitive assessment. Write it
here: .............

I asked you to answer that question before you looked at the calculations

because it is important to contrast the intuitive revision of opinion with the
amount of revision specified by applying Bayes’ theorem. Students sometimes
ask why the personalist view of probability cannot be applied after an experiment
is conducted. Why does the scientist not formulate and express his opinions
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after he has examined his data? Then there is no need to apply Bayes’ theorem,
and his opinions can be based solely on the data.

My. reply is this: The scientist who formulates opinion after conducting
an experiment and examining his data runs a much greater risk of holding
Inconsistent, even internally contradictory, opinions than the scientist who
expresses opinion before the experiment and then uses Bayes’ theorem to
revise those opinions in the light of the data. Of course this argument depends
on your accepting consistency of an individual’s opinions as a desirable state
of affairs in the conduct of scientific inquiry. Let me illustrate what consistency
means by engaging in an imaginary dialogue with a scientist who has just

completed Exercise 4-2, the bag and poker chip problem.

I:

Scientist:

Scientist:
I:
Scientist:
I:
Scientist:

I:
Scientist:
I:

Scientist:
I:

You gave me an intuitive judgement of 0-65 as the probability you
assign to the hypothesis that bag B is the chosen bag. Weren’t you
surprised to learn that the probability found by applying Bayes’
theorem is 0-85?

Yes, but it seems too high. My intuitive judgement feels more
reasonable.

: Most people feel as you do. This sort of experiment has been done

hundreds of times with all kinds of people and the general finding
is that people don’t get as sure as Bayes’ theorem says they could.

Maybe Bayes’ theorem is wrong.

Do you accept the third probability law ?

Of course. That is not controversial.

But Bayes’ theorem is a logical consequence of the probability laws.

You mean if Bayes’ theorem is wrong, then something is wrong with
the probability laws.

Right.
O.K., I accept it. Maybe I applied Bayes’ theorem incorrectly.

Not even a relative frequentist would argue with this application.
Your prior opinion was based on the flip of a coin, so we could give
your 0-5-0-5 priors a relative frequency interpretation. The prob-
abilities of getting a particular colour of chip from a particular bag,
0-7, 0-3, 0-4, and 0-6, can be given relative frequency interpretations,
and you used a probability law, which you accept, to generate
p(D|H,) and p(D|H,). So all the inputs to Bayes’ theorem can be
justified.

I accept all that, but I still prefer my value of 0-65.

Do you accept that

p(H;) = p(H;) = 05

p(red|bag B) = 0-3

p(blue|bag B) = 0-7

p(red|bag R) = 0-4

p(blue/bag R) = 0-6

the ‘independence rule’ is correct
Bayes’ theorem is correct ?

N =—o a6 o
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Scientist: Yes.

I: Then there’s an inconsistency in your thinking. The logical conse-
quence of believing those seven items is that p(H,|D) = 0-85. If at
the same time you believe p(H,|D) = 0-65, then you’re being
inconsistent.

Scientist: I like to think of my scientific self as striving to be rational, and
inconsistency doesn’t seem rational.

I: It isn’t. A clever person can take advantage of this kind of incon?-
sistency by setting up a set of wagers which you would accept as fair
but which are bound to lose you money no matter how they turn
out.

Scientist: And I suppose I can avoid this kind of trap by sticking to the prob-
ability laws and their consequences.

I: Right.

Scientist: O.K., I give up my 0-65. I’ll accept the value of 0-85, but 1 don’t
feel happy about it!

Well, 1 suppose if he had felt happy about it he would have given it in
the first place. Then Bayes’ theorem and the other probability laws would be
superfluous. If we were all rational, consistent beings, intuitive revision of
opinion would always agree with that prescribed by Bayes’ theorem, and the
entire edifice of statistical inference would be unnecessary. In some circum-
stances intuitive revision of opinion is ‘conservative’; it does not change as
much as Bayesian revision. And sometimes people revise their opinions too
radically. A great deal of research on intuitive revision shows that when indivi-
dual items of data do not tell us very much, we read too much into a collection
of such data, and when individual items do tell us something, in the sense that
they help to distinguish between the hypotheses, then we do not make enough
of several items of data taken together. It is not yet known why we react this
way to strings of experimental data, but it appears that some fundamental
limitations on human ability to process information are involved. Also, it is
possible that our real-world experience, which is mostly with biased samples
of data, leads us to be over-cautious with the less biased samples typical of
scientific experiments. Research on the problem continues (see Peterson and
Beach, 1967; Edwards, 1968; du Charme, 1970; and Slovic and Lichtenstein,
1971).

Another finding of this research is that there are large differences from
one person to the next in the amount of intuitive revision for the same problem.
The range of answers to Exercise 4-2 is quite large. This observation should
come as a disappointment to those people who believe in letting the data speak
for themselves. Apparently the same set of data speak more loudly to some
people than to others—one person’s whisper is another person’s shout. Add
to this the finding that the whisper from one set of data is sometimes heard
as a shout by most people while the shout from another set of data is heard
as a whisper, and you can see the psychological untenability of letting equivocal
data speak for themselves.

In a phrase, we need Bayesian statistical methods to bring consistency to
informal reasoning.
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4.3 How sure is ‘sure enough’?

o If a scientist continues to collec: data and he decides to keep on until
!'HS posterior opinions are fairly extreme, when does he stop ? If he is considering
just two hypotheses does he stop when his posteriors are 0-8-0-2, or 0-9-0-1, or
0-99-0-01, or when? How sure is ‘sure enough’?

That question would be easier to answer if this were a book on decision
theory. As I said in the first chapter, we would consider the worth of being
Zo;rect and the costs of being wrong. Let me illustrate by expanding Exercise

Suppose you have to guess which bag is the chosen one, but you are
allowed to draw from the bag as many times as you wish. How many draws
would you take? It is hard to give any guidelines because nothing much is at
stake if you are right or wrong. But suppose you were to be paid £10 if you
guessed correctly and fined £5 if you guessed the wrong bag. If you cannot
afford to lose £5, I imagine you would draw quite a few times; the problem is
a little clearer than before. Now, at least, you know you are going to take a
great many looks, but, still, you would be hard-pressed to be very definite
about the exact number of draws.

Let’s add one more qualification. Suppose you are charged 50p per look
Now how many draws would you make? Since you stand to win £10 at most,
you certainly would not take more than 20 looks, and to prevent the loss of £5
you would take at least one look. So now we know you would take something
more than one look but less than 20 looks. By knowing both the payoff of a
correct or incorrect guess and the cost of getting information, we have become
clearer about how many looks to take, and that, in turn, dictates how sure we
can expect to be.

If T were to develop this example along the lines of decision theory an
exact answer could be given to the original question, but I would have to know
the utilities or subjective values the decision maker would assign to the various
costs and payoffs (see Chapter 7 of Raiffa, 1968). A scientist usually has some
notion of the cost of his experiment, but he rarely knows the payoffs because
the technological, economic, or social consequences of his findings are usually
vague and often unknown. And so the scientist faces a dilemma; at what
point does he decide he is ‘sure enough’ to stop experimenting and to publish
his findings ?

For the most part, social scientists have not squarely faced this issue.
Instead, they have relied on fairly arbitrary conventions whose Bayesian
equivalent would be (roughly) to publish when you are 95, 99, or 99-9 9] sure.
‘Hard-headed’ journal editors often require 99 9, while ‘soft-headed’ ones may
allow 959 or less.

Conventions will undoubtedly arise in Bayesian statistics, too, for most
scientists still feel unable or unwilling to tackle the "costs and payoffs’ problem,
in spite of much talk about social responsibility in science. Hopefully, new
technologies, such as those developed by Schlaifer (1969) primarily for the
business community, for making decisions where uncertainty, costs and payoffs
are all taken into account, will eventually be applied to problems of scientific
inference. In this way, perhaps it will be possible to develop conventions that
are more rational than the current ones.
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In the meantime, you will be facing this problem yourself in your own
experimental work. Aside from the obvious advice to take account informally
of costs and payoffs, I can offer only a very crude suggestion: be at least 99 7]
sure. This is a fairly conservative criterion which should not be taken as a rule.
[ am suggesting it mainly as a guideline for the newcomer to statistical inference,
to be relaxed or tightened according to the situation. Once you have begun to
get the feel for research, and have seen the tradeoffs between uncertainty and
costs and payoffs in operations, you will be in a better position to make an
informed judgement about the criterion.

For now, the main point to remember is that there usually is no clear-cut
answer to the question ‘How sure is ‘sure enough’?’ That, like probabilities
themselves, is a matter for human judgement.

4.4 Effects of prior opinion

‘We were certainly aware that inferences must make use of prior infor-
mation and that decisions must also take account of utilities, but after
some considerable thought and discussion round these points we came
to the conclusion, rightly or wrongly, that it was so rarely possible to
give sure numerical values to these entities that our line of approach must
proceed otherwise.’

That was E. S. Pearson, a non-Bayesian, speaking (in Savage, 1962) about
his and J. Neyman’s views of statistics in the mid-1920’s. Their subsequent con-
tributions to statistical theory form an important school of statistical thinking,
all in the relative frequency tradition. They developed statistical methods that
allowed inferences to be drawn without regard to prior probabilities but which
did require the exercise of careful personal judgement in other matters.

My point is that statisticians of all persuasions agree that human judge-
ment is a necessary ingredient of statistical practice. They disagree on the
places where judgement should operate and on the way in which it is incor-
porated into formal analysis. Bayesians believe that judgement in the form of
prior opinion should be included as part of the formal, public procedures, while
most non-Bayesians prefer to leave it as part of the informal thinking that leads
to the selection of a particular statistical procedure or test.

Since judgement is important in statistical practice, it is necessary to
examine the particular role of prior opinion in Bayesian procedures. That is
what I do in this section, but bear in mind that more will be said in Part III.

Making prior opinion explicit

Why bother to make prior opinion explicit? Why can it not be left as an
implicit part of statistical procedures ? Bayesians argue that when prior opinion
is not explicitly considered, the resulting inference may be misleading. (An
example has recently been given by Pitz, 1968.)

Let me illustrate this by expanding the psychodiagnosis problem of
Exercise 4-1. Suppose the rotating spiral is shown to the patient and he reports
seeing the after-effect illusion. Since 859 of functionally ill patients see the
illusion and only 409 of brain-damaged patients see it, common sense would
suggest that the patient is more likely to be functionally ill than brain damaged.
The clinician may wish to use this decision rule:
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Decision Rule 1: Diagnose functional illness if the patient sees the illusion
diagnose brain damage if he does not.

' But the clinician has learned to be wary of his common sense so he calls
In a statistician, a Bayesian one at that. The statistician examines the hospital’s
rqcords and then advises the clinician not to administer the test but simply to
diagnose every patient referred to him as functionally ill.

Decision Rule 2: Diagnose every patient as functionally ill.

The statistician claims that the clinician will be correct more often by following
Decision Rule 2 than Decision Rule 1.

This surprising result can be explained by applying Bayes’ theorem. The
clinician’s distrust of his common sense was well-founded, for he was tempted
to make a diagnosis on the basis of the likelihoods, p(I|F) and p(I|B), instead
of using the posterior probabilities. And posterior probabilities depend not only
on the likelihoods but also on the prior probabilities. The statistician consulted
the records of the hospital to provide a basis for assessing the prior probabilities.
He discovered that 909, of the patients at the hospital in the past have been
functionally ill, and that only 109, were brain damaged. He used these figures
as his prior probabilities.

Prior probabilities: p(F) = 0-9 and p(B) = 0-1

The likelihoods are based on the research of Page er al.

_— . p(1JF) = 0-85 and so p(I|F) = 0-15
Likelihoods: 71p) _ 0.6 and so p(I|B) = 0-4

First, let us consider the case where the patient reports seeing the illusion.
The steps are shown below.

Computation of Bayes’ theorem for the diagnostic problem when the patient
reports seeing the illusion.

. o e Priors X .
Hypotheses Priors Likelihoods Likelihoods Posteriors

Functional _ 0-765 .

ilness 09 0-85 0-765 0805 — 095

Brain . 004 _

damage 0-1 0-4 0-04 07805 — 0-05
Sum = 0-805

This calculation shows that when the clinician starts with a prior prob-
ability of 0-9 that the patient is functionally ill, the patient seeing the illusion
leads to posterior probabilities of 0-95-0-05. The clinician has become more
certain that the patient is functionally ill. That result confirms intuition.

Next consider the case where the patient does not report seeing the
illusion. Here are the appropriate calculations.
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Computation of Bayes’ theorem for the diagnostic problem when the patient
does not see the illusion.

. I Priors X .
Hypotheses  Priors Likelihoods Likelihoods Posteriors

Functional . 0-135 .

ilness 09 0-15 0-135 0195 — 0:692

Brain . 0-06

damage 0-1 0-6 0:06 0795 = 0-308
Sum = 0-195

This time prior probabilities of 0-9-0-1 have changed to posteriors of
0-692-0-308. Notice that the posterior probabilities still favour the diagnosis
‘functionally ilI’ even though the patient did not see the illusion! The clinician
will favour the diagnosis of functional illness whether or not the patient sees
the illusion.

This example illustrates two points. In the first place, a great deal of
information is conveyed by the prior probabilities in the example. Whether or
not the patient sees the spiral after-effect illusion tells the clinician something
about the patient, but the information conveyed by the test results is far less
than that shown in the prior probabilities. In this case the prior probabilities
swamp out the information in the test, so that the posterior probabilities are
determined more by the priors than by the likelihoods. The extra information
given by the test does not change the prior probabilities enough to warrant
giving the test.

The second point is that the intuitive approach, which favoured Decision
Rule 1, contained an implicit assumption about the prior probabilities. Recall
that when the prior probabilities were 0-5-0-5, the posterior probabilities were
as follows:

Posterior probabilities if

Patient sees Patient does not

Hypotheses 1, cion see illusion
Functional

illness 0-68 0-2

Brain

damage 0-32 0-8

This time the diagnosis favours functional illness if the patient sees the illusion
and brain damage if he does not. When the prior probabilities are 0-5-0-5, the
clinician will do better by adopting Decision Rule 1, the rule that initially
seemed the more intuitive of the two. The intuitive approach to the problem
obviously contained an implicit assumption about the prior probabilities.
Adopting the first decision rule is justified only when the prior probabilities
are not too extreme. If they are very extreme, so much information is contained
in the priors that the modest amount of information yielded by the test is not
worth collecting.
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~ This result may make you feel uneasy if you are not very certain about the
prior probabilities. In the example here the statistician examined the hospital
records to aid him in determining the prior probabilities. But suppose no records
were available to you, or the hospital had just opened. The first thing 1 would
dp 1s look up local or national government figures on the frequency of func-
tional illness and brain damage. I would consult local psychiatrists and clinical
psychologists to see if the particular locality in which the hospital is situated
is likely to get patients in numbers differing from the national rates. Finally, I
would use all this information to arrive at an intuitive judgement of the prior
probabilities. After the hospital has been operating a few months, I could then
look at the records to date and re-evaluate my priors if necessary.

This section began with the criticism that prior probabilities are ofien
not known, and so must be ignored. I hope that this example clearly shows that
prior probabilities cannot be ignored. A formal approach to this question of
‘unknown’ prior probabilities starts by establishing certain self-evident prin-
ciples (axioms) of rationality, and then proves the existence of probabilities.
(A good non-technical exposition of this method can be found in Lindley, 1971.)
But proving that probabilities exist within some formal system is not the same
thing as showing that they are psychologically meaningful, or that they can be
assessed. If you prefer anecdotal evidence on this question, I can report that I
have not yet met a scientist who did not have some prior information about an
experiment he was planning. Some have given me vague prior opinions and
others have been certain to the point of assigning zero prior probabilities to
hypotheses that seemed to me plausible even if very unlikely. But all have had
an opinion. If you prefer experimental evidence, there is a growing body of
experiments done by psychologists who have explored the abilities of people
to make probability judgements and then to revise these judgements intuitively.
I know of not a single subject in these experiments who, when asked to assess
a probability, said he could not. Some objected, saying that the probabilities
they were giving were meaningless and that they would give entirely different
numbers if asked the same question at a later date, but the results of these
experiments do not confirm the verbal reports of the subjects. The probabilities
they give are not at all random, and show orderly relationships to the variables
the experimenter was manipulating in the experiment. Furthermore, when sub-
jects are asked the same questions later on, they give very similar probabilities
to their original ones, even though they have forgotten the original judgements.
When probabilities are based solely on relative frequency data, then practice in
estimating probabilities improves the accuracy of the estimates. When there is
no ‘objective’ standard to serve as the basis for probability assessments, practice
in assessing at least improves the consistency of the probabilities, that is, they
are more likely to conform to the laws of probability. (In these experiments
subjects were not told about the probability laws, nor, if they knew them any-
way, were they allowed to check on the consistency of their assessments. The
statistician can, of course, make these checks.)

The general conclusion I draw from this research is that for many people
assessing probabilities is a difficult task, not because the probabilities are
unknown or not there, but simply because people are not used to expressing
their uncertainty in this form. Probabilities are the language of uncertainty,
probability laws are the grammar of that language. It is my guess that if you
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had been taught that language and its grammar during your school years, you
would have little difficulty now in assessing probabilities for uncertain events
or hypotheses. The ability to assess probabilities can be developed, like learning
a new language.

If you are interested in reading some of the experiments on probability
assessment, you might look at the following. A review of some of the work
can be found in Peterson and Beach (1967). Parts of the paper by Edwards
(1968) are relevant to the question of assessing prior probabilities. Three
experiments by Peterson, Ulehla, Miller, Bourne and Stilson (1965) demon-
strate the internal consistency of probability assessments, as does a paper by
Beach (1966). One analysis in a paper by Edwards, Phillips, Hays and Goodman
(1968) shows that probability assessments made at different times about the
same event are very nearly identical. Several papers in the December 1970 issue
of Acta Psychologica are devoted to questions of assessing probabilities.

Although many of these experiments are concerned with posterior rather
than prior probabilities, their results are applicable to assessing prior prob-
abilities. The reason for this is that the only distinction between prior and
posterior probabilities is the amount of data on which they are based, and
many of the experimental results are valid quite independently of the amount
of data presented or available to the subject.

You will recall that in the previous chapter I mentioned the difficulty
people have in assessing probabilities for complex events and I suggested that
this difficulty may be a source of reluctance to quantifying prior opinion. In
this section [ have tried to show that whatever the source of this reluctance, the
issue of quantifying prior opinion must be faced. Since judgement is an unavoid-
able part of making an inference, it is better, Bayesians argue, to incorporate
prior opinion into the formal mechanisms so that judgement can be publicly
displayed rather than left as an implicit part of the process. Attempts to ignore
prior opinion, we shall see in Chapter 6, can only be justified by exploiting
certain characteristics of prior opinion itself.

Disagreements about prior probabilities

Suppose two scientists hold different prior opinions. What effect will
Bayesian revision of opinion have on the difference? As I mentioned early in
Chapter 2, the answer is that their posterior opinions will usually be in closer
agreement than their priors. Now we can see this process in operation.

Consider again the psychodiagnostic problem. Suppose one clinical
psychologist starts with priors of 0-5-0-5, while another psychologist starts
with 0-9-0-1. The difference in their prior opinions is 0:9—0-5 = 0-4. Now they
test a patient who sees the illusion. Using the calculations made earlier, we see
that the first psychologist should revise his opinion to 0:68-0-32, the other to
0-95-0-05. Now the difference is 0-95—0-68 = 0-27. The original difference of
0-4 has been reduced to 0-27, so the two psychologists are now in closer agree-
ment. Note that this does not always happen. You will see an example if you
compute the posterior opinions of those two psychologists for the case where
the patient did not see the illusion.

However, where more than one observation is possible we will find that
as more and more data are collected, initially divergent opinion comes more
into agreement. You can see this in the next exercise.
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Exercise 4-3

Consider again the unscrupulous gambler. Before he gets a chance to see whether
the coin he holds is the fair or the biased one, a rival player startles him by
grabbing the coin from his hand and announcing to other players that the
gambler has been using a biased coin. He says he is not positively sure, but he
would be willing to bet on an 0:8-0-2 chance that the coin is unfair. Our
gambler still thinks the chances are about equal. What posterior opinions would
the men hold after the first five flips? After the second five flips? Assume the
sequence of outcomes is as before, H, H, T, H, H, H, H, H, T, H, and that the
probability of a single head for the biased coin is 0-6. Compare the two sets
of posterior opinions.

Answers
For the first five flips, here are the gambler’s probabilities:

. o e Priors X .
Hypotheses Priors Likelihoods Likelihoods Posteriors

Fair 05 (0-5)° 0015625  0-38
Biased 05  (0-6)¢(0-4) 0-02592 0-62

Sum = 0-041545

And here they are for the player:

. g Priors X .
Hypotheses Priors Likelihoods Likelihoods Posteriors

Fair 02 (057 0-00625 013
Biased 08  (0:6)¢(0-4) 0041472  0-87

Sum = 0-047722

Their initial disagreement was 0-5 — 0-2 = 0-3. Now it is 0-38 — 0:13 = 025
Five flips resolves their disagreement a little. Now the next five flips.

For the gambler:

. - Priors X .
Hypotheses Priors Likelihoods Likelihoods Posteriors

Fair 038  (0-5) 0011875  0-27
Biased 062  (0:6)*(0-4) 0-032141  0-73

Sum = 0-044016

This is the same result we obtained before. Now for the player:

. o Priors X .
Hypotheses Priors Likelihoods L;Ilc(:,’;fhoo ds Posteriors

Fair 013 (0-5)° 0004062  0-08
Biased 0-87  (0-6)%(0-4) 0-045101 092

Sum = 0-049163

So, after 10 flips the disagreement is 027 — 0-08 = 0-19. Once again their
opinions have moved closer. If more data were collected, further revision of their
opinions would bring them even closer, until with enough data their posterior

opinions would be indistinguishable.
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It is this feature of Bayes’ theorem that saves Bayesian statistics from being
wholly subjective. Initially subjective opinion is brought into contact with data
through the operation of Bayes’ theorem, and with enough data differing prior
opinions are made to converge. This comes about because the prior opinions
become less and less relevant to posterior opinion as more and more data are
observed. Prior opinion is swamped out by the data, so that posterior opinion
is controlled solely by the data. For a Bayesian, this is the only way in which
data can ‘speak for themselves’.

4.5 Sources of likelihoods

Next we turn our attention to the likelihoods in Bayes’ theorem. They
are probabilities, and so are given a personal, or subjective, interpretation just
as prior probabilities. But there is a difference in practice. A scientist usually
designs his experiments so that regardless of which data are actually observed
there will be no disagreement over the value of p(D|H). He does this by employ-
ing variations on the notion of a simple experiment that was introduced in Chap-
ter 2. He ensures that the experiment is designed so that everyone agrees about
the probability to be assigned to each elementary event, in much the same
manner that the simple experiment of drawing a ball from an urn yields agree-
ment about the probability of getting a particular colour of ball. Frequently,
the scientist takes repeated measurements, so that p(D|H) is based on applica-
tions of the probability laws for complex events. You saw instances of this
when p(D|H) was computed for several flips of the coin in the gambler’s coin
example, and again in the bags and poker chip example. In the latter example,
the experiment was set up so that there would be agreement about the prob-
abilities to be assigned to drawing a single chip of each colour from a given bag.
It was then necessary to apply the probability laws to determine the probability
of any particular sequence of draws from a given bag. It is the public nature of
p(D|H) that characterizes all statistical methods.

Not all experiments allow agreement about p(D|H). That is why it is
necessary to think about the statistical analysis of your data when you are
designing an experiment. Failure to do this may result in an interesting experi-
ment, but one in which agreement about p(D|H) is difficult or impossible to
obtain. Lack of agreement often comes about when the total number of elemen-
tary events cannot be precisely specified or when the number of elementary
events in the event class is ill defined. One reason why scientists have come to
rely in part on laboratory studies to further their science is that observations
taken in natural settings often do not allow agreement about the likelihoods,
while under controlled laboratory conditions agreement can be reached. How-
ever, for the social scientist this method of bringing about agreement on the
likelihoods is bought at a cost: behaviour observed in a laboratory experiment
may not be representative of behaviour in natural settings. For some studies,
this may not matter, for example, many experiments on information processing
in humans. Also, an unrepresentative experiment may be the best way to settle
some theoretical issue.

The point is that social scientists are sometimes faced with a tradeoff
between a well designed, but unrepresentative, experiment that allows agreement
about the likelihoods on the one hand, and a representative experiment with
no agreement about the likelihoods on the other. You will see in the literature
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gll shgdes of experiments from one extreme to the other, and there are some
ingenious investigators who have managed to capture both extremes in one
experiment.

In this book we are concerned only with statistical techniques in which
agreement .about the likelihoods is possible. There are, however, a number of
new Bayesian techniques being developed for situations where p(D|H) is based
wholl.y or in part on human judgement without reference to simple experiments.
Applications can be found in business decision making (Schlaifer, 1969 ; Raiffa,
1968), medical diagnosis (Gustafson, Edwards, Phillips and Slack, 1970),
weather forecasting (Murphy and Winkler, 1971), intelligence evaluation
(Edwards, Phillips, Hays and Goodman, 1968), and many other areas (Slovic
and Lichtenstein, 1971).

4.6 Other forms of Bayes’ theorem

Odds-likelihood ratio form of Bayes’ theorem

Another form of Bayes’ theorem will be used at times in this book when
we are considering just two hypotheses. It can be obtained by first writing the
theorem in its general form for two hypotheses,

P(Hl)P(DlHl)

HlD =

P(H.|D) p(D)

, p(H,) p(D|H,)
H,|D) =

p( 2| ) (D)

and then dividing the first expression by the second:
p(H,|D) _ p(H,) p(D|H,)
p(H,|D) p(H,) p(D|H,)

More simply,
Q" =Q'L

The Greek letter omega, Q, stands for odds, either prior, ', or posterior Q”.
(I will frequently make use of a single or double prime to indicate prior or
posterior.) Odds, as we saw in Chapter 2, represent a ratio of probabilities, and
we will adopt the convention of letting prior odds refer to the ratio of prior
probabilities, and posterior odds the ratio of posterior probabilities, both for
the two-hypothesis case. The quantity represented by L is the likelihood ratio;
it, too, is a ratio of probabilities, but since those probabilities are called likeli-
hoods we naturally call their ratio the likelithood ratio.

Let us be clear about the difference between odds and the likelihood ratio.
Odds tell us how much more likely one hypothesis is than the other, either
before or after observing data, while the likelithood ratio indicates how much
more likely the data are to have occurred given the truth of one hypothesis
relative to the other.

In the example of the gambler who is not sure which of his two coins is
the biased one, we started with prior probabilities of 0-5-0-5. The prior odds are
given by the ratio of these probabilities, 0-5-0-5 or 1. Prior odds of | indicate
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that the two hypotheses are equally likely: the odds are ‘even’. After observing
one head, we noted that the two likelthoods were

p(D|H,) = 06
p(D|H,) = 05

This gives a likelihood ratio of 0-6/0-5 or 1-2. In words this means that heads
is 1-2 times more likely to be observed from the biased coin than from the fair
coin. Posterior odds are obtained by multiplying the likelihood ratio by the
prior odds:

Q' =1x12=12

The hypothesis ‘biased coin’ is 1-2 times more likely than the hypothesis ‘fair
coin’,

The second flip resulted in a heads, too. The odds prior to the second
flip were 1-2, and the likelihood ratio for heads is 1-2. So, the new posterior
odds are

Q' =12x12 =144

After two flips, both of which came up heads, we can be 1-44 times as certain
that we flipped the biased coin rather than the fair one. The third flip came up
tails. The odds prior to the third flip were 1-44, but what is the likelihood ratio
for tails? We find this by computing the ratio of likelihoods, where this time D
represents tails,

P(DIHl) _ (E _

= =08
p(Dle) 0-5

Now we can compute the posterior odds:
Q" =144x08 = 1-152

After two heads and a tails we are 1-152 times more certain of the coin being
biased than of it being fair.

We could have done this more simply by applying the second corollary
to the third law to give the result that the likelihood ratio for N data is equal
to the product of the N individual likelihood ratios. Thus, if we have N items
of data, then there are N likelihood ratios corresponding to those data. We can
label the likelihood ratios in this way: L, L,, .. ., L, ... Ly ,, Ly. The
likelihood ratio for all these data is given by

L=L,xL,x...xL;x...xLy_{%xLy,

or more simply,
L e 1_[ Li

(The capital Greek letter piis used to indicate ‘the product of’.) If this is
substituted into the odds-likelihood ratio form of Bayes’ theorem, we obtain
Bayes’ theorem for N independent observations:

Q// — Qr l—[ Li
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As applied to .the gambler’s problem, we note that every time a head
comes up we use a likelihood ratio of 1-2 and that every time a tail comes up
we use 0-8. For two heads and one tail, the posterior odds are

Q"=1%x12x12x08=1-152
Once you have computed posterior odds, you may wish to translate

them into posterior probabilities. Use the probability-odds ‘scale’ (Fig. 2-6) or
the equation in Section 2.3.

1152

H|D)= —— =0
p(H,|D) = | ——=o = 0535
So, p(H,|D) = 1-0-535 = 0-465

Exercise 44

The police are certain that either Louie ‘The Loop’ or Shelly ‘The Shark’ has
printed the counterfeit £5 notes that have been turning up in the city. They
have heard, though, that Louie has retired, so they think there is only a 0-2
chance that Louie is the current counterfeiter. Then they discover that the
silver thread found in genuine notes is printed in light-grey ink on the bogus
notes. From past experience, the police estimate that Louie is twice as likely
as Shelly to use this method of simulating the silver thread. What is the posterior
probability of Louie’s guilt?

Answer

Here is an application of Bayes’ theorem where human judgement, unaided by
considering a simple experiment, is the source of a likelihood ratio. In these
cases it is often easier to assess the likelihood ratio rather than the values of
p(D|H). Here the police would have found it difficult to assess the probabilities of
each suspect using the ink method of simulating the thread, but they could
assess how much more likely, in a ratio sense, one was than the other to use this
method. This is a fundamental point for applications of Bayes’ theorem that rely
heavily on unaided human judgement for the likelihoods.

When we are given a likelihood ratio, we must use the odds-likelihood ratio

form of Bayes’ theorem.

Let H,; = Louie is guilty
H, = Shelly is guilty

We are told that
p(Hy) =0-2
so we can determine
p(Hy) =1 —02=08

Therefore, the prior odds are

0-2 1
=" =-=025
@ 08 4
The likelihood ratio we want is
P(D|H1)

p(D[Hz)
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that is, how much more likely is the datum to have been produced by Louie
than Shelly (the direction of H, to H, must be the same in Q’, Q”, and L). The
police estimate that

L=2
so the posterior odds are
Q" =025 x2=045

Converting that number to a probability gives the posterior probability of
Louie’s guilt:

Exercise 4-5
Solve the gambler’s problem using the odds-likelihood ratio form of Bayes’
theorem. Recall that the sequence of flips resulted in H, H, T, H, H, H, H, H,
T, H, and that p(head|biased coin) = 0-6.
Answer
Let H, = fair coin
H, = biased coin
We wish to find
p(H;|D)
p(H;|D)

where D represents the 8 heads and 2 tails that resulted when the coin was flipped
10 times. For the outcome ‘heads’,

__ p(heads|fair) 0-5

" p(heads|biased) =~ 0-6
and for the outcome ‘tails’,

_ _pleailsifain _ 05

~ p(tails|biased)  0-4

Thus, the likelihood ratio for all 10 flips is given by

)

so the posterior odds (assuming equal priors) are:

5\8/5\2 9765625
Q” p—i - -— - —_
b (6) (4) 26873856
= 0-363
Converting to probabilities:
0-363
PILID) = 6363 = 0%
and so

p(Hz]D) =1 — 027 =073

That is the same result we obtained before.
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~The odds-likelihood ratio form of Bayes’ theorem can be summarized
briefly in words:

Posterior odds = Prior odds x Likelihood ratio.

Notice that when we start with prior odds of 1, a likelihood ratio greater than
one causes the posterior odds to favour H,, while if the likelihood ratio is less
than one, the posterior odds favour H,. When the likelihood ratio equals one,
no revision of opinion occurs. We can say, then, that the size of the likelihood
ratio determines the amount of revision of opinion. Data are informative if they
lead to a very large or very small likelihood ratio, they are non-informative if
the likelihood ratio is near or equal to one.

Log-odds log-likelihood ratio form of Bayes’ theorem*

You can see that the odds-likelihood ratio form of Bayes' theorem is
relatively easy to apply, but the computations for very many items of data are
tedious, so let us introduce one more simplification. Starting with Bayes' theorem
in this form:

Q=0 1]L
we take logarithms of both sides:
log Q" = log(Q' [] L)
=log Q' +log ([] L))
Remember that
[TLi=LyxLyx...xLy

so that

or, more simply,
log[[L;=) logL,

Substituting gives the log-odds log-likelihood ratio form of Bayes’ theorem:
log Q" =log Q' + ) log L;

In words, this form of Bayes’ theorem says that the log of posterior odds is
obtained by taking the log of prior odds and adding to that for each item of
data, the log of the likelihood ratio for each datum. Let us see how this applies
to the gambler’s problem.

First, consider the log of prior odds. That is the log of 1, which is zero.
Next consider the log-likelihood ratio for each of the ten flips. For one flip:

L log,oL

Heads 5/6 —0-0792
Tails 5/4 0-0969

* This section can be omitted. However, the material will be useful in understanding some
of the technical points of Chapter 14.
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Now we can get the log posterior odds, for ten flips:
log Q" = 0+ 8(—0:0792) + 2(0-0969)
= —0-4398

Taking antilogarithms gives Q" = 0-363, the same value as before.

The advantage of this form of Bayes’ theorem is that it makes evidence
additive. Imagine a vertical stick with decimal markings (any spacing will do)
whose middle is zero. That middle position represents the log of odds of 1,
so when we are at zero on the stick H, is just as likely as H,. But if we move up,
H, is favoured, while below 0, H, is favoured.

In the gambler’s example we start at 0. After the first flip, heads, we move
down 0-0792 units, favouring H, (biased coin). Now another flip, the outcome
is heads, so we move down another 0-0792 units. The third flip is tails so we
move up 0-0969 units, and so on, for all 10 flips. We will end up 0-4398 units
below zero. Each head moved us a fixed distance down, each tails moved us a
fixed distance up. That is what is meant by saying evidence is additive under the
log-odds log-likelihood ratio form of Bayes’ theorem. Perhaps now it will be
obvious why the probability-odds scale of Fig. 2-6 has the odds calibrated on
a logarithmic scale. I leave it to the reader to determine how the probability-odds
scale should be extended below 1 : 1, and how the resulting device can be used
for two-hypothesis problems directly without having to look up logarithms.

4.7 Hypothesis testing

[ would like to conclude this chapter with some general comments on
‘hypothesis testing’, a favourite phrase of statisticians, who mean by it that one
hypothesis, or more, about some issue has been proposed, data have been
collected, and a statistical inference concerning the truth of the hypothesis is
carried out. That is the process described in this chapter, and from the Bayesian
viewpoint several important generalizations can be drawn.

Specifying the hypotheses

Suppose that after 12 poker chips are drawn from one of the bags in
Exercise 4-2, you are told that the original statement of the problem was in
error, that the sample of 8 blues and 4 reds could have come from any one of
three, not two bags. The new bag to be considered contains 50 blue and 50 red
chips, so now the possibilities look like this:

70 blue 50 blue
30 red S0 red

40 blue

60 red

bag B bag ? bag R

Assuming equal prior probabilities, what are the posterior probabilities ?
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Here is the solution:

Hypoth Pri . . Priors x .
ypotheses riors Likelihoods Likelihoods Posteriors

Bag B 1/3 0-000467 0-000156 0-58

Bag ? 1/3 0-000244 0-000081 0-31

Bag R 1/3 0-000085 0-000028 0-11

Sum = 0-000265 1-00

When we solved this problem for just bag B and bag R, we obtained these
posterior probabilities:

p(Bag B|D) = 0-85
p(Bag R|D) = 0-15

Including that third bag altered the posteriors even though the data were the
same. The posterior probability of a hypothesis depends not only on that hypo-
thesis and the data but also on the other hypotheses. That is another way of
saying that truth is relative—relative to the other possibilities you are con-
sidering. In the two-bag problem, bag B looked like a good bet in the light of
the data, but only relative to bag R, for bag B’s attractiveness is diminished by
introducing a new contender, bag?. A posterior probability is a relative state-
ment, not an absolute one. It does not make sense to talk of the probability
of a hypothesis being true without considering the alternatives. (There is one
important exception to this that will be mentioned shortly.)

You can see, then, that Bayes’ theorem can do no more than tell you, in
the light of the data, which of the hypotheses you have listed is the most likely.
If, as a scientist, you are testing several alternative theories, all of which are
absurdly implausible, Bayesian statistics will only help you to identify the least
implausible one. If you are really drawing poker chips from a bag whose
composition is 90-10, and you only consider 70-30, 50-50, and 40-60 bags in
your computations, then, with enough data, Bayes’ theorem will eventually
give the highest posterior probability to the 70-30 bag, the one nearest the
truth. In fact, as large amounts of data are collected the posterior probability
of the 70-30 bag will approach one. It is a general characteristic of Bayesian
methods that as the amount of data approaches infinity, the posterior probabilities
usually approach zero and one. This is true whether or not the correct hypothesis
is included in the set of hypotheses considered.

Statistics will not help you to invent hypotheses, although the slowness
with which the Bayesian posterior probabilities approach zero and one in some
particular case may suggest to you that you should look for a different hypo-
thesis. Hypotheses are invented by the scientist, and may be based on theory,
on hunches, on flashes of insight, or be suggested by other data. Once you have
invented a new hypothesis, you must go back to your data and re-calculate
the posterior probabilities for the set of hypotheses that now includes the new
one. If the new hypothesis was suggested by the data, then you should go out
and collect new data to guard against the possibility that your new hypothesis
fits only the original data from which it was derived.

The history of science is filled with examples which, to a Bayesian, appear
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to be instances in which scientists collected so much data that eventually they
came to believe one particular theory because that theory was the most plausible
of all those suggested. Then along comes a new scientist with a new theory that
is even more plausible, in the light of the data, than the others. A high posterior
probability associated with a hypothesis does not guarantee the truth of that
hypothesis, it only indicates that the hypothesis is the most likely among those
you have considered. Philosophers of science and thinking scientists long ago
realized that truth is unattainable, that the best scientists can do in their search
for truth is reach agreement with one another. What the layman recognizes as
a scientific truth is actually only something about which scientists are in agree-
ment or near agreement. Today’s truth may be discarded by the scientists of
tomorrow.

When likelihoods are zero or one

Suppose a theory predicts that a certain datum (or collection of data)
is sure to be observed, then an experiment is performed and the datum is
observed. What can be said about the truth of the theory?

Let us consider the truth of the theory as an hypothesis, H, and let us
label the datum, D. To simplify the argument, consider that the only other
possible hypothesis is that the theory is not true, H (‘not H’). Now we wish
to find the posterior odds favouring the truth of the theory:

_ p(H|D)
p(H|D)
We can find this using Bayes’ theorem. Assume that D has been observed:
H D{H
o - P p(D[H)
(pH) = p(D|H)
All we know is that if the theory is true, D is sure to be observed, that is,
p(D|H) =1
This gives
_pH) 1
p(R) ~ p(D[H)
As long as p(D|R) is not zero, then the posterior odds are some finite number,
so the posterior probability of the theory being correct is less than one. How-
ever, you can see that the likelihood ratio must be equal to or greater than 1,
since p(D|A) has to be 1 or less. Thus, the posterior odds will always be at least
as big as the prior odds. In other words, if D occurs you will usually become
more sure of H, and never less sure. Observing D lends support to the theory,

but the degree of support depends entirely on the value of p(D|H). If p(D|A) is
close to I, then observing D may lend only marginal support to the theory.

4

QII

In general, if a theory predicts that a datum is sure to be observed, and then the
datum is observed in an experiment, the only inference we can draw is that the
experiment supports the theory, but we cannot say anything about the degree of
support until alternative theories are also considered.
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Violations of this principle abound in social science research. An investi-
gator says his theory predicts so-and-so, he performs an experiment and observes
so-and-so, and concludes that the experiment supports his theory. If that is
all hq says, he is not wrong, but the words he uses may well imply that the
experiment lent a considerable degree of support for the theory, and that is
saymng too much. Strictly speaking, all one can say in this situation is that if
D is observed, one is at least no less sure of the truth of the theory than before
the experiment was performed. To claim or imply an increase in the degree
of support for the theory is simply not justified without also considering an
alternative theory.

Suppose, however, that the datum had nor been observed. Then what
inference 1s justified ? If the probability of observing the datum is 1, given the
truth of the theory, then failure of the datum to occur must have probability
zero (provided, of course, that the scientist arranges his experiment so it could
occur if the theory were false), that is

p(D|H) = 0
Writing Bayes’ theorem for the non-occurrence of D:

o_pHE) 0
p(H) ~ p(DH)

Odds of zero mean that the posterior probability of H is zero, that is,
p(Fl|]_)) =0

Thus, failure to observe D when p(D|H) = 1 results in complete disproof of
the theory! If you look carefully at Bayes’ theorem you will see that a posterior
probability of zero remains at zero no matter what the nature and number of
other hypotheses. For example, if I add a third bag to the two-bag problem
of Exercise 4-2 which consists of all red chips, and then I select one of the bags
at random and discover that the first chip drawn is blue, I have completely
rejected the possibility that I am drawing from the all red bag. And this con-
clusion is true no matter how many other bags [ might wish to consider.

But what of the alternative hypothesis, H? Since p(H|D) = 0, it follows
that

p(A[D) = |

Has the alternative theory been proved? The answer is no, for the reasons
givén at the beginning of this section. The alternative theory may be wrong,
but relative to H it is a winner. Having rejected H, Bayes’ theorem has no other
place to put all its posterior probability other than on H, and it does so irre-
spective of the truth of H. o o

The general lesson to be drawn from this discussion is that theories can
only be disproven with certainty, they can never be proven with certainty. The
history of science is littered with discarded theories, while today’s theories are
only relatively more true than those that have been put aside. The “definitive
experiment’, one which seeks for evermore to establish the truth of some
theory, is as elusive as the Holy Grail. A definitive experiment can only reject
a theory, so that a theory which is stated in such a way that no data can disprove
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it, would appear to be unscientific for it can neither be proven nor disproven.
This is a view most particularly identified with that philosophical school of
thought known as logical positivism.

From a Bayesian viewpoint, the conclusion is not altogether satisfactory.
If you believe a theory must be capable of complete disproof, then you are saying
that there must exist some datum for which p(D|H) = 0. If this is observed,
then p(H|D) = 0 and the theory is disproven. However, it is entirely possible
that there is no such datum. I can envisage, at least theoretically, a theory for
which p(D|H) > 0 for all possible data. Yet as long as the likelihood ratios for
various data are not all I, then the posterior odds will not be 1 and so will
favour one hypothesis over the other. Much of social science research proceeds
on this basis, rather than by falsification of theories. Both approaches are
justified from a Bayesian viewpoint.

4.8 Summary

Bayes’ theorem prescribes the amount of revision of opinion that should
occur in the light of new information:

p(H) x p(D|H)

H|D) =
p(H|D) D)

It is a non-controversial consequence of the third probability law, and is some-
times called the ‘theorem of inverse probability’. It can be applied sequentially,
the posterior probability from the first stage of experimental work serving as
the prior probability for the next stage.

Intuitive revision of opinion is liable to lead to violations of the proba-
bility laws, particularly Bayes’ theorem, so the procedures of this book can be
seen as guides to systematic, consistent revision of opinion.

Without taking a decision-theoretic approach, which would require that
we consider the utilities of the outcomes of our decisions and the cost of gather-
ing information, no precise answer can be given to the question of how extreme
posterior probabilities should be before reporting experimental results. Requiring
a posterior probability of at least 0-99 is a workable, conservative guideline,
that should not be taken as a rule.

Prior opinion cannot be avoided in making a statistical inference.
Bayesians feel that judgement in the form of prior opinion should be formally
incorporated in the statistical procedures, thus making all aspects of the
resulting inference ‘public’. Non-Bayesians prefer to leave judgement as a
part of the informal procedures leading up to a statistical test. Assessing prior
probabilities is a matter of experience, and is a skill that can be developed.
Disagreements about prior probabilities can be resolved by collecting data
and applying Bayes’ theorem. With enough data initial disagreement between
assessors will become negligible.

Likelihoods, values of p(D|H), are also personal probabilities, but in
most statistical applications they are determined by applying the probability
laws to judgements about event classes over which there is agreement. New
Bayesian techniques are being developed for cases where disagreement over
p(D|H) may arise.
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A convenient form of Bayes’ theorem is the odds-likelihood ratio version:

Q" =Q'L

Posterior odds = prior odds x likelihood ratio

The nearer the likelihood ratio is to 1, the less opinion is revised by the data.
The log-odds log-likelihood ratio form of Bayes’ theorem is another convenient
form, one in which data become additive.

Applying Bayes’ theorem does not allow us to discover the ‘true’ hypo-

thesis; it only tells us which hypothesis is relatively more plausible than the
rest. As large amounts of data are collected, one hypothesis is bound to be
favoured, even if it is incorrect. When likelihoods are zero or one, it is only
possible to disprove a hypothesis. There is no condition in which an hypothesis
can be ‘proven’.

4-1

4-2

4-3

Problems

Historians agree that there is about 1 chance in 4 that Jones wrote the ‘Q-
document,” and 3 chances in 4 that Smith wrote it. In a new analysis of the
10,000-word document, the word ‘that’ is found to occur 27 times. From the
known writings of Smith and Jones, experts assess a probability of 0-0084
that this frequency of ‘that’ would be observed if Jones were the author, while
the probability for Smith would be 0-0004. In light of this new evidence, what
now is the probability that Jones is the author? (A similar approach has been
used to determine the authorship of some of The Federalist papers; see Mosteller
and Wallace, 1964.)

Suppose that the crystals in one brand of breathalyzer have a 0-90 chance of
changing colour if the person being tested has high alcohol content in his blood,
0-60 chance if alcohol content is moderate, and 0-10 chance if alcohol content
is zero or low. At 11.15 p.m. on a Saturday night, a police officer sees a car
weaving in and out of traffic. He stops the car, and the driver sounds and
appears intoxicated. The officer figures the chance of high alcohol content in
the bloodstream is 0:70, of moderate content about 0-20, and of low content
about 0-10. A breathalyzer test is positive—the crystals change colour. What
should the police officer’s opinions be now ? Suppose the crystals hadn’t changed
colour; what then should the officer’s opinions be?

The California Psychological Inventory is a test that measures 18 aspects of
personality. Some of the 18 scores can be combined to yield an index of *social
maturity’ that distinguishes delinquents from non-delinquents (see Gough, 1966).
In America, about 309, of a sample of 409 delinquents scored above 44 on the
social maturity index, while approximately 949 of a sample of 2,483 non-
delinquents scored above 44. ‘Non-delinquents’ consisted of high school students,
college and university students, and employed adults; they were all men drawn
from the research files of the CPI, selected ‘to represent average or above-
average levels of social maturity.” ‘Delinquents’ consisted of institutionalized
youths and adult prison inmates. Assume that there is about 1 chance in 5 that
a boy of 14 will someday be convicted of an indictable offence. What is the
probability that a boy of 14 selected at random in America will someday be
convicted if the youth

scores above 44 on the social maturity index?
scores at or below 44?

Discuss the problems in applying Bayes’ theorem that this example raises.
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Two scientists, Jones and Smith, design an experiment to test two hypotheses,
H, and H,. Jones assigns a prior probability of 0-8 to H;, while Smith thinks
that H, is twice as likely to be true as H,. Data are collected and the likelihoods
computed. They are p(D|H;) = 0-0084 and p(D|Hz) = 0-0008. Show that the
posterior opinions of the scientists are closer together than the prior opinions.

For what range of prior probabilities would you use Decision Rule 1 rather
than Decision Rule 2 as regards the psychodiagnosis problem of Exercise 4-17?
(Hint: Find the priors that would make you indifferent between the two rules.)

A statistician using Bayes’ theorem for a particular problem involving just two
mutually exclusive hypotheses and three items of data arrives at posterior odds
of 24 to 1; he reports this but neglects to give his prior probabilities. However,
he does give his likelihood ratios. They were 8, 1/3, and 18. Consider the
hypothesis that was more likely after observing the data; what was the
statistician’s prior probability for this hypothesis?

The following problem illustrates the care that must be taken in applying Bayes’
theorem.

What is the incidence of heroin taking among cannabis takers ? Nicholas Wade
(in New Society, 23 January 1969, 117-118) points out that the figure is difficult
to obtain, but that in Britain fairly accurate figures exist on the incidence of
cannabis taking among heroin takers, so it might be possible to apply Bayes’
theorem to get the inverse probability. He states that the incidence of cannabis
taking among heroin takers was around 90 per 100 people, that about 5 people
per 100,000 of the population were heroin users, and that between 30 and 60
per 100,000 were cannabis takers. By applying Bayes’ theorem he concludes that
‘... between 7-5 and 15 percent, in other words that of those who take cannabis,
between 7 to 15 of every 100 are, or will be, takers of heroin’. Criticize and
discuss his approach and conclusions.

An archaeologist in the Yucatan peninsula of Mexico is unsure whether a piece
of pottery he has just found belongs to the Mayan period or to the pre-Mayan
period. Judging by the site of his dig he feels about 609 sure that the piece is
pre-Mayan. Then he notices a small drawing of a sort that shows up twice as
often on Mayan as on pre-Mayan pottery. On-the-spot chemical analysis of the
piece reveals that its composition is of materials which were more commonly
used in the pre-Mayan period. He judges that such materials were found about
4 times more frequently in pre-Mayan than Mayan pottery. What are his
posterior probabilities for the two hypotheses?
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So far the events and hypotheses we have been talking about are discreet
the coin comes up either heads or tails, the die shows one of six sides, the coin
is either biased or fair, the patient is either functionally ill or brain damaged.
Guesses about unknown quantities are often formulated in this ‘either-or’
fashion not so much because the world naturally falls into such convenient
categories, but rather because traditional statistics are easiest to apply when
only one hypothesis and an alternative are tested. For example, while it is often
convenient to think of a coin as either biased or fair, we might instead inquire
into the degree of bias of the coin. The degree of bias could be represented by
the long-run proportion of heads to total flips, so that a proportion of 0-5 would
stand for ‘no bias’. Other hypotheses could then be represented by 0-501,
0-502, 0-5000007, 0-62, 0-7, 0-93, or any of the proportions between 0 and 1.
One of these numbers must represent the ‘true’ bias of the coin, and since there
are an infinite number of proportions between 0 and 1, there are an infinite
number of hypotheses to be considered.

To take another example, suppose we want to know the average 1.Q., as
measured by some test, of university students in England. If we could administer
[.Q. tests to all students we could determine the average [.Q. easily, but such a
project is too costly and time-consuming to be practicable, so we must content
ourselves with a random sample of students and infer the average 1.Q. of all
students from the average 1.Q. of our sample. How this is to be done is the
subject of Chapter 11; for now consider what the hypotheses are—all possible
values of 1.Q. In theory all possible values from zero to infinity could be con-
sidered, but in practice the range is limited to, say, 50 to 200. Obviously neither
50 nor 200 is very likely to be the average I.Q. of students in English universities,
or anywhere else, for that matter, but those values adequately, if over-cautiously
delimit the range of possible values. If I.Q. measurements could be made with
infinitesimal precision, then every number between 50 and 200 could represent
the ‘true’ average 1.Q. And if each number contains an infinite number of
decimal places, then there are an infinite number of possible ‘true’ 1.Q.’s:
93-3568 or 129-4683215 or 167-426733 etc. Even though in practice 1.Q. is
determined to at most three significant figures, we can still consider that there
are an infinite number of possibilities between 50 and 200. The mathematics

are easier that way.



92 Functions and their graphs

That statement may come as a surprise if you were contemplating exten.d-
ing the methods developed in the previous chapter to the case of an infinite
number of hypotheses. To an infinite number of hypotheses you would have to
assign as many prior probabilities. And that would be only the first step.
Fortunately, those mathematics known as ‘the integral calculus’ can be applied
to reduce this Herculean task to manageable proportions. I promised, however,
that this book would not introduce mathematics as advanced as the calculus,
so from now on I will present only the results of applying the calculus to prob-
lems involving a theoretically infinite number of hypotheses. You will have to
understand only what goes into the problem and the results, not how the results
were obtained. For example, in the case of the unknown average 1.Q., you will
have to know how to characterize the prior probabilities, how to summarize
the data, and how the posterior probabilities are determined from applying
Bayes’ theorem, but you will not actually have to compute it yourself. You will
have to do some calculations but they are nothing more than adding, sub-
tracting, multiplying, and dividing.

When many guesses about a quantity are possible and can be as close
together as one wants, then the quantity is called continuous. From now on this
book will consider only continuous hypotheses, for they are by far the most
commonly found in social science research. You will often find discrete hypo-
theses in the literature, but if you look closely you will frequently find that a
continuous case has been made artificially discrete. For example, I could have
asked the question, ‘Is the average [.Q. of university students in English uni-
versities above 120 or below 120?" The continuous character of the hypotheses
has been made discrete ; now only two hypotheses are to be considered, above 120
and below 120. However, the continuous character of the problem is usually pre-
served right up to the last step and then the discrete hypotheses are derived from
the continuous ones to make the results more understandable or more useful.

But before we go on to introduce Bayesian ideas for continuous hypo-
theses, the mathematical notion of a function must first be introduced. Once
you understand what a function is and know how to graph one, then we can
go on, in the next chapter, to describing prior probabilities for continuous
hypotheses. If you find that you already know the material in this chapter,
skim or skip it, and go on to Chapter 6.

The purposes of this chapter are to enable you to understand

what a function is;
how functions can be expressed;
how functions can be used.

In addition, you should be able to

graph a function from its mathematical expression;
recognize and interpret linear functions;
use functions to transform one variable into another.

5.1 Functions

Loosely speaking, a function is a pairing of one thing with another.
Consider three names, Atlantic, Mediterranean, and Hudson, and also three
descriptions of watery areas, sea, bay and ocean. You have learned the function,
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that is, the pairing: Atlantic Ocean, Mediterranean Sea, and Hudson Bay.
Other combinations are possible, of course, but common usage does not
allow us to talk of, say, the Atlantic Bay or the Mediterranean Ocean. This
section is a brief introduction to functions.

Variables and constants

A variable is a symbol for a quantity that can take on any of a range of
values in a problem. Letters at the end of the alphabet are usually used for
variables, like x or y. The variable can stand for anything we like, such as the
average 1.Q. of students at British universities, or the number of heads in ten
flips of a fair coin, or the proportion of students in a class who are blond. If,
for a given problem, we know the value of some quantity, we treat it as a con-
stant. A constant is a quantity that takes on only one value in a problem. Any of
the quantities that were given as examples of variables could be treated as
constants if they keep the same value throughout a problem. You have to
decide which quantities are to be treated as variables and which as constants
by understanding the logic of the problem at hand. There are simply no rules
that will help you to decide, except that a few ‘universal’ constants stay the
same from problem to problem. Examples are the speed of light, the charge
on an electron, the atomic weight of hydrogen, and other physical constants,
n = 314159 ..., or e = 2:7182. ... Letters at the beginning of the alphabet
are reserved for constants. The distinction between variables and constants is
purely arbitrary, except for the well established constants such as those just
mentioned. You will only learn through experience when quantities are to be
treated as variables and when as constants.

Relations, rules, and laws

When two variables are seen to go together in some way, we say a relation
exists between them. Brain damage ‘goes with’ impairment of certain physical
functioning, economic growth is partly influenced by the availability of money,
delinquency is related to socio-economic status. One of the main concerns of
scientists is to find relations between variables. Social scientists in particular
spend much of their time just trying to find out which variables are related to
which other variables. A new science has to spend a great deal of time discovering
which variables are important. The older sciences are more secure in their
knowledge of which variables are important and spend a greater proportion
of their time formulating the rules that govern the relationships. A rule specifies
how variables are related. Here is a rule: An open body of water is an ocean, a
body of water closed by land with perhaps a small opening to an ocean is called
a sea, and a partially closed body of water opening on to an ocean is a bay.
That rule allows one to connect Atlantic with ocean, Mediterranean with sea
and Hudson with bay. The advantage of knowing the rule is that new cases
other than the ones investigated can be accommodated. Once the rule relating
delinquency and socio-economic status is known, then by measuring the socio-
economic status of a community never before studied, the rate of delinquency in
that community can be predicted. When the rule can be specified mathematically,
the relation is called a /aw. The relationship between force, mass and accelera-

tion is given by the law
F =ma
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Force equals mass times acceleration. Given any two of the quantities, this law
allows us to determine the third. As another example, the probability laws
discussed in Chapter 3 specify the relationships between the probabilities of
individual events and the probabilities of combinations of those events.

Independent and dependent variables

In his search for relations between variables, the scientist often performs
experiments in which he systematically changes the value of one variable, the
variable that he is controlling, and measures the values of the other variable.
The physicist may systematically vary force and mass in an experiment and see
what accelerations result. The variables under the control of the experimenter
are called independent variables; here ‘independent’ suggests that the value of
the variable can be anything within the range of possibilities, the choice is
up to the experimenter. The other variable, whose value depends on the value
of the independent variable and the law relating the two, is called the dependent
variable. Labelling variables as independent or dependent is simply a conven-
tion that is popular among scientists; which variable gets which label is usually
dictated by the logic of the experiment.

Functions and their rules

A function is a pairing of exactly one variable with another. More speci-
fically, it is a pairing of just one dependent variable with one independent
variable. We can express this abstractly by saying that y is a function of x, or,

y = f(x)

Notice that the right side of that equation is not read ‘f times x’ but rather
‘function of x’, so the whole equation is read "y equals a function of x’. That is
the literal translation. The colloquial expression is ‘y is a function of x’. It is
important to note that when the value of x is given, the function allows only
one value of y to follow. If we consider the name of the body of water to be
the independent variable, then the dependent variable can take on only one
value; with ‘Atlantic’, the only permissible element of the pair is ‘ocean’. To
take another example, if we keep the force constant in an experiment, then
acceleration is a function of mass, and for each value of mass there will be one
and only one resulting value of acceleration. In some books what I have defined
as a function is called a ‘single-valued function’. Relations where more than
one value of the dependent variable may be associated with one value of the
independent variable are called ‘multiple-valued functions’. An example of the
latter can be seen by taking the type of body of water as the independent
variable. Then with ‘ocean’, for example, we can associate ‘Atlantic’, ‘Pacific’,
‘Indian’, and others. The name of the body of water is a multiple-valued func-
tion of the type of body of water, while the type is a single-valued function of
name. In this book we will deal only with single-valued functions, so I will call
them just ‘functions’.

Nothing has so far been said about causality. The reason for this is that
relations and functions do not imply anything, necessarily, about causation.
A scientist may be able to specify the function relating two variables, but the
function itself says nothing about whether or not one variable was caused by the
other. A function is nothing more than a listing of pairs. It is a list of what goes
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with what. Even if two things go together perfectly, we cannot necessarily say
that one caused the other. My bedside clock always agrees with my wristwatch,
but one surely does not cause the other. The statistician can only say that
cigarette smoking and cancer are related, he cannot say that one causes the
other. The chain of causation can only be established by careful study of the
etiology of lung cancer. Remember that statistics is concerned with discovering
relations between things, not with the question of causation. An independent
variable becomes thought more to be a cause as intervening and surrounding
lawful knowledge is obtained.

Sometimes we can save ourselves the trouble of having to list all the pairs
in specifying a function for we can rely on a rule that tells us how the pairs can
be generated. Such a rule is called a function rule. An example is

y=23x2-8

If we select a value of x, the value of y can be computed. The rule allows the
pairs to be computed rather than listed. Function rules play a very important
role in this book for they allow us to get around the problem mentioned earlier
of having to make infinitely long lists pairing hypotheses with their prior prob-
abilities. The problem can be solved by specifying a rule that will allow any
hypothesis to be paired with a probability. In this way the prior probabilities of
hypotheses can be specified with a function rule rather than with an enormously
long list. Before we talk of probability functions it is important to understand
a few simpler functions. Linear functions will be introduced first.

5.2 Linear functions
A linear function is specified by the function rule
y=a+bx

How do we arrive at the x—y pairs by using this rule ? First, a value for x must
be specified—any value will do, but if you are particularly interested in some
limited range of values you might start with the lowest value. Next, the rule
tells you to multiply that value of x by the constant b. Finally, to that product
add the value of a, another constant. You can see that x is the independent
variable, a and b are constants, and y is the dependent variable. To obtain a
value of y you must multiply x by b and then add a.

Exercise 5-1
Which of the following function rules are linear?

a y=3+2x e y = x/6
b y = 5x f y =4 + 2x2
nx
c y=2/T+8x g ry=45-3
d y=—43— 62 h z = xTH where x4 and o are constants
g
Answers

a y =3 4 2x. If we let 3 = a and 2 = b, we can rewrite this equation by sub-
stituting the letters for the numbers. The result is y = a + bx, the equation for
a linear function.
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b y = 5x. This may be clearer if we add a zero to the right side of the equation,
making ity = 0 4 Sx. Then, let0 = a, 5 = b, substitute, and we get y = a + bx,
a linear function. Sometimes a may equal zero.

c y = 2/7 + (7/8)x. There is no reason why a and b cannot be fractions, so let
2/7 = a and 7/8 = b, and we can see that the equation is linear.

d = —4-3 — 6-2x. a and b can be negative. Let a = —4-3 and b = —6-2.
The equation is linear.

e y = x/6. When this is rewritten as y = 0 -~ (1/6)x you can see that the equation

is that of a linear function.

f y = 4 + 2x2. This rule says, ‘take x, square it, multiply by 2 and add 4’. In
the rule for linear functions there is nothing about squaring x, so that equation
is not that of a linear function.

g y = 7;—( — 3. Let us rewrite this slightly: y = —3 + gx.
We can let —3 = a, and, since #/2 is a constant, let z/2 = b. Then y = a + bx,

a linear function.

h z = (x — p)/o. (Do not let the switch from y to z as the dependent variable
mislead you, for z = a + bx is just as much a linear function as when y is used.)
Let us rearrange the right side of this equation a little so that we can see more
clearly whether or not this is a linear function.

Since x4 and ¢ are both constants, u#/ec must be a constant. Let — u/c = a. Both
1 and o are constants, so 1/c must be a constant. Let 1/¢ = b. Substitute, and
we get

z=a+ bx

So this equation is a linear function. You will see this particular linear function
again in Chapter 9.

Graphing functions

We have mentioned two ways of specifying functions, listing the pairs or
writing the function rule. There is a third way that is frequently convenient,
drawing a graph. To do this you must first construct two axes at right angles
to one another. The horizontal axis is called the ‘x-axis’ and is marked off in
values of x that lie within the range of interest. The vertical axis is the ‘y-axis’
and is marked off with values of 1. Next you pick some value of x that lies
within the range of interest and use the function rule to compute the corre-
sponding value of y. Now imagine that you have drawn a vertical line that
intersects the x-axis at the value of x you just chose, and that you have drawn
a horizontal line intersecting the y-axis at the value of y you just computed.
Place a dot at the point where the two lines intersect one another. That dot
represents the x—y pair whose values you just determined. Continue with this
procedure for a few more pairs of values and then connect the dots.
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Exercise 5-2
Graph the function
y=1+4 2x
to cover the range of values of x from 0 to 5.
The first step is to construct the axes of the graph. You know that the x-axis

must be marked off in units from 0 to 5. To find out the range of values to be
marked off on the y-axis, solve the equation first for x = 0 and then for x = 5.

10
8
6
«v _.
4
2
—4
0 e
0 1 2 3 4 5
) x
Fig. 5-1
Graph of the function y = 1 + 2»

Doing this yields values of y of 1 and 11, respectively, so mark off the y-axis
from 1 to 11. This has been done in Fig. 5-1. Now solve the equation for a few
more values of x. You might make a table like this one:

X y
0 1
1 3
2 5
3 7
4 9
5 11

Plot these points and connect them. The result is shown in Fig. 5-1.

Now you can see why y = a+bx is called a linear function. The graph of
any linear function is a straight line. Knowing this makes the job of plotting a
linear function relatively easy; you only need to find two points, plot them, and
then you can simply connect them with a straight line. The two points you
determined when finding the range of the y variable will do very well.

Social scientists occasionally find that two variables they are studying are
linearly related. The following exercise illustrates this.

Exercise 5-3

Fitts and Peterson (1964) studied the relationship between the difficulty of a
task and the time it takes to complete it. Their subjects had to hold a stylus on
a small metal plate placed directly in front of them on a table. When a light
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came on, the subject was to move the stylus off the home plate and touch a
target plate, located some distance from the home plate. The size of the target
could be changed. Thus, the task could be made more difficult by either moving
the target farther away from the home plate, or by making the target smaller.
The independent variable in the experiment was the index of difficulty (ID)
obtained, by means of a special equation, from the distance between target and
home plate and from the size of the target. There were two dependent variables,
reaction time (RT) and movement time (MT). Reaction time is the time that
elapses between the light coming on and the subject lifting the stylus off the
home plate, while movement time is the time that elapses while the stylus is
actually moving from the home plate to the target. The experimenters found
that the relationship between the index of difficulty and RT or MT was given
by these equations:

RT = 0-261 + 0-0054 1D
MT = —0-07 + 0-074 ID

In these equations, time is given in seconds, and the index of difficulty varies
from 2 to 8. What do the graphs of these functions look like?

0-6
MT
0-5
% 0-4
c
Q
2
= 03~ RT
7]
E
=

1
0+ }
0 2 3 4 5 ) 7 8
Flg 5_2 Index of difficulty

Reaction time and movement time in tasks of varying difficulty
(After Fitts and Peterson, 1964.)

The first step is to find the ranges of the variables. We already know that the
x-axis must run from 2 to 8. Let us use the RT and MT equations to find the
ranges for the y variables. Here are the results:

ID RT MT

2 0-2718 0-078
8 0-3042  0-522

If both plots are made on the same graph, then the y-axis must run from 0-078
to 0-522. First plot the two points for reaction time, then the two for movement
time, and then connect the two sets of points with straight lines. The result is
shown in Fig. 5-2.
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Constants a and b

What meaning, if any, can be given to the constants a and b? First let us
look at a. One way to see if a has any easily discerned meaning is to draw
several graphs which differ from one another only in the value given to a. For
all these graphs, let us assign to b a value of 1. We will plot these functions:

y=0+x
y=1+4+x
y=2+x
y=3+x
8 y =34+«
7 y=2+x
6—4 yZI-LY
5 y=0+«x
.}_
Yy
3
2
1_.
0 T T T T T
0 1 2 4 5
. X
Fig. b-3

Four linear plots in which only the constant a is different

Figure 5-3 shows these four functions. Notice that the plots are parallel, the
only difference between them being the place where they intersect the y-axis.
If you look carefully you will see that the value of y at the point of intersection
equals the value of y where the graph intersects the y-axis, or, more briefly, a is
called the ‘y-intercept’. Rather than plot a graph to find the value of the y-inter-
sept it is easier to solve the equation for the case where x = 0. If youlet x = 0
in the equation y = a+bx, then

y = a+b(0)
y=a
The resulting value of y will equal the value of the constant, a. Often you can

determine the value of a simply by inspecting the equation.
To find out what meaning we can attach to the constant b, let us plot the
following equations in which a has been kept constant at a value of I.

y=1+(1/2)x
y=1+x
y=1+2x

y=1+3x
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Figure 5-4 shows these functions. Since a is the same in all the equations, all
the graphs pass through the y-axis at the same place. The difference in the four
plots is in the amount of tilt of the line. The higher the value of b, the greater
the tilt. The constant b, then, reflects the amount of tilt of the plot, so b is
usually referred to as the ‘slope constant’, or more briefly, as the ‘slope’ of the
line.

U e AN ENS S e p— o
0 1 2 3 4 5 6 7

Fig. 5-4 *

Four linear plots in which only the slope, b, is different

We can see, then, that ¢ and b have meaning: a is the y-intercept, and b
is the slope of the line. The point of showing that a and b have meaning is that
in the next chapter, when we meet some rather complicated function rules that
allow us to plot probability functions, we shall see that these function rules
contain one independent variable, two problem constants and several universal
constants. We will be able to understand the rules better if we can attach
meaning to the problem constants, and doing this will enable us to use these
functions very effectively.

Negative numbers

Before we leave linear functions, it is worth asking what the plots look
like when any of a, b, or x are negative. To begin with, let us plot the function.
This can be seen in Fig. 5-5. Extending the axes creates four sections of the
graph, usually referred to as quadrants I, II, III, and IV. All the previous
figures in this chapter have been quadrant I plots. As you would expect, the
plot of y = x has a y-intercept of 0 and a slope of 1. The line extends down into
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the third quadrant. You can verify that this is correct: when x equals — I, then
v equals —1; when x equals —2, y equals —2, and so forth.

You can probably guess what the plots will look like for negative values
of the constants. If a is negative, then the y-intercept will be negative. You can
see this in Fig. 5-6 for the line whose equation is

y=-—3+x

When the slope is negative, the line tilts around so that increasing values of x
go with decreasing values of y; we say that the relation between x and y is
‘inverse’, or y is inversely related to x. An inverse relation is shown in Fig. 5-6
by the line whose equation is

y=2-1}x

Finally, a plot in which both a and b are negative can be seen in Fig. 5-6 as
represented by the line whose equation is

y=-2-1x
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Plot of the linear function y = x Three linear functions, two with negative slopes and

two with negative intercepts

Obviously not all functions encountered by a social scientist will be linear.
To give you an idea of functional relationships that are not linear, let me
introduce you to two functions that you may have encountered already in your
studies, power functions and exponential functions.

5.3 Nonlinear functions

Power functions
A power function is given by the rule
y = ax’

In words, the rule states that x is raised to some power b and then this result
is multiplied by a. An example of the application of the power law is provided
by the work of the psychologist S. S. Stevens (1957; 1962; 1966). Stevens
believes that the relationship between the magnitude of stimulus intensity and
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the magnitude of sensation is best described by a power function. He has tested
this idea in dozens of experiments and found it to be generally true for many
different kinds of stimuli and for different sense modalities. Three possible plots
of the power law are shown in Fig. 5-7. Note that when the exponent is 1, a
linear function is the result.
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Fig. 5-7

Three plots of the power law for different values of the exponent

Exponential functions

The function rule for an exponential relationship between y and x is
given by

y = ae®*
where a and b are problem constants and e is the universal constant mentioned
earlier. An example of an exponential relation can be found in micro-economic
theory and in psychological decision theory. As early as 1738 Daniel Bernoulli

suggested that the relationship between money and a person’s subjective value
of that money is not linear but exponential. The basic idea is that the subjective
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Utility function for money
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worth, or utility, of say, one dollar, is less for a millionaire than for a pauper.
Thg: more money you have the less you will value one more unit of that money.
This kind of relationship is shown in Fig. 5-8 where the function

U=1-¢"

is plotted. The constant b is negative for this plot, U stands for utility and V
for objective value.

This curve differs from the power function whose exponent is less than 1
in that this exponential curve levels off and reaches an upper limit only when
V reaches infinity. Once you have amassed enough wealth, adding one more
unit of money to your hoard increases your utility for the total not a whit, or
to be more precise, the increase in utility is infinitesimally small. A good dis-
cussion of utility theory is given by Raiffa (1968).

5.4 Transformations

So far we have shown that functions can be used to indicate the relation-
ship between two variables. A number of examples have been given of experi-
mental results expressed in terms of a function, or a function rule. We have
seen that scientific laws are expressed in functional form. But in addition to
these uses of functions, there is another use that will be important to us in
succeeding chapters. Frequent use will be made of functions that enable us to
transform one variable into another. Sometimes a variable of interest to us can
be manipulated more easily mathematically if it is first transformed into a new
variable. You do this when you use logarithms. Rather than multiply several
numbers together, it is easier to find the logarithms of the numbers and then
add the logarithms. As the last step you change the result back into the original
units by taking an antilogarithm. By taking the logarithm of a number you
are using a function rule to transform the original number into a new one. You
made the transformations to simplify your task of arithmetic.

An example of a linear transformation can be seen by considering the
centigrade and Fahrenheit scales of temperature. Letting F stand for degrees
of temperature expressed in Fahrenheit, and C for centigrade degrees, this
equation will enable you to convert a centigrade reading to Fahrenheit:

F=2C+32

(Here F and C are used as variables, even though they come from the beginning
of the alphabet, because of their mnemonic value.) The rule states that the
centigrade temperature is to be multiplied by 9/5 and 32 added to the result.
You can see that this equation has the form of a linear function, and, indeed,
if you plotted it the result would be a straight line.

5.5 Summary

Much of science is concerned with finding the relationship between vari-
ables. When a relationship is known it can often be expressed in functional
form, as pairs of variables—one value of the dependent variable with one value
of the independent variable, as a graph, or as a function rule. One function
rule that is useful in statistics is that of a linear function,

y=a+bx
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where y is the dependent variable, x is the independent variable, gnd a and b
are constants. a is the y-intercept and b represents the slope of the line. Another
function is the power law

y = ax’

where x and y are the independent and dependent variables, rgspectively, and
a and b are constants. A third function is the exponential relation

y =ae™

in which x and y are as before, a and b are constants, and e is the universal
constant 2-:7182 . ... In addition to expressing scientifically established laws,
functions can be used to transform one variable into another. Sometimes it will
be easiest to transform one variable to another, do all the necessary computa-
tions with the transformed variable, and then at the last step, transform the
results back into the original variable.

Problems
5-1 Which of the following are linear functions?
a y = 40 where ¢ is a variable
b = 1 — e** where e is a constant
c zZ = AB — 6-3e where e is a constant
T
3
d y=3+-
X
2n — e
e y =
x

f y=42+ 3x + x*

5-2 Draw a graph that will enable you to convert any Fahrenheit temperature from
— 50 to + 250 into a centigrade reading.

5-3 Draw a graph that will enable you to find the logarithm (to the base 10) of any
number from 1 to 100. Use the graph to show that multiplying the following
whole numbers is equivalent to adding their logarithms:

10 by 10
5byS5
1 by 50

6T

5-4 In a number of studies the attraction a person feels toward another has been
found to be linearly related to the similarity of attitudes held by the two people.
Clore and Baldridge (1968) have published their experimental results on this
question in the form of a function rule:

y = 6-55x + 4-46
In the equation x represents the proportion of the subject’s attitudes that are
similar to a stranger’s, and y is a measure of the attraction between the people.
a Plot this function.

b In the experiment the subject was first shown the stranger’s attitudes about 12
topics and was then asked to rate his liking for the stranger on one 7-point scale,
and his desire for the stranger as a partner in an experiment on another 7-point
scale. The sum of the two scale ratings was taken as an index of the attraction
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felt by the subject toward the stranger, and it is this attraction that appears as
the y-variable in the equation above. Since the lowest mark one can make on a
7-point scale scores a ‘1°, the minimum attraction score is 2. The maximum is,
of course, 14. How would you interpret the y-intercept of this function?

What would the function have to look like if attraction and proportion of similar
attitudes were inversely related? Not related ?

Draw a graph for each of the following rules of thumb.

To determine the outdoor temperature in Fahrenheit, count the number of
chirps made by the snowy tree cricket in 15 seconds and add 40 to the number.
To find the speed in m.p.h. of a British Rail train, count the number of ‘clickety-
clacks’ made by the wheels in 30 seconds, multiply this number by 15 and divide
by 11.

To estimate the distance between you and a flash of lightning, count the number
of seconds that elapse between the flash and the resulting thunderclap, and
divide this number by 5 to obtain the distance in miles.



b - Distributions
of opinion

Now let us return to the problem of assigning probabilities for continuous
hypotheses. At the beginning of the last chapter I said that from now on we
would be dealing only with continuous hypotheses. Recall that a continuous
hypothesis is a very large or infinitely large collection of hypotheses where one
hypothesis blurs imperceptibly into the next. Examples are:

average 1.Q. of students attending British universities;
proportion of people who will buy a certain product;

difference in amount learned between a group of students given pro-
grammed instruction and a group given regular lectures;

proportion of American schools that have swimming pools.

Each of these examples of a continuous hypothesis illustrates uncertainty
about some quantity: average 1.Q., proportion of people . . ., etc. Let usdrop
the term ‘continuous hypothesis’ in favour of the more descriptive ‘uncertain
quantity’. Remember that the uncertainty exists in the head of the investigator;
there is, at any point in time, one and only one average 1.Q. of students attending
British universities. We do not know that value, so to us it is an uncertain
quantity.

This chapter is concerned with the theory and methods of describing
opinion about uncertain quantities, with particular emphasis on prior opinion.
The basic idea is that opinion about an uncertain quantity can be described by
a probability function. We discuss a number of function rules that are frequently
used by the Bayesian statistician to describe his opinion. Much of what is said
here applies both to prior and to posterior opinions. As I have said before, the
only difference between prior and posterior probabilities is the amount of data
on which they are based, so you would expect that much of the theory concerning
prior opinion would apply equally well to posterior opinion.

Perhaps a reminder of the linkages between this chapter and the previous
ones will help to put this chapter in perspective. In Chapter 2 we learned how
prior opinion can be expressed in the language of probabilities, and in Chap-
ter 3 we learned the grammar of that language. Chapter 4 was concerned
entirely with revising prior opinion in the light of new information, through
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the oper'ation of Bayes’ theorem. Through Chapter 4 we were always talking
about discrete events or hypotheses, but now we need to extend the approach
to cover the revision of opinion concerning an uncertain quantity. When we
talk about an uncertain quantity, we usually wish to spread out our opinion
over the range of possible values of the quantity, so we express our uncertainty
as a probability distribution. To understand distributions of opinion we first
needed to know about functions and their graphs—hence Chapter 5. Now, in
this chapter, we get down to the technical details of expressing our opinion
about an uncertain quantity in the form of a probability distribution. Although
the revision of a distribution in the light of new information is the subject of
Part III, a brief preview is given here.

In this chapter you should understand

how prior opinion about an uncertain quantity is expressed as a prob-
ability function;

how to express your prior opinion in terms of one of a few standard
probability functions;

how probability statements are made on the basis of functions;
when to use a uniform approximation to your prior opinion.

You should also be able to
graph your prior opinions about an uncertain quantity;
describe your prior opinion as a standard probability function;
calculate probabilities based on the probability function.

You will find that this is a fairly demanding chapter, mainly because it
contains so much technical detail. It is worth mastering this material now,
however, because it will all be needed in Part III.

6.1 Probability distributions

A function showing the relation of probabilities to an uncertain quantity
is called a probability distribution. There are two major types of probability
distributions, but we will save discussion of them until the next section. For
now we will call the distributions of prior opinion discussed in this section
simply prior distributions. An example of a prior distribution is shown in Fig. 6-1.
That is my prior distribution about the average age of all university students
presently attending English universities. The x-axis shows possible values of the
uncertain quantity ‘average age’. I consider it so unlikely that the average age
is less than 15, or more than 25, that I have not shown values of x outside the
interval 15 to 25. Interpretation of the y-axis is a little difficult. Strictly speaking,
the y-axis is not probability. You can see why by considering what the prob-
ability would be for any specific value of x. What is the probability, for
example, that the true average age is exactly 21:364921? Virtually zero. The
trouble has come by considering x as a continuous variable, for since there are
an infinite number of possible values between 15 and 25, the probability of any
one of them must be zero. One way to get around this problem is to admit that
age would probably be measured at most to the nearest day, so that the x-axis
need not be continuous; it could be divided up very finely with 365 days
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between each year. Then the probability of, say, 21 years and 43 days would
have some small, but finite probability.

But this approach is clumsy. The mathematics are far easier if we can
treat x as a continuous variable. We know that when we do this the probability
of any specific value of x is zero. Meaning can still be given to the graph by
interpreting y as not a probability but rather a probability density. The exact
meaning of ‘probability density’ cannot be given without recourse to the
calculus, but a rough interpretation would be that the values along the y-axis
represent the probability in the vicinity of x. You can see that my prior distri-
bution peaks at 20. This means that I am most certain that the true average
age lies in the vicinity of 20. I associate lowest degrees of belief in the vicinities

/\

[\

/ N\
_ N

T I T I I T 1 I 1 T I
15 16 17 18 19 20 21 22 23 24 25
- R average age n years

Fig. 6-1

Prior probability distribution of the average age of students attending English universities

y, probability density of x

of 15 and 25, and so my distribution is lowest at these locations. This graph,
then, shows the degrees of belief I would attach to all the hypotheses that lie
between 15 and 25. It is a distribution of my prior opinion about the average
age of students attending English universities. We will consider next the steps
in its construction.

Constructing a prior distribution

In following these steps you should not be too fussy about the details:
the purpose of drawing the prior distribution is to see what its general shape is.
A rough sketch will do.

a Determine the range of the x-variable. Include only values of x with
noticeable probabilities. In the example of average age, the range 15-25
covers nearly all of the distribution.

b Draw the x and y axes. Mark off the x-axis in units covering the range of
x-values. Make the y-axis about three-fifths the length of the x-axis. This
proportion is chosen for purely aesthetic reasons; your graph will be
neither too tall and peaked nor too squashed and flat. Do not mark any
units on the Y-axis, though you may find it helpful to draw a light
horizontal line from the top of the Y-axis, another at the halfway point
on the Y-axis, and two more at the one quarter and three quarters
points. I have done this in Fig. 6-1.
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c Find the value of x which you think is most likely to be the correct one;
place a large dot directly above this value on the horizontal line at the top
of the graph. In Fig. 6-1 this is the dot at the peak of the graph, above
the 20.

d Pick other values of x and place dots above them at heights that represent
the probabilities relative to the most likely value of x. For example, I
thought that an average age of 19 is about three quarters as likely as 20,
so I put a dot above 19 on the horizontal line that is three quarters as
high as the top one. I thought 18 is about one quarter as likely as 20,
so the dot was placed on the one quarter line. Remember that the hori-
zontal lines do not represent absolute values of probability, they stand
for probabilities relative to the most probable.

e Connect the dots with a continuous line.

I suggest now that you draw your own prior distribution for this example.
Your distribution will probably be different from mine. If you are presently
attending an English university, or have some knowledge of students at English
universities, your distribution may be more peaked than mine, for my experience
with English universities is limited to just four years at the time of this writing.
If you are not British your distribution may be flatter than mine, for you
probably have little knowledge of the ages of students at English universities.
In general, if you are uncertain about x your distribution should be flatter
than that of someone who is more sure than you.

Exercises 6-1 and 6-2

1 Graph your prior distribution of the average number of hours of sleep per day
obtained by students in your university during the term.

2 Graph your distribution of the average height of women in your country.
Answers

There is no correct answer that can be given. Your opinion is your opinion.
Note, however, in Exercise 6-2 that the uncertain quantity in question is the
average height of women. You are not being asked to produce a distribution
of heights, you are asked to give a distribution of your opinion about the average

height.

Revising prior opinion in the light of data

Having graphed your prior distribution, you would next collect some data.
In this example, you would collect a random sample of students attending
English universities and find out how old the students are. These data would
then be used in the revision of your prior distribution through the application
of Bayes’ theorem. The result would be a posterior distribution whose peak
would probably be shifted relative to the peak of the prior distribution, and
the posterior distribution would probably be even more peaked, less broad,
than the prior. .

An example may help to make the process clearer. The example is an
overview of the results of applying a Bayesian analysis to making an inference
about an uncertain quantity. For the moment, do not worry about why the
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analysis is carried out this way, or about how it is done. My purpose is to show
the process without the technical details so as to give you a general picture
of the subsequent development of this chapter. The example will also serve
as an illustration of a small-scale experiment, one that can be (and was) carried
out in the classroom.

I asked the students in my statistics class to consider the proportion of
students in the class whose fathers are in ‘white-collar’ occupations. At the time
I asked the questions, that proportion was an uncertain quantity, for none of
us knew the actual value. To set up a situation analogous to a scientific experi-
ment, I asked each student to write on a 3-in x 5-in card I had passed out,
either ‘white’ or ‘blue’ according to a set of criteria I had announced about
type of occupation, and the cards were collected.

The pack of cards was considered as a ‘population’ about which I wished
to make an inference. Note the special use of the word ‘population’. A popula-
tion is a collection of elements (often people, in the social sciences) about which
I wish to make some inference. The populations for the four examples mentioned
in the first paragraph of this chapter are:

all students attending British universities;

all people who might hear of the product;

all students;

all American schools (here the elements are schools, not people).

One way to make an inference about a population is to observe the whole
population; I could then simply note the proportion of ‘white’ cards. But
scientists are rarely in a position to sample everyone in their population simply
because the populations are too big. So, instead, they take a sample of the
population and use that data to make an inference about the population.

But before drawing a sample I assessed my prior distribution about the
uncertain quantity. It is shown in Fig. 6-2 as the ‘prior’ curve. The curve is
fairly flat, indicating my considerable uncertainty about the actual value of the
unknown (to me) proportion. The highest density is in the region of 0-6, but it
falls off only gradually to either side.

At this point I was ready to collect some data. After mixing the cards, I
drew one out, noted the word on the card, returned it to the pack, mixed the
cards, drew another and repeated this process until I had drawn out 20 cards,
17 of which had ‘white’ on them.

The next step was to apply Bayes’ theorem. My prior distribution was
revised in the light of 17 ‘whites’ out of 20 to give the posterior shown in
Fig. 6-2. For now, do not worry about how this was done, just note the result.
My new opinion peaks in the vicinity of 0-8, and it is much less flat than the
prior. It is more squeezed in, indicating that the range over which my uncer-
tainty extended was now less.

One way to communicate this ‘narrowing-in’ process is to determine
values of x,,, and x,;, such that most of your opinion falls between those
limits. For example, 959, of my prior opinion falls between 0-239 and 0-895,
while 959 of my posterior opinion is found between 0-623 and 0-921. This is
shown graphically in the lower portion of Fig. 6-2. Research papers more
commonly state the posterior range of opinion rather than showing the posterior
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distribution itself because it is easier and more economical of journal space.
Later we will consider how this range is determined once the distribution is
known.

At this stage in the experiment an inference can be made: ‘I am 959 sure
that the true value of the proportion falls between 0-623 and 0-921. That is all
there is to it. The statement is the usual end result of a Bayesian analysis for
uncertain quantities. It is the continuous-hypothesis counterpart of attaching
posterior probabilities to discrete hypotheses.

If you will keep this example in mind, it will help to prevent you from
losing the forest for the trees as you travel through the rest of this book.

posterior

Probability density
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x, the proportion of ‘white-collar’ fathers
0-239 0-895
959, of opinion { prior: — {

falls within

. 0-623 0-921
this range F {

posterior:

Fig. 6-2

Prior and posterior distributions of opinion concerning the proportion of students whose
fathers are in ‘white-collar’ occupations

Some common distributions

Applying Bayes’ theorem to every idiosyncratic prior distribution can be
a considerable mathematical chore, so a simpler method is needed. Later we
will find that applying Bayes’ theorem is comparatively easy if we restrict our
prior to a distribution that can be specified by a function rule. Our job will be
even easier if we use only certain functions. The distribution shown in Fig. 6-1
is not described by a simple function rule, but the ones in Fig. 6-2 are. Prior
opinion in the form of a probability distribution can usually be closely approxi-
mated by one of just a few common distributions that are easy to use in
Bayes’ theorem. . -

How do we justify using an approximation to our prior distribution?
An approximate prior distribution can be used if the posterior distribution that
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results looks virtually identical to the posterior that would have begn o.btained hgd
the actual prior distribution been used. There is no point getting involved in
complex mathematics with your actual prior distribution, when using an approxi-
mation to your prior would simplify the mathematics and still result in vnrtuglly
the same posterior distribution. This simple idea is what makes Bayesian
statistics practical.

Three different kinds of prior distributions will suffice for a great many of
the problems you will encounter as social scientists. Each of these distrnbytlons
can be expressed by a function rule, and a remarkably varied collection gf
distributions, called a family, can be obtained by changing the constants in
these rules, just as different straight lines result from changing the y-intercept
and the slope. By appropriate choice of the function rule and its constants you
should find one member of the family that is very close to your prior opinion.

|

Uniform; rectangular

SN

AN

Fig. 6-3 Beta

Some of the shapes taken on by three common prior distributions

Further, the distributions that result from using these rules can be easily
used in Bayesian calculations. In many instances, you will find that the posterior
distribution has the same function rule as the prior, that is, they are both in the
same family, and that only the constants have changed. You will not have to
calculate Bayes’ theorem, you will only have to know how the constants of the
prior distribution are changed by the data to give the constants of the posterior
distribution. Nothing more than a simple mathematical equation must be
known to effect the change. But more of this later. For the time being, it is
sufficient to recognize that it will be very convenient to restrict your priors to
one of the following kinds of distributions. Others are possible but beyond
the scope of this book.

a Rectangular or uniform distribution If you think all values of x are
equally likely, then your prior distribution is said to be uniform, or
rectangular. The distribution is uniform over all the possible values of x.
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b Normal distribution A normal distribution is bell-shaped (though not all
bell-shaped distributions are normal). It extends from minus infinity to
plus infinity, though by appropriate choice of the constants of the dis-
tribution, most of the distribution falls over the desired range of x-values.
It is sometimes called a Gaussian distribution.

c Beta distribution This distribution applies when the range of x-values is
from 0 to I, as would be the case when you are interested in making
inferences about proportions. By choosing appropriate constants, the
distribution can be U-shaped, uniform, bell-shaped, or asymmetrical bell-
shaped. It is a very versatile distribution because it can take on so many
different shapes. Both the prior and posterior densities in Fig. 6-2 are
Beta distributions.

Figure 6-3 shows some of the shapes of these distributions.

6.2 Some distribution theory

After you have sketched your prior distribution you may find that
it comes pretty close to one of the three standard distributions. Thus, when
someone asks you what your prior distribution is, you do not have to hand him
a picture, you can name it. This is, of course, what scientists do when they report
their prior distributions in journal reports of their research; they say that their
prior is uniform, or normally distributed, or Beta. But the name is not enough
for other than uniform priors; you also need to indicate the shape of the dis-
tribution. As you can see from Fig.*6-3, if I tell you my prior distribution con-
cerning some proportion is characterized by a Beta distribution, I could mean
that my opinion is any of the shapes shown. The method of specifying the exact
distribution is different for Beta and normal distributions, but the theory is
the same. Like a straight line, these two distributions are completely specified
by naming the type of function and by giving two problem constants. Once
that is done we can go on to specify values of x,,, and xy;4, that encompass 95 %,
or 999, or any other percentage of our opinion. That is our ultimate goal, so
keep this in mind as you read the rest of this section, for now I must introduce
the theory that will enable you to make probability statements based on the
probability distribution of the uncertain quantity in question.

Credible intervals

The key idea that enables us to determine probabilities of intervals is this:
For a probability density function, the area under (he curve equals one. Thls apphes
to any density function, prior or posterior, and is enspred by chOOS{ng units on
the y-axis so that the area is one. You can see why, in the sub;sectnon on con-
structing a prior distribution, I advised you not to mark_ any units on the y-axis.
Those units cannot be arbitrarily chosen, for the y-axis must be numbered so
as to make the area under the curve equal one. For reasons that will be ’obvious
later, you will never have to determine the scale of the y-axis. You will never
have to measure the area, either; that would require the calculus for most of
the distributions of-concern to us in this book.

This restriction on probability density functions,_ that the area under the
curve must equal one, is nothing more than the continuous equivalent to the
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probability law for discrete events that says that the probabilities of N mutually
exclusive and exhaustive events must add to one. Here, where N equals infinity,
the area under the curve must equal one.

A consequence of this limitation on the total area of a probability density
function is that the probability of the true value of x falling between x,,, and
Xnigh iS given by the area of the curve between those limits. This applies for any
values of x,,, and x;,, you may wish to choose. I can pick any two values,
determine the area of the curve between those values, and that area is the
probability that the true value of x lies within the interval.

Now suppose instead of choosing the values of x,o, and x4, I start with
any probability, say 0-99, and I then try to find values of x,,, and x;,, such that
the area between them is 0:99. There would be many such intervals, for there
are a good number of ways the density function can be sliced. No matter; we
will call any such interval a *C per cent credible interval’. A C per cent credible
interval is indicated by any two values of x which include C per cent of the prob-
ability density function between them.

Exercise 6-3

What are the 959 credible intervals for the prior and posterior distributions
shown in Fig. 6-2?

Answer

You can read off the answers below the curves. The two bars represent the
length of intervals that cover 959%; of the area of each curve. Thus, the 959
credible interval for the prior distribution is 0:239 to 0-895, and for the posterior
distribution is 0-623 to 0-921.

I have redrawn just the prior distribution in Fig. 6-4 to show the interval and
its relation to the area more clearly.
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Fig. 64

Relation between an area of the probability density function and a credible interval

Of course I could have chosen to locate the 959 of the curve further to
the left, or to the right. For example, the interval from 0-271 to 1-00 includes
957; of the curve, so 0-:271 to 1-00 is also a 959 credible interval. Why did I
choose the interval in Fig. 6-4? Because of all the intervals I could have chosen,
that one is the shortest. (Note that 0-:271 to 1-00, a distance of 0-729, is longer
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than 0-239 to 0-895, a distance of 0-656). We will adopt the convention of
alvye}ys choosing the shortest interval. You may have noticed that the prob-
ability density directly over 0-:239 is exactly the same as over 0-895; that is
always true of the shortest interval, and therefore densities outside the interval
will always be less than densities inside the interval. For this reason, the shortest
credible interval is called the ‘highest density region’ of the curve. Density of
opinion is everywhere higher within the interval rather than outside it, an
intuitively appealing property. We will, then, always choose highest-density
credible intervals. But how can we do this? We turn to that question next.

Cumulative probability functions

Suppose we were to take a planimeter (a device for measuring area) and
measure the area to the left of various values of x in Fig. 6-4. We might start
with x = 01, and measure the tiny area to the left of 0-1. Then we try x = 0-2,
and measure the area to the left of 0-2, and so forth. In each case, we draw a

*
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Area to the left of x = 05

vertical line through the value of x and measure the area of the curve to the
left of the line. You can see this in Fig. 6-5 for x = 0-5. Now suppose I make
a table of my results. This is shown in Table 6-1. (I could have made a finer
table by taking measurements at more values of x.) Since the table shows
pairings of numbers, it gives us a function.

Table 6-1 Area to the left of x, as a function of x, for the probability density
function shown in Fig. 6-4.

X Area to left of x

0 0

0-1 0-001
02 0017
0-3 0:070
04 0179
0-5 0-344
06 0544
07 0744
0-8 0-901
09 0984

1-0 1-00
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A more convenient way of displaying the function is to draw a graph of it.
You can see this in Fig. 6-6. Such a curve is called a cumulative probability
function. A graph showing the area of a probability density function to the left
of x, as a function of x, is called a cumulative probability function. The horizontal
axis of a cumulative probability distribution shows all the possible values of the
uncertain quantity, x, and the vertical axis gives the probabilities that the true
value of x is less than the values shown on the horizontal axis. This kind of
function is in some ways more useful than probability density functions because
the y-axis represents probability itself rather than probability density.
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Cumulative probability function for the probability density shown in Fig. 6-5

You may wonder, then, why I did not introduce cumulative probability
functions to begin with instead of probability density functions. Why did we
not express prior opinion as a cumulative probability function ? The answer lies
in some research by Winkler (1967). Subjects in his experiment were instructed
in several different methods for expressing prior opinions. He found that his
subjects not only preferred probability density functions on intuitive grounds,
but they were apt to change discrepancies between the two types of functions
by changing the cumulative distribution function. They found it more meaning-
ful to assess points on the probability density function than to determine
cumulative probabilities. These findings show that people believe probability
density functions to be more accurate portrayals of prior opinion than cumu-
lative distribution functions.

What is gained in intuitive appeal is, however, lost in ease of usage. But
I think ease of interpretation should win over ease of use, so we will stick with
probability density functions as descriptors of prior opinion. This will impose
no hardship anyway, for tables have been computed of the cumulative prob-
ability distribution for a great many distributions. I used one of these tables
rather than a planimeter to find the areas in Table 6-1.
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Exercise 6-4

]What is the prior probability that the true proportion of ‘white-collar’ fathers
ies:

a Below 0-8?

b Below 0-25?

c Between 0-8 and 0-25?

Answers

From Fig. 6-6, we see the area to the left of 0-8 is 0-9, so that is the probability.
Again, we read from Fig. 6-6, and obtain a probability of 0-04.

c What we want is the area between 0-25 and 0-8. You can find this by subtracting
the area to the left of 0-8; 09 — 0-04= 0-86. That is the answer.

T e

This exercise illustrates how, given values of x,,, and Xnigh» YOU can find
the area between the values; subtract the area to the left of X1ow from the area
to the left of x,;y, (see Fig. 6-7). The resulting area is the probability that the
true value of x falls between X, and x4y

Now suppose the problem is turned on its head; instead of starting with
Xiow and xy;,, we start with an area and find low and high values of x. For
example, what proportions of ‘white-collar’ fathers include 909, of the prior

This area 0-90

0-8

X high

minus this area 0-04

leaves this area 0:86
S

0 01 02 03 04 05 06 07 08 09 1.0
Fig. 6-7

Determining the area in an interval
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distribution between them ? One answer is obtained by letting x,,, = 0. Then
Xhign 18 the value of x with 909 of the prior density function to the left. Find
this by entering the y-axis of Fig. 6-6 with 0-9, move horizontally to the curve,
and read off the value of x, below: x;,, = 0-8. So one acceptable interval is
0 to 0-8. That is one 90% credible interval. Another could be obtained by
letting xy,;q, = 1-0, entering the cumulative curve with y = 0-1, and finding that
X1ow = 0-33. Still another would result from entering the cumulative probability
function with y = 0-05 and y = 0-95. That would give x,, = 0-27 and
Xnign = 0-85. Many acceptable intervals could be determined by entering the
y-axis with values of y whose difference is 0-9.

Exercise 6-5

Construct a list of 95% credible intervals for the prior distribution of the
proportion of ‘white-collar’ fathers (Fig. 6-2). Do this for increments in values
of y of 0-01. Find the highest density credible interval.

Answer

We start by entering the cumulative probability function (Fig. 6-6) with y = 0-95
and y = 0. This gives x,,., = 0-85, and, of course, x,,, = 0. Now we increase
the y’s by 0-01, and enter the curve with 0-96 and 0-01. Repeating this process
gives this table:

959 credible interval

Values of y X1ow Xnien  Difference

0and 095 O 085 085
0:01 and 096 017 086 0-69
0:02and 097 021 087 066
0-03and 098 023 089 0-66
0:04and 0099 025 092 0-67
0:05and 1:00 027 1-:00 0-73

By subtracting x,,, from xp., for each pair, the shortest interval (smallest
difference) can be determined. With the two-place accuracy possible by reading
Fig. 6-6, two intervals are the ‘shortest’, 0-21 to 0-87 and 0-23 to 0-89, which
are as close to the values of 0-239 and 0-895 mentioned earlier as the accuracy
of these computations will allow.

This exercise could have been done more accurately by a computer. All
the computer needs is the prior density shown in Fig. 6-2 and a program of
instructions for carrying out the various computations. These instructions
would require the computer to find the cumulative probability function from
the prior density function, and then follow roughly the same steps we went
through in Exercise 6-5. However, the computer could take much smaller
increments and so find x,,, and x,,, with greater accuracy.

Fortunately, computers have already performed this task and the results
of their labours can be found in tables; some are included in the Appendices
to this book. For some density functions you will be able to look up the limits
of the credible interval directly, and for others you will have to make a couple
of trivial calculations based on tabled values.
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Although you will not have to determine a cumulative probability func-
tion yourself, you should remember how they are used to find credible intervals,
for we will make very frequent use of credible intervals in Part III. An under-
standing of what they are is vital to using them correctly.

More about credible intervals

Users of Bayesian statistics frequently report their results in the form of
credible intervals. Before conducting the experiment on my students, I was
957; sure that the true proportion of ‘white-collar’ fathers could be found
between possible values of 0-239 and 0-895. Those two values are the limits of
my (highest-density) prior 95% credible interval. After the experiment, my
posterior 959 credible interval was 0-623 to 0-921. The credible interval has
become smaller, indicating that I am more certain after the experiment than
before.

In this example I reported my 959, credible interval. A more conservative
statement, consistent with my advice in Chapter 4, would result by giving my
99 9 credible interval, or even the 99-9 %/ credible interval. These are shown in
Table 6-2. The interval opens up as credibility increases. You want the interval
to be reasonably narrow and the credibility to be high, so in deciding which
credible interval to report you must decide on a tradeoff between narrow limits
and high confidence. Eventually, it is possible that scientific journals will
establish standards for reporting credible intervals. In the meantime, until you
become experienced in using statistics, I suggest you use the 999, credible
interval.

Table 6-2 Credible intervals for the posterior probability density function
shown in Fig. 6-2

Credible Limits of
interval the interval

95% 0-623 to 0-921
99% 0-561 to 0-946
99.99%  0-488 to 0-967

Finally, let me introduce some helpful notation. In Chapters 2 and 3 when
we spoke of the probability of an event E we wrote

p(E)

When we find credible intervals we are dealing with a complex event: the true
value of x lies between X,y and xy;,,. This event can be written

Xiow < X < Xpigh

Literally translated, we read ‘xy;q, is greater than or equal to x which is greater
than or equal to X,y , but more briefly, ‘x is between x),w and xy;,,’. When
we refer to the probability that x is between x,,, and x;, we write

P(Xjow < X < Xpign)
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In finding the limits of a 999 credible interval we want to find x,,, and xp;gp
such that

p(xlow =xX< xhigh) =0-99

Thus, in reporting my 99 %, credible interval for the ‘white-collar’-father experi-
ment, I would write in my report that

p(0-561 < x < 0:946) = 0-99

That is a brief and economical way to report a credible interval.

Exercise 6-6

Write in mathematical notation the 95% and 99-99; credible intervals listed
in Table 6-2.

Answers

For the 959, credible interval:
p(0-623 < x < 0:921) = 095

For the 99-9 9 credible interval:
p(0-488 < x < 0-967) = 0-99

We have seen in this section that opinion about an uncertain quantity is
expressed as a probability density function and that this function is revised in
the light of data by Bayes’ theorem to give (usually) a more peaked posterior
density function. We report our uncertainty in the form of a credible interval,
which specifies how sure we are that the true value of the uncertain quantity falls
between two limits.

We leave to Part III just how density functions are revised by applying
Bayes’ Theorem. For now, we take a closer look at rectangular, normal and
Beta densities, and discover how credible intervals can be determined once the
density function has been specified.

6.3 Three common distributions

It is time to get down to the technical details involved in specifying a prior
or posterior distribution. We said earlier that a density function is completely
specified by naming it and by stating its problem constants. In this section we
see what the problem constants are and how changing them changes the shape
of the distribution. We will see that while the problem constants completely
specify the distribution, they do not always provide very good descriptions of
the densities, so we will consider alternate ways of describing the distributions.
Finally, we will see how to determine credible intervals once the distribution is
specified. But first, we turn to the difference between specifying a distribution
and describing it.

Parameters and statistics

The equation for the prior density in Fig. 6-2 is
y = 60x3(1 —x)?
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We will see later where this comes from. For now note how it works. You
take some value of x (between 0 and 1-0), subtract that from one and square
the difference. Then cube the value of x, and multiply that by the previous
step. Finally multiply that result by 60. Try it for x = 0-6, the value of x
under the peak of the curve. You should get y = 2-0736.

The equation has only one independent variable, x, though it appears
twice, and one dependent variable, y. It appears to have three problem con-
stants, 60, 3, and 2, but actually it has only 2. They are 3 and 2; the 60 is
obtained by a part of the general equation which combines the 3 and 2 in a
complex way to yield the 60. We will see how this comes about in the section on
Beta distributions. For now the important point to note is that there are just
two problem constants. If I change those constants a differently shaped curve
results.

The problem constants for a probability density function have a special
name: parameters. The parameters of a probability density function, along with
the function rule, completely specify the function. By this I mean that if I tell you
the function rule, that is, the equation of the function, along with the para-
meters, you have enough information to make a graph of the function. If I tell
you the equation of a straight line,

y =a+bx
and I tell you that
a=3 and b=7

then you can plot the line on graph paper.

The only trouble with the parameters of the Beta function is that it is
not possible to give them any very intuitively meaningful interpretation. We
can for the straight line; a is the y-intercept and b is the slope of the line. So
while we specify the distribution by giving its parameters, those numbers do
not give us a very helpful intuitive description of the shape of the curve.

There are two aspects of the shape of a density function that we will
usually want to be able to describe: where the middle of the curve is and how
spread out it is. A number that locates the middle of the curve is called a measure
of central tendency. We will consider three contenders: the mean, the median,
and the mode. A number (or pair of numbers) that indicates the spread of the
curve is called a measure of dispersion. We have already met one such measure—
the credible interval. The bigger the credible interval, the more spread out is
the density function. Another measure will also prove valuable; it is called the
standard deviation.

These descriptors of a distribution are called statistics, and it is often
more helpful to report them rather than the parameters.

The mean gives us an idea of where the middle of the curve is; specifically,
it is the value of x directly under the centre of gravity of the distribution. Imagine
that the prior distribution in Fig. 6-2 has been cut out of a piece of uniform
material of some thickness. Now set the base of the distribution on a knife
edge with the knife perpendicular to the base of the distribution. If you move
the distribution to one side or the other over the knife edge, eventually you will
find some point at which the distribution exactly balances. The value of x just
above the knife edge is the mean of the distribution. The situation just described
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is pictured in Fig. 6-8. This definition of the mean applies to any distribution,
but it is not actually the method used to determine the mean of a distribution.
I give it here to facilitate intuitive understanding of what a mean means.
Practical procedures for determining the mean will be dealt with later.

Another measure of central tendency is called the mode. The mode of a
density function is the value of x with the most probability density. In other words,
it is the value of x under the peak of the distribution. If a density function has
two equally high peaks, then there are two modes, and the distribution is called
‘bimodal’. (Some definitions of the mode would allow a mode under every
peak, whether or not the peaks were of equal height.) Multimodal distributions
are rarely encountered as describing prior or posterior opinion. The distribution
in Fig. 6-8 is unimodal, and the mode is 0-6.

mean = 0-571

0-1 0-2

Fig. 6-8

The mean of a density function is that value of x over which the distribution would balance

A third measure of central tendency is the median. The median of a density
function is the value of x below which exactly half the area of the curve is found.
The median cuts the density function in half so that each half has an area of
0-5. The median can be found by entering the cumulative probability function
along the y-axis at 0-5. If you do this on Fig. 6-6 you will find that the median
of Fig. 6-8 is 0-58.

Notice that while the mean, median and mode for Fig. 6-8 are similar
they are not quite equal. This will always be true of asymmetrical distributions.
For a symmetrical distribution, one whose right half is a mirror image of its
left half, the three measures are identical.

It is not so easy to give an intuitive understanding of the standard deviation.
Like an acquired taste, it becomes meaningful with experience in using statistics.
I can give a rough interpretation: if you multiply the standard deviation by 6,
the result will roughly cover the effective range of the density function. That is
probably not very helpful, but let us try it on the prior distribution in Fig. 6-2.
The standard deviation for that density function is 0:175. You will notice that
most of the density function lies between 0-1 to 1-0, a range of 09. If you
multiply 0-175 by 6 you get 1-15, a range that more than covers the actual
range. Try it for the posterior density. That standard deviation is 0:079. The
range is 0-5 to 1-0, or 0-5. Multiply the standard deviation by 6; the result is
0-474. That about covers the range of 0-5. (We will see shortly how to calculate
the standard deviation itself.)

As you would expect, the posterior standard deviation, 0-079, is smaller
than the prior, 0-175. The smaller the standard deviation, the less spread out



Three common distributions 123

the density function. Beyond that statement, not much more can be said about
the standard deviation for now. Remember that the standard deviation is not
the only measure of the spread of a distribution; the credible interval is also
a measure of dispersion.

It will be helpful to introduce some notation. The mean of a density
function will always be denoted by m. A single prime on the m denotes the prior
mean; a double prime, the posterior mean:

’

m’ = mean of prior density function

n”

m” = mean of posterior density function

When I want to talk about the mean of a density function without reference
to its being a prior or a posterior function, I use the m with no prime. No
symbols will be used for the mode or the median; I will use the words.

The standard deviation of a density function will be denoted by s.

s’ = standard deviation of prior density function
s” = standard deviation of posterior density function

From now on symbols will build up at a rapid rate, so if you lose track
consult the Index of Symbols at the back of the book.

All of this discussion can be summarized as follows: A density function
is completely specified by giving the name of the function rule (for example,
Beta or normal) and the parameters. A density function is described by its
statistics (for example, mean and standard deviation).

Now we can get down to the business of looking at the function rule for
the rectangular, normal, and Beta distributions, and at their parameters and
statistics.

Beta distribution

You will often have occasion to make an inference about a proportion or
about any number that can take on values only from zero to one. Prior opinion
about such numbers is conveniently expressed in the form of a Beta distribution.
The reason for the convenience is largely mathematical. If the prior distribution
is a Beta and if the data are obtained by making successive, independent obser-
vations, on each of which only one of two events can occur (for example, the
student’s father is either ‘white-collar’ or ‘blue-collar’), then the posterior
distribution will also be a Beta. Further, the mathematics that result from
applying Bayes’ theorem are terribly simple if the conditions just stated are
met. And you will see that the conditions are not very restrictive at all. So if
you can express your prior opinion as a Beta, then the mathematics involved in
finding the posterior will be very easy.

The general equation for a Beta distribution is more complex than the
simple equations we met in the previous chapter.

_ (p+q-1)' P=1(1 — )i~ !
Y= -nig-m* 4

Here y is the dependent variable (the probability density), x is the independent
variable which can take on only values from O to 1, and p and ¢ are problem
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constants, the parameters of the equation, which must be greater Fhan 0.
The ! is an odd mathematical symbol meaning ‘factorial’; n! is read
‘n-factorial’.

n'=mm-0Dmn-=-2)(n=3)...3)Q)()

for example: 5! means 5x4x3x2x 1.
This equation for the Beta distribution is a general form, like

y=a+bx

is the general equation for a straight line. If we substitute specific values for a
and b, then we get the equation for a particular line. Similarly, if we substitute
specific values for p and ¢ in the Beta equation, we get the equation of one
particular Beta curve. That was the procedure I followed in arriving at the
equation for the prior density in Fig. 6-2. I had decided that my prior opinion
was adequately described by a Beta distribution with parameters

p=4
q=3
(We will see in a moment how I arrived at that decision.)

Substituting those values into the general equation for the Beta distribu-
tion gives

“4+3-1)! 41 31
- {—
V=a-mo=m >~ ¢
Simplifying:
6! 3 )
Y=3n " (1-x)
6x5x4x3x2x1 | 5
= Ix2axixaxl YA
= 60x3(1 —x)?

And that is the result I reported at the beginning of the last section. You may
have noticed that there I said the parameters were 3 and 2, while here I said
they are 4 and 3. This apparent discrepancy can be resolved by noting the
exponents in the general equation. They are p—1 and g— 1. Some writers take
p—1 and g—1 as the parameters, others take p and g. From now on, I will
use p and g, but you must always check the usage before you use the Beta
distribution.

Exercise 6-7

Find the specific equation and then graph the Beta distribution with parameters:
p=1qg=1 (Note that 0! = 1)

p=24q=1

c p=2,qg=2

=20 ]
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Answers
a+1-=1n
a — 1-1 . 1-1
YSa-pu=mr 4
1!
= gio1 ¥ (1 — 0°
(Remember that x° = 1 for any value of x.)
So,
1
Thus, y = 1 whatever the value of x. This plots as a rectangular distribution
(see Fig. 6-9).
_ @+1-—-Dn! 2-1 1-1
e T TR
2!
= m xl(l - x)°
2
x>
= 2x

This equation is a linear function with y-intercept 0 and slope 2 (see Fig. 6-9).

y

3
)
£
2 p=24q9=12
2, / T
2 — |

é’/

0

0 0r 02 03 04 05 06 07 08 09 10
Fig. 6-9

Some Beta distribution

Q+2-D!
¢ Y=gone-n* 7Y

3!
= 70 x!(1 — x)!
= 6x(1 — x)
= 6(x — x?)

This plots as an arc (see Fig. 6-9).

If you will turn to Appendix B you will see a whole gallery of Beta density
functions. For convenience, the curves on any one graph all have the same mode.
By comparing the curves you should get an idea of what happens to the shape
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with changes in p and q. (No curves are shown for values of p and g between
0 and 1 because these functions are U-shaped and prior opinion rarely looks
like this.)

When p and q are equal (the first page of the gallery) the distributions are
symmetrical (right half a mirror image of left half). As p and g become larger,
the distribution becomes more peaked.

When p and g are unequal, the distribution is skewed, or non-symmetric.
The direction of skew is given by the longer tail of the distribution; if the
longer tail is to the right, then the distribution is said to be skewed to the right.
Except for the first page, all the Beta distributions in the gallery are skewed to
the left. Notice that the skew becomes greater as p and ¢ become more unequal.

Below each graph is a set of lines that show how each curve can be
divided into three equal areas. Each curve is associated with one of the lines,
indicated by the values of p and ¢, and the two marks on each line show where
the curve should be sliced to make equal areas. For example, the bottom line
of the first page of the gallery is associated with the rectangular Beta, and the
line shows that the slices shculd be made at 0-33 and 0-67. Moving up to the
next curve, p = 2 and ¢ = 2, we find that the slices are taken at 0-39 and 0-61.
As applied to Bayesian analysis, this means that one third of my opinion falls
between possible x-values of 0 to 0-39, another third between 0-39 and 0-61,
and the remaining third between 0-61 and 1-0. The implication of holding
opinion distributed as Beta with p = 2 and g = 2 is that if I were to bet on the
true, but unknown value of x, I would be indifferent between placing my money
on any of the three intervals indicated. They are intervals of equal credibility.
These lines are useful in assessing a prior distribution.

No curves are given that have modes less than 0-5. This is because the
parameters p and g are symmetrical. Curves whose modes are at 0-4, for
example, are the left-to-right mirror image of curves with modes at 0-6; the
values of p and ¢ need only to be interchanged to generate curves with modes
less than 0-5.

Determining a Beta prior An easy method of assessing your Beta prior
is simply to find one that seems reasonable amongst the figures in Appendix B.
Here are the steps.

a Assess the most likely x-value. That is the mode, of course. If the mode
is less than 0-5 you can adopt either of these procedures:

i Make your inference about the complement of x, that is, about 1 — x.
If you think the proportion of students whose fathers are ‘white-
collar’ is likely to be less than 0-5, then make your inference about
the proportion of ‘blue-collar’ fathers.

ii Imagine that the x-axis of the figure is reversed, so the 0 is where
the 1 is, and interchange the values of p and q. Then you can make
inferences directly about x.

b  Turn to those figures in Appendix B which are characterized by the mode
you estimated in Step (a).

c Choose the distribution which comes closest to your prior opinions. If
your prior opinion seems to fall between two distributions, either inter-
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polate* the values of p and g or s¢lect the more spread out distribution
of the two.

d Check the appropriate equal-credibility intervals to see that you really
think it is equally likely for the true value of x to fall in any one of the
three intervals. Another way to think of this is to imagine that you and
two other people are each going to place equal bets on the intervals. The
other two people get to choose intervals to bet on before you can choose,
so you have to take the interval left over. Whoever bets on the interval
that turns out to be correct, in the sense that it contains the true value
of x, wins the lot. Now, are you happy with last choice of an interval?
You should be if you selected a distribution that truly represents your
prior opinion. If you are not indifferent among the three intervals you
should select another distribution that gives intervals which do seem
equally good bets.

e Record the values of p and g for the curve you chose. Remember to
reverse p and ¢ if you have imagined the x-axis to be reversed.

This was the procedure I followed in determining my prior density
function shown in Fig. 6-2.

Statistics of the Beta distribution The parameters p and q can be directly
translated into the statistics of the Beta distribution. The mean of a Beta is
given by

p

m=—

p+q

and the standard deviation is

oo J pq
(r+9)*(p+q+1)

The mode of the distribution is

Once you have found the values of p and g you can go on to compute the mean
and standard deviation of the distribution. It is not possible to find the median
directly from p and g; a table of the cumulative distribution would have to be
consulted.

Exercise 6-8

Compute the mean and standard deviation of the prior and posterior Betas of
Fig. 6-2. The prior parameters are p” = 4 and q" = 3; the posterior parameters
are p” = 21 and ¢” = 6. (Note the use of single and double primes to distinguish
prior and posterior parameters.)

* Interpolation is explained in Appendix I.
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Answers
For the prior,

, 4 4
m=gy3 7=

,_J 4x3 o 12
STNG@TEREr3rD AN 49 x8

= V0030612 = 0-175

For the posterior,

L2 2
m =620

. 21 X 6 _J 126
STN@IFeR2iF 6+ 1D A @D228)

= v0-00617284 = 0-079

Recall that those standard deviations were given without explaining their origin
in the section ‘Parameters and statistics’. Now you can see how they were
obtained. First, I looked up my prior in the gallery, noted the values of p and g,
and then I used these values in computing the statistics. In a moment we will
see how the posterior parameters are obtained.

Credible intervals for the Beta distribution Finding credible intervals for
the Beta density is easy—you just look them up in tables. Tables of highest-
density regions can be found in Appendix B. To use them, enter the table
with the values of p and g of your distribution, and read off the limits
of the desired credible interval. There are two tables, one for 959, credible
intervals, the other for 999/ credible intervals. Try using the tables to find the
posterior credible intervals for the Beta with p” = 21 and ¢” = 6. Check your
results with Table 6-2.

Later in this chapter we will discuss a method for finding credible intervals
for Betas whose parameters are larger than those shown in the tables.

Revising opinion for Beta distributions Revising prior distributions in the
light of data is the topic of Part III, but the process is so simple for Beta distri-
butions that a brief introduction here will be instructive.

Suppose that prior opinion about an unknown proportion of events E
can be described by a Beta distribution whose parameters are p’ and ¢q’. Suppose
further that data can be collected in such a way that each observation is inde-
pendent of the next. Assume that on each observation either an E is observed—
call that a ‘success’, or an E is not observed—call that a ‘failure’. Take N
observations. Let § be the number of successes and f the number of failures,
s0 §+f = N. Under these conditions the posterior distribution will also be a
Beta with parameters p” and ¢” where

p” = pl+§
q"=q' +f
That is the result of applying Bayes’ theorem.
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In the ‘white-collar’ father example, I started with a Beta prior where

p=4

q =3
Since I was concerned with the proportion of ‘white-collar’ fathers, it is neces-
sary to define the observation of ‘white’ as a ‘success’. (If I had been making
an inference about the proportion of ‘blue-collar’ fathers, then getting a ‘blue’
would have been a ‘success’.) Twenty independent observations were made,
17 of them ‘white’, so

§=17

f=3
Under these conditions I know that my posterior distribution must also be a
Beta, and with parameters

p’=4+17 =21
g’ =3+3=6

Knowing the posterior parameters, I can compute the mean and standard
deviation of the posterior, and I can look up a credible interval.

So you see it is not necessary to calculate Bayes’ theorem for this case.
That has already been done, and the result is that you simply add the number
of successes to the prior p, and the number of failures to the prior g, to get the
posterior parameters.

Exercise 6-9

An investigator wants to determine the proportion of students who have tried
hashish in a small college on the west coast of the United States. Before taking
a random sample he assesses his prior distribution as Beta with p’ = 8 and
q’ = 4. In his sample of 50 students he finds 43 who have smoked hashish at

least once.

a Compute the posterior mean and standard deviation.

b Compare the prior and posterior modes.

c Compare the posterior and prior 99 % credible intervals.
Answers

The parameters of the posterior distribution are:
p' =8+ 43 =51
g =4+7=11

a The posterior mean is:
- P’ . 51 . ﬂ Y
M= st 6 0%
The posterior standard deviation is:
. 51 x 11 _ 561
S ENGIFIGI+ 11+ D A (62)%63)

= v/0-002317 = 0-048
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. p—1 8§ —1 7
b prior mode g —32 8+4—2_io
posterior mode = —51 — | = —50 = 0-83

The posterior distribution has shifted to the right, nearer 1-0.

¢ From the tables in Appendix B:

prior 99 % credible interval: 0-326-0-944
that is, p(0:326 < x < 0:944) = 0-99
posterior 99 % credible interval: 0:689-0-931
that is, p(0-689 < x < 0-931) = 0-99

Thus, the prior range is 0-618 while the posterior range has decreased to 0-242.
Even with a sample size of 50, there is still a fair range of uncertainty about the
true proportion.

Normal distribution

We will place considerable emphasis on normal distributions in this
book, partly because prior opinion can often be expressed in this form, but
mainly because statistical methods based on normal distributions have been
more completely studied and worked out than for any other distribution.

To a beginner in statistics, the equation of a normal density function looks
very formidable indeed:

1
Y= fona?

It tells us how we can arrive at y, the probability density, given any value of x.
You will never actually have to use this function rule, but it is important to
know and understand the various parts of the rule. First, let me define the parts.
y is the dependent variable, x is the independent variable. The numbers 1 and 2,
and 7, are universal constants; you have encountered them before. The letters
u and o are parameters. So there is nothing in the equation that you have not
already seen. It is the way the parts are put together that is new. In words, the
function rule says, take the desired value of x, subtract u and divide the result
by 0. Square the resulting quantity and multiply by minus 1/2. Raise e to that
power, and multiply the result by 1 over the square root of 2n02. The result is y.
The only part you would probably have difficulty doing is raising e to the
power, but even that is not difficult if you know how to use natural logarithms.

Two examples of normal curves are shown in Fig. 6-10. (For convenience,
the y-axis is not shown.) For the left curve the parameters are

e = 4l(x—pu)/a)t

p =125
o=25

while for the right curve they are
u =130

c=95



Three common distributions 131

Unlike the Beta distribution, these parameters are easily interpreted; they are
the same values as the mean and standard deviation. For a normal distribution

u = m, the mean

o = s, the standard deviation

Remember, too, that for symmetric curves the mean, median and mode are
equal, so for a normal density function

u = m = median = mode

Compare the means in Fig. 6-10. One is 5 points above the other, so the peaks
qf the curves are 5 points apart. Now look at the standard deviations. The
right curve is more spread out so it has the larger standard deviation.

T T L
140 145 150

r

I 1 T T
110 115 120 125 130 |
Fig. 6-10

Two normal density functions

o —
w

These two curves might represent the prior opinion of two professors
about to determine the average I.Q. of undergraduate students enrolled in
their university. One investigator has taught at the university for many years
and feels fairly sure that the average 1.Q. is in the vicinity of 125. The other
professor is newly appointed to the university, and has not had much previous
contact with students. In assessing his prior, he is guided mainly by the reputa-
tion of the university as being a high-quality institution attracting top students,
but because of his inexperience he is not too sure of his judgement, so he settles
for a fairly spread out distribution. Of course the two professors talked to each
other before they assessed their priors, and these curves are the final product,
after they exchanged information. The new professor feels his colleague’s
judgement is over influenced by the limited and biased sample of students
with whom he comes in contact, while the older professor feels that the new-
comer is too dazzled by the institution’s reputation. Thus, one mean is lower

than the other.

Determining a normal prior Both professors sketched their prior distri-
bution following the steps outlined at the beginning of this chapter. Their
sketches showed curves very slightly skewed to the left, but they were sure
that by approximating their priors with normal distributions the slight difference
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would be of no consequence to the posterior distribution. Then they followed
these steps.

a Assess the most likely x-value. That value is the mean of your prior. (It
is also the mode and median, and is the value of the parameter pu.)

b Find the range of x-values that contains almost all your opinion, that is,
almost 1009, of your opinion should fall in that range.
¢ The range of x-values just found covers 6 standard deviations, so divide
the range by 6 to find one standard deviation.
, range
s ~
6
d Construct three equal-credibility intervals by multiplying the value of s’
by 0-43, then adding that product to the mean to get x;;,, and subtracting

the product from the mean to get x,,,. (Justification for this procedure
is given in the next section.)

X1ow = M’ —0-43s’
xhigh = m,+0°43sl

e Check that you would be just as happy to place a bet on the interval up
to X,y as on the interval from Xx,,, t0 Xy;4, as on the interval above x4,
You should think each of those intervals offers an equally fair bet; if

you do not, then you must reassess your prior, finding new values of
m' or s’, or both, until this condition is met.

The newly appointed professor in the example decided that the highest
density of his opinion should be in the vicinity of 130, and that nearly all his
opinion fell between 115 and 145. That range of 30 implies that

_30_
===

Now we turn to the determination of credible intervals.

’

S 5

Credible intervals for the normal distribution Recall that to find a C per cent
credible interval we wish to find values of x,,, and x;g, such that

p(xlow S X S xhigh) = C/IOO

The general procedure is to consult a table of the cumulative probability
function and find values of xy,, and x;,, such that C per cent of the area of
the curve falls between those x values. Since we are dealing with a symmetric
distribution, highest density regions are centred on the mean. Thus, the area
above xp;q, WIll equal the area below x,,, (see Fig. 6-11). To find the 959
credible interval we could consult a table of the cumulative distribution and
read off the value of x with exactly 239 of the distribution below it, and the
value of x with exactly 971 9% of the distribution below it.

The trouble with this procedure is that we would need a great many
tables. We could construct a book of cumulative normal tables; each chapter
would contain tables for densities with the same mean, and each page in the
chapter would be for a different standard deviation. With an infinite number of
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possible means, and an infinite number of standard deviations, we would have
to construct either a very large book, or a coarsely calibrated one.

Fortur}ately there is a simple alternative procedure. We can apply a linear
transformation to any given distribution and end up with a standard normal
distribution whose mean is 0 with standard deviation of 1. By suitable choice
of the constants in the linear equation any normal distribution can be trans-
formed into a standard normal distribution, for which only a single table is
necessary.

The transformation is accomplished by expressing each x-value as a
number of standard deviations above or below the mean. Let me develop
this intuitively, then I will express it formally.

Y low * high

Fig. 6-11

The 95°, credible interval for the normal distribution

Suppose we take the newly appointed professor’s prior distribution,
shown by itself in Fig. 6-12(a). First let us subtract the mean, 130, from every
value of x. That has the effect of moving the curve to the left until its mean is
zero. Notice that the standard deviation is unchanged by this transformation [see
Fig. 6-12(b)]. The numbers on the x-axis now show deviations of x-values
from the mean. For example, 145 is now expressed as 15 because it is 15 units
above 130. The horizontal axis is still measured in the original units, however.
To get rid of the units, and to standardize the spread of the distribution, we
can divide the deviations by the standard deviation [see Fig. 6-12(c)]. Now
the numbers on the horizontal axis show deviations, in units of the standard
deviation. The original value of 145 which became 15 after the first transfor-
mation is now 15/5 = 3. The resulting normal distribution is very tall because
the area under the curve must remain at 1. Since it is also very squeezed together,
I have stretched the x-axis, shrunk the y-axis, and redrawn the distribution
in Fig. 6-13. This is the standard normal distribution, for which

u=0 and o =1

The numbers on the horizontal axis will be referred to as z-values; they are
x-values that have been transformed by application of this linear equation:

X—m

ZzZ =
S
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(c)

Divide each x-value by standard deviation

(b)y~& (a)

Subtract mean from each x-value

I I I I
=15 —-10 -5 0 5 10 15 115 120 1

Fig. 6-12

Successive transformations of a normal density function to yield a standard normal distribution

T T T T
130 135 140 145

& —
wn

In words, the equation says to subtract the mean, m, from the x-value, then
divide the difference by the standard deviation, s. That is what we did in
Fig. 6-12.

Now suppose you had done this for the other prior distribution in
Fig. 6-10. If you try it you will end up with the standard normal distribution.
Generalizing, every normal distribution, whatever the values of u and g, can be

T T 1 1 ] L
-3 -2 —1 0 1 2 3
Fig. 6-13 #

Standard normal distribution
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transformed into the standard normal distribution, whose mean is zero and stan-
dard deviation is one. Why is this so ? Because basically all that is being changed
is the x-axis; it is being transformed into a different unit of measurement that
is used as a standard. Some analogies may clarify this. Transforming one normal
distribution to another is similar to changing yards to metres, or feet to metres,
or inches to metres, or any unit of length to metres. Nothing is lost in the
transformation, only the units of measurement change. Nothing is lost in
changing one normal distribution to another, only the units along the horizontal
axis change. Another example is given by temperature. If I decide that a Kelvin
scale is the most convenient to use, I can always transform a Fahrenheit or
centigrade reading to a Kelvin reading through an appropriate linear function
rule. Any temperature scale can be changed to a Kelvin scale through appli-
cation of the appropriate linear transformation.

Transformations work two ways. Centigrade can be changed to Kelvin,
but so can a Kelvin reading be expressed in centigrade. How can a z-value be
expressed as an x-value ? Since

we can solve this equation for x:
sZ=XxX—m
X=m+sz

Now z is the independent variable. You multiply z by the standard deviation
and add the mean. Thus, if the professor says his prior is normally distributed
with mean of 130 and standard deviation of 5, you can sketch Fig. 6-13 and
re-label the horizontal axis: for 0, substitute the mean, 130; when you move
out to 1, you are one standard deviation above the mean, or 5 units above 130,
so 1 becomes 135; at 2 you are two standard deviations above the mean, at 140;
when you are at —1 you are one standard deviation below the mean, at 125;
etc. Each z-value of the standard normal distribution indicates the number of
standard deviations above or below the mean. For example, a score of 145 could
be described as being ‘3 standard deviations above the mean’.

Like all normal distributions, the standard normal distribution extends
from minus infinity to plus infinity, but the major portion of the curve occurs
within a fairly narrow range of z-values; most of the curve falls between —3
and + 3. In other words, it spans 6 standard deviations. Now you can see why
the range of prior opinion in x-values is divided by 6 to ob?ain the standard
deviation. Tabling the cumulative standard normal distribution is quite easy,
for only a narrow range of z-values need be included in the table.

Appendix F gives the cumulative probabilities of the standard normal
distribution. The second column of the table gives the cumulative probability,
but only for positive values of z. Cumulative probability up to negative values
of z can be found by subtracting the tabled value from 1-0; that has been
done in the next column. Note that the area to the left of —z is the same
as the area to the right of +z. The last column gives the area between —z

and +z.
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Exercise 6-10
An investigator assesses his prior distribution concerning some uncertain
quantity, x, to be normal with
m =355
s=10
What is the probability that the true value of x is:

a less than 657
b less than 357

Answers
The first step in the solution is to change the problem from a statement about
x-values to one about z-values. We do this by applying the linear transformation

X —m
z =
s

a First change 65 to its corresponding z-value:

Now we can re-phrase the problem in terms of the z-value. We want to find
p(z <1-0)

What is the probability that the true value of z is less than 1? To find this look
in the table, Appendix F. Go down the first column until you come to a z-value
of 1:0. Then read off the cumulative probability in column 2. The answer is
0-8413. So,

p(z < 1-:0) = 0-8413

and so
p(x < 65) = 0-8413

b Find the z-value corresponding to x = 35:
z_35—55_—20__2
10 10

From the symmetry of the normal distribution it should be obvious that
Pz —=2)=1—pz< +2)=p(z= +2)

From the third column of the table we find that:
p(z < —2) =00228

which is equivalent to saying that
p(x < 35) = 0-0228

Exercise 6-11

For the prior distribution given in Exercise 6-10, what is the probability that
the true value of x falls within 25 standard deviations of the mean?
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Answer
Look up 2-5 in the table, Appendix F. The value in the last column gives
(=25 <z< 425 = 09876

Verify for yourself that that statement is equivalent to this one:
P30 < x < 80) = 09876

Finally, the table can be used to find credible intervals. Here are the steps
to find the C per cent credible interval for a normal density function:

a Find the probability C/100 in the fourth column of the table in Appendix F.
b Read off the corresponding z-value in the first column.
c Transform the positive z-value into x;,, and x,,, using these equations:

xhigh =m++sz

x.ow =m-—Ssz

Exercise 6-12
Find the posterior 999, credible interval for the prior distribution given in
Exercise 6-10.
Answer
From the table in Appendix F we find that
p(—2-58 < z < 2-58) =099
Transforming to x values:
Xpien = 55 + 10(2-:58) = 55 + 258 = 80-8
Xiow = 355 — 10(2-58) = 55 — 25:8 =292
Thus,
2(29:2 < x < 80-8) =099

This last problem shows that it is necessary to go up and down 2-58
standard deviations from the mean to get the 99 9/ credible interval. Reference
to the table in Appendix F shows that for the 959 credible interval you would
travel 1-96 standard deviations from the mean, while for the 9999 interval
you would go 3-29 standard deviations away. You will use these numbers
often, so to save yourself trouble later, you might memorize them now. They
are shown graphically in Fig. 6-14.

Exercise 6-13

How many standard deviations from the mean of a normal density function
must one go to form three equal credible intervals?

Answer
Three equal intervals will each contain 1/3 of the area. We wish to find z,,, and
Zpnign SUch that

p(zlow =z= zhlth) = 0-3333
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—2-58 959, 2:58
—329 999, 3-29
_ 99-9%
Fig. 6-14

Common credible intervals for the standard normal distribution

Reference to the table in Appendix F gives a z-value of 0-43. Thus, three equal-
credibility intervals for any normal distribution can be found by travelling
0-43 standard deviations from the mean, in both directions:

Xiow = m — 043s
xhlgh =m + 0'43S

This result justifies step (d) under ‘Determining a normal prior’.

Be sure you understand the steps in finding a credible interval for a normal
density function; it is an important procedure in Bayesian analysis.

Normal approximation to the Beta

You may have noticed that the very peaked Beta density functions in
Appendix B look like normal density functions, especially for curves whose
modes are not too far from 0-5. That observation, which is correct, allows us
to compute credible intervals for Betas whose parameters are too large to be
found in the Beta tables of Appendix B. The general procedure is to compute
the mean and standard deviation of the Beta by using the formulae that involve
the parameters, then to use the mean and standard deviation to find the credible
interval, assuming that the density is normal. You follow the procedures for
finding a credible interval for a normal density function, using the statistics
computed from the Beta parameters.

Exercise 6-14

An investigator’s prior concerning some uncertain proportion is Beta with
P’ =4 and ¢’ = 3. He takes 100 observations and observes 62 successes.
What is his posterior 99-9 % credible interval ?
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Answer

Under these conditions, his posterior will be Beta with p” = 62 + 4 = 66 and
q” = 38 + 3 = 41. This gives a posterior mean of

,_ 66 66 _
" g4l 107 06
and a posterior standard deviation of
- 66 x 41 _ 2706
(66 + 41)2(66 + 41 + 1) (107)2(108)

= v0-002188 = 0-0468

For a normal distribution with that mean and standard deviation, the posterior
99-99%; credible interval is given by:

Xiow = 0°62 — 3-29(0-0468) = 062 — 0:15 = 0:47
Xnign = 0°62 4+ 3-29(0-0468) = 0-62 + 0-15 = 0-77

When is it appropriate to use this approximation? The answer depends
on how accurately you wish to specify the credible interval and on how close
the mode of the Beta density is to 0-5. In general, the approximation holds for
values of p and ¢ that are large and not too unequal. However, the larger p
and g are, the more unequal they can be for the approximation still to be good.
To give you some feeling for the accuracy of the normal approximation,
Table 6-3 gives the exact and approximate credible intervals for Beta distri-
butions whose modes are 0-7 (pictured in Appendix B). Notice that the normal

Table 6-3 999 credible intervals, determined exactly and by normal
approximations, for various Beta distributions whose modes are 07

D, q Exact interval Approx. interval

8,4 0:32-094 0-33-1-01
15,7 0-41-0-89 0-43-0-93
22,10 0-47-0-87 0-48-0-90
50,22 0-55-0-82 0-56-0-83

approximation comes closer to the exact results as the curve becomes more
peaked. Even so, two-place accuracy would only be assured for values of p
and q larger than those in the table. Note that the approximation is conservative::
the approximate interval is larger than the exact one. In general, the credible
interval will not be far wrong provided that the smaller of p or g is 10 or more.
When designing an experiment, you should arrange to collect a sample that is
big enough to ensure the desired accuracy in the posterior credible interval
if you think you will have to use the normal approximation to the Beta.

Rectangular or uniform distribution

Sometimes prior opinion will be so vague that we will feel justified in
assigning a uniform prior distribution over a wide range of possible values of
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the uncertain quantity. This plots as a rectangle (see Fig. 6-3). Practically
speaking, it is only necessary to say that your prior is uniform, and we do not
bother with statistics and parameters of the distribution. We will always assume
that a uniform prior extends well beyond the range of x-values covered by the
data.

It is not really correct to say that total ignorance of the value of the uncer-
tain quantity justifies a uniform prior. A uniform prior expresses vagueness,
not ignorance. There are logical difficulties with the concept ‘ignorance’ that
make it impossible to quantify. Suppose, for example, that I am ignorant
about the value of some proportion. If I assign a uniform prior over x then I
am saying that I feel just as sure that the true value of x lies between, say 0-5
and 0-75, as that it lies between 0-75 and 1-0. Now let us look at the implica-
tion of that statement for the prior concerning the odds, x/(1 —x). The odds
corresponding to 0-5, 0-75 and 1-0 are 0-5/0:5 =1, 0-75/0-:25 = 3, and
1:0/0 = o0. A uniform prior for x implies, then, that I have the same amount
of opinion between odds of 1 and 3 as between 3 and co. But a uniform prior
for the odds would require equal probability between 1 and 3 as between 3 and 5,
not 3 and oo. Thus, if I am ignorant about x, then I must be ignorant about
x/(1 —x), yet a uniform prior for x implies, logically, a non-uniform prior for
x/(1—x). That is why ignorance cannot be quantified.

6.4 Principle of stable estimation

An important application of uniform priors is found in the principle of
stable estimation. The purpose of the principle is to justify using a uniform
prior even though your actual prior is not uniform. This will happen whenever
the data are highly informative relative to the prior. This happens, in the
discrete case, whenever the prior odds are near 1 and the likelihood ratio is
very far from 1. Then the posterior probabilities are controlled almost exclu-
sively by the likelihood ratio.

The principle of stable estimation allows a Bayesian analysis to proceed
using a uniform prior whenever the actual prior is fairly gentle. But what is
meant by ‘gentle’? With experience, you will frequently be able to tell at a
glance. A formal definition of ‘gentle’ would be too cumbersome and compli-
cated to apply, so let me offer a procedure which is not mathematically rigorous
but which will serve well in most situations.

a Sketch your prior distribution. If you are quite vague about it, a rough
sketch will suffice.

b After collecting data, calculate your posterior distribution on the assump-
tion that your prior is uniform.

c Find the 999 credible interval. (The 9999 or 99:99% credible interval
would be even better.)

d Look at your actual prior distribution within this credible interval. Check
to see that prior opinion within the interval is almost constant. If it is,
then stable estimation applies, and you are justified in using a uniform
prior rather than your actual prior (see Fig. 6-15).

A more complete statement of the principle of stable estimation can be found
in Edwards, Lindman, and Savage (1963).
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Shaded region
covers most of

Posterior based on posterior

uniform prior

IF PRIOR IS NEARLY
CONSTANT IN
SHADED REGION,
STABLE ESTIMATION
APPLIES

True prior

N

Fig. 6-15

Practical application of the principle of stable estimation

Let us try this out on the ‘white-collar’ father problem. Recall that the
actual prior was Beta with p’ = 4 and ¢’ = 3. Seventeen ‘successes’ out of 20
were observed, so the posterior was Beta with p” = 21 and ¢" = 6. Now let
us see if we could have used the principle of stable estimation to justify a uniform
prior. We follow the steps just outlined:

a The prior is shown in Fig. 6-2.

b For a uniform Beta, p’ = 1 and ¢’ = 1. Thus, the posterior would be
Beta with p” = 18 and ¢" = 4.

c The posterior 99 9/ credible interval is
0-59 < x <098

d At x = 0-6, the prior probability density is highest, about 2. At x = 098,
the prior density is lowest, less than 0-1. It is clear that 2 is much more,
in percentage terms, than 0-1, so stable estimation does not apply.

5 o 5 =18
9'=6 ¢ =4
+
Posterior distribution based on . . .
3__
. .. non-uniform prior
2.—
. . . uniform prior
7
0 T T T T T T T T T T
0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 09 1-0
Fig. 6-16

Posterior distributions after 17 successes and 3 failures based on uniform prior, and on prior
Betawithp' =4 ¢ =3
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You can see this graphically by comparing the posterior distribution in
Fig. 6-2 with the posterior that results from a uniform prior. Both distributions
are shown in Fig. 6-16, and it is clear that they are substantially different. Of
course you can always check to see if stable estimation applies by computing
both posteriors and comparing them, but the steps I have given eliminate the
necessity for precisely assessing your actual prior. The advantage of this pro-
cedure is that you may be so vague about your prior that you feel uncomfort-
able about your sketch, yet you do feel fairly certain about the check in Step (d).
By exploiting certain features of very vague prior opinion we are justified in
accepting a precise quantification in the form of a uniform distribution. Thus,
the principle of stable estimation provides a possible way of specifying a prior
density function even though an individual may feel that his prior opinion is
so vague that he is reluctant to quantify it.

Exercise 6-15

An investigator is unsure of the proportion of registered voters in a medium-
sized community who would favour fluoridization of the public water supply.
In considering his prior opinion he is sure only that the proportion is neither
0 nor 1. A prior in the form of a Beta density with p’ = 2 and ¢ = 2 could be
considered a rather too precise quantification of his vague opinion.

He takes a random sample of 100, discarding 2 registered voters who were never
home, and is left with exactly 49 people in favour and 49 people opposing. Is he
justified in using stable estimation to determine his posterior density ?

Answer

Assume a uniform prior. Then the posterior is a Beta with p” = 50 and
q” = 50, and the 999 credible interval is 0:37 < x < 0-63. Reference to a
prior Beta with p’ = 2 and ¢’ = 2 shows that within the range of 0-:37-0-63,
the prior distribution changes very slightly (though you can’t see it on the graph,
the change is from 1-4 to 1-5, an increase of about 79%,). This change is not
enough to invalidate stable estimation. We would do better to ask the investi-
gator about the change of his opinion within the interval; he is likely to say that
he can find no perceptible change.

Another important use of stable estimation is in situations where prior
opinion does not conform to any of the standard distributions. Further intro-
spection by the investigator may reveal that while the prior is non-conforming
it is still sufficiently vague to justify application of the principle of stable esti-
mation. That saves a lot of messy mathematics.

Heavy emphasis is placed in this book on analyses that start with uniform
priors, for it is my experience that prior opinion is often quite vague. This is
particularly true for the scientist who is conducting an experiment in a field
new to him; the majority of readers of this book will be in that category.

6.5 Summary

Opinion about the true value of an uncertain quantity can be expressed
as a probability density function. This shows probability density (along the
y-axis) as a function of possible values of the uncertain quantity (along the
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x-axis). The first step in a Bayesian analysis is to sketch your prior distribution.
Sometimes that sketch can be reasonably approximated by either a normal,
Beta, or uniform distribution. Often prior opinion will be sufficiently vague to
permit application of the principle of stable estimation; then you are justified
in assuming a uniform prior.

Next a sample is collected from a population, and finally Bayes’ theorem
is applied to determine the posterior distribution. Very often posterior opinion
is communicated in the form of a credible interval, leading the investigator
to report that he is ‘C per cent certain that the true value of the uncertain
quantity falls between x,,, and x;,,’. The point of a Bayesian analysis is to
permit a valid inference to be made, on the basis of the prior and the sample,
to the population at large. A generalization is made based on specific, incom-
plete information.

Bayesian analysis is facilitated by describing prior opinion in a form that
enables it to be specified as a mathematical function. By appropriate choice
of parameters, a general function can generate an entire family of different
curves, and one of these is likely to describe your prior opinion adequately.
Using these functions in revising opinion is straightforward; the prior and
posterior distributions are in the same family, and the prior parameters are
changed by the data to yield the posterior parameters.

When reporting a C per cent credible interval, the shortest one is usually
chosen. That will be the interval containing the highest density of opinion,
that is, no density outside the interval is larger than any density inside the
interval. Credible intervals are computed by reference to cumulative proba-
bility functions. It is necessary to consult a table of such a function to determine
credible intervals for the normal distribution, a symmetrical distribution, but
for the Beta distribution the work of finding the highest density region for
these (usually) non-symmetrical functions has already been done by computer
and the results tabled.

Statistics of a distribution are often more intuitively meaningful than the
parameters. One useful statistic is the mean, the value of x directly under the
centre of gravity of the distribution. It is a measure of the central tendency of
the distribution. Two other measures of central tendency are the mode, the
value of x under the peak of the density function, and the median, the value
of x below which exactly half the curve can be found.

Prior opinion about an uncertain quantity that can take on values only
from 0 to 1-0, such as a proportion, is often described by a Beta density function,
This is a two-parameter distribution that generates a very versatile family of
functions. A prior Beta is assessed by finding a curve in the gallery (Appendix B)
that appears to describe adequately one’s opinion and then checking the three
equal-credibility intervals to see that equal amounts of opinion fall in those
intervals. If the data consist of independent observations, each of which is
either a ‘success’ or a ‘failure’, then the posterior distribution is also a Beta
with posterior parameters determined by adding the number of successes to
the prior parameter p’, and by adding the number of failures to the prior
parameter ¢q’.

Another useful description of prior opinion about an uncertain quantity
is the normal density function. This is a two-parameter distribution whose
parameters are equal to the mean and standard deviation of the distribution.
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Assessing a normal prior is a matter of determining the mean and standard
deviation of the function. The C per cent credible interval is found by consulting
a table of the standard normal distribution and then applying a linear trans-
formation to convert the tabled z-values into the limits of the credible interval.
A Beta distribution can be approximated by a normal density function whenever
the smaller of p or g is 10 or more.

The rectangular or uniform distribution is often used to describe vague
prior opinion. A state of no opinion, or ‘ignorance’, cannot be quantified; a
uniform prior in this case is not satisfactory.

The principle of stable estimation justifies using a uniform prior whenever
the actual prior is fairly gentle.

Problems

6-1 For each of the following uncertain quantities, sketch your prior distribution
and discuss the possibility that one of the standard distributions (uniform,
normal or Beta) can be used to approximate your prior.

a The proportion of all students in your college or university who have a savings

account in their name in a bank.
b The average number of calories in all the food eaten yesterday by each student

in your college or university.

¢ The proportion of all students in your college or university who have attended
a regularly-scheduled church service this term.
d The number of hours per week the average college or university student in your

country spends on all activities directly related to his or her course of study.

e The date of the next major earthquake, comparable to the great earthquakes of
1857 and 1906, along the San Andreas fault in California, assuming that geo-
physicists do nothing to prevent it. (Some relevant information: The opposite
sides of the fault are currently slipping past each other at the rate of 5 centi-
metres per year. Dr. J. Weertman of the Scott Polar Research Institute has
carried out research indicating that a major earthquake will occur when the
total slip reaches about 8 metres. At the current rate of slip, that point should be
reached 120 years after the slip started. But there is some uncertainty about
whether the slip started in 1857 or in 1906.)

6-2 For each of the prior distributions in question 6-1 that you felt could be
approximated by a standard distribution, determine

a the parameters of the distribution.
b the mean and standard deviation.
C the 959 and 99 % credible intervals.

6-3 The following table gives my cumulative probability distribution for some
uncertain quantity, x.

probability
X
up to x
25 0-001
30 0-006
35 0-023
40 0-067
45 0-159
50 0-308

55 0-:500
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X probability
up to x

60 0-692;

65 0-841

70 0-933

75 0-977

80 0-994

85 0-999
What is the probability that the true value of x
i is less than 60?
ii is greater than 45?

iii lies between 75 and 35?7
iv lies outside the interval 30 to 80?

For the cumulative function given above, find the highest density region 90%
credible interval. (Hint: Do it graphically.)

My prior opinion about the average score of the statistics class on a question-
naire that purports to measure conservatism is normally distributed with a mean
of 30 and a standard deviation of 5.

What is the probability that the average score

i is less than 25?
ii is greater than 40?
iii falls between 20 and 40?

Find both my 959 and 99 % credible intervals.

Suppose my prior distribution concerning the proportion of students in my
statistics class who received Church of England upbringing is Beta with para-
meters p° = 7 and ¢’ = 5. In a sample of 30 students, randomly selected, 15
were or are C of E, and the rest were raised in other denominations or in none.

Show that the posterior 959 credible interval is smaller than the prior one by
computing both, and comparing them.

Compute the prior and posterior means and standard deviations.

Note that the posterior standard deviation is smaller than the prior standard
deviation. Why is the reduction in uncertainty from prior to posterior usually
reported by giving the credible interval of the posterior distribution rather than
the standard deviation?

A psychology student working for the BBC conducted a survey of students
enrolled in correspondence colleges who were advised to use particular BBC
programmes in their studies. A questionnaire was administered to a carefully-
selected sample of students. One question asked, ‘Did you watch or listen to
any of the programmes ?’ Of the 342 respondents, 135 replied they had. Consider
the population proportion of ‘Yes’ responses; assume stable estimation applies.
What is the mode of the Beta posterior distribution?

What are the parameters of the posterior Beta?

What are the limits of his posterior 99 %; credible interval ?

Here is a simple experiment your instructor could arrange to be carried out
in class.

The ability to smell freesias appears to have a genetic basis. People either report
that the flower is very fragrant or that it has only a faint odour or none at all.
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What is the exact proportion of all people who would say that the flower is
very fragrant? Consider that proportion to be an uncertain quantity. Assume
that your class is a random sample of all people.

Sketch your prior distribution.

Pass around a bunch of freesias in your class, and note the number of students
who say they are very fragrant and the number who say they are not. (Alterna-
tively, if freesias are unobtainable, ask the chemistry department to make up
a weak solution of phenyl-thio-carbamide. This chemical either tastes very
bitter or is reported to be tasteless or insipid. Students can taste pieces of blotting
paper that have been dipped in the solution. The inference should be made about
the proportion of people who say that the chemical tastes very bitter.)

c Determine your posterior distribution, and find the 959 credible interval.

d Does stable estimation apply to your prior?

(-



Part 2
Dealing with data






1 - Measurement

After assessing his prior opinions, an investigator is ready to collect data.
In addition to setting up an experiment and making measurements, he must
decide how to attach numbers to the observations he makes and he must
understand the meaning of those numbers. Later, he will wish to summarize
those numbers as statistics so he can efficiently communicate his results to
others. These are the procedures we turn to next in this chapter and in the three
chapters to follow. Then in Part III we show how summary statistics are com-
bined with prior information, using Bayes’ theorem, of course, to yield posterior
opinion.

Back in Chapter 1 I said: If a social scientist carelessly attaches numbers
to his observations or to his data, no amount of sophisticated statistical manipu-
lation of those numbers will make them any more meaningful than the original
assignment. What comes out of the statistical mill is no better than what
goes in.

Now I wish to pick up that point and elaborate it in this chapter, for it is
necessary to see how numbers are assigned to data.

When a scientist conducts an experiment he observes properties, like the
weight of an object, the intelligence of an individual, or the rate of growth of
the economy. Often he assigns numbers to the properties; that is the process
called measurement, and it can be the subject of study itself. Strangely, in the
long history of science, logical analysis of the measurement process has only
been carried out since the turn of the century. Yet it is important to appreciate
certain aspects of measurement theory, for failure to do so can lead the social
scientist to claim from his data more than is justified. For example, the weather-
man reports that the low temperature last night was 40°F, while the daytime
high today was 80°F. Am I justified in saying that today’s high temperature
was twice that of last night’s low? The answer is no, and it is important to
see why, but that comes later. First we must look at the steps in carrying out a
scientific experiment, then we consider four aspects of the theory of measure-
ment, and finally we present five types of measurement scale.

By the time you have completed this chapter, you should
be acquainted with the processes involved in carrying out a scientific
investigation;
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understand the distinctions between the four problems encountered in
measurement theory: representation, uniqueness, meaningfulness, and
scaling;

understand the differences between nominal, ordinal, interval, ratio, and
absolute scales of measurement.

7.1 Scientific inquiry

Contrary to the popular opinion of scientists as logical, methodical
creatures, following single-mindedly the investigation of some matter, science
is often conducted in seemingly haphazard fashion. Data collected today may
suggest a new theory to the scientist, leading him to modify his experiment. He
may try out a new idea by ‘pre-testing’ it, a procedure in which he carries out a
‘mini-experiment’ with inadequate controls, sloppy measurement and insuffi-
cient observations. This is when prior opinion is sharpened, measurement
techniques perfected, experimental design carefully worked out. It is often a
time when the scientist’s creative faculties are in full swing, and it may extend

The world ‘—Abstraction—-ﬂ Theories
Experimentation Modification Derilation
Data Interpretation Predictions
Fig. 7-1

Phases in a scientific investigation

over a few days or several years. Eventually, he carries out a well designed
experiment, in which information is collected in a systematic manner, and which
will, he hopes, reduce the scientist’s prior uncertainty. It is not uncommon for
a scientist to have carried out so much pre-testing that he is quite certain of the
results of his experiment, and he conducts his experiment mainly to enable him
to report his results in a manner acceptable to his profession. Research reported
in a journal is an end product that does not reveal very much of the trial-and-
error steps that led up to the study. Failure to appreciate this process can easily
cause the student in the social sciences to feel quite discouraged when the one-
term research project does not work out quite so neatly as the student had
hoped.

Behind this activity of the scientist, various phases can be identified.
These are shown in Fig. 7-1 (after Coombs, Tversky, and Dawes, 1970). Start
in the upper left corner. A scientist observes certain features of the world,
characteristics of people or societies, or properties of things, and he abstracts
certain features, building theories of the relationships among those features.
A theory may be expressed in words, in mathematical form, or in any other
symbolic system. A particular representation of all or parts of a theory is
often called a model. For example, the three probability laws and their corol-
laries can be considered mathematical models of those abstractions called
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probabilities. In this example, ‘the world’ consists of people with varying
degrees of belief, these degrees of belief are represented as numbers between
0 and 1, and a set of models (laws) is constructed to show how those numbers
operate. These models serve as an abstraction of a small portion of the world.

‘ Once we have a theory, or model, we can subject it to certain admissible
logical operations in order to derive new predictions. For example, the prob-
ability laws can be manipulated according to the logical rules of mathematics to
derive Bayes’ Theorem. We can predict how an individual will revise his opinions
in the light of new information.

Now go back to the upper left-hand box. The scientist engages in experi-
mentation which yields data. In our example he may carry out an experiment
on revision of opinion, like the bag-and-poker-chip exercise in Chapter 5.
The question is, did our subjects revise their opinions in the manner predicted
by Bayes’ theorem? The answer depends very much on our interpretation of
the data. If Bayes’ theorem predicts that posterior probabilities should be
0-85-0-15 in a particular case, and a subject assesses 0:83-0-17, is that close
enough to say that the model predicts reasonably well? If 50 subjects in the
experiment give various assessments whose average is 0-85-0.15, can we say
that Bayes’ theorem adequately describes the behaviour of real people? In
short, how closely must data match the predictions of a model? How big must
the mis-match be to justify rejecting the model ?

These are questions for statistics to answer, for we are asking the question,
‘What degrees of belief can I, the investigator, assign to the hypothesis that
the model is correct, now that I have gathered these data? In other words,
what is p(H|D)? Statistics helps us to assess the degree of fit between data and
model.

If we discover that the fit is not very good, we may wish to engage in some
modification of the model. We know from our bag-and-poker-chip experiment
that in that situation people do not revise opinions as Bayes’ theorem prescribes,
so we might wish to build a theory about the discrepancies between subjects’
probability assessments and those prescribed by Bayes’ theorem. This theory
might take into account psychological factors, like past experience in assessing
probabilities. Then with our new theory we develop a model which leads to new
predictions that can be tested with a new experiment, and so the process
continues.

If this were a book on the conduct of scientific investigations, you can
see it would have to cover more than statistics, for statistics is mainly concerned
only with the interpretation process in Fig. 7-1. To be complete, the book would
also have to discuss experimentation: how experiments are designed and carried
out, sometimes called ‘methodology’, and how measurements are made, which
will be discussed briefly in this chapter. A section on logic and deduction would
be necessary, for these are both involved in the process of derivation. Finally,
something should be said about problem solving and the creative process, for
abstraction and modification both involve the creative faculties of the scientist.

Of course, Fig. 7-1 gives an over-simplified view of the conduct of a
scientific investigation. Many of the processes are ‘going on all at once and
sometimes the directions of the arrows are reversed. Some processes, like
experimentation and interpretation, are not really independent but are closely
linked. Still, I hope that this discussion serves to illuminate the major steps
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in a scientific investigation, and, in particular, helps to show where statistics
fits in the grand scheme of things.

7.2 Problems in measurement

Perhaps a more accurate description of the process of measurement would
be to say that a correspondence is set up between properties of the world and
a number system. That way of describing measurement emphasizes the distinc-
tion between properties and numbers, and it is important to be clear about this.
When I observe the thermometer registering 80°F, I say, ‘The temperature now
is 80°F’, but I do not actually mean that the temperature and the number are
the same thing. The number represents, or stands for, temperature, and it may
or may not be true that anything I can say about numbers is also true of tem-
perature. The number 80 is certainly twice the number 40, but is the temperature
the 80 represents twice the temperature 40 represents ?

Recall the distinction made in Chapter 1 between fundamental and
derived measurement. In fundamental measurement a property, such as length,
is measured in terms of the same property, length. But in derived measurement
a property is measured in terms of a different property: temperature is measured
by height (of liquid in a tube), voltage by length (of the indicated position from
the reference position). In both types of measurement we use numbers to
represent properties, but in derived measurement the property represented is
not really the property we are interested in, which is the underlying property.
In what follows we will always be referring to the relationship between charac-
teristics of the numerical system and characteristics of the underlying property.
In the temperature example, I am not really interested in the relationship
between properties of the numbers on the thermometer and properties of the
height of the liquid, but I am concerned about the correspondence between
properties of numbers on the thermometer and properties of temperature.

In this section we look at the relationship between numbers and the under-
lying properties they purport to measure. There are four problems to consider.

a Representation. We first need to establish that a property we would like
to measure can be represented by some numerical system.

b Uniqueness. We next need to know how free we are in assigning numbers
to the property.

c Scaling. Then we have to construct a scale that will permit us to make
measurements.

d Meaningfulness. Finally, we must know what statements that are true of
the numbers we have assigned are also true of the property.

Representation and uniqueness

These are the fundamental problems of measurement theory. We need to
show that numbers can be assigned to properties and that relationships between
the numbers reflect corresponding relationships about the properties. To show
these things formally is not an easy task, and social scientists have mainly
ignored the problem. They usually proceed either by investigating only those
properties that are ‘obviously’ measurable, like proportion of people who hold
a particular attitude, or time to react in a given situation, or number of correct
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responses in a problem-solving task, or they assume with little or no formal
Justification that measurements of a certain type can be made, like 1.Q. or the
scores on most personality tests.

The formal approach to these problems is beyond the scope of this book,
though I can give some indication of the general line of thinking. It is to establish
certain self-evident truths, or ‘axioms’, about relations concerning the property,
then to prove formally that a numerical system exists for measuring the rela-
tions, and then to show that the characteristics of the property are reflected in
the characteristics of the numbers.

Suppose, for example, that I wish to measure intelligence, and 1 am
interested in the relation ‘more than’. Am I justified in saying that if person A
is more intelligent than person B, and if person B is more intelligent than
person C, then it follows that A is more intelligent than C? This kind of rela-
tionship is called transitivity and it would seem to be satisfied for intelligence.
Then it can be formally proven that a numerical representation for ‘more
intelligent’ exists. We call the numerical measurement 1.Q., intelligence quotient,
to distinguish it from the underlying property, intelligence. Notice that because
of errors in measurement, transitivity may not hold with respect to 1.Q. How
can we say that transitivity is true of intelligence ? From our theories of intelli-
gence. We must have a theory about the property we are measuring before
we can formally justify our measurement operations.

Now let us turn to the uniqueness problem. So far we have only established
that we can assign numbers, 1.Q.’s, to persons A, B, and C. If there are no
errors in our measurement, and A > B > C reflects the order of their intelli-
gence, then the 1.Q. of A must be larger than the 1.Q. of B and B’s 1.Q. must
be larger than that of C. Symbolically,

.Q.(A) > 1.Q.(B) > 1.Q.(C)

I could assign any numbers which show that same relationship; here are three
possibilities:

.Q.(A) = 110, 1.Q.(B) = 100, LQ.(C) = 90
.Q.(A) = 101, LQ.(B) =100, LQ.(C) = 99
LLA.(A) = 120, LQ.(B) = 100, [.Q.(C) =95

For all of these, the transitive relation is observed.

But now suppose I ask you to consider the differences in intelligence
between the people. Is the difference between A and B’s intelligences the same
as, less than, or greater than the difference between B and C? In other words,
can differences in intelligence be ordered, or is it impossible to make any
statement about differences in intelligence ? Here, again, we must rely on theory
to answer the question, but unfortunately theories of intelligence do not give
an unequivocal answer to the question. Some theorists would say that within a
specified range of 1.Q. scores it is possible to order differences in intelligence,
others would say it is not. Suppose, for the moment, that we can, and that the
difference between A and B is the same as that between B and C. Then, the
first two measurement schemes above would be permissible, but the third

would not because the equation

I.Q.(A)-1Q.(B) = 1.Q.(B)-1.Q.(C)
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is not satisfied. If on the other hand, the difference between A and B is larger
than the difference between B and C, then only the third scheme would be
satisfactory. So, this added restriction of preserving the ordering of differences
imposes constraints on the numbers I can use to represent intelligence over and
above the constraint imposed by transitivity. For this example, we would say
that any measurement scale can be used that preserves the ordering of intelligence
and the ordering of differences in intelligence.

This is an example of the formal approach to representation and unique-
ness. It is, however, not often applied because it is difficult to build theories
that enable us to answer questions of uniqueness and representation, and so an
empirical approach is more commonly used. This consists of assuming that a
particular scale of measurement is appropriate, and then checking to see that
predictions made on the basis of scale measurements are useful and not inter-
nally inconsistent. We turn to this approach next.

Meaningfulness and scaling

Although there is no limitation on the number of possible scales that
could be developed, just five are commonly used and discussed in the social
sciences: nominal, ordinal, interval, ratio, and absolute.

Nominal scales use numbers merely as labels. In the telephone directory
each name is associated with a number; the number ‘measures’ the person in
the sense that a label is provided. We could talk of the person whose telephone
number is such-and-such, but we would never consider adding, subtracting,
multiplying or dividing those numbers for any reason at all. We would not take
my telephone number and add it to yours and divide the sum by 2 to find
what our ‘average’ telephone number is. If your telephone number is higher
than mine, there is no sense in which you can be said to have ‘more’ than 1. A
nominal scale is used only to identify, like the numbers on the football player’s
jersey. In constructing a nominal scale we are free to use any numbers at all.

Ordinal scales use numbers to represent the orderings of the entities being
measured. The winners of a squash contest are rank ordered according to who
beat whom; the numbers 1, 2, 3, etc. indicate the relative standing of the winners,
so the order of winning is represented by the order of the numbers. But that is
all. It certainly is true that

2—1=3-2

if we think of those numbers just as numbers, but could we say that the difference
in ability between the first and second place players is the same as the difference
in ability between the second and third place competitors? Not necessarily.
The numbers serve only to show the rank ordering of the players. In constructing
an ordinal scale we may use any numbers at all provided that ordering is
preserved.

Interval scales preserve the rank ordering of differences in the property
being measured. Fahrenheit measurement of temperature provides a good
example. Suppose I measure the temperatures of three liquids, A, B, and C,
and I observe readings of 60°F, 40°F, and 35°F. The difference in temperature
between A and B is 20°; between B and C, 5°. A difference of 20 is 4 times as
great as a difference of 5; that is a true statement about the numbers, but is it
true of the property the numbers represent, temperature? The answer is yes,
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but we would need to know something about the theory of temperature and
heat to see why. Once an interval scale has been established, any linear trans-
formation of that scale will result in another interval scale. If measurement on
a Fahrenbheit scale is admissible, then it must be just as acceptable to measure
on a centigrade scale, for, as we saw in Chapter 5, one scale is a linear trans-
formation of the other.

In constructing an interval scale we are free to make two choices: the
zero point of the scale, and the unit of measurement. We can represent the
freezing point of water by zero, and then by representing the boiling point with
100, we have fixed the unit of measurement: there are 100 units between freezing
and boiling.

Ratio scales allow statements about the ratios of the properties being
measured. Length is an example. A board 6 ft long is twice the length of a
3 ft board. The numbers are in a ratio of 2, and the property these numbers
represent, length, is also in a ratio of 2. What about temperature? Consider
80°F and 40°F; are the temperatures those numbers represent in a ratio of 2?
We can answer the question by observing that the measurements could just
as well have been made in centigrade. Had we done that we would have observed
26-7°C and 4-4°C. Those numbers are certainly not in a ratio of 2. Since a
proposed statement about the underlying property is true under one scale but
not true under another equally valid scale, the statement must not be an admis-
sible one. In general, linear transformations do not preserve ratios of properties
being measured ; they preserve ratios of differences in the properties. We cannot
make statements about the ratios of properties measured on an interval scale.
Only when measurement is on a ratio scale can we confidently make statements
about ratios of the underlying properties.

In constructing a ratio scale we are free to fix only the unit of measure-
ment. The zero point is determined by theory. Measurement of temperature
on the Kelvin scale is an example; there, zero is defined as the point at which
molecular motion ceases. Once a ratio scale is established it can be transformed
into another, equally valid ratio scale by multiplying the original scale by a
constant. That changes only the unit of measurement, which was an arbitrary
choice anyway.

Absolute scales admit of no useful transformations at all. Counting is an
example. When I measure by counting the number of students out of 20 whose
fathers are in ‘white-collar’ occupations, I am applying an absolute scale of
measurement. Transforming the scale would make no sense because the zero-
point and unit of measurement are based on convention and long-standing

practice.

Determining the level of measurement

Prior to an investigation how does one determine the scale type? Is
measurement to take place at a low level, on a nominal scale, where only the
identifying characteristics of numbers are used, or is it to take place at a high
level, say on a ratio scale, where all the properties of numbers are used ? Unless
the theory you are testing enables you to provide a formal axiomatic analysis
to the representation and uniqueness problems, which is unfortunately all too
rare in the social sciences, then you will have to rely on a combination of theory,

logic, and empirical observation.
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To begin with, it will usually be obvious if the extreme scale types are to
be used. Labelling and counting are operations whose application is self-evident
in most situations, so it is not hard to justify using nominal and absolute scales.
The difficulty comes in deciding between ordinal, interval, and ratio scales.

Theoretical considerations may enable you to establish whether the zero-
point on the scale has any meaning. It is clear, for example, that zero 1.Q. has
no fixed interpretation, because 1.Q. is not thought of as an amount of something
in any absolute sense. 1.Q. is a relative measure that enables people to be
scaled relative to each other. On the other hand, absolute zero does make
theoretical sense when measuring temperature. If you can find justification for
the zero point, ratio-scale measurement is probably appropriate.

Logical argument in establishing the level of measurement relies heavily
on the fact that any inference you make based on the scale must remain true for
all admissible transformations of the scale. We saw an example of this with
temperature. An inference that one liquid is twice the centrigrade temperature
of another liquid is true only for measurement on the centigrade scale; since
the statement is false on a Fahrenheit scale, we reject the notion that Fahrenheit
and centigrade scales are ratio scales. However, ratios of differences of tem-
perature remain the same for all temperature scales; we can say that temperature
measured on Fahrenheit or centigrade thermometers is at the level of an
interval scale.

Empirical findings can sometimes serve as a guide to the level of measure-
ment. Suppose, for example, that two teams are to be formed from the top
four winners of a squash competition. The winners are ranked from 1 to 4,
and we wish to determine by empirical test whether those numbers really
represent ordinal- or interval-scale measurement. We proceed by matching
players 1 and 4 with players 2 and 3; the average rank of each team is then 25,
and since both teams have the same average rank we infer that the teams are
equally matched. We test the notion by having the two teams play several
matches. If each team wins about half the time then we might conclude that
the original ranks represent more than ordinal information, they also represented
roughly equal differences in ability so that the numbers represent interval
information. That conclusion would only be true for these players, however,
and many more experiments would have to be carried out to establish the general
nature of the scale.

Of course this example is not realistic; logical considerations alone would
be sufficient to reject the notion of ranks in athletic contests representing interval-
scale measurement. The point of the example is to illustrate the logic of the
empirical approach: assume a particular level of measurement is correct, make
predictions based on that assumption, and if the predictions are not substan-
tiated, reject the original assumption. What if the predictions do work out?
Then, following the reasoning in the section in Chapter 4 on hypothesis testing,
we are at least no less sure than when we started that the assumption is correct.
Several experiments later, confidence in the assumption may be strengthened.

Exercise 7-1
What level of measurement might be appropriate for scaling:
a Type of mental illness ?
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Gross national product?
1Q?
Social class?

Loudness?

Answers

Type of mental illness is a judgement about the category in which a person is
placed. If we associate numbers with the category, we have nominal measure-
ment. More commonly, verbal labels are used for the categories, for example,
depressive, paranoid, schizophrenic, etc.

If gross national product (GNP) is measured in the currency of your country,
it is only necessary to count units of that money to arrive at GNP. Although
counting is involved, measurement is not on an absolute scale because the unit
of measurement, a dollar, pound, etc., is arbitrary. The zero point makes at
least some theoretical sense, so measurement takes place on a ratio scale.

We have already said that zero 1.Q. has no theoretical meaning, so 1.Q. cannot
be measured on a ratio scale, but the decision between ordinal and interval scales
is difficult. No theory helps very much and different investigators using the
empirical approach have made different claims. So although 1.Q. is useful in
making predictions of many sorts, psychologists are not agreed about its measure-
ment status.

Social class is at least measurable on a nominal scale. The Registrar General
in England publishes an index of social class that gives both a 5-point and 7-
point classification on the basis of occupation. It seems fairly evident that
distances between social classes are probably not equal, if the concept has
meaning, and at least a rough ordering is implied. Again, theory and empirical
work have not established the level of measurement. For some purposes it
may appear only nominal, for others ordinal.

Loudness is an interesting example of a scale that could be interval or ratio
depending on how it is arrived at. In one method, called ratio estimation, a
subject is asked to assign numbers to tones presented to him. He is instructed to
use numbers that represent ratios of loudness so that if tone A sounds twice as
loud as tone B, the number assigned to A should be twice as big as that given
to B. The resulting scale is a ratio scale almost by definition. I say almost,
because if the subject cannot do what he is asked, then there is some doubt
about the level of measurement of the numbers he gives. Methods that are less
demanding of the subject can be employed that yield interval scales. Methods
for obtaining numerical measurements in psychology are discussed in more
detail in Hays (1967).

7.3 Measurement and statistics

This last exercise was partly meant to illustrate the difficulty in deciding

on the level of measurement. As new measurement techniques are developed,
new scales appear, in addition to the five mentioned here. This makes it very
difficult to give specific guidelines about how measurement theory can aid a
scientist in conducting an investigation, and I am not sure it should be done
anyway. The scientist involved in his subject is the person to judge the level of
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measurement; he must decide which of the properties of numbers represent
characteristics of the property being measured. As long as he is aware of the
general guides to consistency imposed by measurement theory, he is less likely
to say such things as ‘80°F is twice the temperature of 40°F’. At the present
state of development of measurement theory, thorough knowledge of the
empirical work done in an area as well as appreciation of theory are perhaps
the best guides to determining levels of measurement.

What implications does measurement theory have for statistical practice ?
Some authors have classified statistical methods according to the measurement
scale involved. Some statistics books are organized on this principle. Certain
procedures, they say, are most appropriate for ordinal data, others for interval
data, and so forth. The reasoning behind this classification is that if statistical
procedure requires you to perform mathematics on your data beyond the
admissible transformations required by the measurement scale, then that
procedure should not be used for that kind of measurement scale. For example,
if some statistical procedure requires you to compute averages, then that
procedure should not be used when ordinal measurement is used because it
will be difficult to interpret the result, as we saw with the squash teams.

This argument seems to me to be incorrect for two reasons. In the first
place, it is not very practical advice because of the difficulty in determining the
level of measurement. In the second place, it fails to recognize that statistical
theory is entirely neutral about matters of measurement. The formal statistical
apparatus requires only numbers as inputs; nothing is said about what the
numbers represent. If the experimenter wishes to use a statistical procedure on
ranks that requires averaging the ranks, he may do so, for there is no assumption
in the procedure that says it is reserved for interval-scale data or above. If the
experimenter, in his good judgement, feels he can meaningfully interpret the
result of the statistical procedure, then his use of the procedure is justified. As
was said earlier, statistics is concerned with the degree of match or mismatch
between predictions and data (Fig. 7-1), while measurement is concerned with
the representation of the world by numbers. The provinces of statistics and
measurement become linked too closely if one attempts to restrict the use of
statistical techniques on the basis of level of measurement. Interpretation of
statistical results may be easier if the restrictions are followed, but this is not
always true, and sometimes violation of the restrictions still leads to relatively
straightforward interpretation. While I agree that it is easier to represent pro-
perties of the world with numbers than it is to interpret from statistical results
back to the world, I do not think that interpretation is well served by limiting
statistical procedures to certain levels of measurement.

Measurement in the social sciences is usually not higher than interval
scale. Most of the statistical methods in this book apply to interval-scale
measurement, some to nominal and ordinal scales. The book is most lacking
in methods for rank-ordered data because appropriate Bayesian methods have
not yet been worked out. This is an area where specifying a prior distribution
has given statisticians some trouble, but it is hoped that the problem will soon
be solved. In the meantime, you will have to learn enough of non-Bayesian
methods to be able to use order statistics. Chapter 13 should give you sufficient
background to be able to use books about order statistics such as the elementary
exposition by Siegel (1956).
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7.4 Summary

Conducting a scientific investigation involves the scientist in abstracting
a few features of the world and creating a theory about those features. He may
find it useful to translate all or part of the theory into a formal model. From the
theory, or model, predictions are made, and these predictions are compared
to observations made in an experiment.

Statistics, as a subject, is concerned with the degree of match between
predictions and observations. Measurement is the process of assigning numbers
to observations, while the relationship between characteristics of those numbers
and the underlying properties being measured is the realm of measurement
theory.

The fundamental problems of measurement theory are representation,
establishing that a numerical representation is possible for the characteristics
of the property being measured, and uniqueness, showing what limitations
exist on the assignment of numbers to the properties. The formal approach to
these two problems is to establish axioms concerning characteristics of the
property, and then to prove that a numerical representation with certain
limitations exists. This also helps to establish the meaningfulness of the scale
and often points the way to methods of constructing a measurement scale. The
empirical approach is to assume a particular level of measurement and then to
see that predictions made on this basis are substantiated by experimental test
and do not lead to contradictions.

Five scales of measurement are commonly used. A nominal scale does
nothing more than categorize observations. An ordinal scale shows no more
than the ordering of observations. An interval scale also preserves the ordering
of differences between observations, so that statements about the ratios of
differences in properties can be made. A ratio scale allows statements about the
ratios of the properties themselves. An absolute scale is wholly determined.
Linear transformations of interval scales and multiplicative transformations of
ratio scales are permissible, while no transformation of an absolute scale is
acceptable.

Determining the level of measurement may be difficult in a particular
situation; the decision must be made by the experimenter on the basis of his
knowledge of theory and empirical work relevant to the problem at hand.
Tying statistical procedures to levels of measurement produces too much
constraint on the scientist’s judgement. Statistical methods are neutral about
questions of level of measurement; the problem of interpreting statistical
results is in the hands of the scientist and should be decided on extra-statistical

grounds.

Problems

7-1 What scale of measurement is appropriate for measuring time?

7-2 Do measurements made at the level of a ratio scale preserve interval, ordinal,
and nominal characteristics ? Show why or why not.

7-3 For your major course of study, give examples of nominal-, ordinal-, interval-,
and ratio-scale measurement.
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7-4 For your major course of study, give an example of a property for which there
is no satisfactory numerical measurement procedure. Why is this so?

7-§ Choose some theory that interests you from your major course of study and
comment on the four problems of measurement as related to the theory.



g - Frequency and
probability
distributions

Up to now we have discussed how prior opinion about some uncertain
quantity can be expressed as a probability distribution, and we have considered
problems in measuring that uncertain quantity. Always we have in mind some
population about which we wish to make an inference after we have obtained
a sample from the population. Now it is time to consider how the sample is
selected and how we can describe the data we obtain.

By the time you have finished this chapter you should

recognize the importance of translating theoretical propositions into
operational terms;

understand the principle of random sampling;

know how to summarize data as a histogram, frequency polygon, or
probability distribution;

understand the relationship between theoretical distributions and
populations.

8.1 Preliminaries

One day a student in one of my statistics classes who had been struggling
with the material for several weeks, cried out in despair, ‘Most of us haven’t
the faintest idea what you’re talking about; we’ve been lost for weeks!” I asked
him how he knew that and he replied that he had talked to several of his friends,
all of whom agreed they were lost. The opportunity seemed ripe for restoring
some perspective to the course, and also for illustrating how a scientific investi-
gation proceeds. I suggested that we put his statement to the test to see if it was

true.

Operationalizing

The class discussed how we might see if the student’s statement was
accurate. The only restriction I imposed was that we treat the class as a popu-
lation and draw a sample to make an inference. That ruled out a simple show
of hands as a means of settling the issue. The discussion went something like

this:
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‘Why don’t we just write on a piece of paper whether or not we’re lost,
draw a sample, and then make an inference about the true proportion of
papers with “lost” on them?’

‘That’s a good idea. Let’s do that.’

Sound of many pieces of paper being torn. Someone interrupts: ‘Actually,
I’'m not completely lost. Just a little lost. I was O.K. up to last Friday’s lecture.
What should I write?

‘I'm having trouble, too. Maybe we should consider what we mean by
“lost”.’

‘I agree. And we ought to decide how long we’ve been lost. I was following
up to a week ago when I became ill, and I've had trouble catching up since
then.’

Much discussion followed. Eventually this criterion was suggested:
Write ‘lost’ if you have understood less than about 509 of the material over
the past two weeks. Discussion continued.

‘That’s O.K. if you’ve been following. But if you haven’t, you may not
know that you’ve missed something, so are in no position to judge the 509;.’

Pause. Then someone suggested: ‘Let Dr Phillips make up a test covering
the work of the past two weeks. If you pass, you aren’t lost.’

[ said, ‘Who’s to say what the pass mark is, and how difficult the test
should be?

Another pause. Eventually discussion resumed on the question of the
test, and it was finally decided that I should use my experience to construct a
test of moderate difficulty and the pass mark would be 509. I did not actually
do it because by then the major point had been made: Theoretical statements
must be translated into operational terms before measurement can proceed. The
general statement about students being lost for weeks was not specific enough
to tell us how to take measurements. As a first step in operationalizing, it was
agreed to inquire about the proportion of students who were lost, and as a
second step the idea of ‘lost’ was defined as: Failure to pass at the 509 level a
moderately difficult test covering the past two weeks work. (The term ‘moder-
ately difficult’ could have been made more precise.)

At this point we were ready to rephrase the original statement in the form
of a prediction. All that remained was to operationalize the phrase, ‘most
of us . . .. We finally settled for ‘over 759% of us . . .". So, our operationalized
prediction was ‘over 75 9 of the class will fail to pass, at the 50 % level, a moder-
ately difficult test covering the past two weeks work’. Quite a difference from
the original statement!

Now, you may feel that something has been lost from the original com-
plaint: ‘Most of us haven’t the faintest idea what you’re taking about ; we’ve been
lost for weeks!” The connotative meaning has changed from a complaint to a
fairly precise prediction. The cost of increased precision is usually a loss in
connotative meaning and that is why scientists are sometimes accused of know-
ing more and more about less and less. Yet, to proceed with a scientific investi-
gation it is necessary to be precise; the tradeoff between richness of meaning and
precision is difficult to make, and is often a matter of personal style. Some
social scientists opt for a broad picture, and may be criticized by their more
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precision-minded colleagues for being ‘sloppy’, and the scientist who is careful
to be precise may be accused of studying trivia. Other scientists cleverly design
meaningful studies that are quite precise. Still others move from one camp to
the other in carrying out a series of investigations. Whose strategy is best? At
this youthful stage of development of the social sciences, I prefer to hedge my
bet; I will put a little money on each.

Sampling

During one class I asked my students to write ‘pass’ or ‘fail’ on a slip of
paper depending on whether or not the last quiz had been passed. The slips were
collected, I drew out a sample by mixing the papers and pulling one out without
looking, noting the word on the slip, returning the paper, mixing, drawing and
so forth for 10 draws. I calculated the 95 9 credible interval on my Beta posterior,
checked it against the true proportion obtained by noting all the papers, and—
the interval completely missed the true proportion! Bad luck, I thought. After
all, there was a 59/ chance that the true value would fall outside the interval,
so I repeated the process. Again it missed the truth! Twice in a row seemed too
unlikely (0-05 x 0-05 = 0-0025, to be exact!).

My suspicions were confirmed when I sorted the papers into two piles,
the passes and the fails. Of the few students who had failed, almost all had
handed in very small slips of paper. And the pass pile contained some very
large pieces. When drawing a sample, my fingers had missed the smaller pieces,
even though I had been trying not to be influenced by the size of the paper.

The experience illustrates the importance of considering sampling pro-
cedures in carrying out an experiment. The procedures in this book all assume
that sampling is random, that is, that each element in the population has an
equal chance of being selected. ‘Equal chance’ has the same meaning as when
it is applied to elementary events in a simple experiment (Section 2.1); if
you had to place a bet on the occurrence of any one particular elementary
event, you would be indifferent about the one on which you actually placed
your money. This is a matter for judgement, to be decided by examining all
relevant facts concerning the sampling process. Ideally, the scientist arranges
his experiment so that the randomness of his sampling procedure is not in
question. This is accomplished by the simple experiment introduced in Chap-
ter 2, and it is why I now have my students write ‘pass’ or ‘fail’ on identical
3in x 5in cards, which are thoroughly mixed in a container.

Unfortunately, the world does not allow random samples to be obtained
for most investigations in the social sciences. If you are studying memory
processes in people, you just cannot get a random sample of all people in the
world. If you are trying to find out the nation’s preferences among presidential
candidates, a random sample of all people in the country would be too expensive
to obtain and would presume that you had a list somewhere of all people with
their correct current addresses.

The randomness of a sample is impossible to ensure when the population
is ill defined. As an example, consider an experiment in which repeated observa-
tions are taken on a single individual. The observations are taken as a sample
of all possible responses, past and future, the subject could give. Here the
investigator takes a sample of some particular aspect of an individual’s beha-
viour so as to make a generalization about the person. The population consists
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of past and future responses, so how can the randomness of the sample be
guaranteed ?

Social scientists have coped with the difficulty in obtaining random
samples in a number of different ways. A common response has been to ignore
the problem. Many journal articles report statistical inferences without men-
tioning the characteristics of the population to which the inferences are pertinent.
This is, obviously, not a very satisfactory procedure.

Another answer is to note that for some studies concerned with some
topics, any sample can be considered sufficiently representative to be treated
as a random sample. For some studies of human memory, there is no theoretical
reason to believe that volunteers would respond differently than non-volunteers,
that men would behave differently than women, or that college students would
give different results than people not in college. This is a reasonable approach
provided there is theoretical justification. But too often, investigators have
chosen college students as subjects just because they are readily available.
Indeed, psychology in particular has been accused of being ‘a science of the
college sophomore’, and many words have been spilled urging investigators to
broaden the representativeness of their subject populations.

Perhaps the best approach is to choose as diverse a sample as possible,
ensuring that it is at least ‘haphazard’, and then figure out what population the
sample came from. An investigator may select cards at random from the card-
file of volunteer subjects maintained at his university, and then construct a
description of the population which would make his sample a reasonably
random one. If he finds his sample consists entirely of middle-class students,
and he thinks his findings might be different for other social classes, that
then he defines his population as consisting of middle-class students. Of course,
if social class could make a difference, the investigator might make social class
an independent variable in his study; he may, for example, select cards at
random, assigning students to groups according to their social class, until each

social-class grouping has an equal number of subjects.

There are many more ways of ensuring random-appearing samples such
as stratified sampling, but these methods belong more to a book on experimental
design than to a book on statistics. For our purposes we will always assume
that a sample is random-appearing, that the experimenter knows he is behaving
as if the sample is random. If he is not willing to admit that, there is no point
in using inferential statistics at all.

There is another sense in which randomness helps to ensure that experi-
mental results are representative of the population. Imagine an experiment
designed to determine the effects of some new drug on the ability of rats to
learn how to run through a maze. First the investigator ensures that with respect
to natural ability to learn mazes he has a random sample. If he failed to do this,
he might end up with a sample of mostly ‘maze-dull’, or mostly ‘maze-bright’
rats, and if the drug affects those two groups differentially (improves the maze-
dull rats, but not the others, for example), then he could draw the wrong
conclusion.

Next, the investigator assigns rats randomly to the group to receive the
drug and to the group that receives a placebo If he did not do this, he might
unknowingly favour some rats over others in determining who was to get the
drug, and thereby bias his results.
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Thus, both random sampling, and random assignment to treatments are
necessary to ensure that experimental results can be generalized to the
population.

In addition to random sampling, two other assumptions are made by all
the statistical methods in this book. One is that observations are independent;
the other is that the population is stable with respect to the attribute being
measured. We discussed independence in Chapter 3; as applied to a sequence
of observations, independence is assured if the outcome of any one trial or
observation is not influenced by the outcome of previous trials or observa-
tions. A stable population is one where the attribute being measured does
not change while it is measured. The true value of the uncertain quantity does
not change part way through the measuring process.

When we have formulated operational definitions and when we are clear
about our sampling procedures, then we are ready to collect some data.

8.2 Frequency distributions

For a simple experiment each elementary event is paired with the event
class to which it belongs. In similar fashion, the scientist pairs his measurement
with the element sampled from the population. If he is sampling American

Table 8-1 Raw data for three investigations

Swimming pools Social class R & D expenditure
School Pool Name Class  Company Amount,$
Birmington No Barnett 4 IPE 950,000
Aylesburgh Yes Aymen 3 Norwood 20,000
Yeschester Yes Sparks 3 Thames 125,000
Elton Yes Idleman 5 Hewitt 73,000
Sudbury No Sherwin 2 Edgerton 55,000
Trulyville Yes Foster 4 Light 370,000
Hampwellaca No Otley 2 International 2,300,000
Earlyworm No Reaper 3 Gorman 15,000
Orangeburg Yes Roydon 4 Heatamatic 210,000
Restange No Eaton 4 Tensor 3,000
East Morgantown No Vessick 1 Opal 65,000
Middleborough No Ingram 3 Farmingham 87,000
Tomlinton No Story h) Newton 450,000
Hurlyburt Yes Inkster 3 Elastic 22,000
East Pampton No Oglethorpe 4 Westmate 0
Nabor 3 Ingraham 5,000
O’Connor 1 Nominal 7,000
Finch 5 Force 115,000
O’Malley 3 Overboard 28,000
Parsons 2 Restman 96,000
Ivy 4 Maplewood 48,000
Newcomb 3 Ascention 0
Isis 3 Timely 79,000
Oldenburg 2 Interplay 1,000
Nutter 4 Organic 88,000

Nested 36,000
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high schools and observing whether or not they have a swimming pool, he pairs
the name of the school with ‘yes’ or ‘no’. If he is sampling people and deter-
mining their social class, he pairs each person’s name with his social class. If
he is sampling corporations in an area and measuring the amount of money
they spent on research and development last fiscal year, he pairs the name of the
corporation with an amount of money. In every case he is specifying a function.

It is more economical and more instructive to condense each listing
according to the number of elements that fall into similar event classes: the
numbers of high schools that do or do not have swimming pools, the numbers of
people in each social class, the numbers of corporations whose expenditure
on R & D fell within a particular range. In summarizing the data this way we
lose the original identification with the elements of the population, so we lose
some information, but we gain in being able to grasp at a glance what the data
are saying.

A list showing the number of elements falling in each event class is called
a frequency distribution, while a graphical picture of a frequency distribution
is termed a histogram or frequency polygon. Some hypothetical data for the
three cases just mentioned are shown in Table 8-1. Each element is paired with
an observation or measurement, so each table is a listing of a function. Next
we consider various ways of summarizing these data in more convenient forms.

Ungrouped and grouped frequency distributions

It is difficult to get a very comprehensive picture by examining these raw
data in this form, so they have been shown as frequency distributions in
Table 8-2. Here f stands for frequency.

Table 8-2 Frequency distributions for the raw data in Table 8-1

Swimming pools Social class R & D expenditure
Pool? f Class  f Amount
Yes 6 I(upper) 2 200,000* 5
No 9 2 4 175-199 0
— 3 9 150-174 0
N =15 4 7 125-149 1
5(lower) 3 100-124 1
— 75-99 3
N =25 50-74 4
2549 3
0-24,000 9
N =26

The first two distributions were obtained simply by counting the numbers
of yeses and noes and the number of 1’s, 2’s, etc. The third frequency distri-
bution is the result of an intermediate step, where each amount in Table 8-1
was ticked off against the range of values that included it (see Table 8-3).
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Notice that for all distributions the event classes are mutually exclusive;
none of them overlap. If an expenditure falls in the 50-74,000 category it cannot
fall in any other category. Also, the sum of the frequencies must equal the total
number of observations.

Table 8-3 Tallies for the R & D data

Class interval f
200 + AHT
175 —199

150 — 174

125 —149 |
100 —124 |
75 -99 I
50 — 74 il
25 —49 i

0 - 24 e

The first two distributions are called ungrouped frequency distributions
because no grouping of the data has been carried out. If the social class data
were compressed into, say, upper class (1), middle class (2 and 3), and lower
class (4 and 5), then the result would have been a grouped frequency distribution.
The distribution for R & D expenditure is another example. Grouped frequency
distributions are necessary whenever the data can fall in any of a great number
of categories. Class intervals are chosen so that no observation can fall between
adjacent intervals, and so that all intervals, except possibly the first or last ones,
are of equal size. It is common practice to choose between 10 and 20 intervals;
that gives a reasonable balance between the amount of detail in the data that is
preserved, and condensation of the data to ease interpretation. It 1s also usual
procedure to place the highest values at the top of the list and the lowest ones
at the bottom.

Histograms

A frequency distribution gives an even clearer picture of the data when
it is shown pictorially, as a histogram. Examples for our three imaginary
investigations are shown in Figs 81, 8-2, and 8-3. A few comments should be
made about Fig. 8-3. The x-axis has been marked off with the midpoints of the
intervals. The midpoint of any interval is the value that falls exactly in the
middle of the range of possible values. Marking the interval itself makes the
x-axis too cluttered and hard to read. Notice that the top interval has been
‘cut off’ from the x-axis to stand alone, and the interval itself, 200+ " has been
indicated. The break in the x-axis reminds the reader that this interval is not
equal to the others, that all the data from $200,000 upward are compressed
into one bar.

Each profession, and even each journal, seems to have its own standards
for drawing histograms. The only general guide I can suggest is to look at your
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R&D expenditure of 26 companies

completed graph to see that it conveys an unexaggerated picture of the data.
Distortions of the y-axis can easily create the wrong impression. If one person
wishes to show that there are about equal numbers of companies spending a
little on R & D as a lot, he can draw the histogram shown in Fig. 8-4. He does
not bother to label the y-axis, and he neglects to detach the extreme right
interval. But if someone else wants to show that most companies are either
spending very little or a great deal, he stretches the y-axis, as in Fig. 8-5.
There are many ways in which graphs of data can mislead. An amusing dis-
cussion of the possibilities is given by Huff (1954), who also talks about how
the descriptive statistics presented in the next chapter can be ‘mendacious

truths’.
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Exercise 8-1

The scores of 50 subjects on a particular test were obtained. Here are the raw

data:

Subject Score Subject Score
1 73 26 71
2 79 27 75
3 72 28 71
4 60 29 63
5 69 30 60
6 70 31 73
7 72 32 76
8 83 33 72
9 66 34 55

10 74 35 70

11 81 36 64
12 53 37 79
13 60 38 80
14 82 39 67
15 75 40 84

16 73 41 82
17 74 42 58
18 60 43 77
19 84 44 61

20 80 45 66

21 65 46 65

22 77 47 69

23 71 48 67

24 73 49 89

25 79 50 65

Draw a histogram of these data.

Answer

The scores range from 53 to 89, or 37 units, including the extreme scores. If a
class interval of size 3 is chosen, then the range can be covered in 13 intervals.
Construct a frequency distribution:

Class interval Midpoint f

88-90 89 |

85-87 86

82-84 83 H+
79-81 80 |
76-78 77 1t
73-75 74 HHt it
70-72 71 HH
67-69 68 it
64-66 65 4|
61-63 62 I

55-57 56

58-60 59 HHt
|
52-54 33 !
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Draw this as a histogram:

Frequency

3 56 59 62 65 68 71 74 77 8 83 86 g9

Test Scores

Frequency polygons

When measurements are made in numbers that can represent a continuous
variable, it is often more convenient to draw a frequency polygon than a histo-
gram. The principle of construction is the same as for a histogram, only the
frequencies are connected with straight lines rather than being represented by
vertical bars. An example is shown in Fig. 8-6.

60—

Frequency
o
o
1

20+
10
0 T T T T T T T T T T T T
24-5 30-5 36-5 425 485 545 605 065 725 785 845 905
Flg 8-6 Time, seconds

Time to complete a mechanical manipulation task for 200 subjects
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Fig. 8-7
Data as for Fig. 8-6 after 1000 observations

Now imagine that the mechanical manipulation task was given to 1000
subjects, and more class intervals were used in drawing the frequency polygon.
Rescaling the y-axis to maintain the same proportions as Fig. 8-6 might result
in the graph shown in Fig. 8-7. With even more observations, and still more
intervals the curve would become smoother and smoother, so that a con-
tinuous curve could be faired through the points, as in Fig. 8-8.

Fig. 8-8

Data as for Fig. 8-6 after a great many observations

Exercise 8-2

Draw a frequency polygon for the data in Exercise 8-1.
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Answer

Here is a possibility:
8-
7
6

Frequency
L I s
| 1 | | l

(==

T 1 T T T T 1 1 1 1
53 56 59 62 65 68 71 74 77 80 83 86 89

Test scores

8.3 Probability distributions

We have already met probability functions as applied to prior and pos-
terior opinion; probability density functions pair probability density with values
of the unknown quantity, and cumulative probability functions pair cumulative
probability with values of the unknown quantity. I could have talked about
probabilities assigned to hypotheses or events as probability functions, too.
When prior probabilities are assessed for a set of hypotheses, a probability
function has been established. The listing in Exercise 3-1 is a probability
function; it pairs events with their probabilities:

Event Probability

man is a policeman 0-3
man is a traffic warden 0-4
man is a bus conductor 0-2
other possibility 0-1

I could draw that as a graph with 4 bars of height 0-3, 0-4, 0-2, and 0-1.

Any probability function is a probability distribution, provided that the events,
hypotheses or uncertain quantities are mutually exclusive and exhaustive.

What is the relationship between a probability distribution, which has
thus far been used to describe opinion, and a frequency distribution, which has
been used to describe data? Imagine that the 25 names in the social class
investigation were written on identical cards, the cards were mixed and one was
drawn at random. What is the probablhty of obtaining a person in any parti-
cular social class? The frequencies in Table 8-2 can serve as the basis for
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assigning probabilities to each of the five event classes; divide each frequency
by 25:

Class p
0-08
0-16
0-36
0-28
0-12
1-00
The original frequency distribution has become a probability distribution that
applies to the outcomes of a simple experiment. In general, any frequency
distribution of N observations can serve as a basis for a probability distribution,
and when the concept of a simple experiment applies the probabilities are
assessed by dividing each frequency by the total N.

W W -

8.4 Theoretical distributions and populations

Now we bring together the concepts in the two previous sections to
clarify the notion of a ‘population’.

Populations

Suppose our concern is the 1.Q.’s of all students presently attending
American colleges and universities. Imagine that I can accomplish the Herculean
task of giving every student in the population an 1.Q. test. I could then construct
a frequency distribution, which, because there are so many cases, could be
smoothed. It might look like this:

1Q

Imagine, now, the simple experiment of selecting a student at random and
measuring the student’s [.Q. We are then justified in changing the frequency
distribution to a probability distribution. The resulting distribution would look
just like the frequency distribution, but now it could be used to describe uncer-
tainty about the possible outcomes of the simple experiment. This probability
distribution now provides a complete description of the population, and so is
often referred to as the population distribution. The collection of individuals
whose 1.Q.’s were measured is referred to as the population. Sociologists often
use the term sampling frame instead of population.

Theoretical distributions

Sta.tistical methods place considerable emphasis on populations whose
distributions can be specified by a mathematical function rule. So far we have
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used functions like the Beta and normal to describe opinion; now we use them
to describe populations as well. We can, for example, describe the distribution
of 1.Q.’s in the general population of people as being normal with a mean of
100 and a standard deviation of 15.

[t is important to forestall confusion at this point by introducing a new
term and summarizing some old ones. From now on, if I wish to refer to a
normal, Beta, or any other probability distribution without reference to its
application, the term theoretical probability distribution will be used. When a
theoretical probability distribution is used to describe prior or posterior opinion,
such terms as ‘normal prior’, or ‘Beta posterior’, will serve as convenient jargon.
When it is necessary to refer to the population distribution, I will say, ‘the
population is normal .

When a population distribution is known it can serve to generate a
theoretical frequency distribution applicable to simple experiments. The fre-
quency expected in each class interval is obtained by multiplying N, the total
number of observations in the experiment, by the probability associated with
the class interval.

Exercise 8-3

The following theoretical probability distribution characterizes a particular
psychological test that has been in use for many years and has been administered
to a great many people.

Score interval p

10-14 0-09
15-19 0-24
20-24 0-34
25-29 0-24
30-34 0-09

An investigator administers the test to 200 people. If the sample is random,
what frequency distribution can he expect?

Answer
It is only necessary to multiply each theoretical probability by 200. Here is the
result:

Score Expected

interval f

10-14 18

15-19 48

20-24 68

25-29 48

30-34 18

Unknown population

Usually, certain aspects of the population are unknown to us; that is why
an investigation is carried out. We may have a rough idea that the population
is normal, but we do not know what the mean and standard deviation are, so
we set up an experiment to find out. The unknown mean and standard deviation
are treated as uncertain quantities about which we wish to make inferences.
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Suppose I wish to find the mean of a normal population. I consider the
mean as an uncertain quantity, and I find that my prior opinion about it is
normal. An experiment is carried out and my posterior distribution is found
to be normal. Four distributions are involved:

the normal population;
the normal prior;
the distribution of the data;

the normal posterior.

Each of those distributions can be described by statistics. It is common
practice to use the symbols for the parameters in referring to the mean and
standard deviation of a normal population, and since the statistics of a normal
density function are equal to the parameters, the convention will be followed
here. Recall that the mean and standard deviation of the prior and posterior
are signified by m and s, with either a single or double prime. Finally, we will
refer to the mean and standard deviation of data as M and S; their calculations

will be discussed in the next chapter. These symbols are summarized in
Table 8-4.

Table 84 Symbols used to designate statistics of distributions

Distribution Mean Stapdt.zrd
deviation

Normal population o

Any prior m’ s’

Any posterior m” s’

Any data M S

Usually, though not always, lower case Greek letters will be used to
designate unknown quantities, lower case Roman letters to designate para-
meters and statistics of distributions of opinion, and upper case Roman letters
to refer to data.

From now on you will have to pay close attention to the symbols being
used 1n order to avoid ambiguity. To see why, consider the values on the hori-
zontal axis of each of the four distributions. For the population, it is the X -scores
of all elements in the population; every possible X-score is represented. The
unknown mean of these scores is g, and it is the value of this quantity we wish
to infer. Thus, the horizontal axis of the prior shows all possible values of u.
When we think of p with respect to the population, it has only one value, but
since that value is unknown to us we show it as capable of taking on any one
of a whole range of values when we represent it on the horizontal axis of the
prior or posterior distributions. For short, the horizontal axes of the prior and
posterior are labelled ‘u-values’. The horizontal axis of the distribution of data
is, like the population, X-values. All of this is shown in Fig. 8-9.
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Fig. 8-9
Distributions and their statistics involved in making inferences about the unknown mean
of a normal population

Exercise 84

What labels and distributions in Fig. 8-9 would be different if inferences about
the standard deviation of a normal population were being made?

Answer

Neither population nor data distributions would change. However, the hori-
zontal axes of the prior and posterior would read ‘o-values’ and the shapes of
the distributions would be different.

The symbols for the prior and posterior means and standard deviations would be
unchanged, but their values would be different than before.

Be sure you are clear about Fig. 8-9, and refer back to it whenever
distributions start swimming around in your head.

8.5 Summary

Theoretical statements must be expressed in operational terms before
measurements can be made to test the theories. The investigator often has to
find a balance between a precise operational statement and one that contains
extensive connotative meaning.

Once operational definitions have been made, the scientist can choose a
random sample and take his measurements. Because it is so frequently impos-
sible to obtain a truly random sample, the investigator must at least select a
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‘haphazard’ sample and then describe the characteristics of the population for
which the data might be considered a reasonably random sample.

All the inferential procedures in this book assume that the scientist
proceeds as if his sample is random. They also assume that observations are
independent and that the attribute being measured is stable, that is, it does not
change while measurement is taking place.

Once measurements have been made the raw data are represented in
tabular form as a function that pairs the element of the population being
sampled with a measurement. This function can be summarized as an ungrouped
or a grouped frequency distribution, which shows the number of elements
falling into each event class. Histograms and frequency polygons are graphical
representations of frequency distributions. In drawing a graph, one must
ensure that it does not present a misleading picture of the data. A frequency
distribution based on a great many observations may be smoothed to give a
continuous curve. A probability distribution can be obtained from a frequency
distribution provided the concept of a simple experiment applies.

When a frequency distribution applies to the entire population, then the
probability distribution derived from it is called the population distribution.
A population distribution can serve to generate an expected frequency distri-
bution applicable to a simple experiment.

It is important to distinguish between the population distribution, the
prior and posterior distributions, and the distribution of data obtained from
the sample.

Problems

8-1 Give at least one operational reformulation of each of the following statements
(page numbers after each statement refer to sections of McKeachie (1969) in
which relevant research is reviewed ; you may wish to compare your reformulations
with those of investigators who have conducted research on the topics):

Live lectures are better than televised ones (pp. 100-109).

b Students do better work in classes where the instructor takes a personal interest
in students (pp. 197-198).

c Student-centred teaching is more effective than instructor-centred teaching
(pp. 65-78).

d Small classes are more effective than large ones for bringing about changes of
attitude (pp. 33-36, 160-167).

e Anxiety interferes with good performance on exams (pp. 198-200).

8-2 A student consults the bank statements for his account to find out how many
times he was overdrawn in 1971, and for how long each time. He records the
number of days overdrawn for each occurrence. They were:

1, 4 1, 1, § 1, 3, 10, 3, 6

Draw a histogram of these data.

Construct a frequency polygon for these data.
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Problems 179

Here are the average amounts spent per week on drink and tobacco by 30 students
during term time:

£1-50 £0 £1-50 £0-25 £1-00
050 O 075 025 025

0 0 0-50 050 035
200 O 0 1-00 O
0 1:00 025 O 0
025 050 0 0 0

Construct a grouped frequency distribution.

Draw a histogram.

Draw a frequency polygon.

Which of the three displays that you have drawn conveys the clearest impression
of the data?

Students completed a test of religious knowledge and a test of numerical ability
as part of a laboratory project entitled ‘Distribution of Human Variables’
(the project is discussed in Wakeford, 1968). Here are the frequency distributions
for scores on the two tests:

Religious knowledge Numerical test
Score f Score f

20
18
16
13
12
11
10

54
52
51
48
47
46
45
43
42
40
39
38
37
36
35
33
32
31
30
28
27
26
25
24

Draw histograms or frequency polygons for these data.
How would you describe the general shapes of the two distributions ?
How might you account for the shapes of the distributions ?

NAUVARIIPRADNN=RA=W—~DN
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The students mentioned in Problem 2-1 who carried out a postal survey of
attitudes to traffic were interested in comparing the percentages of replies in
each social class with the percentages of people known to be in each social
class. In that way they could check on the possible under- or over-representation
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of replies from different social classes. The study was carried out late in 1971,
too soon for the 1971 Census data to be consulted, so they used the 1966 Census
as the source for social class data in the areas they surveyed. Here is the break-
down of people according to social class as given by the 1966 Census:

Social class ~ Lereentage
of people
1 7-96
2 893
3 non-manual 46-79
3 manual 16-12
4 14-18
5 6-02
a If the 385 people who responded to the postal survey were representative of the

social classes given in the 1966 Census, how many people would you expect in
each social class?

b Compare these expected data with the data actually obtained (Problem 2-1).
Is there any evidence that the survey was answered by an unrepresentative
sample of people ? (This question will be answered more precisely in Chapter 14.
See Problem 14-2 at the end of that chapter.)



9 - Computing
statistics on data

In the previous chapter we saw how to present data in pictorial form;
now it i1s time to consider descriptions of data that are even more economical
than histograms or frequency polygons. These descriptors are called sratistics
and they have the same meaning for data as they do when we use them to
describe prior opinion. However, we can calculate statistics for data from the
data themselves, while for prior and posterior distributions they are usually
either an expression of the scientist’s judgement or they are calculated from
the parameters.

Statistics summarize data. With just a few statistics we can communicate
long lists of data, short-cut involved descriptions, find meaning in a jumble
of figures. In addition to describing data, statistics play an important role in
making inferences. It is always possible to use raw data in applying Bayes’
theorem, but such a procedure is both cumbersome and unnecessary. If we
compute the right set of statistics from our data, it is possible to use the statistics
rather than the original data as inputs to Bayes’ theorem, along with prior
probabilities, to arrive at a posterior distribution. In other words, all the infor-
mation we need from our data to enable us to arrive at a posterior distribution
is contained in just a few statistics. We don’t need all the information in the
raw data, the information summarized by the statistics is sufficient. Those
statistics that contain enough information about the data to enable us to
compute the posterior distribution are called sufficient statistics. Various com-
binations of the statistics covered in this chapter will serve as sets of sufficient
statistics at one time or another, as will be seen in Chapters 11 and 12. Thus, it
is necessary to know how to compute statistics on data before inferences can
be made.

Calculating statistics for data can be a tedious chore if very many obser-
vations are taken. Fortunately various devices are at your disposal to lighten
the task. You should at least have access to an electromechanical or electronic
calculator. This is a desk-top machine which, in its simplest form, makes easy
work of adding and subtracting long columns of figures, and can simplify
multiplying and dividing. More complex calculators have memories that enable
you to store for future use intermediate steps in your calculations, and they have
other mechanisms or circuits that reduce fairly complex operations, like taking
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a square root, to the push of a button. At their most sophisticated, these cal-
culators have several memories of modest capacity and can be programmed
like a computer.

You may have access to an on-line, conversational-mode computer. This
facility puts a great many different analyses at the fingertips of the scientist, yet
he does not need to know anything about computers or computer programming.
The computer ‘talks’ in English, through a teletype terminal, asking the scientist
questions about his data, then asking to be given the data, until it finally has
enough information to complete the analysis. The scientist has only to choose
from the computer’s ‘files’ the analysis he wants to have carried out, and then
to answer the computer’s questions. These ‘conversational-mode’ languages are
so simple that you can learn to program the computer in a very short time—
a few hours study is more than sufficient—so that you can write programmes
for analyses not in the computer’s files.

Most readers will have access to a large computer, and a few will know
how to program it. Standard statistical programmes are available that can be
used without your knowing how to program, though some knowledge of com-
puter programmers’ jargon is usually necessary. At this writing, very few
Bayesian programmes are available, though one group of authors is preparing
an extensive set to accompany their forthcoming book (Pratt, Raiffa, and
Schlaifer, 1965), and several can be found in Schlaifer (1971).

These various aids to computing are now so commonly available that this
chapter assumes you have access to one. I also assume that you will always
be working from the raw data. Detailed methods for carrying out hand calcu-
lations, often from grouped frequency distributions, are not presented.

After you have read and studied this chapter you should

be able to calculate, from raw data, the basic quantities that enter into all
statistical calculations;

know how to find the mean, median, and mode of a set of data;
know how to calculate the standard deviation of a set of data;
be able to transform raw data to standard scores;

understand the meaning of these statistics.

9.1 Making calculations

All the statistics in this and subsequent chapters will be introduced in
two ways. First, a definition will be given, usually in mathematical form, then
a calculating formula will be presented. The calculating formula is derived
from the definition of the statistic, and is expressed in a form that facilitates
computation on a calculator.

In this chapter, I assume that measurements have been taken on either
a whole population or a sample from a population. A numerical score is paired
with each element of the population, or sample, and we will call these numerical
measurements X-scores. We wish to compute statistics on X-scores by using
the calculating formulae.

Calculating formulae in this chapter will contain these three terms only:

YX, YX% N
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The first, ), X, is the sum of all raw scores in the data, Y X? is the sum of the
squares of the raw scores, and N is the number of raw scores.
As an example, consider the scores made by five people on some test.

Subject Scores

s wN —
NA A=W

The term ) X is obtained by adding the scores; this is shown in the
table below. In order to find } X2, it is first necessary to square each score,
then to add the squares (see the table). Finally, N is determined by counting
the number of scores.

Subject X X2
1 3 9
2 1 1
3 4 16
4 4 16
5 2 4

SX=14 3X2=46 N=35

Sometimes the formulae require you to calculate (). X)2. For the example
above, this would be (14)> = 196. Be sure you see the difference between
() X)>and ) X?2:

Q. X)?: add first, then square;

Y X2: square first, then add.

With this little bit of mechanics in mind, we can turn now to more important
matters.

9.2 Central tendency

When describing a set of data we often wish to know the ‘average’ so as
to locate the centre of the distribution. We wish to get an idea of the ‘middle’
of the data, to know some X-value that represents the central tendency of the
data. In this section methods are shown for determining three such X-values,
the mean, median, and mode.

Mode

The mode is the X-score that occurs most frequently. For the data above,
each score occurs just once except the 4, which occurs twice. The mode, then,
is 4. Notice that the mode is itself a score, not a frequency. You do not neces-
sarily report the frequency with which the mode occurs.

The mode is a useful statistic when the distribution is especially piled up
over one X-score. For example, suppose the air mileage travelled in a year by
20 people is as follows:
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Person Mileage Person Mileage

A 0 K 0
B 1200 L 0
C 0 M 0
D 0 N 0
E 0 0] 4300
F 300 p 0
G 0 Q 0
H 0 R 1750
I 790 S 0
J 0 T 0

A frequency distribution for these data shows that 15 people did not
travel by air at all. The most frequently observed measurement is 0, so,
mode = 0.

Median

The median is the middle X-score, after the scores have been arranged
in order. For N ordered scores, count (N+1)/2 places to find the middle score.
For example, take these data:

44 54 60 57 43 52 51 47 62

To find the median, arrange the 9 scores in order and then count over to the
(9+1)/2 = 5th place to find the median:

Sth place
Y

62 60 57 54 (5D 51 47 44 43
}

median

This procedure is straightforward and will always lead to an observed score
when you have an odd number of data. But suppose N is an even number; then
the median falls between two obtained scores. The usual procedure is to take
the average of those two scores, and report this as the median. Here is an
example for 10 scores:

=5-5th place

{
62 60 57 54 (52 51)47 44 43 4l

}

median = MTS2 =51-5

10+1
2

In this case the median may take on a value that is not possible in practice,
but this is acceptable.

The median is often reported when there are one or two ‘far-out’ X-scores,
or when the distribution is highly skewed.
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Here, for example, are the incomes of the nine residents of a small, rural
community, already arranged in order:

$325000
9600
9200
8900
8100 <— median
7800
7700
7700
7600

<« mode

The mode, 7700, would not be a very good indication of the central tendency
of these data because only two people earn that amount and it is relatively low,
but the median, 8100 does describe the group rather better. Note that the
median is not influenced by the amount of the wealthy resident’s income; it
could have been $9600 or a million dollars. That is the sense in which the
median is said to be insensitive to extreme values in the data.

Mean

The mean is the average of the X-scores. It is obtained by adding all the
X-scores and dividing by N, the number of scores. The calculating formula
for the mean is

Y X

M =

N

where M stands for ‘'mean’. For these data:

| —owa s X

> X =14

the mean is

14
M=—-=28
5

Note that for these data the mode is 4 and the median is 3, once again illus-
trating the point that values of the mean, median and mode are not necessarily
equal.

When many X-scores take on the same value, it is often convenient to
compute the mean from an ungrouped frequency distribution. Suppose 25
subjects are given one-minute trial periods to learn a list of words. This table
shows the frequency distribution of the number of trials each subject took to
learn the list so it could be repeated without error twice.
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X, number
of trials f
12 1
11 0
10 1
9 2
8 4
7 1
6 5
5 6
4 2
3 1
2 2
N =25

In words, one person required 12 trials to learn the list, one person took
10 trials, two people needed 9 trials, four people took 8 trials, etc. If we were
to compute the mean from the raw data we would first add up one 12, one 10,
two 9’s, four 8’s, etc. A shorter way would be to multiply each score by its
corresponding frequency and then sum the products, thus,

(12x D+(11 x0)+(10x1)+(9Ix2)+...+(2x2)

Here is the calculation in tabular form:
X Xf

12 12
11 0
10 10
18
32
7
30
30
8
3
4

~

NWHhUA Q00O
N= NN~ BN —O —

N=25 > X=154

The two quantities we need in order to find the mean are the sums of the middle
and right columns:

154
M=—"=616
25~ °®

On the average, subjects took 6-16 trials to learn the list of words.

An appreciation of several interesting characteristics of the mean will
help you to know when to use it and when not to.

In the first place, the mean uses all the information in the data (excepting
the order in which the data occurred); it is sensitive to every item of data.
Contrast this with the mode and median. The mode is totally insensitive to all
other X-scores, while the median is sensitive only to the ordering of the data.
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Examples: For the air-mileage-travelled data, the mode of 0 miles would be
the same even if the data for the 5 travellers had been completely different: the
mode is insensitive to other values. The incomes of the 8 residents other than
the median income of $8100 could have been completely different, as long as
4 were above $8100 and 4 below it; the median preserves only minimal order
information, and is insensitive to extreme values in the data.

Sometimes this characteristic of the mean rules it out as a good descriptor
of data. Take the income data again.

$325000
9600
9200
8900
8100
7800
7700
7700
7600

2 X = 391600

The mean (to the nearest dollar) is,

391600
M= 9160 = 43511

That number certainly does not convey any sense of the central tendency of
those data. If someone reported that this community’s average income was
$43511, the reader might draw the wrong conclusion unless he were told that
one person’s wealth inflates the average. The median, which is insensitive to
extremes, conveys a more accurate picture. Thus, whenever you see data that
contain an extreme value or two, the mean may not be a good statistic to describe
central tendency.

A second characteristic of the mean, which makes it useful in problems
of inference, is that it changes less than the median or mode as different random
samples are drawn from the same population. If you take several random
samples and compute the mean, median, and mode for each sample, you will
find that the mean does not jump around as much as the others do. In other
words, the mean is the most stable statistic of the three.

A third characteristic concerns the deviations of each score from the mean.
Suppose we have the five scores shown in the first column of Table 9-1. The
mean of these five scores is 5. Now consider how much each score deviates
from the mean; these deviation scores are also shown in the table. Now compute
the sum of the deviations, taking account of the signs. It is zero. In general, no
matter what the raw data are, the sum of the deviations of X-scores from the
mean of those scores will always be zero. In short, we say that the sum of
(signed) deviations from the mean is zero. (I leave it to the interested reader to
prove this statement.)

This property of the mean is directly related to its being the centre of
gravity of a distribution. Imagine that the scores in Table 9-1 are shown as
the histogram of Fig. 9-1. The base of the histogram is a weightless board, and
each square is a block of wood, each block being of identical weight. In moving
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Table 9-1 Illustration showing that the sum of (signed) deviations from the
mean is zero

Deviation scores

X-scores X — M
2 -3
2 -3
4 —1
7 +2
10 +5

2X=25 3(X—-—M)=0

25
M——S— =35

Fig. 9-1

Histogram of the data in Table 9-1, showing that the mean is the balance point of the distribution

the knife-edge fulcrum back and forth, we will find that the balance point 1s at
the mean of the distribution. This is the point at which the deviations to the left
of S exactly balance the deviations to the right of 5. This same property for
continuous distributions was shown in Fig. 6-8.

A fourth property of the mean relates to the squares of the deviations in
Table 9-1. If you take each deviation, square it, and then add the squared
deviations, the resulting sum will be smaller for deviations taken from the mean
than from any other number. In Table 9-2 I have shown the sums of the squared
deviations taken from 4 and from 6. You can see that those sums are greater
than the sum of the squared deviations taken from the mean. The short-hand

Table 9-2 Illustration showing that the sum of the squared deviations is smaller for
deviations taken from the mean than from other numbers

X X—M (X — M) X—4 (X— 42 X—6 (X— 62
2 —3 9 —2 4 —4 16
2 -3 9 2 4 —4 16
4 —1 1 0 0 2 4
7 2 4 3 9 1 1
10 5 25 6 36 4 16
S (X — M)? = 48 S (X — 4)? = 53 S(X—6)2 =53
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way of talking about this property of the mean is to say that the sum of squares
about the mean is a minimum.

‘Best guesses’

A useful interpretation of these measures of central tendency is obtained
by considering what guess you would make about the outcome of a simple
experiment performed on the data. Imagine that you have collected the data
shown in Tables 9-1 and 9-2, and that you are about to choose one at random.
What is your best guess about the score?

The answer depends on what is meant by ‘best guess’. Suppose you want
to have the highest possible probability of being correct in your guess. Then
you would guess a ‘2’, for two elements of the sample have that score, making
your chance of being correct 2/5 = 0-40. If you had guessed a 4, or a 7, or a 10,
your chances would have been only 1/5 = 0-2. Guessing the mode maximizes
your chance of being correct.

But suppose ‘best guess’ means that you are to minimize your absolute
error. That is, if you are wrong in your guess, the difference between your
guess and the truth is to be as near zero as possible. Then you should guess the
median, for that is the middle score, and so is as close to every score as a single
score can get. Any other score may be closer to some scores but it will be dis-
proportionately farther from others. The median minimizes absolute error in the
guess.

On the other hand, if by ‘best guess’ we wish to minimize squared error,
then the mean should be given. We have already seen that the squared distances
from every score are as small as possible to the mean rather than to any
other single score, so we say that the mean minimizes squared errors in the
guess.

For purely descriptive purposes, the median is a very serviceable statistic.
It often gives a useful description of sample data, and communicates a reason-
able impression of the data. However, the mean is more frequently used in
inferential statistics. Not only does it change less from sample to sample than
the median or mode, but it has mathematical properties, such as minimizing
squared deviations, that make it attractive. Also, it is very often one of the
sufficient statistics for an inference. Thus, for most of the inferential procedures
described in Part III, the mean will be the favoured statistic for describing the
central tendency of data.

Exercise 9-1

Compute the mean, median, and mode for these data:

X f

—_ N AN
—_— NN B
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Answers
For the mean:

X f Xf
7 1 7
5 4 20
4 2 8
2 2 4
1 1 1

N=10 2 X=40

median = 54+ 4 = 4.5

2
For the mode:

mode = 5

Exercise 9-2

What would be the most appropriate measure of central tendency to report for
the data shown in Table 8-1?

Answers

The information on swimming pools is only nominal-scale data, so it is not
possible to compute a mean or median. You could report