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Preface

Over the past few years I have been encouraged by colleagues and students 
who knew of my interest in Bayesian statistics to write a book that would 
explain the Bayesian approach in reasonably simple language, and would serve 
as a practical guide to carrying out Bayesian analyses. This book is the result. It 
attempts to introduce Bayesian statistics to the professional psychologist, socio 
logist, educational researcher, or economist who seeks alternatives to significance 
tests, who wishes to find out more than that his results are not due to chance and 
who wants to know how likely his statistical hypotheses are now that the data are 
in. The book should also be of interest to the student of the social sciences who 
has had some exposure to statistics and who is interested in learning the Bayesian 
viewpoint. But the reader I mainly had in mind when writing this book is the 
social science student new to statistics. Thus, it assumes that the reader has no 
previous acquaintance with statistics, and has perhaps half-forgotten his school 
mathematics. Depending on the pace of the course, this book could serve as a 
textbook for a statistics class for which the total number of timetabled hours 
is at least 45.

Though I am a hearty advocate of the Bayesian viewpoint, I have tried to 
provide sufficient explanation of non-Bayesian approaches to enable the reader 
to understand non-Bayesian analyses, which still predominate in the social 
sciences literature. Enough information is given for the reader to give an exact or 
approximate Bayesian interpretation to most parametric tests of significance that 
would be encountered in the literature. In addition, the rationale behind current 
practice employing confidence intervals, significance tests and hypothesis testing 
is explained.

Chapter 1 provides a general introduction to the key ideas of Bayesian 
inference. The five chapters that follow (Part 1) lay the foundations: probability 
theory, Bayes theorem, and distribution theory. In Part 2 I discuss measurement, 
collecting data and the usual descriptive statistics, including correlation and 
regression. Part 3 deals entirely with inferential statistics. Chapters 11 and 12 
concentrate mainly on estimation, Chapter 13 presents non-Bayesian methods, 
while Chapter 14 concludes with Bayesian approaches to hypothesis testing.

My initial contact with Bayesian statistics came about when I was a Ph.D. 
student at the University of Michigan in the early sixties. I had excellent teachers:
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William L. Hays, Harold Lindman and especially Ward Edwards to whom I 
owe a deep and lasting debt. I have learned much from the writings of L. J. 
Savage, Howard Raiffa, Robert Schlaifer and Harold Jeffreys, while the books by 
Dennis Lindley (1965) and Samuel Schmitt (1969) have provided much of the 
material in Chapters 11 and 12.

Many people have contributed directly to this book. In particular Dennis 
Lindley has read and commented on most of an earlier version, and I am most 
grateful for his wise and helpful suggestions and for correcting a number of 
errors. A. D. Lovie and E. W. Kelley read the entire manuscript and provided 
many useful suggestions. Brendan McGuinness and Patrick Humphreys have 
helped me in learning to teach Bayesian statistics. To all these people I give my 
thanks. They share whatever merits this book has; I alone take responsibility for 
any remaining errors.

I am particularly grateful to the first-year social science students at Brunei 
University who attended my Bayesian statistics courses from 1968 to 1972. Each 
year I learned a little more about how to teach Bayesian ideas, and much of this 
experience is contained between these covers. I also owe a great debt to Patrick 
Humphreys who wrote the computer programs for two of the tables in the 
Appendix, a task that turned out to be more complex than we had anticipated. 
Other tables have been reproduced with kind permission from Novick and 
Jackson (1974), Pearson and Hartley (1966), and Fisher and Yates (1963). I am 
also grateful to Addison-Wesley for permission to reproduce Figs 11-4 and 12-4.

Many people generously gave support, encouragement and help during the 
writing of this book. I am very grateful to them all, especially to my wife 
Maryann.

LAWRENCE D. PHILLIPS



1 • Introduction

'Did you hear about the man who lived in a room so small that he had to 
sleep with his head in the oven and his feet in the refrigerator? On the average 
he was very comfortable.' That old story well illustrates the distrust many 
people feel about statistics. Sometimes that distrust is justified, as when we hear 
the exhortation to buy a particular brand of toothpaste because it reduces tooth 
decay by 60%, or when a television announcer claims that his product is 40% 
more effective than brand X. The political party in office produces figures to 
prove that national unemployment is at an all-time low, while the opposition 
party uses the same figures in a different way to show that unemployment is 
rapidly increasing. The smooth-talking salesman honestly tells you that his 
product has an average life of five years, but he does not tell you that quality 
control during manufacture is so poor that some of the products can be 
expected to wear out after only six months' use, while others may last for nine 
or ten years. Surely anything can be proved with statistics.

Another criticism of statistics comes from people who feel that the ineffable 
aspects of human behaviour are what make us uniquely human. They insist that 
people and societies cannot be reduced to numbers, that something essential is 
lost by the social scientist who in his fervour to classify, count, and measure 
misses the subtleties of human behaviour and interaction. At best, statistics can 
only express the obvious; at worst they hide the truly important aspects of 
human experience.

Both these criticisms are, to some extent, justified. Statistics can be misused 
to prove just about anything. But this is hardly an argument for abandoning 
statistics; rather it argues for the intelligent use of statistics, for educating the 
reader so he can tell when statistics are being used properly and when they are 
being used inappropriately, and for educating the user of statistics so he will not 
mislead his readers.

The second criticism, that statistics obscure the subtle and complex aspects 
of human and societal behaviour, is taken very seriously by social scientists. 
Anyone who has tried to reduce data to numbers feels that he has lost some 
thing in the translations. Again, this is not an argument for avoiding statistics; 
it points to the necessity for understanding the limitations of statistics. Let me 
amplify this point.

The physicist is interested in, for example, temperature, voltage, weight, 
and length; he has developed instruments for measuring these, thermometers,
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voltmeters, scales, and metre-sticks. Some of these devices measure directly as 
a metre-stick measures length, but others measure only indirectly as the height 
of a column of liquid in a glass tube indicates temperature, or as the deflection 
of a pointer indicates voltage. These last two examples are instances of derived 
measurement, the former of fundamental measurement. Fundamental measure 
ments are made in terms of themselves, for example, length is measured in 
terms of length, weight in terms of a standard weight on a balance. Derived 
measurements are related to the quantity being measured only through some 
law; temperature relates to the height of the column of liquid through the 
operation of laws describing the expansion and contraction of liquids and solids 
brought about by changes in temperature, and voltage is related to the needle's 
deflection through the operation of laws describing the amount and interaction of 
electromagnetic forces set up in a coil by the passage of current through the coil.

The social sciences are in the unfortunate position of having to rely solely 
on derived measurements with little underlying theory and fewer laws than 
would allow the scientist to relate the measurements he is making to the real 
subject of his investigation. Nobody has found a way to measure directly 
anxiety, love, aggressiveness, conflict, hope, and all the aspects of the behaviour 
of people and societies that we feel are important. Rather than measure anxiety 
directly, we measure amount of sweating, increase in heartbeat, change in 
breathing rate, change in chemical composition of the blood, or any of many 
other indices of anxiety. Not only are these measurements indirect, but we do 
not even know for sure how they relate to anxiety. Sweating may indicate a 
state of anxiety or it may be caused by an increase in the room temperature; 
changes in heartbeat or in the chemical composition of the blood may be caused 
by fear or anger. So without a satisfactory theory relating anxiety to these 
physiological changes, we cannot be sure that a measurable change in one of the 
indices reflects a change in the anxiety of the person being studied.

More will be said about this dilemma in Chapter 7. For now the important 
point is that the meaninglessness of some statistics is often not a problem in 
statistics, but a problem in measurement. If a social scientist carelessly attaches 
numbers to his observations or to his data, no amount of sophisticated statis 
tical manipulation of those numbers will make them any more meaningful than 
the original assignment. What comes out of the statistical mill is no better than 
what goes in.

The emphasis in this book is on the intelligent use of statistics; the con 
ditions under which particular statistical analyses are appropriate or inappro 
priate will be stressed. If statistics are used appropriately, and if measurements 
are meaningful, then statistical results can be intelligently interpreted in a 
useful and meaningful way. Cold, impersonal numbers may or may not obscure 
the meaning behind the numbers that is up to the scientist. Used intelligently, 
statistics can illuminate meaning, even magnify and enrich it.

1.1 Scope of the book

Purposes

This book is intended primarily for undergraduate students who are taking 
a first course in statistics. But it should also serve to satisfy the curiosity of the 
post-graduate student or the professional social scientist who has heard of
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Bayesian statistics, wants to know what it is about, but whose limited mathe 
matical background does not permit his reading presently available Bayesian 
treatises, nearly all of which require intermediate to advanced level mathematics. 

By the time you have finished this book, you should be able to

carry out simple statistical analyses of data;
recognize when a particular analysis is appropriate and when it is not;
understand simple statistical analyses reported in the literature.

You will not meet these objectives merely by reading the text; doing the exer 
cises at the end of each chapter is essential to a full understanding of the material 
in the chapter. Also, you will find that even though you have understood a 
chapter, it will require periodic review, for most students find that statistical 
topics have a strange tendency to slip away or suddenly to become unclear. The 
summaries at the end of the chapters will help you in your reviews.

Mathematical background needed

This book assumes only very modest mathematical ability on the part of 
the reader. You should feel comfortable with fractions, decimals, percentages, 
and simple algebra. You should be able to handle positive and negative numbers, 
and you should be able to deal with logarithms. If you are not sure of your 
abilities in any of these areas, you can brush up with the help of either of two 
books. If you like programmed texts, get A First Program in Mathematics by 
Arthur Heywood, Belmont, California: Dickenson Publishing Company, 1967 
(distributed in Great Britain by Prentice-Hall). This text contains diagnostic 
tests which you can use to spot your mathematical weaknesses. The tests guide 
you to only those programmes in the book which you need. The programmes 
are written in non-trivial frames and employ both linear and branching tech 
niques. The book does not, however, contain sections on positive and negative 
numbers or on logarithms. If you do not like programmed texts, try Helen 
Walker's Mathematics Essential for Elementary Statistics, New York: Holt, 
Rinehart and Winston, 1957. This text also contains diagnostic tests; each 
chapter begins with a test, and if you pass the test you do not need to read the 
chapter.

1.2 Key ideas of Bayesian statistics

What is statistics ?
Perhaps I should say, 4 What are statistics?' Most of us are familiar with 

statistics in the plural sense. Average amounts of rainfall, mean incomes of 
residents in a particular suburb, rise in the gross national product, rate of change 
in the cost of living, proportions of people preferring this candidate to that one, 
all these are statistics. Numbers attached to data, these are statistics. On the 
other hand, statistics in the singular sense refers to a body of knowledge whose 
application enables the scientist to make sense out of the data he has collected 
In particular, he is interested in going beyond the data he has collected so that 
he can make a generalization. He is not interested so much in the data at hand 
as in the wider meaning of that data. The sociologist is only marginally inter 
ested in the behaviour of the working-class families he has observed; he would 
really like to generalize his findings at least to the wider community his families
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came from. The psychologist studying memory does not wish to confine his 
findings to the people he has observed; he is looking at the behaviour of a few 
people in his search for general laws governing the operation of memory.

Statistics that summarize data, that enable whole masses of data to be 
communicated with a few numbers, are called descriptive statistics. These will 
be treated only briefly in this book because the main topic of interest is 
inferential statistics, the making of generalizations or inferences beyond the 
data immediately at hand. You must know something about both these kinds 
of statistics in order to read the literature in your field, and you must know 
how to use statistics if you are to complete the laboratory and applied aspects 
of your course successfully.

Controversies in statistics
Most statistics texts and courses give the impression that there is little 

controversy among statisticians about statistical methods. That simply is not 
true. A heated dialogue continues among statisticians about the very founda 
tions of their subject, and the controversy is far from being resolved. This 
book takes the more controversial point of view, usually referred to as the 
Bayesian school. The battle lines have been too clearly drawn between the 
Bayesians and the 'traditionalists', but just as the traditionalists do not speak 
with a single voice, so the Bayesians find differences among themselves. The 
differences among the Bayesians are sufficiently small that this book need not 
bother much with them, but I will occasionally suggest that the last word on a 
particular topic has not yet been heard. Readers who are acquainted with 
'traditional' statistics, if such a subject exists, will find much that is familiar in 
this book. Often the Bayesians arrive at the same end point as the traditionalists, 
but the route is very different. What the Bayesian does when he is making 
statistical calculations is often identical to what the traditionalist does, only the 
meaning is different. There are times when the two points of view differ, however, 
and these will be mentioned.

I have kept in mind that the reader will want to be able to read the literature 
in his discipline and to understand the meaning of non-Bayesian statistical 
analyses. The points of agreement between the two schools make it possible for 
you to understand the results of traditional analyses, even though you have 
learned only Bayesian statistics. Rather than explain the traditional approach 
to the analysis in question, I have given the Bayesian interpretation of the tra 
ditional analysis. You will not learn how to do traditional statistical analyses 
but you will be able to see what assumptions and procedures would lead a 
Bayesian to the traditional results. In all fairness I should warn you that not all 
traditional procedures have Bayesian counterparts, at least not yet. The tradi 
tionalists have had a head start of several decades, so the traditional methods 
are more extensively developed. However, Bayesian methods are appearing with 
increasing frequency in the statistician's journals, so the gap will become 
narrower within the next few years. Enough is now known about Bayesian 
procedures to justify writing this book.

As with any controversial point of view, the Bayesians find they have 
vociferous detractors. You will undoubtedly come across some. I do not propose 
here to answer the critics; most of the common criticisms are answered, some 
times implicitly, sometimes explicitly, in the chapters to follow. Bayesian
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statistical procedures are as defensible as (and I think more than) any tradi 
tional procedures. This book merely presents some of the Bayesian methods. 
The decision to become a 'traditionalist' or a 'Bayesian' is left to you.

Elements of Bayesian Statistics

One theme occurs throughout this book: revision of opinion in the light 
of new information. The Bayesian statistician is concerned first with expressing 
his opinions about some theoretical matter in an open, public way, then with 
collecting data that bear on this opinion, and finally with using Bayes' theorem 
to revise his prior opinion in the light of the data. His revised opinion is then 
taken as his current opinion, which he can communicate to others, or which 
he can modify after the collection of more data. For example, suppose that an 
unscrupulous gambler places his biased coin in his pocket. From past experience 
with this coin, he knows that it has a bias in favour of 'heads'. Later, as he 
takes it out of his pocket, he discovers another identically appearing coin; one 
of the two coins is the biased one, but the other is fair, for it is the change he 
received earlier. How can he decide which coin is which?

A Bayesian statistician might approach the problem in the following 
manner. First, he would say, examine the coins to see if you can get any clue 
as to which is biased. Suppose there is no clue, so you arbitrarily choose one of 
the coins. Then what is your current opinion about whether or not you have 
chosen the biased coin? If you have no reason to think it is one coin or the 
other, you might say that your current opinion is equally divided between the 
two possibilities. You are as certain that it is biased as unbiased, or there is a 
50-50 chance of it being biased. You might also say that if you placed a bet 
on whether or not the coin was biased, you would be utterly indifferent between 
betting on the coin being biased or betting on it being unbiased. Your prior 
opinion leads you to give even odds on the coin being biased.

Next, the statistician would conduct a simple experiment; he would toss 
the coin a few times. Suppose he tosses it 10 times, and it comes up heads 
8 times. The data from the experiment are '8 heads out of 10 tosses'. He would 
then combine these data with your prior opinion, using Bayes' theorem, to 
arrive at the revised or posterior odds. In Chapter 4 Bayes' theorem will be 
introduced, and its application to this example will be given. For now, it is 
enough to say that the posterior opinion would be expressed in probabilities or 
odds, just as the prior opinion was. The posterior opinion might now be 75-25 
or odds of 3 to 1 in favour of the coin being biased. The actual posterior opinion 
would depend on whether or not the gambler knew the degree of bias, and if so, 
what it actually was.

Opinions are expressed in probabilities, data are collected, and these data change 
the prior probabilities, through the operation of Bayes 9 theorem, to yield posterior 
probabilities.

That is the essence of Bayesian methods.
This key idea has dictated the organization of the book. In Part I, we 

learn how to quantify prior opinion. Part II is concerned entirely with describing 
data. Bayesian methods for combining prior opinions and data form the subject 
of Part III.
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It is easy to lose your way when learning statistics. You will be less likely 
to if you remember that the entire book is an expansion of the key idea:

Prior opinions are changed by data to yield posterior opinions.

That is what Bayesian statistics is all about.

1.3 Problems to be covered

I have already said that this book is mainly concerned with making 
inferences. But inferences about what? Two sorts of inferences dominate the 
experimental literature in the social sciences:

inferences about uncertain quantities; 
inferences about hypotheses or events.

Inferences about one uncertain quantity

What proportion of the population approves of the way the president (or 
prime minister) is handling governmental affairs? What is the average score of 
machinists on a particular test of mechanical aptitude? How much variation 
in I.Q. from one person to the next can be expected from college students? 
None of these questions can be answered with certainty because it simply is 
not possible to ask all people their opinion of the capability of their country's 
leader, or to test all machinists, or to measure the I.Q.'s of all college students.

From our point of view, the proportion of all people, the average score 
of all machinists, and the variation in I.Q. of all college students are all uncer 
tain quantities. We suppose that they exist as single values, but we are uncertain 
of those values. We may have a vague idea, or even a fairly precise notion, as 
to the values, but as scientists we would like to collect data to enable us to be 
more confident of the values of those uncertain quantities. The best we can do 
is take a representative sample of people from the larger group and then let 
the data from this sample be applied against our prior opinions, using Bayes' 
theorem, to give us our new, posterior opinions about the uncertain quantity.

These three examples illustrate the sorts of uncertain quantities we will 
be dealing with in this book:

proportions averages variations

You should know what proportions and averages are, but you probably do not 
know very precisely what is meant by variation. Later, in Chapter 9, we will 
show how variation can be expressed as a single number.

Inferences about two uncertain quantities

Just as a scientist may want to make inferences about some uncertain 
quantity, so he may wish to know whether or not two uncertain quantities are 
different from one another. Is the proportion of people in Kansas approving the 
president's activities different from the proportion approving in California? 
Do machinists and clerks differ in their scores on the mechanical aptitude test? 
Is the variation in I.Q. amongst English college students different from the 
variation in America? To answer these questions, the scientist must collect
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data from representative samples of people and use these data to revise his 
prior opinions about the uncertain differences.

We could go on to examine differences among more than two uncertain 
quantities; such inferences are possible but beyond the scope of this book. Here 
we shall deal with no more than two uncertain quantities.

Inferences about the relationships between quantities

The social sciences are still in their infancy and so a great deal of experi 
mental effort is spent in trying to discover what goes with what. Does the level 
of a person's achievement motivation have any relationship to whether or not 
the person is engaged in an entrepreneurial profession? Is the age of a child 
when the mother begins toilet training related to the mother's social class? Is 
there any relationship between creative ability and neurosis? Statistics can help 
us to make inferences about whether or not two quantities are related.

Increasingly, social scientists are interested in the degree to which one 
quantity goes with another one, or the degree of relationship between two 
quantities. To what extent is approval of the president's (or prime minister's) 
behaviour related to the age of the respondent ? What is the degree of relation 
ship between scores on the mechanical aptitude test and ratings of success as a 
machinist? To what extent are I.Q. and grades at university related? In the 
social sciences, relationships are seldom perfect; we can rarely say that when 
one quantity increases, a related quantity will increase in direct proportion, 
but we can say that as one quantity increases the other tends to increase also. 
If the tendency is weak, that is, there are many exceptions to the rule, then we 
say that the degree of relationship is weak, but if there are few exceptions then 
the relationship is strong. The social scientist learns to formulate statements 
like this last one in a precise manner through the use of statistics. He can use 
Bayesian methods to revise prior opinions about the uncertain degree of 
relationship.

Since one of the aims of science is prediction, it follows that scientists 
often try to formulate the rule for predicting one quantity from knowledge of 
another, related quantity. I can come closer, on the average, to predicting your 
true weight if I know your height than if I do not know it. Height and weight 
are related quantities; even though the relationship is not perfect, I can use 
knowledge of one to help in predicting the other.

In this book we will discuss one particular type of rule, and will learn 
how our prior uncertainty about that rule can be modified with data to give 
us posterior opinions about the rule.

Inferences about hypotheses and events

Scientists are often interested in testing their theories. Whatever the 
scientist's statistical persuasion, he first derives from theory specific, testable 
hypotheses, sometimes called statistical hypotheses, only one of which could 
be true. The Bayesian will then express prior opinions about the relative truth 
of those hypotheses, collect data which bear on the truth, and then use 
Bayes' theorem to revise the prior opinions. The resulting posterior opinions 
give the scientist's judgement, in the light of the data, about which hypothesis 
is more likely to be true than the others. Usually social scientists formulate 
hypotheses which are not capable of conclusive proof or disproof, but which
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are sufficiently different that the data can be expected to favour one or the 
other.

For example, one theory about children of normal intelligence who are 
having difficulty in learning to read relates the reading disability to an emotion 
ally-taxing experience, such as divorce of the parents, that the child has recently 
experienced. From that theory, one might derive this statistical hypothesis: 
A higher proportion of recently-broken homes will be found among children 
with reading problems than among children who are learning to read without 
difficulty. A second, alternative, hypothesis, derived from the notion that 
reading problems are not associated with emotionally-taxing experiences, would 
state that the proportions of broken homes for the two groups of children would 
show no difference other than one attributable to chance. The investigator 
collects data on say, 50 reading-problem children and 50 non-reading problem 
children, all of normal intelligence, and finds that broken homes occur twice 
as frequently among families of reading-problem children than the families of 
the other children. Obviously these data do not conclusively prove or disprove 
either theory, but the data could be used to revise the investigator's opinions 
held before the data were collected so that now his posterior opinions express 
his judgement about the relative likelihood of the truth of the two hypotheses.

Hypothesis testing has become one of the hallmarks of social science and 
is very much in vogue these days amongst social scientists. Students often come 
to believe that unless an experiment tests an hypothesis it is not really scientific. 
One reason is that conventional methods of statistical inference lay heavy 
emphasis on hypothesis testing, so that the scientist using conventional statis 
tics is forced to formulate his experiment in terms of hypotheses to be tested.

Bayesian methods, on the other hand, place more emphasis on inferences 
about unknown quantities than on hypothesis testing. In the example just given, 
one might look at the difference between the proportion of broken homes 
among reading-problem children and the proportion among normal children. 
Bayesian methods could be applied to make an inference about the difference 
between those proportions. If that difference were found to be very small, then 
one could conclude that breaking up of the home has little influence. But the 
point is that by focussing interest directly on the difference between proportions 
the scientist is conveying more information and information which is more 
useful than he would if he confined his attention solely to the hypotheses. After 
all, if he had concluded that home background did make a difference, the 
next reasonable question to ask would be, 'Yes, but how much of a difference?' 
To answer that he would have to make an inference about the difference in 
proportions of broken homes, so why not start with that question in the first 
place.

In practice, Bayesian statisticians make rather more inferences about 
hypotheses than they would like, but they often do so for the sake of mathe 
matical convenience, not because the logic of the experiment or statistical 
method demands it. There are times, however, when inferences about hypotheses 
are entirely appropriate. This is especially true when the scientist is concerned 
with predicting events.

Events which have already occurred but whose outcomes are still unknown 
to us and events that have yet to occur may be the subject of a scientist's pre 
dictions or inferences. Will this patient commit suicide ? Is this person brain-
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damaged or functionally ill ? Will the next toss of this coin result in 'heads' or 
'tails' ? Is this the person who committed the crime ? As you can see from these 
examples, events are a special type of hypothesis, for, after all, I can talk of a 
patient's committing suicide as either an event that has not yet happened or an 
hypothesis about the patient's future behaviour. Also, none of these examples 
involves an uncertain quantity. It is the event itself which is of interest and 
about which we wish to make an inference. Particularly in Chapter 4 we will 
be making inferences about events, while in later chapters interest will centre 
mainly on uncertain quantities, though we will show how inferences can be 
made about hypotheses based on uncertain quantities.

1.4 Decision theory and statistics

Suppose that a new drug is being tested. How great must the posterior 
odds favouring the drug's effectiveness be before the drug is put on the market ? 
Odds of 2 to 1 may be great enough if the drug will be used to treat a dying 
cancer patient, while odds of 100 to 1 may not be enough if the drug is to be 
administered to a baby suffering from a minor ailment that can be treated by 
other, possibly less effective but proven, drugs. The decision to use the drug 
or not will be influenced not only by the odds, but also by the benefit to be 
gained from making a correct decision and the possible loss from making the 
wrong one.

Posterior probabilities are relevant to the decision, but alone they do not 
solve the decision problem. You would have to know something about the 
relative values of being right or wrong, and you would have to know the formal 
rules for combining these values with the probabilities of being right or wrong. 
Theories of decision making exist for this purpose, but this book will not 
discuss them. Here we will confine our attention to making inferences, and to 
revising these inferences in the light of new information. What you learn from 
this book is part of what the decision theorist does: to learn the rest you could 
hardly do better than to read either Schlaifer (1969), who provides an elemen 
tary yet thorough grounding in the basics of decision making, Raiffa (1968), 
who covers roughly the same ground from a more theoretical point of view, or 
Lindley (1971).

1.5 Summary

This book emphasizes the intelligent use of statistics. Its purpose is to 
enable you to carry out simple Bayesian analyses, to recognize the conditions 
under which a particular analysis is appropriate, and to understand simple 
statistical analyses appearing in the literature. Your mathematical ability can 
be very modest indeed, yet you should find the book comprehensible.

Two major points of view about statistics are current. I have adopted the 
more controversial, the Bayesian school. While you will learn only Bayesian 
methods in this book, you will be able to understand traditional statistical 
analyses, which are still far more frequently found in the social science literature.

Bayesians believe that a scientist should quantify his opinions as proba 
bilities before performing an experiment, then do the experiment so as to collect 
data bearing on those opinions, and then use Bayes' theorem formally to revise 
those prior probabilities to yield new, posterior probabilities. These posterior
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probabilities are taken as the scientist's revised opinions in the light of the 
information provided by the data. That is the key idea behind all Bayesian 
methods, and it is the major theme of this book.

Variations on the theme will include making inferences about one or two 
uncertain quantities, where the uncertain quantities are either proportions, 
averages, or measures of variation. I will also include methods for making 
inferences about the relationships between quantities and inferences about 
hypotheses and events. The book will not be concerned with decision making.
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2 • Probability

Probabilities quantify opinion. This chapter shows how uncertainty about 
events and hypotheses can be expressed in the form of probabilities. By the 
time you have finished the chapter, and that includes doing the problems at the 
end, you should understand

what a probability is;
how to measure probability;
the difference between Bayesian and 'traditional' views of probability;
how odds and probabilities are related.

If you understand these points, you should be able to assign meaningful proba 
bilities to any events or hypotheses, and your probabilities should be consistent 
with one another.

2.1 Meaning of probability

Probability defined

The unique feature of Bayesian statistics that distinguishes it from the 
traditional approach is the definition of a probability. (The traditional view 
will be discussed under the section headed 'Relative Frequency' in this chapter.) 
For a Bayesian,

a probability is a degree of belief held by a person about some hypothesis, event, 
or uncertain quantity.

By convention, we restrict probabilities to numbers between 0 and 1. The bigger 
the number, the greater the degree of belief. I think there is a 0-55 chance that 
some form of extra-sensory perception is possible by some people, a 0-6 chance 
that I will someday own a television receiver so flat it can be hung on the wall, 
a 0-7 chance that a person convicted of a crime in England is under 21 years 
of age rather than 21 or older, a 0-85 chance that people in entrepreneurial 
occupations generally take more risks than people who work in bureaucratic 
organizations, and a 0-99 chance that a man will set foot on one of the planets 
before the end of this century.
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Each of these statements is a degree of belief that says something about 
me as well as about the event, hypothesis, or uncertain quantity in question. 
You may disagree with some of the probabilities I have assigned. Nothing in 
Bayesian statistics says your probability is any better than mine. When prior 
opinions differ, then prior probabilities should be different. When two people 
disagree it is because the past experience and information on which they base 
their probabilities are different. The point is not whose probability to believe 
but rather that differing probabilities reflect differences in information on which 
the probabilities are based.

As new evidence becomes available, and as data are collected, two scien 
tists with divergent prior probabilities will come to share common information. 
These new data serve to revise the prior opinions, more data will allow further 
revision, and so forth. An important point about Bayesian statistics is this:

Initially divergent opinions will be brought more and more into agreement through 
the successive application of Bayes' theorem as more and more data are gathered.

For a Bayesian, a scientific 'truth' is established when most scientists come to 
share a common belief.

The definition of probability given in this section does not tell you how to 
assign numbers to your feelings of uncertainty, so in the next two sections 
methods of measuring probability will be presented.

Events
Before I discuss methods for measuring probability, it will be necessary 

to introduce the concept of a simple experiment. This idea will not only lead us 
to a simple method for quantifying opinion, it will also allow me in later 
sections and chapters to use examples in which all readers would assign the 
same probabilities. This has the advantage that you can check your answers 
against mine; unless we both use the same probabilities you would have a 
difficult time knowing if you were correct in your use of the probabilities.

First, let us be clear about the meaning of a simple experiment.

A simple experiment is any procedure that leads to a single, well-defined, public 
outcome.

I am using 'public' in the sense that anyone observing the procedure would 
agree about the outcome. Tossing a coin, rolling a die, selecting a card at 
random, choosing a slip of paper from a hatful of different papers, drawing 
straws, and selecting a person at random from a class of students are examples 
of simple experiments. Remember that only a single outcome is permissible. 
Complex, inter-related outcomes cannot be considered, as would be the case in 
the experiment 'switch off the electricity to the building'. 

The next concept is that of an elementary event.

An elementary event is the outcome of a simple experiment.

If I choose a student at random from my statistics class, then the person I 
actually get is an elementary event. Obviously, there are as many elementary
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events in this example as there are students in the classroom. Two elementary 
events are possible if a coin is flipped (assuming that the coin cannot stand on 
its edge), and one of six elementary events can occur when a die is rolled.

Usually the scientist is not interested in elementary events; he wants 
to make statements about event classes.

An event class, or more simply, an event, is a collection of elementary events, 
all of which have a given shared property.

If I draw a person at random from the statistics class, getting a particular 
person is an elementary event, but getting a blond person is an event. Other 
events might be getting a man, getting someone with flat feet, selecting someone 
under six feet in height. Consider the simple experiment of selecting a card from 
a pack of cards. There are 52 elementary events; 26 of these form the event 
class denoted by 'red card', 13 fall into the event class 'heart', and 4 fall into 
the event class 'queen'. If any one of the elementary events making up an event 
class occurs as the outcome of a simple experiment, we say that the event has 
occurred. The event 'red card' is said to occur when a single red card is drawn, 
even though the other 25 elementary events in the event class did not occur.

Exercise 2-1
For the simple experiment of rolling an unbiased, six-sided die:

a List the elementary events.
b How many elementary events are there in the event class %an even number

comes up'? 
c How many elementary events are there in the event class 'the number that

comes up is 4 or less' ? 
d How many elementary events are there in the event class 'the number that

comes up is greater than 5'? 
e How many elementary events are there in the event class 'the number that comes

up is less than 1' ?

Answers
a 1, 2, 3, 4, 5, 6. An elementary event can be a number. 
b Three: 2, 4, 6. 
c Four: 4, 3, 2, 1. 
d One: 6.
e None: An event class that contains no elementary events is called an 'empty 

event'.

Now consider the case of a simple experiment in which all the elementary 
events are equally likely to be chosen. By 'equally likely' I mean that if you had 
to place a bet on the occurrence of any one particular elementary event, you 
would be indifferent about the one on which you actually placed your money. 
Suppose, for example, I have two identical balls in an urn, one red and one 
blue. One of the balls is to be drawn, blind. If it comes up one colour, I pay 
you a valuable prize, but if it comes up the other colour, you pay me the prize. 
Now, do you care which colour ball is associated with paying you the prize? If
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you do not, then we say that the drawing is just as likely to result in one colour 
as the other. The events are equally likely.

The only trouble with this definition of 'equally likely' is that, for the 
example just given, it does not admit of any colour preferences you may have. 
But that is not a fundamental flaw in the definition, for I could find some other 
way of distinguishing the otherwise identical balls, a way that would not involve 
preferences which are not really relevant to the simple experiment. Perhaps I 
could find two colours neither one of which you prefer to the other, or possibly 
I could identify the balls with two equally preferred numbers. We might call 
such an event a 'neutral' event. The main point to remember is that the notion 
of'equally likely' is defined in terms of your indifference among neutral events. 
My example for just two events can easily be extended to any number of events.

If we take all the elementary events to be equally likely, then we can agree 
on a basis for assigning probabilities to events. For example, in drawing a 
card from a well-shuffled pack, what is the probability of getting a red card? 
Since 26 of the 52 elementary events belong to the event class 'red card', we 
form the ratio 26/52 = J to determine the probability of 'red card'. The proba 
bility of getting a heart is 13/52 = J, and the probability of getting a queen is 
4/52 = 1/13. In general:

In a simple experiment where the elementary events are equally likely to be chosen 
the probability of an event can be assumed to be equal to the proportion of ele 
mentary events in the event class,

where

proportion of elementary _ / number of elementary \ _._ / total number of \ 
events in an event class ^events in an event classy ' \elementary events/

Exercise 2-2
For the simple experiment of rolling an unbiased, six-sided die, what is the 
probability of getting:

a An even number?
b A 4 or less ?
c Greater than a 5 ?
d Less than a 1 ?

Answers

a 3/6 = 1/2.
b 4/6 = 2/3.
c 1/6.
d 0/6 = 0. The probability of the empty event is 0.

2.2 Measuring probabilities

When dealing with events, you will often find that your degrees of belief 
are identical to the proportion of elementary events in an event class. Indeed, if 
you had not determined the proportion but had relied solely on your intuition 
in arriving at a probability, you would most likely change your assessment to
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conform to the actual proportion if someone pointed out to you the numbers of 
elementary events involved. For simple experiments the logic leading to a 
probability assessment is clear and compelling. Many of the examples and 
exercises in this chapter and the next are based on simple experiments, and the 
experiments social scientists conduct can often be looked at from the viewpoint 
of simple experiments. The outcome of an experiment is data for the scientist. 
Because of this close link between simple experiments and the experiments 
performed by scientists, elementary events can form the basis for assessing 
probabilities of data observed in experiments. More will be said about this in 
Section 4.5 of Chapter 4.

Unfortunately, counting elementary events will rarely prove to be useful 
as a means of arriving at probabilities of hypotheses or uncertain quantities. 
The reason for this is that it will rarely be obvious what the elementary events 
are that should be counted; the concepts of elementary events and event classes 
just do not seem relevant. Elementary events are used in conjunction with the

(numbers not shown 
on the balls)

Fig. 2-1
Standard urn for measuring probability

idea of a simple experiment, and simple experiments do not have much to do 
with assessing degrees of belief in hypotheses or uncertain quantities.

At all costs, I wish to avoid the notion that one kind of probability applies 
to events and another kind to hypotheses or uncertain quantities. Probabilities 
are degrees of belief, whether we are talking about events, hypotheses or uncer 
tain quantities. It may be easier to arrive at a probability in one situation rather 
than another, but it is not necessary to have one kind of probability for easy 
situations and another for difficult ones. Instead, what we shall next do is 
develop a standard device which will allow us to 'measure' degrees of belief in 
any situation. This standard device will form our measuring instrument for 
probabilities in much the same manner as a thermometer is the measuring 
instrument for temperature.

Our standard device is an urn filled with 100 identically-shaped balls 
(Fig. 2-1). (Sometimes 1000 balls are used if measurement is to be made more 
precisely.) Each ball is identified by a number, from 1 to 100. The simple 
experiment of drawing, blind, one ball from the urn is to be performed.

To see how the standard device can be used to measure degrees of belief 
we must consider two bets, one involving the event whose probability you wish
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to assess, and one involving the standard device. Suppose, for example, you 
want to determine the probability that a manned landing will be made on 
Mars before the end of 1985. Imagine that the following bet has been offered 
to you:

Jlf a man has set foot on Mars by the end of 1985 you win £5. 
Bet Ajlf there . s no |anding by the end Of 1985 you wj n nothing.

If you win, you will be paid on January 1st, 1986. 

The tree diagram of Fig. 2-2(a) is a convenient representation of this bet.

(b)

Fig. 2-2
Tree diagrams for the Mars bet and for the reference bet

Now imagine that balls 1 to 80 in the standard urn have been painted red 
while the remaining 20 balls have been coloured blue. The balls are thoroughly 
mixed, and one is to be drawn on the first day of 1986 by a blindfolded observer. 
Now consider this bet.

 . _ flf the ball drawn is red you win £5. 
Bet B-J

[If the ball is blue you win nothing.

This bet is shown in Fig. 2-2(b). We would all agree that the probabilities of 
drawing a red or a blue ball are 0-8 and 0-2 respectively, and these probabilities 
are shown on the branches of the tree. Remember, we are trying to find out 
what probabilities should be shown on the branches of the tree representing the 
Mars bet.

Consider both bets. Which do you prefer, A or B? Remember that neither 
bet pays off until January 1st, 1986. Suppose you prefer B. Then I assume you 
must think there is a better chance for you to win £5 with bet B than with A. 
From this I infer you think the probability of getting a red ball is greater than 
the probability of a Mars landing by 1985. In other words, the probability of a 
Mars landing by 1985 is, in your judgement, less than 0-8.

Now suppose I change the composition of the urn to 70 red balls and 30 
blue ones; the chance of winning £5 with bet B is reduced to 0-7. Do you still 
prefer bet B to A? If you do, then I will continue to reduce the proportion of 
red balls in the urn, until I find some mix of red and blue balls that causes you
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to be indifferent between playing either bet A or B. You will actually find several 
acceptable mixes which are similar, for the indifference region is usually a bit 
fuzzy. You might find it difficult to distinguish between mixes of 67-33, 68-32, 
69-31, 70-30, and 71-29; perhaps they all yield bets of type B which feel about 
the same as bet A. This fuzziness of the indifference region is common, but need 
not be worrying. The region will become narrower as you gain experience in 
expressing uncertainty in the form of probabilities, and in any event you can 
use the middle of the region as your assessment, in this case 69-31.

When you find a mix that makes you indifferent between the two bets, 
then we are justified in assigning the same probability to the event 'red' as we 
are to the event 'Mars landing by 1985'. If a 0-69 chance of drawing a red ball 
makes you indifferent between bet A and bet B, then we can say that you must 
feel there is a 0-69 chance of a Mars landing by 1985 (see Fig. 2-3).

If you are indifferent between playing 
this bet rtC^ or this bet

t *# ^
1&*

b1^ n 
0-Jj

^ -0

then you must believe the probability of a Mars landing 
by 1985 to be equal to 0-69

Fig. 2-3
Determining the probability of an event

Once you have understood the logic of this example, you can use the 
standard device directly to assess the probability you would associate with a 
hypothesis or event. Perhaps the easiest method is to adjust, mentally, the pro 
portion of red balls in the urn until you find that the uncertainty associated 
with drawing a red ball in a simple experiment is identical with your uncertainty 
about some hypothesis. If you have adjusted the proportion of red balls cor 
rectly, you should be indifferent between betting on the truth of the hypothesis 
and betting (the same amount) on the draw of a red ball from the urn.

Exercise 2-3
Use the standard device of balls in an urn to help you assess probabilities for 
each of the following hypotheses:

a The next person to greet you will be smoking a cigarette.
b The first person to call you by name tomorrow will be under 30 years of age.
c A cure for cancer will be found within 15 years.
d Someday the Pope will sanction the Pill.

Answers
There are no correct or true probabilities for these hypotheses. The values you 
assign are acceptable as long as they meet certain consistency requirements 
which are discussed in Chapter 3.
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If you are assessing the probabilities of more than two hypotheses, then 
you will need to put in the urn balls of as many different colours as there are 
different hypotheses. If you wish to consider these hypotheses:

a that the manned landing on Mars will occur before 1985;
b that the manned landing on Mars will occur between 1985 and 2000;
c that the manned landing on Mars will occur after 2000;

then you will need balls of three colours. As before, the proportion of each 
colour represents the probability you assign to the associated hypothesis.

Although the urn and balls is a device that will be most generally helpful 
in assessing probabilities, other devices are useful, too. Suppose, for example, 
that you have just assigned 0-5-0-5 prior probabilities to two hypotheses; you 
consider the hypotheses equally likely. Is your uncertainty about these hypo 
theses exactly the same as your uncertainty about the toss of a fair coin? The 
fair coin is the standard device heads and tails are equally likely. You should 
assign equal probabilities to the two outcomes of the toss of the coin, and you 
should associate probabilities of 0-5-0-5 to any two equally likely events or

A

Fig. 2-4
The spinner, a standard device to which 
probabilities can be compared

hypotheses. A die is a convenient standard device to which you can compare 
probability estimates of 1/6. You should ask yourself this question: 'Is my 
uncertainty about this hypothesis exactly the same as my uncertainty about 
whether, say, a six will come up when I roll a fair die?' If your uncertainty about 
the hypothesis is the same as your uncertainty about the outcome of the roll 
of the die, then you should assign a probability of 1/6 to the hypothesis.

A device similar to the urn and balls is a spinner, shown in Fig. 2-4. 
The relative sizes of the white and shaded sectors represent the probabilities 
associated with two hypotheses. If the sectors are of equal size, then the device 
represents probabilities of 0-5-0-5. If the shaded sector is one quarter the size 
of the whole circle, then probabilities of 0-25-0-75 are represented.

In general, the probability represented by the shaded sector is given by

Number of degrees in angle AOB + 360 degrees in whole circle

Suppose you think the probability of some hypothesis is 0-2. To see how this 
would look on the spinner, you multiply 360 by 0-2 to get 72 degrees for the 
angle of the shaded sector. If you draw the spinner, it should look like Fig. 2-5. 

If you could spin the pointer, there would be a 0-2 chance of the arrow 
coming to rest over the shaded sector. Do you feel that this device accurately 
portrays your feeling of uncertainty about the two hypotheses? If it does not,
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then you should change the sizes of the sectors until you arrive at a representa 
tion that is satisfactory. You could then measure the angle of the shaded sector, 
divide by 360, and the result is the probability of the less likely hypothesis.

The spinner can be used for more than two hypotheses by adding more 
sectors. Five hypotheses would require five sectors, and the ratio of the angle 
of each sector to 360 will give the probabilities you associate with each 
hypothesis.

The use of standard devices as an aid in arriving at probabilities is based 
on the idea that probabilities can be compared. Probabilities are different from 
one another only in their values; we do not have one kind of probability for 
events and another kind for hypotheses; we do not have different kinds of 
probability for events involving people than for events involving things. Prob 
abilities for unique events can be compared with probabilities for repeated 
events because the probabilities are different only in value, not in kind. With 
apologies to Gertrude Stein, a probability is a probability is a probability.

Fig. 2-5
Spinner for probabilities of 0-8 and 0-2

The trouble with using standard devices is that even these simple mechani 
cal analogues to probability are not as simple, psychologically, as they seem. 
A person may say that a coin is equally likely to come up heads as tails, but 
when you ask that person to bet on the outcome for many flips of the coin, he 
will probably act as though he had a slight bias favouring either heads or tails. 
In other words, his verbal report does not quite correspond with his feelings 
about the outcomes. Davidson, Suppes and Siegel (1957), for example, experi 
mented for a long time before they found two events that were truly equally 
likely for the subjects in their experiments. One of their devices was a six-sided 
die, three sides of which had ZOJ printed on them, and three sides had ZEJ. 
To most people, ZOJ is just as likely as ZEJ to come up on a toss of the die. 
They found other nonsense syllables that worked just as well.

Similar criticisms apply to the spinner device; the subjective size of the 
shaded sector may depend for some people on its position on the spinner. For 
the urn a colour bias may operate to cause you to add or subtract a small amount 
of probability because the balls are your favourite colour. One way to check 
for these biases is to reverse the association between the events represented by 
the standard device and the hypotheses or events whose probabilities are being 
assessed. In the Mars-landing example we originally associated the red balls 
with the hypothesis. We can check for bias in our estimates by associating the 
blue balls with the hypothesis, and then seeing what proportion of blue balls 
is required. If we arrive at the same answer as before, 0-69, then we can be 
reasonably sure no bias is operating.
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Relative frequencies
Suppose you have what looks like a fair coin and you want to find out the 

probability of its landing heads when you toss it. So you perform a little experi 
ment: you toss it 10 times. It comes up heads 6 times, but you conclude that 
that is close enough to 5 to warrant your assigning the probability of heads 
as 0-5. Just to make sure, you toss the coin 100 times, and it comes up heads 
46 times. Again, 0-5 seems a reasonable assessment. But to make really certain, 
you toss the coin 1000 times. It comes up heads 489 times, and now you are 
quite sure that the probability of heads is J. Why did you do this? After all, the 
proportion of heads on the first experiment was 0-6, on the second 0-46, and on 
the third 0-489. You might have noticed that the proportion got closer to 0-5 
in each of the experiments, and you assumed that if you flipped the coin an 
infinite number of times, an experiment that is possible in theory only, obviously, 
then it would turn up heads exactly half of the time. This notion forms the basis 
of the definition of probability for the traditional statistician. For him proba 
bilities are objective because they are related to observable events through the 
limit of a relative frequency. He defines a probability as the relative frequency of 
occurrence of an event after an infinite number of similar trials has occurred. 
Now this is not a very useful definition for it says nothing about how to arrive 
at probabilities short of making an infinite number of trials. Fortunately, James 
Bernoulli in the eighteenth century proved a theorem which says, in essence, 
that in the long run, the relative frequency of an event approaches its probability. 
This theorem is the mathematical equivalent of most people's intuitive notion 
of the law of averages, that in the long run events occur with relative frequencies 
that are very close to their 'true' probabilities. In practice you never have to 
observe a great many trials; 100, even 50, or 30 may suffice. The relative fre 
quencies observed for even a modest number of trials may come very close to 
the long-run relative frequencies. And even if you do not count the relative 
frequencies, just observing the events will enable you to make very good prob 
ability estimates. A number of experiments, reviewed by Peterson and Beach 
(1967), have shown that people can judge relative frequencies and proportions 
very accurately, and, as you would expect, with increasing accuracy as the 
number of trials increases.

There are two major troubles with using relative frequencies as the sole 
basis for prior probabilities. In the first place, relative frequencies of past events 
may not be entirely applicable to future events. In the relative frequency defini 
tion of probability note that I included the requirement of 'similar trials'. 
Identical trials would be absurd, for then the outcome of each trial would be 
the same. If each flip of the coin were precisely identical, then the flip would 
always result in a heads, or a tails. So to avoid getting all heads or all tails, the 
trials must be slightly different. But just how slightly is left undefined, and so a 
subjective element enters into this supposedly 'objective' definition.

The second trouble with relative frequencies is that they cannot apply to 
unique events. If an event can only happen once, it makes little sense to enquire 
about its past history or even an imagined repetition of trials on which it could 
occur. Horse races, football games, sporting events of all kinds, are unique 
events. Yet it seems reasonable to assign degrees of belief to the outcomes of 
these games. Scientific hypotheses have this characteristic. If you consider them
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as events, they either occur or they do not, that is, they are either true or not 
true. Accordingly, the believer in relative frequencies would assign probabilities 
to scientific hypotheses of either 1 or 0. The traditional statistician, who accepts 
the notion that probabilities are identified with relative frequencies, never talks 
about the probability of a hypothesis, he only talks about the probability of data 
given the truth of a hypothesis. Data can be repeated. Do the experiment again, 
and you should get the same, or nearly the same, data. Relative frequencies 
make sense in terms of repeated observations in which data can occur, so it makes 
sense to talk about the probability of data. The Bayesian is willing to attach 
probabilities to both data and hypotheses, for it is meaningful for him to assign 
probabilities to the occurrence of data as well as to the truth of hypotheses.

Whether you view probabilities as relative frequencies or as degrees 
of belief can make a practical difference. For example, many social scientists 
feel that clinical diagnoses are best left to intuitive, judgemental processes, while 
others maintain that statistical methods are superior to intuitive ones. The 
clinician frequently makes the complaint that statistics are based on past 
occurrences and so do not apply to the unique case that is about to be diagnosed; 
for him, the present 'trial' is not 'similar enough' to past trials. The statistician, 
on the other hand, goes on demonstrating that these past cases are relevant to 
the unique one about to be considered, that the trials are sufficiently similar.

Those on both sides of this argument have in mind a relative frequency 
definition of probability. For example, a statistician may consult the hospital's 
records before advising a clinical psychologist about the diagnosis of a patient 
as either brain-damaged or functionally ill. The statistician is interested in deter 
mining the relative frequencies with which functional illness and brain damage 
occurred in that hospital in the past. He finds that 90% of the patients were 
functionally ill, and he uses this relative frequency as the basis for his prior 
probabilities. But suppose that the hospital has been operating for ten years, 
and that in the past three months a new hospital has opened that specializes 
in brain-damaged patients. You would expect that the number of brain-damaged 
patients referred to the old hospital to have decreased, making the previous 
relative frequency data of little use. In more general terms, the 'trials' are too 
dissimilar; the cases before the opening of the new hospital are not similar to 
those after the opening. The clinician feels that he can often detect these dis 
similarities between trials and either make use of them in his diagnosis, or 
discard them as irrelevant. In some cases the past relative frequencies may be 
adjusted slightly, by using your good judgement, to reflect more accurately 
your current assessment of the situation. But this procedure only makes sense 
if you believe that probabilities are degrees of belief, which may or may not 
be based on relative frequencies, or on modified relative frequencies.

An attempt to resolve this controversy concerning clinical versus statistical 
prediction has been given by PankofT and Roberts (1968). They adopt a 
Bayesian point of view.

2.3 Odds

Odds defined
Some readers may have experience in quantifying their opinions about 

uncertain events not in the form of probabilities but of betting odds. Why,
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since odds are more familiar than probabilities to many people, did I not use 
them?

The difficulty with betting odds is, as those of you who frequent betting 
shops know, that the odds you are offered there reflect not only the events you 
are betting on, but also how heavy the betting has been. Odds given in betting 
shops are not good estimates of the odds on the event itself, though they do 
bear some relationship. Your intuition about odds is contaminated by the 
betting habits of other people, so you should be wary of expressing your uncer 
tainty in the form of betting odds.

Another difficulty is that the odds you estimate might be influenced by 
the amount of money you have available or by the value you place on the money 
you might win, and research has shown that that value is seldom in perfect 
correspondence with the amount of money. These are insurmountable diffi 
culties, so we will not attempt to quantify our uncertainty as betting odds.

However, odds (without the 'betting' connotation) will occasionally be 
useful. To talk of one event being twice as likely as another is sometimes con 
venient. Odds will always refer to an event, E, and its complement, E (read 
4 not-E'). When we say E is twice as likely as E, we mean that the probability of 
E is twice as large as that of E, that the odds are 2 to 1 in favour of E (note the 
discrepancy from betting-shop parlance).

Let usjase the Greek letter omega, H, to represent odds. The odds favour 
ing E over E will be written Q(E). The relationship between the probability of 
E, p(E), and the odds favouring E is

n(E) = _£<!L
l-p(E) 

or, conversely,
,„ Q(E)P(E) = ITn(EJ

As an example, if E is twice as likely as E, then Q(E) = 2. We find the prob 
ability of E as follows:

p(E) - - ? - 0-67

You can check this by turning the probability back to odds:

T^¥67 = 033 = 2

Exercise 2-4
What are the probabilities that correspond to these odds statements?
i She is three times as likely to succeed as to fail.
ii The letter is 4-5 times as likely to be delivered tomorrow as later than

tomorrow.
iii He is 10 times more likely to marry than to remain single. 
What are the odds that correspond to these probability statements?
i The probability he will be promoted within a year is 0-6.
ii The probability is 0-8 that this hypothesis is true.
iii There is a 0-9 chance of a totally successful cure.
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Answers
i 3/4 - 0-75.
ii 4-5/5-5 = 0-82.
iii 10/11 = 0-91.
i 0-6/0-4= 1-5.
ii 0-8/0-2 = 4.
iii 0-9/0-1 = 9.

Odds are usually expressed as numbers equal to or greater than one. 
What do you do, then, ifp(E) = 0-2, for example? This gives ft(E) = 0-2/0-8 
= 0-25! The answer is simple: give the resulting odds for E rather than E. 
For the example, we would find ft(E) = 0-8/0-2 = 4.

The probability-odds scale

The correspondence between probability and odds is shown by the scale 
in Fig. 2-6. With this you can translate odds to probabilities, or probabilities to 
odds without having to solve the formulae above. I suggest you study this 
carefully; many people are surprised to find what odds correspond to a parti 
cular probability, or vice versa. Repeat Exercise 2-4 using the probability-odds 
scale.

2.4 Summary

A probability is a degree of belief held by a person about some hypothesis, 
event, or uncertain quantity. This definition of probability contrasts to the more 
traditional view in which a probability is seen as the limit of a relative frequency. 
The 'personalist' rather than the 'relative frequency' view is adopted in this 
book.

The 'personalist' definition of probability does not lead to a subjective 
view of statistics, however. Before any data have been observed, opinions will, 
naturally, differ. But after data have been collected, it is possible to apply 
Bayes' theorem, and then the revised probabilities will be in closer agreement. 
With enough data, initially divergent opinions will become nearly indistin 
guishable. It is the revision of opinion that is linked to observations.

As a basis for agreeing about probabilities, the concept of a simple experi 
ment was introduced. In a simple experiment where the elementary events are 
equally likely to be chosen, the probability of an event can be taken as equal 
to the proportion of elementary events in the event class. This fundamental 
notion allows examples to be constructed in which all readers will have identical 
probabilities, and will form the basis in later chapters for determining the 
probability of data occurring.

To measure probabilities it is necessary to consider a standard measuring 
device, an urn filled with 100 balls. The number of balls of different colours 
should be adjusted so that the uncertainty associated with drawing a ball of a 
certain colour is the same as the uncertainty of the event whose probability you 
are trying to measure. The proportion of balls of that colour represents, then, 
the probability of the event. Other standard measuring devices, such as a 
spinner, can be helpful, too.
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Sometimes it is useful to express opinion in odds rather than probabilities, 
but identification with betting odds must be avoided. Odds are particularly 
useful when only two hypotheses or events are being considered.

Problems

2-1 Three students who carried out a postal survey of attitudes to traffic were able 
to classify their respondents on the basis of occupation into the following 
social classes:

Social class Number of replies

1 76
2 136
3 non-manual 80
3 manual 60
4 26
5 7

If someone were chosen at random from this group, what is the probability 
that the person will be

a in social class 3 ?
b in the top social class (1)?
c classed as both belonging to class 1 and to class 3 ?

2-2 A survey of a rural district shows that 100 families live in the area. The number 
of children in the families is shown in the following table.

Number of children Number of families 
X with X children

0 20
1 25
2 30
3 15
4 or more 10

If a family is selected at random from the district, what is the probability that 
the family will have

a at least two children ?
b exactly three children ?
c either two or three children ?
d at most two children ?

2-3 Four of the florins in my pocket are lOp pieces (which show an older Queen 
Elizabeth), 3 are 2-shilling pieces depicting a younger Queen Elizabeth, 2 show 
King George VI and 1 shows King George V. If I choose a coin at random 
what is the probability that it

a is a new coin ?
b shows a portrait of Queen Elizabeth?

2-4 Use one of the standard devices mentioned in the chapter to assess your and 
some of your friends' uncertainty about these events or hypotheses:

a The Pope will sanction the Pill in this century.
b The smoking of marijuana will be legalized in your country within the next 

ten years.
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c A woman will be elected president (or prime minister) of your country sometime 
this century.
Or invent your own event or hypothesis.

2-5 Carry out a class experiment to compare the two main standard devices dis 
cussed in the chapter: the balls in the urn, and the spinner. Let half the class 
use one device, the remaining half the other. Carry out measurements on friends, 
ensuring that the same person is not assessed twice. Bring the data back to class 
and compare measurements to the same questions obtained by the different 
devices. Your instructor will help organize the experiment, and will assist in 
the analysis of the data. Keep the results and analyze them again after you have 
completed Chapter 12, for then you will be able to carry out a more extensive 
analysis of the data.

2-6 250 people are classified as follows:
Protestant 75
Roman Catholic 100
Other religious affiliation 50
No religious affiliation 25

TOTAL 250
a If one person is to be chosen at random, what is the probability that the person

will have some religious affiliation? 
b What is the probability that the person chosen will be either a Protestant or a

Roman Catholic?



3 • Probability laws

Up to now we have been concerned only with showing that probability 
is the language of uncertainty, and some methods have been explained which 
should help you to use the language. Now it is time to learn the grammar. 
There are restrictions on probabilities that must be clearly understood; these 
restrictions are called probability laws.

There are two reasons for knowing these laws. In the first place, the laws 
impose requirements of internal consistency on the probabilities you assign to 
events that are related. You must ensure that your assessments conform to the 
limitations of the laws. Thus, you can use the laws to check on the internal 
consistency of the probabilities you assign to related events.

In the second place, some of the laws show how the probabilities of simple 
events are related to complex events made up of combinations of the simple 
events. You will find occasions when your intuition is clearest about simple 
events, yet you are primarily interested in complex events. The probability laws 
will enable you to use your probabilities for the simple events as a basis for 
calculating the probabilities of the complex events. At other times you will 
find that your experience bears only indirectly on the events involved in a 
particular problem, so you have no easy way of assessing probabilities. In these 
circumstances you will find that you can make assessments about events that 
are directly related to your experience and then use the laws to transform those 
probabilities into probabilities of events involved in the problem.

I should warn you that this is a difficult chapter. Do not read it all in one 
sitting; keep coming back to it, work through the exercises, and eventually it 
will fall into place. The grammar of probability does not come easily to most 
people, so do not become discouraged if you fail to understand a point on 
first reading. Gradually you will begin to feel comfortable with the limitations 
imposed by the probability laws.

Before we go on to the laws, it is necessary to introduce some standard 
terminology.

3.1 Nomenclature

When we talk about the probability of an event it will often be convenient 
to talk of probabilities in general rather than any specific probability. A prob-
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ability assessment says something about the event or hypothesis and also some 
thing about the person making it and the information he had available to him. 
We might use this symbol for a probability:

XE|P, i)
The E stands for the event, the P for the person making the estimate and the 
I for the information available. The symbol is read 'the probability of E given 
the person P and the information I'. The vertical line stands for 'given'. Note 
that the symbol does not mean p times E divided by P or F. The short way of 
referring to the symbol is 'the probability of E given P and F. This is a condi 
tional probability. Strictly speaking, every probability is conditional; it is con 
ditional on the person assigning the probability and on the information.

In most statistical analyses, the person and the information available 
before collecting any data remain constant throughout the analysis. When this 
is the case, it is convenient to drop the 'given P and F part of the notation. 
Then the probability of an event becomes simply

Always remember when you see this notation that the conditional person and 
information available to the person are understood.

Now we can turn to the probability laws. Each law is stated in terms of 
probabilities for events, but remember that there is only one kind of prob 
ability, so all the laws are applicable for hypotheses and uncertain quantities 
as well.

3.2 First law

If I told you that the probability of some event was 1 -3, or minus 0-6 you 
should object. We have already met the restrictions that probabilities cannot 
be negative or greater than 1 . If I told you that a 'sure thing' had a probability 
of 0-8, you should also object. A 'sure thing' implies a probability of 1.

First law Probabilities cannot be less than zero nor greater than one, and the 
probability of the sure event is 1. Put mathematically,

0 < p(E) < 1 and p(sure event) = 1
The symbol < is read 'less than or equal to'. The first law is read 'zero is less 
than or equal to the probability of E which is less than or equal to 1'. In other 
words, the probability of an event lies between 0 and 1 inclusive. The 'sure 
event' is an event that, in your judgement, is bound to happen. The coin must 
come up either heads or tails, so the event 'heads or tails' is a sure event. When 
I select a student from the class, the event that I get a person is a sure event.

This law gives the first restrictions on probabilities, and its application 
is obvious: be sure your probabilities fall between 0 and 1, inclusive, and assign 
a probability of 1 to any event you think is certain to occur.

3.3 Second law

This law and the next are concerned with the relationships between events. 
It is these laws that show how probabilities assigned to individual events should 
be related to probabilities of combinations of events.
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The second law deals with events that are mutually exclusive, a term which 
we define as follows:

Events on a list are mutually exclusive if the occurrence of any one event on the 
list means that none of the others can occur.

If a coin comes up heads it cannot also come up tails on the same toss. Heads 
and tails are mutually exclusive events. Suppose I select someone from the 
statistics class. Are the events on this list mutually exclusive?

a man a woman a blond a brunette
Man and woman are themselves mutually exclusive, but blond and man (or 
blond and woman) are not. It is possible to get both a man and a blond, or 
both a woman and a blond, etc. To make the events mutually exclusive, it is 
necessary to alter the events :

blond man blond woman brunette man brunette woman
That list qualifies as containing mutually exclusive events. This example also 
shows how an event need not be limited to a single descriptor. 'Man' may be 
an event, but so also may 'blond man' or 'blond man with flat feet' or 'blond 
man under the age of 25 who is married with two children, both of whom are 
blond and have flat feet'.

You cannot just look at a list of events to decide whether or not they are 
mutually exclusive, you must also consider the simple experiment. Consider 
this list:

heads tails
Those events are mutually exclusive for the simple experiment 'toss a coin', but 
they are not mutually exclusive for the experiment 'toss two coins'. Since one 
coin could come up heads and the other tails, both heads and tails can occur 
as the result of the simple experiment. You would, of course, be correct in 
saying that the outcome of this simple experiment is not completely described 
by just the two events heads and tails, that four events are necessary for a 
complete description:

1st coin 2nd coin
heads and tails
heads and heads
tails and heads
tails and tails

Notice that these four events are mutually exclusive for the simple experiment 
'toss two coins'. If, for example, we get 'heads and heads', then none of the 
other events can also have occurred as the result of that toss.

The first statement of the second law deals with any two mutually exclusive 
events. We will distinguish these events by using a subscript notation; the two 
events will be referred to as E 1 and E2 . They could be any two events on a list 
of mutually exclusive events.

Now we turn to the second law. It will be given first for two events, later 
for any number.
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Second law The probability of either of two mutually exclusive events occurring 
is equal to the sum of their individual probabilities. In mathematical notation,

The probability of either E l or E 2 occurring is equal to the probability of E t 
plus the probability of E2 . Let us use the concept of the simple experiment to 
arrive at mutually agreed-upon probabilities that can be used in some examples. 
Consider a fair die. It has six sides, so there are six elementary events possible. 
The die is fair, so we can assume that each elementary event is as likely to occur 
as any other. Thus, the probability of any one side must be 1/6. Now, what is 
the probability of getting a 1 or a 2? By the second law,

p(l or 2) = p(l) + p(2) = 1/6 + 1/6 = 1/3
Or, consider an even more obvious example. What is the probability of getting 
either a head or a tail when a coin is tossed? Assuming the coin is fair and that 
it will not land on its edge, we would probably agree that the two alternatives 
each have a probability of 1/2. By the second law,

p(head or tail) = p(head) + p(tail) = 1/2 + 1/2 = 1 
The probability of getting one or the other is a certainty.

Exercise 3-1
As you are about to park your car in an illegal spot you see in the distance a 
man in uniform. Based on the few cues you can make out at such a distance 
and on your knowledge of people likely to be in the area, you quickly assess 
these probabilities:

Probability 
Event of the event
man is a policeman 0-3
man is a traffic warden 0-4
man is a bus conductor 0-2
other possibility 0-1

What is the probability that the man is
a either a policeman or a traffic warden ?
b either a bus conductor or someone not on the list ?

Answers
a By the second law,

Xpoliceman or traffic warden) = />(policeman) + /?(traffic warden) =
0-3 + 04 = 0-7. 

b Also by the second law,
/?(bus conductor or someone else) = /?(bus conductor) + Xsomeone else)
= 0-2 + 0-1 - 0-3.

The second law can be extended to more than two events. Suppose we 
wish to consider n mutually exclusive events, where n can be any number. The 
first event we wish to consider is E l9 the second E 2 , and so forth to the last 
event, En .
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Second law The probability of any one event occurring from among n mutually 
exclusive events is equal to the sum of the probabilities of the individual events. 
In mathematical notation,

or E2 or ... or En) = p(E l ) + p(E2 ) + . . . + p(En)

Here the three dots mean 'and so forth on up to'. The probability of E, or of 
E 2 and so forth on up to En is equal to the probability of E, plus the prob 
ability of £2 and so forth on up to En . More neatly, the probability of any one 
of n events is equal to the sum of their individual probabilities. Remember that 
this law only applies to mutually exclusive events. The law is sometimes referred 
to as the 'addition law'.

We will frequently have occasion to refer to the sum of the probabilities 
of several events. Rather than write each time

a short-cut notation will be used. The Greek letter sigma or £ will be used to 
indicate 'the sum of.

+ . . . +p(En)
Now the second law can be written :

p(E 1 or E2 or ... or En) = £ p(Ef)

Exercise 3-2
You and your partner are playing duplicate bridge with five other teams. 
Assuming that ties are impossible, you assign the following probabilities to 
each team to indicate your degrees of belief about which team will be top scorer 
for the evening :

Team Probability
1 (yours)
2
3
4
5
6

0-3 
0-25
0-15
0-1
0-1
0-1

What is the probability that the winner will be:
a Either team 1, 2, or 3? 
b An even numbered team?

Answers
a By the second law

Xteam 1 or team 2 or team 3) = /?(team 1) + /?(team 2) + Xteam 3)
- 0-3 +0-25 +0-15 = 0-7. 

b p(2 or 4 or 6) = p(2) + />(4) + p(6) = 0-25 + 0-1 + 0-1 = 0-45.

First corollary to the second law
The first and second laws can be put together to form new laws which 

are called 'corollaries'. In this section we will look at one very useful corollary.
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Suppose we have some event like 'rain tomorrow'. The complement of 
that event, 'no rain tomorrow', is itself an event. Now, it will either rain tomor 
row or it will not, so the event 'rain tomorrow or no rain tomorrow' is the sure 
event, which we saw from the first law must have a probability of 1.

p(rain tomorrow or no rain tomorrow) = 1
Let the event 'rain tomorrow' be designated by E and its complement 

'no rain tomorrow' by E. The bar above the E means 'the complement of E'. 
Then by the first law,

p(E or E) = 1
But by the second law we know that the probability of either E or E is equal 
to the sum of their individual probabilities.

So it follows that

or, by rearrangement, 
/>(£) = l-p(E) 

This result is the corollary.

First corollary to the second law The probability of an event is equal to 1 minus 
the probability of the complement of the event.

The probability of heads, on the toss of a coin, is equal to 1 minus the prob 
ability of tails. For the toss of a fair die, the probability of rolling a 1, 2, 3, 
4, or 5 is equal to 1 minus the probability of a six:

p(i or 2 or 3 or 4 or 5) = 1 -p(6) = 1 - 1/6 = 5/6 

That agrees with the result you obtain by applying the second law : 
p(i or 2 or 3 or 4 or 5) = p(i) + p(2) + p(3) + p(4) + p(5)

= 1/6+1/6 + 1/6 + 1/6 + 1/6 = 5/6

Exercise 3-3
Use the first corollary to the second law to compute the probability of some 
team other than your own winning the evening of bridge. Use the probability 
assignments from Exercise 3-2. Check your answer by direct application of the 
second law.

Answer
/Kother than team 1 winning) = 1 - /?(team 1 winning)

= 1 - 0-3 = 0-7. 
Check:

/?(other than team 1 winning) = p(2) + p(3) + p(4) + p(5) + p(6)
= 0-25 + 0-15 + 0-1 + 0-1 + 0-1 = 0-7.
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Second corollary to the second law
The second corollary to the second law is especially useful. It deals with a 

list of events which are not only mutually exclusive but also collectively 
exhaustive. By 'collectively exhaustive' we mean that the list is to be considered 
complete; one of the events must happen. This list

rain all day tomorrow 
snow all day tomorrow 
sunny all day tomorrow

contains events which are mutually exclusive (if one occurs the others cannot) 
but not exhaustive (something not on the list may occur). I can think of other 
reasonable possibilities to add to the list.

The decision about whether a list is exhaustive is usually made by stopping 
short of events whose probabilities are near zero. Considering the toss of a 
coin, this list is usually considered exhaustive:

heads tails
But if I am standing over an open grating, and I do not catch flipped coins very 
well, then the list could be lengthened :

heads tails falls through grating so result cannot be observed
If the coin is flipped before the beginning of a football game on to the ground, 
you would prefer this list :

heads tails stands on edge
Many other events could be included, such as 'coin disintegrates in mid-air', but 
we do not usually include events whose probabilities of occurrence are very low. 

If the events on the list are mutually exclusive and exhaustive, then the 
event 'some event occurs' is the sure event and has probability 1. But the 
probability of 'some event occurs' is equal to the sum of the individual prob 
abilities, by the second law. Therefore, the sum of the individual probabilities 
must be 1.

Second corollary to the second law The sum of the probabilities of individual 
events which are mutually exclusive and collectively exhaustive is 1. In mathe 
matical notation,

Z XE,.) = i
Suppose I examine a coin and decide it is slightly biased in favour of heads. 
If I assign /?(heads) = 0-52 and /?(tails) = 0-5, I have violated the second 
corollary because the two probabilities do not sum to 1. Noting this, I could 
apply the first corollary to arrive at

p(tails) = 1 -Xheads) = 1 -0-52 = 0-48

Note that the events in Exercise 3-2 form a mutually exclusive and collectively 
exhaustive list, and that the six individual probabilities sum to 1.

The next exercise will show you how the second law and its corollaries 
can be used to check on the consistency of your probability assignments.
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Exercise 3-4
Assign probabilities to the following four mutually exclusive and collectively 
exhaustive hypotheses:

A man will set foot on Mars for the first time. . .
HI in this decade (the 70s).
H2 in the next decade (the 80s).
H3 in the last decade of this century (the 90s).
H 4 sometime later than this century.

a Check the consistency of your assignments by applying the second corollary. 
b On the basis of your assignments, compute the probability that a man will set 

foot on Mars:
i sometime this century;
ii sometime other than this decade (the 70s).

c Check the probabilities computed in (b) with your intuition. If there is any 
discrepancy, you will have to change your original assignments.

Answers
I assigned the following probabilities, though yours may be different :

/KHx) = 0-35 
p(H2) = 0-6 
XH3) = 0-03 
/?(H4) = 0-02

a By the second corollary these four probabilities should sum to 1. They do, so
that consistency check is met. 

b By the second law,
/?(70s or 80s or 90s) = p(70s) + />(80s) + />(90s) 

= XHi)+/*H2)+/>(H3) 
= 0-35 + 0-6 + 0-03 = 0-98

or 90s or later) = /?(80s) + />(90s) + Xlater)

= 0-6 + 0-03 + 0-02 = 0-65 
I could have used the first corollary :

/?(70s or 80s or 90s) = 1 - /?(later) - 1 - 0-02 = 0-98 
X80s or 90s or later) = 1 - /?(70s) = 1 - 0-35 = 0-65

Is the probability, for me, 0-98 that a man will set foot on Mars before the last 
decade? Yes, that seems reasonable. But a probability of 0-65 does not seem 
large enough for the proposition that the landing will occur after the 70s. In 
looking again at my original assignments I think I did not give enough prob 
ability to H2 and I gave too much to HI. So, I will add 0-1 to H2 and, to keep 
the sum equal to 1, I will take away 0-1 from HI. My new assignments are:

= 0-25
- 0-70 

p(H 3 ) = 0-03 
p(H4 ) = 0-02

sum = 1 -00
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Now, by the first corollary,
/?(70s or 80s or 90s) = 1 - 0-02 = 0-98 
p(80s or 90s or later) = 1 - 0-25 = 0-75

Those values seem intuitively reasonable, so I now feel content with my new 
assignments and their implications.

3.4 Third law

Assigning a probability to an event can be difficult when you find that the 
probability depends on whether or not the occurrence of some other event is 
known to you. An example will clarify this problem.

Suppose that a student is contemplating a long trip in his not-so-new 
automobile. He has had a number of accidents in his few years of driving and 
feels that if he has one more his insurance company will drop him and he will 
be unable to get any other company to insure him. He tries to estimate the 
probability of his having an accident, but finds that it depends on whether or 
not he has a breakdown of his car. The probability of an accident is less if the 
car does not break down, and is more if it does. How, then, can he arrive at a 
reasonable probability of having an accident?

no breakdown and no accident

no breakdown and accident 

breakdown and no accident

breakdown and accident 

Joint event

Fig. 3-1
Event tree for the student's driving problem

We can begin to tackle this problem by drawing the event tree shown in 
Fig. 3-1. The tree is read from left to right, so that tracing through the various 
branches of the tree gives us the four joint events described at the right of the tree. 
The events are drawn in the order you wish to consider them, and this order may 
or may not correspond to the actual order of occurrence. In this case the 
student could not think about the probability of having an accident without 
first considering the chance of a breakdown, so the possibility of having a 
breakdown is shown first.

The next step is to assign probabilities to the two branches of the first 
fork. If the student gives a probability of 0-2 to his having a breakdown, then 
the probability of no breakdown must be 0-8. Now we go to the upper right 
fork and assign probabilities to 'no accident' and 'accident' assuming that no 
breakdown has occurred. The student decides that if he does not have a break 
down his chance of an accident is only 0-03. Thus, the probability of no accident

Event Event
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given that the car remains operating is 1-0-03 = 0-97. Now we go to the 
lower right fork and assign probabilities assuming that a breakdown has 
occurred. This time the student figures he has a 0-3 chance of an accident if 
the car breaks down, for the breakdown could be serious enough to lead to a 
crash. That leaves a 0-7 probability of no accident, again assuming a breakdown. 
These probabilities are shown under the events in Fig. 3-2. Notice that although 
the events on the upper right-hand fork are the same as the lower right-hand 
fork, the probabilities are different. This is because the probabilities assigned 
on the right-hand forks are conditional on the events in the left-hand fork, so 
the probabilities are called conditional probabilities. These are not a different kind 
of probability, rather a different kind of event. We should, strictly speaking, not 
talk of 'conditional probabilities'; instead we should refer to the 'probabilities of 
conditional events'.

Fig. 3-2
Probability assignments

We have run across conditional probabilities earlier in the chapter when 
the statement was made that all probabilities were conditional on the person 
making the assignment and the information available at the time. Now we are 
saying that it will often be useful to talk of probabilities of events given know 
ledge of other events. For these conditional probabilities we use the notation 

which reads 'the probability of event F given event E'.
In this example we have two lists of events :
1st List
EI : no breakdown 
E2 : breakdown

2nd List
F! : no accident 
F2 : accident

In this problem we have four conditional probabilities: 
XF^EJ) = p(no accident no breakdown) = 0-97 
p(F2 EJ = Xaccident|no breakdown) = 0-03 
p(F 1 |E2 ) = p(no accident | breakdown) = 0-7 
p(F2 |E2 ) = p(accident | breakdown) = 0-3

The remaining two probabilities are called unconditional probabilities because 
they were determined without specifying anything about the occurrence or 
non-occurrence of any other events in the event tree (although they are, strictly 
speaking, conditional on the person doing the assessing and on the information
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available to him about events other than those on the event tree). These two 
unconditional probabilities are

p(E l ) = p(no breakdown) = 0-8 
= p(breakdown) = 0-2

Recall that our student's original problem was to find the unconditional 
probability of an accident, /?(accident). How can this be determined from the 
probabilities assessed so far? The first step, whose reason will be obvious to 
you in a moment, is to compute the probabilities of the four joint events shown 
in Fig. 3-1. The rationale for doing this will be easier to see by introducing a 
standard device which is analogous to the event structure of the student's 
problem.

Imagine that I have taken an urn containing 1000 balls and labelled 200 
of them with the word 'breakdown' and the remaining 800 with 'no breakdown'. 
Now if I mix the balls and perform a simple experiment, the probability of 
drawing a 'breakdown' ball is 200/1000 = 0-2, the same as on the first fork of 
the event tree in Fig. 3-2. Suppose further that I take all the balls labelled 'no 
breakdown' and add a second label, 'no accident' to 0-97 of them and 'accident' 
to 0-03 of them. Then I take all 200 of the 'breakdown' balls and add the label 
'no accident' to 0-7 of them and 'accident' to 0-3 of them.

Now we can compute the number of balls that have different double 
labels. How many balls are labelled 'no breakdown, no accident'? We know 
that 800 balls show a 'no breakdown' label and that 0-97 of these also have a 
'no accident' label, so 800x0-97 = 776 balls must bear the double label. In 
similar fashion the number of balls bearing each double label can be found :

Label Number of balls
no breakdown, no accident 800 x 0-97 = 776
no breakdown, accident 800 x 0-03 = 24
breakdown, no accident 200 x 0-7 = 140
breakdown, accident 200 x 0-3 = 60

Total number of balls = 1000

Performing a simple experiment with this urn will result in a joint event (a ball 
with two labels) whose probability of occurrence is exactly the same as the 
probability of the corresponding joint event shown in Fig. 3-1! So to find the 
probabilities of the student's joint events we have only to compute the corre 
sponding probabilities for the standard device. This can be done easily; simply 
divide the number of each type of ball by 1000.

Joint event Probability
no breakdown, no accident 0-776
no breakdown, accident 0-024
breakdown, no accident 0-14
breakdown, accident 0-06

Sum = 1 -000

Now look back at Fig. 3-2. You will see that you could have computed 
the above probabilities directly, without counting balls, by simply multiplying
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the probabilities on the branches of the event tree. For example, the probability 
of the joint event 'no breakdown and no accident' is 0-8x0-97 = 0-776. 
Finally we have arrived at the third probability law:

Third law The probability of both E and F occurring is equal to the probability 
of E times the probability of F given E. In mathematical notation,

) = p(E)xp(F|E)

This is the calculation that was made to find the probabilities of the joint events 
now shown in the completed diagram of Fig. 3-3. For example, for the joint 
event (E l and FJ), you must find

By substituting the appropriate probabilities you get 
p(E l and F t ) = 0-8 x 0-97 = 0-776

! and F x 0.776 

! and F2 0-024 

0-14

~ - E 2 and F 2 0-06

Event Event Joint event Probability of 
_. 0 0 joint eventFig. 3-3
Completed event tree

For the next calculation,
p(E { and F2 ) = X^i) x K^l^i) 

= 0-8 x 0-03 = 0-024

and so forth for the other two joint events.

First Corollary to the third law
We still have not found the unconditional probabilities of accident and 

no accident. To do this we will need a corollary to the third law. Let me develop 
it intuitively before stating it formally.

Suppose you were not given the original event tree and its associated 
probabilities but were given only the probabilities of the joint events in Fig. 3-3 
and you were asked to compute the probability of breakdown. You might 
observe that 'breakdown' appears in the bottom two joint events, so you figure 
that if either of those two events occurs, a breakdown has occurred. Now the 
second law says that the probability of either of two events occurring is equal
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to the sum of their individual probabilities, so you add the two probabilities 
to get the probability of a breakdown :

p(breakdown) = 0-14 + 0-06 = 0-2
The correctness of your reasoning can be verified by checking this probability 
against the probability of breakdown that was originally assigned and that 
appears in the lower branch of the first fork, 0-2.

You should see now how to compute the probability of an accident. Find 
the two joint events in which the word 'accident' appears, and add their 
probabilities :

p(accident) = 0-024 + 0-06 = 0-084
And, of course, the probability of no accident can be obtained in the same way, 

p(no accident) = 0-776 + 0-14 = 0-916
or it can be computed by finding 1 minus the probability of accident,

p(no accident) = 1 - p(accident) = 1-0-084 = 0-916 
Notice that this result was obtained by using both the second and third laws.

First corollary to the third law The unconditional probability of F is equal to the 
probability of £ times the probability of F given £, plus the probability of £ times 
the probability of F given E. In mathematical notation,

= p(E) x p(FE) + XE) x p(¥ E)

In this form the corollary looks forbidding, but if you will always draw an 
event tree and follow the assignments and calculations logically, you should 
find it easy to compute the unconditional probability of an event. In applying 
this corollary we are finding the probability of an event, F, by extending our 
analysis to include opinion about another event, E, and opinion about the 
relationship between F and E. Consequently, we can say that applying the 
corollary allows us to determine our uncertainty about a single, unconditional 
event by 'extending the conversation'.

You can test your understanding of the corollary with this exercise.

Exercise 3-5
An artist wishes to determine the probability that his next painting, not yet 
started, will sell. He decides that he cannot really assess that probability directly, 
for the chance of a sale depends on how well the painting turns out. He knows 
from past experience that when he feels good about one of his completed works, 
he has a 0-7 chance of selling it, but when he feels the work is bad, the chance 
of a sale is only about 0-1. In the past, about 0-35 of his paintings have been, 
in his opinion, good, but he is reluctant to use this figure as the probability 
of producing a good painting because he has lately been going through a difficult 
transition period in his career where the quality of his wor-k has been rather poor. 
He settles for a probability of only 0-2 as reflecting the chance that his next 
painting will turn out well.
Draw an event tree for the artist's problem, labelling the branches with the 
names of the events and their corresponding probabilities. 
Calculate the probability of a sale.
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Answer 
a The event tree should look like this (Fig.3-4):

good and sale 0-14

good and no sale 0-06 

bad and sale 0-08

bad and no sale 0-72

Event Event Joint event Probability of
joint event

Fig. 3-4
Event tree for the artist problem

The probability of a sale is found by adding the two probabilities of joint events 
that include 'sale' as part of their description.

/?(sale) = Xgood, sale) +/?(bad, sale) = 0-14 + 0-08 = 0-22

Suppose the artist in this example felt that the chance of selling a painting 
could be assessed more accurately by considering a slightly more refined judge 
ment of the painting's quality. Instead of just 'good' or 'bad' he prefers to 
consider the events 'good', 'bad', and 'indifferent'. He might also be hardpressed 
for cash and so is interested in the event 'immediate sale' as well as 'later sale' 
and 'no sale'. The first fork on his event tree would have three branches. How 
does the first corollary to the third law apply when an event tree contains 
forks of more than two branches ?

The general principles embodied in the third law and its corollary apply 
no matter how many branches in each fork. The next exercise will illustrate 
this point.

Exercise 3-6
An English scientist wishes to measure, in a particular community, the strength 
of opinion favouring the return of capital punishment. He feels that an adequate 
measure is represented by the probability that a person selected at random 
from the community would favour the proposition. He plans to interview a 
sample of people in the community so he can obtain data which will be used to 
revise his prior opinions. For now, let us concentrate on those prior opinions. 
He finds his prior opinions are rather vague concerning the probability that a 
person would favour the return of capital punishment, but he feels in a better 
position to quantify his opinions if he considers the person's political beliefs. 
If a person considers himself a Conservative, then the scientist thinks the 
probability is 0-8 that the person would favour the return of capital punishment. 
He feels the chance is about 0-55 for a Labourite, 0-15 for a Liberal, and 0-25 
for a person who would not associate himself with those three political parties. 
The scientist completes the task of quantifying his prior opinion by looking up
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figures on the proportions of people affiliated with the different parties (party 
records, recent surveys, voting records of the last election, etc.), and using this 
information along with his knowledge of recent social and political trends, to 
arrive at the following probabilities:

/^Conservative) = 0-35 
p(Labour) = 0-45 
/^Liberal) = 0-08 
p(Other) - 0-12

Sum - 1 -00
Draw and label the scientist's event tree.
Find the probability that a person would favour the return of capital punishment.

Answers
Here is the event tree:

Conservative and favours 0-2800

Conservative and opposes 0-0700

Event Event

Labour and favours

Labour and opposes 

Liberal and favours

Liberal and opposes 

Other and favours

Other and opposes 

Joint event

0-2475

0-2025 

0-0120

0-0680 

0-0300

0-0900

Probability of 
joint event

You can see that the probabilities of the joint events are determined by applying
the third law: each conditional probability on a branch of a right fork is
multiplied by the unconditional probability on the preceding branch of the left
fork.
The probabilities of four joint events must be added to obtain the required
probability.

/?(favours) = ^(Conservative, favours) 4- /^Labour, favours)
+ ^(Liberal, favours) + /?(other, favours) 

- 0-28 + 0-2475 + 0-012 + 0-03 
= 0-5695

So, before gathering any data, the scientist believes there is about a 0-57 chance 
that a person in the community would favour the return of capital punishment.
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Occasionally your prior opinion may depend on more than one conditional 
event. The scientist in the previous example may feel that the probability of 
favouring the proposition depends on the individual's political preference, that 
his data on political preference are unreliable and that his opinions depend 
on the person's sex. Now we have three lists:

List 1 List 2 List 3
male Conservative favours 
female Labour opposes

Liberal
Other

Fig. 3-5
An event tree

The event tree is shown in Fig. 3-5. The probabilities on the first fork are 
unconditional, p(E). Probabilities on the second set of forks are conditional on 
the event from the first list: /?(F|E). Third-fork probabilities are conditional on 
events from both first and second lists: p(G\F, E). In general, probabilities on 
any branch are assessed keeping in mind that events on the path from the 
origin to the present branch have already occurred.

Joint probabilities are computed as before, by multiplying probabilities 
along the paths. In general, the probability of the joint event E, F, G is given by

p(E, F, G) = p(E) x p(F|E) x p(G|F, E)
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Unconditional probabilities are then found by adding the probabilities 
of all joint events that include the event whose probability is desired, the same 
procedure as before.

Second corollary to the third law
Imagine two urns, the first containing 700 white and 300 black balls, the 

second containing 600 red and 400 green balls. Suppose I perform the simple 
experiment of drawing a ball from the first urn, then one from the second urn. 
The possible outcomes of this two-stage experiment are shown in Fig. 3-6.

white and red 

white and green 

black and red

black and green 

Joint eventEvent Event

Fig. 3-6
Event tree for the two-urn experiment

Now let us use the third law to find the probabilities of the joint events. 
First we must assign probabilities to each of the branches of the event tree. 
The branches of the first fork should give no trouble; we assign probabilities 
equal to the proportions of white and black balls.

p(white) = 0-7 
p(black) = 0-3

1-0

Next consider the upper right fork. Remember that the probabilities we place 
on these branches are for conditional events; we do not assess /?(red) and 
/?(green), we determine p(red\ white) and/?(green| white). In other words, we must 
find the probabilities of red and green given that a white ball has been drawn 
from the first urn. Probabilities on the lower right fork must also be for con 
ditional events; we want to find the probabilities of drawing a red or a green 
ball from the second urn given that the ball drawn from the first urn was black.

In the student's car problem and in the artist's problem the probabilities 
on the branches of the two right forks depended on the preceding event. 
The artist assigned a higher probability to 'sale' given that he felt good about 
his painting than if he felt badly. Here we are saying that when we evaluate the 
probability of green or the probability of red we must take into account the 
results of the first draw.

If you are feeling a bit confused at this point because you cannot see why 
the probability of drawing a green ball should be affected in the slightest by the 
results of the first draw, do not worry, you are correct. Clearly the draws from 
the separate urns cannot influence one another unless, perhaps, the first ball
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drawn is coated with an instantaneously acting deadly poison, so that the 
second ball never is drawn. If the draws cannot influence each other then it 
seems reasonable that the probability you assign to green conditional on the 
outcome of the first draw will be the same whether a black or a white ball is 
drawn first.

Another way to look at this is to imagine that I have made both draws. 
I ask you, 'What is the probability I have drawn a green ball ?' You will prob 
ably note the proportion of green balls and reply, '0-6'. Now I say, 'Ah, but 
I'm willing to tell you the result of the draw from the first urn. If I tell you it 
was black, will you wish to make a new estimate of the probability I have drawn 
a green ball?' Your answer would be, 'No'. I reply, 'Well, it was not black 
anyway, it was white. Now what do you think the probability of green is ?' 
Again you would be uninfluenced by this information because it does not tell 
you a thing about the second draw, so you answer, 'Still 0-6'.

In general, if you find when you are assessing the probability of an 
event that your opinion is unaffected by knowing whether or not some other 
event has occurred, then we say the two events are independent.

Two events are independent if 
p(¥\E) = p(F)

Event F is independent of event E if the probability of F given E equals the 
probability of F. Independence is a symmetric notion; if F is independent 
of E, then E is independent of F. Thus, it is also true that p(E\F) = p(E).

Now let us use this definition to simplify the computation required to 
find the probabilities of the joint events in the two-urn example. Recall that the 
third law gives us the rule we should apply:

p(EandF) = p(E)xp(F|E)

But we have just seen that for independent events, 
p(F|E) = p(F)

So if we substitute this last equation into that for the third law, we get 
p(E and F) = p(E) x p(F)

This is the second corollary to the third law.

Second corollary to the third law For independent events, the probability of both 
E and F occurring is equal to the probability of E times the probability of F. 
In mathematical notation,

p(E and F) = p(E) x p(F) 

This corollary is sometimes called the 'multiplication law'.

To apply this corollary to the two-urn problem we follow the same pro 
cedure as in the student's car problem: multiply the probabilities on the paths 
through the tree. The only difference for the two-urn problem is that by recog 
nizing that the two draws are independent, we can put the same probabilities 
on the lower right fork as on the upper .right fork, in this case 0-6 and 0-4. 
The complete tree is shown in Fig. 3-7.
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Event

white and red 0-42

white and green 0-28

black and red 0-18

TJ^ black and green 0-12

Event Joint event Probability of
joint eventFig. 3-7

Complete event tree for the two-urn experiment

We will make frequent use of this corollary so be sure you understand it. 
Remember that it is nothing more than the third law with a simplification for 
independent events. You can use it only for independent events, so to apply 
the corollary you must first decide whether the events are independent. Of 
course if you draw a decision tree and find that your probability assessments 
for the right forks are the same from one fork to the next whatever the first 
event, then you have as a matter of course found the events to be independent.

6. _--- head and head 0-25

*>• head and tail 0-25

tail and head 0-25

tail and tail 0-25

Event Event Joint event Probability of
joint event

Fig. 3-8
Event tree for two flips of a fair coin

However, sometimes independence is more conveniently recognized not 
by assessing probabilities, but by noting that knowledge of one event cannot 
possibly influence knowledge of the other. Then it is only necessary to assess 
the unconditional probabilities of the events and multiply them to obtain the 
probability of the joint event. For example, what is the probability that two 
successive tosses of a coin judged to be fair will result in a head on the first 
toss and a head on the second? Obviously the first and second tosses are 
unrelated; the coin does not have a memory! The outcome of the second toss 
has nothing to do with the outcome of the first toss, so the two tosses are 
independent. Since we would assign a probability of 0-5 to a head coming up on 
one toss of a coin, we can find the probability of two heads on two tosses by
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applying the second corollary to the third law. We could draw the event tree 
of Fig. 3-8 or we could solve the problem algebraically:

p(head and head) = /?(head) x p(head) 
= 0-5x0-5 
= 0-25

Notice that doing it algebraically saves drawing the whole tree.
See if you understand this corollary by trying the next two exercises.

Exercise 3-7 •
I toss a coin and roll a die, both judged to be fair. What is the probability of 
getting:

a A head and a four?
b A head and an even number?
c A head and either a 1, 2, or 3?

Answers
You could draw an event tree and assess probabilities for the relevant branches, 
then multiply along the corresponding paths. In the process of assessing 
probabilities you would discover that the probabilities you assigned to the out 
comes of the roll of the die were unaffected by knowledge that the coin came up 
heads or tails. Or, you could proceed by recognizing that the toss and the roll 
are unrelated, so the corresponding events must be independent. Then, the 
algebraic approach is simple.

a p(head and four) = /?(head) x p(four)
- 1/2 x 1/6 - 1/12

b Xhead and even number) = /?(head) x /?(even number)
= Xhead) x p(2 or 4 or 6)

Note that at this point you must bring in the second law to find p(2 or 4 or 6). 
Since
p(2 or 4 or 6) = p(2) + p(4) + p(6) = 1/6 + 1/6 + 1/6 = 3/6 - 1/2, 
/?(head and even number) = 1/2 x 1/2= 1/4

c p(head and either 1, 2, or 3) = /?(head) x p(\, or 2, or 3)
= /Khead) x {/?(!) + p(2) + p(3)}
= 1/2 x (1/6 + 1/6 + 1/6) - 1/2 x 1/2 = 1/4

Exercise 3-8

A psychologist notes that an untrained rat placed in a T-maze has a tendency 
to turn right rather than left at the junction of the runways. He estimates the 
probability of turning right on any one trial to be 0-6. What probabilities should 
the psychologist assign to the following events ?

a The rat turns right on each of the next two trials.
b The rat turns left on the next trial and right on the one after that.
c The rat turns right on the next trial and left on the one after that.
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Answers
a First we must find out if turning right on the next trial and turning right on the 

following one are independent events. We should ask the psychologist, 'I 
noticed that the rat turned right on the last trial. In light of that information 
would you still say that his chance of turning right on the next trial is 0-6?' 
In other words, if we let

EI represent right turn on first trial 
FI represent right turn on second trial

then we are asking the psychologist if he thinks p(Fl } = /?(Fi EI). If he were
to say yes then we can conclude that he believes the events to be independent
and so we are justified in applying the second corollary to the third law to this
problem. But if he says no, then we must ask him for his estimate of p(F1 \El )
so we can use the third law itself.
Let us suppose he says the result of the previous trial has no bearing on his
judgement of the chances of turning right on the next trial, that is, p(¥l) =
/KFilEx) = 0-6.
Then the probability of two successive right turns is

/?(right then right) = /?(right) x /?(right) 
= 0-6 x 0-6 
= 0-36

b Now ask the psychologist if he would change his probability of a right turn 
knowing that the rat turned left on the previous trial. You are asking him if he 
thinks p(Fi) = p(f\ E2) where E2 represents left turn on the first trial. 
If he says he would stick to 0-6 even if he did know the rat turned left the last 
time, then he is saying that FI and E2 are independent. Again, you should apply 
the second corollary to the third law.

Xleft then right) = p(left) x /?(right)
= (1 -Xright)} xXright) 
= 0-4 x 0-6 
= 0-24

Notice that we also had to apply the first corollary to the second law to find 
the probability of a left turn. 

c Now we let E2 represent left turn on first trial and ask the psychologist if
p(F2) = />(F2 |E2).

If he says they are equal then we conclude that F2 and E2 are independent. We 
apply the second corollary to the third law :

/?(right then left) = p(right) x /?(left)
= /Kright) x (1 -/?(right)} 
= 0-6 x 0-4 
= 0-24

That is the same answer as in the preceding problem where you had to find 
Xleft then right). From this similarity you would be correct in inferring that the 
probability of a sequence of independent events does not depend on their order 
of occurrence.

Our method of solving this problem was a bit clumsy because we had to 
keep asking whether the two events in question were independent. We could 
have simplified the task by asking the psychologist whether the trials were
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independent. In the language we are using here a trial is really a simple experi 
ment, and the rat turning right or left on the trial is the outcome of the simple 
experiment; it is an event. If we say that the trials are independent, we are 
really saying that knowing the outcomes of the second trial cannot influence 
opinion about the outcomes of the first trial and vice versa. That more general 
statement implies that all of the second-trial events are independent of all of 
the first-trial events.

In other words, the general statement that trials are independent implies 
the specific statements that events are independent from one trial to the next. 
If the psychologist had said the trials are independent we could have concluded, 
without further questioning, that

E!)
P(F2 ) = p(F2 E2)

Then we could have applied the second corollary to the third law with no 
further ado.

The notion of independence plays an important part in statistical inference. 
The scientist is frequently interested in knowing whether 'things go together', 
whether knowing something about one thing will help to predict something 
else. Especially in the social sciences, where we are not even agreed about which 
aspects of human and societal behaviour are the right ones to measure, much 
experimental work is devoted to finding out whether or not something makes a 
difference to, has an effect on, or influences something else. Are race and 
intelligence related? Is there a connection between social class and level of 
education? Is the taking of soft drugs independent of damage to chromosomes? 
The statistician may use tests of independence on the data derived from experi 
ments addressed to these questions. We will see how to do this in Chapter 14.

Try the next exercise to see if you know when to use the third law and 
when to use the second corollary to the third law.

Exercise 3-9
What is the probability that some time in the next eight hours someone will
offer to buy you a beer and someone (not necessarily the same person) will
offer you a cigarette ?
What is the probability that it will rain tomorrow and you will be in a grouchy
mood?
What is the probability that tomorrow you will receive a letter bearing a foreign
postmark and that someone will offer to buy you a beer?
What is the probability that the next person to call you by name will be a
woman and that the next post will bring a letter bearing a foreign postmark ?
What is the probability that the next two (different) people to call you by name
are both women ?

Answers
The safest way to tackle these problems is to start by assuming you will apply 
the third law. When you assess p(F\E) you may find that it is the same as /?(F), 
in which case the third law turns into the second corollary. But if you find p(F E)
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is not the same as /?(F), then you know events E and F are not independent, so 
you must use the third law.
First assess the probability that someone will offer you a beer in the next eight 
hours. Suppose you feel 0-05 is about right. Now ask yourself if the probability 
of being offered a cigarette is different depending on whether or not someone 
offers to buy you a beer. For me, the chance of being offered a cigarette is low, 
say O-Ol, but it is higher if someone has offered to buy me a beer for I would 
most likely be in a bar with several friends, one of whom may not know I do 
not smoke and so would offer me a cigarette. Let me say, then, that p(offer of 
cigarette|offer of beer) = 0-10. Applying the third law gives

/?(offers of beer and cigarette)
= Xoffer of beer) x />(offer of cigarette!offer of beer) 
- 0-05 x 0-10 
= 0-005

It would have been inappropriate to use the second corollary to the third law 
because the events are not independent. We saw this when we found that 
Xoffer of cigarette) was not equal to p(offer of cigarette|offer of beer). 
These are obviously not independent events for me. I'm more likely to feel 
grouchy on a rainy day than, say, a sunny day. My mood is not independent 
of the weather, so if the same is true for you, you must assess p(rain) and 
/?(grouchy|rain), and use the third law, not the second corollary.

wife and other woman 0-4

other woman and wife 0-08

other woman and other woman 0-01

Event Event Joint event

Fig. 3-9
Event tree for the 'two-women' problem

Probability of 
joint event

At first glance these would seem to be independent events, but look again.
Suppose the foreign letter brought unexpected good news. Is it not possible
that you would tell your friends, one of whom might offer to buy you a beer,
to celebrate? But perhaps that is so unlikely for you that, for practical purposes,
the events can be treated as independent. If you think so, then use the second
corollary to the third law.
Now here are two events that seem to me completely unrelated, though I suppose
some reader will find a situation where they are not independent. If the events
are independent for you, use the second corollary to the third law.
This is a difficult problem to discuss in general terms because the judgement
about independence of the events depends very much on where you are as you
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read this. As I write this at home I am almost certain that my wife will call me 
by my name before the evening is over. But who would the other person be? 
Perhaps someone will phone, and call me by my name even if they want to speak 
to my wife. That seems fairly likely, but if it does not happen, then when I go 
in to University tomorrow someone is bound to call me by name, and I am 
equally no more certain the person will be a man than a woman. Of course 
either a man or a woman may phone this evening before my wife calls me by 
name. The events that could happen are sufficiently numerous that an event tree 
may be helpful. Mine is shown in Fig. 3-9. The branches of the left fork 
represent the possible people, one of whom may be the first to call me by my 
name, and the numbers below the branches are my probability assignments to 
those possibilities. The branches of the right fork show the people who might 
be second. The upper right fork does not contain a 'wife 1 branch because the 
problem stated the two people must not be the same person, and the branch 
that precedes the upper right fork already has 'wife' on it. The middle right 
fork contains all three possibilities, it being understood that 'other woman' on 
this fork signifies a different person than 'other woman' on the middle branch 
of the left fork. I have written out only the joint events of relevance to this 
problem; the probabilities of the joint events are obtained by applying the 
third law. To find the probability that the next two people to call me by 
name will be women, I apply the second law, i.e. add the three relevant joint 
probabilities.

/?(woman and woman) — p(wife and other woman)
-f /Kother woman and wife) 
+ p(other woman and other woman) 

= 0-40 + 0-08 1 0-01 
- 0-49

3.5 Quantifying opinion

Opinion about complex events
The last part of the previous exercise, the 'two-women problem, illustrates 

a very important point about quantifying opinion: do not do it for complex 
events. I found it very difficult to express my opinion about the possibility that 
the next two people to call me by name will be women, but I discovered that 
my task was easier if I broke the problem down into simpler events as illustrated 
in Fig. 3-9. I felt more comfortable quantifying my opinions about those simple 
events, and I used the probability laws to put those opinions together to give 
my opinion about the complex event.

A major point in introducing the third law and its corollaries was to 
enable you to quantify your opinion about complex events. We saw in the 
capital punishment problem, in the artist's problem, and in this last problem 
that an event about which opinion was vague could be broken down into simpler 
events, and that opinions about these simple events could be expressed with 
some confidence. Then opinions about the original events could be found by 
combining the probabilities of the simple events through application of the 
probability laws, particularly the third and its corollaries.

But why bother? Why not directly express opinion about the complex 
events? The answer to these questions comes from a considerable body of 
research aimed at finding out how good people are at quantifying opinion in the
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form of probabilities. A repeated finding of this research is that the probabilities 
people assign to simple events are quite consistent with each other in that they 
obey the probability laws, but that probabilities assigned to complex events 
are not very consistent. (Summaries of this research can be found in Peterson 
and Beach, 1967, and in Edwards, 1968.)

Many statisticians have been reluctant to adopt Bayesian ideas because 
they feel that prior opinion is vague and incapable of being quantified. Even 
if you could quantify it, they argue, the probabilities are largely meaningless. 
I think this criticism should be taken seriously, for it may reflect an accurate 
intuitive appreciation of the inconsistencies in our judgements about complex 
events. The mathematician and the experimentalist may be saying similar things 
in different words. But the research findings suggest a way out of the pessimism 
of the traditional statistician. By recognizing that this difficulty may frequently 
be caused by our inability to handle complex events, we can try to decompose 
the complex events into simpler ones, and then exercise judgement about the 
simple events. This we can do with some confidence, and then we reassemble 
the pieces by using the probability laws. Indeed, several authors have devised 
procedures, even complex man-computer systems, for this decomposition- 
judgement-reassembly procedure (Raiffa, 1968; Schlaifer, 1969; Edwards, 
Phillips, Hays and Goodman, 1968).

It is also worth pointing out that some of the difficulty people have in 
trying to assess probabilities is simply a matter of inexperience. As I said earlier 
in this chapter, probabilities are the language of uncertainty, and the prob 
ability laws are the grammar of that language. When you have gained some 
experience in using the language, you will feel more confident that your prob 
ability assessments are meaningful.

3.6 Summary

In this chapter we have seen that probabilities are the language of uncer 
tainty, and that the probability laws are the grammar of that language. Uncer 
tainty about events, hypotheses or uncertain quantities can be expressed 
numerically in the form of probabilities.

The probability laws impose certain constraints on the probabilities we 
may assess: the first law restricts probabilities to numbers between 0 and 1, 
inclusive, while the second and third laws, and their corollaries, specify the 
consistencies that must exist between probabilities we assign to events and those 
we assign to combinations of the events.

Here are the probability laws: 
First law: 0 < p(E) < 1 and /?(sure event) = 1

Second law: p(E v or E2 ) = p(E 1 )+p(E 2 )
for mutually exclusive events

First corollary to _
the second law: p(E) = 1 — p(E]

Second corollary to
the second law: £/7(E t ) = 1

for mutually exclusive and exhaustive events
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Third law: p(E and F) = p(E)xp(F\E)

First corollary to _ _
the third law: p(F) = p(E) x p(F\E) +p(E) x p(F\E)
Second corollary to
the third law: p(E and F) = p(E) xp(F)

for independent events
Usually your probabilities should be assigned only to simple events. If 

your real interest lies in complex events, then you should decompose the com 
plex event into simple ones, assess probabilities for the simple events, then use 
the probability laws to find the probability for the complex event.

Problems

3-1 In a class of 30 men and 20 women, each student writes on a 3-in by 5-in card 
whether he or she is left-handed, right-handed, or ambidextrous (three mutually 
exclusive and exhaustive categories). Five of the men and 4 of the women are 
left-handed and one man is ambidextrous. Suppose the cards are collected and 
mixed, and then 3 cards are selected at random with replacement (that is, after 
selecting a card and noting what is written on it, the card is returned to the 
collection before the next one is selected). What is the probability that

a the first card will say 'left-handed', the second will say 'right-handed', and the
third will say 'left-handed'. 

b all three cards will say 'left-handed'.

3-2 A student considering a simple experiment which can result in one of three 
mutually exclusive and collectively exhaustive events assigns the following 
probabilities to the first two events:

Complete these statements :
a p(E3) = c /?(Ei and E2) = 
b p(Ei or E2 ) = d p(E3) =

3-3 A man has mislaid his wallet. He thinks there is a 0-4 chance that the wallet is 
somewhere in his bedroom, a 0-1 chance it is in the kitchen, a 0-2 chance it 
is in the bathroom, and a 0-15 chance it is in the living room. What is the 
probability that the wallet is

a somewhere else ?
b in either the bedroom or the kitchen ?

3-4 Before leaving for a dice game, an unscrupulous gambler places a loaded die 
in his pocket. From past experience, he knows that the die comes up a 3 more 
often than a fair die. His probabilities for the six possible outcomes are:

p(\) =0-15 /K2) = 0-15 />(3) = 0-30 p(4) = 0-1 
Q-\5 p(6)=Q-\5

During the game he reaches for the die but discovers another one, indistinguish 
able in appearance, in his pocket. All he knows is that one die is a fair one, while 
the other is the loaded one. He chooses one at random and surreptitiously 
introduces it into the game. What is the probability that the next throw of that 
die will result in a three?
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3-5 Suppose that the gambler from the previous problem finds out he has the loaded 
die. What is the probability that on the next three throws of the die it will come up

a any number other than a 3 on each throw?
b a 3 on at least one of the throws?
c a 3 on at least two of the throws?

3-6 A student figures his chance of passing a history exam is about 0-9 if a question 
on the origins of the First World War appears. Otherwise his chance of passing 
is only about 0-7. He thinks there is a 0-6 chance that the question will appear. 
What is the probability of passing the exam?

3-7 A man driving to a distant city wishes to arrive as quickly as possible. He con 
siders taking the shortest route—through the mountains. Since it is winter, 
there is some possibility that it will snow hard enough to block the road; he 
will not get through if it snows and the mountain road is blocked. He estimates 
the probability of it snowing as 0-2 and the probability of the road staying open 
given that it snows as 0-6. What is the probability that he will get through if he 
takes the mountain road ?

3-8 I am behind schedule and reckon that I am 3 times as likely to catch the next 
underground as to miss it. If I miss it, I am sure to catch the second train that 
leaves 15 minutes later. If I get the first train, I reckon that possible delays in 
my journey leave me with a 0-7 chance of arriving on time for an appointment. 
If I miss the first train, then I assess the odds in favour of my missing the 
appointment as 10 to 1. What is the probability that I will be late?

3-9 A scientist about to conduct an experiment figures there is about a 0-9 chance 
of observing result X if Theory A is true, and about a 0-3 chance of observing 
X if Theory B is true. He feels that Theory A is about twice as likely to be true 
as Theory B. If theories A and B are the only reasonable contenders, what is the 
probability that the scientist will observe X when he carries out the experiment ?
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The present chapter is the most important in this book. If you understand 
the logic of this chapter, you will find the rest of the book makes sense, for most 
of the remaining material is a variant of the theme developed in this chapter.

You have met the theme before:

Prior opinions are changed by data, through the operation of Bayes' theorem, to 
yield posterior opinions.

In this chapter we see how Bayes' theorem operates. The previous two chapters 
showed how an individual's uncertainty can be quantified as probabilities and 
how these probabilities are governed by the probability laws. Now we are 
ready to see how the probability we assign to an event should be revised when 
we learn of the occurrence of a related event. In other words, we consider how 
our uncertainty about the world changes as we systematically collect data. The 
key to this process is given by Bayes' theorem.

When you have completed this chapter you should
be thoroughly familiar with the operation of Bayes' theorem and be able 
to apply it for a simple datum or for a string of data;
understand the ways in which intuitive revision of opinion is different 
from that prescribed by Bayes' theorem;
have an understanding of the way in which prior opinion contributes to 
posterior opinion;
know how to determine the probabilities that go into Bayes' theorem; 
understand the logic of hypothesis testing from a Bayesian point of view.

4.1 Bayes' theorem

In this section I am going to develop Bayes' theorem out of the 'student's 
driving' example in the previous chapter, then I shall state the theorem formally, 
and finally show several ways of calculating it.
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Extension of the student '.s driving problem
Suppose our student sets out on the trip but never reaches his destination. 

Instead, he wakes up in a hospital and has no recollection of how he got there. 
A nurse confirms only that he has had an accident resulting in a nasty blow 
on the head and a broken leg. Eventually he becomes accustomed to the head 
ache and to the cast on his leg, and, as boredom sets in, he tries to recollect the 
events of the accident, to no avail. He is particularly curious to know if his car 
broke down before the accident. He knows that even if his car had broken 
down, it may or may not have led to an accident, and that the cause of his 
accident may have been an event other than a breakdown. So, how can he 
determine the probability of breakdown given that he knows an accident has 
occurred ?

no breakdown and no accident 0-776

Event Event

no breakdown and accident 

breakdown and no accident

breakdown and accident 

Joint event

0-024 

0-14-

0-06 

Joint probability

Fig. 4-1
Event tree for the 'car breakdown' problem

First, let us reconstruct the original event tree we developed in the previous 
chapter; it is shown in Fig. 4-1. Let us pick up the development of the problem 
at the point where we introduced a standard device which is analogous to the 
real problem. That, you recall, was an urn filled with 1000 balls, each ball 
showing a double label, as follows:

Label
no breakdown, no accident 
no breakdown, accident 
breakdown, no accident 
breakdown, accident

Number of balls
776

24
140
60

The student knows only that he has had an accident. That is equivalent to my 
drawing a ball at random, finding that it has an 'accident' label on it, and telling 
you only this information. What, now, is the probability that it has 'breakdown' 
written on it? If you can answer that question you have solved the student's 
problem, for your uncertainty is an exact analogue of his.

If we go back to first principles, the probability can be found easily. 
What is the total number of elementary events we should consider? It is the 
number of balls with 'accident' on them, that is 24+60 = 84. How many of 
these elementary events are in the event class 'breakdown', that is, how many 
of the 84 balls have 'breakdown' written on them? The answer, of course, is 60.
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And so, the probability of breakdown given that an accident has occurred is 
given by the proportion 60/84.

, 60 
p(breakdown|accident) = — = 0-715

That was Bayes' theorem, in informal guise. Here it is more formally:
. /?(breakdown and accident) p(breakdown accident) = —-————--———— — 
1 p(accident)

The probability in the numerator is a joint probability, found at the right of 
the event tree. The probability in the denominator is the sum of two joint 
probabilities; recall that we have been through this before in Chapter 3 when 
we developed the first corollary to the third law. Although I did not actually 
state it there, we found that

p(accident) = p(no breakdown and accident)
+ /?(breakdown and accident)

in other words, the sum of two joint probabilities. Using this result, we can 
write Bayes' theorem as shown in Fig. 4-2.

Bayes' *\ ,. ., , _______p(break and ace)_______> t)( breaklacc) ~ —•—•———————————————————~—
Theorem J />(no break and ace) -\- p(break and ace)

0-776

Applying 1 ^ ^0-024
Bayes' > ^^ p(break|acc)
™ 1^0 0-024 + 0-06 Theorem | ^c5̂ ... „ - 0-14

0-06

0-06
Result />(breakdo\vn| accident) -^-^r. 0-715'

Fig. 4-2
Joint probabilities in Bayes' theorem

A more convenient form of Bayes' theorem can be obtained by applying 
the third law to each of the joint probabilities, so that the probability of each 
joint event is given by the product of an unconditional and a conditional 
probability. You can see how this works by studying Fig. 4-3.

Bayes' theorem for two hypotheses
To generalize, first consider just two events about which we are uncertain; 

call them H^ and H 2 . For the student's driving problem H t is 'breakdown' and 
H 2 is 'no breakdown'. I have used the symbols H t and H 2 because it will be 
convenient to refer to these particular events as hypotheses. For example, 
the occurrence of a breakdown can be treated as a hypothesis; it is an event 
which, from the student's point of view, may or may not have occurred — it is
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From ^1
c>- /u , i 0-06 rig. > />(break ace) - ————————
4_ 2 J 0-024 ^ 0-06

Ŵ
Breaking down ~] ^^ ̂  ,,-,yj 0 2
the joint [> ^ />(break|acc)
probabilities J "X&, (°'« ' 0-03) 4 (0-2 - 0-3)

. ' > />(break|acc) —————————rv——-v/-v—•———/————————— 
theorem J />(no break)/>(acc|no break) 4 />(break)/>(acc|break)

Fig. 4-3
Another form of Bayes' theorem

an hypothesis. Note that H l and H 2 are competing hypotheses in the sense that 
one must be true and both cannot be true.

Generalizing further, we recognize that an event has occurred which bears 
on our uncertainty about the hypotheses. Call this event a datum, and designate 
it by D. The student knows he has had an accident. That is an item of data, so 
we let 'accident' be designated by D.

Now we can write Bayes' theorem for two hypotheses. Here it is for Hj:

p(H 2 )p(D|H 2 ) + p(H 1 )p(D|H 1 )

And, again, for H 2 :

= KH2)p(D|H 2 ) _ 
p(H 2 )KD|H 2 ) + p(H 1 )p(D|H 1 )

The probabilities in Bayes' theorem are given names. The unconditional 
probabilities /?(Hj) and />(H 2 ) are called prior probabilities because they repre 
sent opinion before any data are observed. On the other hand, ^(HJD) and 
/?(H2 |D) are said to be posterior probabilities', they indicate opinion that has 
been revised in the light of the datum, opinion after observing D. Finally, 
XDlHj) and/?(D|H 2 ) are called likelihoods. They are the probabilities associated 
with a particular datum given that event Hj or that event H 2 has occurred (see 
Fig. 4-4).

prior probability
likelihood 

posterior probability
P(H,) x

p(H 2) x /KDIH.) f XH t ) x

prior likelihood prior likelihood
Fig. 4-4
Names of the probabilities that make up Bayes' theorem
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Bayes' theorem looks rather forbidding, but it is not really, if you look 
closely. Consider it, written for two hypotheses, in Fig. 4-5. First, note that the 
denominators are identical; each is the sum of two products. If you look closely 
at the two products, you will see that one appears in the numerator of the first 
equation, and the other appears in the numerator of the other equation.

Those similarities can be exploited to make computations involving 
Bayes' theorem quite simple. We turn to that next.

/>(HJD) =

same—

/>(H 2)/>(D|H 2 )

same—i

/>(H 2 |D) =
/>(H 2)/>(D|H 2 )

/>(H 2)/>(D|H 2) 4

same-
Fig. 4-5
Similarities in Bayes' theorem for two hypotheses

Tabular form of Bayes* theorem
In applying Bayes' theorem, you will be aided by setting out your calcu 

lations in tabular form and following the steps shown in Fig. 4-6. Compare 
these steps to the operations shown in Fig. 4-3 to make sure you understand 
why each step is carried out.

StepS
Multiply
prior by

likelihood

Hypotheses Prior Probabilities Likelihoods
1

Prior x, 
Likelihood

Step 7
Divide Step 5 
products by 
Step 6 sum

T
Posterior 

Probabilities

Breakdown 
No Breakdown

0-2 
0-8

1-0

Step 3

Check: sum 1-0

0-30 
0-03

0-060 
0-024

Sum 0-084

Step 6
Find sum of 

products in Step 5

0-OM) 0-084 -_ 0-715 
0-024 0-084 0-285

1-000

Step 8
Check : sum -- 1-0

Fig. 4-6
Steps in calculating posterior probabilities by applying Bayes' theorem

What do the calculations mean? Notice that before setting out on the 
trip the student thought the chance of a breakdown was only 0-2; that was his 
prior probability. But now he has some data—he was in an accident. His prior 
opinion has been changed, through the operation of Bayes' theorem, so that 
now the chance of a breakdown is 0-715. That is his posterior opinion. This 
revision of opinion in the light of new information is the heart of Bayesian 
statistics, so be sure you understand how the theorem operates. Try this 
example.
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Exercise 4-1

Page, Rakita, Kaplan and Smith (1957) have used the Archimedes spiral after 
effect illusion to diagnose brain damage. The spiral shown below is rotated and 
the patient is asked to stare fixedly at it for a time; it appears to be shrinking 
or expanding, depending on the direction of rotation. When it is stopped it 
seems to rotate in the opposite direction. There is a sense of movement, yet

there is no actual motion. That is the illusion as seen by most people. However, 
Page et al. found that while 85% of people who are functionally ill reported 
seeing the illusion, only 40% of brain-damaged people reported seeing it. 
Suppose that a psychiatrist makes a preliminary diagnosis of a patient as either 
functionally ill or brain-damaged, and that he is about equally sure of either 
diagnosis. He shows the rotating spiral to the patient, stops it, and the patient 
reports he sees the reverse motion. What degrees of belief should the psychiatrist 
now assign to the two possible diagnoses?

Answer
First let us solve this using the equation form of Bayes' theorem, then the
tabular form.
We can consider the two possible diagnoses as hypotheses. Let

HI = functional illness and H 2 — brain damage. 
The datum is that the patient saw the illusion, so let 

D — patient saw illusion.
We wish to find the probability that the patient is functionally ill given that he 
reported seeing the illusion, and also the probability he is brain-damaged given 
that he reported seeing the illusion. In other words, we wish to find

p(H,\D) and p(H 2 \D)
We use Bayes' theorem to do this. A more easily remembered notation will 
help. Let HI be replaced by F to denote functional illness, H 2 by B to denote 
brain damage, and D by I to indicate 4 saw illusion'. Now we want to find

and
that is, the probability of functional illness given the patient reported seeing the 
illusion and the probability of brain damage given that he saw the illusion. 
Writing Bayes' theorem twice in this more mnemonic notation gives

/>(F|I) = 

and

/*B|I) = _,»



62 Revising opinion

There are really only four quantities on the right sides of those equations, two 
prior probabilities, /?(F) and /?(B), and two likelihoods, p(l\F) and p(l\B). 
Once we know those values we have almost solved the problem. 
Let us start with the prior probabilities. What values could be assigned? The 
problem states that the psychiatrist is about equally sure of the two diagnoses, 
so values of 0-5-0-5 would appear reasonable. We assign

= 0-5 and p(B) - 0-5
Now consider the likelihoods. First, p(\\F), the probability that a patient who 
is functionally ill will report seeing the illusion. Page et al. report that about 
85% of the functionally-ill subjects in their study reported seeing the illusion, 
so let us take this percentage as our probability. That is, let

p(\\F) = 0-85
Those investigators also reported that 40% of their brain-damaged patients 
reported seeing the illusion, so let

Now we can apply Bayes' theorem:

- °'68

After seeing the test result, the psychiatrist is 68 % sure the patient is functionally 
ill and 32% sure of brain damage. Prior uncertainty of 0-5-0-5 has changed to 
posterior uncertainty of 0-68-0-32. Or, to say the same thing in odds, the 
psychiatrist is a little more than twice as sure that the patient is functionally 
ill as brain damaged. 
Next we turn to the tabular form. Follow the steps indicated in Fig. 4-6.

Priors Hypotheses Priors Likelihoods ... ... , PosteriorsLikelihoods

Functional Q . 85 0-425
illness 0-625

0-5 0-4 0-2 -°*- = 0-32damage 0-625

1-0 Sum - 0-625 Sum - 1-00

Some readers may prefer the algebraic form to the tabular, while others may 
prefer the tabular form.

Comments on Bayes' theorem
Many students find initial difficulty in distinguishing/?(H|D) from/?(D|H). 

The first is a posterior probability, the latter a likelihood. As applied to the 
previous example, one is the probability of functional illness given that the 
patient reports seeing the illusion, while the other is the probability that a 
functionally ill patient will report seeing the illusion. These are quite distinct 
probabilities and you cannot get one from the other without also considering
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the prior probabilities and another likelihood. This is an important point that 
has implications for scientific inference generally, and we will return to the 
topic in the last section of this chapter.

Because Bayes' theorem enables us to determine /?(H|D) from p(D|H), 
it is sometimes called the 'theorem of inverse probability' in the literature.

It is worth noting that Bayes' theorem is not controversial, for it is derived 
from the probability laws. To see this, note that the third law,

p(Eand F) = p(E)x p(F\E)
can also be written as

XFand E) = p(F)x p(E|F)

The probability of E and F occurring is exactly the same as the probability of 
F and E; the order of stating the events makes no difference. Thus, the right 
sides of the two equations above are equal to each other:

Slight rearrangement gives Bayes' theorem:

Replacing F by H and E by D gives this general form:

I leave it as an exercise for the reader to show that this general form of Bayes' 
theorem is equivalent to the form given in the section 'Bayes' theorem for two 
hypotheses'.

Since Bayes' theorem is a consequence of the probability laws discussed 
in the previous chapter, and since statisticians of all persuasions accept those 
laws, they also accept Bayes' theorem. It is the interpretation of probability 
that is controversial; if a statistician accepts the personalist view then he makes 
heavy use of Bayes' theorem, but if he does not then Bayes' theorem is only 
occasionally helpful. For a Bayesian, prior probabilities and likelihoods are 
degrees of belief; both are the results of human judgement. And since all 
inferential procedures in statistics are variations on the general theme of revision 
of opinion in the light of new information, Bayes 1 theorem plays a central role. 
But for the statistician who takes a relative frequency view of probability it is 
rare that he can give a relative frequency interpretation to a prior probability, 
so he makes little use of Bayes' theorem.

General form of Bayes' theorem
You should note that Bayes' theorem is not limited to just two hypotheses. 

Here it is in general form :

The index / can be 1, 2, . . ., depending on which hypothesis you are considering. 
The index j is also 1,2,..., and takes on as many values as there are hypo-
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theses. If you have four hypotheses you will write Bayes' theorem four times, 
and the denominator will contain four products, the product of the prior and 
likelihood for each of the four hypotheses. In tabular form, the solution will 
require four hypotheses in the first column, four priors (which must sum to 1) 
in the second, four likelihoods in the third, four products (whose sum you must 
find) in the fourth, and, finally, four posteriors. The steps are the same, the 
table is just longer.

Revision of opinion after several items of data
Suppose you have not just one item of data, but a whole list of data. 

How should Bayes' theorem be applied then? Let us use the example of the 
unscrupulous gambler (Chapter 1) to show the application. Recall that he is 
holding a coin which might be fair or it might be biased toward 'heads'; he is 
equally unsure of those two possibilities. He tosses the coin ten times and it 
comes up heads eight times. (The actual sequence is HHTHHHHHTH.) How 
sure should he be now?

For the moment, let us restrict attention to just the first two flips. What 
posterior opinion should the gambler hold after he has observed two heads? 
There are two ways to approach this problem; both arrive at the same end 
result.

The first approach is to consider the two heads as a single datum, so we 
start with some opinion prior to observing any flips, then we observe the outcome 
of two flips and revise opinions in the light of two 'heads'. The second approach 
is to consider the outcome of each flip as a separate datum, so that prior opinion 
is revised by the single outcome 'heads', and the posterior opinion resulting 
from the first flip is taken as the opinion prior to the second flip. Posterior 
opinion after the first observation is used as prior opinion for the second 
observation. The posterior probabilities following the second flip then become 
the opinions in the light of both flips.

Here is how these methods work. We will start with the first one, where 
'heads, heads' is treated as a single datum.
Step 1: List the hypotheses. They are 'coin is fair' and 'coin is biased', H l and 
H 2 , respectively.
Step 2: Determine priors; say they are 0-5 and 0-5. 
Step 3: Check that sum equals one.
Step 4: Determine likelihoods. How likely are two heads given that they were 
the result of flipping the/#/> coin? We want to find

p(H and H|fair coin)

Clearly the two flips are independent given that we know we have the fair coin, 
so we can apply the second corollary to the third law. In fact, we have already 
done this. Turn back to page 48 in Chapter 3, and you will see p(R and H) 
worked out under the assumption the coin is fair. For a coin judged to be fair. 
I think everyone would agree that the probability of heads on one flip is 0-5 
So, the probability of two successive heads must be

p(H and Hjfair coin) = 0-5 x 0-5 = 0-25
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In other words,

Now what is p(H and H|biased coin)?
That is hard to answer unless we know the degree of bias. Let us ask the 
gambler. His reply: 4 I once checked on that by flipping the coin a great many 
times. It came down heads about 60% of the time.' Alternatively, I could 
measure his degrees of belief about the probability of heads on a single flip by 
using the standard measuring device introduced in Chapter 2. Suppose the 
result is that the gambler assigns

p(H|biased coin) = 0-60

Again we note that the two flips are independent given that we know we have 
the biased coin, so

p(H and H biased coin) = 0-6 x 0-6 = 0-36

That gives us
p(D|H2 ) = 0-36

Step 5: Multiply priors by likelihoods. 
p(H l )p(D\H l ) = 0-5 x 0-25 = 0-125 
p(H2 )p(D|H 2 ) = 0-5 x 0-36 = 0-18

Step 6: Sum the products 
0-125 + 0-18 = 0-305

Step 7: Calculate posteriors

(Check: 0-41 +0-59 = 1-00.)
After observing two heads, the gambler is now 59 % sure he holds the biased 
coin.

Now let us see what the result would have been if revision of opinion had 
proceeded one datum at a time. The gambler starts with 0-5-0-5 priors, as before, 
and observes one flip. It is a 'head'. His opinion, posterior to that one observa 
tion is calculated as follows :

Hypotheses Priors Likelihoods Jikenhoods Posteriors

Fair 0-5 0-5 0-25 ^ = 0-455
0-3 

Biased 0-5 0-6 0-3 —— = (

1 -0 Sum = 0-55 1 -0



66 Revising opinion

After observing one k head' the gambler is 0-545 sure he holds a biased coin. 
So, he flips again, and another 'head' comes up. When we calculate Bayes' 
theorem this time, we use the posteriors from the last calculation as the priors 
for this one.

mYlOY V XHypotheses Priors Likelihoods T-I-L Posteriors

0-2275 
Fair 0-455 0-5 0-2275 ^^ = 0-41

0-3270 
Biased 0-545 0-6 0-3270 (^5545 = °'59

1-000 Sum = 0-5545 1-00

So, you see, we get the same result as before (except for slight differences in the 
third decimal place caused by error due to rounding off).

This second form of Bayes' theorem is especially useful to the scientist 
who wishes to carry out experimental work in stages, for posterior opinion 
after one stage can serve as prior opinion to the next stage. The gambler can 
decide to keep tossing the coin until he is 0-99 sure if the coin is either biased 
or not, but stopping periodically to make the necessary calculations to see 
if his posterior opinion has reached that extreme degree. Similarly, the 
scientist can design an experiment to enable him to collect data bearing on 
certain hypotheses which are in question, and as he gathers evidence he can 
stop from time to time to see if his current posterior opinions, determined 
by applying Bayes' theorem, are sufficiently extreme to justify stopping the 
experiment. I shall have more to say about this 'sequential sampling' procedure 
in Part III.

Now we are ready to calculate the posterior probabilities after ten flips 
of the coin. The key probabilities are the likelihoods. We need to find

p(H and H and T and H and H and H and H and H and T and H|fair coin)

and
p(H and H and T and H and H and H and H and H and T and H| biased coin)

We can do this by applying the second corollary to the third law, the 'indepen 
dence rule' :

p(D|H 2) = 0-6 x 0-6 x 0-4 x 0-6 x 0-6 x 0-6 x 0-6 x 0-6 x 0-4 x 0-6 = (0-6) 8(0-4)2 

A little deft use of logarithms gives these results (to three significant figures):

p(D|Hi) = 0-000977
p(D|H2 ) = 0-00269
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Applying Bayes' theorem (to two significant figures):
Priors XHypotheses Priors Likelihoods *''.*",*.". Posteriors
Likelihoods

Fair 0-5 0-000977 0-0004885 °'0004885 = 0-27

Biased 0-5 0-00269 0-001345 °'001345 = 0-73
0-0018335

1-0 Sum = 0-0018335 1-00

After observing ten flips, eight of which came out 'heads', our gambler is now 
73% sure he holds the biased coin.

See if you understand the two ways of applying Bayes' theorem I have 
presented in this section by trying the next exercise. Please do not skip the 
exercise for I use the results in the next section. Also the exercise is an abstracted 
form of a scientific experiment, and some of the lessons learned from the 
exercise apply to the conduct of scientific inference.

Exercise 4-2
Imagine that you have just been shown two bags that are identical on the 
outside. One contains 70 blue poker chips and 30 red ones while the other 
contains 40 blue and 60 red chips. Call them bag B and bag R.

bagB bagR

One bag is chosen by the toss of a fair coin, but, since you cannot see the 
contents, you do not know which one it is. Which bag has been chosen? At this 
point let me assign prior probabilities of 0-5 and 0-5 to the two possibilities. 
Next we shake the chosen bag to mix the chips, and open it just enough to 
reach in and draw out a poker chip. We note its colour, return it to the bag, 
shake the bag, and draw another chip. This process is repeated until, say, 
12 chips have been drawn, 8 of them blue and 4 red.
Before you read any further, turn to Sec. 4.2 and answer the question just under 
the section heading, 'Revising opinion intuitively'. Then, come back to this 
exercise.
What are the posterior probabilities that should be assigned to the two bags? 
(Note that this is an abbreviated version of the more complete question, 'What 
is the posterior probability that bag B is the chosen bag, and what is the posterior 
probability that bag R is the chosen bag?')

Answer
We have two hypotheses. Let them be designated as follows:

Hi: bag B is the chosen bag 
H2 : bag R is the chosen bag
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The data are 8 blues and 4 reds; consider this as one complex event or datum 
and call it D. We wish to calculate

p(bag B is chosen bag given 8 blues and 4 reds were observed)
and p(bag R is chosen bag given 8 blues and 4 reds were observed), 
or, more succintly,

XH^D) and />(H 2 |D).
We use Bayes' theorem. There should be general agreement about the prior 
probabilities:

/KHO = p(H 2 ) = 0-5
The likelihoods can be calculated by applying the independence rule, just as 
we did for the gambler's coin problem. That rule, the second corollary to the 
third law, tells us how the probability of a joint event can be calculated if we 
know the probabilities of the individual events that make up the joint event. 
It says we multiply the individual probabilities.
First, consider p(D\Hl ). What is the probability of getting that particular 
sequence of 8 blues and 4 reds given that they were drawn from bag B? We 
can calculate that, but first we have to know the probability of a single blue 
from that bag, and the probability of a single red from bag B. Judging from 
the composition of the bag, I assume you would assign these probabilities:

p(blue chip|bag B) = 0-7 
/?(red chip|bag B) =0-3

Now you can apply the independence rule: 
p(D\H l ) = (0-7)8(0-3)4 = 0-000467

Repeat this exercise for the other bag and you should get 
/?(D|H 2) = (0-4)8(0-6)4 = 0-0000849

Apply Bayes' theorem:

Hypotheses

BagB 
Bag R

Priors

0-5 
0-5

Likelihoods

0-000467 
0-0000849

Priors x 
Likelihoods

0-0002335 
0-00004245

Posteriors

0-85 
0-15

1 -0 Sum - 0-00027595 1 -00 
We can now be 85 % sure the chosen bag was bag B.

4.2 Revising opinion intuitively

If your prior opinion in Exercise 4-2 is 0-5-0-5, what posterior probabilities 
do you feel intuitively are justified in the light of that sample of 8 blues and 
4 reds? Do not calculate, just give your intuitive assessment. Write it 
here: .............

I asked you to answer that question before you looked at the calculations 
because it is important to contrast the intuitive revision of opinion with the 
amount of revision specified by applying Bayes' theorem. Students sometimes 
ask why the personalist view of probability cannot be applied after an experiment 
is conducted. Why does the scientist not formulate and express his opinions
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after he has examined his data? Then there is no need to apply Bayes' theorem, 
and his opinions can be based solely on the data.

My reply is this: The scientist who formulates opinion after conducting 
an experiment and examining his data runs a much greater risk of holding 
inconsistent, even internally contradictory, opinions than the scientist who 
expresses opinion before the experiment and then uses Bayes' theorem to 
revise those opinions in the light of the data. Of course this argument depends 
on your accepting consistency of an individual's opinions as a desirable state 
of affairs in the conduct of scientific inquiry. Let me illustrate what consistency 
means by engaging in an imaginary dialogue with a scientist who has just 
completed Exercise 4-2, the bag and poker chip problem.

I: You gave me an intuitive judgement of 0-65 as the probability you 
assign to the hypothesis that bag B is the chosen bag. Weren't you 
surprised to learn that the probability found by applying Bayes' 
theorem is 0-85?

Scientist: Yes, but it seems too high. My intuitive judgement feels more 
reasonable.

I: Most people feel as you do. This sort of experiment has been done 
hundreds of times with all kinds of people and the general finding 
is that people don't get as sure as Bayes' theorem says they could.

Scientist: Maybe Bayes' theorem is wrong.
I: Do you accept the third probability law?

Scientist: Of course. That is not controversial.
I: But Bayes' theorem is a logical consequence of the probability laws.

Scientist: You mean if Bayes' theorem is wrong, then something is wrong with 
the probability laws.

I: Right. 
Scientist: O.K., I accept it. Maybe I applied Bayes' theorem incorrectly.

I: Not even a relative frequentist would argue with this application. 
Your prior opinion was based on the flip of a coin, so we could give 
your 0-5-0-5 priors a relative frequency interpretation. The prob 
abilities of getting a particular colour of chip from a particular bag, 
0-7, 0-3, 0-4, and 0-6, can be given relative frequency interpretations, 
and you used a probability law, which you accept, to generate 
p(D\H l ) and /?(D|H 2 ). So all the inputs to Bayes' theorem can be 
justified.

Scientist: I accept all that, but I still prefer my value of 0-65. 
I: Do you accept that

a p(H 1 )=p(H 2 ) = 0-5
b />(red|bag B) = 0-3
c /?(blue|bag B) = 0-7
d p(red|bag R) = 0-4
e /?(blue|bag R) = 0-6
f the 'independence rule' is correct
g Bayes' theorem is correct?
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Scientist: Yes.
I: Then there's an inconsistency in your thinking. The logical conse 

quence of believing those seven items is that ^(HJD) = 0-85. If at 
the same time you believe /?(H,|D) = 0-65, then you're being 
inconsistent.

Scientist: I like to think of my scientific self as striving to be rational, and 
inconsistency doesn't seem rational.

I: It isn't. A clever person can take advantage of this kind of incon 
sistency by setting up a set of wagers which you would accept as fair 
but which are bound to lose you money no matter how they turn 
out.

Scientist: And I suppose I can avoid this kind of trap by sticking to the prob 
ability laws and their consequences.

I: Right.
Scientist: O.K., I give up my 0-65. I'll accept the value of 0-85, but I don't 

feel happy about it!
Well, I suppose if he had felt happy about it he would have given it in 

the first place. Then Bayes' theorem and the other probability laws would be 
superfluous. If we were all rational, consistent beings, intuitive revision of 
opinion would always agree with that prescribed by Bayes' theorem, and the 
entire edifice of statistical inference would be unnecessary. In some circum 
stances intuitive revision of opinion is 'conservative'; it does not change as 
much as Bayesian revision. And sometimes people revise their opinions too 
radically. A great deal of research on intuitive revision shows that when indivi 
dual items of data do not tell us very much, we read too much into a collection 
of such data, and when individual items do tell us something, in the sense that 
they help to distinguish between the hypotheses, then we do not make enough 
of several items of data taken together. It is not yet known why we react this 
way to strings of experimental data, but it appears that some fundamental 
limitations on human ability to process information are involved. Also, it is 
possible that our real-world experience, which is mostly with biased samples 
of data, leads us to be over-cautious with the less biased samples typical of 
scientific experiments. Research on the problem continues (see Peterson and 
Beach, 1967; Edwards, 1968; du Charme, 1970; and Slovic and Lichtenstein, 
1971).

Another finding of this research is that there are large differences from 
one person to the next in the amount of intuitive revision for the same problem. 
The range of answers to Exercise 4-2 is quite large. This observation should 
come as a disappointment to those people who believe in letting the data speak 
for themselves. Apparently the same set of data speak more loudly to some 
people than to others—one person's whisper is another person's shout. Add 
to this the finding that the whisper from one set of data is sometimes heard 
as a shout by most people while the shout from another set of data is heard 
as a whisper, and you can see the psychological untenability of letting equivocal 
data speak for themselves.

In a phrase, we need Bayesian statistical methods to bring consistency to 
informal reasoning.
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4.3 How sure is 'sure enough'?

If a scientist continues to collect data and he decides to keep on until 
his posterior opinions are fairly extreme, when does he stop? If he is considering 
just two hypotheses does he stop when his posteriors are 0-8-0-2, or 0-9-0-1, or 
0-99-0-01, or when? How sure is 'sure enough'?

That question would be easier to answer if this were a book on decision 
theory. As I said in the first chapter, we would consider the worth of being 
correct and the costs of being wrong. Let me illustrate by expanding Exercise 
4-2.

Suppose you have to guess which bag is the chosen one, but you are 
allowed to draw from the bag as many times as you wish. How many draws 
would you take? It is hard to give any guidelines because nothing much is at 
stake if you are right or wrong. But suppose you were to be paid £10 if you 
guessed correctly and fined £5 if you guessed the wrong bag. If you cannot 
afford to lose £5, I imagine you would draw quite a few times; the problem is 
a little clearer than before. Now, at least, you know you are going to take a 
great many looks, but, still, you would be hard-pressed to be very definite 
about the exact number of draws.

Let's add one more qualification. Suppose you are charged 50p per look 
Now how many draws would you make? Since you stand to win £10 at most, 
you certainly would not take more than 20 looks, and to prevent the loss of £5 
you would take at least one look. So now we know you would take something 
more than one look but less than 20 looks. By knowing both the payoff of a 
correct or incorrect guess and the cost of getting information, we have become 
clearer about how many looks to take, and that, in turn, dictates how sure we 
can expect to be.

If I were to develop this example along the lines of decision theory an 
exact answer could be given to the original question, but I would have to know 
the utilities or subjective values the decision maker would assign to the various 
costs and payoffs (see Chapter 7 of Raiffa, 1968). A scientist usually has some 
notion of the cost of his experiment, but he rarely knows the payoffs because 
the technological, economic, or social consequences of his findings are usually 
vague and often unknown. And so the scientist faces a dilemma; at what 
point does he decide he is 'sure enough" to stop experimenting and to publish 
his findings?

For the most part, social scientists have not squarely faced this issue. 
Instead, they have relied on fairly arbitrary conventions whose Bayesian 
equivalent would be (roughly) to publish when you are 95, 99, or 99-9% sure. 
'Hard-headed'journal editors often require 99%, while 'soft-headed' ones may 
allow 95% or less.

Conventions will undoubtedly arise in Bayesian statistics, too, for most 
scientists still feel unable or unwilling to tackle the 'costs and payoffs' problem, 
in spite of much talk about social responsibility in science. Hopefully, new 
technologies, such as those developed by Schlaifer (1969) primarily for the 
business community, for making decisions where uncertainty, costs and payoffs 
are all taken into account, will eventually be applied to problems of scientific 
inference. In this way, perhaps it will be possible to develop conventions that 
are more rational than the current ones.
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In the meantime, you will be facing this problem yourself in your own 
experimental work. Aside from the obvious advice to take account informally 
of costs and payoffs, I can offer only a very crude suggestion: be at least 99% 
sure. This is a fairly conservative criterion which should not be taken as a rule. 
I am suggesting it mainly as a guideline for the newcomer to statistical inference, 
to be relaxed or tightened according to the situation. Once you have begun to 
get the feel for research, and have seen the tradeoffs between uncertainty and 
costs and payoffs in operations, you will be in a better position to make an 
informed judgement about the criterion.

For now, the main point to remember is that there usually is no clear-cut 
answer to the question 'How sure is 'sure enough'?' That, like probabilities 
themselves, is a matter for human judgement.

4.4 Effects of prior opinion

'We were certainly aware that inferences must make use of prior infor 
mation and that decisions must also take account of utilities, but after 
some considerable thought and discussion round these points we came 
to the conclusion, rightly or wrongly, that it was so rarely possible to 
give sure numerical values to these entities that our line of approach must 
proceed otherwise.'
That was E. S. Pearson, a non-Bayesian, speaking (in Savage, 1962) about 

his and J. Neyman's views of statistics in the mid-1920's. Their subsequent con 
tributions to statistical theory form an important school of statistical thinking, 
all in the relative frequency tradition. They developed statistical methods that 
allowed inferences to be drawn without regard to prior probabilities but which 
did require the exercise of careful personal judgement in other matters.

My point is that statisticians of all persuasions agree that human judge 
ment is a necessary ingredient of statistical practice. They disagree on the 
places where judgement should operate and on the way in which it is incor 
porated into formal analysis. Bayesians believe that judgement in the form of 
prior opinion should be included as part of the formal, public procedures, while 
most non-Bayesians prefer to leave it as part of the informal thinking that leads 
to the selection of a particular statistical procedure or test.

Since judgement is important in statistical practice, it is necessary to 
examine the particular role of prior opinion in Bayesian procedures. That is 
what I do in this section, but bear in mind that more will be said in Part III.

Making prior opinion explicit
Why bother to make prior opinion explicit? Why can it not be left as an 

implicit part of statistical procedures? Bayesians argue that when prior opinion 
is not explicitly considered, the resulting inference may be misleading. (An 
example has recently been given by Pitz, 1968.)

Let me illustrate this by expanding the psychodiagnosis problem of 
Exercise 4-1. Suppose the rotating spiral is shown to the patient and he reports 
seeing the after-effect illusion. Since 85% of functionally ill patients see the 
illusion and only 40% of brain-damaged patients see it, common sense would 
suggest that the patient is more likely to be functionally ill than brain damaged. 
The clinician may wish to use this decision rule:
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Decision Rule 1 : Diagnose functional illness if the patient sees the illusion 
diagnose brain damage if he does not.

But the clinician has learned to be wary of his common sense so he calls 
in a statistician, a Bayesian one at that. The statistician examines the hospital's 
records and then advises the clinician not to administer the test but simply to 
diagnose every patient referred to him as functionally ill.

Decision Rule 2: Diagnose every patient as functionally ill.

The statistician claims that the clinician will be correct more often by following 
Decision Rule 2 than Decision Rule 1.

This surprising result can be explained by applying Bayes' theorem. The 
clinician's distrust of his common sense was well-founded, for he was tempted 
to make a diagnosis on the basis of the likelihoods, p(l\¥) and /?(I|B), instead 
of using the posterior probabilities. And posterior probabilities depend not only 
on the likelihoods but also on the prior probabilities. The statistician consulted 
the records of the hospital to provide a basis for assessing the prior probabilities. 
He discovered that 90% of the patients at the hospital in the past have been 
functionally ill, and that only 10% were brain damaged. He used these figures 
as his prior probabilities.

Prior probabilities: /?(F) = 0-9 and p(E) = 0-1 

The likelihoods are based on the research of Page et al.
Likelihoods- /?(1|F) = °* 85 and S0 ^T I F) = °' 15 Likelihoods. SO/?(I | B) = 0 . 4

First, let us consider the case where the patient reports seeing the illusion. 
The steps are shown below.

Computation of Bayes' theorem for the diagnostic problem when the patient 
reports seeing the illusion.

Hypotheses Priors Likelihoods , ., ,., , Posteriors •^ Likelihoods

Functional 9 O .g5 0 .?65 ^-0-95 
illness 0-805

damage 0-805

Sum = 0-805

This calculation shows that when the clinician starts with a prior prob 
ability of 0-9 that the patient is functionally ill, the patient seeing the illusion 
leads to posterior probabilities of 0-95-0-05. The clinician has become more 
certain that the patient is functionally ill. That result confirms intuition.

Next consider the case where the patient does not report seeing the 
illusion. Here are the appropriate calculations.
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Computation of Bayes' theorem for the diagnostic problem when the patient 
does not see the illusion.

Priors x Hypotheses Priors Likelihoods f ., ... , Posteriors

Functional „ = Q-692
illness 0-195

®rain 0-1 0-6 0-06 J^ = 0-308damage 0-195

Sum = 0-195

This time prior probabilities of 0-9-0-1 have changed to posteriors of 
0-692-0-308. Notice that the posterior probabilities still favour the diagnosis 
'functionally ill' even though the patient did not see the illusion! The clinician 
will favour the diagnosis of functional illness whether or not the patient sees 
the illusion.

This example illustrates two points. In the first place, a great deal of 
information is conveyed by the prior probabilities in the example. Whether or 
not the patient sees the spiral after-effect illusion tells the clinician something 
about the patient, but the information conveyed by the test results is far less 
than that shown in the prior probabilities. In this case the prior probabilities 
swamp out the information in the test, so that the posterior probabilities are 
determined more by the priors than by the likelihoods. The extra information 
given by the test does not change the prior probabilities enough to warrant 
giving the test.

The second point is that the intuitive approach, which favoured Decision 
Rule 1, contained an implicit assumption about the prior probabilities. Recall 
that when the prior probabilities were 0-5-0-5, the posterior probabilities were 
as follows:

Posterior probabilities if

,j . Patient sees Patient does notHypotheses .,, . ... .illusion see illusion

Functional
illness 0-68 0-2
Brain
damage 0-32 0-8

This time the diagnosis favours functional illness if the patient sees the illusion 
and brain damage if he does not. When the prior probabilities are 0-5-0-5, the 
clinician will do better by adopting Decision Rule 1, the rule that initially 
seemed the more intuitive of the two. The intuitive approach to the problem 
obviously contained an implicit assumption about the prior probabilities. 
Adopting the first decision rule is justified only when the prior probabilities 
are not too extreme. If they are very extreme, so much information is contained 
in the priors that the modest amount of information yielded by the test is not 
worth collecting.
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This result may make you feel uneasy if you are not very certain about the 
prior probabilities. In the example here the statistician examined the hospital 
records to aid him in determining the prior probabilities. But suppose no records 
were available to you, or the hospital had just opened. The first thing I would 
do is look up local or national government figures on the frequency of func 
tional illness and brain damage. I would consult local psychiatrists and clinical 
psychologists to see if the particular locality in which the hospital is situated 
is likely to get patients in numbers differing from the national rates. Finally, I 
would use all this information to arrive at an intuitive judgement of the prior 
probabilities. After the hospital has been operating a few months, I could then 
look at the records to date and re-evaluate my priors if necessary.

This section began with the criticism that prior probabilities are often 
not known, and so must be ignored. I hope that this example clearly shows that 
prior probabilities cannot be ignored. A formal approach to this question of 
'unknown' prior probabilities starts by establishing certain self-evident prin 
ciples (axioms) of rationality, and then proves the existence of probabilities. 
(A good non-technical exposition of this method can be found in Lindley, 1971.) 
But proving that probabilities exist within some formal system is not the same 
thing as showing that they are psychologically meaningful, or that they can be 
assessed. If you prefer anecdotal evidence on this question, I can report that I 
have not yet met a scientist who did not have some prior information about an 
experiment he was planning. Some have given me vague prior opinions and 
others have been certain to the point of assigning zero prior probabilities to 
hypotheses that seemed to me plausible even if very unlikely. But all have had 
an opinion. If you prefer experimental evidence, there is a growing body of 
experiments done by psychologists who have explored the abilities of people 
to make probability judgements and then to revise these judgements intuitively. 
I know of not a single subject in these experiments who, when asked to assess 
a probability, said he could not. Some objected, saying that the probabilities 
they were giving were meaningless and that they would give entirely different 
numbers if asked the same question at a later date, but the results of these 
experiments do not confirm the verbal reports of the subjects. The probabilities 
they give are not at all random, and show orderly relationships to the variables 
the experimenter was manipulating in the experiment. Furthermore, when sub 
jects are asked the same questions later on, they give very similar probabilities 
to their original ones, even though they have forgotten the original judgements. 
When probabilities are based solely on relative frequency data, then practice in 
estimating probabilities improves the accuracy of the estimates. When there is 
no 'objective' standard to serve as the basis for probability assessments, practice 
in assessing at least improves the consistency of the probabilities, that is, they 
are more likely to conform to the laws of probability. (In these experiments 
subjects were not told about the probability laws, nor, if they knew them any 
way, were they allowed to check on the consistency of their assessments. The 
statistician can, of course, make these checks.)

The general conclusion I draw from this research is that for many people 
assessing probabilities is a difficult task, not because the probabilities are 
unknown or not there, but simply because people are not used to expressing 
their uncertainty in this form. Probabilities are the language of uncertainty, 
probability laws are the grammar of that language. It is my guess that if you
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had been taught that language and its grammar during your school years, you 
would have little difficulty now in assessing probabilities for uncertain events 
or hypotheses. The ability to assess probabilities can be developed, like learning 
a new language.

If you are interested in reading some of the experiments on probability 
assessment, you might look at the following. A review of some of the work 
can be found in Peterson and Beach (1967). Parts of the paper by Edwards 
(1968) are relevant to the question of assessing prior probabilities. Three 
experiments by Peterson, Ulehla, Miller, Bourne and Stilson (1965) demon 
strate the internal consistency of probability assessments, as does a paper by 
Beach (1966). One analysis in a paper by Edwards, Phillips, Hays and Goodman 
(1968) shows that probability assessments made at different times about the 
same event are very nearly identical. Several papers in the December 1970 issue 
of Acta Psychologica are devoted to questions of assessing probabilities.

Although many of these experiments are concerned with posterior rather 
than prior probabilities, their results are applicable to assessing prior prob 
abilities. The reason for this is that the only distinction between prior and 
posterior probabilities is the amount of data on which they are based, and 
many of the experimental results are valid quite independently of the amount 
of data presented or available to the subject.

You will recall that in the previous chapter I mentioned the difficulty 
people have in assessing probabilities for complex events and I suggested that 
this difficulty may be a source of reluctance to quantifying prior opinion. In 
this section I have tried to show that whatever the source of this reluctance, the 
issue of quantifying prior opinion must be faced. Since judgement is an unavoid 
able part of making an inference, it is better, Bayesians argue, to incorporate 
prior opinion into the formal mechanisms so that judgement can be publicly 
displayed rather than left as an implicit part of the process. Attempts to ignore 
prior opinion, we shall see in Chapter 6, can only be justified by exploiting 
certain characteristics of prior opinion itself.

Disagreements about prior probabilities
Suppose two scientists hold different prior opinions. What effect will 

Bayesian revision of opinion have on the difference? As I mentioned early in 
Chapter 2, the answer is that their posterior opinions will usually be in closer 
agreement than their priors. Now we can see this process in operation.

Consider again the psychodiagnostic problem. Suppose one clinical 
psychologist starts with priors of 0-5-0-5, while another psychologist starts 
with 0-9-0-1. The difference in their prior opinions is 0-9 — 0-5 = 0-4. Now they 
test a patient who sees the illusion. Using the calculations made earlier, we see 
that the first psychologist should revise his opinion to 0-68-0-32, the other to 
0-95-0-05. Now the difference is 0-95-0-68 = 0-27. The original difference of 
0-4 has been reduced to 0-27, so the two psychologists are now in closer agree 
ment. Note that this does not always happen. You will see an example if you 
compute the posterior opinions of those two psychologists for the case where 
the patient did not see the illusion.

However, where more than one observation is possible we will find that 
as more and more data are collected, initially divergent opinion comes more 
into agreement. You can see this in the next exercise.
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Exercise 4-3
Consider again the unscrupulous gambler. Before he gets a chance to see whether 
the coin he holds is the fair or the biased one, a rival player startles him by 
grabbing the coin from his hand and announcing to other players that the 
gambler has been using a biased coin. He says he is not positively sure, but he 
would be willing to bet on an 0-8-0-2 chance that the coin is unfair. Our 
gambler still thinks the chances are about equal. What posterior opinions would 
the men hold after the first five flips? After the second five flips? Assume the 
sequence of outcomes is as before, H, H, T, H, H, H, H, H, T, H, and that the 
probability of a single head for the biased coin is 0-6. Compare the two sets 
of posterior opinions.
Answers
For the first five flips, here are the gambler's probabilities:

Prior y xHypotheses Priors Likelihoods T ., ... , PosteriorsLikelihoods

Fair 
Biased

0-5 
0-5

(0-5)5 
(0-6)4 (0-4)

0-015625 
0-02592

0-38 
0-62

Sum =0-041545 
And here they are for the player:

Hypotheses Priors Likelihoods

Fair 
Biased

0-2 
0-8

(0-5)5 
(0-6)4 (0-4)

Likelihoods

0-00625 
0-041472

Posteriors

0-13 
0-87

Sum = 0-047722
Their initial disagreement was 0-5 — 0-2 = 0-3. Now it is 0-38 — 0-13 = 0-25 
Five flips resolves their disagreement a little. Now the next five flips.
For the gambler:

Priors X 
LikelihoodsHypotheses Priors Likelihoods Posteriors

Fair 
Biased

0-38 
0-62

(0-5)5 
(0-6)4 (0-4)

0-011875 
0-032141

0-27 
0-73

Sum = 0-044016 
This is the same result we obtained before. Now for the player:

Prior y X Hypotheses Priors Likelihoods Likeiihoods Posteriors

Fair 
Biased

0-13 
0-87

(0-5)5 
(0-6)4 (0-4)

0-004062 
0-045101

0-08 
0-92

Sum = 0-049163
So, after 10 flips the disagreement is 0-27 - 0-08 = 0-19. Once again their 
opinions have moved closer. If more data were collected, further revision of their 
opinions would bring them even closer, until with enough data their posterior 
opinions would be indistinguishable.
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It is this feature of Bayes' theorem that saves Bayesian statistics from being 
wholly subjective. Initially subjective opinion is brought into contact with data 
through the operation of Bayes' theorem, and with enough data differing prior 
opinions are made to converge. This comes about because the prior opinions 
become less and less relevant to posterior opinion as more and more data are 
observed. Prior opinion is swamped out by the data, so that posterior opinion 
is controlled solely by the data. For a Bayesian, this is the only way in which 
data can 'speak for themselves'.

4.5 Sources of likelihoods
Next we turn our attention to the likelihoods in Bayes' theorem. They 

are probabilities, and so are given a personal, or subjective, interpretation just 
as prior probabilities. But there is a difference in practice. A scientist usually 
designs his experiments so that regardless of which data are actually observed 
there will be no disagreement over the value of /?(D|H). He does this by employ 
ing variations on the notion of a simple experiment that was introduced in Chap 
ter 2. He ensures that the experiment is designed so that everyone agrees about 
the probability to be assigned to each elementary event, in much the same 
manner that the simple experiment of drawing a ball from an urn yields agree 
ment about the probability of getting a particular colour of ball. Frequently, 
the scientist takes repeated measurements, so that /?(D|H) is based on applica 
tions of the probability laws for complex events. You saw instances of this 
when /?(D|H) was computed for several flips of the coin in the gambler's coin 
example, and again in the bags and poker chip example. In the latter example, 
the experiment was set up so that there would be agreement about the prob 
abilities to be assigned to drawing a single chip of each colour from a given bag. 
It was then necessary to apply the probability laws to determine the probability 
of any particular sequence of draws from a given bag. It is the public nature of 
p(D H) that characterizes all statistical methods.

Not all experiments allow agreement about /?(D|H). That is why it is 
necessary to think about the statistical analysis of your data when you are 
designing an experiment. Failure to do this may result in an interesting experi 
ment, but one in which agreement about p(D|H) is difficult or impossible to 
obtain. Lack of agreement often comes about when the total number of elemen 
tary events cannot be precisely specified or when the number of elementary 
events in the event class is ill defined. One reason why scientists have come to 
rely in part on laboratory studies to further their science is that observations 
taken in natural settings often do not allow agreement about the likelihoods, 
while under controlled laboratory conditions agreement can be reached. How 
ever, for the social scientist this method of bringing about agreement on the 
likelihoods is bought at a cost: behaviour observed in a laboratory experiment 
may not be representative of behaviour in natural settings. For some studies, 
this may not matter, for example, many experiments on information processing 
in humans. Also, an unrepresentative experiment may be the best way to settle 
some theoretical issue.

The point is that social scientists are sometimes faced with a tradeoff 
between a well designed, but unrepresentative, experiment that allows agreement 
about the likelihoods on the one hand, and a representative experiment with 
no agreement about the likelihoods on the other. You will see in the literature
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all shades of experiments from one extreme to the other, and there are some 
ingenious investigators who have managed to capture both extremes in one 
experiment.

In this book we are concerned only with statistical techniques in which 
agreement about the likelihoods is possible. There are, however, a number of 
new Bayesian techniques being developed for situations where p(D\H) is based 
wholly or in part on human judgement without reference to simple experiments. 
Applications can be found in business decision making (Schlaifer, 1969; Raiffa, 
1968), medical diagnosis (Gustafson, Edwards, Phillips and Slack, 1970), 
weather forecasting (Murphy and Winkler, 1971), intelligence evaluation 
(Edwards, Phillips, Hays and Goodman, 1968), and many other areas (Slovic 
and Lichtenstein, 1971).

4.6 Other forms of Bayes' theorem

Odds-likelihood ratio form of Bayes' theorem
Another form of Bayes' theorem will be used at times in this book when 

we are considering just two hypotheses. It can be obtained by first writing the 
theorem in its general form for two hypotheses,

KHa|D) .
and then dividing the first expression by the second: 

p(H 1 |D)
p(H2 |D) p(H2 ) p(D\H2 ) 

More simply, 
Q" = Q'L

The Greek letter omega, Q, stands for odds, either prior, Q', or posterior Q". 
(I will frequently make use of a single or double prime to indicate prior or 
posterior.) Odds, as we saw in Chapter 2, represent a ratio of probabilities, and 
we will adopt the convention of letting prior odds refer to the ratio of prior 
probabilities, and posterior odds the ratio of posterior probabilities, both for 
the two-hypothesis case. The quantity represented by L is the likelihood ratio; 
it, too, is a ratio of probabilities, but since those probabilities are called likeli 
hoods we naturally call their ratio the likelihood ratio.

Let us be clear about the difference between odds and the likelihood ratio. 
Odds tell us how much more likely one hypothesis is than the other, either 
before or after observing data, while the likelihood ratio indicates how much 
more likely the data are to have occurred given the truth of one hypothesis 
relative to the other.

In the example of the gambler who is not sure which of his two coins is 
the biased one, we started with prior probabilities of 0-5-0-5. The prior odds are 
given by the ratio of these probabilities, 0-5-0-5 or I. Prior odds of 1 indicate
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that the two hypotheses are equally likely; the odds are 'even'. After observing 
one head, we noted that the two likelihoods were

p(D|H,) = 0-6
p(D|H 2 ) = 0-5

This gives a likelihood ratio of 0-6/0-5 or 1-2. In words this means that heads 
is 1 -2 times more likely to be observed from the biased coin than from the fair 
coin. Posterior odds are obtained by multiplying the likelihood ratio by the 
prior odds:

Q" = lxi-2= 1-2

The hypothesis 'biased coin' is 1 -2 times more likely than the hypothesis 'fair 
coin'.

The second flip resulted in a heads, too. The odds prior to the second 
flip were 1 -2, and the likelihood ratio for heads is 1 -2. So, the new posterior 
odds are

O" = 1-2x1-2= 1-44

After two flips, both of which came up heads, we can be 1 -44 times as certain 
that we flipped the biased coin rather than the fair one. The third flip came up 
tails. The odds prior to the third flip were 1 -44, but what is the likelihood ratio 
for tails? We find this by computing the ratio of likelihoods, where this time D 
represents tails,

= (H

p(D\H 2 ) 0-5

Now we can compute the posterior odds: 
Q" = 1-44x0-8= 1-152

After two heads and a tails we are 1-152 times more certain of the coin being 
biased than of it being fair.

We could have done this more simply by applying the second corollary 
to the third law to give the result that the likelihood ratio for TV data is equal 
to the product of the TV individual likelihood ratios. Thus, if we have TV items 
of data, then there are TV likelihood ratios corresponding to those data. We can 
label the likelihood ratios in this way: L l9 L 2 , . . ., £,, . . ., L.v _ t , L v . The 
likelihood ratio for all these data is given by

Li ^=- Li\ X JL«2 X ... X Li^ X ... X L,jy_ | X Lifli

or more simply,

(The capital Greek letter pi is used to indicate 'the product of.) If this is 
substituted into the odds-likelihood ratio form of Bayes' theorem, we obtain 
Bayes' theorem for TV independent observations:

Q" =
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As applied to the gambler's problem, we note that every time a head 
comes up we use a likelihood ratio of I -2 and that every time a tail comes up 
we use 0-8. For two heads and one tail, the posterior odds are

Q" = I x 1-2x1-2x0-8 = 1-152

Once you have computed posterior odds, you may wish to translate 
them into posterior probabilities. Use the probability-odds 'scale' (Fig. 2-6) or 
the equation in Section 2.3.

So, p(H 2 |D) = 1 -0-535 = 0-465

Exercise 4-4
The police are certain that either Louie The Loop' or Shelly The Shark' has 
printed the counterfeit £5 notes that have been turning up in the city. They 
have heard, though, that Louie has retired, so they think there is only a 0-2 
chance that Louie is the current counterfeiter. Then they discover that the 
silver thread found in genuine notes is printed in light-grey ink on the bogus 
notes. From past experience, the police estimate that Louie is twice as likely 
as Shelly to use this method of simulating the silver thread. What is the posterior 
probability of Louie's guilt ?

Answer
Here is an application of Bayes' theorem where human judgement, unaided by 
considering a simple experiment, is the source of a likelihood ratio. In these 
cases it is often easier to assess the likelihood ratio rather than the values of 
/?(D|H). Here the police would have found it difficult to assess the probabilities of 
each suspect using the ink method of simulating the thread, but they could 
assess how much more likely, in a ratio sense, one was than the other to use this 
method. This is a fundamental point for applications of Bayes' theorem that rely 
heavily on unaided human judgement for the likelihoods.
When we are given a likelihood ratio, we must use the odds-likelihood ratio 
form of Bayes' theorem.
Let HI = Louie is guilty 

H 2 = Shelly is guilty
We are told that

XHi) = 0-2 
so we can determine

p(H2) = 1 - 0-2 = 0-8 
Therefore, the prior odds are

The likelihood ratio we want is
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that is, how much more likely is the datum to have been produced by Louie 
than Shelly (the direction of HI to H2 must be the same in Q', fi", and L). The 
police estimate that

L = 2 
so the posterior odds are

O" = 0-25 x 2' = 0-5

Converting that number to a probability gives the posterior probability of 
Louie's guilt:

"(Hi|D) = =- °'33

Exercise 4-5
Solve the gambler's problem using the odds-likelihood ratio form of Bayes' 
theorem. Recall that the sequence of flips resulted in H, H, T, H, H, H, H, H, 
T, H, and that />(head| biased coin) = 0-6.

Answer
Let HI = fair coin 

H2 = biased coin
We wish to find

/KHi|D)
/>(H2 |D)

where D represents the 8 heads and 2 tails that resulted when the coin was flipped 
10 times. For the outcome 'heads',

_ /?(heads|fair) _ 0-5 
Xheads | biased) 0-6

and for the outcome 'tails',
= /?(tails|fair) = Ov5 

/?(tails | biased) 0-4
Thus, the likelihood ratio for all 10 flips is given by

so the posterior odds (assuming equal priors) are:
n- = ixi;-- 9765625

(47 26873856 
= 0-363

Converting to probabilities:
0-363 /KHilD) = ——^— = 0-27

and so
/7(H2 |D) = 1 - 0-27 = 0-73

That is the same result we obtained before.
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The odds-likelihood ratio form of Bayes' theorem can be summarized 
briefly in words:

Posterior odds = Prior odds x Likelihood ratio.

Notice that when we start with prior odds of 1, a likelihood ratio greater than 
one causes the posterior odds to favour H,, while if the likelihood ratio is less 
than one, the posterior odds favour H 2 . When the likelihood ratio equals one, 
no revision of opinion occurs. We can say, then, that the size of the likelihood 
ratio determines the amount of revision of opinion. Data are informative if they 
lead to a very large or very small likelihood ratio, they are non-informative if 
the likelihood ratio is near or equal to one.

Log-odds log-likelihood ratio form of Bayes' theorem*

You can see that the odds-likelihood ratio form of Bayes 1 theorem is 
relatively easy to apply, but the computations for very many items of data are 
tedious, so let us introduce one more simplification. Starting with Bayes' theorem 
in this form:

we take logarithms of both sides: 
log 0" = log(Q' [] Lt )

Remember that
Yl L| ; = L! x L2 x . . . x LN

so that
log (f] Lt) = log Lj +log L2 4- . . . +log LN

or, more simply,log n L. = i fog Li
Substituting gives the log-odds log-likelihood ratio form of Bayes' theorem: 

log Q" = log Q' + X log Lt
In words, this form of Bayes' theorem says that the log of posterior odds is 
obtained by taking the log of prior odds and adding to that for each item of 
data, the log of the likelihood ratio for each datum. Let us see how this applies 
to the gambler's problem.

First, consider the log of prior odds. That is the log of 1 , which is zero. 
Next consider the log-likelihood ratio for each of the ten flips. For one flip:

Heads 5/6 -0-0792 
Tails 5/4 0-0969

* This section can be omitted. However, the material will be useful in understanding some 
of the technical points of Chapter 14.
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Now we can get the log posterior odds, for ten flips: 
log H" = 0 + 8( - 0-0792) + 2(0-0969) 

= -0-4398

Taking antilogarithms gives Q" = 0-363, the same value as before.
The advantage of this form of Bayes' theorem is that it makes evidence 

additive. Imagine a vertical stick with decimal markings (any spacing will do) 
whose middle is zero. That middle position represents the log of odds of 1, 
so when we are at zero on the stick H { is just as likely as H 2 . But if we move up, 
H! is favoured, while below 0, H 2 is favoured.

In the gambler's example we start at 0. After the first flip, heads, we move 
down 0-0792 units, favouring H 2 (biased coin). Now another flip, the outcome 
is heads, so we move down another 0-0792 units. The third flip is tails so we 
move up 0-0969 units, and so on, for all 10 flips. We will end up 0-4398 units 
below zero. Each head moved us a fixed distance down, each tails moved us a 
fixed distance up. That is what is meant by saying evidence is additive under the 
log-odds log-likelihood ratio form of Bayes' theorem. Perhaps now it will be 
obvious why the probability-odds scale of Fig. 2-6 has the odds calibrated on 
a logarithmic scale. I leave it to the reader to determine how the probability-odds 
scale should be extended below 1:1, and how the resulting device can be used 
for two-hypothesis problems directly without having to look up logarithms.

4.7 Hypothesis testing

I would like to conclude this chapter with some general comments on 
'hypothesis testing', a favourite phrase of statisticians, who mean by it that one 
hypothesis, or more, about some issue has been proposed, data have been 
collected, and a statistical inference concerning the truth of the hypothesis is 
carried out. That is the process described in this chapter, and from the Bayesian 
viewpoint several important generalizations can be drawn.

Specifying the hypotheses

Suppose that after 12 poker chips are drawn from one of the bags in 
Exercise 4-2, you are told that the original statement of the problem was in 
error, that the sample of 8 blues and 4 reds could have come from any one of 
three, not two bags. The new bag to be considered contains 50 blue and 50 red 
chips, so now the possibilities look like this:

hag B bag ? bag R

Assuming equal prior probabilities, what are the posterior probabilities?
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Here is the solution:

Hypotheses Priors Likelihoods PT n,°r* X , PosteriorsLikelihoods

BagB 
Bag ? 
BagR

1/3
1/3
1/3

0-000467
0-000244
0-000085

0-000156
0-000081
0-000028

0-58
0-31
0-11

Sum =0-000265 1-00

When we solved this problem for just bag B and bag R, we obtained these 
posterior probabilities:

p(Bag B|D) = 0-85 
p(BagR|D) = (M5

Including that third bag altered the posteriors even though the data were the 
same. The posterior probability of a hypothesis depends not only on that hypo 
thesis and the data but also on the other hypotheses. That is another way of 
saying that truth is relative—relative to the other possibilities you are con 
sidering. In the two-bag problem, bag B looked like a good bet in the light of 
the data, but only relative to bag R, for bag B's attractiveness is diminished by 
introducing a new contender, bag?. A posterior probability is a relative state 
ment, not an absolute one. It does not make sense to talk of the probability 
of a hypothesis being true without considering the alternatives. (There is one 
important exception to this that will be mentioned shortly.)

You can see, then, that Bayes' theorem can do no more than tell you, in 
the light of the data, which of the hypotheses you have listed is the most likely. 
If, as a scientist, you are testing several alternative theories, all of which are 
absurdly implausible, Bayesian statistics will only help you to identify the least 
implausible one. If you are really drawing poker chips from a bag whose 
composition is 90-10, and you only consider 70-30, 50-50, and 40-60 bags in 
your computations, then, with enough data, Bayes' theorem will eventually 
give the highest posterior probability to the 70-30 bag, the one nearest the 
truth. In fact, as large amounts of data are collected the posterior probability 
of the 70-30 bag will approach one. It is a general characteristic of Bayesian 
methods that as the amount of data approaches infinity, the posterior probabilities 
usually approach zero and one. This is true whether or not the correct hypothesis 
is included in the set of hypotheses considered.

Statistics will not help you to invent hypotheses, although the slowness 
with which the Bayesian posterior probabilities approach zero and one in some 
particular case may suggest to you that you should look for a different hypo 
thesis. Hypotheses are invented by the scientist, and may be based on theory, 
on hunches, on flashes of insight, or be suggested by other data. Once you have 
invented a new hypothesis, you must go back to your data and re-calculate 
the posterior probabilities for the set of hypotheses that now includes the new 
one. If the new hypothesis was suggested by the data, then you should go out 
and collect new data to guard against the possibility that your new hypothesis 
fits only the original data from which it was derived.

The history of science is filled with examples which, to a Bayesian, appear
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to be instances in which scientists collected so much data that eventually they 
came to believe one particular theory because that theory was the most plausible 
of all those suggested. Then along comes a new scientist with a new theory that 
is even more plausible, in the light of the data, than the others. A high posterior 
probability associated with a hypothesis does not guarantee the truth of that 
hypothesis, it only indicates that the hypothesis is the most likely among those 
you have considered. Philosophers of science and thinking scientists long ago 
realized that truth is unattainable, that the best scientists can do in their search 
for truth is reach agreement with one another. What the layman recognizes as 
a scientific truth is actually only something about which scientists are in agree 
ment or near agreement. Today's truth may be discarded by the scientists of 
tomorrow.

When likelihoods are zero or one
Suppose a theory predicts that a certain datum (or collection of data) 

is sure to be observed, then an experiment is performed and the datum is 
observed. What can be said about the truth of the theory?

Let us consider the truth of the theory as an hypothesis, H, and let us 
label the datum, D. To simplify the argument, consider that the only other 
possible hypothesis is that the theory is not true, fl ('not H'). Now we wish 
to find the posterior odds favouring the truth of the theory:

o» --
p(fi|D) 

We can find this using Bayes' theorem. Assume that D has been observed:

_ p(H) p(D|H) 
~ (pH) p(D|H)

All we know is that if the theory is true, D is sure to be observed, that is,
p(D|H) = 1 

This gives
™ P(H). 1

As long as /?(D|fl) is not zero, then the posterior odds are some finite number, 
so the posterior probability of the theory being correct is less than one. How 
ever, you can see that the likelihood ratio must be equal to or greater than 1, 
since /?(D|fi) has to be 1 or less. Thus, the posterior odds will always be at least 
as big as the prior odds. In other words, if D occurs you will usually become 
more sure of H, and never less sure. Observing D lends support to the theory, 
but the degree of support depends entirely on the value of/?(D|fl). Ifp(D|H) is 
close to 1, then observing D may lend only marginal support to the theory.

In general, if a theory predicts that a datum is sure to be observed, and then the 
datum is observed in an experiment, the only inference we can draw is that the 
experiment supports the theory, but we cannot say anything about the degree of 
support until alternative theories are also considered.
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Violations of this principle abound in social science research. An investi 
gator says his theory predicts so-and-so, he performs an experiment and observes 
so-and-so, and concludes that the experiment supports his theory. If that is 
all he says, he is not wrong, but the words he uses may well imply that the 
experiment lent a considerable degree of support for the theory, and that is 
saying too much. Strictly speaking, all one can say in this situation is that if 
D is observed, one is at least no less sure of the truth of the theory than before 
the experiment was performed. To claim or imply an increase in the degree 
of support for the theory is simply not justified without also considering an 
alternative theory.

Suppose, however, that the datum had not been observed. Then what 
inference is justified? If the probability of observing the datum is 1, given the 
truth of the theory, then failure of the datum to occur must have probability 
zero (provided, of course, that the scientist arranges his experiment so it could 
occur if the theory were false), that is

p(D|H) = 0 

Writing Bayes' theorem for the non-occurrence of D:

0 -

Odds of zero mean that the posterior probability of H is zero, that is, 
p(H D) = 0

Thus, failure to observe D when /?(D|H) = 1 results in complete disproof of 
the theory! If you look carefully at Bayes 1 theorem you will see that a posterior 
probability of zero remains at zero no matter what the nature and number of 
other hypotheses. For example, if I add a third bag to the two-bag problem 
of Exercise 4-2 which consists of all red chips, and then I select one of the bags 
at random and discover that the first chip drawn is blue, I have completely 
rejected the possibility that I am drawing from the all red bag. And this con 
clusion is true no matter how many other bags I might wish to consider.

But what of the alternative hypothesis, H? Since /?(H|D) = 0, it follows 
that

P(H|D) = 1

Has the alternative theory been proved? The answer is no, for the reasons 
given at the beginning of this section. The alternative theory may be wrong, 
but relative to H it is a winner. Having rejected H, Bayes'Jheorem has no other 
place to put all its posterior probability other than on H, and it does so irre 
spective of the truth of H.

The general lesson to be drawn from this discussion is that theories can 
only be disproven with certainty, they can never be proven with certainty. The 
history of science is littered with discarded theories, while today's theories are 
only relatively more true than those that have been put aside. The 'definitive 
experiment', one which seeks for evermore to establish the truth of some 
theory, is as elusive as the Holy Grail. A definitive experiment can only reject 
a theory, so that a theory which is stated in such a way that no data can disprove
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it, would appear to be unscientific for it can neither be proven nor disproven. 
This is a view most particularly identified with that philosophical school of 
thought known as logical positivism.

From a Bayesian viewpoint, the conclusion is not altogether satisfactory. 
If you believe a theory must be capable of complete disproof, then you are saying 
that there must exist some datum for which p(D\H) = 0. If this is observed, 
then /?(H|D) = 0 and the theory is disproven. However, it is entirely possible 
that there is no such datum. I can envisage, at least theoretically, a theory for 
which p(D\H) > 0 for all possible data. Yet as long as the likelihood ratios for 
various data are not all 1, then the posterior odds will not be 1 and so will 
favour one hypothesis over the other. Much of social science research proceeds 
on this basis, rather than by falsification of theories. Both approaches are 
justified from a Bayesian viewpoint.

4.8 Summary

Bayes' theorem prescribes the amount of revision of opinion that should 
occur in the light of new information:

P(H|D) -

It is a non-controversial consequence of the third probability law, and is some 
times called the 'theorem of inverse probability'. It can be applied sequentially, 
the posterior probability from the first stage of experimental work serving as 
the prior probability for the next stage.

Intuitive revision of opinion is liable to lead to violations of the proba 
bility laws, particularly Bayes' theorem, so the procedures of this book can be 
seen as guides to systematic, consistent revision of opinion.

Without taking a decision-theoretic approach, which would require that 
we consider the utilities of the outcomes of our decisions and the cost of gather 
ing information, no precise answer can be given to the question of how extreme 
posterior probabilities should be before reporting experimental results. Requiring 
a posterior probability of at least 0-99 is a workable, conservative guideline, 
that should not be taken as a rule.

Prior opinion cannot be avoided in making a statistical inference. 
Bayesians feel that judgement in the form of prior opinion should be formally 
incorporated in the statistical procedures, thus making all aspects of the 
resulting inference 'public'. Non-Bayesians prefer to leave judgement as a 
part of the informal procedures leading up to a statistical test. Assessing prior 
probabilities is a matter of experience, and is a skill that can be developed. 
Disagreements about prior probabilities can be resolved by collecting data 
and applying Bayes' theorem. With enough data initial disagreement between 
assessors will become negligible.

Likelihoods, values of p(D|H), are also personal probabilities, but in 
most statistical applications they are determined by applying the probability 
laws to judgements about event classes over which there is agreement. New 
Bayesian techniques are being developed for cases where disagreement over 
p(D|H) may arise.
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A convenient form of Bayes' theorem is the odds-likelihood ratio version:
Q" = Q'L

Posterior odds = prior odds x likelihood ratio

The nearer the likelihood ratio is to 1, the less opinion is revised by the data. 
The log-odds log-likelihood ratio form of Bayes' theorem is another convenient 
form, one in which data become additive.

Applying Bayes' theorem does not allow us to discover the 'true' hypo 
thesis; it only tells us which hypothesis is relatively more plausible than the 
rest. As large amounts of data are collected, one hypothesis is bound to be 
favoured, even if it is incorrect. When likelihoods are zero or one, it is only 
possible to disprove a hypothesis. There is no condition in which an hypothesis 
can be 'proven'.

Problems
4-1 Historians agree that there is about 1 chance in 4 that Jones wrote the 'Q- 

document,' and 3 chances in 4 that Smith wrote it. In a new analysis of the 
10,000-word document, the word 'that' is found to occur 27 times. From the 
known writings of Smith and Jones, experts assess a probability of 0-0084 
that this frequency of 'that' would be observed if Jones were the author, while 
the probability for Smith would be 0-0004. In light of this new evidence, what 
now is the probability that Jones is the author? (A similar approach has been 
used to determine the authorship of some of The Federalist papers; see Mosteller 
and Wallace, 1964.)

4-2 Suppose that the crystals in one brand of breathalyzer have a 0-90 chance of 
changing colour if the person being tested has high alcohol content in his blood, 
0-60 chance if alcohol content is moderate, and 0-10 chance if alcohol content 
is zero or low. At 11.15 p.m. on a Saturday night, a police officer sees a car 
weaving in and out of traffic. He stops the car, and the driver sounds and 
appears intoxicated. The officer figures the chance of high alcohol content in 
the bloodstream is 0-70, of moderate content about 0-20, and of low content 
about 0-10. A breathalyzer test is positive—the crystals change colour. What 
should the police officer's opinions be now? Suppose the crystals hadn't changed 
colour; what then should the officer's opinions be?

4-3 The California Psychological Inventory is a test that measures 18 aspects of 
personality. Some of the 18 scores can be combined to yield an index of 'social 
maturity' that distinguishes delinquents from non-delinquents (see Gough, 1966). 
In America, about 30% of a sample of 409 delinquents scored above 44 on the 
social maturity index, while approximately 94% of a sample of 2,483 non- 
delinquents scored above 44. 'Non-delinquents' consisted of high school students, 
college and university students, and employed adults; they were all men drawn 
from the research files of the CPI, selected 'to represent average or above- 
average levels of social maturity.' 'Delinquents' consisted of institutionalized 
youths and adult prison inmates. Assume that there is about 1 chance in 5 that 
a boy of 14 will someday be convicted of an indictable offence. What is the 
probability that a boy of 14 selected at random in America will someday be 
convicted if the youth

a scores above 44 on the social maturity index?
b scores at or below 44 ?

Discuss the problems in applying Bayes' theorem that this example raises.
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4-4 Two scientists, Jones and Smith, design an experiment to test two hypotheses, 
HI and H2 . Jones assigns a prior probability of 0-8 to HI, while Smith thinks 
that H 2 is twice as likely to be true as H x . Data are collected and the likelihoods 
computed. They are p(D\Hl ) = 0-0084 and/?(D|H2 ) = 0-0008. Show that the 
posterior opinions of the scientists are closer together than the prior opinions.

4-5 For what range of prior probabilities would you use Decision Rule 1 rather 
than Decision Rule 2 as regards the psychodiagnosis problem of Exercise 4-1 ? 
(Hint: Find the priors that would make you indifferent between the two rules.)

4-6 A statistician using Bayes' theorem for a particular problem involving just two 
mutually exclusive hypotheses and three items of data arrives at posterior odds 
of 24 to 1; he reports this but neglects to give his prior probabilities. However, 
he does give his likelihood ratios. They were 8, 1/3, and 18. Consider the 
hypothesis that was more likely after observing the data; what was the 
statistician's prior probability for this hypothesis?

4-7 The following problem illustrates the care that must be taken in applying Bayes' 
theorem.
What is the incidence of heroin taking among cannabis takers ? Nicholas Wade 
(in New Society, 23 January 1969, 117-118) points out that the figure is difficult 
to obtain, but that in Britain fairly accurate figures exist on the incidence of 
cannabis taking among heroin takers, so it might be possible to apply Bayes' 
theorem to get the inverse probability. He states that the incidence of cannabis 
taking among heroin takers was around 90 per 100 people, that about 5 people 
per 100,000 of the population were heroin users, and that between 30 and 60 
per 100,000 were cannabis takers. By applying Bayes' theorem he concludes that 
'. . . between 7-5 and 15 percent, in other words that of those who take cannabis, 
between 7 to 15 of every 100 are, or will be, takers of heroin'. Criticize and 
discuss his approach and conclusions.

4-8 An archaeologist in the Yucatan peninsula of Mexico is unsure whether a piece 
of pottery he has just found belongs to the Mayan period or to the pre-Mayan 
period. Judging by the site of his dig he feels about 60% sure that the piece is 
pre-Mayan. Then he notices a small drawing of a sort that shows up twice as 
often on Mayan as on pre-Mayan pottery. On-the-spot chemical analysis of the 
piece reveals that its composition is of materials which were more commonly 
used in the pre-Mayan period. He judges that such materials were found about 
4 times more frequently in pre-Mayan than Mayan pottery. What are his 
posterior probabilities for the two hypotheses ?
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their graphs

So far the events and hypotheses we have been talking about are discreet; 
the coin comes up either heads or tails, the die shows one of six sides, the coin 
is either biased or fair, the patient is either functionally ill or brain damaged. 
Guesses about unknown quantities are often formulated in this 'either-or' 
fashion not so much because the world naturally falls into such convenient 
categories, but rather because traditional statistics are easiest to apply when 
only one hypothesis and an alternative are tested. For example, while it is often 
convenient to think of a coin as either biased or fair, we might instead inquire 
into the degree of bias of the coin. The degree of bias could be represented by 
the long-run proportion of heads to total flips, so that a proportion of 0-5 would 
stand for 'no bias'. Other hypotheses could then be represented by 0-501, 
0-502, 0-5000007, 0-62, 0-7, 0-93, or any of the proportions between 0 and 1. 
One of these numbers must represent the 'true' bias of the coin, and since there 
are an infinite number of proportions between 0 and 1, there are an infinite 
number of hypotheses to be considered.

To take another example, suppose we want to know the average I.Q., as 
measured by some test, of university students in England. If we could administer 
F.Q. tests to all students we could determine the average I.Q. easily, but such a 
project is too costly and time-consuming to be practicable, so we must content 
ourselves with a random sample of students and infer the average I.Q. of all 
students from the average I.Q. of our sample. How this is to be done is the 
subject of Chapter 11; for now consider what the hypotheses are—all possible 
values of I.Q. In theory all possible values from zero to infinity could be con 
sidered, but in practice the range is limited to, say, 50 to 200. Obviously neither 
50 nor 200 is very likely to be the average I.Q. of students in English universities, 
or anywhere else, for that matter, but those values adequately, if over-cautiously 
delimit the range of possible values. If I.Q. measurements could be made with 
infinitesimal precision, then every number between 50 and 200 could represent 
the 'true' average I.Q. And if each number contains an infinite number of 
decimal places, then there are an infinite number of possible 'true' I.Q.'s: 
93-3568 or 129-4683215 or 167-426733 etc. Even though in practice I.Q. is 
determined to at most three significant figures, we can still consider that there 
are an infinite number of possibilities between 50 and 200. The mathematics 
are easier that way.
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That statement may come as a surprise if you were contemplating extend 
ing the methods developed in the previous chapter to the case of an infinite 
number of hypotheses. To an infinite number of hypotheses you would have to 
assign as many prior probabilities. And that would be only the first step. 
Fortunately, those mathematics known as 'the integral calculus' can be applied 
to reduce this Herculean task to manageable proportions. I promised, however, 
that this book would not introduce mathematics as advanced as the calculus, 
so from now on I will present only the results of applying the calculus to prob 
lems involving a theoretically infinite number of hypotheses. You will have to 
understand only what goes into the problem and the results, not how the results 
were obtained. For example, in the case of the unknown average I.Q., you will 
have to know how to characterize the prior probabilities, how to summarize 
the data, and how the posterior probabilities are determined from applying 
Bayes' theorem, but you will not actually have to compute it yourself. You will 
have to do some calculations but they are nothing more than adding, sub 
tracting, multiplying, and dividing.

When many guesses about a quantity are possible and can be as close 
together as one wants, then the quantity is called continuous. From now on this 
book will consider only continuous hypotheses, for they are by far the most 
commonly found in social science research. You will often find discrete hypo 
theses in the literature, but if you look closely you will frequently find that a 
continuous case has been made artificially discrete. For example, I could have 
asked the question, 4 Is the average I.Q. of university students in English uni 
versities above 120 or below 120?' The continuous character of the hypotheses 
has been made discrete; now only two hypotheses are to be considered, above 120 
and below 120. However, the continuous character of the problem is usually pre 
served right up to the last step and then the discrete hypotheses are derived from 
the continuous ones to make the results more understandable or more useful.

But before we go on to introduce Bayesian ideas for continuous hypo 
theses, the mathematical notion of a function must first be introduced. Once 
you understand what a function is and know how to graph one, then we can 
go on, in the next chapter, to describing prior probabilities for continuous 
hypotheses. If you find that you already know the material in this chapter, 
skim or skip it, and go on to Chapter 6.
The purposes of this chapter are to enable you to understand

what a function is;
how functions can be expressed;
how functions can be used.

In addition, you should be able to
graph a function from its mathematical expression;
recognize and interpret linear functions;
use functions to transform one variable into another.

5.1 Functions

Loosely speaking, a function is a pairing of one thing with another. 
Consider three names, Atlantic, Mediterranean, and Hudson, and also three 
descriptions of watery areas, sea, bay and ocean. You have learned the function,
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that is, the pairing: Atlantic Ocean, Mediterranean Sea, and Hudson Bay. 
Other combinations are possible, of course, but common usage does not 
allow us to talk of, say, the Atlantic Bay or the Mediterranean Ocean. This 
section is a brief introduction to functions.

Variables and constants
A variable is a symbol for a quantity that can take on any of a range of 

values in a problem. Letters at the end of the alphabet are usually used for 
variables, like x or y. The variable can stand for anything we like, such as the 
average I.Q. of students at British universities, or the number of heads in ten 
flips of a fair coin, or the proportion of students in a class who are blond. If, 
for a given problem, we know the value of some quantity, we treat it as a con 
stant. A constant is a quantity that takes on only one value in a problem. Any of 
the quantities that were given as examples of variables could be treated as 
constants if they keep the same value throughout a problem. You have to 
decide which quantities are to be treated as variables and which as constants 
by understanding the logic of the problem at hand. There are simply no rules 
that will help you to decide, except that a few 'universal' constants stay the 
same from problem to problem. Examples are the speed of light, the charge 
on an electron, the atomic weight of hydrogen, and other physical constants, 
7i = 3-14159 ..., or e = 2-7182.... Letters at the beginning of the alphabet 
are reserved for constants. The distinction between variables and constants is 
purely arbitrary, except for the well established constants such as those just 
mentioned. You will only learn through experience when quantities are to be 
treated as variables and when as constants.

Relations, rules, and laws
When two variables are seen to go together in some way, we say a relation 

exists between them. Brain damage 'goes with' impairment of certain physical 
functioning, economic growth is partly influenced by the availability of money, 
delinquency is related to socio-economic status. One of the main concerns of 
scientists is to find relations between variables. Social scientists in particular 
spend much of their time just trying to find out which variables are related to 
which other variables. A new science has to spend a great deal of time discovering 
which variables are important. The older sciences are more secure in their 
knowledge of which variables are important and spend a greater proportion 
of their time formulating the rules that govern the relationships. A rule specifies 
how variables are related. Here is a rule: An open body of water is an ocean, a 
body of water closed by land with perhaps a small opening to an ocean is called 
a sea, and a partially closed body of water opening on to an ocean is a bay. 
That rule allows one to connect Atlantic with ocean, Mediterranean with sea 
and Hudson with bay. The advantage of knowing the rule is that new cases 
other than the ones investigated can be accommodated. Once the rule relating 
delinquency and socio-economic status is known, then by measuring the socio- 
economic status of a community never before studied, the rate of delinquency in 
that community can be predicted. When the rule can be specified mathematically, 
the relation is called a law. The relationship between force, mass and accelera 
tion is given by the law

F = ma



94 Functions and their graphs

Force equals mass times acceleration. Given any two of the quantities, this law 
allows us to determine the third. As another example, the probability laws 
discussed in Chapter 3 specify the relationships between the probabilities of 
individual events and the probabilities of combinations of those events.

Independent and dependent variables
In his search for relations between variables, the scientist often performs 

experiments in which he systematically changes the value of one variable, the 
variable that he is controlling, and measures the values of the other variable. 
The physicist may systematically vary force and mass in an experiment and see 
what accelerations result. The variables under the control of the experimenter 
are called independent variables', here 'independent' suggests that the value of 
the variable can be anything within the range of possibilities, the choice is 
up to the experimenter. The other variable, whose value depends on the value 
of the independent variable and the law relating the two, is called the dependent 
variable. Labelling variables as independent or dependent is simply a conven 
tion that is popular among scientists; which variable gets which label is usually 
dictated by the logic of the experiment.

Functions and their rules
A function is a pairing of exactly one variable with another. More speci 

fically, it is a pairing of just one dependent variable with one independent 
variable. We can express this abstractly by saying that y is a function of x, or,

y = f(*)
Notice that the right side of that equation is not read '/ times x" but rather 
'function of x\ so the whole equation is read y equals a function of x\ That is 
the literal translation. The colloquial expression is y is a function of x\ It is 
important to note that when the value of x is given, the function allows only 
one value of y to follow. If we consider the name of the body of water to be 
the independent variable, then the dependent variable can take on only one 
value; with 'Atlantic', the only permissible element of the pair is 'ocean'. To 
take another example, if we keep the force constant in an experiment, then 
acceleration is a function of mass, and for each value of mass there will be one 
and only one resulting value of acceleration. In some books what I have defined 
as a function is called a 'single-valued function'. Relations where more than 
one value of the dependent variable may be associated with one value of the 
independent variable are called 'multiple-valued functions'. An example of the 
latter can be seen by taking the type of body of water as the independent 
variable. Then with 'ocean', for example, we can associate 'Atlantic', 'Pacific', 
'Indian', and others. The name of the body of water is a multiple-valued func 
tion of the type of body of water, while the type is a single-valued function of 
name. In this book we will deal only with single-valued functions, so I will call 
them just 'functions'.

Nothing has so far been said about causality. The reason for this is that 
relations and functions do not imply anything, necessarily, about causation. 
A scientist may be able to specify the function relating two variables, but the 
function itself says nothing about whether or not one variable was caused by the 
other. A function is nothing more than a listing of pairs. It is a list of what goes
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with what. Even if two things go together perfectly, we cannot necessarily say 
that one caused the other. My bedside clock always agrees with my wristwatch, 
but one surely does not cause the other. The statistician can only say that 
cigarette smoking and cancer are related, he cannot say that one causes the 
other. The chain of causation can only be established by careful study of the 
etiology of lung cancer. Remember that statistics is concerned with discovering 
relations between things, not with the question of causation. An independent 
variable becomes thought more to be a cause as intervening and surrounding 
lawful knowledge is obtained.

Sometimes we can save ourselves the trouble of having to list all the pairs 
in specifying a function for we can rely on a rule that tells us how the pairs can 
be generated. Such a rule is called a. function rule. An example is

If we select a value of x, the value of y can be computed. The rule allows the 
pairs to be computed rather than listed. Function rules play a very important 
role in this book for they allow us to get around the problem mentioned earlier 
of having to make infinitely long lists pairing hypotheses with their prior prob 
abilities. The problem can be solved by specifying a rule that will allow any 
hypothesis to be paired with a probability. In this way the prior probabilities of 
hypotheses can be specified with a function rule rather than with an enormously 
long list. Before we talk of probability functions it is important to understand 
a few simpler functions. Linear functions will be introduced first.

5.2 Linear functions

A linear function is specified by the function rule 
y = a + bx

How do we arrive at the x-y pairs by using this rule? First, a value for x must 
be specified — any value will do, but if you are particularly interested in some 
limited range of values you might start with the lowest value. Next, the rule 
tells you to multiply that value of x by the constant b. Finally, to that product 
add the value of a, another constant. You can see that x is the independent 
variable, a and b are constants, and y is the dependent variable. To obtain a 
value of y you must multiply .Y by b and then add a.

Exercise 5-1
Which of the following function rules are linear?

a y = 3 + 2x e y = x/6
b y = 5x f y = 4 + 2x2
c y = 2H + (7/8)* g y = ™-3

x — u d y = —4-3 — 6-2x h z = ——— where // and a are constants
a

Answers
a y = 3 -f- 2x. If we let 3 = a and 2 = b, we can rewrite this equation by sub 

stituting the letters for the numbers. The result is y = a + bx, the equation for 
a linear function.
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b y = 5x. This may be clearer if we add a zero to the right side of the equation,
making it y = 0 + 5*. Then, let 0 = a, 5 = b, substitute, and we get y = a + bx,
a linear function. Sometimes a may equal zero. 

c y = 2/7 + (7/8)*. There is no reason why a and b cannot be fractions, so let
2/7 = a and 7/8 = b, and we can see that the equation is linear. 

d y = — 4-3 — 6-2x. a and b can be negative. Let a = —4-3 and b = —6-2.
The equation is linear. 

e y = x/6. When this is rewritten as y = 0 -1- (1/6)* you can see that the equation
is that of a linear function. 

f y = 4 + 2*2 . This rule says, 'take *, square it, multiply by 2 and add 4'. In
the rule for linear functions there is nothing about squaring *, so that equation
is not that of a linear function.

g y = •-— — 3. Let us rewrite this slightly: y = — 3 + - *.
^ "»

We can let — 3 = a, and, since nj2 is a constant, let n/2 = b. Then y = a + bx, 
a linear function.

h z = (x — n)la. (Do not let the switch from y to z as the dependent variable 
mislead you, for z = a + bx is just as much a linear function as when y is used.) 
Let us rearrange the right side of this equation a little so that we can see more 
clearly whether or not this is a linear function.

cr CT

Since n and <r are both constants, n\a must be a constant. Let —/t/er = a. Both 
1 and a are constants, so l/<r must be a constant. Let 1/cr = b. Substitute, and 
we get

z = a 4- bx
So this equation is a linear function. You will see this particular linear function 
again in Chapter 9.

Graphing functions

We have mentioned two ways of specifying functions, listing the pairs or 
writing the function rule. There is a third way that is frequently convenient, 
drawing a graph. To do this you must first construct two axes at right angles 
to one another. The horizontal axis is called the \v-axis' and is marked off in 
values of .Y that lie within the range of interest. The vertical axis is the 4>'-axis' 
and is marked off with values of v. Next you pick some value of * that lies 
within the range of interest and use the function rule to compute the corre 
sponding value of y. Now imagine that you have drawn a vertical line that 
intersects the *-axis at the value of * you just chose, and that you have drawn 
a horizontal line intersecting the v-axis at the value of y you just computed. 
Place a dot at the point where the two lines intersect one another. That dot 
represents the x-y pair whose values you just determined. Continue with this 
procedure for a few more pairs of values and then connect the dots.
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Exercise 5-2
Graph the function

y = 1 + 2x 
to cover the range of values of x from 0 to 5.

The first step is to construct the axes of the graph. You know that the jc-axis 
must be marked off in units from 0 to 5. To find out the range of values to be 
marked off on the .y-axis, solve the equation first for x = 0 and then for x = 5.

10-

0

Fig. 5-1
Graph of the function v --- 1 -+- 2r

Doing this yields values of y of I and 11, respectively, so mark off the >>-axis 
from 1 to 11. This has been done in Fig. 5-1. Now solve the equation for a few 
more values of x. You might make a table like this one:

JC

0
1
2
3
4
5

y 
i
3
5
7
9

11
Plot these points and connect them. The result is shown in Fig. 5-1.

Now you can see why y = a + bx is called a linear function. The graph of 
any linear function is a straight line. Knowing this makes the job of plotting a 
linear function relatively easy; you only need to find two points, plot them, and 
then you can simply connect them with a straight line. The two points you 
determined when finding the range of the y variable will do very well.

Social scientists occasionally find that two variables they are studying are 
linearly related. The following exercise illustrates this.

Exercise 5-3
Fitts and Peterson (1964) studied the relationship between the difficulty of a 
task and the time it takes to complete it. Their subjects had to hold a stylus on 
a small metal plate placed directly in front of them on a table. When a light
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came on, the subject was to move the stylus off the home plate and touch a 
target plate, located some distance from the home plate. The size of the target 
could be changed. Thus, the task could be made more difficult by either moving 
the target farther away from the home plate, or by making the target smaller. 
The independent variable in the experiment was the index of difficulty (ID) 
obtained, by means of a special equation, from the distance between target and 
home plate and from the size of the target. There were two dependent variables, 
reaction time (RT) and movement time (MT). Reaction time is the time that 
elapses between the light coming on and the subject lifting the stylus off the 
home plate, while movement time is the time that elapses while the stylus is 
actually moving from the home plate to the target. The experimenters found 
that the relationship between the index of difficulty and RT or MT was given 
by these equations:

RT = 0-261 + 0-0054 ID 
MT = - 0-07 + 0-074 ID

In these equations, time is given in seconds, and the index of difficulty varies 
from 2 to 8. What do the graphs of these functions look like?

13
C
o

0-6-

0-5-

0-4-

0-3-

0

MT

RT = 0-261 - 0-0054 ID

T

3456 
Index of difficultyr- coFig. 5-Z

Reaction time and movement time in tasks of varying difficulty 
(After Fitts and Peterson, 1964.)

The first step is to find the ranges of the variables. We already know that the 
*-axis must run from 2 to 8. Let us use the RT and MT equations to find the 
ranges for the y variables. Here are the results:

ID RT
2 0-2718
8 0-3042

MT
0-078 
0-522

If both plots are made on the same graph, then the >>-axis must run from 0-078 
to 0-522. First plot the two points for reaction time, then the two for movement 
time, and then connect the two sets of points with straight lines. The result is 
shown in Fig. 5-2.
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Constants a and b
What meaning, if any, can be given to the constants a and bl First let us 

look at a. One way to see if a has any easily discerned meaning is to draw 
several graphs which differ from one another only in the value given to a. For 
all these graphs, let us assign to b a value of 1. We will plot these functions:

v = 1+x
.V =

y

Fig. 5-3
Four linear plots in which only the constant a is different

Figure 5-3 shows these four functions. Notice that the plots are parallel, the 
only difference between them being the place where they intersect the >>-axis. 
If you look carefully you will see that the value of y at the point of intersection 
equals the value of y where the graph intersects the >>-axis, or, more briefly, a is 
called the '^-intercept 1 . Rather than plot a graph to find the value of the y-inter- 
sept it is easier to solve the equation for the case where x = 0. If you let .v = 0 
in the equation y = a+bx, then

y = a
The resulting value of y will equal the value of the constant, a. Often you can 
determine the value of a simply by inspecting the equation.

To find out what meaning we can attach to the constant b, let us plot the 
following equations in which a has been kept constant at a value of 1.

y=l+(l/2)x 
y = 1+x 
y = l+2x 
y = l+3x
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Figure 5-4 shows these functions. Since a is the same in all the equations, all 
the graphs pass through the y-a\\s at the same place. The difference in the four 
plots is in the amount of tilt of the line. The higher the value of b, the greater 
the tilt. The constant b, then, reflects the amount of tilt of the plot, so b is 
usually referred to as the 'slope constant', or more briefly, as the 'slope' of the 
line.

I
) 1 2

1 
3

1 
4

1 
5

I 
6

1 
7

0

Fig. 5-4
Four linear plots in which only the slope, 6, is different

We can see, then, that a and b have meaning: a is the v-intercept, and b 
is the slope of the line. The point of showing that a and b have meaning is that 
in the next chapter, when we meet some rather complicated function rules that 
allow us to plot probability functions, we shall see that these function rules 
contain one independent variable, two problem constants and several universal 
constants. We will be able to understand the rules better if we can attach 
meaning to the problem constants, and doing this will enable us to use these 
functions very effectively.

Negative numbers

Before we leave linear functions, it is worth asking what the plots look 
like when any of a, b, or x are negative. To begin with, let us plot the function. 
This can be seen in Fig. 5-5. Extending the axes creates four sections of the 
graph, usually referred to as quadrants^ I, II, III, and IV. All the previous 
figures in this chapter have been quadrant I plots. As you would expect, the 
plot of y = x has a y-intercept of 0 and a slope of 1. The line extends down into
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the third quadrant. You can verify that this is correct: when x equals - I, then 
y equals - 1 ; when .v equals -2, y equals -2, and so forth.

You can probably guess what the plots will look like for negative values 
of the constants. If a is negative, then the ^-intercept will be negative. You can 
see this in Fig. 5-6 for the line whose equation is

y = -3 + x

When the slope is negative, the line tilts around so that increasing values of x 
go with decreasing values of v; we say that the relation between x and y is 
'inverse', or y is inversely related to x. An inverse relation is shown in Fig. 5-6 
by the line whose equation is

Finally, a plot in which both a and b are negative can be seen in Fig. 5-6 as 
represented by the line whose equation is

Fig. 5-5
Plot of the linear function y — x

Fig. 5-6
Three linear functions, two with negative slopes and 
two with negative intercepts

Obviously not all functions encountered by a social scientist will be linear. 
To give you an idea of functional relationships that are not linear, let me 
introduce you to two functions that you may have encountered already in your 
studies, power functions and exponential functions.

5.3 Nonlinear functions

Power functions
A power function is given by the rule
y = axb

In words, the rule states that x is raised to some power b and then this result 
is multiplied by a. An example of the application of the power law is provided 
by the work of the psychologist S. S. Stevens (1957; 1962; 1966). Stevens 
believes that the relationship between the magnitude of stimulus intensity and
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the magnitude of sensation is best described by a power function. He has tested 
this idea in dozens of experiments and found it to be generally true for many 
different kinds of stimuli and for different sense modalities. Three possible plots 
of the power law are shown in Fig. 5-7. Note that when the exponent is I, a 
linear function is the result.

•? 7-

6-

A 5-

4-

3-

<u•§ 2

given by

\ \ \ i i i r 
01234567 
Magnitude of the stimulus (arbitrary units)

Fig. 5-7
Three plots of the power law for different values of the exponent

Exponential functions
The function rule for an exponential relationship between y and x is

bxy = ae
where a and b are problem constants and e is the universal constant mentioned 
earlier. An example of an exponential relation can be found in micro-economic 
theory and in psychological decision theory. As early as 1738 Daniel Bernoulli 
suggested that the relationship between money and a person's subjective value 
of that money is not linear but exponential. The basic idea is that the subjective

upper limit

0
0

Fig. 5-8
Utility function for money
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worth, or utility, of say, one dollar, is less for a millionaire than for a pauper. 
The more money you have the less you will value one more unit of that money. 
This kind of relationship is shown in Fig. 5-8 where the function

U = \-eby

is plotted. The constant b is negative for this plot, U stands for utility and V 
for objective value.

This curve differs from the power function whose exponent is less than I 
in that this exponential curve levels off and reaches an upper limit only when 
V reaches infinity. Once you have amassed enough wealth, adding one more 
unit of money to your hoard increases your utility for the total not a whit, or 
to be more precise, the increase in utility is infinitesimally small. A good dis 
cussion of utility theory is given by Raiffa (1968).

5.4 Transformations

So far we have shown that functions can be used to indicate the relation 
ship between two variables. A number of examples have been given of experi 
mental results expressed in terms of a function, or a function rule. We have 
seen that scientific laws are expressed in functional form. But in addition to 
these uses of functions, there is another use that will be important to us in 
succeeding chapters. Frequent use will be made of functions that enable us to 
transform one variable into another. Sometimes a variable of interest to us can 
be manipulated more easily mathematically if it is first transformed into a new 
variable. You do this when you use logarithms. Rather than multiply several 
numbers together, it is easier to find the logarithms of the numbers and then 
add the logarithms. As the last step you change the result back into the original 
units by taking an antilogarithm. By taking the logarithm of a number you 
are using a function rule to transform the original number into a new one. You 
made the transformations to simplify your task of arithmetic.

An example of a linear transformation can be seen by considering the 
centigrade and Fahrenheit scales of temperature. Letting F stand for degrees 
of temperature expressed in Fahrenheit, and C for centigrade degrees, this 
equation will enable you to convert a centigrade reading to Fahrenheit:

(Here Fand C are used as variables, even though they come from the beginning 
of the alphabet, because of their mnemonic value.) The rule states that the 
centigrade temperature is to be multiplied by 9/5 and 32 added to the result. 
You can see that this equation has the form of a linear function, and, indeed, 
if you plotted it the result would be a straight line.

5.5 Summary

Much of science is concerned with finding the relationship between vari 
ables. When a relationship is known it can often be expressed in functional 
form, as pairs of variables—one value of the dependent variable with one value 
of the independent variable, as a graph, or as a function rule. One function 
rule that is useful in statistics is that of a linear function,

y = a + bx
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where y is the dependent variable, ,Y is the independent variable, and a and b 
are constants, a is the ^-intercept and b represents the slope of the line. Another 
function is the power law

y = axb
where x and y are the independent and dependent variables, respectively, and 
a and b are constants. A third function is the exponential relation

y = aebx

in which ;c and y are as before, a and b are constants, and e is the universal 
constant 2-7182 .... In addition to expressing scientifically established laws, 
functions can be used to transform one variable into another. Sometimes it will 
be easiest to transform one variable to another, do all the necessary computa 
tions with the transformed variable, and then at the last step, transform the 
results back into the original variable.

Problems
5-1 Which of the following are linear functions ?
a y = 4o- where a is a variable
b z = 1 — eAx where e is a constant

4x c z = — — 6-3e where e is a constant
n

d y = 3 + - x
2n — e

f y = 4-2 + 3x + x2
5-2 Draw a graph that will enable you to convert any Fahrenheit temperature from 

— 50 to + 250 into a centigrade reading.
5-3 Draw a graph that will enable you to find the logarithm (to the base 10) of any 

number from 1 to 100. Use the graph to show that multiplying the following 
whole numbers is equivalent to adding their logarithms:

a 10 by 10
b 5 by 5
c 1 by 50

5-4 In a number of studies the attraction a person feels toward another has been 
found to be linearly related to the similarity of attitudes held by the two people. 
Clore and Baldridge (1968) have published their experimental results on this 
question in the form of a function rule:

y = 6-55jc + 4-46
In the equation x represents the proportion of the subject's attitudes that are 
similar to a stranger's, and y is a measure of the attraction between the people.

a Plot this function.
b In the experiment the subject was first shown the stranger's attitudes about 12 

topics and was then asked to rate his liking for the stranger on one 7-point scale, 
and his desire for the stranger as a partner in an experiment on another 7-point 
scale. The sum of the two scale ratings was taken as an index of the attraction
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felt by the subject toward the stranger, and it is this attraction that appears as 
the ^-variable in the equation above. Since the lowest mark one can make on a 
7-point scale scores a T, the minimum attraction score is 2. The maximum is, 
of course, 14. How would you interpret the ^-intercept of this function? 

c What would the function have to look like if attraction and proportion of similar 
attitudes were inversely related ? Not related ?

5-5 Draw a graph for each of the following rules of thumb.
a To determine the outdoor temperature in Fahrenheit, count the number of

chirps made by the snowy tree cricket in 15 seconds and add 40 to the number. 
b To find the speed in m.p.h. of a British Rail train, count the number of 'clickety-

clacks' made by the wheels in 30 seconds, multiply this number by 15 and divide
by 11. 

c To estimate the distance between you and a flash of lightning, count the number
of seconds that elapse between the flash and the resulting thunderclap, and
divide this number by 5 to obtain the distance in miles.



6 • Distributions 
of opinion

Now let us return to the problem of assigning probabilities for continuous 
hypotheses. At the beginning of the last chapter I said that from now on we 
would be dealing only with continuous hypotheses. Recall that a continuous 
hypothesis is a very large or infinitely large collection of hypotheses where one 
hypothesis blurs imperceptibly into the next. Examples are:

average I.Q. of students attending British universities; 
proportion of people who will buy a certain product;
difference in amount learned between a group of students given pro 
grammed instruction and a group given regular lectures;
proportion of American schools that have swimming pools.
Each of these examples of a continuous hypothesis illustrates uncertainty 

about some quantity: average I.Q., proportion of people . . ., etc. Let us drop 
the term 'continuous hypothesis' in favour of the more descriptive 'uncertain 
quantity'. Remember that the uncertainty exists in the head of the investigator; 
there is, at any point in time, one and only one average I.Q. of students attending 
British universities. We do not know that value, so to us it is an uncertain 
quantity.

This chapter is concerned with the theory and methods of describing 
opinion about uncertain quantities, with particular emphasis on prior opinion. 
The basic idea is that opinion about an uncertain quantity can be described by 
a probability function. We discuss a number of function rules that are frequently 
used by the Bayesian statistician to describe his opinion. Much of what is said 
here applies both to prior and to posterior opinions. As I have said before, the 
only difference between prior and posterior probabilities is the amount of data 
on which they are based, so you would expect that much of the theory concerning 
prior opinion would apply equally well to posterior opinion.

Perhaps a reminder of the linkages between this chapter and the previous 
ones will help to put this chapter in perspective. In Chapter 2 we learned how 
prior opinion can be expressed in the language of probabilities, and in Chap 
ter 3 we learned the grammar of that language. Chapter 4 was concerned 
entirely with revising prior opinion in the light of new information, through
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the operation of Bayes' theorem. Through Chapter 4 we were always talking 
about discrete events or hypotheses, but now we need to extend the approach 
to cover the revision of opinion concerning an uncertain quantity. When we 
talk about an uncertain quantity, we usually wish to spread out our opinion 
over the range of possible values of the quantity, so we express our uncertainty 
as a probability distribution. To understand distributions of opinion we first 
needed to know about functions and their graphs—hence Chapter 5. Now, in 
this chapter, we get down to the technical details of expressing our opinion 
about an uncertain quantity in the form of a probability distribution. Although 
the revision of a distribution in the light of new information is the subject of 
Part III, a brief preview is given here.
In this chapter you should understand

how prior opinion about an uncertain quantity is expressed as a prob 
ability function;
how to express your prior opinion in terms of one of a few standard 
probability functions;
how probability statements are made on the basis of functions; 
when to use a uniform approximation to your prior opinion.

You should also be able to
graph your prior opinions about an uncertain quantity; 
describe your prior opinion as a standard probability function; 
calculate probabilities based on the probability function.
You will find that this is a fairly demanding chapter, mainly because it 

contains so much technical detail. It is worth mastering this material now, 
however, because it will all be needed in Part III.

6.1 Probability distributions

A function showing the relation of probabilities to an uncertain quantity 
is called a probability distribution. There are two major types of probability 
distributions, but we will save discussion of them until the next section. For 
now we will call the distributions of prior opinion discussed in this section 
simply prior distributions. An example of a prior distribution is shown in Fig. 6-1. 
That is my prior distribution about the average age of all university students 
presently attending English universities. The x-axis shows possible values of the 
uncertain quantity 'average age'. I consider it so unlikely that the average age 
is less than 15, or more than 25, that I have not shown values of x outside the 
interval 15 to 25. Interpretation of the^-axis is a little difficult. Strictly speaking, 
the jy-axis is not probability. You can see why by considering what the prob 
ability would be for any specific value of x. What is the probability, for 
example, that the true average age is exactly 21-364921? Virtually zero. The 
trouble has come by considering x as a continuous variable, for since there are 
an infinite number of possible values between 15 and 25, the probability of any 
one of them must be zero. One way to get around this problem is to admit that 
age would probably be measured at most to the nearest day, so that the *-axis 
need not be continuous; it could be divided up very finely with 365 days
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between each year. Then the probability of, say, 21 years and 43 days would 
have some small, but finite probability.

But this approach is clumsy. The mathematics are far easier if we can 
treat x as a continuous variable. We know that when we do this the probability 
of any specific value of x is zero. Meaning can still be given to the graph by 
interpreting y as not a probability but rather a probability density. The exact 
meaning of 'probability density' cannot be given without recourse to the 
calculus, but a rough interpretation would be that the values along the y-axis 
represent the probability in the vicinity of .Y. You can see that my prior distri 
bution peaks at 20. This means that I am most certain that the true average 
age lies in the vicinity of 20. I associate lowest degrees of belief in the vicinities

i r 
23 24 25

.v, average age in years
Fig. 6-1
Prior probability distribution of the average age of students attending English universities

of 15 and 25, and so my distribution is lowest at these locations. This graph, 
then, shows the degrees of belief I would attach to all the hypotheses that lie 
between 15 and 25. It is a distribution of my prior opinion about the average 
age of students attending English universities. We will consider next the steps 
in its construction.

Constructing a prior distribution
In following these steps you should not be too fussy about the details; 

the purpose of drawing the prior distribution is to see what its general shape is. 
A rough sketch will do.
a Determine the range of the x-variable. Include only values of x with 

noticeable probabilities. In the example of average age, the range 15-25 
covers nearly all of the distribution.

b Draw the x and y axes. Mark off the jc-axis in units covering the range of 
x-values. Make the y-axis about three-fifths the length of the x-axis. This 
proportion is chosen for purely aesthetic reasons; your graph will be 
neither too tall and peaked nor too squashed and flat. Do not mark any 
units on the 7-axis, though you may find it helpful to draw a light 
horizontal line from the top of the K-axis, another at the halfway point 
on the y-axis, and two more at the one quarter and three quarters 
points. I have done this in Fig. 6-1.
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c Find the value of x which you think is most likely to be the correct one; 
place a large dot directly above this value on the horizontal line at the top 
of the graph. In Fig. 6-1 this is the dot at the peak of the graph, above 
the 20.

d Pick other values of x and place dots above them at heights that represent 
the probabilities relative to the most likely value of x. For example, I 
thought that an average age of 19 is about three quarters as likely as 20, 
so I put a dot above 19 on the horizontal line that is three quarters as 
high as the top one. I thought 18 is about one quarter as likely as 20, 
so the dot was placed on the one quarter line. Remember that the hori 
zontal lines do not represent absolute values of probability, they stand 
for probabilities relative to the most probable.

e Connect the dots with a continuous line.
I suggest now that you draw your own prior distribution for this example. 

Your distribution will probably be different from mine. If you are presently 
attending an English university, or have some knowledge of students at English 
universities, your distribution may be more peaked than mine, for my experience 
with English universities is limited to just four years at the time of this writing. 
If you are not British your distribution may be flatter than mine, for you 
probably have little knowledge of the ages of students at English universities. 
In general, if you are uncertain about x your distribution should be flatter 
than that of someone who is more sure than you.

Exercises 6-1 and 6-2
1 Graph your prior distribution of the average number of hours of sleep per day 

obtained by students in your university during the term.
2 Graph your distribution of the average height of women in your country.

Answers
There is no correct answer that can be given. Your opinion is your opinion. 
Note, however, in Exercise 6-2 that the uncertain quantity in question is the 
average height of women. You are not being asked to produce a distribution 
of heights, you are asked to give a distribution of your opinion about the average 
height.

Revising prior opinion in the light of data
Having graphed your prior distribution, you would next collect some data. 

In this example, you would collect a random sample of students attending 
English universities and find out how old the students are. These data would 
then be used in the revision of your prior distribution through the application 
of Bayes' theorem. The result would be a posterior distribution whose peak 
would probably be shifted relative to the peak of the prior distribution, and 
the posterior distribution would probably be even more peaked, less broad,
than the prior.

An example may help to make the process clearer. The example is an 
overview of the results of applying a Bayesian analysis to making an inference 
about an uncertain quantity. For the moment, do not worry about why the
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analysis is carried out this way, or about how it is done. My purpose is to show 
the process without the technical details so as to give you a general picture 
of the subsequent development of this chapter. The example will also serve 
as an illustration of a small-scale experiment, one that can be (and was) carried 
out in the classroom.

I asked the students in my statistics class to consider the proportion of 
students in the class whose fathers are in 'white-collar' occupations. At the time 
I asked the questions, that proportion was an uncertain quantity, for none of 
us knew the actual value. To set up a situation analogous to a scientific experi 
ment, I asked each student to write on a 3-in x 5-in card I had passed out, 
either 'white' or 'blue' according to a set of criteria I had announced about 
type of occupation, and the cards were collected.

The pack of cards was considered as a 'population' about which I wished 
to make an inference. Note the special use of the word 'population'. A popula 
tion is a collection of elements (often people, in the social sciences) about which 
I wish to make some inference. The populations for the four examples mentioned 
in the first paragraph of this chapter are:

all students attending British universities;
all people who might hear of the product;
all students;
all American schools (here the elements are schools, not people).

One way to make an inference about a population is to observe the whole 
population; I could then simply note the proportion of 'white' cards. But 
scientists are rarely in a position to sample everyone in their population simply 
because the populations are too big. So, instead, they take a sample of the 
population and use that data to make an inference about the population.

But before drawing a sample I assessed my prior distribution about the 
uncertain quantity. It is shown in Fig. 6-2 as the 'prior' curve. The curve is 
fairly flat, indicating my considerable uncertainty about the actual value of the 
unknown (to me) proportion. The highest density is in the region of 0-6, but it 
falls off only gradually to either side.

At this point I was ready to collect some data. After mixing the cards, I 
drew one out, noted the word on the card, returned it to the pack, mixed the 
cards, drew another and repeated this process until I had drawn out 20 cards, 
17 of which had 'white' on them.

The next step was to apply Bayes' theorem. My prior distribution was 
revised in the light of 17 'whites' out of 20 to give the posterior shown in 
Fig. 6-2. For now, do not worry about how this was done, just note the result. 
My new opinion peaks in the vicinity of 0-8, and it is much less flat than the 
prior. It is more squeezed in, indicating that the range over which my uncer 
tainty extended was now less.

One way to communicate this 'narrowing-in' process is to determine 
values of *low and *hig such that most of your opinion falls between those 
limits. For example, 95% of my prior opinion falls between 0-239 and 0-895, 
while 95% of my posterior opinion is found between 0-623 and 0-921. This is 
shown graphically in the lower portion of Fig. 6-2. Research papers more 
commonly state the posterior range of opinion rather than showing the posterior
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distribution itself because it is easier and more economical of journal space. 
Later we will consider how this range is determined once the distribution is 
known.

At this stage in the experiment an inference can be made: 'I am 95% sure 
that the true value of the proportion falls between 0-623 and 0-921. That is all 
there is to it. The statement is the usual end result of a Bayesian analysis for 
uncertain quantities. It is the continuous-hypothesis counterpart of attaching 
posterior probabilities to discrete hypotheses.

If you will keep this example in mind, it will help to prevent you from 
losing the forest for the trees as you travel through the rest of this book.
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Fig. 6-2
Prior and posterior distributions of opinion concerning the proportion of students whose 
fathers are in 'white-collar' occupations

Some common distributions
Applying Bayes' theorem to every idiosyncratic prior distribution can be 

a considerable mathematical chore, so a simpler method is needed. Later we 
will find that applying Bayes' theorem is comparatively easy if we restrict our 
prior to a distribution that can be specified by a function rule. Our job will be 
even easier if we use only certain functions. The distribution shown in Fig. 6-1 
is not described by a simple function rule, but the ones in Fig. 6-2 are. Prior 
opinion in the form of a probability distribution can usually be closely approxi 
mated by one of just a few common distributions that are easy to use in
Bayes' theorem.

How do we justify using an approximation to our prior distribution? 
An approximate prior distribution can be used if the posterior distribution that
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results looks virtually identical to the posterior that would have been obtained had 
the actual prior distribution been used. There is no point getting involved in 
complex mathematics with your actual prior distribution, when using an approxi 
mation to your prior would simplify the mathematics and still result in virtually 
the same posterior distribution. This simple idea is what makes Bayesian 
statistics practical.

Three different kinds of prior distributions will suffice for a great many of 
the problems you will encounter as social scientists. Each of these distributions 
can be expressed by a function rule, and a remarkably varied collection of 
distributions, called a family, can be obtained by changing the constants in 
these rules, just as different straight lines result from changing the ^-intercept 
and the slope. By appropriate choice of the function rule and its constants you 
should find one member of the family that is very close to your prior opinion.

Uniform; rectangular

Normal

I J
BetaFig. 6-3

Some of the shapes taken on by three common prior distributions

Further, the distributions that result from using these rules can be easily 
used in Bayesian calculations. In many instances, you will find that the posterior 
distribution has the same function rule as the prior, that is, they are both in the 
same family, and that only the constants have changed. You will not have to 
calculate Bayes' theorem, you will only have to know how the constants of the 
prior distribution are changed by the data to give the constants of the posterior 
distribution. Nothing more than a simple mathematical equation must be 
known to effect the change. But more of this later. For the time being, it is 
sufficient to recognize that it will be very convenient to restrict your priors to 
one of the following kinds of distributions. Others are possible but beyond 
the scope of this book.
a Rectangular or uniform distribution If you think all values of x are 

equally likely, then your prior distribution is said to be uniform, or 
rectangular. The distribution is uniform over all the possible values of x.
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b Normal distribution A normal distribution is bell-shaped (though not all 
bell-shaped distributions are normal). It extends from minus infinity to 
plus infinity, though by appropriate choice of the constants of the dis 
tribution, most of the distribution falls over the desired range of x-values. 
It is sometimes called a Gaussian distribution.

c Beta distribution This distribution applies when the range of jc-values is 
from 0 to 1, as would be the case when you are interested in making 
inferences about proportions. By choosing appropriate constants, the 
distribution can be U-shaped, uniform, bell-shaped, or asymmetrical bell- 
shaped. It is a very versatile distribution because it can take on so many 
different shapes. Both the prior and posterior densities in Fig. 6-2 are 
Beta distributions.

Figure 6-3 shows some of the shapes of these distributions.

6.2 Some distribution theory

After you have sketched your prior distribution you may find that 
it comes pretty close to one of the three standard distributions. Thus, when 
someone asks you what your prior distribution is, you do not have to hand him 
a picture, you can name it. This is, of course, what scientists do when they report 
their prior distributions in journal reports of their research; they say that their 
prior is uniform, or normally distributed, or Beta. But the name is not enough 
for other than uniform priors; you also need to indicate the shape of the dis 
tribution. As you can see from Fig.^6-3, if I tell you my prior distribution con 
cerning some proportion is characterized by a Beta distribution, I could mean 
that my opinion is any of the shapes shown. The method of specifying the exact 
distribution is different for Beta and normal distributions, but the theory is 
the same. Like a straight line, these two distributions are completely specified 
by naming the type of function and by giving two problem constants. Once 
that is done we can go on to specify values of x low and xhiph that encompass 95 %, 
or 99 %, or any other percentage of our opinion. That is our ultimate goal, so 
keep this in mind as you read the rest of this section, for now I must introduce 
the theory that will enable you to make probability statements based on the 
probability distribution of the uncertain quantity in question.

Credible intervals
The key idea that enables us to determine probabilities of intervals is this: 

For a probability density function, the area under the curve equals one. This applies 
to any density function, prior or posterior, and is ensured by choosing units on 
the y-axis so that the area is one. You can see why, in the sub-section on con 
structing a prior distribution, I advised you not to mark any units on the >>-axis. 
Those units cannot be arbitrarily chosen, for the >>-axis must be numbered so 
as to make the area under the curve equal one. For reasons that will be obvious 
later, you will never have to determine the scale of the ^-axis. You will never 
have'to measure the area, either; that would require the calculus for most of 
the distributions ofconcern to us in this book.

This restriction on probability density functions, that the area under the 
curve must equal one, is nothing more than the continuous equivalent to the
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probability law for discrete events that says that the probabilities of TV mutually 
exclusive and exhaustive events must add to one. Here, where TV equals infinity, 
the area under the curve must equal one.

A consequence of this limitation on the total area of a probability density 
function is that the probability of the true value of x falling between *,ow and 
*high >s given by the area of the curve between those limits. This applies for any 
values of x low and xh{gh you may wish to choose. I can pick any two values, 
determine the area of the curve between those values, and that area is the 
probability that the true value of x lies within the interval.

Now suppose instead of choosing the values of xlow and xhigh , I start with 
any probability, say 0-99, and I then try to find values of xlow and xhigh such that 
the area between them is 0-99. There would be many such intervals, for there 
are a good number of ways the density function can be sliced. No matter; we 
will call any such interval a *C per cent credible interval'. A C per cent credible 
interval is indicated by any two values of x which include C per cent of the prob 
ability density function between them.

Exercise 6-3
What are the 95% credible intervals for the prior and posterior distributions 
shown in Fig. 6-2?

Answer
You can read off the answers below the curves. The two bars represent the 
length of intervals that cover 95 % of the area of each curve. Thus, the 95 % 
credible interval for the prior distribution is 0-239 to 0-895, and for the posterior 
distribution is 0-623 to 0-921.

I have redrawn just the prior distribution in Fig. 6-4 to show the interval and 
its relation to the area more clearly.

CA
C

•o 
>%

ililllii95° 0 of total area of curve

0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 
limits of the 95% credible interval

... „ m 0-239 0-895
Fig. 6-4
Relation between an area of the probability density function and a credible interval

Of course I could have chosen to locate the 95 % of the curve further to 
the left, or to the right. For example, the interval from 0-271 to 1-00 includes 
95% of the curve, so 0-271 to 1-00 is also a 95% credible interval. Why did I 
choose the interval in Fig. 6-4? Because of all the intervals I could have chosen, 
that one is the shortest. (Note that 0-271 to 1-00, a distance of 0-729, is longer
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than 0-239 to 0-895, a distance of 0-656). We will adopt the convention of 
always choosing the shortest interval. You may have noticed that the prob 
ability density directly over 0-239 is exactly the same as over 0-895; that is 
always true of the shortest interval, and therefore densities outside the interval 
will always be less than densities inside the interval. For this reason, the shortest 
credible interval is called the 'highest density region' of the curve. Density of 
opinion is everywhere higher within the interval rather than outside it, an 
intuitively appealing property. We will, then, always choose highest-density 
credible intervals. But how can we do this? We turn to that question next.

Cumulative probability functions
Suppose we were to take a planimeter (a device for measuring area) and 

measure the area to the left of various values of x in Fig. 6-4. We might start 
with x = 0-1, and measure the tiny area to the left of 0-1. Then we try x = 0-2, 
and measure the area to the left of 0-2, and so forth. In each case, we draw a

Fig. 6-5
Area to the left of .v = 0-5

vertical line through the value of x and measure the area of the curve to the 
left of the line. You can see this in Fig. 6-5 for x = 0-5. Now suppose I make 
a table of my results. This is shown in Table 6-1. (I could have made a finer 
table by taking measurements at more values of x.) Since the table shows 
pairings of numbers, it gives us a function.

Table 6-1 Area to the left of x, as a function of x, for the probability density 
function shown in Fig. 6-4.

x Area to left of x

0
0-1
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
1-0

0
0-001
0-017
0-070
0-179
0-344
0-544
0-744
0-901
0-984
1-00
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A more convenient way of displaying the function is to draw a graph of it. 
You can see this in Fig. 6-6. Such a curve is called a cumulative probability 
function. A graph showing the area of a probability density function to the left 
of *, as a function of Jt, is called a cumulative probability function. The horizontal 
axis of a cumulative probability distribution shows all the possible values of the 
uncertain quantity, x, and the vertical axis gives the probabilities that the true 
value of x is less than the values shown on the horizontal axis. This kind of 
function is in some ways more useful than probability density functions because 
the ^-axis represents probability itself rather than probability density.

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

Fig. 6-6
Cumulative probability function for the probability density shown in Fig. 6-5

You may wonder, then, why I did not introduce cumulative probability 
functions to begin with instead of probability density functions. Why did we 
not express prior opinion as a cumulative probability function ? The answer lies 
in some research by Winkler (1967). Subjects in his experiment were instructed 
in several different methods for expressing prior opinions. He found that his 
subjects not only preferred probability density functions on intuitive grounds, 
but they were apt to change discrepancies between the two types of functions 
by changing the cumulative distribution function. They found it more meaning 
ful to assess points on the probability density function than to determine 
cumulative probabilities. These findings show that people believe probability 
density functions to be more accurate portrayals of prior opinion than cumu 
lative distribution functions.

What is gained in intuitive appeal is, however, lost in ease of usage. But 
I think ease of interpretation should win over ease of use, so we will stick with 
probability density functions as descriptors of prior opinion. This will impose 
no hardship anyway, for tables have been computed of the cumulative prob 
ability distribution for a great many distributions. I used one of these tables 
rather than a planimeter to find the areas in Table 6-1.
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Exercise 6-4

What is the prior probability that the true proportion of 'white-collar' fathers 
lies:
Below 0-8? 
Below 0-25? 
Between 0-8 and 0-25?
Answers
From Fig. 6-6, we see the area to the left of 0-8 is 0-9, so that is the probability. 
Again, we read from Fig. 6-6, and obtain a probability of 0-04. 
What we want is the area between 0-25 and 0-8. You can find this by subtracting 
the area to the left of 0-8; 0-9 - 0-04= 0-86. That is the answer.

This exercise illustrates how, given values of xlow and xhigh , you can find 
the area between the values; subtract the area to the left of xlow from the area 
to the left of *high (see Fig. 6-7). The resulting area is the probability that the 
true value of x falls between *low and ;chigh .

Now suppose the problem is turned on its head; instead of starting with 
*,ow and xhigh we start with an area and find low and high values of x. For 
example, what proportions of 'white-collar' fathers include 90% of the prior

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

Fig. 6-7
Determining the area in an interval
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distribution between them? One answer is obtained by letting xlow = 0. Then
*high is tne val ue °f x witn 90 % °f tne P™ 01" density function to the left. Find 
this by entering the .y-axis of Fig. 6-6 with 0-9, move horizontally to the curve, 
and read off the value of x, below: xhigh = 0-8. So one acceptable interval is 
0 to 0-8. That is one 90% credible interval. Another could be obtained by 
letting xhigh = 1 -0, entering the cumulative curve with y = 0-1, and finding that
*iow = 0-33. Still another would result from entering the cumulative probability 
function with y = 0-05 and y = 0-95. That would give x low = 0-27 and 
xhigh = 0-85. Many acceptable intervals could be determined by entering the 
>>-axis with values of y whose difference is 0-9.

Exercise 6-5
Construct a list of 95% credible intervals for the prior distribution of the 
proportion of 'white-collar' fathers (Fig. 6-2). Do this for increments in values 
of y of 0-01. Find the highest density credible interval.

Answer
We start by entering the cumulative probability function (Fig. 6-6) with y = 0-95 
and y = 0. This gives *hlgh = 0-85, and, of course, *low = 0. Now we increase 
the /s by 0-01, and enter the curve with 0-96 and 0-01. Repeating this process 
gives this table:

95 % credible interval

Values of y *low *hleh Difference

0 and 0-95
0-01 and 0-96
0-02 and 0-97
0-03 and 0-98
0-04 and 0-99

0
0-17
0-21
0-23
0-25

0-85
0-86
0-87
0-89
0-92

0-85
0-69
0-66
0-66
0-67

0-05 and 1-00 0-27 1-00 0-73
By subtracting xlow from xhlgh for each pair, the shortest interval (smallest 
difference) can be determined. With the two-place accuracy possible by reading 
Fig. 6-6, two intervals are the 'shortest', 0-21 to 0-87 and 0-23 to 0-89, which 
are as close to the values of 0-239 and 0-895 mentioned earlier as the accuracy 
of these computations will allow.

This exercise could have been done more accurately by a computer. All 
the computer needs is the prior density shown in Fig. 6-2 and a program of 
instructions for carrying out the various computations. These instructions 
would require the computer to find the cumulative probability function from 
the prior density function, and then follow roughly the same steps we went 
through in Exercise 6-5. However, the computer could take much smaller 
increments and so find *iow and xhigh with greater accuracy.

Fortunately, computers have already performed this task and the results 
of their labours can be found in tables; some are included in the Appendices 
to this book. For some density functions you will be able to look up the limits 
of the credible interval directly, and for others you will have to make a couple 
of trivial calculations based on tabled values.
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Although you will not have to determine a cumulative probability func 
tion yourself, you should remember how they are used to find credible intervals, 
for we will make very frequent use of credible intervals in Part III. An under 
standing of what they are is vital to using them correctly.

More about credible intervals

Users of Bayesian statistics frequently report their results in the form of 
credible intervals. Before conducting the experiment on my students, I was 
95% sure that the true proportion of 'white-collar' fathers could be found 
between possible values of 0-239 and 0-895. Those two values are the limits of 
my (highest-density) prior 95% credible interval. After the experiment, my 
posterior 95% credible interval was 0-623 to 0-921. The credible interval has 
become smaller, indicating that I am more certain after the experiment than 
before.

In this example I reported my 95 % credible interval. A more conservative 
statement, consistent with my advice in Chapter 4, would result by giving my 
99% credible interval, or even the 99-9% credible interval. These are shown in 
Table 6-2. The interval opens up as credibility increases. You want the interval 
to be reasonably narrow and the credibility to be high, so in deciding which 
credible interval to report you must decide on a tradeoff between narrow limits 
and high confidence. Eventually, it is possible that scientific journals will 
establish standards for reporting credible intervals. In the meantime, until you 
become experienced in using statistics, I suggest you use the 99% credible 
interval.

Table 6-2 Credible intervals for the posterior probability density function 
shown in Fig. 6-2

Credible Limits of 
interval the interval

95%
99%
99.9%

0-623 to 0-921
0-561 to 0-946
0-488 to 0-967

Finally, let me introduce some helpful notation. In Chapters 2 and 3 when 
we spoke of the probability of an event E we wrote

When we find credible intervals we are dealing with a complex event : the true 
value of x lies between x low and xhigh . This event can be written

XjQW < X <

Literally translated, we read ^high is greater than or equal to x which is greater 
than or equal to *low', but more briefly, 'x is between xlow and xhigh '. When 
we refer to the probability that x is between x low and xhigh we write

p(xlow < x < xhigh)
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In finding the limits of a 99% credible interval we want to find x,ow and xhlgh 
such that

p(xlow < x < xhigh) = 0-99
Thus, in reporting my 99% credible interval for the 4 white-collar'-father experi 
ment, I would write in my report that

p(0-561 < x < 0-946) = 0-99 

That is a brief and economical way to report a credible interval.

Exercise 6-6
Write in mathematical notation the 95% and 99-9% credible intervals listed 
in Table 6-2.

Answers
For the 95 % credible interval:

/>(0-623 < x < 0-921) = 0-95 
For the 99-9% credible interval:

/KO-488 < x < 0-967) = 0-99

We have seen in this section that opinion about an uncertain quantity is 
expressed as a probability density function and that this function is revised in 
the light of data by Bayes' theorem to give (usually) a more peaked posterior 
density function. We report our uncertainty in the form of a credible interval, 
which specifies how sure we are that the true value of the uncertain quantity falls 
between two limits.

We leave to Part III just how density functions are revised by applying 
Bayes' Theorem. For now, we take a closer look at rectangular, normal and 
Beta densities, and discover how credible intervals can be determined once the 
density function has been specified.

6.3 Three common distributions

It is time to get down to the technical details involved in specifying a prior 
or posterior distribution. We said earlier that a density function is completely 
specified by naming it and by stating its problem constants. In this section we 
see what the problem constants are and how changing them changes the shape 
of the distribution. We will see that while the problem constants completely 
specify the distribution, they do not always provide very good descriptions of 
the densities, so we will consider alternate ways of describing the distributions. 
Finally, we will see how to determine credible intervals once the distribution is 
specified. But first, we turn to the difference between specifying a distribution 
and describing it.

Parameters and statistics
The equation for the prior density in Fig. 6-2 is
y = 60x3(l-x)2
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We will see later where this comes from. For now note how it works. You 
take some value of x (between 0 and I -0), subtract that from one and square 
the difference. Then cube the value of x, and multiply that by the previous 
step. Finally multiply that result by 60. Try it for x = 0-6, the value of x 
under the peak of the curve. You should get y = 2-0736.

The equation has only one independent variable, Jt, though it appears 
twice, and one dependent variable, y. It appears to have three problem con 
stants, 60, 3, and 2, but actually it has only 2. They are 3 and 2; the 60 is 
obtained by a part of the general equation which combines the 3 and 2 in a 
complex way to yield the 60. We will see how this comes about in the section on 
Beta distributions. For now the important point to note is that there are just 
two problem constants. If I change those constants a differently shaped curve 
results.

The problem constants for a probability density function have a special 
name: parameters. The parameters of a probability density function, along with 
the function rule, completely specify the function. By this I mean that if I tell you 
the function rule, that is, the equation of the function, along with the para 
meters, you have enough information to make a graph of the function. If I tell 
you the equation of a straight line,

y = a + bx 
and I tell you that

a = 3 and b = 1
then you can plot the line on graph paper.

The only trouble with the parameters of the Beta function is that it is 
not possible to give them any very intuitively meaningful interpretation. We 
can for the straight line; a is the ^-intercept and b is the slope of the line. So 
while we specify the distribution by giving its parameters, those numbers do 
not give us a very helpful intuitive description of the shape of the curve.

There are two aspects of the shape of a density function that we will 
usually want to be able to describe: where the middle of the curve is and how 
spread out it is. A number that locates the middle of the curve is called a measure 
of central tendency. We will consider three contenders: the mean, the median, 
and the mode. A number (or pair of numbers) that indicates the spread of the 
curve is called a measure of dispersion. We have already met one such measure— 
the credible interval. The bigger the credible interval, the more spread out is 
the density function. Another measure will also prove valuable; it is called the 
standard deviation.

These descriptors of a distribution are called statistics, and it is often 
more helpful to report them rather than the parameters.

The mean gives us an idea of where the middle of the curve is; specifically, 
it is the value of x directly under the centre of gravity of the distribution. Imagine 
that the prior distribution in Fig. 6-2 has been cut out of a piece of uniform 
material of some thickness. Now set the base of the distribution on a knife 
edge with the knife perpendicular to the base of the distribution. If you move 
the distribution to one side or the other over the knife edge, eventually you will 
find some point at which the distribution exactly balances. The value of x just 
above the knife edge is the mean of the distribution. The situation just described
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is pictured in Fig. 6-8. This definition of the mean applies to any distribution, 
but it is not actually the method used to determine the mean of a distribution. 
I give it here to facilitate intuitive understanding of what a mean means. 
Practical procedures for determining the mean will be dealt with later.

Another measure of central tendency is called the mode. The mode of a 
density function is the value of x with the most probability density. In other words, 
it is the value of x under the peak of the distribution. If a density function has 
two equally high peaks, then there are two modes, and the distribution is called 
'bimodal'. (Some definitions of the mode would allow a mode under every 
peak, whether or not the peaks were of equal height.) Multimodal distributions 
are rarely encountered as describing prior or posterior opinion. The distribution 
in Fig. 6-8 is unimodal, and the mode is 0-6.

The mean of a density function is that value of .v over which the distribution would balance

A third measure of central tendency is the median. The median of a density 
function is the value of x below which exactly half the area of the curve is found.
The median cuts the density function in half so that each half has an area of 
0-5. The median can be found by entering the cumulative probability function 
along the y-axis at 0-5. If you do this on Fig. 6-6 you will find that the median 
of Fig. 6-8 is 0-58.

Notice that while the mean, median and mode for Fig. 6-8 are similar 
they are not quite equal. This will always be true of asymmetrical distributions. 
For a symmetrical distribution, one whose right half is a mirror image of its 
left half, the three measures are identical.

It is not so easy to give an intuitive understanding of the standard deviation. 
Like an acquired taste, it becomes meaningful with experience in using statistics. 
I can give a rough interpretation: if you multiply the standard deviation by 6, 
the result will roughly cover the effective range of the density function. That is 
probably not very helpful, but let us try it on the prior distribution in Fig. 6-2. 
The standard deviation for that density function is 0-175. You will notice that 
most of the density function lies between 0-1 to 1-0, a range of 0*9. If you 
multiply 0-175 by 6 you get 1-15, a range that more than covers the actual 
range. Try it for the posterior density. That standard deviation is 0-079. The 
range is 0-5 to 1-0, or 0-5. Multiply the standard deviation by 6; the result is 
0-474. That about covers the range of 0-5. (We will see shortly how to calculate 
the standard deviation itself.)

As you would expect, the posterior standard deviation, 0-079, is smaller 
than the prior, 0-175. The smaller the standard deviation, the less spread out
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the density function. Beyond that statement, not much more can be said about 
the standard deviation for now. Remember that the standard deviation is not 
the only measure of the spread of a distribution; the credible interval is also 
a measure of dispersion.

It will be helpful to introduce some notation. The mean of a density 
function will always be denoted by m. A single prime on the m denotes the prior 
mean; a double prime, the posterior mean:

m' = mean of prior density function 
m" = mean of posterior density function

When I want to talk about the mean of a density function without reference 
to its being a prior or a posterior function, I use the m with no prime. No 
symbols will be used for the mode or the median; I will use the words. 

The standard deviation of a density function will be denoted by s.

s' = standard deviation of prior density function 
s" = standard deviation of posterior density function

From now on symbols will build up at a rapid rate, so if you lose track 
consult the Index of Symbols at the back of the book.

All of this discussion can be summarized as follows: A density function 
is completely specified by giving the name of the function rule (for example, 
Beta or normal) and the parameters. A density function is described by its 
statistics (for example, mean and standard deviation).

Now we can get down to the business of looking at the function rule for 
the rectangular, normal, and Beta distributions, and at their parameters and 
statistics.

Beta distribution
You will often have occasion to make an inference about a proportion or 

about any number that can take on values only from zero to one. Prior opinion 
about such numbers is conveniently expressed in the form of a Beta distribution. 
The reason for the convenience is largely mathematical. If the prior distribution 
is a Beta and if the data are obtained by making successive, independent obser 
vations, on each of which only one of two events can occur (for example, the 
student's father is either 'white-collar' or 'blue-collar'), then the posterior 
distribution will also be a Beta. Further, the mathematics that result from 
applying Bayes' theorem are terribly simple if the conditions just stated are 
met. And you will see that the conditions are not very restrictive at all. So if 
you can express your prior opinion as a Beta, then the mathematics involved in 
finding the posterior will be very easy.

The general equation for a Beta distribution is more complex than the 
simple equations we met in the previous chapter.

y

Here y is the dependent variable (the probability density), x is the independent 
variable which can take on only values from 0 to 1, and p and q are problem
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constants, the parameters of the equation, which must be greater than 0. 
The ! is an odd mathematical symbol meaning 'factorial'; n\ is read 
'^-factorial'.

for example : 5 ! means 5x4x3x2x I.
This equation for the Beta distribution is a general form, like

y = a + bx

is the general equation for a straight line. If we substitute specific values for a 
and b, then we get the equation for a particular line. Similarly, if we substitute 
specific values for p and q in the Beta equation, we get the equation of one 
particular Beta curve. That was the procedure I followed in arriving at the 
equation for the prior density in Fig. 6-2. I had decided that my prior opinion 
was adequately described by a Beta distribution with parameters

p = 4

(We will see in a moment how I arrived at that decision.)
Substituting those values into the general equation for the Beta distribu 

tion gives

(4-1)1(3-1)! 
Simplifying:

6x5x4x3x2x1 3 2 
= 3x2x1x2x1 x(1 ~ x)

= 60x 3(l-x)2

And that is the result I reported at the beginning of the last section. You may 
have noticed that there I said the parameters were 3 and 2, while here I said 
they are 4 and 3. This apparent discrepancy can be resolved by noting the 
exponents in the general equation. They are p— 1 and q—\. Some writers take 
p—\ and q—\ as the parameters, others take p and q. From now on, I will 
use p and q, but you must always check the usage before you use the Beta 
distribution.

Exercise 6-7

Find the specific equation and then graph the Beta distribution with parameters:
a p = 1, q = 1 (Note that 0! = 1)
b p = 2, q = 1
c = 2 = 2
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Answers 
(1y =

(i - i)!(i - i)! 
1!

0!0!
x°(\ -

(Remember that x° = 1 for any value of x.) 
So,

1y = i x i 1x1 = 1

Thus, y = 1 whatever the value of x. This plots as a rectangular distribution 
(see Fig. 6-9).

(2+1-1)! 
(2-1)1(1-1)!
2!flol *^ ~ ^°

^
x 1

u

1 X 1

This equation is a linear function with ^-intercept 0 and slope 2 (see Fig. 6-9).

0-9 1-0

Some Beta distribution

y = (2 + 2- 1)! 
2- 1)!(2 - 1)!

,2-1/1 _

= 6*(1 - x) 
= 6(x - x2) 

This plots as an arc (see Fig. 6-9).

If you will turn to Appendix B you will see a whole gallery of Beta density 
functions. For convenience, the curves on any one graph all have the same mode. 
By comparing the curves you should get an idea of what happens to the shape
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with changes in p and q. (No curves are shown for values of p and q between 
0 and 1 because these functions are U-shaped and prior opinion rarely looks 
like this.)

When p and q are equal (the first page of the gallery) the distributions are 
symmetrical (right half a mirror image of left half). As p and q become larger, 
the distribution becomes more peaked.

When p and q are unequal, the distribution is skewed, or non-symmetric. 
The direction of skew is given by the longer tail of the distribution; if the 
longer tail is to the right, then the distribution is said to be skewed to the right. 
Except for the first page, all the Beta distributions in the gallery are skewed to 
the left. Notice that the skew becomes greater asp and q become more unequal.

Below each graph is a set of lines that show how each curve can be 
divided into three equal areas. Each curve is associated with one of the lines, 
indicated by the values of p and q, and the two marks on each line show where 
the curve should be sliced to make equal areas. For example, the bottom line 
of the first page of the gallery is associated with the rectangular Beta, and the 
line shows that the slices should be made at 0-33 and 0-67. Moving up to the 
next curve, p = 2 and q = 2, we find that the slices are taken at 0-39 and 0-61. 
As applied to Bayesian analysis, this means that one third of my opinion falls 
between possible ^-values of 0 to 0-39, another third between 0-39 and 0-61, 
and the remaining third between 0-61 and 1-0. The implication of holding 
opinion distributed as Beta with p = 2 and q = 2 is that if I were to bet on the 
true, but unknown value of x, I would be indifferent between placing my money 
on any of the three intervals indicated. They are intervals of equal credibility. 
These lines are useful in assessing a prior distribution.

No curves are given that have modes less than 0-5. This is because the 
parameters p and q are symmetrical. Curves whose modes are at 0-4, for 
example, are the left-to-right mirror image of curves with modes at 0-6; the 
values of p and q need only to be interchanged to generate curves with modes 
less than 0-5.

Determining a Beta prior An easy method of assessing your Beta prior 
is simply to find one that seems reasonable amongst the figures in Appendix B. 
Here are the steps.
a Assess the most likely x-value. That is the mode, of course. If the mode 

is less than 0-5 you can adopt either of these procedures:
i Make your inference about the complement of ;c, that is, about 1 — x. 

If you think the proportion of students whose fathers are 'white- 
collar' is likely to be less than 0-5, then make your inference about 
the proportion of 'blue-collar' fathers.

ii Imagine that the x-axis of the figure is reversed, so the 0 is where 
the 1 is, and interchange the values of p and q. Then you can make 
inferences directly about x.

b Turn to those figures in Appendix B which are characterized by the mode 
you estimated in Step (a).

c Choose the distribution which comes closest to your prior opinions. If 
your prior opinion seems to fall between two distributions, either inter-
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polate* the values of p and q or select the more spread out distribution 
of the two.

d Check the appropriate equal-credibility intervals to see that you really 
think it is equally likely for the true value of x to fall in any one of the 
three intervals. Another way to think of this is to imagine that you and 
two other people are each going to place equal bets on the intervals. The 
other two people get to choose intervals to bet on before you can choose, 
so you have to take the interval left over. Whoever bets on the interval 
that turns out to be correct, in the sense that it contains the true value 
of AT, wins the lot. Now, are you happy with last choice of an interval? 
You should be if you selected a distribution that truly represents your 
prior opinion. If you are not indifferent among the three intervals you 
should select another distribution that gives intervals which do seem 
equally good bets.

e Record the values of p and q for the curve you chose. Remember to 
reverse p and q if you have imagined the jc-axis to be reversed.
This was the procedure I followed in determining my prior density 

function shown in Fig. 6-2.

Statistics of the Beta distribution The parameters p and q can be directly 
translated into the statistics of the Beta distribution. The mean of a Beta is 
given by

P m =
p + q 

and the standard deviation is

s =

The mode of the distribution is 
p-l

mode = p + q-2

Once you have found the values of/? and q you can go on to compute the mean 
and standard deviation of the distribution. It is not possible to find the median 
directly from p and q\ a table of the cumulative distribution would have to be 
consulted.

Exercise 6-8
Compute the mean and standard deviation of the prior and posterior Betas of 
Fig. 6-2. The prior parameters are p' = 4 and q' = 3; the posterior parameters 
are/>" = 21 and q" = 6. (Note the use of single and double primes to distinguish 
prior and posterior parameters.)

* Interpolation is explained in Appendix I.
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Answers 
For the prior,

4 4

,< = / 4X3 ——_ / 
V (4 + 3)2(4 +3+1) V <

12
49 x 8^ ^

= VO-030612 = 0-175 
For the posterior,

/ 21 x 6 / 
V (21 + 6)2(21 +6+1) V

126s" =
(27)2(28) 

= Vo-00617284 = 0-079
Recall that those standard deviations were given without explaining their origin 
in the section 'Parameters and statistics'. Now you can see how they were 
obtained. First, I looked up my prior in the gallery, noted the values ofp and q, 
and then I used these values in computing the statistics. In a moment we will 
see how the posterior parameters are obtained.

Credible intervals for the Beta distribution Finding credible intervals for 
the Beta density is easy — you just look them up in tables. Tables of highest- 
density regions can be found in Appendix B. To use them, enter the table 
with the values of p and q of your distribution, and read off the limits 
of the desired credible interval. There are two tables, one for 95% credible 
intervals, the other for 99% credible intervals. Try using the tables to find the 
posterior credible intervals for the Beta with p" = 21 and q" = 6. Check your 
results with Table 6-2.

Later in this chapter we will discuss a method for finding credible intervals 
for Betas whose parameters are larger than those shown in the tables.

Revising opinion for Beta distributions Revising prior distributions in the 
light of data is the topic of Part III, but the process is so simple for Beta distri 
butions that a brief introduction here will be instructive.

Suppose that prior opinion about an unknown proportion of events E 
can be described by a Beta distribution whose parameters are p' and q' . Suppose 
further that data can be collected in such a way that each observation is inde 
pendent of the next. Assume that on each observation either an E is observed — 
call that a 'success', or an E is not observed— call Jhat a 'failure'. Take N 
observations. Let s be the number of successes and / the number of failures, 
so s +/ = N. Under these conditions the posterior distribution will also be a 
Beta with parameters p" and q" where

«* = «'+/
That is the result of applying Bayes' theorem.



Three common distributions 129 

In the 'white-collar* father example, I started with a Beta prior where

Since I was concerned with the proportion of 'white-collar' fathers, it is neces 
sary to define the observation of 'white' as a 'success'. (If I had been making 
an inference about the proportion of 'blue-collar' fathers, then getting a 'blue' 
would have been a 'success'.) Twenty independent observations were made, 
17 of them 'white', so

s = 17 
/=3

Under these conditions I know that my posterior distribution must also be a 
Beta, and with parameters

p" = 4+17 = 21 
q" = 3 + 3 = 6

Knowing the posterior parameters, I can compute the mean and standard 
deviation of the posterior, and I can look up a credible interval.

So you see it is not necessary to calculate Bayes' theorem for this case. 
That has already been done, and the result is that you simply add the number 
of successes to the prior /?, and the number of failures to the prior q, to get the 
posterior parameters.

Exercise 6-9
An investigator wants to determine the proportion of students who have tried 
hashish in a small college on the west coast of the United States. Before taking 
a random sample he assesses his prior distribution as Beta with p' = 8 and 
q' = 4. In his sample of 50 students he finds 43 who have smoked hashish at 
least once.

a Compute the posterior mean and standard deviation.
b Compare the prior and posterior modes.
c Compare the posterior and prior 99 % credible intervals.

Answers
The parameters of the posterior distribution are:

p" = 8 + 43 = 51
4" = 4 + 7 = 11

a The posterior mean is:

nf - P" - 51 - 51 - 0-82" - F - sTTn ~ 62 ^ ° 82
The posterior standard deviation is:

m I 51 x 11 = / 561 
5 ~~ V (51 + H)2(51 + 11 + 1) ~~ V (62)2(63)

= \/0-002317 = 0-048
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b prior mode = /+ ~*_ 2 = fTT^ = fO = °'7

51-1 50 postenor mode = 51 + „ _ 2 = ^ - 0-83

The posterior distribution has shifted to the right, nearer 1 -0.

c From the tables in Appendix B:
prior 99% credible interval: 0-326-0-944 
that is, XO'326 < x < 0-944) = 0-99 
posterior 99% credible interval: 0-689-0-931 
that is, /?(0-689 < x < 0-931) = 0-99

Thus, the prior range is 0-618 while the posterior range has decreased to 0-242. 
Even with a sample size of 50, there is still a fair range of uncertainty about the 
true proportion.

Normal distribution
We will place considerable emphasis on normal distributions in this 

book, partly because prior opinion can often be expressed in this form, but 
mainly because statistical methods based on normal distributions have been 
more completely studied and worked out than for any other distribution.

To a beginner in statistics, the equation of a normal density function looks 
very formidable indeed :

v =
X/27T<7

It tells us how we can arrive at y, the probability density, given any value of x. 
You will never actually have to use this function rule, but it is important to 
know and understand the various parts of the rule. First, let me define the parts. 
y is the dependent variable, x is the independent variable. The numbers 1 and 2, 
and 7i, are universal constants; you have encountered them before. The letters 
/i and a are parameters. So there is nothing in the equation that you have not 
already seen. It is the way the parts are put together that is new. In words, the 
function rule says, take the desired value of x, subtract \JL and divide the result 
by a. Square the resulting quantity and multiply by minus 1/2. Raise e to that 
power, and multiply the result by 1 over the square root of 2na2 . The result is y. 
The only part you would probably have difficulty doing is raising e to the 
power, but even that is not difficult if you know how to use natural logarithms. 

Two examples of normal curves are shown in Fig. 6-10. (For convenience, 
the .y-axis is not shown.) For the left curve the parameters are

i = 125

while for the right curve they are 
// = 1
(7 = 5
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Unlike the Beta distribution, these parameters are easily interpreted; they are 
the same values as the mean and standard deviation. For a normal distribution

\i = m, the mean
a = s, the standard deviation

Remember, too, that for symmetric curves the mean, median and mode are 
equal, so for a normal density function

H = m = median = mode
Compare the means in Fig. 6-10. One is 5 points above the other, so the peaks 
of the curves are 5 points apart. Now look at the standard deviations. The 
right curve is more spread out so it has the larger standard deviation.

110 115 120 125 130 135 140 145 150

Fig. 6-10
Two normal density functions

These two curves might represent the prior opinion of two professors 
about to determine the average I.Q. of undergraduate students enrolled in 
their university. One investigator has taught at the university for many years 
and feels fairly sure that the average I.Q. is in the vicinity of 125. The other 
professor is newly appointed to the university, and has not had much previous 
contact with students. In assessing his prior, he is guided mainly by the reputa 
tion of the university as being a high-quality institution attracting top students, 
but because of his inexperience he is not too sure of his judgement, so he settles 
for a fairly spread out distribution. Of course the two professors talked to each 
other before they assessed their priors, and these curves are the final product, 
after they exchanged information. The new professor feels his colleague's 
judgement is over influenced by the limited and biased sample of students 
with whom he comes in contact, while the older professor feels that the new 
comer is too dazzled by the institution's reputation. Thus, one mean is lower 
than the other.

Determining a normal prior Both professors sketched their prior distri 
bution following the steps outlined at the beginning of this chapter. Their 
sketches showed curves very slightly skewed to the left, but they were sure 
that by approximating their priors with normal distributions the slight difference
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would be of no consequence to the posterior distribution. Then they followed 
these steps.
a Assess the most likely x-value. That value is the mean of your prior. (It 

is also the mode and median, and is the value of the parameter /^.)
b Find the range of rvalues that contains almost all your opinion, that is, 

almost 100% of your opinion should fall in that range.
c The range of x-values just found covers 6 standard deviations, so divide 

the range by 6 to find one standard deviation.
, range S ^~6~

d Construct three equal-credibility intervals by multiplying the value of s f 
by 043, then adding that product to the mean to get xhigh and subtracting 
the product from the mean to get xlow . (Justification for this procedure 
is given in the next section.)

e Check that you would be just as happy to place a bet on the interval up 
to ;qow as on the interval from ;t low to *high as on the interval above xhigll . 
You should think each of those intervals offers an equally fair bet; if 
you do not, then you must reassess your prior, finding new values of 
m' or s\ or both, until this condition is met.
The newly appointed professor in the example decided that the highest 

density of his opinion should be in the vicinity of 130, and that nearly all his 
opinion fell between 115 and 145. That range of 30 implies that

Now we turn to the determination of credible intervals.

Credible intervals for the normal distribution Recall that to find a C per cent 
credible interval we wish to find values of ;c,ow and xhigh such that

X*iow < x < xhigh) = C/100
The general procedure is to consult a table of the cumulative probability 
function and find values of x low and *high such that C per cent of the area of 
the curve falls between those x values. Since we are dealing with a symmetric 
distribution, highest density regions are centred on the mean. Thus, the area 
above xhigh will equal the area below *,ow (see Fig. 6-11). To find the 95% 
credible interval we could consult a table of the cumulative distribution and 
read off the value of x with exactly 2£% of the distribution below it, and the 
value of x with exactly 97J % of the distribution below it.

The trouble with this procedure is that we would need a great many 
tables. We could construct a book of cumulative normal tables; each chapter 
would contain tables for densities with the same mean, and each page in the 
chapter would be for a different standard deviation. With an infinite number of
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possible means, and an infinite number of standard deviations, we would have 
to construct either a very large book, or a coarsely calibrated one.

Fortunately there is a simple alternative procedure. We can apply a linear 
transformation to any given distribution and end up with a standard normal 
distribution whose mean is 0 with standard deviation of 1. By suitable choice 
of the constants in the linear equation any normal distribution can be trans 
formed into a standard normal distribution, for which only a single table is 
necessary.

The transformation is accomplished by expressing each x-value as a 
number of standard deviations above or below the mean. Let me develop 
this intuitively, then I will express it formally.

low high

Fig. 6-11
The 95% credible interval for the normal distribution

Suppose we take the newly appointed professor's prior distribution, 
shown by itself in Fig. 6-12(a). First let us subtract the mean, 130, from every 
value of x. That has the effect of moving the curve to the left until its mean is 
zero. Notice that the standard deviation is unchanged by this transformation [see 
Fig. 6-12(b)]. The numbers on the x-axis now show deviations of x-values 
from the mean. For example, 145 is now expressed as 15 because it is 15 units 
above 130. The horizontal axis is still measured in the original units, however. 
To get rid of the units, and to standardize the spread of the distribution, we 
can divide the deviations by the standard deviation [see Fig. 6-12(c)]. Now 
the numbers on the horizontal axis show deviations, in units of the standard 
deviation. The original value of 145 which became 15 after the first transfor 
mation is now 15/5 = 3. The resulting normal distribution is very tall because 
the area under the curve must remain at 1. Since it is also very squeezed together, 
I have stretched the x-axis, shrunk the >>-axis, and redrawn the distribution 
in Fig. 6-13. This is the standard normal distribution, for which

// = 0 and <7=1.
The numbers on the horizontal axis will be referred to as z-values; they are 
^-values that have been transformed by application of this linear equation:

x — mz = ——
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Divide each x-value by standard deviation

Subtract mean from each .v-value
(a)

-15 -10 10 15 115 120 125 130 135 140 145

Fig. 6-12
Successive transformations of a normal density function to yield a standard normal distribution

In words, the equation says to subtract the mean, m, from the x-value, then 
divide the difference by the standard deviation, s. That is what we did in 
Fig. 6-12.

Now suppose you had done this for the other prior distribution in 
Fig. 6-10. If you try it you will end up with the standard normal distribution. 
Generalizing, every normal distribution, whatever the values of ji and <r, can be

Fig. 6-13
Standard normal distribution
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transformed into the standard normal distribution, whose mean is zero and stan 
dard deviation is one. Why is this so? Because basically all that is being changed 
is the x-axis; it is being transformed into a different unit of measurement that 
is used as a standard. Some analogies may clarify this. Transforming one normal 
distribution to another is similar to changing yards to metres, or feet to metres, 
or inches to metres, or any unit of length to metres. Nothing is lost in the 
transformation, only the units of measurement change. Nothing is lost in 
changing one normal distribution to another, only the units along the horizontal 
axis change. Another example is given by temperature. If I decide that a Kelvin 
scale is the most convenient to use, I can always transform a Fahrenheit or 
centigrade reading to a Kelvin reading through an appropriate linear function 
rule. Any temperature scale can be changed to a Kelvin scale through appli 
cation of the appropriate linear transformation.

Transformations work two ways. Centigrade can be changed to Kelvin, 
but so can a Kelvin reading be expressed in centigrade. How can a z-value be 
expressed as an x-value ? Since

x — mz = ———,

we can solve this equation for x :
sz = x — m 
x = m + sz

Now z is the independent variable. You multiply z by the standard deviation 
and add the mean. Thus, if the professor says his prior is normally distributed 
with mean of 130 and standard deviation of 5, you can sketch Fig. 6-13 and 
re-label the horizontal axis: for 0, substitute the mean, 130; when you move 
out to 1, you are one standard deviation above the mean, or 5 units above 130, 
so 1 becomes 135; at 2 you are two standard deviations above the mean, at 140; 
when you are at — 1 you are one standard deviation below the mean, at 125; 
etc. Each z-value of the standard normal distribution indicates the number of 
standard deviations above or below the mean. For example, a score of 145 could 
be described as being 4 3 standard deviations above the mean'.

Like all normal distributions, the standard normal distribution extends 
from minus infinity to plus infinity, but the major portion of the curve occurs 
within a fairly narrow range of z-values; most of the curve falls between -3 
and +3. In other words, it spans 6 standard deviations. Now you can see why 
the range of prior opinion in x-values is divided by 6 to obtain the standard 
deviation. Tabling the cumulative standard normal distribution is quite easy, 
for only a narrow range of z-values need be included in the table.

Appendix F gives the cumulative probabilities of the standard normal 
distribution. The second column of the table gives the cumulative probability, 
but only for positive values of z. Cumulative probability up to negative values 
of z can be found by subtracting the tabled value from 1-0; that has been 
done in the next column. Note that the area to the left of -z is the same 
as the area to the right of +z. The last column gives the area between -z 
and +z.
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Exercise 6-10
An investigator assesses his prior distribution concerning some uncertain 
quantity, x, to be normal with

s = 10

What is the probability that the true value of x is: 
a less than 65 ? 
b less than 35?

Answers
The first step in the solution is to change the problem from a statement about 
x-values to one about z-values. We do this by applying the linear transformation

x — mz = ——— 
s

a First change 65 to its corresponding z-value:
65 - 55 10 .

Now we can re-phrase the problem in terms of the z-value. We want to find 
p(z < 1-0)

What is the probability that the true value of z is less than 1 ? To find this look 
in the table, Appendix F. Go down the first column until you come to a z-value 
of 1 -0. Then read off the cumulative probability in column 2. The answer is 
0-8413. So,

p(z < 1-0) =0-8413 
and so

p(x < 65) - 0-8413

Find the z-value corresponding to x = 35: 
35-55 - 20z = -To- = -io- = - 2

From the symmetry of the normal distribution it should be obvious that
p(z < - 2) = 1 - p(z < 4- 2) = p(z > + 2) 

From the third column of the table we find that:
p(z < - 2) = 0-0228 

which is equivalent to saying that
p(x < 35) = 0-0228

Exercise 6-11
For the prior distribution given in Exercise 6-10, what is the probability that 
the true value of x falls within 2-5 standard deviations of the mean?



Three common distributions 137

Answer
Look up 2-5 in the table, Appendix F. The value in the last column gives 

p(- 2-5 < z < + 2-5) = 0-9876
Verify for yourself that that statement is equivalent to this one: 

/?(30 < x < 80) = 0-9876

Finally, the table can be used to find credible intervals. Here are the steps 
to find the C per cent credible interval for a normal density function :
a Find the probability C/ 100 in the fourth column of the table in Appendix F.
b Read off the corresponding z-value in the first column.
c Transform the positive z-value into xhigh and xlow using these equations:

= m-sz

Exercise 6-12
Find the posterior 99% credible interval for the prior distribution given in 
Exercise 6-10.

Answer
From the table in Appendix F we find that 

p(-2-58 < z < 2-58) = 0-99
Transforming to x values :

*higb = 55 + 10(2-58) = 55 + 25-8 = 80-8
;t low = 55 - 10(2-58) = 55 - 25-8 = 29-2 

Thus,
X29-2 < x < 80-8) = 0-99

This last problem shows that it is necessary to go up and down 2-58 
standard deviations from the mean to get the 99% credible interval. Reference 
to the table in Appendix F shows that for the 95 % credible interval you would 
travel 1-96 standard deviations from the mean, while for the 99-9% interval 
you would go 3-29 standard deviations away. You will use these numbers 
often, so to save yourself trouble later, you might memorize them now. They 
are shown graphically in Fig. 6-14.

Exercise 6-13
How many standard deviations from the mean of a normal density function 
must one go to form three equal credible intervals ?

Answer
Three equal intervals will each contain 1/3 of the area. We wish to find z low and
zhl(fh such that

= 0-3333
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-3-29 3-29

99-9%
Fig. 6-14
Common credible intervals for the standard normal distribution

Reference to the table in Appendix F gives a z-value of 0-43. Thus, three equal- 
credibility intervals for any normal distribution can be found by travelling 
0-43 standard deviations from the mean, in both directions:

*iow = m — 0-435
*hi*h = m + 0-435

This result justifies step (d) under 'Determining a normal prior'.

Be sure you understand the steps in finding a credible interval for a normal 
density function; it is an important procedure in Bayesian analysis.

Normal approximation to the Beta
You may have noticed that the very peaked Beta density functions in 

Appendix B look like normal density functions, especially for curves whose 
modes are not too far from 0-5. That observation, which is correct, allows us 
to compute credible intervals for Betas whose parameters are too large to be 
found in the Beta tables of Appendix B. The general procedure is to compute 
the mean and standard deviation of the Beta by using the formulae that involve 
the parameters, then to use the mean and standard deviation to find the credible 
interval, assuming that the density is normal. You follow the procedures for 
finding a credible interval for a normal density function, using the statistics 
computed from the Beta parameters.

Exercise 6-14
An investigator's prior concerning some uncertain proportion is Beta with 
p' = 4 and q' = 3. He takes 100 observations and observes 62 successes. 
What is his posterior 99-9% credible interval?
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Answer
Under these conditions, his posterior will be Beta with p" = 62 + 4 = 66 and 
q" = 38 + 3 = 41. This gives a posterior mean of

and a posterior standard deviation of

s»= f 66 x 41 / 
V (66 + 41)2(66 + 41 + 1) V (

2706
(107)2(108) 

- VO-002188 = 0-0468
For a normal distribution with that mean and standard deviation, the posterior 
99-9% credible interval is given by:

= 0-62 - 3-29(0-0468) = 0-62 - 0-15 = 0-47 
= 0-62 + 3-29(0-0468) = 0-62 + 0-15 = 0-77

When is it appropriate to use this approximation? The answer depends 
on how accurately you wish to specify the credible interval and on how close 
the mode of the Beta density is to 0-5. In general, the approximation holds for 
values of p and q that are large and not too unequal. However, the larger p 
and q are, the more unequal they can be for the approximation still to be good. 
To give you some feeling for the accuracy of the normal approximation, 
Table 6-3 gives the exact and approximate credible intervals for Beta distri 
butions whose modes are 0-7 (pictured in Appendix B). Notice that the normal

Table 6-3 99 % credible intervals, determined exactly and by normal 
approximations, for various Beta distributions whose modes are 0-7

/?, q Exact interval Approx. interval

8,4
15,7
22, 10
50,22

0-32-0-94
0-41-0-89
0-47-0-87
0-55-0-82

0-33-1-01
0-43-0-93
0-48-0-90
0-56-0-83

approximation comes closer to the exact results as the curve becomes more 
peaked. Even so, two-place accuracy would only be assured for values of p 
and q larger than those in the table. Note that the approximation is conservative: 
the approximate interval is larger than the exact one. In general, the credible 
interval will not be far wrong provided that the smaller of p or q is 10 or more. 
When designing an experiment, you should arrange to collect a sample that is 
big enough to ensure the desired accuracy in the posterior credible interval 
if you think you will have to use the normal approximation to the Beta.

Rectangular or uniform distribution
Sometimes prior opinion will be so vague that we will feel justified in 

assigning a uniform prior distribution over a wide range of possible values of
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the uncertain quantity. This plots as a rectangle (see Fig. 6-3). Practically 
speaking, it is only necessary to say that your prior is uniform, and we do not 
bother with statistics and parameters of the distribution. We will always assume 
that a uniform prior extends well beyond the range of Ar-values covered by the 
data.

It is not really correct to say that total ignorance of the value of the uncer 
tain quantity justifies a uniform prior. A uniform prior expresses vagueness, 
not ignorance. There are logical difficulties with the concept 'ignorance' that 
make it impossible to quantify. Suppose, for example, that I am ignorant 
about the value of some proportion. If I assign a uniform prior over x then I 
am saying that I feel just as sure that the true value of x lies between, say 0-5 
and 0-75, as that it lies between 0-75 and 1-0. Now let us look at the implica 
tion of that statement for the prior concerning the odds, x/(l— x). The odds 
corresponding to 0-5, 0-75 and 1-0 are 0-5/0-5= 1, 0-75/0-25 = 3, and 
1-0/0 = oo. A uniform prior for x implies, then, that I have the same amount 
of opinion between odds of 1 and 3 as between 3 and oo. But a uniform prior 
for the odds would require equal probability between 1 and 3 as between 3 and 5, 
not 3 and oo. Thus, if I am ignorant about x, then I must be ignorant about 
jc/(l — x), yet a uniform prior for x implies, logically, a non-uniform prior for 
x/(l— x). That is why ignorance cannot be quantified.

6.4 Principle of stable estimation

An important application of uniform priors is found in the principle of 
stable estimation. The purpose of the principle is to justify using a uniform 
prior even though your actual prior is not uniform. This will happen whenever 
the data are highly informative relative to the prior. This happens, in the 
discrete case, whenever the prior odds are near 1 and the likelihood ratio is 
very far from 1. Then the posterior probabilities are controlled almost exclu 
sively by the likelihood ratio.

The principle of stable estimation allows a Bayesian analysis to proceed 
using a uniform prior whenever the actual prior is fairly gentle. But what is 
meant by 'gentle' ? With experience, you will frequently be able to tell at a 
glance. A formal definition of 'gentle' would be too cumbersome and compli 
cated to apply, so let me offer a procedure which is not mathematically rigorous 
but which will serve well in most situations.
a Sketch your prior distribution. If you are quite vague about it, a rough 

sketch will suffice.
b After collecting data, calculate your posterior distribution on the assump 

tion that your prior is uniform.
c Find the 99% credible interval. (The 99-9% or 99-99% credible interval 

would be even better.)
d Look at your actual prior distribution within this credible interval. Check 

to see that prior opinion within the interval is almost constant. If it is, 
then stable estimation applies, and you are justified in using a uniform 
prior rather than your actual prior (see Fig. 6-15).

A more complete statement of the principle of stable estimation can be found 
in Edwards, Lindman, and Savage (1963).
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Posterior based on 
uniform prior

Shaded region 
covers most of 
posterior

IF PRIOR IS NEARLY 
CONSTANT IN 
SHADED REGION, 
STABLE ESTIMATION 
APPLIES

Fig. 6-15
Practical application of the principle of stable estimation

Let us try this out on the 'white-collar' father problem. Recall that the 
actual prior was Beta with p' = 4 and q' = 3. Seventeen 'successes' out of 20 
were observed, so the posterior was Beta with p" = 21 and q" = 6. Now let 
us see if we could have used the principle of stable estimation to justify a uniform 
prior. We follow the steps just outlined:
a The prior is shown in Fig. 6-2.
b For a uniform Beta, p' = 1 and q' = 1. Thus, the posterior would be 

Beta with p" = 18 and q" = 4.
c The posterior 99% credible interval is 

0-59 < x < 0-98

d At x = 0-6, the prior probability density is highest, about 2. At x — 0-98, 
the prior density is lowest, less than 0-1. It is clear that 2 is much more, 
in percentage terms, than 0-1, so stable estimation does not apply.

5-

4-

3-

2-

1-

p = 21 g"=6
p' = 18

q" = 4

Posterior distribution based on ...

. . . non-uniform prior 

. . . uniform prior

0—————i————i————i————i
0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

Fig. 6-16
Posterior distributions after 17 successes and 3 failures based on uniform prior, and on prior 
Beta with />' = 4 q' = 3
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You can see this graphically by comparing the posterior distribution in 
Fig. 6-2 with the posterior that results from a uniform prior. Both distributions 
are shown in Fig. 6-16, and it is clear that they are substantially different. Of 
course you can always check to see if stable estimation applies by computing 
both posteriors and comparing them, but the steps I have given eliminate the 
necessity for precisely assessing your actual prior. The advantage of this pro 
cedure is that you may be so vague about your prior that you feel uncomfort 
able about your sketch, yet you do feel fairly certain about the check in Step (d). 
By exploiting certain features of very vague prior opinion we are justified in 
accepting a precise quantification in the form of a uniform distribution. Thus, 
the principle of stable estimation provides a possible way of specifying a prior 
density function even though an individual may feel that his prior opinion is 
so vague that he is reluctant to quantify it.

Exercise 6-15
An investigator is unsure of the proportion of registered voters in a medium- 
sized community who would favour fluoridization of the public water supply. 
In considering his prior opinion he is sure only that the proportion is neither 
0 nor 1. A prior in the form of a Beta density with p' = 2 and q' = 2 could be 
considered a rather too precise quantification of his vague opinion. 
He takes a random sample of 100, discarding 2 registered voters who were never 
home, and is left with exactly 49 people in favour and 49 people opposing. Is he 
justified in using stable estimation to determine his posterior density?

Answer
Assume a uniform prior. Then the posterior is a Beta with p" = 50 and 
q" = 50, and the 99% credible interval is 0-37 < x < 0-63. Reference to a 
prior Beta with p' = 2 and q' = 2 shows that within the range of 0-37-0-63, 
the prior distribution changes very slightly (though you can't see it on the graph, 
the change is from 1 -4 to 1 -5, an increase of about 7 %). This change is not 
enough to invalidate stable estimation. We would do better to ask the investi 
gator about the change of his opinion within the interval; he is likely to say that 
he can find no perceptible change.

Another important use of stable estimation is in situations where prior 
opinion does not conform to any of the standard distributions. Further intro 
spection by the investigator may reveal that while the prior is non-conforming 
it is still sufficiently vague to justify application of the principle of stable esti 
mation. That saves a lot of messy mathematics.

Heavy emphasis is placed in this book on analyses that start with uniform 
priors, for it is my experience that prior opinion is often quite vague. This is 
particularly true for the scientist who is conducting an experiment in a field 
new to him; the majority of readers of this book will be in that category.

6.5 Summary

Opinion about the true value of an uncertain quantity can be expressed 
as a probability density function. This shows probability density (along the 
>>-axis) as a function of possible values of the uncertain quantity (along the



Summary 143

x-axis). The first step in a Bayesian analysis is to sketch your prior distribution. 
Sometimes that sketch can be reasonably approximated by either a normal, 
Beta, or uniform distribution. Often prior opinion will be sufficiently vague to 
permit application of the principle of stable estimation; then you are justified 
in assuming a uniform prior.

Next a sample is collected from a population, and finally Bayes' theorem 
is applied to determine the posterior distribution. Very often posterior opinion 
is communicated in the form of a credible interval, leading the investigator 
to report that he is 4 C per cent certain that the true value of the uncertain 
quantity falls between xlow and xhigb\ The point of a Bayesian analysis is to 
permit a valid inference to be made, on the basis of the prior and the sample, 
to the population at large. A generalization is made based on specific, incom 
plete information.

Bayesian analysis is facilitated by describing prior opinion in a form that 
enables it to be specified as a mathematical function. By appropriate choice 
of parameters, a general function can generate an entire family of different 
curves, and one of these is likely to describe your prior opinion adequately. 
Using these functions in revising opinion is straightforward; the prior and 
posterior distributions are in the same family, and the prior parameters are 
changed by the data to yield the posterior parameters.

When reporting a C per cent credible interval, the shortest one is usually 
chosen. That will be the interval containing the highest density of opinion, 
that is, no density outside the interval is larger than any density inside the 
interval. Credible intervals are computed by reference to cumulative proba 
bility functions. It is necessary to consult a table of such a function to determine 
credible intervals for the normal distribution, a symmetrical distribution, but 
for the Beta distribution the work of finding the highest density region for 
these (usually) non-symmetrical functions has already been done by computer 
and the results tabled.

Statistics of a distribution are often more intuitively meaningful than the 
parameters. One useful statistic is the mean, the value of x directly under the 
centre of gravity of the distribution. It is a measure of the central tendency of 
the distribution. Two other measures of central tendency are the mode, the 
value of ;c under the peak of the density function, and the median, the value 
of x below which exactly half the curve can be found.

Prior opinion about an uncertain quantity that can take on values only 
from 0 to 1 -0, such as a proportion, is often described by a Beta density function, 
This is a two-parameter distribution that generates a very versatile family of 
functions. A prior Beta is assessed by finding a curve in the gallery (Appendix B) 
that appears to describe adequately one's opinion and then checking the three 
equal-credibility intervals to see that equal amounts of opinion fall in those 
intervals. If the data consist of independent observations, each of which is 
either a 'success' or a 'failure', then the posterior distribution is also a Beta 
with posterior parameters determined by adding the number of successes to 
the prior parameter /?', and by adding the number of failures to the prior 
parameter q'.

Another useful description of prior opinion about an uncertain quantity 
is the normal density function. This is a two-parameter distribution whose 
parameters are equal to the mean and standard deviation of the distribution.
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Assessing a normal prior is a matter of determining the mean and standard 
deviation of the function. The C per cent credible interval is found by consulting 
a table of the standard normal distribution and then applying a linear trans 
formation to convert the tabled z-values into the limits of the credible interval. 
A Beta distribution can be approximated by a normal density function whenever 
the smaller of p or q is 10 or more.

The rectangular or uniform distribution is often used to describe vague 
prior opinion. A state of no opinion, or 'ignorance', cannot be quantified; a 
uniform prior in this case is not satisfactory.

The principle of stable estimation justifies using a uniform prior whenever 
the actual prior is fairly gentle.

Problems
6-1 For each of the following uncertain quantities, sketch your prior distribution 

and discuss the possibility that one of the standard distributions (uniform, 
normal or Beta) can be used to approximate your prior.

a The proportion of all students in your college or university who have a savings 
account in their name in a bank.

b The average number of calories in all the food eaten yesterday by each student 
in your college or university.

c The proportion of all students in your college or university who have attended 
a regularly-scheduled church service this term.

d The number of hours per week the average college or university student in your 
country spends on all activities directly related to his or her course of study.

e The date of the next major earthquake, comparable to the great earthquakes of 
1857 and 1906, along the San Andreas fault in California, assuming that geo- 
physicists do nothing to prevent it. (Some relevant information: The opposite 
sides of the fault are currently slipping past each other at the rate of 5 centi 
metres per year. Dr. J. Weertman of the Scott Polar Research Institute has 
carried out research indicating that a major earthquake will occur when the 
total slip reaches about 8 metres. At the current rate of slip, that point should be 
reached 120 years after the slip started. But there is some uncertainty about 
whether the slip started in 1857 or in 1906.)

6-2 For each of the prior distributions in question 6-1 that you felt could be 
approximated by a standard distribution, determine

a the parameters of the distribution.
b the mean and standard deviation.
c the 95 % and 99 % credible intervals.

6-3 The following table gives my cumulative probability distribution for some 
uncertain quantity, x.

X

25
30
35
40
45
50
55

probability 
up to x

0-001
0-006
0-023
0-067
0-159
0-308
0-500
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X

60
65
70
75
80
85

probability 
up to x

0-692
0-841
0-933
0-977
0-994
0-999

a What is the probability that the true value of x 
i is less than 60? 
ii is greater than 45 ? 
Hi lies between 75 and 35 ? 
iv lies outside the interval 30 to 80 ?

b For the cumulative function given above, find the highest density region 90% 
credible interval. (Hint: Do it graphically.)

6-4 My prior opinion about the average score of the statistics class on a question 
naire that purports to measure conservatism is normally distributed with a mean 
of 30 and a standard deviation of 5.

a What is the probability that the average score
i is less than 25 ?
ii is greater than 40?
iii falls between 20 and 40 ?

b Find both my 95% and 99% credible intervals.

6-5 Suppose my prior distribution concerning the proportion of students in my 
statistics class who received Church of England upbringing is Beta with para 
meters p' = 1 and qf — 5. In a sample of 30 students, randomly selected, 15 
were or are C of E, and the rest were raised in other denominations or in none.

a Show that the posterior 95 % credible interval is smaller than the prior one by 
computing both, and comparing them.

b Compute the prior and posterior means and standard deviations.
c Note that the posterior standard deviation is smaller than the prior standard 

deviation. Why is the reduction in uncertainty from prior to posterior usually 
reported by giving the credible interval of the posterior distribution rather than 
the standard deviation ?

6-6 A psychology student working for the BBC conducted a survey of students 
enrolled in correspondence colleges who were advised to use particular BBC 
programmes in their studies. A questionnaire was administered to a carefully- 
selected sample of students. One question asked, 'Did you watch or listen to 
any of the programmes?' Of the 342 respondents, 135 replied they had. Consider 
the population proportion of 'Yes' responses; assume stable estimation applies.

a What is the mode of the Beta posterior distribution ?
b What are the parameters of the posterior Beta ?
c What are the limits of his posterior 99 % credible interval ?
6-7 Here is a simple experiment your instructor could arrange to be carried out 

in class.
The ability to smell freesias appears to have a genetic basis. People either report 
that the flower is very fragrant or that it has only a faint odour or none at all.
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What is the exact proportion of all people who would say that the flower is 
very fragrant? Consider that proportion to be an uncertain quantity. Assume 
that your class is a random sample of all people.

a Sketch your prior distribution.
b Pass around a bunch of freesias in your class, and note the number of students 

who say they are very fragrant and the number who say they are not. (Alterna 
tively, if freesias are unobtainable, ask the chemistry department to make up 
a weak solution of phenyl-thio-carbamide. This chemical either tastes very 
bitter or is reported to be tasteless or insipid. Students can taste pieces of blotting 
paper that have been dipped in the solution. The inference should be made about 
the proportion of people who say that the chemical tastes very bitter.)

c Determine your posterior distribution, and find the 95% credible interval.
d Does stable estimation apply to your prior ?



Part 2
Dealing with data
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After assessing his prior opinions, an investigator is ready to collect data. 
In addition to setting up an experiment and making measurements, he must 
decide how to attach numbers to the observations he makes and he must 
understand the meaning of those numbers. Later, he will wish to summarize 
those numbers as statistics so he can efficiently communicate his results to 
others. These are the procedures we turn to next in this chapter and in the three 
chapters to follow. Then in Part III we show how summary statistics are com 
bined with prior information, using Bayes' theorem, of course, to yield posterior 
opinion.

Back in Chapter 1 I said: If a social scientist carelessly attaches numbers 
to his observations or to his data, no amount of sophisticated statistical manipu 
lation of those numbers will make them any more meaningful than the original 
assignment. What comes out of the statistical mill is no better than what 
goes in.

Now I wish to pick up that point and elaborate it in this chapter, for it is 
necessary to see how numbers are assigned to data.

When a scientist conducts an experiment he observes properties, like the 
weight of an object, the intelligence of an individual, or the rate of growth of 
the economy. Often he assigns numbers to the properties; that is the process 
called measurement, and it can be the subject of study itself. Strangely, in the 
long history of science, logical analysis of the measurement process has only 
been carried out since the turn of the century. Yet it is important to appreciate 
certain aspects of measurement theory, for failure to do so can lead the social 
scientist to claim from his data more than is justified. For example, the weather 
man reports that the low temperature last night was 40°F, while the daytime 
high today was 80°F. Am I justified in saying that today's high temperature 
was twice that of last night's low? The answer is no, and it is important to 
see why, but that comes later. First we must look at the steps in carrying out a 
scientific experiment, then we consider four aspects of the theory of measure 
ment, and finally we present five types of measurement scale.
By the time you have completed this chapter, you should

be acquainted with the processes involved in carrying out a scientific 
investigation;
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understand the distinctions between the four problems encountered in
measurement theory: representation, uniqueness, meaningfulness, and
scaling;
understand the differences between nominal, ordinal, interval, ratio, and
absolute scales of measurement.

7.1 Scientific inquiry

Contrary to the popular opinion of scientists as logical, methodical 
creatures, following single-mindedly the investigation of some matter, science 
is often conducted in seemingly haphazard fashion. Data collected today may 
suggest a new theory to the scientist, leading him to modify his experiment. He 
may try out a new idea by 'pre-testing' it, a procedure in which he carries out a 
'mini-experiment' with inadequate controls, sloppy measurement and insuffi 
cient observations. This is when prior opinion is sharpened, measurement 
techniques perfected, experimental design carefully worked out. It is often a 
time when the scientist's creative faculties are in full swing, and it may extend

Abstraction

Modification

Interpretation

Fig. 7-1
Phases in a scientific investigation

over a few days or several years. Eventually, he carries out a well designed 
experiment, in which information is collected in a systematic manner, and which 
will, he hopes, reduce the scientist's prior uncertainty. It is not uncommon for 
a scientist to have carried out so much pre-testing that he is quite certain of the 
results of his experiment, and he conducts his experiment mainly to enable him 
to report his results in a manner acceptable to his profession. Research reported 
in a journal is an end product that does not reveal very much of the trial-and- 
error steps that led up to the study. Failure to appreciate this process can easily 
cause the student in the social sciences to feel quite discouraged when the one- 
term research project does not work out quite so neatly as the student had 
hoped.

Behind this activity of the scientist, various phases can be identified. 
These are shown in Fig. 7-1 (after Coombs, Tversky, and Dawes, 1970). Start 
in the upper left corner. A scientist observes certain features of the world, 
characteristics of people or societies, or properties of things, and he abstracts 
certain features, building theories of the relationships among those features. 
A theory may be expressed in words, in mathematical form, or in any other 
symbolic system. A particular representation of all or parts of a theory is 
often called a model. For example, the three probability laws and their corol 
laries can be considered mathematical models of those abstractions called
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probabilities. In this example, 'the world' consists of people with varying 
degrees of belief, these degrees of belief are represented as numbers between 
0 and I, and a set of models (laws) is constructed to show how those numbers 
operate. These models serve as an abstraction of a small portion of the world.

Once we have a theory, or model, we can subject it to certain admissible 
logical operations in order to derive new predictions. For example, the prob 
ability laws can be manipulated according to the logical rules of mathematics to 
derive Bayes' Theorem. We can predict how an individual will revise his opinions 
in the light of new information.

Now go back to the upper left-hand box. The scientist engages in experi 
mentation which yields data. In our example he may carry out an experiment 
on revision of opinion, like the bag-and-poker-chip exercise in Chapter 5. 
The question is, did our subjects revise their opinions in the manner predicted 
by Bayes' theorem? The answer depends very much on our interpretation of 
the data. If Bayes' theorem predicts that posterior probabilities should be 
0-85-0-15 in a particular case, and a subject assesses 0-83-0-17, is that close 
enough to say that the model predicts reasonably well? If 50 subjects in the 
experiment give various assessments whose average is 0-85-0-15, can we say 
that Bayes' theorem adequately describes the behaviour of real people? In 
short, how closely must data match the predictions of a model? How big must 
the mis-match be to justify rejecting the model ?

These are questions for statistics to answer, for we are asking the question, 
'What degrees of belief can I, the investigator, assign to the hypothesis that 
the model is correct, now that I have gathered these data?' In other words, 
what is/?(H|D)? Statistics helps us to assess the degree of fit between data and 
model.

If we discover that the fit is not very good, we may wish to engage in some 
modification of the model. We know from our bag-and-poker-chip experiment 
that in that situation people do not revise opinions as Bayes' theorem prescribes, 
so we might wish to build a theory about the discrepancies between subjects' 
probability assessments and those prescribed by Bayes' theorem. This theory 
might take into account psychological factors, like past experience in assessing 
probabilities. Then with our new theory we develop a model which leads to new 
predictions that can be tested with a new experiment, and so the process 
continues.

If this were a book on the conduct of scientific investigations, you can 
see it would have to cover more than statistics, for statistics is mainly concerned 
only with the interpretation process in Fig. 7-1. To be complete, the book would 
also have to discuss experimentation: how experiments are designed and carried 
out, sometimes called 'methodology', and how measurements are made, which 
will be discussed briefly in this chapter. A section on logic and deduction would 
be necessary, for these are both involved in the process of derivation. Finally, 
something should be said about problem solving and the creative process, for 
abstraction and modification both involve the creative faculties of the scientist.

Of course, Fig. 7-1 gives an over-simplified view of the conduct of a 
scientific investigation. Many of the processes are 'going on all at once and 
sometimes the directions of the arrows are reversed. Some processes, like 
experimentation and interpretation, are not really independent but are closely 
linked. Still, I hope that this discussion serves to illuminate the major steps
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in a scientific investigation, and, in particular, helps to show where statistics 
fits in the grand scheme of things.

7.2 Problems in measurement

Perhaps a more accurate description of the process of measurement would 
be to say that a correspondence is set up between properties of the world and 
a number system. That way of describing measurement emphasizes the distinc 
tion between properties and numbers, and it is important to be clear about this. 
When I observe the thermometer registering 80°F, I say, The temperature now 
is 80°F', but I do not actually mean that the temperature and the number are 
the same thing. The number represents, or stands for, temperature, and it may 
or may not be true that anything I can say about numbers is also true of tem 
perature. The number 80 is certainly twice the number 40, but is the temperature 
the 80 represents twice the temperature 40 represents?

Recall the distinction made in Chapter I between fundamental and 
derived measurement. In fundamental measurement a property, such as length, 
is measured in terms of the same property, length. But in derived measurement 
a property is measured in terms of a different property: temperature is measured 
by height (of liquid in a tube), voltage by length (of the indicated position from 
the reference position). In both types of measurement we use numbers to 
represent properties, but in derived measurement the property represented is 
not really the property we are interested in, which is the underlying property. 
In what follows we will always be referring to the relationship between charac 
teristics of the numerical system and characteristics of the underlying property. 
In the temperature example, I am not really interested in the relationship 
between properties of the numbers on the thermometer and properties of the 
height of the liquid, but I am concerned about the correspondence between 
properties of numbers on the thermometer and properties of temperature.

In this section we look at the relationship between numbers and the under 
lying properties they purport to measure. There are four problems to consider.
a Representation. We first need to establish that a property we would like 

to measure can be represented by some numerical system.
b Uniqueness. We next need to know how free we are in assigning numbers 

to the property.
c Scaling. Then we have to construct a scale that will permit us to make 

measurements.
d Meaningfulness. Finally, we must know what statements that are true of 

the numbers we have assigned are also true of the property.

Representation and uniqueness
These are the fundamental problems of measurement theory. We need to 

show that numbers can be assigned to properties and that relationships between 
the numbers reflect corresponding relationships about the properties. To show 
these things formally is not an easy task, and social scientists have mainly 
ignored the problem. They usually proceed either by investigating only those 
properties that are 'obviously' measurable, like proportion of people who hold 
a particular attitude, or time to react in a given situation, or number of correct
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responses in a problem-solving task, or they assume with little or no formal 
justification that measurements of a certain type can be made, like I.Q. or the 
scores on most personality tests.

The formal approach to these problems is beyond the scope of this book, 
though I can give some indication of the general line of thinking. It is to establish 
certain self-evident truths, or 'axioms', about relations concerning the property, 
then to prove formally that a numerical system exists for measuring the rela 
tions, and then to show that the characteristics of the property are reflected in 
the characteristics of the numbers.

Suppose, for example, that I wish to measure intelligence, and I am 
interested in the relation 'more than'. Am I justified in saying that if person A 
is more intelligent than person B, and if person B is more intelligent than 
person C, then it follows that A is more intelligent than C? This kind of rela 
tionship is called transitivity and it would seem to be satisfied for intelligence. 
Then it can be formally proven that a numerical representation for 'more 
intelligent' exists. We call the numerical measurement I.Q., intelligence quotient, 
to distinguish it from the underlying property, intelligence. Notice that because 
of errors in measurement, transitivity may not hold with respect to I.Q. How 
can we say that transitivity is true of intelligence? From our theories of intelli 
gence. We must have a theory about the property we are measuring before 
we can formally justify our measurement operations.

Now let us turn to the uniqueness problem. So far we have only established 
that we can assign numbers, I.Q.'s, to persons A, B, and C. If there are no 
errors in our measurement, and A > B > C reflects the order of their intelli 
gence, then the I.Q. of A must be larger than the I.Q. of B and B's I.Q. must 
be larger than that of C. Symbolically,

I.Q.(A) > I.Q.(B) > I.Q.(C)
I could assign any numbers which show that same relationship; here are three 
possibilities:

I.Q.(A) = 110, I.Q.(B) = 100, I.Q.(C) = 90
I.Q.(A) = I0l, I.Q.(B) = 100, I.Q.(C) = 99
I.A.(A) = 120, I.Q.(B) = IOO, I.Q.(C) = 95

For all of these, the transitive relation is observed.
But now suppose I ask you to consider the differences in intelligence 

between the people. Is the difference between A and B's intelligences the same 
as, less than, or greater than the difference between B and C? In other words, 
can differences in intelligence be ordered, or is it impossible to make any 
statement about differences in intelligence? Here, again, we must rely on theory 
to answer the question, but unfortunately theories of intelligence do not give 
an unequivocal answer to the question. Some theorists would say that within a 
specified range of I.Q. scores it is possible to order differences in intelligence, 
others would say it is not. Suppose, for the moment, that we can, and that the 
difference between A and B is the same as that between B and C. Then, the 
first two measurement schemes above would be permissible, but the third 
would not because the equation
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is not satisfied. If on the other hand, the difference between A and B is larger 
than the difference between B and C, then only the third scheme would be 
satisfactory. So, this added restriction of preserving the ordering of differences 
imposes constraints on the numbers I can use to represent intelligence over and 
above the constraint imposed by transitivity. For this example, we would say 
that any measurement scale can be used that preserves the ordering of intelligence 
and the ordering of differences in intelligence.

This is an example of the formal approach to representation and unique 
ness. It is, however, not often applied because it is difficult to build theories 
that enable us to answer questions of uniqueness and representation, and so an 
empirical approach is more commonly used. This consists of assuming that a 
particular scale of measurement is appropriate, and then checking to see that 
predictions made on the basis of scale measurements are useful and not inter 
nally inconsistent. We turn to this approach next.

Meaningfulness and scaling
Although there is no limitation on the number of possible scales that 

could be developed, just five are commonly used and discussed in the social 
sciences: nominal, ordinal, interval, ratio, and absolute.

Nominal scales use numbers merely as labels. In the telephone directory 
each name is associated with a number; the number 'measures' the person in 
the sense that a label is provided. We could talk of the person whose telephone 
number is such-and-such, but we would never consider adding, subtracting, 
multiplying or dividing those numbers for any reason at all. We would not take 
my telephone number and add it to yours and divide the sum by 2 to find 
what our 'average' telephone number is. If your telephone number is higher 
than mine, there is no sense in which you can be said to have 'more' than I. A 
nominal scale is used only to identify, like the numbers on the football player's 
jersey. In constructing a nominal scale we are free to use any numbers at all.

Ordinal scales use numbers to represent the orderings of the entities being 
measured. The winners of a squash contest are rank ordered according to who 
beat whom; the numbers I, 2, 3, etc. indicate the relative standing of the winners, 
so the order of winning is represented by the order of the numbers. But that is 
all. It certainly is true that

2-1 =3-2

if we think of those numbers just as numbers, but could we say that the difference 
in ability between the first and second place players is the same as the difference 
in ability between the second and third place competitors? Not necessarily. 
The numbers serve only to show the rank ordering of the players. In constructing 
an ordinal scale we may use any numbers at all provided that ordering is 
preserved.

Interval scales preserve the rank ordering of differences in the property 
being measured. Fahrenheit measurement of temperature provides a good 
example. Suppose I measure the temperatures of three liquids, A, B, and C, 
and I observe readings of 60°F, 40°F, and 35°F. The difference in temperature 
between A and B is 20°; between B and C, 5°. A difference of 20 is 4 times as 
great as a difference of 5; that is a true statement about the numbers, but is it 
true of the property the numbers represent, temperature? The answer is yes,
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but we would need to know something about the theory of temperature and 
heat to see why. Once an interval scale has been established, any linear trans 
formation of that scale will result in another interval scale. If measurement on 
a Fahrenheit scale is admissible, then it must be just as acceptable to measure 
on a centigrade scale, for, as we saw in Chapter 5, one scale is a linear trans 
formation of the other.

In constructing an interval scale we are free to make two choices: the 
zero point of the scale, and the unit of measurement. We can represent the 
freezing point of water by zero, and then by representing the boiling point with 
100, we have fixed the unit of measurement: there are 100 units between freezing 
and boiling.

Ratio scales allow statements about the ratios of the properties being 
measured. Length is an example. A board 6 ft long is twice the length of a 
3 ft board. The numbers are in a ratio of 2, and the property these numbers 
represent, length, is also in a ratio of 2. What about temperature? Consider 
80°F and 40°F; are the temperatures those numbers represent in a ratio of 2? 
We can answer the question by observing that the measurements could just 
as well have been made in centigrade. Had we done that we would have observed 
26-7°C and 4-4°C. Those numbers are certainly not in a ratio of 2. Since a 
proposed statement about the underlying property is true under one scale but 
not true under another equally valid scale, the statement must not be an admis 
sible one. In general, linear transformations do not preserve ratios of properties 
being measured; they preserve ratios of differences in the properties. We cannot 
make statements about the ratios of properties measured on an interval scale. 
Only when measurement is on a ratio scale can we confidently make statements 
about ratios of the underlying properties.

In constructing a ratio scale we are free to fix only the unit of measure 
ment. The zero point is determined by theory. Measurement of temperature 
on the Kelvin scale is an example; there, zero is defined as the point at which 
molecular motion ceases. Once a ratio scale is established it can be transformed 
into another, equally valid ratio scale by multiplying the original scale by a 
constant. That changes only the unit of measurement, which was an arbitrary 
choice anyway.

Absolute scales admit of no useful transformations at all. Counting is an 
example. When I measure by counting the number of students out of 20 whose 
fathers are in 'white-collar' occupations, I am applying an absolute scale of 
measurement. Transforming the scale would make no sense because the zero- 
point and unit of measurement are based on convention and long-standing 
practice.

Determining the level of measurement
Prior to an investigation how does one determine the scale type? Is 

measurement to take place at a low level, on a nominal scale, where only the 
identifying characteristics of numbers are used, or is it to take place at a high 
level, say on a ratio scale, where all the properties of numbers are used? Unless 
the theory you are testing enables you to provide a formal axiomatic analysis 
to the representation and uniqueness problems, which is unfortunately all too 
rare in the social sciences, then you will have to rely on a combination of theory, 
logic, and empirical observation.
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To begin with, it will usually be obvious if the extreme scale types are to 
be used. Labelling and counting are operations whose application is self-evident 
in most situations, so it is not hard to justify using nominal and absolute scales. 
The difficulty comes in deciding between ordinal, interval, and ratio scales.

Theoretical considerations may enable you to establish whether the zero- 
point on the scale has any meaning. It is clear, for example, that zero I.Q. has 
no fixed interpretation, because I.Q. is not thought of as an amount of something 
in any absolute sense. I.Q. is a relative measure that enables people to be 
scaled relative to each other. On the other hand, absolute zero does make 
theoretical sense when measuring temperature. If you can find justification for 
the zero point, ratio-scale measurement is probably appropriate.

Logical argument in establishing the level of measurement relies heavily 
on the fact that any inference you make based on the scale must remain true for 
all admissible transformations of the scale. We saw an example of this with 
temperature. An inference that one liquid is twice the centrigrade temperature 
of another liquid is true only for measurement on the centigrade scale; since 
the statement is false on a Fahrenheit scale, we reject the notion that Fahrenheit 
and centigrade scales are ratio scales. However, ratios of differences of tem 
perature remain the same for all temperature scales; we can say that temperature 
measured on Fahrenheit or centigrade thermometers is at the level of an 
interval scale.

Empirical findings can sometimes serve as a guide to the level of measure 
ment. Suppose, for example, that two teams are to be formed from the top 
four winners of a squash competition. The winners are ranked from 1 to 4, 
and we wish to determine by empirical test whether those numbers really 
represent ordinal- or interval-scale measurement. We proceed by matching 
players 1 and 4 with players 2 and 3; the average rank of each team is then 2-5, 
and since both teams have the same average rank we infer that the teams are 
equally matched. We test the notion by having the two teams play several 
matches. If each team wins about half the time then we might conclude that 
the original ranks represent more than ordinal information, they also represented 
roughly equal differences in ability so that the numbers represent interval 
information. That conclusion would only be true for these players, however, 
and many more experiments would have to be carried out to establish the general 
nature of the scale.

Of course this example is not realistic; logical considerations alone would 
be sufficient to reject the notion of ranks in athletic contests representing interval- 
scale measurement. The point of the example is to illustrate the logic of the 
empirical approach: assume a particular level of measurement is correct, make 
predictions based on that assumption, and if the predictions are not substan 
tiated, reject the original assumption. What if the predictions do work out ? 
Then, following the reasoning in the section in Chapter 4 on hypothesis testing, 
we are at least no less sure than when we started that the assumption is correct. 
Several experiments later, confidence in the assumption may be strengthened,

Exercise 7-1
What level of measurement might be appropriate for scaling: 

a Type of mental illness ?
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b Gross national product?
c IQ?

d Social class?
e Loudness ?

Answers
a Type of mental illness is a judgement about the category in which a person is 

placed. If we associate numbers with the category, we have nominal measure 
ment. More commonly, verbal labels are used for the categories, for example, 
depressive, paranoid, schizophrenic, etc.

b If gross national product (GNP) is measured in the currency of your country, 
it is only necessary to count units of that money to arrive at GNP- Although 
counting is involved, measurement is not on an absolute scale because the unit 
of measurement, a dollar, pound, etc., is arbitrary. The zero point makes at 
least some theoretical sense, so measurement takes place on a ratio scale.

c We have already said that zero I.Q. has no theoretical meaning, so I.Q. cannot 
be measured on a ratio scale, but the decision between ordinal and interval scales 
is difficult. No theory helps very much and different investigators using the 
empirical approach have made different claims. So although I.Q. is useful in 
making predictions of many sorts, psychologists are not agreed about its measure 
ment status.

d Social class is at least measurable on a nominal scale. The Registrar General 
in England publishes an index of social class that gives both a 5-point and 7- 
point classification on the basis of occupation. It seems fairly evident that 
distances between social classes are probably not equal, if the concept has 
meaning, and at least a rough ordering is implied. Again, theory and empirical 
work have not established the level of measurement. For some purposes it 
may appear only nominal, for others ordinal.

e Loudness is an interesting example of a scale that could be interval or ratio 
depending on how it is arrived at. In one method, called ratio estimation, a 
subject is asked to assign numbers to tones presented to him. He is instructed to 
use numbers that represent ratios of loudness so that if tone A sounds twice as 
loud as tone B, the number assigned to A should be twice as big as that given 
to B. The resulting scale is a ratio scale almost by definition. I say almost, 
because if the subject cannot do what he is asked, then there is some doubt 
about the level of measurement of the numbers he gives. Methods that are less 
demanding of the subject can be employed that yield interval scales. Methods 
for obtaining numerical measurements in psychology are discussed in more 
detail in Hays (1967).

7.3 Measurement and statistics

This last exercise was partly meant to illustrate the difficulty in deciding 
on the level of measurement. As new measurement techniques are developed, 
new scales appear, in addition to the five mentioned here. This makes it very 
difficult to give specific guidelines about how measurement theory can aid a 
scientist in conducting an investigation, and I am not sure it should be done 
anyway. The scientist involved in his subject is the person to judge the level of
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measurement; he must decide which of the properties of numbers represent 
characteristics of the property being measured. As long as he is aware of the 
general guides to consistency imposed by measurement theory, he is less likely 
to say such things as k 80°F is twice the temperature of 40°F'. At the present 
state of development of measurement theory, thorough knowledge of the 
empirical work done in an area as well as appreciation of theory are perhaps 
the best guides to determining levels of measurement.

What implications does measurement theory have for statistical practice? 
Some authors have classified statistical methods according to the measurement 
scale involved. Some statistics books are organized on this principle. Certain 
procedures, they say, are most appropriate for ordinal data, others for interval 
data, and so forth. The reasoning behind this classification is that if statistical 
procedure requires you to perform mathematics on your data beyond the 
admissible transformations required by the measurement scale, then that 
procedure should not be used for that kind of measurement scale. For example, 
if some statistical procedure requires you to compute averages, then that 
procedure should not be used when ordinal measurement is used because it 
will be difficult to interpret the result, as we saw with the squash teams.

This argument seems to me to be incorrect for two reasons. In the first 
place, it is not very practical advice because of the difficulty in determining the 
level of measurement. In the second place, it fails to recognize that statistical 
theory is entirely neutral about matters of measurement. The formal statistical 
apparatus requires only numbers as inputs; nothing is said about what the 
numbers represent. If the experimenter wishes to use a statistical procedure on 
ranks that requires averaging the ranks, he may do so, for there is no assumption 
in the procedure that says it is reserved for interval-scale data or above. If the 
experimenter, in his good judgement, feels he can meaningfully interpret the 
result of the statistical procedure, then his use of the procedure is justified. As 
was said earlier, statistics is concerned with the degree of match or mismatch 
between predictions and data (Fig. 7-1), while measurement is concerned with 
the representation of the world by numbers. The provinces of statistics and 
measurement become linked too closely if one attempts to restrict the use of 
statistical techniques on the basis of level of measurement. Interpretation of 
statistical results may be easier if the restrictions are followed, but this is not 
always true, and sometimes violation of the restrictions still leads to relatively 
straightforward interpretation. While I agree that it is easier to represent pro 
perties of the world with numbers than it is to interpret from statistical results 
back to the world, I do not think that interpretation is well served by limiting 
statistical procedures to certain levels of measurement.

Measurement in the social sciences is usually not higher than interval 
scale. Most of the statistical methods in this book apply to interval-scale 
measurement, some to nominal and ordinal scales. The book is most lacking 
in methods for rank-ordered data because appropriate Bayesian methods have 
not yet been worked out. This is an area where specifying a prior distribution 
has given statisticians some trouble, but it is hoped that the problem will soon 
be solved. In the meantime, you will have to learn enough of non-Bayesian 
methods to be able to use order statistics. Chapter 13 should give you sufficient 
background to be able to use books about order statistics such as the elementary 
exposition by Siegel (1956).
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7.4 Summary

Conducting a scientific investigation involves the scientist in abstracting 
a few features of the world and creating a theory about those features. He may 
find it useful to translate all or part of the theory into a formal model. From the 
theory, or model, predictions are made, and these predictions are compared 
to observations made in an experiment.

Statistics, as a subject, is concerned with the degree of match between 
predictions and observations. Measurement is the process of assigning numbers 
to observations, while the relationship between characteristics of those numbers 
and the underlying properties being measured is the realm of measurement 
theory.

The fundamental problems of measurement theory are representation, 
establishing that a numerical representation is possible for the characteristics 
of the property being measured, and uniqueness, showing what limitations 
exist on the assignment of numbers to the properties. The formal approach to 
these two problems is to establish axioms concerning characteristics of the 
property, and then to prove that a numerical representation with certain 
limitations exists. This also helps to establish the meaningfulness of the scale 
and often points the way to methods of constructing a measurement scale. The 
empirical approach is to assume a particular level of measurement and then to 
see that predictions made on this basis are substantiated by experimental test 
and do not lead to contradictions.

Five scales of measurement are commonly used. A nominal scale does 
nothing more than categorize observations. An ordinal scale shows no more 
than the ordering of observations. An interval scale also preserves the ordering 
of differences between observations, so that statements about the ratios of 
differences in properties can be made. A ratio scale allows statements about the 
ratios of the properties themselves. An absolute scale is wholly determined. 
Linear transformations of interval scales and multiplicative transformations of 
ratio scales are permissible, while no transformation of an absolute scale is 
acceptable.

Determining the level of measurement may be difficult in a particular 
situation; the decision must be made by the experimenter on the basis of his 
knowledge of theory and empirical work relevant to the problem at hand. 
Tying statistical procedures to levels of measurement produces too much 
constraint on the scientist's judgement. Statistical methods are neutral about 
questions of level of measurement; the problem of interpreting statistical 
results is in the hands of the scientist and should be decided on extra-statistical 
grounds.

Problems

7-1 What scale of measurement is appropriate for measuring time ?

7-2 Do measurements made at the level of a ratio scale preserve interval, ordinal, 
and nominal characteristics? Show why or why not.

7-3 For your major course of study, give examples of nominal-, ordinal-, interval-, 
and ratio-scale measurement.
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7-4 For your major course of study, give an example of a property for which there 
is no satisfactory numerical measurement procedure. Why is this so ?

7-5 Choose some theory that interests you from your major course of study and 
comment on the four problems of measurement as related to the theory.



8 • Frequency and
probability
distributions

Up to now we have discussed how prior opinion about some uncertain 
quantity can be expressed as a probability distribution, and we have considered 
problems in measuring that uncertain quantity. Always we have in mind some 
population about which we wish to make an inference after we have obtained 
a sample from the population. Now it is time to consider how the sample is 
selected and how we can describe the data we obtain.
By the time you have finished this chapter you should

recognize the importance of translating theoretical propositions into 
operational terms;
understand the principle of random sampling;
know how to summarize data as a histogram, frequency polygon, or 
probability distribution;
understand the relationship between theoretical distributions and 
populations.

8.1 Preliminaries

One day a student in one of my statistics classes who had been struggling 
with the material for several weeks, cried out in despair, 'Most of us haven't 
the faintest idea what you're talking about; we've been lost for weeks!' I asked 
him how he knew that and he replied that he had talked to several of his friends, 
all of whom agreed they were lost. The opportunity seemed ripe for restoring 
some perspective to the course, and also for illustrating how a scientific investi 
gation proceeds. I suggested that we put his statement to the test to see if it was 
true.

Operationalizing
The class discussed how we might see if the student's statement was 

accurate. The only restriction I imposed was that we treat the class as a popu 
lation and draw a sample to make an inference. That ruled out a simple show 
of hands as a means of settling the issue. The discussion went something like 
this:
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4 Why don't we just write on a piece of paper whether or not we're lost, 
draw a sample, and then make an inference about the true proportion of 
papers with "lost" on them?'

That's a good idea. Let's do that.'
Sound of many pieces of paper being torn. Someone interrupts: 'Actually, 

I'm not completely lost. Just a little lost. I was O.K. up to last Friday's lecture. 
What should I write?'

Tm having trouble, too. Maybe we should consider what we mean by "lost".'
'I agree. And we ought to decide how long we've been lost. I was following 

up to a week ago when I became ill, and I've had trouble catching up since 
then.'

Much discussion followed. Eventually this criterion was suggested: 
Write 'lost' if you have understood less than about 50% of the material over 
the past two weeks. Discussion continued.

That's O.K. if you've been following. But if you haven't, you may not 
know that you've missed something, so are in no position to judge the 50%.'

Pause. Then someone suggested: 'Let Dr Phillips make up a test covering 
the work of the past two weeks. If you pass, you aren't lost.'

I said, 'Who's to say what the pass mark is, and how difficult the test 
should be?'

Another pause. Eventually discussion resumed on the question of the 
test, and it was finally decided that I should use my experience to construct a 
test of moderate difficulty and the pass mark would be 50%. I did not actually 
do it because by then the major point had been made: Theoretical statements 
must be translated into operational terms before measurement can proceed. The 
general statement about students being lost for weeks was not specific enough 
to tell us how to take measurements. As a first step in operationalizing, it was 
agreed to inquire about the proportion of students who were lost, and as a 
second step the idea of 'lost' was defined as: Failure to pass at the 50% level a 
moderately difficult test covering the past two weeks work. (The term 'moder 
ately difficult' could have been made more precise.)

At this point we were ready to rephrase the original statement in the form 
of a prediction. All that remained was to operationalize the phrase, 'most 
of us . . .'. We finally settled for 'over 75% of us .. .'. So, our operationalized 
prediction was 'over 75 % of the class will fail to pass, at the 50% level, a moder 
ately difficult test covering the past two weeks work'. Quite a difference from 
the original statement!

Now, you may feel that something has been lost from the original com 
plaint: 'Most of us haven't the faintest idea what you're taking about; we've been 
lost for weeks!' The connotative meaning has changed from a complaint to a 
fairly precise prediction. The cost of increased precision is usually a loss in 
connotative meaning and that is why scientists are sometimes accused of know 
ing more and more about less and less. Yet, to proceed with a scientific investi 
gation it is necessary to be precise; the tradeoff between richness of meaning and 
precision is difficult to make, and is often a matter of personal style. Some 
social scientists opt for a broad picture, and may be criticized by their more
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precision-minded colleagues for being 'sloppy', and the scientist who is careful 
to be precise may be accused of studying trivia. Other scientists cleverly design 
meaningful studies that are quite precise. Still others move from one camp to 
the other in carrying out a series of investigations. Whose strategy is best ? At 
this youthful stage of development of the social sciences, I prefer to hedge my 
bet; I will put a little money on each.

Sampling
During one class I asked my students to write 'pass' or 'fail' on a slip of 

paper depending on whether or not the last quiz had been passed. The slips were 
collected, I drew out a sample by mixing the papers and pulling one out without 
looking, noting the word on the slip, returning the paper, mixing, drawing and 
so forth for 10 draws. I calculated the 95 % credible interval on my Beta posterior, 
checked it against the true proportion obtained by noting all the papers, and— 
the interval completely missed the true proportion! Bad luck, I thought. After 
all, there was a 5 % chance that the true value would fall outside the interval, 
so I repeated the process. Again it missed the truth! Twice in a row seemed too 
unlikely (0-05 x 0-05 = 0-0025, to be exact!).

My suspicions were confirmed when I sorted the papers into two piles, 
the passes and the fails. Of the few students who had failed, almost all had 
handed in very small slips of paper. And the pass pile contained some very 
large pieces. When drawing a sample, my fingers had missed the smaller pieces, 
even though I had been trying not to be influenced by the size of the paper.

The experience illustrates the importance of considering sampling pro 
cedures in carrying out an experiment. The procedures in this book all assume 
that sampling is random, that is, that each element in the population has an 
equal chance of being selected. 'Equal chance' has the same meaning as when 
it is applied to elementary events in a simple experiment (Section 2.1); if 
you had to place a bet on the occurrence of any one particular elementary 
event, you would be indifferent about the one on which you actually placed 
your money. This is a matter for judgement, to be decided by examining all 
relevant facts concerning the sampling process. Ideally, the scientist arranges 
his experiment so that the randomness of his sampling procedure is not in 
question. This is accomplished by the simple experiment introduced in Chap 
ter 2, and it is why I now have my students write 'pass' or 'fail' on identical 
3 in x 5 in cards, which are thoroughly mixed in a container.

Unfortunately, the world does not allow random samples to be obtained 
for most investigations in the social sciences. If you are studying memory 
processes in people, you just cannot get a random sample of all people in the 
world. If you are trying to find out the nation's preferences among presidential 
candidates, a random sample of all people in the country would be too expensive 
to obtain and would presume that you had a list somewhere of all people with 
their correct current addresses.

The randomness of a sample is impossible to ensure when the population 
is ill defined. As an example, consider an experiment in which repeated observa 
tions are taken on a single individual. The observations are taken as a sample 
of all possible responses, past and future, the subject could give. Here the 
investigator takes a sample of some particular aspect of an individual's beha 
viour so as to make a generalization about the person. The population consists
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of past and future responses, so how can the randomness of the sample be 
guaranteed ?

Social scientists have coped with the difficulty in obtaining random 
samples in a number of different ways. A common response has been to ignore 
the problem. Many journal articles report statistical inferences without men 
tioning the characteristics of the population to which the inferences are pertinent. 
This is, obviously, not a very satisfactory procedure.

Another answer is to note that for some studies concerned with some 
topics, any sample can be considered sufficiently representative to be treated 
as a random sample. For some studies of human memory, there is no theoretical 
reason to believe that volunteers would respond differently than non-volunteers, 
that men would behave differently than women, or that college students would 
give different results than people not in college. This is a reasonable approach 
provided there is theoretical justification. But too often, investigators have 
chosen college students as subjects just because they are readily available. 
Indeed, psychology in particular has been accused of being 'a science of the 
college sophomore', and many words have been spilled urging investigators to 
broaden the representativeness of their subject populations.

Perhaps the best approach is to choose as diverse a sample as possible, 
ensuring that it is at least 'haphazard', and then figure out what population the 
sample came from. An investigator may select cards at random from the card 
file of volunteer subjects maintained at his university, and then construct a 
description of the population which would make his sample a reasonably 
random one. If he finds his sample consists entirely of middle-class students, 
and he thinks his findings might be different for other social classes, that 
then he defines his population as consisting of middle-class students. Of course, 
if social class could make a difference, the investigator might make social class 
an independent variable in his study; he may, for example, select cards at 
random, assigning students to groups according to their social class, until each 
social-class grouping has an equal number of subjects.

There are many more ways of ensuring random-appearing samples, such 
as stratified sampling, but these methods belong more to a book on experimental 
design than to a book on statistics. For our purposes we will always assume 
that a sample is random-appearing, that the experimenter knows he is behaving 
as //the sample is random. If he is not willing to admit that, there is no point 
in using inferential statistics at all.

There is another sense in which randomness helps to ensure that experi 
mental results are representative of the population. Imagine an experiment 
designed to determine the effects of some new drug on the ability of rats to 
learn how to run through a maze. First the investigator ensures that with respect 
to natural ability to learn mazes he has a random sample. If he failed to do this, 
he might end up with a sample of mostly 'maze-dull', or mostly 'maze-bright' 
rats, and if the drug affects those two groups differentially (improves the maze- 
dull rats, but not the others, for example), then he could draw the wrong 
conclusion.

Next, the investigator assigns rats randomly to the group to receive the 
drug and to the group that receives a placebo. If he did not do this, he might 
unknowingly favour some rats over others in determining who was to get the 
drug, and thereby bias his results.
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Thus, both random sampling, and random assignment to treatments are 
necessary to ensure that experimental results can be generalized to the 
population.

In addition to random sampling, two other assumptions are made by all 
the statistical methods in this book. One is that observations are independent; 
the other is that the population is stable with respect to the attribute being 
measured. We discussed independence in Chapter 3; as applied to a sequence 
of observations, independence is assured if the outcome of any one trial or 
observation is not influenced by the outcome of previous trials or observa 
tions. A stable population is one where the attribute being measured does 
not change while it is measured. The true value of the uncertain quantity does 
not change part way through the measuring process.

When we have formulated operational definitions and when we are clear 
about our sampling procedures, then we are ready to collect some data.

8.2 Frequency distributions

For a simple experiment each elementary event is paired with the event 
class to which it belongs. In similar fashion, the scientist pairs his measurement 
with the element sampled from the population. If he is sampling American

Table 8-1 Raw data for three investigations

Swimming pools
School

Birmington
Aylesburgh
Yeschester
Elton
Sudbury
Trulyville
Hampwellaca
Earlyworm
Orangeburg
Restange
East Morgantown
Middleborough
Tomlinton
Hurlyburt
East Pampton

Pool

No
Yes
Yes
Yes
No
Yes
No
No
Yes
No
No
No
No
Yes
No

Social class
Name

Barnett
Aymen
Sparks
Idleman
Sherwin
Foster
Otley
Reaper
Roydon
Eaton
Vessick
Ingram
Story
Inkster
Oglethorpe
Nabor
O'Connor
Finch
O'Malley
Parsons
Ivy
Newcomb
Isis
Oldenburg
Nutter

R & D expenditure
Class

4
3
3
5
2
4
2
3
4
4
1
3
5
3
4
3
1
5
3
2
4
3
3
2
4

Company

IPE
Norwood
Thames
Hewitt
Edgerton
Light
International
German
Heatamatic
Tensor
Opal
Farmingham
Newton
Elastic
Westmate
Ingraham
Nominal
Force
Overboard
Restman
Maplewood
Ascention
Timely
Interplay
Organic
Nested

Amount, $

950,000
20,000

125,000
73,000
55,000

370,000
2,300,000

15,000
210,000

3,000
65,000
87,000

450,000
22,000

0
5,000
7,000

115,000
28,000
96,000
48,000

0
79,000

1,000
88,000
36,000



166 Frequency and probability distributions

high schools and observing whether or not they have a swimming pool, he pairs 
the name of the school with c yes' or 4 no\ If he is sampling people and deter 
mining their social class, he pairs each person's name with his social class. If 
he is sampling corporations in an area and measuring the amount of money 
they spent on research and development last fiscal year, he pairs the name of the 
corporation with an amount of money. In every case he is specifying a function.

It is more economical and more instructive to condense each listing 
according to the number of elements that fall into similar event classes: the 
numbers of high schools that do or do not have swimming pools, the numbers of 
people in each social class, the numbers of corporations whose expenditure 
on R & D fell within a particular range. In summarizing the data this way we 
lose the original identification with the elements of the population, so we lose 
some information, but we gain in being able to grasp at a glance what the data 
are saying.

A list showing the number of elements falling in each event class is called 
a frequency distribution, while a graphical picture of a frequency distribution 
is termed a histogram or frequency polygon. Some hypothetical data for the 
three cases just mentioned are shown in Table 8-1. Each element is paired with 
an observation or measurement, so each table is a listing of a function. Next 
we consider various ways of summarizing these data in more convenient forms.

Ungrouped and grouped frequency distributions
It is difficult to get a very comprehensive picture by examining these raw 

data in this form, so they have been shown as frequency distributions in 
Table 8-2. Here/stands for frequency.

Table 8-2 Frequency distributions for the raw data in Table 8-1

Swimming pools Social class R & D expenditure 
Pool? f Class f Amount f

Yes 6
No 9

N = 15

1 (upper)
2
3
4
5(lower)

N =

2
4
9
1
3

—
25

200,000 +
175-199
150-174
125-149
100-124
75-99
50-74
25-49

0-24,000

5
0
0
1
1
3
4
3
9

N = 26

The first two distributions were obtained simply by counting the numbers 
of yeses and noes and the number of 1's, 2's, etc. The third frequency distri 
bution is the result of an intermediate step, where each amount in Table 8-1 
was ticked off against the range of values that included it (see Table 8-3).
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Notice that for all distributions the event classes are mutually exclusive; 
none of them overlap. If an expenditure falls in the 50-74,000 category it cannot 
fall in any other category. Also, the sum of the frequencies must equal the total 
number of observations.

Table 8-3 Tallies for the R & D data 

Class interval f

200
175
150
125
100
75
50
25

0

+
-199
-174
-149
-124
-99

- 74
-49
- 24

+Ht

1
I
in
nil
in
iW nu

The first two distributions are called ungrouped frequency distributions 
because no grouping of the data has been carried out. If the social class data 
were compressed into, say, upper class (1), middle class (2 and 3), and lower 
class (4 and 5), then the result would have been a grouped frequency distribution. 
The distribution for R & D expenditure is another example. Grouped frequency 
distributions are necessary whenever the data can fall in any of a great number 
of categories. Class intervals are chosen so that no observation can fall between 
adjacent intervals, and so that all intervals, except possibly-the first or last ones, 
are of equal size. It is common practice to choose between 10 and 20 intervals; 
that gives a reasonable balance between the amount of detail in the data that is 
preserved, and condensation of the data to ease interpretation. It is also usual 
procedure to place the highest values at the top of the list and the lowest ones 
at the bottom.

Histograms
A frequency distribution gives an even clearer picture of the data when 

it is shown pictorially, as a histogram. Examples for our three imaginary 
investigations are shown in Figs 8-1, 8-2, and 8-3. A few comments should be 
made about Fig. 8-3. The jc-axis has been marked off with the midpoints of the 
intervals. The midpoint of any interval is the value that falls exactly in the 
middle of the range of possible values. Marking the interval itself makes the 
x-axis too cluttered and hard to read. Notice that the top interval has been 
'cut off' from the .Y-axis to stand alone, and the interval itself, '200 + ' has been 
indicated. The break in the jc-axis reminds the reader that this interval is not 
equal to the others, that all the data from $200,000 upward are compressed 
into one bar.

Each profession, and even each journal, seems to have its own standards 
for drawing histograms. The only general guide I can suggest is to look at your
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Fig. 8-5
R&D expenditure of 26 companies

completed graph to see that it conveys an unexaggerated picture of the data. 
Distortions of the j>-axis can easily create the wrong impression. If one person 
wishes to show that there are about equal numbers of companies spending a 
little on R & D as a lot, he can draw the histogram shown in Fig. 8-4. He does 
not bother to label the y-axis, and he neglects to detach the extreme right 
interval. But if someone else wants to show that most companies are either 
spending very little or a great deal, he stretches the .y-axis, as in Fig. 8-5. 
There are many ways in which graphs of data can mislead. An amusing dis 
cussion of the possibilities is given by Huff (1954), who also talks about how 
the descriptive statistics presented in the next chapter can be 'mendacious 
truths'.
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Exercise 8-1

The scores of 50 subjects on a particular test were obtained. Here are the raw 
data :

Subject Score Subject Score
1 73 26 71
2 79 27 75
3 72 28 71
4 60 29 63
5 69 30 60
6 70 31 73
7 72 32 76
8 83 33 72
9 66 34 55

10 74 35 70
11 81 36 64
12 53 37 79
13 60 38 80
14 82 39 67
15 75 40 84
16 73 41 82f
17 74 42 58
18 60 43 77
19 84 44 61
20 80 45 66
21 65 46 65
22 77 47 69
23 71 48 67
24 73 49 89
25 7.9 50 65

Draw a histogram of these data.

Answer
The scores range from 53 to 89, or 37 units, including the extreme scores. If a 
class interval of size 3 is chosen, then the range can be covered in 13 intervals. 
Construct a frequency distribution:

Class interval
88-90
85-87
82-84
79-81
76-78
73-75
70-72
67-69
64-66
61-63
58-60
55-57
52-54

Midpoint
89
86
83
80
77
74
71
68
65
62
59
56
53

/
f

^K
4-H
III
M
W
III

-*H
II
44i

1
1

III 
II /
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Draw this as a histogram:
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Frequency polygons
When measurements are made in numbers that can represent a continuous 

variable, it is often more convenient to draw a frequency polygon than a histo 
gram. The principle of construction is the same as for a histogram, only the 
frequencies are connected with straight lines rather than being represented by 
vertical bars. An example is shown in Fig. 8-6.

60-

24-5 30-5 36-5 42-5 48-5 54-5 60-5 66-5 72-5 78-5 84-5 90-5 
FlD 8—6 Time, seconds 
Time to complete a mechanical manipulation task for 200 subjects
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Fig. 8-7
Data as for Fig. 8-6 after 1000 observations

Now imagine that the mechanical manipulation task was given to 1000 
subjects, and more class intervals were used in drawing the frequency polygon. 
Rescaling the >>-axis to maintain the same proportions as Fig. 8-6 might result 
in the graph shown in Fig. 8-7. With even more observations, and still more 
intervals the curve would become smoother and smoother, so that a con 
tinuous curve could be faired through the points, as in Fig. 8-8.

Fig. 8-8
Data as for Fig. 8-6 after a great many observations

Exercise 8-2
Draw a frequency polygon for the data in Exercise 8-1
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Answer
Here is a possibility:

i——i——i——i——i——i——i——r 
53 56 59 62 65 68 71 74 77 80

Test scores

83 86 89

8.3 Probability distributions

We have already met probability functions as applied to prior and pos 
terior opinion; probability density functions pair probability density with values 
of the unknown quantity, and cumulative probability functions pair cumulative 
probability with values of the unknown quantity. I could have talked about 
probabilities assigned to hypotheses or events as probability functions, too. 
When prior probabilities are assessed for a set of hypotheses, a probability 
function has been established. The listing in Exercise 3-1 is a probability 
function; it pairs events with their probabilities:

Event Probability
man is a policeman 0-3
man is a traffic warden 0-4
man is a bus conductor 0-2
other possibility 0-1

I could draw that as a graph with 4 bars of height 0-3, 0-4, 0-2, and 0-1.

Any probability function is a probability distribution, provided that the events, 
hypotheses or uncertain quantities are mutually exclusive and exhaustive.

What is the relationship between a probability distribution, which has 
thus far been used to describe opinion, and a frequency distribution, which has 
been used to describe data? Imagine that the 25 names in the social class 
investigation were written on identical cards, the cards were mixed and one was 
drawn at random. What is the probability of obtaining a person in any parti 
cular social class? The frequencies in Table 8-2 can serve as the basis for
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assigning probabilities to each of the five event classes; divide each frequency 
by 25:

Class p
1 0-08
2 0-16
3 0-36
4 0-28
5 0-12

1-00

The original frequency distribution has become a probability distribution that 
applies to the outcomes of a simple experiment. In general, any frequency 
distribution of TV observations can serve as a basis for a probability distribution, 
and when the concept of a simple experiment applies the probabilities are 
assessed by dividing each frequency by the total N.

8.4 Theoretical distributions and populations
Now we bring together the concepts in the two previous sections to 

clarify the notion of a 'population'.

Populations
Suppose our concern is the I.Q.'s of all students presently attending 

American colleges and universities. Imagine that I can accomplish the Herculean 
task of giving every student in the population an I.Q. test. I could then construct 
a frequency distribution, which, because there are so many cases, could be 
smoothed. It might look like this:

IQ

Imagine, now, the simple experiment of selecting a student at random and 
measuring the student's I.Q. We are then justified in changing the frequency 
distribution to a probability distribution. The resulting distribution would look 
just like the frequency distribution, but now it could be used to describe uncer 
tainty about the possible outcomes of the simple experiment. This probability 
distribution now provides a complete description of the population, and so is 
often referred to as the population distribution. The collection of individuals 
whose I.Q.'s were measured is referred to as the population. Sociologists often 
use the term sampling frame instead of population.

Theoretical distributions
Statistical methods place considerable emphasis on populations whose 

distributions can be specified by a mathematical function rule. So far we have
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used functions like the Beta and normal to describe opinion; now we use them 
to describe populations as well. We can, for example, describe the distribution 
of I.Q.'s in the general population of people as being normal with a mean of 
100 and a standard deviation of 15.

It is important to forestall confusion at this point by introducing a new 
term and summarizing some old ones. From now on, if I wish to refer to a 
normal, Beta, or any other probability distribution without reference to its 
application, the term theoretical probability distribution will be used. When a 
theoretical probability distribution is used to describe prior or posterior opinion, 
such terms as 'normal prior', or 'Beta posterior', will serve as convenient jargon. 
When it is necessary to refer to the population distribution, I will say, 'the 
population is normal .

When a population distribution is known it can serve to generate a 
theoretical frequency distribution applicable to simple experiments. The fre 
quency expected in each class interval is obtained by multiplying N, the total 
number of observations in the experiment, by the probability associated with 
the class interval.

Exercise 8-3
The following theoretical probability distribution characterizes a particular 
psychological test that has been in use for many years and has been administered 
to a great many people.

Score interval p
10-14 0-09
15-19 0-24
20-24 0-34
25-29 0-24
30-34 0-09

An investigator administers the test to 200 people. If the sample is random, 
what frequency distribution can he expect ?

Answer
It is only necessary to multiply each theoretical probability by 200. Here is the 
result:

Score Expected 
interval f
10-14 18
15-19 48
20-24 68
25-29 48
30-34 18

Unknown population
Usually, certain aspects of the population are unknown to us; that is why 

an investigation is carried out. We may have a rough idea that the population 
is normal, but we do not know what the mean and standard deviation are, so 
we set up an experiment to find out. The unknown mean and standard deviation 
are treated as uncertain quantities about which we wish to make inferences.
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Suppose I wish to find the mean of a normal population. I consider the 
mean as an uncertain quantity, and I find that my prior opinion about it is 
normal. An experiment is carried out and my posterior distribution is found 
to be normal. Four distributions are involved:

the normal population; 
the normal prior; 
the distribution of the data; 
the normal posterior.

Each of those distributions can be described by statistics. It is common 
practice to use the symbols for the parameters in referring to the mean and 
standard deviation of a normal population, and since the statistics of a normal 
density function are equal to the parameters, the convention will be followed 
here. Recall that the mean and standard deviation of the prior and posterior 
are signified by m and 5, with either a single or double prime. Finally, we will 
refer to the mean and standard deviation of data as M and 5; their calculations 
will be discussed in the next chapter. These symbols are summarized in 
Table 8-4.

Table 8-4 Symbols used to designate statistics of distributions

n- , .. ,. i* Standard Distribution Mean , . _,.deviation

Normal population ^ a
Any prior m' s'
Any posterior m" s"
Any data M S

Usually, though not always, lower case Greek letters will be used to 
designate unknown quantities, lower case Roman letters to designate para 
meters and statistics of distributions of opinion, and upper case Roman letters 
to refer to data.

From now on you will have to pay close attention to the symbols being 
used in order to avoid ambiguity. To see why, consider the values on the hori 
zontal axis of each of the four distributions. For the population, it is the Jif-scores 
of all elements in the population; every possible A'-score is represented. The 
unknown mean of these scores is ^, and it is the value of this quantity we wish 
to infer. Thus, the horizontal axis of the prior shows all possible values of ^. 
When we think of \i with respect to the population, it has only one value, but 
since that value is unknown to us we show it as capable of taking on any one 
of a whole range of values when we represent it on the horizontal axis of the 
prior or posterior distributions. For short, the horizontal axes of the prior and 
posterior are labelled '^-values'. The horizontal axis of the distribution of data 
is, like the population, lvalues. All of this is shown in Fig. 8-9.
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Population
Data

mean — to. 
standard deviation = a mean = M 

standard deviation =

^-values A'-values

Posterior

mean = m
standard deviation = 5

mean = m 
standard deviation = s'

u. values
Fig. 8-9
Distributions and their statistics involved in making inferences about the unknown mean 
of a normal population

Exercise 8-4
What labels and distributions in Fig. 8-9 would be different if inferences about 
the standard deviation of a normal population were being made?

Answer
Neither population nor data distributions would change. However, the hori 
zontal axes of the prior and posterior would read 'CT-values' and the shapes of 
the distributions would be different.
The symbols for the prior and posterior means and standard deviations would be 
unchanged, but their values would be different than before.

Be sure you are clear about Fig. 8-9, and refer back to it whenever 
distributions start swimming around in your head.

8.5 Summary
Theoretical statements must be expressed in operational terms before 

measurements can be made to test the theories. The investigator often has to 
find a balance between a precise operational statement and one that contains 
extensive connotative meaning.

Once operational definitions have been made, the scientist can choose a 
random sample and take his measurements. Because it is so frequently impos 
sible to obtain a truly random sample, the investigator must at least select a
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'haphazard 1 sample and then describe the characteristics of the population for 
which the data might be considered a reasonably random sample.

All the inferential procedures in this book assume that the scientist 
proceeds as if his sample is random. They also assume that observations are 
independent and that the attribute being measured is stable, that is, it does not 
change while measurement is taking place.

Once measurements have been made the raw data are represented in 
tabular form as a function that pairs the element of the population being 
sampled with a measurement. This function can be summarized as an ungrouped 
or a grouped frequency distribution, which shows the number of elements 
falling into each event class. Histograms and frequency polygons are graphical 
representations of frequency distributions. In drawing a graph, one must 
ensure that it does not present a misleading picture of the data. A frequency 
distribution based on a great many observations may be smoothed to give a 
continuous curve. A probability distribution can be obtained from a frequency 
distribution provided the concept of a simple experiment applies.

When a frequency distribution applies to the entire population, then the 
probability distribution derived from it is called the population distribution. 
A population distribution can serve to generate an expected frequency distri 
bution applicable to a simple experiment.

It is important to distinguish between the population distribution, the 
prior and posterior distributions, and the distribution of data obtained from 
the sample.

Problems

8-1 Give at least one operational reformulation of each of the following statements 
(page numbers after each statement refer to sections of McKeachie (1969) in 
which relevant research is reviewed; you may wish to compare your reformulations 
with those of investigators who have conducted research on the topics):

a Live lectures are better than televised ones (pp. 100-109).
b Students do better work in classes where the instructor takes a personal interest 

in students (pp. 197-198).
c Student-centred teaching is more effective than instructor-centred teaching 

(pp. 65-78).
d Small classes are more effective than large ones for bringing about changes of 

attitude (pp. 33-36, 160-167).
e Anxiety interferes with good performance on exams (pp. 198-200).

8-2 A student consults the bank statements for his account to find out how many 
times he was overdrawn in 1971, and for how long each time. He records the 
number of days overdrawn for each occurrence. They were:

1, 4, 1, 1, 5, 1, 3, 10, 3, 6

a Draw a histogram of these data.
b Construct a frequency polygon for these data.
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8-3 Here are the average amounts spent per week on drink and tobacco by 30 students 
during term time:

£1-50
0-50
0
2-00
0
0-25

£0
0
0
0
1-00
0-50

£1-50
0-75
0-50
0
0-25
0

£0-25
0-25
0-50
1-00
0
0

£1-00
0-25
0-35
0
0
0

a Construct a grouped frequency distribution. 
b Draw a histogram. 
c Draw a frequency polygon.
d Which of the three displays that you have drawn conveys the clearest impression 

of the data?

8-4 Students completed a test of religious knowledge and a test of numerical ability 
as part of a laboratory project entitled 'Distribution of Human Variables' 
(the project is discussed in Wakeford, 1968). Here are the frequency distributions 
for scores on the two tests:

Religious knowledge Numerical test 
Score f Score f

20
18
16
13
12
11
10
9
8
7
6
5
4
3
2
1

2
1
3
1
4
1
2
2
4
7
7
1
6
5
6
2

54
52
51
48
47
46
45
43
42
40
39
38
37
36
35
33
32
31
30
28
27
26
25
24

2
3
1
1
1
6
1
4
5
1
5
2
1
2
2
3
3
3
1
1
1
3
1
2

a Draw histograms or frequency polygons for these data.
b How would you describe the general shapes of the two distributions ?
c How might you account for the shapes of the distributions ?

8-5 The students mentioned in Problem 2-1 who carried out a postal survey of 
attitudes to traffic were interested in comparing the percentages of replies in 
each social class with the percentages of people known to be in each social 
class. In that way they could check on the possible under- or over-representation
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of replies from different social classes. The study was carried out late in 1971, 
too soon for the 1971 Census data to be consulted, so they used the 1966 Census 
as the source for social class data in the areas they surveyed. Here is the break 
down of people according to social class as given by the 1966 Census:

o • / j Percentage social class r , of people

1 7-96
2 8-93
3 non-manual 46-79
3 manual 16-12
4 14-18
5 6-02

If the 385 people who responded to the postal survey were representative of the 
social classes given in the 1966 Census, how many people would you expect in 
each social class ?
Compare these expected data with the data actually obtained (Problem 2-1). 
Is there any evidence that the survey was answered by an unrepresentative 
sample of people? (This question will be answered more precisely in Chapter 14. 
See Problem 14-2 at the end of that chapter.)



9 • Computing 
statistics on data

In the previous chapter we saw how to present data in pictorial form; 
now it is time to consider descriptions of data that are even more economical 
than histograms or frequency polygons. These descriptors are called statistics 
and they have the same meaning for data as they do when we use them to 
describe prior opinion. However, we can calculate statistics for data from the 
data themselves, while for prior and posterior distributions they are usually 
either an expression of the scientist's judgement or they are calculated from 
the parameters.

Statistics summarize data. With just a few statistics we can communicate 
long lists of data, short-cut involved descriptions, find meaning in a jumble 
of figures. In addition to describing data, statistics play an important role in 
making inferences. It is always possible to use raw data in applying Bayes' 
theorem, but such a procedure is both cumbersome and unnecessary. If we 
compute the right set of statistics from our data, it is possible to use the statistics 
rather than the original data as inputs to Bayes' theorem, along with prior 
probabilities, to arrive at a posterior distribution. In other words, all the infor 
mation we need from our data to enable us to arrive at a posterior distribution 
is contained in just a few statistics. We don't need all the information in the 
raw data, the information summarized by the statistics is sufficient. Those 
statistics that contain enough information about the data to enable us to 
compute the posterior distribution are called sufficient statistics. Various com 
binations of the statistics covered in this chapter will serve as sets of sufficient 
statistics at one time or another, as will be seen in Chapters 11 and 12. Thus, it 
is necessary to know how to compute statistics on data before inferences can 
be made.

Calculating statistics for data can be a tedious chore if very many obser 
vations are taken. Fortunately various devices are at your disposal to lighten 
the task. You should at least have access to an electromechanical or electronic 
calculator. This is a desk-top machine which, in its simplest form, makes easy 
work of adding and subtracting long columns of figures, and can simplify 
multiplying and dividing. More complex calculators have memories that enable 
you to store for future use intermediate steps in your calculations, and they have 
other mechanisms or circuits that reduce fairly complex operations, like taking
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a square root, to the push of a button. At their most sophisticated, these cal 
culators have several memories of modest capacity and can be programmed 
like a computer.

You may have access to an on-line, conversational-mode computer. This 
facility puts a great many different analyses at the fingertips of the scientist, yet 
he does not need to know anything about computers or computer programming. 
The computer 'talks' in English, through a teletype terminal, asking the scientist 
questions about his data, then asking to be given the data, until it finally has 
enough information to complete the analysis. The scientist has only to choose 
from the computer's 'files' the analysis he wants to have carried out, and then 
to answer the computer's questions. These 'conversational-mode' languages are 
so simple that you can learn to program the computer in a very short time— 
a few hours study is more than sufficient—so that you can write programmes 
for analyses not in the computer's files.

Most readers will have access to a large computer, and a few will know 
how to program it. Standard statistical programmes are available that can be 
used without your knowing how to program, though some knowledge of com 
puter programmers' jargon is usually necessary. At this writing, very few 
Bayesian programmes are available, though one group of authors is preparing 
an extensive set to accompany their forthcoming book (Pratt, Raiffa, and 
Schlaifer, 1965), and several can be found in Schlaifer (1971).

These various aids to computing are now so commonly available that this 
chapter assumes you have access to one. I also assume that you will always 
be working from the raw data. Detailed methods for carrying out hand calcu 
lations, often from grouped frequency distributions, are not presented.
After you have read and studied this chapter you should

be able to calculate, from raw data, the basic quantities that enter into all 
statistical calculations;
know how to find the mean, median, and mode of a set of data; 
know how to calculate the standard deviation of a set of data; 
be able to transform raw data to standard scores; 
understand the meaning of these statistics.

9.1 Making calculations

All the statistics in this and subsequent chapters will be introduced in 
two ways. First, a definition will be given, usually in mathematical form, then 
a calculating formula will be presented. The calculating formula is derived 
from the definition of the statistic, and is expressed in a form that facilitates 
computation on a calculator.

In this chapter, I assume that measurements have been taken on either 
a whole population or a sample from a population. A numerical score is paired 
with each element of the population, or sample, and we will call these numerical 
measurements X-scores. We wish to compute statistics on JV-scores by using 
the calculating formulae.

Calculating formulae in this chapter will contain these three terms only:
, I*2 , N
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The first, £ X, is the sum of all raw scores in the data, £ X2 is the sum of the 
squares of the raw scores, and TV is the number of raw scores.

As an example, consider the scores made by five people on some test.
Subject Scores
\ 3
2 I
3 4
4 4
5 2

The term £ X is obtained by adding the scores; this is shown in the 
table below. In order to find £ X2 , it is first necessary to square each score, 
then to add the squares (see the table). Finally, TV is determined by counting 
the number of scores.

Subject
1
2
3
4
5

X
3
1
4
4
2

X2
9
1

16
16
4

=46 N = 5

Sometimes the formulae require you to calculate (£ X) 2 . For the example 
above, this would be (14) 2 = 196. Be sure you see the difference between 

and
X)2 : add first, then square; 

Jf 2 : square first, then add.

With this little bit of mechanics in mind, we can turn now to more important 
matters.

9.2 Central tendency

When describing a set of data we often wish to know the 'average' so as 
to locate the centre of the distribution. We wish to get an idea of the 'middle' 
of the data, to know some Jf- value that represents the central tendency of the 
data. In this section methods are shown for determining three such A'-values, 
the mean, median, and mode.

Mode
The mode is the X-score that occurs most frequently. For the data above, 

each score occurs just once except the 4, which occurs twice. The mode, then, 
is 4. Notice that the mode is itself a score, not a frequency. You do not neces 
sarily report the frequency with which the mode occurs.

The mode is a useful statistic when the distribution is especially piled up 
over one Jf-score. For example, suppose the air mileage travelled in a year by 
20 people is as follows:
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Person Mileage Person Mileage
A 0 K 0
B 1200 L 0
C 0 M 0
D 0 N 0
E 0 O 4300
F 300 P 0
G 0 Q 0
H 0 R 1750
I 790 S 0
J 0 T 0

A frequency distribution for these data shows that 15 people did not 
travel by air at all. The most frequently observed measurement is 0, so, 
mode = 0.

Median
The median is the middle A'-score, after the scores have been arranged 

in order. For TV ordered scores, count (7V+l)/2 places to find the middle score. 
For example, take these data :

44 54 60 57 43 52 51 47 62

To find the median, arrange the 9 scores in order and then count over to the 
(9+ l)/2 = 5th place to find the median:

5th place 
t

62 60 57 54 (52) 51 47 44 43
I 

median

This procedure is straightforward and will always lead to an observed score 
when you have an odd number of data. But suppose N is an even number; then 
the median falls between two obtained scores. The usual procedure is to take 
the average of those two scores, and report this as the median. Here is an 
example for 10 scores:

=5- 5th place

62 60 57 54 (52 5l) 47 44 43 41
I

,. 51 + 52 median = —-— =51-5

In this case the median may take on a value that is not possible in practice, 
but this is acceptable.

The median is often reported when there are one or two Tar-out' Jif-scores, 
or when the distribution is highly skewed.
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Here, for example, are the incomes of the nine residents of a small, rural 
community, already arranged in order:

$325000 
9600 
9200 
8900
8100 <- median 
7800
77001 . 7700J *- mode 
7600

The mode, 7700, would not be a very good indication of the central tendency 
of these data because only two people earn that amount and it is relatively low, 
but the median, 8100 does describe the group rather better. Note that the 
median is not influenced by the amount of the wealthy resident's income; it 
could have been $9600 or a million dollars. That is the sense in which the 
median is said to be insensitive to extreme values in the data.

Mean

The mean is the average of the ^-scores. It is obtained by adding all the 
A'-scores and dividing by TV, the number of scores. The calculating formula 
for the mean is

N

where M stands for 'mean'. For these data:
X

4
4
3
2
1

I X= 14 

the mean is

M = — = 2-8

Note that for these data the mode is 4 and the median is 3, once again illus 
trating the point that values of the mean, median and mode are not necessarily 
equal.

When many ^-scores take on the same value, it is often convenient to 
compute the mean from an ungrouped frequency distribution. Suppose 25 
subjects are given one-minute trial periods to learn a list of words. This table 
shows the frequency distribution of the number of trials each subject took to 
learn the list so it could be repeated without error twice.
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X, number
of trials f
12 1
11 0
10 1
9 2
8 4
7 1
6 5
5 6
4 2
3 1
2 2

7V = 25

In words, one person required 12 trials to learn the list, one person took 
10 trials, two people needed 9 trials, four people took 8 trials, etc. If we were 
to compute the mean from the raw data we would first add up one 12, one 10, 
two 9's, four 8's, etc. A shorter way would be to multiply each score by its 
corresponding frequency and then sum the products, thus,

xl) + (9x2)+...+(2x2) 

Here is the calculation in tabular form:
X
12
11
10
9
8
7
6
5
4
3
2

f
1
0
1
2
4
1
5
6
2
1
2

Ay-
12
0

10
18
32

7
30
30

8
3
4

N = 25 2* =154

The two quantities we need in order to find the mean are the sums of the middle 
and right columns:

M = — = 6'l6

On the average, subjects took 6-16 trials to learn the list of words.
An appreciation of several interesting characteristics of the mean will 

help you to know when to use it and when not to.
In the first place, the mean uses all the information in the data (excepting 

the order in which the data occurred); it is sensitive to every item of data. 
Contrast this with the mode and median. The mode is totally insensitive to all 
other ^-scores, while the median is sensitive only to the ordering of the data.
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Examples: For the air-mileage-travelled data, the mode of 0 miles would be 
the same even if the data for the 5 travellers had been completely different; the 
mode is insensitive to other values. The incomes of the 8 residents other than 
the median income of $8100 could have been completely different, as long as 
4 were above $8100 and 4 below it; the median preserves only minimal order 
information, and is insensitive to extreme values in the data.

Sometimes this characteristic of the mean rules it out as a good descriptor 
of data. Take the income data again.

$325000 
9600 
9200 
8900 
8100 
7800 
7700 
7700 
7600

I * =391600 
The mean (to the nearest dollar) is,

That number certainly does not convey any sense of the central tendency of 
those data. If someone reported that this community's average income was 
$43511, the reader might draw the wrong conclusion unless he were told that 
one person's wealth inflates the average. The median, which is insensitive to 
extremes, conveys a more accurate picture. Thus, whenever you see data that 
contain an extreme value or two, the mean may not be a good statistic to describe 
central tendency.

A second characteristic of the mean, which makes it useful in problems 
of inference, is that it changes less than the median or mode as different random 
samples are drawn from the same population. If you take several random 
samples and compute the mean, median, and mode for each sample, you will 
find that the mean does not jump around as much as the others do. In other 
words, the mean is the most stable statistic of the three.

A third characteristic concerns the deviations of each score from the mean. 
Suppose we have the five scores shown in the first column of Table 9-1. The 
mean of these five scores is 5. Now consider how much each score deviates 
from the mean ; these deviation scores are also shown in the table. Now compute 
the sum of the deviations, taking account of the signs. It is zero. In general, no 
matter what the raw data are, the sum of the deviations of A'-scores from the 
mean of those scores will always be zero. In short, we say that the sum of 
(signed) deviations from the mean is zero. (I leave it to the interested reader to 
prove this statement.)

This property of the mean is directly related to its being the centre of 
gravity of a distribution. Imagine that the scores in Table 9-1 are shown as 
the histogram of Fig. 9-1. The base of the histogram is a weightless board, and 
each square is a block of wood, each block being of identical weight. In moving
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Table 9-1 Illustration showing that the sum of (signed) deviations from the 
mean is zero

X-scores

2
2
4
7

10

Deviation scores 
X- M

-3
-1
+ 2 
+ 5

I X = 25 I (X - M) = 0

10

Fig. 9-1
Histogram of the data in Table 9-1, showing that the mean is the balance point of the distribution

the knife-edge fulcrum back and forth, we will find that the balance point is at 
the mean of the distribution. This is the point at which the deviations to the left 
of 5 exactly balance the deviations to the right of 5. This same property for 
continuous distributions was shown in Fig. 6-8.

A fourth property of the mean relates to the squares of the deviations in 
Table 9-1. If you take each deviation, square it, and then add the squared 
deviations, the resulting sum will be smaller for deviations taken from the mean 
than from any other number. In Table 9-2 I have shown the sums of the squared 
deviations taken from 4 and from 6. You can see that those sums are greater 
than the sum of the squared deviations taken from the mean. The short-hand

Table 9-2 Illustration showing that the sum of the squared deviations is smaller for 
deviations taken from the mean than from other numbers

X - M (X-

I(X- M)2 = 48

X-4 (X - X - 6 (X - 6)'

2
2
4
7

10

-3
-3
-1

2
5

9
9
1
4

25

-2
-2

0
3
6

4
4
0
9

36

-4
-4

2
1
4

16
16
4
1

16

Z(X- 4) 2 = 53 Z(X- 6) 2 = 53
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way of talking about this property of the mean is to say that the sum of squares 
about the mean is a minimum.

'Best guesses'
A useful interpretation of these measures of central tendency is obtained 

by considering what guess you would make about the outcome of a simple 
experiment performed on the data. Imagine that you have collected the data 
shown in Tables 9-1 and 9-2, and that you are about to choose one at random. 
What is your best guess about the score ?

The answer depends on what is meant by 'best guess'. Suppose you want 
to have the highest possible probability of being correct in your guess. Then 
you would guess a '2', for two elements of the sample have that score, making 
your chance of being correct 2/5 = 040. If you had guessed a 4, or a 7, or a 10, 
your chances would have been only 1/5 = 0-2. Guessing the mode maximizes 
your chance of being correct.

But suppose 'best guess' means that you are to minimize your absolute 
error. That is, if you are wrong in your guess, the difference between your 
guess and the truth is to be as near zero as possible. Then you should guess the 
median, for that is the middle score, and so is as close to every score as a single 
score can get. Any other score may be closer to some scores but it will be dis 
proportionately farther from others. The median minimizes absolute error in the 
guess.

On the other hand, if by 'best guess' we wish to minimize squared error, 
then the mean should be given. We have already seen that the squared distances 
from every score are as small as possible to the mean rather than to any 
other single score, so we say that the mean minimizes squared errors in the 
guess.

For purely descriptive purposes, the median is a very serviceable statistic. 
It often gives a useful description of sample data, and communicates a reason 
able impression of the data. However, the mean is more frequently used in 
inferential statistics. Not only does it change less from sample to sample than 
the median or mode, but it has mathematical properties, such as minimizing 
squared deviations, that make it attractive. Also, it is very often one of the 
sufficient statistics for an inference. Thus, for most of the inferential procedures 
described in Part III, the mean will be the favoured statistic for describing the 
central tendency of data.

Exercise 9-1
Compute the mean, median, and mode for these data:

X f
1 1
5 4
4 2
2 2
1 1
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Answers
For the mean:

X f Xf
1 1 7
5 4 20
42 8
22 4
1 1 1

TV = 10 2 X = 40

mean = M = —r^- = — = 4 
TV 10

For the median:

5
median —-5 + 4 =4-5

For the mode: 
mode = 5

Exercise 9-2
What would be the most appropriate measure of central tendency to report for 
the data shown in Table 8-1 ?

Answers
The information on swimming pools is only nominal-scale data, so it is not
possible to compute a mean or median. You could report the mode: 9 high
schools out of the 15 sampled do not have swimming pools. But it would be
just as appropriate to report that 6 out of 15 do have pools.
For the social-class data, the mode and median coincide at 3. For purely
descriptive purposes, the mode and median would be satisfactory for these
ordinal data. If you can make sense of the mean and you intend to make
inferences based on this sample, then the mean might be appropriate.
The R & D data are fairly skewed and there is one extreme score, the expenditure
by International. Here the median conveys the most accurate picture of the
data, though you could report the modal class interval, 0-24000.
The last two examples are difficult to answer in the abstract. The circumstances
in which you are reporting and the audience you are reporting to should also be
taken into account.

9.3 Variability
Reporting only the central tendency of a distribution of data gives us no 

idea of the spread of the distribution; another statistic is needed for that. We 
shall be concerned with three contenders: the range, the variance, and the stan 
dard deviation.
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Range
A rough guide to the spread or variability of a distribution can be given 

by naming the range of scores. The range of a set of scores is indicated by noting 
the low score and the high score. The range of scores in Tables 9-1 and 9-2 is 
2 to 10. If you report that those scores have a mean of 5 and a range of 2 to 10, 
then you have conveyed more about the data than by giving only the mean.

The range falls down, however, whenever the data include even moderately 
extreme values. To say that the range of incomes for those 9 inhabitants of the 
rural community is $7600 to $325000 is perhaps even more misleading than 
reporting the mean. Another index, less sensitive to extremes is needed. We 
turn to that next.

Variance
What we really need is an index that will tell us how bad our bet is when 

we give one of the measures of central tendency as our 'best guess'. If I give 
the mean, then the average of the deviation scores which were discussed in the 
previous section might be considered as an index of dispersion, for the more 
spread out the distribution is, the larger the deviation scores. The bigger the 
deviation scores, the worse the mean is as a best guess.

The trouble with finding an average deviation score is that the sum of 
the deviations would first have to be found, and we have already seen that this 
sum is zero. No matter how spread out the distribution, the sum of the deviation 
scores about the mean will always be zero, and so the average deviation score 
would be zero.

One way around this difficulty would be to take the sum of the deviation 
scores without regard to their sign. Then an average could be found. However, 
a more common approach, one that yields a statistic that has desirable mathe 
matical properties, is to square each deviation score and find the sum, as was 
done in Table 9-2. The average is found by dividing the sum by N— 1 , rather 
than N, for reasons I will mention in a moment. The resulting average squared 
deviation is called the variance. Its defining formula is:

N-l
For the data in Table 9-2, most of the required computations are shown 

there. The deviation of each score from the mean is shown in the second column, 
and the squares of these deviations are indicated in the third column. At the 
bottom of that column can be found the sum of the squared deviations. Thus, 
for these data, the variance is

5-1 4

The bigger the variance, the more spread out the distribution. Note that a 
variance of zero will occur only when all scores are equal, and that a negative 
variance is impossible.

Now, why take an average by dividing by N— 1 rather than TV? Well, I 
could have used N and many textbook writers do. However, dividing by TV— 1 
makes easier some of the computations required to find parameters of posterior
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distributions, and it does have theoretical justification. When I calculated the 
deviations shown in the second column of Table 9-2, I could have stopped 
after the fourth one, for the next one was determined by knowing the sum 
of the first four and knowing that the sum of all five has to be zero. In other 
words, when talking about deviations from the mean, only TV- 1 of these are 
Tree' to take on any value; once we know the sum of those, the last one is 
'fixed' in that it is constrained to take on a value that will make the total sum 
be zero. We say, then, that there are N— 1 degrees of freedom associated with 
the variance, so we divide the sum by TV— 1 rather than by N.

Calculating the variance is a bit cumbersome using the defining formula. 
We can derive this more convenient calculating formula for the variance of 
a sample:

TV(TV-l)
Let us apply it to the data in Table 9-2. As I indicated earlier, the calculating 
formula involves only three quantities: £ X Z ^2 ' anc* N- We first need to 
find these : X X2

2 4
2 4
4 16
7 49

10 100

TV = 5

Substituting these values into the formula, being careful to distinguish between 
£ X2 and (£ X)\ gives:

= 5(173)-(25)2
5(5-1)

_ 865-625 _ 240 
" 20 ~^0 
= 12

This method, which works from raw scores, gives the same answer as applying 
the definitional formula, which works with deviation scores. That is expected, 
since one formula is derived from the other.

It is worth noting that

can be carried out in one sequence of operations on a calculator without having 
to write down the two parts. And on some electromechanical calculators and 
most electronic calculators, all the steps necessary to find the variance can be 
carried out without your having to store intermediate steps in memory. Take 
the trouble to find out how this is done. It is well worth the effort.

Standard deviation
Suppose the data in Table 9-2 are the number of seconds five rats take
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to run down a simple T-maze. Since the A'-scores are expressed in seconds, 
the deviation scores (X— M) are differences in seconds. Squaring these gives 
units of seconds squared. That is not a very intuitively meaningful unit, so the 
square root of the variance is often taken to restore the units to their original 
form. The square root of the variance is called the standard deviation.

I
V N-l 

The computing formula is

S " N(N-\)

The standard deviation is, of course, also an index of the variability or spread 
of a distribution, but, unlike the variance, it is expressed in the same units as 
the raw data. On some calculators the square root can be taken by simply 
pushing the square root button. If this facility is not available to you, then the 
easiest way to find a square root is to look it up in a table such as that given 
in Appendix J.

Exercise 9-3
What are the range and the standard deviation of the data in Exercise 9-1 ?

Answers
The range of scores is from 1 to 7. Here are the calculations for the standard 
deviation. I have done it two ways, one for deviation scores (defining formula) 
and one for raw scores (calculating formula). Recall that the mean has already 
been determined in Exercise 9-1,-¥-S-«

For deviation scores For raw scores

X f X- M (X- M} 2 (X- M)2/ X2 X2f

3
1
0

_ 2
-3

.92 —

9
1
0
4
9

I(X- M)2 =

2 (X - M) 2

9
4
0
8
9

30

49
25
16
4
1

IX2 =

02 _ N ^

49
100
32

8
1

190
v Y% f ̂  Y\* , -A. V 2* -A )

1 1
5 4
4 2
2 2

N= 10

** = 2.'
N- 1

_ 30 = 10(190) - (40) 2 
~~ "9 ~ 10(9)

= —— = 3 33 ~~90 ~

S = V3T3 = 1-83 S= VT33 = 1 -83
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9.4 Standard scores
An important application of the mean and standard deviation is in con 

verting raw scores into standard scores. We sometimes do this in order to 
compare seemingly incomparable quantities. For example, suppose you take a 
series of aptitude tests, and your scores are as follows:

Test Score
Manual dexterity (MD) 70
Spatial relations (SR) 63
Verbal comprehension (VC) 32
Musical ability (MA) 25

It is certainly true that the scores are in the order
MD > SR > VC> MA

but is that a fair statement about the aptitudes, even if we assume that the tests 
are perfect measuring instruments and the scores are error-free?

To answer that question, we observe that each test has been given to 
hundreds of people in order to establish 'norms', often expressed by giving 
the mean and standard deviation. These norms enable us to establish how 
much better or worse an individual's score is than the average. Let us consider 
first the mean, and the deviation of each of your scores from the mean.

Test Score Deviation

MD 70
SR 63
VC 32
MA 25

mean

63
63
36
19

7 
0

-4 
6

Now we can determine your aptitude relative to the average performance 
of the general population. The deviation scores are in this order:

MD > MA > SR > VC
You scored above the population mean on MD and MA, your performance is 
average on SR, and below average on VC. Notice that the 70 on MD no longer 
looks all that much better than the 25 on MA, for we now see that the mean 
scores on those two tests are high and low, respectively, so that performance 
relative to the mean is above average.

But the deviation scores still do not give us enough information to deter 
mine your relative standing on MD and MA. One more piece of information 
is needed, the standard deviation of the population of test scores. Then each 
deviation can be divided by the standard deviation, which gives a standard 
score, indicating how many standard deviations above or below the mean the 
raw score is.

D i *• Population 0, , , rr , c. Population ~ . ,. . , , Standard Test Score Deviation standardmean , . „. scoredeviation

MD 70
SR 63
VC 32
MA 25

63
63
36
19

7
0

-4
6

7
6
8
3

1
0

-0-5
2
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Now we see that your score on MD is just one standard deviation above the 
mean, while your score on MA is two standard deviations beyond the mean. 
Thus, your score on MA is, relatively speaking, more extreme than your score 
on MD. We could conclude that while your aptitude is better than average in 
both categories, you have a higher aptitude for music than for tasks requiring 
manual dexterity.

The formula for converting a raw score, X, to a standard score, Z, is 
X-M

where M and S are the mean and standard deviation of the Jf-scores. You can 
see that this linear transformation is the same as the standard-score formula 
applied to uncertain quantities. It applies to any distribution whatsoever, for 
it is simply a linear transformation that can be applied to raw data or uncertain 
quantities whenever it is useful to do so. A standardized score (or uncertain 
quantity) shows the relative position of the score in the overall distribution of 
scores.

If all raw scores in a distribution are transformed to standard scores, the 
general shape of the distribution remains the same, but the new mean will be 
zero and the standard deviation will be one. The frequency with which a par 
ticular raw score occurred is just the same when that score is changed to a 
standard score, and so the general shape of the distribution remains unchanged. 
The transformation has the effect of shifting the entire distribution along the 
.Y-axis, and then stretching or compressing the .Y-axis. This was shown in 
Fig. 6-12.

Exercise 9-4
The following table gives the grades a student earned in several mid-term tests, 
along with the class means and standard deviations.

Rank

Test

English literature
French
Linear algebra
Botany

Score

70
65
69
73

order his performance on

Clan?\_sft* t)kJ

mean

58
68
60
75

the four

Class
standard
deviation
12

3
6
4

tests.
Answer
We do not know how well he has done until we see how many standard deviations 
above or below the mean he is, so first we must calculate his Z-scores for each 
test, then we determine rank order on the basis of the standard scores.

Test Z-score Rank
English literature (70-58)/12 = 1 2
French (65-68)/3 = -1 4
Linear algebra (69-60)/6 =1-5 1
Botany (73-75)/4 = -0-5 3
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9.5 Summary
Statistics summarize data in a succinct form that enables rapid and 

efficient communication. Statistics are usually calculated on either an electro 
mechanical or electronic calculator, or on a computer, using formulae that 
facilitate machine calculation. Statistics in this book are first defined and then 
calculating formulae are given. In this chapter, these formulae involve just 
three quantities: £ X, the sum of the scores, £ X2 , the sum of the squares of 
the scores, and N9 the number of scores.

The central tendency of a distribution of scores is indicated by the mean, 
median, or mode. The mode is the A'-score that occurs most frequently, the 
median is the middle score (after all scores have been arranged in order), and the 
mean, M, is the average score :

The mode is useful in describing a distribution that has a high peak over one 
A'-score, while the median is often used to describe data that are highly skewed 
or that contain one or two extreme scores. The mean is most often used in 
inferential statistics; it fluctuates less from sample to sample than the mode 
or median. When each A'-score is converted to a deviation from the mean, the 
sum of the deviations for all scores will equal zero. If the deviations are squared 
and then summed, the sum will be smaller than if the deviations had been taken 
from any other number.

If one score in a distribution is to be chosen at random, the 'best guess' 
about its value is the mode if one wishes to maximize the chance of being 
correct, the median if one wants to minimize absolute error, and the mean if 
one wants to minimize squared error.

Three statistics that quantify the spread or variability of a distribution 
are mentioned. The range is given by the highest and lowest score in the distri 
bution. The variance, S 2 , is defined as the sum of squared deviations from the 
mean divided by N— 1 :

£(*-M)2 
S - N-l

The standard deviation, S, is the square root of the variance.
Standard scores, or Z-scores, can be computed from raw data by using 

this formula :
X-M

These scores show the relative standing of a score in a distribution, and allow 
a score from one distribution to be compared to a score from another 
distribution.

Problems
9-1 For the data given in Problem 8-3 at the end of Chapter 8 
a calculate the mean, median, and mode.
b indicate how one could communicate efficiently an accurate impression of the 

central tendency of the data.
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c discuss the limitations of statistics in conveying a full impression of the data.
9-2 Compute statistics appropriate for summarizing the data given in problem 8-4. 

Justify your choice of statistics.

9-3 Ordinal position of birth, or 'birth order', has been found in several studies to 
be related to certain aspects of personality. Suppose an investigator conducting 
one of these studies asks each of his subjects to indicate whether they were first 
born, second-born, third-born, etc., in their family. He obtains these results for 
20 subjects:
1321
1212
3133
1221
2142

a What are the mean, median, and mode for these data ?
b Why are the three values different ?
c Find the standard deviation of these data.
9-4 An investigator wishes to know if the ability to solve certain kinds of problems 

is affected by field dependence-independence, the extent to which an individual 
making a perceptual judgement is influenced by context. To measure field 
dependence-independence, he gives 35 subjects a task in which they have to 
pick out a simple figure hidden in a more complex one. Here are their scores.

26 6 10 12 7
18 25 21 3 17

12
16
15
10

5
Compute statistics appropriate for summarizing the data. Justify your choice 
of statistics.

9-5 The table below gives the incomes for three citizens (A, B, C) from their respec 
tive countries (X, Y, Z). It also shows the average income in each country, along 
with the standard deviation of incomes in each country. All income figures are 
given in the currency of the country. Which citizen is the richest ? The poorest ? 
Why?

„. . , „ Average StandardCitizen Income Country . , . ..J income deviation

23
0
13
6

15

19
18
19
13
16

19
15
15
26
17

21
13
3

16
8

A
B
C

4000
2000
10000

X
Y
Z

3500
1500

10500

250
500
1000

9-6 Observe and record the total grocery bill for each person coming through the 
check-out of a supermarket. Keep observing until you have recorded the data 
for 40 to 50 people.

a Draw a histogram or frequency polygon of your data.
b Compute statistics appropriate for summarizing the data. Justify your choice 

of statistics.
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prediction

So far discussion has centred on just one variable, which we have usually 
referred to as an JT-score. The past two chapters have been concerned with 
describing a set of J^-scores either in pictorial form as a frequency distribution, 
histogram, or frequency polygon, or in terms of statistics, such as the mean and 
standard deviation. In the next chapter we will see how these descriptors of 
data are used in making inferences.

But before turning to inference, we must consider ways of describing the 
association between two variables, say, A'-scores and T-scores. Scientists are 
frequently concerned with questions of what goes with what, of measuring the 
degree of relatedness between two things. In the early stages of an investiga 
tion, a social scientist may wish to know only whether or not two variables are 
related, and if he finds they are he will next try to learn more about how they 
are related, perhaps eventually determining a function rule that describes the 
relationship.

It is important to recall at this point one of the major themes of Chapter 7. 
When I say that we wish to examine the possible association between two 
variables, I am talking about association predicted by our model of the real 
world. I am not talking about the real world, of which the model is an abstrac 
tion. At the practical level, this means that we will be looking for association 
between two sets of numbers, which we designate X and Y. In this chapter we 
discuss only the association to be found in the numbers that are our data, while 
in Chapter 12 we extend the discussion to include inferences about the popu 
lation itself. But even if we conclude that association in the population of num 
bers is highly plausible, we still have to make a non-statistical inference about 
association between the true properties represented by the numbers. Methods 
for doing this were covered in Chapter 7, though I admitted there that the 
procedures are not entirely satisfactory or complete. Thus, when I talk about 
two variables being associated, I am saying something about pairs of numbers, not 
about the underlying properties. Some textbook writers remind the reader of 
this distinction by referring to 'statistical association', but I forgo this in the 
hope that the distinctions made in Chapter 7 will be borne in mind.

What is meant by saying that two variables are associated ? There are at 
least three interpretations common in statistical usage:
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X and Y are correlated;
Y can be predicted from knowledge of X\
A'and Fare not statistically independent.
When two variables are correlated, we say that values of X are associated 

in a non-random way with values of Y. Rather than use that long phrase, I 
shall say simply that X 'goes with' Y. Different degrees of correlation are 
possible, implying that the relation 'goes with' is less than perfect. We know, 
for example, that I.Q. and school grades are related, that higher grades tend to 
be obtained by the higher-I.Q. children, but the relationship is certainly not a 
perfect one, for some high-I.Q. children earn low grades, and some children of 
modest intelligence earn high grades. In this chapter we will see how to compute 
a coefficient of correlation that indicates the degree to which X 'goes with' Y.

Once we have discovered that X and Y are correlated, it is often useful 
to find a rule that allows a value of Y to be predicted for some value of X. 
Such a rule is called a 'regression equation' and we see in this chapter how to 
compute it.

Perhaps the weakest statement we can make about the association 
between X and Y is that they are not statistically independent. Basically, 
questions of independence are problems of inference, so they will not be dis 
cussed in this chapter but will be taken up in Chapter 14.

A word of warning about what is not meant by association. The statistics 
presented here do not enable us to say that X caused Y. In fact, I know of no 
statistics that specifically quantify causation. It may well be that A" causes Y and 
that is why X and Y appear to be associated, but observing that X and Y are 
associated and even quantifying the degree of association does not by itself allow 
us to say anything about causation. Psychologists may observe that children with 
unusual or odd-sounding first names exhibit more frequent psychiatric disorders 
than children with more common names, but that does not necessarily mean that 
odd names are the cause of mental disturbance. Perhaps children who are 
unwanted are more likely to be given odd names by their rejecting parents, and 
it is the rejection not the name that leads to later disturbance. In general terms, 
X and Y may appear to be related because they are actually related to a third, 
unmeasured variable, Z. Causation must be established by extra-statistical 
argument.

With that brief introduction, let me set out the purposes of this chapter. 
By the time you have completed study of the chapter, including working through 
the exercises and the problems at the end, you should

know how and when to compute a Pearson r and Spearman rho correla 
tion coefficient;
be able to determine a linear regression equation for predicting Ffrom X;
understanding the meaning of a correlation coefficient and of a regression 
equation.

10.1 Making calculations
In this chapter, I always assume that pairs of observations have been 

made on the elements being measured. For example, suppose that the ages of
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five people are noted along with their scores on a test of social conformity. We 
might designate the ages as JT-scores, and the social conformity data as 7-scores. 
The data are recorded like this:

Person

A 
B 
C 
D 
E

Age 
X

40 
20 
50 
60 
30

Social 
conformity 
Y

9
5 
8 

12
7

Each statistic introduced in this chapter will be defined with a formula 
from which a more convenient calculating formula can be derived, as in the 
last chapter. The calculating formula will contain the familiar terms

and their analogues for the Y-scores,

In addition we will need to know the number of pairs of scores, N. One more 
term is required :

This is the sum of the cross-products of the scores, obtained by first multiplying 
the A' and Y scores together for each element, and then summing the products.

Each of these six terms is worked out below for the example. Be sure you 
see how they are determined.

X Y X2 Y2 XY

40
20
50
60
30

9
5
8

12
7

1600
400

2500
3600
900

81
25
64
144
49

360
100
400
720
210

2 X = 200 2 Y = 41 2 X* = 9000 2 Y2 = 363 I XY = 1790 N = 5

Some of the calculations in this chapter require you to find ]T X ]T Y. 
Note that this is not the same as XY.

X £ Y add first, then multiply the sums; 
XY multiply first, then add the products.

For the example just given, £ X £ Y = (200)(41) = 8200.

10.2 Correlation
In this section we see how pairs of measures can be represented graphi 

cally, and methods for quantifying the association between the two variables 
are given. When two measures are made on each element, the data are said 
to be bivariate.
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The discussion will be facilitated if we have some data to illustrate the 
points made. We choose an example in which a moderately high degree of 
association between two variables is obvious: the height and weight of 50 
undergraduate men.

Person Height' %eight> Person Hei*hl' %eight> 
lb in Ibin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

71
71
70
65
74
70
72
67
72
72
66
67
69
68
64
66
71
74
71
64
74
71
67
74
69

120
147
150
148
168
143
160
130
150
130
148
108
144
150
126
140
154
172
168
118
140
140
128
175
149

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

76
72
67
68
72
72
71
69
67
67
67
66
67
72
71
75
64
69
72
70
70
70
67
71
75

175
150
112
140
175
176
126
135
130
122
130
130
143
145
155
189
129
126
160
154
143
140
170
152
175

We have taken two measures on each person, height to the nearest inch, and 
weight to the nearest pound. We know that the taller a person is, the heavier 
he is, generally speaking. Weight and height tend to be associated, though not 
perfectly.

Bivariate frequency distributions

How can this association be shown ? One approach is to summarize the 
data in a frequency distribution which shows both a person's weight and height; 
this is called a bivariate frequency distribution. A convenient representation 
is obtained by constructing a grid, with intervals of height marked off along 
the bottom, and intervals of weight marked off along the edge. Each cell in the 
grid corresponds to a particular combination of height and weight. To make a 
frequency distribution, locate a person's height along the bottom of the grid; 
that identifies a vertical column. Then find his weight along the edge; that 
locates a horizontal row. Now make a mark in the cell that intersects the row 
and column. This has been done in Fig. 10-1 for all the data. As an example, 
take person 1. His height is 71 in, so he is located in the fifth column from the
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180-189 

170-179 

160-169 

150-159 

| 140-149 

130-139 

-*• 120-129 

110-119 

100-109

II

1

III

1

1

1

II

III

II

1

1

11

4-HT

1

1

II

III

4HT

III

1

II

II

1

1

1

II

63-64 65-66 67-68 69-70 71-72 73-74 75-76 
Height f

Fig. 10-1 Personl
Bivariate frequency distribution for the height-weight data

left, as indicated. His weight is 120 pounds, locating him in the third row from 
the bottom. Thus, he is one of the two people represented by ticks in the 
darkened cell.

Bivariate histograms
The frequency distribution of Fig. 10-1 can be turned into a bivariate 

histogram in the following manner. Imagine that Fig. 10-1 is laid on a table, 
and then small wooden blocks are stacked up on the grid, the height of the 
stack on each cell governed by the number of ticks. Thus, the two cells with 
five ticks will each have five blocks stacked on them, the upper right hand cell 
with one tick will get just one block, and so forth.

The result is shown in Fig. 10-2. The midpoints of the intervals have been 
shown along the edges of this diagram. Notice that Figs 10-1 and 10-2 show 
the expected relationships of height to weight. You do not expect to see many 
short, heavy people or tall, thin people, so the upper left and lower right cells 
are vacant. There are not very many short, light people or many tall, heavy 
people, so the lower left and upper right areas contain few ticks or blocks. 
Most people are of middling height and weight, so the blocks pile up in the 
centre of the figure. Finally, the ticks and blocks stretch from lower left to 
upper right, indicating that increasing height goes with increasing weight.
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174-5

164-5

184-5

154-5

144-5

134-5
63-5

65-5 124-5
67-5

69-5
71-5 114-5

73-5
75-5

Fig. 10-2
Bivariate histogram for the height-weight data

104-5

Marginal distributions
Suppose you want to look only at the distribution of height. You could 

construct a histogram by referring only to the height data, following the pro 
cedures of the previous chapter. What relationship would this univariate distri 
bution show to the bivariate distribution of Fig. 10-2? Imagine that the blocks 
in Fig. 10-2 were slid straight away from you, and then were restacked along 
the far edge. For example, the three blocks along the left edge (a single block 
and a stack of two) would be stacked as a pile of three at the left upper edge. 
Next to that pile would be a stack of four, formed by combining the single 
block and the stack of three above the 65-5. The result is called the marginal 
distribution of height, and it is shown in Fig. 10-3.

In like manner, the marginal distribution of weight can be obtained from 
the bivariate distribution by moving the blocks straight to the left. This result 
is also shown in Fig. 10-3.

It is worth pointing out that while marginal distributions can be obtained 
from a bivariate distribution, it is not possible to reconstruct a bivariate distri 
bution from the marginals alone. The marginals tell us only how each variable 
is distributed; the joint or bivariate distribution gives us the extra information 
of how the variables are associated. Thus, when you collapse a bivariate distri 
bution into its marginals, you lose some information.

Scatterplots
Drawing a bivariate histogram is a tedious job, so a simpler representation 

called a scatterplot is usually used. Height and weight, as continuous variables, 
are represented along the X- and 7-axes, respectively. Each person is shown
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Fig. 10-3
Bivariate distribution and its marginals

73-5
75-5 104-5

by a dot in this X- Y space. A scatterplot for the height weight data is shown 
in Fig. 10-4. When several dots fall on top of one another, they are shown side 
by side, for example, three people were 67 in tall and weighed 130 Ib, so they 
are represented as three dots next to each other on the diagram. You might 
compare Fig. 10-4 with Fig. 10-2 to see which representation conveys a clearer 
picture of the data.

Correlation coefficient
Drawing a scatterplot should be routine procedure in the early stages of 

data analysis. Not only does this enable you to get a 'feel' for your data, but, 
as we will see in the next section, it may prevent you from drawing erroneous 
conclusions. However, it is not very practical to communicate your results by 
publishing a scatterplot, particularly if you are investigating several relation 
ships. Nor is it satisfactory to say, 'In my experiment height and weight tended 
to go together, though not perfectly; I have established that there is some
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Fig. 10-4
Scatterplot for the height-weight data

relationship between them.' What is needed is a single measure of the degree 
of association between X and Y.

We have seen in the chapter on functions that two things may be asso 
ciated in many different ways. The relationship between X and Y may be 
described as a power function, an exponential function, a linear function and 
so on. When we talk about measuring the degree of association between Xand Y 
in a correlation problem, we must have some standard in mind, so that we are 
really measuring the degree to which X and Y are related in a power way, or 
an exponential way, or a linear way, etc. For example, anxiety shows a 
U-shaped relation to number of errors in some tasks, as shown in Fig. 10-5. 
Moderate levels of anxiety yield relatively error-free performance, while errors 
are greater when anxiety is low or high. Data from an experiment show some 
scatter, for anxiety is not the sole determinant of number of errors. But we 
assume that if all those other factors could be held constant in the experiment, 
then the 'pure* effects of anxiety would cause all the data to lie along the 
theoretical curve.

Now this may or may not be a reasonable assumption, but the scientist 
often acts as though it were reasonable not so much because he believes it but 
rather because it provides a tolerable approximation to the true state of affairs 
and so simplifies analysis of the data. He proceeds by measuring the degree 
to which the data conform to a U-shaped function. If he finds a fair degree of 
relationship, as is implied by Fig. 10-5, he says that number of errors are a
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U-shaped function of anxiety. He is well aware that they may not be in a 
functional relationship at all, and even if they are, he recognizes that the func 
tion is probably not single-valued, that more than one value of Y may be 
associated with a single value of X. But by specifying the degree to which X 
and Y go together in a U-shaped way, he is communicating a clearer picture 
of the data than can be seen by looking at the raw data.

The number expressing the degree of relationship may be only a pale 
reflection of the truth, but, as we shall see in the section on regression, it is a 
useful reflection, for knowing the state of a person's anxiety gives us a better idea 
of what his test performance will be. Knowing a person's height gives us a better, 
though still imperfect, notion of what that person's weight is. Generally speaking, 
if there is any degree of relationship between A'and 7, then knowing a particular 
value of X reduces our uncertainty about Y. We can predict Y more closely

high

data
theoretical relationship

I

low
low Anxiety high

Fig. 10-5
A U-shaped function

by knowing X than if we did not know it. My guess about the weight of a 
person unseen by me is less likely to be a wild guess if I am told his height.

In developing an index for degree of association, we must, then, assume 
some function rule. But which is it to be? An eminent statistician once quipped 
that all relations in science are constant except for a few that are linear. Well, 
there are not many constants in the social sciences, so most relationships must 
be linear. What he was saying is not so silly as it first sounds, for a linear rela 
tionship is often a tolerable first approximation in social science research. Later, 
more refined, experimentation may tease out the exact form of a relationship, 
but in the initial stages of research a linear function rule may provide a useful 
description.

This chapter focusses on the linear rule, which, you will recall, is given by
Y=A+BX

(Here I write the rule in capital letters, to conform to the convention of letting 
capital Roman letters stand for data and their statistics.) Later we will show 
how the rule can be formulated for scattery data, and we will consider how good 
the rule is for making accurate predictions. But now we turn to a single index 
of the degree to which X and Y go together in a linear way.
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The correlation coefficient (or Pearson product-moment correlation 
coefficient, as it is sometimes called) is usually designated by r and is defined as

AT-1

To compute r for N pairs of X- Y scores we must first transform each A'-score 
to its Z-score equivalent, and each 7-score to its Z-score equivalent. Recall 
that we do this by applying the linear transformation

X-M

We take the resulting N pairs of ZX-ZY scores and multiply the scores in each 
pair together, sum the products, and divide by TV— 1. The resulting r will be 
between —1 and +1, a +1 indicating a perfect direct linear relationship 
between X and Y, a — 1 representing a perfect inverse linear relationship (as 
X increases, Y decreases), and 0 standing for no linear relationship. Inter 
mediate values of r represent varying degrees of linear relationship.

Exercise 10-1
An investigator asks a person to guess the age to the nearest month of five
infants.
Here are the

Baby

A
B*-^ ^
D
E

results :
Actual
age, 
months

3
12
17
22
30

Guessed
age, 
months

6
8

19
18
22

Draw a scatterplot of these data.
Compute the correlation coefficient between actual and guessed age.

Answers
Here is the scatterplot:

30H

3
O

20-

10-

10 20 

Actual age (months)

30
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The data are somewhat scattery, though the person generally guesses higher 
ages for older infants.
To compute Pearson's r, we first convert each score to its Z-score equivalent. 
To do that we must first find the mean and standard deviation of each column 
of data. The steps are set out below:

Actual w

3
12
17
22
30

9
144
289
484
900

Guessed 
age, Y

6
8

19
18
22

Y2

36
64

361
324
484

X = 84 IX2 = 1826

= y = 16-8

Y= 73 I Y2 = 1269

73 MY = 4 = 14-6

-J
= \J

5(1826) - (84) s 
5(5 - 1)

20

-J-y
5(1269) - (73)' 

5(5 - 1)

1016

= 10-2 = 7-13

Note the use of subscripts on M and S to identify the set of data to which those 
statistics belong.
Now Z-scores can be obtained by subtracting the appropriate mean from each 
score and then dividing by the standard deviation. For example, the first 
A'-score, 3, when transformed to a Z-score becomes

3 - MX 3 - 16-8 13-8
10-2

= -1-35

The next step is to multiply each pair of Z-scores, and then divide the products 
by N — 1 to give r. Here are the steps.

X X-Mx Z, Y Y-MY JL*x£i\

3
12
17
22
30

r —

-13-8
-4-8

0-2
5-2

13-2

iZxZy

-1-35
-0-47

0-02
0-51
1-29

_ 3-66 _

6
8

19
18
22

rvo?

-8-6
-6-6

4.4
3-4
7-4

-1-21
-0-93

0-62
0-48
1-04

1-63
0-44
0-01
0-24
1-34

2ZxZy = 3-66

N- 1
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A more convenient formula for Pearson's r, one which facilitates compu 
tation on a desk calculator, is this computing formula:

r =
- ( X)2 xN Y2 -

On the simpler desk calculators you must first find £ X, £ 7, £ A'2 , £ y 2 , 
and £ AT. Then you will find that the entire numerator of the calculating 
formula can be determined by one sequence of operations without writing down 
intermediate steps. Also, the term under each square root sign in the denomina 
tor can be obtained in one sequence of operations. If your calculator has no 
square root button, look these up in tables. That leaves one number in the 
numerator and two in the denominator, a simple chore for the calculator. 
Particularly on electronic calculators, it is often easiest to compute r 2 :

r2 =
- (I *)2 } {N I r2 - (I y>2 }

Then you only have to look up the square root of the result to get r, if the calcu 
lator has no square root button. Be careful not to lose the sign of r in the 
squaring operation. The sign is determined by the numerator; the denominator 
is always positive.

Exercise 10-2
Use the calculating formula to find the Pearson r for the data of Exercise 10-1

Answer
I have set out the calculations in tabular form.

X X2 Y Y2 XY

3
12
17
22
30

9
144
289
484
900

6
8
19
18
22

36
64

361
324
484

18
96
323
396
660

X = 84 I X2 = 1826 2 Y = 73 I Y2 = 1269 I XY = 1493 N= 5

r =

r =

VN 2 x2- (I X) 2 A/TV 2 y2 - (2
_____ 5(1493) - (84)(73) _____ 

\/5(1826) - (84) 2 V5(1269) - (73) 2 

_____ 7465 - 6132 ______ 

V(9130 - 7056) V(6345 - 5329) 

1333 1333
~ V2074 VTo (45-5)(31 -8) 
= 0-92, as before.



210 Correlation and prediction

Interpreting the correlation coefficient
In this chapter, a correlation coefficient is taken as a statistic that describes 

sample data, and as such, it can be computed for any collection of pairs of 
data. However, when one wishes to make an inference about the population 
correlation coefficient, a topic we take up in Chapter 12, then it is necessary 
to assume that the joint distribution of X and Y is bivariate normal in form. 
Although this assumption is irrelevant to the computation of a sample corre 
lation coefficient, one must take it into consideration if inferences are to be 
made.

Even if attention is to be restricted to samples, correlation coefficients 
must be used with great care, for they can easily mislead. A few words about 
what a correlation is and what it is not are in order.

I have already said that a correlation of either — 1 or -hi indicates a 
perfect linear relationship, that 0 indicates no relationship, and other values 
represent varying degrees of linear relationship. In Fig. 10-6 data from six 
experiments are shown as scatterplots, and the value of r is indicated in the 
lower right corner.

The scatterplots should give you a rough idea of the connection between 
amount of scatter and the value of /•. Check your understanding by making an 
intuitive estimate of the correlation of the height-weight data shown in Fig. 10-4. 
The actual value is given in the summary to this chapter.

Notice that it makes absolutely no difference which of the two sets of 
measurements is considered as the A'-variable and which as the y-variable. 
For correlation problems, the distinction between independent and dependent 
variables is irrelevant. If, in Exercise 10-2, I interchanged the labels on the X 
and Y columns of data, the value of r would remain unchanged. We say that 
r is symmetric, that it is an index of the degree to which Y goes with X in a 
linear way and of the degree to which X goes with Y in a linear way.

However, caution is advised in thinking of r as a 'degree' of relationship. 
It is neither a ratio nor an interval-scale number. A correlation of 0-6 does not 
represent twice the degree of association shown by 0-3, and the difference in 
degree of association between 0-8 and 0-6 may be different than that between 
0-5 and 0-3.

The trouble is that there is no absolute meaning we can give to the phrase 
'degree of relationship'. Pearson's r is a statistic, a number that can be calcu 
lated from pairs of data. It is not a probability, a proportion, or a percentage. 
It does not have any very precise intuitive meaning. You can look at Fig. 10-6 
to get an idea of the relation between amount of scatter and the size of r, and 
we can describe the relation in these rough terms:

0-0-2 virtually no relationship
0-2-0-4 low to modest relationship
0-4-0-6 moderate relationship
0-6-0-8 substantial relationship
0-8-1 -0 high degree of association

But this is only a rough guide, for correlation coefficients must be interpreted 
in context. A low correlation that is of little use in one context may be very 
useful in another. A psychological test whose scores show only modest corre-



Correlation 211

•v •
• • • 4*

r= 0-90
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Fig. 10-6
Scatterplots showing varying degrees of correlation
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lations with some criterion of performance may be very useful when used 
along with other tests. Nor does it make sense to talk about the correlation 
between two measures, without specifying the context. What is the correlation 
between I.Q. and success at university? The question is meaningless, though 
one could inquire about the correlation between I.Q. obtained with & particular 
test given under specified conditions to a clearly defined sample of students, 
and some established criterion that may measure a particular aspect of success.

In a way, it is unfortunate that established convention takes r as a measure 
of the degree of association, for more meaning can be ascribed to r 2 , sometimes 
called the coefficient of determination. More will be said about r 2 in the section 
on linear regression, but for now it can be roughly interpreted as an index of 
the strength of association between X and Y. The proportion of variability 
Xand Fhave in common in a linear way is given by r 2 ,* and so 1 — r 2 indicates 
the proportion of variability not shared by X and Y. Thus, a fairly high corre 
lation of 0-7 means that (0-7)2 or only 49% of the variability in one variable 
is shared by the other; 51 % is still 'left over', or 'unaccounted for'.

Remember, too, that r and r 2 refer to a linear relationship between X 
and Y. It is possible for a high degree of association to exist in the data, but 
for r to be near zero. This could come about when the relationship is nonlinear, 
and you can best check for nonlinearity by checking the scatterplot. If you 
can draw an ellipse around the data such that almost all the points are just 
contained in the ellipse, then you probably do not have any very serious non- 
linearity in your data. Ellipses can be drawn around all the plots in Fig. 10-6, 
but the points in Fig. 10-5 are best encompassed by a shape like the outline 
of a curled sausage, not an ellipse. Other statistics, beyond the scope of this 
book, are available to quantify nonlinear association.

Because the correlation coefficient quantifies the degree of linear relation 
ship, any linear transformation of X or Y, or both, will leave the value of r 
unchanged. For example, consider the scatterplot in Fig. 10-4. Suppose I lop 
off the zero from all the weights, so the 7-scale then runs from 11 to 19. That 
amounts to a re-labelling of the scale and does not change the scatterplot at all. 
Suppose further that I subtract, say, 10 from each number on the 11-19 scale. 
That gives a new scale whose range is from 1 to 9, and, again the scatterplot is 
unchanged. These two changes are, of course, nothing more than a linear 
transformation of the old scale:

old

Each original value of 7, or 7old , is divided by 10 and then 10 is subtracted 
to give the new, transformed value of Y. In similar fashion I can transform the 
A'-axis; if 64 is subtracted from each height, the new Jf-scale will range from 
0 to 12. Now, if you go back to the raw data, transforming all heights and weights 
according to these rules, the new pairs of numbers will all be much smaller 
than the original pairs, yet you will get exactly the same value of r if you deter 
mine it from the new pairs as you would have from the old ones. That is why 
making linear transformations of the variables is often useful; it lets you deal 
with smaller numbers, thus easing the work of calculating. Remember that

* However, this is not true when the correlation is between related persons. For these 
genetic correlations r itself, not r z gives the proportion of variance held in common. See 
Jensen (1971).
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although the transformations on X and Y may be different from one another, 
you must use the same transformation on all the lvalues, and the same trans 
formation on all the 7-values.

As I said earlier, it is always wise to draw a scatterplot of your data. One 
reason is to check on possible nonlinearities, but another is to see if there are 
any very extreme points on the plot, for these have the effect of inflating the 
correlation coefficient. Consider an example shown to me by a master's degree 
student who had hypothesized that the more a business firm spent on research 
and development, the more it was likely to receive in royalties. Among other 
analyses, he computed the correlation coefficient between royalty income and
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Royalty income and R&D expenditure in 1965 for corporations in six countries

R & D expenditure in 1965 of corporations for six countries and found that 
r = 0-987. This result seemed to confirm his hypothesis, until the scatterplot 
was examined. It is shown in Fig. 10-7. The data from the USA are so extreme 
that the correlation coefficient is not a very good statistic to describe the data. 
Without the single point for the USA, the correlation for the other five countries 
drops to 0-46. However, further analysis showed that even that figure is mis 
leading, for royalty income and R&D expenditure are related partly through 
their correlation with gross national product. When this effect is eliminated 
(by the use of a partial correlation coefficient, a topic beyond the scope of this 
book), the correlation between R&D expenditure and royalty income drops 
to about 0-2. Thus, what appeared to be a promising relationship at first turned 
out to be almost no relationship at all. The moral: Correlation coefficients must 
be used with care.
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Spearman's rho
In many circumstances data will be in the form of rankings rather than 

numerical measurements. When this is the case, the Pearson r could be com 
puted on the ranks. However, an easier method is to apply the formula for the 
Spearman rho correlation coefficient, applicable when there are no ties in the 
ranks:

N(N 2 -l)
Since N is the number of pairs of data, the only new term is £ D2 . This is the 
sum of the squared differences between the ranks and is found by subtracting 
one rank of the pair from the other, squaring the difference, repeating this for 
all pairs of ranks, and then adding the squares of the differences. Spearman's 
rho is derived from the Pearson r, with ranks used in place of numerical 
measurements, so you will get the same value for rrho as you would if you 
computed r for the ranks.

Exercise 10-3
Eight applicants for a job are independently ranked by two personnel officers. 
A rank of 1 was assigned to the applicant thought to be most suitable, 2 to the 
next most suitable, etc.

Applicant

A
B
C
D
E
F
G
H

Rank 
assigned by 
1st officer

1
7
4
8
6
5
2
3

Rank 
assigned by 
2nd officer

3
5
1
8
4
7
2
6

Do the personnel officers show much agreement in their rankings?

Answer
It is hard to answer the question just by looking at the pairs of ranks. The 
Spearman rho correlation coefficient will give a convenient summary of the 
association between the rankings.

i , i ~> j i Difference^ _ 9 1st ranks 2nd ranks n D 2

1
7
4
8
6
5
2
3

3
5
1
8
4
7
2
6

2
2
3
0
2
2
0
3

4
4
9
0
4
4
0
9

I D 2 = 34
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6 #2
N(N2 - 1)

6(34) _ 204
8(64 - 1) 504 

= 1 - 0-405 = 0-595 

So there is only moderate agreement.

Spearman's rho is sometimes used even when data are in the form of 
numerical measurements. The measurements are used as a basis for ranking 
the elements being measured, and then the Spearman rho is computed on the 
ranks. Imagine, for example, that the 50 people whose heights and weights we 
have measured are put in order, first according to height. We assign the tallest 
person a rank of 1, the next tallest a 2, and so forth. Then we order the people 
according to weight, giving the heaviest a rank of 1, etc. This procedure ensures 
that each person now has two rankings, one on height and one on weight. 
We could now find the Spearman rho correlation between the ranks.

The only problem with this procedure is that our measurements were so 
coarse that some people have the same height. How can ranks be assigned to 
ties? The usual procedure is to assign the average rank to each person in the tie. 
For example, the 2nd and 3rd person are both 75 in tall. They are both given 
a rank of 2-5. The 4th, 5th, 6th, and 7th persons are tied at 74 in. Each is 
assigned a rank of

4+5+6+7 
4

Unfortunately, the computing formula for Spearman's rho given above 
only applies when there are no ties in the data. To compute rrho for tied data 
you must use the Pearson r formula. In this example it obviously would not be 
worth the trouble; one might as well compute Pearson r on the heights and 
weights as on the ranks.

So why use Spearman's rho for data on which numerical measurements 
are made ? There are two reasons. First, if you have no ties, not too much data, 
and no calculator at hand, Spearman's rho can be calculated very quickly to 
give you a rough idea of whether or not there appears to be any association in 
the data. Secondly, sometimes numerical measurements contain no more than 
ordinal information so that computing a Pearson r on the measurements them 
selves may not yield a very meaningful statistic. In this case the Spearman rho, 
computed on ranks, may be more satisfactory. Once again, we see that the 
problem of meaningfulness must be faced when deciding on the appropriate 
statistic.

10.3 Linear regression
Sometimes one may wish to capitalize on the association found between 

pairs of measurements and derive a rule for predicting the value of one variable 
from the other. If we know a person's height, what prediction can we make 
about the person's weight, and how accurate will the prediction be? In this
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section we show how a linear prediction rule can be formulated, we see how it 
is related to the Pearson correlation coefficient, and we present an index that 
shows how accurate the prediction is.

The goal of regression analysis is to find a linear rule for predicting values 
of Y from values of X. Like all linear functions, the equation for the regression 
line is

Ay\ x and BY \ X are the familiar 7-intercept and slope of the line, the subscripts 
denoting that the prediction is from X to Y('Y given A"), the X is the indepen 
dent variable, often called the predictor variable in regression analysis, and Y 
is the predicted value of Y. Notice that the equation does not contain Y itself. 
The best we can do for scattery data is make a prediction of 7, and we want 
that prediction to be as close to the actual value or values of Y as possible.

In other words, we want to pass a straight line through the data of a 
scatterplot so that the line allows us to predict Y from X as accurately as 
possible. Once the equation for the line has been found it can be useful in 
practical situations where prediction must be carried out. Of course, if the line 
was determined for a randomly drawn sample, we may wish to know how 
representative it is of the population regression line; in Chapter 12 we discuss 
methods for making inferences about the regression line.

Now we turn our attention to finding the equation for the regression line 
applicable to the sample. But first we must consider what is meant when we 
say the line allows us to make predictions that are as 'accurate as possible'.

Least squares criterion
Today's newspaper contains advertisements for five houses to rent. The 

number of bedrooms and weekly rent (in pounds sterling) are as follows :
X
No. of 
bedrooms
1
2
3
4
5

Y
Weekly 
rent, £
12
14
30
44
40

These data are shown in the scatterplot of Fig. 10-8(a).
Suppose one of these houses is chosen at random. Before choosing, you 

must guess its rent. What is your best guess about its rent ? You should, rightly, 
ask what I mean by 'best guess'. If I reply that I want a guess that minimizes 
squared error, then you should give the mean of 7, My, which is £28. How 
wrong is that guess? Well, if the house with one bedroom is the chosen one, 
then the guess is wrong by 28-12 = £16. The vertical bars in Fig. 10-8(b) 
show the difference between the guessed value of £28 and each possible true 
value. If each of those discrepancies is squared and then the average taken, the 
result is an average squared discrepancy score, an index of how accurate pre 
dicting the mean is for these data. If the average is taken by dividing by N— 1, 
you will recognize this index as nothing more than the variance of 7, S}. Taking
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the square root restores the original units, and gives us a more useful index of 
how good is the rule 'Predict the mean'. Thus, when we know nothing about X, 
guessing the mean of Y minimizes squared error, and the standard deviation 
of Y is an index of how good the guess is; the smaller SY is, the better the 
prediction.

50-,

„ 40-
c
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Fig. 10-8
(a) Scatterplot. (b) and (c) Deviations of predictions from actual values under two 
different prediction rules: (b) Predict the mean of Y, (c) Predict according to the linear 
regression equation.

But suppose after drawing a house at random I tell you the number of 
bedrooms. If you know the function, the list of pairings of Y with X, then you 
can make a perfect prediction. That would be a good procedure for this example, 
but in general scientists are interested in finding function rules or laws rather 
than making lists of pairings. The usual procedure is to derive a function rule 
for a set of experimental data that are representative of the population, then the 
rule is tested on new data and possibly refined, until finally a rule emerges that 
can be used on any set of data from the population.

So let us confine our interest to a linear rule for predicting the weekly rent
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knowing the number of bedrooms. We need to pass a straight line through 
the data and then use this line to make the predictions. One possibility is shown 
in Fig. I0-8(c). If you are told, for example, that the selected house has two 
bedrooms, then your prediction of the weekly rent will be about £20. Once 
again, the vertical bars represent discrepancies between predicted and true 
values, only this time the bars are shorter, as would be expected. We say then, 
that knowing X has reduced our uncertainty about Y.

But where should the regression line be located? There are an infinite 
number of possibilities, but for some the vertical bars will be longer than for 
others. The criterion commonly used is to locate the line such that the sum of 
the squares of the discrepancies is a minimum. If we took the length of each 
vertical bar, squared it, then added up the squares for all bars, we want the sum 
to be as small as possible. This is called the method of least squares, or the least 
squares criterion. Actually, the line in Fig. I0-8(c) is the least squares regression 
line. If you move it up or down or tilt it in any way you may shorten some 
of the squared discrepancies, but you will increase others disproportionately.

How accurate are our predictions using this new line? Again, we could 
find the average of the squared discrepancies, and if we do this by dividing by 
TV—I, and then we take the square root, we arrive at a standard deviation 
reflecting the amount of variability around the regression line. It is an index 
of the amount of error in our predictions of Y knowing X, and is called the 
standard error of estimate for predicting Y from X\ we designate it 5y(A . Note 
the distinction from SY :

SY standard deviation of Y. An index of error when the prediction rule 
is always to predict the mean;

SY \x standard error of estimate. An index of error when the prediction 
rule is to predict Ffrom A'according to the least-squares regression 
line.

Another way to look at this is to think of
SY as the original variance in 7, and

SY\X as the variance in Y remaining after we know X.
Then we can consider the difference,

SY—SY\X as the amount of variance that has been accounted for by the 
linear regression line.

Thus, the proportion of the original variance that has been accounted for by the 
linear regression line is

O2_o2 o2^Y ^Y\X _ i _ _

Intuitively, you can see that if the data are pretty scattery, then the linear 
regression line will not reduce the original variance very much. The data will 
be so scattered that it will not make much difference whether you just predict 
the mean of Y every time without reference to the A'-scores, or whether you 
use the linear regression line. But you also know that the strength of linear 
relationship in the data is given by r 2 , so you might conclude that there must 
be some relationship between r 2 and the proportion of variance accounted
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for by the linear regression line. There is; they are equal. With a little algebra 
we could show that

S 2 
Y

Rearranging terms gives
<? 2
*Y\X _ 1 -2s2 ~

&Y

Taking square roots of both sides

OO, O y I y — O Y\ 1 — Y
.2

This equation tells us that if we take the original standard deviation of Y and 
multiply by the square root of 1-r 2 , we get the standard error of estimate. 
We know that if our linear prediction rule is a good one, SY \ X will be small 
since it is an index of how good our linear-regression predictions are. You can 
see from the equation that SY \ X will be small only if \/l— r 2 is small, so the 
closer V 1 — r 2 is to zero the more perfect our prediction will be.

It is instructive, as a means of getting a better understanding of the
Pearson r, to see how big r must be for ^J \ — r 2 to be small. 

r Vl - r 2
1-00
0-99
0-95
0-9
0-8
0-7
0-6
0-5
0-4
0-3
0-2
0-1
0

0
0-14
0-31
0-44
0-60
0-71
0-80
0-87
0-92
0-95
0-98
0-995
1-00

The table shows that r must be quite near 1 for ^/l — r 2 to be near zero. Even 
with a fairly high correlation of 0-8, we see that SY \ X is 0-6 of the original SY . 
In the area of mental testing, correlations no higher than 0-5 are very common. 
In these cases, more than 87 % of the original standard deviation is still left, so 
you can see that low correlations imply very little improvement in predictions 
by the linear regression line.

Exercise 10-4
How good is the linear prediction rule in Fig. 10-8(c)? What is the standard 
error of estimate for predicting Y from XI



220 Correlation and prediction

Answer
One way of expressing the 'goodness' of a prediction rule, is to quote the value 
of the standard error of estimate. But unless we also know 5y, we do not know 
if SY \x is substantially smaller. Perhaps a more useful approach is to quote r 2, 
for this gives the proportion of the original variance in Y that has been accounted 
for by the linear rule. Here are the calculations for r 2 .

X Y X2 Y2 XY

1
2
3
4
5

12
14
30
44
40

1
4
9
16
25

144
196
900
1936
1600

12
28
90
176
200

2 * = 15 2 Y = 140 2 X2 = 55 2 Y2 = 4776 I XY = 506 
(N I XY - 2 X I Y)2r* =

{NIX2 - (I X)*}{N IY2 -(Z Y)2}
(5(506) - (15)(140)} 2 

(5(55) - (15) 2}{5(4776) - (140) 2} 
(430) 2 184,900

(50)(4280) 214,000
= 0-864

Thus, 86-4% of the original variability in Y has been accounted for by the linear
relationship to X.
In terms of the original standard deviation, SY, we must multiply that by

Vl - r 2 = Vl - 0-864 = \/0-136 = 0-369 
to get the standard error of estimate:

SYlx = SY V\ - r 2 = 5y(0-369) 
The original standard deviation of Y is

Sy = /N^Y2 - (2 Y) 2
N(N - 1)

5(4776) - (140) 2 723,880 - 19,600j*
5(4) V 20

20 ) = 14 '6 

And so,
SY u = 14-6(0-369) = 5-4

Only a little over one third the original standard deviation is left.

Equation of the regression line
We have already pointed out that the equation for the regression line 

for predicting Y from X is

The values of AY \ X and BY \ X are chosen to meet the least squares criterion, and
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they can be computed from the raw data. The formulae are expressed in terms 
of various 'sums of squares', abbreviated 'SS\ defined as follows:

Abbreviation Definition Computing formula
\r v y2 __ i^ v\2

CO _ ^ i V \* \2 7V ^- -^ OOixx

= I(Y-MY)

N
-(2 Y)2
N 

SSXY = 2(X- Mx)(Y- MY) = — ? V1
N

Each sum of squares involves the deviation of one quantity from another. The 
first two are concerned with the deviations of A'-scores and F-scores from their 
respective means, the third deals with cross products of X and Y deviation 
scores, and the fourth involves the discrepancies between predicted and true 
values of Y.

The slope of the regression line for predicting Y from X is

Substituting for the two sums of squares gives this computing formula :

The 7-intercept of the regression line is

Thus, you must compute the mean of X, the mean of F, and the slope of the 
regression line before you can find A Y \ X .

When carrying out a regression analysis you will probably wish to know 
the standard error of estimate. It is given by

SY\X 7 ~. ~. ^f WT 
M —error 

N-l

Finally, once you have determined all these sums of squares, it is an 
easy matter to compute the Pearson correlation coefficient:

SSX y

v

Exercise 10-5
Find the equation of the regression line for predicting weekly rent from number 
of bedrooms. (The data are given in Exercise 10-4.) Then find SY \x and r.
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Answer
The first step is to find the five fundamental quantities, 2X2 X2, 2
2 y2, and 2 AT. We did that in Exercise 1(M.

2 *= 15 2 y = 140
2 *y = 506

2 A- 2 - 55 2 y2 = 4776
Next we find the sums of squares:

_ TV 2 X2 - (2 X)2 _ 5(55) - (15) 2 _ 50 
SSxx - — jj - ^ - y -

_ TV 2 y2 - (2 y)2 5(4776) - (140) 2 = 4280
~ TV ~ 5 ~~ 5

5(506) - (15)(140) 430 Of
= —^- = OO

~ TV " 5 5
Now we compute the slope : 

SSXY 86B" 1X = ss x̂ = io = 8 6
and then the y-intercept:

y4y| X = My — BY\xMX

= 28 - 8-6(3) = 2-2 

Thus, the equation for the regression line is
P=2-2 + 8-6* 

To find the standard error of estimate, we first find 55p_

= 116-4

— error —
OOjfX

1164
10 10 

This gives:

SY\X —
4

Interpreting the regression line
Once we have obtained the equation for the regression line, we are in a 

position to predict Y from X. If I tell you that a house has three bedrooms, 
then your prediction of the rent is:

F= 2-2 + 8-6* 
= 2-2+ 8-6(3) = 2-2+ 25-8 
= £28
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But remember that the equation applies only to the data on which it is based. 
As long as we treat the regression equation as a descriptive statistic, then we 
do not have to assume anything about the distributions of X and Y, or about 
the level of measurement, or about the way the data were obtained. We will 
have to make some assumptions when we come to make inferences about the 
population regression line, and some assumptions are different from those made 
when we wish to make inferences about the population correlation coefficient. 

It is worth pointing out that we could just as well have taken Y as our 
independent variable so that we would predict number of bedrooms from 
knowing the rent. (A word of caution: we do not have this freedom to inter 
change X and Y if we wish to make inferences about the population regression 
line; more about this in Chapter 12). The slope of the regression line for pre 
dicting X from Y is

the ^-intercept is
AX\Y = MX -

and the standard error of estimate for predicting X from Y is

-error

where SS*_error =

VSSff-ern 
N-\

XX) — (SSXY)
ssYY

Exercise 10-6
Find the equation of the regression line for predicting number of bedrooms 
from weekly rent (data in Exercise 10^). Also find SX \ Y .

Answers
The slope of the regression line is

The .Y-intercept is
AXIY = MX - BXIY MY = 3- 0-1(28) 

= 3 - 2-8 = 0-2

So the equation is
X = 0-2 + 0-1 Y 

Finally, the standard error of estimate is

_ fSSx_etror = 11
-v N-I v

164/856V^
= 0-58
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It is interesting to see that the two regression lines, for predicting Y from 
X, and X from 7, are different (see Fig. 10-9). That is usually the case, so 
obviously we cannot interpret the regression line as representing the linear 
relationship in the data even if one exists. There may be a true linear functional 
relationship between X and 7, but it will not generally coincide with either 
regression line. The regression equation is a model of our predictions, and is only 
one way of looking at the true relationship in the data.

y Regression line for predicting 
50-1 XfromY \

40-
^

V
5 , n (Mx , M Y ) S ^

•)U ' -^ Regression line
for predicting y from .V 

20-

10-

V_________
012345 

No. of bedrooms
Fig. 10-9
Two regression lines. Note that they intersect at the 
mean of A" and the mean of \

It is possible to show that the square root of the product of the two slopes 
of the regression lines is equal to the correlation coefficient:

Suppose one wishes to predict standard scores, not raw scores. What is 
the regression equation for predicting Zy-scores from Zx-scores ? Here it is :

Zy = rZx

Or, if we wish to predict in the other direction, 
Zx = rZY

This formulation has a curious consequence. Suppose I wish to predict a child's 
I.Q. from one parent's I.Q., and let us suppose that the correlation between 
the I.Q.'s of parent and child is about 0-5. Now the regression equation for 
standard scores says that if the parent has an I.Q. two standard deviations 
above the mean, then our prediction for the child's I.Q. will be

Zy = rZx = (0-5)(2) = 1
In other words, while the parent is two standard deviations above the mean, we 
predict that the child will be just one standard deviation above. You can see 
that because r is always less than one, the predicted Z-score will always lie 
closer to the mean than the Z-score of the predictor variable. We predict that 
intelligent parents will sire less intelligent children. This effect has been called 
the 'regression toward the mean'. It is important to realize that this effect
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describes our predictions and may or may not be true of the underlying rela 
tionship. When we agree to model our predictions according to a linear rule, 
one consequence is that our best guess about Y is that it lies closer to the mean 
of the F-scores than X lies to the mean of the A'-scores. That is true of our 
guess, but it may or may not be true of the actual state of affairs. I predict that 
bright parents will have less bright children, but that does not mean that the 
children must be less bright than their parents.

Regression toward the mean is a consequence of the linear prediction 
rule employing a least-squares criterion for 'best guess'. As it happens, some 
biological traits, I.Q. included, do appear to exhibit regression toward the mean. 
Children of intelligent parents are more frequently than not, less intelligent 
than their parents. On the other side of the mean, we predict that children of 
low-I.Q. parents, will be more intelligent than their parents. But one should 
remember that this regression effect is not always a characteristic of the real 
world.

10.4 Summary
Two ways of looking at the association between pairs of measures is to 

compute a correlation coefficient or to determine a regression line. The corre 
lation coefficient quantifies the degree to which two variables, say X and 7, 
go together in a linear way, while the regression line allows predictions of Y to 
be made from knowing X. Neither approach says anything about X causing Y, 
or vice versa.

In this chapter, both approaches are treated as descriptive of the data 
obtained, and calculating formulae are given in terms of £ X, £ X2 , £ 7, 
£ Y\ £ XY, and N.

When two measures are taken on each element, the data are said to be 
bivariate; they can be shown graphically as a frequency distribution, bivariate 
histogram, or, more usually, as a scatterplot. The distribution of X and Y is 
referred to as the joint or bivariate distribution, while the distributions of X 
or of Y by themselves are called marginal distributions.

The Pearson product-moment correlation coefficient, r, quantifies the 
degree to which X and Y go together in a linear way. It is defined as

where Zx and Zy are the standard scores corresponding to the X and Y raw 
scores. The correlation coefficient can take on values from -1 to +1, with 
+ 1 indicating a perfect direct linear association, 0 representing no association, 
and — 1 standing for a perfect inverse linear relationship. Intermediate values 
of r represent less than perfect relationship. For example, the correlation 
coefficient for the height-weight data shown as a scatterplot in Fig. 10-4 is 
0-67, indicating a direct but less than perfect relationship. There is no sense in 
which we can talk about the relationship between X and 7, for a correlation 
coefficient can only be interpreted in the context of a particular situation or 
experimental setting. The square of the correlation coefficient, r 2 , gives an index 
of the proportion of variance shared by X and Y; it gives the proportion of 
variance of Y that is accounted for by the regression line for predicting Y
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from X. A linear transformation of either X or K, or both, leaves the value of 
r unchanged, a fact that can simplify calculations. It is wise to check the data 
for any extreme values as these can cause correlations that are misleadingly high.

Another index of correlation, one that is derived from the Pearson r and 
that applies to ranked data, is the Spearman rho. It is useful for ordinal data 
and for making quick checks of the degree of association when numerical 
measurements have been made at the interval level or above. However, if ties 
are present in the data, Pearson's r must be computed.

In regression analysis a linear prediction rule is determined:

The more scattery the data, the bigger will be the discrepancy, on the average, 
between the predicted and true values of Y.

It is usual procedure to find values of A Y \ X and BY \x tnat minimize the 
sum of the squares of these discrepancies. This is the least-squares criterion, 
and it leads to these values:

ssxx N £ x2 - £ x)
= My - BYIX MX

The standard error of estimate, SY \ X , is an index that is related to how 
wrong predictions made with the regression line are. It is the standard deviation 
of the y-scores once A' is known and is related to the original standard deviation 
of Y and to the correlation coefficient :

The closer r is to — 1 or to +1, the smaller SY \ X is, and when r = 1, SY \ X = 0, 
for then there is no error in prediction.

One consequence of linear regression is 'regression toward the mean', an 
observation that predicted scores are always closer to the mean of the y-scores 
than the predictors are to the mean of the A'-scores. This can be seen in the 
regression equation for standard scores:

Zy = rZx

It is important to remember that when inferences are to be made about 
the population correlation coefficient or the population regression line, certain 
assumptions must be met that are not necessary when r and the regression line 
are treated as descriptive statistics. Also, one cannot say that a regression line 
represents the linear relationship in the data even if one exists. Linear regression 
is a model of the process of making predictions.
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Problems

10-1 Alpert and Haber (1960) have constructed an Achievement Anxiety Test (AAT) 
that measures the anxiety an individual feels in testing situations. The AAT 
contains two scales, one for anxiety that facilitates test performance, and one 
for anxiety that has a debilitating effect on performance. Here are the scores I 
obtained for 35 men on the two scales of a slightly modified version of the AAT:

Debilitating Facilitating
Subject anxiety anxiety

score score

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

30
22
23
22
23
18
35
22
22
18
19
16
26
25
21
36
19
12
17
18
22
26
19
16
14
28
29
20
22
17
18
25
11
18
32

21
19
27
26
24
32
20
30
26
23
25
31
26
24
29
20
31
34
21
28
28
19
27
36
23
28
25
29
21
27
27
27
31
23
25

a Draw a scatterplot of these data.
b Compute the Pearson correlation coefficient between the two sets of scores.
c How would you interpret your result for these data!
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10-2 Twenty students estimated the amounts they had spent per week on drink and 
tobacco and also on books, stationery, journals, newspapers, etc. Here are the 
results:

Student A mount on A mount on 
drink, etc. books, etc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0-50
0-50
0-15
0-75
1-50
0-50
0-15
0-75
0-50
1-00
0-90
0
0-25
0-75
0
2-00
1-50
0-25
2-00
0

3-00
0-75
0-50
2-25
2-50
2-00
1-00
1-25
1-50
0-25
0-30
3-00
0-40
0-50
3-00
0-50
1-00
1-00
0-50
0-25

Compute the Pearson correlation coefficient for these data.
How would you interpret the result ?
Comment on the suitability of the Pearson r for these data.

10-3 For the data above, find the linear regression line for predicting the amount 
spent on books, etc., from the amount spent on drink, etc. Is this a very useful 
equation ? Why or why not ?

10-4 In 1927 Thurstone presented 266 University of Chicago students with all 
possible pairs of 19 criminal offences and asked each student to indicate the 
more serious offence. Applying his theory of comparative judgements, he con 
structed a scale of relative seriousness of offences based on the paired-comparison 
data for the whole group of students. In 1966, Coombs repeated the study 
using 369 University of Michigan students. Scale values for the two studies 
are as follows:

Scale values
VX//Cf«,C

Homicide
Rape
Kidnapping
Arson
Assault and battery
Abortion
Burglary
Embezzlement
Adultery

1966

100-0
86-6
79-1
64-3
63-6
45-62
45-2
42-0
41-7

1927
96-4

100-0
67-1
61-7
45-0
69-3
46-1
50-6
64-2
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Scale values

1966 1927

Perjury 39-8 51-2
Larceny 38-8 40-5
Seduction 37-5 69-4
Counterfeiting 37-4 49-9
Forgery 33-5 47-7
Smuggling 30-7 33-6
Libel 30-6 34-3
Receiving stolen goods 17-4 30-5
Bootlegging 13-0 31-5
Vagrancy 0-0 0-0

Note that the least and most serious crimes for each scale have arbitrarily been 
assigned values of 0 and 100, respectively. This means that changes from 1927 
to 1966 are relative, so we cannot tell whether a crime has become more or less 
serious since 1927. We can, however, make statements about the change in 
position of a crime relative to others on the same scale. For example, relative 
to the other crimes, sex offences are judged to be less serious in 1966 than in 1927. 
We cannot say that sex offences in 1966 were less serious; maybe sex offences 
were just as serious in 1966 as in 1927, but other crimes became more serious. 
Of course, if some way could be found to equate two points on one scale with 
two on the other (as we do in measuring temperature) then we could tell whether 
a crime has become more or less serious.

a Compute the Pearson correlation coefficient between the scale values of the
offences.

b How would you interpret the result ? 
c Compute the Spearman rho correlation coefficient. 
d Compare the Pearson and Spearman coefficients. How do you account for the

difference ? 
e Comment on the suitability of these coefficients for these data.
10-5 To find out if prices in Great Britain rose faster than incomes for the five years 

from 1965 to 1969, an economist noted the percentage growth (using 1955 
figures as a base) for average weekly earnings and for retail prices. Here are the 
data (taken from Sillitoe, 1971):

Per cent increase in

Year A verage weekly Retail 
earnings prices

1965
1966
1967
1968
1969

181
187
199
213
231

139
143
147
155
164

Compute the Pearson r correlation between the per cent increases for earnings 
and for prices.
Compute the slope of the linear regression line for predicting price increases 
from earnings increases. Interpret the meaning of the value in the light of the 
original question.
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11 • I nf erences 
concerning one 
uncertain quantity

At last we are ready to consider in detail how inferences can be made about 
uncertain quantities and hypotheses. The four chapters in Part III are all con 
cerned with the technology of making inferences, the main topic of this book. 
It has taken ten chapters to arrive at this point. In the first three chapters we 
had to learn the language and grammar of uncertainty before we could talk 
about inference. Next we saw that to make an inference about an uncertain 
quantity, one first decides how to measure the attribute or property of interest 
(Chapter 7), then prior opinion is quantified as a probability distribution 
(Chapter 6), next a sample is drawn (Chapter 8) and the sufficient statistics 
calculated (Chapters 9 and 10), and only then is Bayes' theorem applied. We 
saw in Chapter 4 how Bayes' theorem operates but from now on only the 
results of applying Bayes' theorem will be given, for its operation on continuous 
distributions requires mathematics beyond the scope of this book. The end 
results are, fortunately, easily understood.

At the risk of seeming to be repetitious, let me say again that our inferences 
will apply to measurements, not to attributes. For example, anxiety about 
testing situations is an attribute of people. If I use the Alpert-Haber (1960) 
Achievement Anxiety Test (AAT) to measure test anxiety, then the resulting 
scores are measurements. If the AAT is a good measuring instrument, then the 
scores should bear a close relationship to test anxiety; differences from one 
person to the next in test anxiety should be reflected in differences in scores on 
the AAT. The important point to keep in mind is that inferences are made about 
AAT scores, not about test anxiety. The best we can do is, say, find the 99 % 
credible interval for the mean of the test scores for the population. But that is 
not an inference about test anxiety itself. Any inferences I may wish to make 
about test anxiety require extra-statistical information, such as the reliability 
and validity of the AAT and the conditions under which the AAT was adminis 
tered, and other considerations mentioned in Chapter 7.

With that caution in mind we can turn now to the kinds of inferences 
covered in this chapter. Discussion will centre on uncertain quantities that 
involve just one variable. Specifically we will talk about inferences concerning 
medians, means, standard deviations, and proportions. For some procedures 
we will assume that prior opinion is quite vague, or that the principle of stable 
estimation applies, and that we know very little about the shape of the popula-
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tion distribution. Other procedures will make more assumptions about the 
population, and will allow for prior opinion that is not vague.

For all procedures the goal is the same: to arrive at a posterior credible 
interval for the uncertain quantity in question.

The material presented in this chapter should enable you to
make inferences about population medians, means, standard deviations,
or proportions;
know when to use which inferential procedure;
understand the results of similar non-Bayesian analyses.
If you are feeling lost at this point, I suggest you go back and re-read 

Sec. 6.1 of Chapter 6 to restore some perspective.

11.1 Inferences about medians
In the early stages of an investigation, when you are pretty vague about 

the distribution of scores in the population, knowing neither its general shape 
nor its mean and standard deviation, it is often appropriate to make an inference 
about the median of the population. A very simple procedure for doing this 
has been provided by Jeffreys (1961). Let me illustrate with an example.

An investigator interested in how people form concepts devises a new 
experimental task, a series of games that a person plays with a computer. The 
experimenter hopes that the task is moderately difficult, but he is unsure, for 
he has tried it out on only a couple of colleagues and one secretary. Any score 
from 0 to 50 is possible, and he wants to know what the central tendency is for 
scores that would be obtained by the general population of students at his uni 
versity. His prior opinion concerning the population median is very vague. He 
selects 25 volunteer students at random, and has them play the computer 
games. Their scores are as follows:

8, 17, 26, 20, 27, 24, 41, 24, 21, 26, 31, 29, 31, 
16, 21, 22, 27, 30, 42, 44, 31, 50, 29, 26, 34

The Bayesian analysis is based on just two assumptions:
that the prior distribution concerning the population median is uniform; 
that the population distribution is symmetrical,

that is, its right and left halves are mirror images. Our investigator feels that 
both of these are reasonable. He is very vague about the population median and 
he thinks it unlikely that the distribution is skewed. His very limited pre-testing 
leads him to believe the latter. Further, a histogram of the data looks like this:

5 12 19 26 33 40 47
That looks reasonably symmetrical, so the population probably is, too.
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Now he rank-orders the data. He carries out this ranking because the 
posterior distribution will extend over the 25 ranks rather than the scores

Rank Score Rank Score Rank Score

1
2
3
4
5
6
7
8

8
16
17
20
21
21
22
24

9
10
11
12
13
14
15
16

24
26
26
26
27
27
29
29

17 30
18 31
19 31
20 31
21 34
22 41
23 42
24 44
25 50

themselves, so that a credible interval will indicate how likely the population 
median is to fall between any two ranks. For sample sizes of at least 20, the 
posterior distribution concerning the ranks is approximately normal with

„ posterior mean = m =

posterior standard deviation = s" =

Now, what does this tell us? Well, computing say, the 95% credible interval 
tells us that there is a 95% chance that the population median falls between 
the scores whose ranks are given by rank low and rankhigh . To find those limits 
we travel up 1 -96 standard deviations from the mean, and down that far, too.

^ 26 ,^ rank = —— + 1-96 —— = - + 1-96high —— ——

= 13 + 1-96(2-5) = 13 + 4-9 
= 17-9

1Q . 26 v/25 ranklow = -y- - 1-96 — = — - 1-96 ——

= 13- 1-96(2-5) = 13-4-9 
= 8-1

Now we know that the 95% credible interval runs from 8-1 to 17-9. In other 
words, there is a 95% chance that the population median falls between the 
score whose rank is 8-1 and the score whose rank is 17-9.

But those ranks do not correspond to actual observations, so it is neces 
sary to interpolate* to find the scores that would go with those ranks, if such 
ranks were possible. What score corresponds to a rank of 8-1 ? The score for 
rank 8 is 24, and for rank 9 it is also 24, so 8-1 must have a score of 24. And 
what about 17-9? Here is the interpolation diagram:

* Interpolation is explained in Appendix I.
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Rank Score

0-9 < 
7.9 J ——

* r\ >

, , h
————— —— ̂ —30-9

i I*

So the score is 30-9. Now we can say that there is a 95 % chance that the median 
falls between a score of 24 and a score of 30-9. More briefly,

p(24 < median < 30-9) = 0-95
(Incidentally, I made up these data by random drawings from a population 
whose median was 25, so you can see that the inference contained the true 
value.)

Be sure to remember the assumption that is made: the population distri 
bution is symmetrical. Note also that the posterior distribution is approximated 
by a normal distribution, though the approximation is quite good as long as 
TV is at least 20. Even with samples as small as 10 the approximation gives high 
and low ranks off by only about 0-2, and in the conservative direction at that. 
In other words, if your sample size is only 10, the posterior credible interval 
you compute for a normal distribution will be slightly too large.

What can be done if the population is not symmetrical ? One approach 
is to transform the data so that the transformed variable is symmetrical. This 
will be discussed in the last section of this chapter.

Exercise 11-1
An investigator administers to a random sample of 16 housewives a question 
naire measuring attitudes toward the church. Here are the scores (the higher 
the score, the more favourably a person views the church):

18, 19, 13, 23, 18, 11, 18, 15, 
17, 18, 21, 11, 17, 9, 6, 22

What is the posterior 99 % credible interval for the population median ? Assume 
a uniform prior.

Answer
If the investigator feels that the population distribution is symmetrical, then he 
proceeds as follows:
Arrange the scores in order.

Rank Score Rank Score

16 9 18
2 9 10 18
3 11 11 18
4 11 12 18
5 13 13 19
6 15 14 21
7 17 15 22
8 17 16 23
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b Find the posterior mean and standard deviation.

__ ~2~ 2

Find the limits of the 99 % posterior credible interval for the ranks. Remember 
that 99% of a normal distribution is found between ±z = 2-58.

rank low = 8-5 - 2-58(2) = 3-34 
rankhigh = 8-5 + 2-58(2) = 13-66

Find, by interpolation, the scores that would correspond to those ranks. 
First, the low score: Rank 3-34 falls between ranks 3 and 4, but both those 
ranks have scores of 11, so the 3 -34th rank must correspond to a score of 11. 
Next, the high score:

0-66 < 
13-66-i ——

>1 2<

\

** 1
19-1- 1-32 = 20-32

Thus, the credible interval for the median extends from 11 to 20-32, that is, 
p(\l < median < 20-32) = 0-99

We are 99% sure that the population median falls between 11 and 20-32. 
(Actually, these data were randomly drawn from a symmetrical population 
whose median was 15.)

11.2 Inferences about means
As the informal aspects of an investigation proceed, the experimenter 

usually becomes less vague about the population distribution. In this section 
we present two methods for making inferences about means, both of which 
assume that the population is normally distributed with respect to the quantity 
being measured. One of these procedures makes the additional assumption, 
not too common in the social sciences, that the variance of the population is 
known. We turn to that first because it illustrates clearly and with minimum 
fuss how inferences about means can be made for a normal population.

Inferences about the mean of a normal population whose variance is known
In the physical sciences, variability of measurements is often associated 

only with the measuring instrument. The underlying property is assumed, often 
for good theoretical reasons, to be stable and unvarying, but the measuring 
instrument introduces some error because it has limited precision. If the device 
has been properly calibrated, then the type and extent of error is known. In 
many instances the slight fluctuations from one reading to the next can be 
described as being normally distributed with a variance of a2 whose value is 
known. Thus, when some unknown quantity is being measured, the population 
of possible readings has an unknown mean, whose value we are trying to dis-
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cover by carrying out the measurements, but with a known variance, a 2 , due 
to the measuring instrument. In these cases, then, it makes sense to infer the 
population mean when the population variance is known.

Frankly, I cannot think of any very plausible counterpart in the social 
sciences. I suppose it is possible to assume that some psychological test that 
has been given to thousands of people might be administered to a new popu 
lation in an effort to find the mean for this population, and that there is no 
theoretical reason to believe that the variance in this new population is any 
different from the population variance known from the previous work. In this 
case, perhaps one could say that the population variance is known while the 
mean is unknown. I will admit the possibility, but say that such instances are 
fairly rare.

Nevertheless, I want to talk, mainly for instructive purposes, about how 
inferences are made in this case. All the Bayesian machinery is displayed in 
elegant form, the mathematical difficulties are minimal, and the distributions are 
straightforward. If you can follow this case, others will be easier to understand.

20 30 40 50 
Population mean, a

Fig. 11-1
Prior distribution for the possible values of the unknown population mean

Let us return to the investigator studying concept formation, who was 
introduced in the previous section. Suppose that he has carried out enough 
preliminary work with different populations of people to know that the varia 
bility from one population to the next stays the same and, as indexed by the 
standard deviation, its value is a = 8. Only the mean changes from population 
to population. Also, he has observed that the data are roughly normal, so he 
feels it is reasonable to assume that the population distribution is normal in 
shape.

He is about to administer his task to a new group of 20 subjects, randomly 
selected from some population. He is willing to assume that the population 
standard deviation is 8, but wishes to infer the value of the mean.

But now he has some prior information concerning the mean of the popu 
lation. A sketch of his prior distribution can be seen in Fig. 11-1. The shape is 
roughly normal, the peak is over a value of 36, and most of the curve runs 
from 24 to 48. Applying the steps in Section 6.8 of Chapter 6 leads him to settle 
for a prior that is normal with a mean of 36 and a standard deviation of

48-24 24^ ~~~ ~~~
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He checks this by forming the equal-credibility interval: 

^iow = 36 -0-43(4) = 34-28 
J"high = 36 + 0-43(4) = 37-72

'Yes,' he says, 4 I would be just as happy to bet that the true value of the mean 
lies below 34-28, as in the interval from 34-28 to 37-72, as above 37-72.' So, he 
is satisfied to describe his prior opinion concerning the population mean as 
normal with

m' = 36

If he were to draw a normal distribution with m' = 36 and s' = 4, it 
would look like Fig. 11-2. His actual prior is shown there for comparison. 
With only a very modest amount of data the posterior distribution based on the 
approximate normal prior would be virtually indistinguishable from the pos 
terior based on the actual prior. With large amounts of data, approximations 
can be very approximate indeed and yet the posterior will be rarely affected by 
the discrepancy. And as I said in Chapter 6, the mathematics are much easier 
if you can use a familiar distribution to approximate your prior.

true prior

I———————————I———————————I———————————I 
20 30 40 50

.. „ _ Population mean, -j.
Fig. 11-2
Prior distribution approximated by a normal curve

Having quantified his prior opinion, our investigator selects, at random, 
a sample of 20 subjects from his population, and has them solve his computer 
problems. Their scores are as follows:

29, 36, 35, 20, 43, 28, 24, 16, 30, 27
49, 26, 29, 24, 16, 33, 27, 34, 24, 22.

What, in the light of these data, is the posterior 99% credible interval for the 
population mean? To find the credible interval, we must apply Bayes' theorem 
to determine the posterior distribution. Actually, I will give only the results 
of the Bayesian calculation, but I would like to do it in a way that highlights 
the relative contribution to the posterior of prior and sample information.

For convenience, we will say that the precision of information is given 
by the reciprocal of the variance. As applied to the prior, we know that the
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prior variance, (s') 2 , is large if we are vague, so we could say that the precision 
in the prior is small. If we let h' stand for the prior precision, then

precision of prior = h' = ——^

The smaller the variance, the larger is the precision of the prior. 

In similar manner, we define the precision of the population:

precision of population = h = —2G

Now we can talk about the precision of the prior relative to the precision of 
the population:

precision of prior relative _ , _ h^ 
to precision of population h

Substituting for h' and h gives
1

'\21 (5')
a2

What does n', the 'prior n\ mean ? It says that the information in the prior is 
equivalent to n' observations from the population. For our example,

(s)2 = (4)2 = 16 
a 2 = (8) 2 = 64

Thus, prior n is

' 64 A"=16 =4

You can see that the prior assessed by the investigator is fairly vague, for there 
is as much information in it as there would be in a sample of only four observa 
tions from the population.

Bayesian analysis of this case shows that we need to know only two items 
of information about the sample, the mean and the sample size.

M = sample mean
N = number of observations

By applying Bayes' theorem it can be shown that the posterior distribution 
is normal with

posterior mean = m" = m' ( ———) + M ( ——— )
\n' + Nj \ri + Nj



Inferences about means 241

and
posterior precision relative „ , m— M — n -\- r\ to precision of population

First let us look at the posterior precision relative to the precision of the popu 
lation. It is found by adding the number of observations to the prior n.
For our example,

n' = 4
N = 20 

Thus, the posterior n is

You can see that of these 24 equivalent observations,

and

4 
— = £th are associated with the prior

20 _
— = f ths are associated with the sample

Now turn to the equation for the posterior mean. Notice that the terms 
in parentheses are these fractions we just found, so that

The important result is that these fractions act as weights that determine the 
relative contribution of the prior and sample means to the posterior mean. 
Since prior n is small, the prior mean counts for only 1/6 of the posterior mean, 
while the sample mean is weighted by 5/6. Here you can see in the mathematics 
how Bayes' theorem automatically weights the relative contributions of prior and 
sample information to the posterior. The weights are determined by the relative 
precisions of the prior and the population.

To apply the results of the Bayesian analysis to the example, we must first 
compute the sample mean. Adding the 20 measurements gives £ X = 572, so

' 572

The prior mean, you will recall, is equal to 36. Now the posterior mean can be 
determined :

m" = 36(i) + 28-6(1) 
= 6 + 23-8 
= 29-8

Before we can compute the posterior credible interval, the posterior standard 
deviation must be found. We find it from posterior n as follows:

precision of posterior relative _ „ _ h^_ 
to that of population ~ ~~ h
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Like the prior, the posterior precision is the reciprocal of the posterior variance,

*•-<-??
Recall, too, that the population precision is'-?
Substituting these two expressions in the equation for posterior n gives 

1
n" =

1

which, when solved for the posterior variance, yields

»2 = -n" 

And so, the posterior standard deviation is

S» = ^L

Now, for our example,

s" = -L = l-63
V24

Finally, the posterior 99 % credible interval can be found: 
ji low = m"-2-58s" = 29-8-2-58(1-63)

= 29-8-4-2 = 25-6
^high = m" + 2-58s" = 29-8 + 2-58(1-63) 

= 29-8 + 4-2 = 34-0

So, we are 99 % sure that the true value of the population mean extends from 
25-6 to 34-0, or, put more succinctly,

p(25-6 < n < 34-0) = 0-99

This is the last time the results of a Bayesian analysis will be displayed so 
clearly in terms of the weighting of prior and posterior information. From now 
on I will give only the form of the posterior distribution and its relevant sta 
tistics. It is important, then, that this case is clearly understood, for it is a good 
representation of all the analyses to follow.

Intuitive understanding of this example may be helped by showing the 
prior and posterior distributions (see Fig. 11-3).
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You might be interested to know that I generated the data for this 
example by random sampling from a normal population with

<7 =

That the posterior mean of 29-8 is closer to the truth, 30, than either the prior 
mean or the sample mean is a happy coincidence. It came about because the 
prior mean was above the truth and the sample mean below it; their combined 
effect nearly zeroed in on the true value. But the sample mean could just as 
well have been greater than 30 as less than 30, and if it had been much greater 
the posterior mean would have been further from the true value than the sample 
mean.

posterior m" = 29-8 
s" = 1-63

prior m — 36
s = 4

20
15" 15)" —r 

50
population mean, M

Fig. 11-3
Prior distribution concerning the unknown mean of a normal population whose standard 
deviation is known to be 8, and the posterior distribution, after making 20 observations 
whose mean is 28-6

Of course, in real problems we never know the true value. But we can 
make the best of our uncertainty in the light of inconclusive data by using infer 
ential statistical procedures. Even then we must face that the truth may 
occasionally lie outside our credible interval.

Exercise 11-2
Suppose that the data in Exercise 11-1 were drawn from a normal population 
with known standard deviation of 5. Find the posterior 99% credible interval 
for the population mean. Assume that the prior is normal with mean of 18 and 
standard deviation of 7.
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Answer
We are to make an inference concerning the population mean, //, and our job 
is to find ^ low and //hieh such that 99% of our posterior opinion falls between 
those values. We can do this by first noting that since the prior is normal and 
the population is normal, the posterior must also be normal. Once we have 
found the mean and standard deviation of the posterior then we can find 

and

= "T + 2*585" 

Here are the steps :
Find the prior precision relative to the precision of the population, that is, 
find prior n:

, _ population variance _ <r2 
prior variance (s') 2

_(»!_?? -0.51" (7) 2 " 49 " U M 

Prior opinion is so vague that it is equivalent to only about half an observation.
Find the posterior precision relative to the precision of the population, that is , 
find posterior n :

n" = n' + N where N = number in sample 
n" = 0-51 + 16 = 16-51

Find the sample mean, M:

Find the posterior mean, m" :

"
16-51 16-51 

= 0-56+ 15-51 
= 16-07

You can see that the prior was so vague that even a mere 16 observations almost 
completely swamped it.
Find the posterior standard deviation, s":

f

Vrf' V16-51 
= 1-23

Find the 99 % posterior credible interval:
/*,ow = 16-07- 2-58(1-23) 

= 16-07 - 3-17 = 12-90 
= 16-07 + 3-17 = 19-24



Inferences about means 245

So here is the result:
X12-90 < n < 19-24) = 0-99

There is a 99% chance that the population mean lies between 12-90 and 19-24. 
(In fact, these 16 data are a random sample from a population whose mean 
is 15.)

Interpreting traditional results
A non-Bayesian statistician presented with the problem of Exercise 11-2 

could also have arrived at a statement similar to the Bayesian's posterior 
credible interval. He would probably call it a 'confidence interval', but his 
interpretation of it would be different from ours. Confidence intervals are 
discussed in Chapter 13, but for now it is sufficient to note that our non-Bayesian 
statistician might say that there is a 99% chance that the confidence interval 
he has calculated contains the true value of the population mean. He makes a 
probability statement about the interval, not about the population mean.

In this section I want to show that the traditionalist's confidence interval 
is the same as the Bayesian's credible interval when the prior is assumed to be 
uniform. This point of similarity between traditional and Bayesian approaches 
holds not only for this case of inferring the mean of a population whose variance 
is known, but also for other cases. Thus, it allows us to interpret traditional 
results within a Bayesian framework.

Let us see what happens to the expressions for the posterior mean and 
posterior n when a uniform prior is adopted. Recall that

m" =

and n" = n'

First, consider n". The only term affected by the prior is n', and we know that

«' = (7p
As prior opinion becomes more vague, the prior variance, (s')2 , increases, 
causing n" to approach zero. Thus, for a uniform prior,

Now look at the consequence for the posterior mean. The weight for the prior 
mean becomes

0 =0
n' + N 0 + JV 

and the weight for the sample mean becomes
N N
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So the expression for the posterior mean now is
m" = m'

The posterior mean equals the sample mean. What about the posterior standard 
deviation?
Recall that

*»- ——s — , —

But we have just shown that n" = N. And so,

We have found, then, that when the prior is uniform, the posterior distribution 
concerning the unknown population mean is normal with

posterior mean = m" = M
a posterior standard deviation = s" = —j=

The posterior statistics depend, now, only on the sample mean, sample size, and 
the population standard deviation. Incidentally, we obtain the same result 
if the principle of stable estimation applies to the prior. The posterior C per cent 
credible interval is defined by these limits:

a=m"-zs" = M-z-=

A more compact expression for the limits of the credible interval is this:
aM ±z-=

Remember that z is the standard deviate of the normal distribution ; C per cent 
of the standardized normal distribution is found between — z and + z.

Suppose we apply these results to Exercise 11-2. Assuming a uniform 
prior, the posterior is normal with

m" = 16

,- * * 1-25 
Vl6 4

This gives a posterior 99 % interval whose limits are
^low = 16-2-58(1-25) = 16-3-22 = 12-78
Mhi9 h = 16 + 3-22 = 19-22 

So, p(12-78 < fi < 19-22) = 0-99.
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This is not very different from the result obtained for the vague prior. 
The limits of the interval are the same values a traditional statistician would 
have reported for his confidence interval. If you read that the 99% confidence 
interval, for this case, extends from 12-78 to 19-22, you can give it a Bayesian 
interpretation: this is the 99% posterior credible interval that a Bayesian would 
have computed, assuming a uniform prior.

In the case of inference about the mean of a normal population whose variance is 
known, a traditional confidence interval for /* can be interpreted as the Bayesian 
credible interval obtained from assuming a uniform prior over p.

Some comparisons
We have now used the same set of data under varying conditions and 

assumptions. It is instructive to compare the posterior credible intervals.
Inference A tions Prior Limits of posterior Size of 
concerning * credible interval interval

population population uniform 11-20-32 
median symmetrical
population population uniform 12-78 -19-22 
mean normal; 

cr2 known
population population gentle, 12-90-19-24
mean normal; not

<r2 known uniform

9-32 

6-44

6-34

As we go from (a) to (c), we either assume more or we know more. In either 
case, more information goes into making the inference. As a result, the posterior 
distribution is more precise, tighter, less spread out, and so the credible interval 
is smaller. Whatever your statistical viewpoint, Bayesian or not, it is generally 
true that the more information you can put into your statistical procedures, the 
more precise will be the result. For the traditional viewpoints, information goes 
in mformallyas assumptions and formally as data. The Bayesian prefers to make 
some of the informal assumptions formal, expressed as prior opinion, so their 
contribution can be seen explicitly.

11.3 Inferences about means and standard deviations
It is much more common in the social sciences to be faced with a normal 

population whose parameters are both unknown. In this case, our prior uncer 
tainty must be expressed for all combinations of possible values of ^ with 
possible values of cr, so our prior probability distribution is a bivariate one. To 
show it pictorially, we would have to construct a 3-dimensional picture with 
values of ^ along one edge, values of a along the other edge, and height repre 
senting probability density. An example is shown in Fig. 11-4.

There are a number of different ways of assessing these bivariate priors, 
but I feel that they are as yet too advanced for including them in an introductory 
textbook. In fact, the only place I know of that discusses the procedures in 
anything like adequate detail is in the as yet unpublished book of Pratt, Raiffa, 
and Schlaifer (1965).
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Until the technology has developed further, I am afraid we are stuck 
with making some assumptions that simplify the assessment of prior opinion. 
The first of these is that uncertainty about /i is unaffected by uncertainty about a, 
and vice versa. That enables us to think about \JL and o separately; we do not 
have to assess bivariate uncertainty, we only have to think about the marginals. 
In other words, when opinion about in is independent of opinion about a, then 
their prior distributions can be assessed separately. This assumption is not always 
realized in practice. In some cases, the larger the mean the larger the variance 
(trees vary in height more than people), but it is often a workable assumption 
even if not quite true.

The second assumption is that our prior uncertainty is described by 
uniform distributions, or that stable estimation applies to vague priors. More 
will be said in a moment about this.

Fig. 11-4
Bivariate prior density function for the unknown mean and standard 
deviation of a population.
From Schmitt, S.A., Measuring Uncertainty: An Elementary Introduction 
to Bayesian Statistics, Reading, Mass., Addison-Wesley, 1969.

When prior opinion is diffuse or vague, these two restrictions are often 
quite acceptable. If you do have non-uniform priors, the posterior credible 
intervals you calculate assuming uniform priors will be larger than if you had 
used your real priors, so the error introduced by the assumption is at least in 
the conservative direction.

A major advantage of making these assumptions is that the credible 
interval statements about fi and a will be about the same as the confidence 
intervals a traditional statistician would determine. So, again, we will reach a 
point of contact with classical methods, enabling us to put a Bayesian inter 
pretation on those results.

Prior distributions
We assume a uniform prior where the unknown population mean is 

concerned. It is, of course, uniform only over some restricted range, and then it 
tapers off beyond those limits. But as long as it is uniform in the region of the 
data, we do not need to be concerned with where opinion droops off. A uniform 
prior for the mean of the population of housewives referred to in Exercise 11-1



Inferences about means and standard deviations 249

might be as shown in Fig. 11-5. (It does not really matter that the right tail 
goes out beyond 50, the maximum score on the test.) The solid line indicates 
that the prior is uniform over the values of interest, while the dashed lines 
represent prior opinion that falls off gradually beyond the region of interest.

20 5030 40 
_. . - _ population mean, u.Fig. 11-5
Uniform prior for the population mean

Prior opinion about the population standard deviation does not fall off 
gradually in the region near zero, however. We know that the true value of a 
cannot be less than zero, so prior opinion drops sharply to zero for possible 
values of a less than zero. How can this difficulty be surmounted? The easiest 
way is to express opinion about the logarithm of or, rather than a itself. This 
prior has a number of appealing properties:
a All prior opinion that was squeezed into the interval of possible values 

of a from 0 to 1 is now stretched out over the interval from — oo to 0 (see 
Fig. 11-6).

possible values of CT 
12345

0-6 -0-5 -0-4 -0-3 -0-2 -0-1 0-5 0-6 0-7 0-80 0-1 0-2 0-3 0-4 
logarithm of possible values of d

Fig. 11-6
Relationship of a linear scale to a log scale, expressed here for CT and Iog 10 a

For convenience, re-label the lower scale in Fig. 11-6 so that it shows 
values of a, rather than log a. The log spacing is retained, but the labels 
are more meaningful. Uniform prior opinion over log a is, then, as shown 
in Fig. 11-7. Now you can see more clearly another feature: successive

/ / /

0-2
• — ••!••••••• ^-'i ——— 

0-3 0-4 0-6 0-7 0-8 0-9

8t8$$$$8i W;:$$&i$& 
&$$$&$ i$8$8i$$®

A

1

3

>

1 1 1
5 6 7

0-25 0-5 1-0 2
possible values of CT

Fig. 11-7
Uniform prior concerning log CT, showing equal credibility intervals
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doubling of an interval of a yields equal credibility intervals. I have shown 
one example. As much opinion falls between 0-25 to 0-5 as between 0-5 
to 1 -0, as between 1 to 2, as between 2 to 4, etc.

c A uniform prior concerning log a implies a uniform prior concerning the 
log of the precision, log/z. It is easy to show this. Recall that the precision 
is defined as

Take logs of both sides :

log h — log -2 = log 1—2 log a 
o

But log 1 = 0, so 
log h = — 2 log G

In words, log a has only to be multiplied by a constant, -2, to give log h. 
Since the uniform prior is simply a constant function of log o-, and since 
log a is a linear function of log h, it follows that the prior over log h must 
be a constant.
In other words, opinion concerning log/i is uniform. Vagueness about 
log a is logically equivalent to vagueness about log h. I often find my 
opinion about the spread of the population distribution so vague that I 
am indifferent between expressing it for a or for h. Here we see it does 
not matter.

In many situations your prior opinion about the population standard 
deviation will be adequately approximated by a uniform distribution over 
log a. When it is, and when opinion about the population mean is uniform, the

i i i i i i i i i i i i i i 
1 2 3 4 5 6 7 8 9 10 20 30 40 50

_. . . _ possible values of oFig. 11-8
Prior that is uniform over log a

credible intervals we compute from the posterior distributions will be the same 
as, or similar to, the traditional statistician's confidence intervals. So by choosing 
uniform priors we again find a point of contact with classical procedures, thus 
allowing us to understand those results from a Bayesian point of view.

Back to the housewives problem. My prior opinion concerning the stan 
dard deviation of the population is uniform over log a for values of a ranging 
from 1 to 50, and the prior drops off gradually beyond those limits (see 
Fig. 11-8). That is a pretty vague prior.
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Data
Once again we take independent samples at random from the population. 

This time we will need to compute the mean and standard deviation of the data. 
Let us use the housewife data again.

X X2 XX2

6 36 18 324
9 81 18 324

11 121 18 324
11 121 18 324
13 169 19 361
15 225 21 441
17 289 22 484
17 289 23 529

X = 256 X2 = 4442

N 16
16(4442)-(256y

N(N-i)
= /JV Z *2 -7T*)2 = / 

V NN-i) V

/= V '5536—— =4-8 
240

Posterior distribution of n and a
When prior opinion is uniform over u and over log <r, and when a random 

sample of size TV has been obtained from the population, then applying Bayes' 
theorem shows us that the bivariate posterior distribution for ^ and a is normal- 
gamma. The distribution shown in Fig. 11-4 is a normal-gamma, so that will 
give you an idea of what one looks like. Fortunately, you will never have to 
deal with one directly, for it is really the marginals of the distribution we are 
interested in. We do not really care about the joint distribution of// and a, but 
we do want to know the posterior distributions of u and a separately, and we 
can find these by looking at the marginals of the joint distribution.

Posterior distribution of \i
Let us consider the posterior distribution of ̂  first. It is a new distribution, 

one we have not encountered before, called a Student-/ distribution.
It is a symmetrical, bell-shaped curve with tails lifted higher from the 

horizontal axis than the normal curve. Unlike the normal distribution, the 
Student-/ is a three-parameter distribution, and, unfortunately only one of the 
parameters admits of an easy intuitive interpretation. I will use the symbol u t 
to stand for that parameter; it has the same value as the mean of the distri 
bution. The next parameter, call it 0-,, is related to but is not the same value as 
the standard deviation of the Student-/. The third parameter is called the 
degrees of freedom and it corresponds roughly to the lift in the tails of the 
distribution; I will let the mnemonic df stand for this parameter, though the 
Greek lower case 'nu', v, is frequently used in statistics books and tables.



252 Inferences concerning one uncertain quantity

The mean and standard deviation of the Student-/ are easily computed 
from the parameters.

Mean of Student-/ = m = //, 

Standard deviation of Student-/ = s =

The principle here is exactly the same as for the Beta and normal distributions. 
Once we know that a distribution is a Student-/, then it is completely specified 
when we know the values of the parameters ^,, cr r , and df. From those parameters 
we can describe the distribution by computing, say, the mean and standard 
deviation, m and s.

A word about notation may help to forestall confusion. The symbols m 
and s are being used here to denote the mean and standard deviation of the 
Student-/ distribution, but it is important to remember that those same symbols 
were used for the statistics of the Beta distribution and also for the normal 
distribution. Although the symbols are the same, the formulae for calculating 
the statistics from the parameters are not, of course, the same. Recall, too, that 
I use the Greek letters // and a to stand for the parameters of a normal distri 
bution. Here the symbols are used again, but with the subscript / so there will 
be no mistaking that I am referring to a Student-/ distribution.

Like the normal distribution, the Student-/ can be reduced to standardized 
form by subtracting all values on the horizontal axis, call them x-values, 
from the parameter ^ r , and then dividing the result by the parameter at . The 
result is a /-value, which is the Student-/ analogy to the z-value for a normal 
distribution.

/ = ———

The result of applying this transformation on any Student-/ distribution is to 
reduce it to a standardized Student-/ for which ^it = 0 and at = 1.

But what about the degrees of freedom ? How does that affect the stan 
dardized Student-/? Well, unfortunately there are as many standardized 
Student-/ distributions as there are degrees of freedom. A few of them are shown 
in Fig. 1 1-9. Notice that the tails are higher for the smaller degrees of freedom. 
An interesting property of the Student-/ distribution is that it becomes more 
and more like a normal distribution as the degrees of freedom increase, until 
finally it is normal when df=co. You can see from Fig. 1 1-9 that the Student-/ 
approaches the normal rather quickly; by the time the degrees of freedom 
have reached about 25 or 30, the Student-/ becomes very close to a normal 
distribution. This observation has a very practical consequence that we shall 
see shortly.

Bayes' theorem tells us, then, that the posterior distribution concerning \i 
is Student-/, and it also gives us the three parameters of the posterior:

df" = N-
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-4 -3 -2 _\

Fig. 11-9
Standardized Student-f distribution

In words, the posterior parameter //, is given by the sample mean, the posterior 
parameter <r r is found by dividing the sample standard deviation by \7wTand 
the degrees of freedom are equal to one less than the sample size.

As applied to the data surveying attitudes of housewives toward the church, 
we now know that the posterior distribution of /z is Student-/. Along the x-axis 
we have possible values of ju, and the parameters of the distribution are

= M = 16

Vi6
df" = N-l = 15

What does the posterior look like? It is shown in Fig. 11-10. Our prior uncer 
tainty, which is uniform, has been changed by the data to give the distribution 
in the figure, a Student-/ with 15 degrees of freedom. It is not quite normal — 
the tails are a little too high for a normal — but it is close.

Next we compute the posterior C per cent credible interval for \JL. We do 
this by applying a rearranged form of the /-value equation:

where / is the standard deviate of the Student-/ distribution ; C per cent of the 
standardized curve falls between — / and + /. Expressed in terms of the sample 
statistics, the limits of the credible interval can be found by solving this 
equation:

In words, we go up and down / sigmas from the mean to find the limits of the 
credible interval. Now, how do we obtain the appropriate value for /?
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When we were dealing with a normal distribution we referred to the tables 
of areas under the normal curve to discover that 99% of the curve fell between 
±z = 2-58, 95% between z = ± 1-96, etc. But our job is a little more difficult 
for the Student-/ distribution because the values of t will depend on which 
standardized curve you are referring to. As you can see from Fig. 11-9, when 
df= 1 the 99 % credible interval will be wider than for, say, df = 8. The former 
curve has more area in the tails than the latter, so you must go further out in the 
tails of the curve for df = 1 to cover 99 % of the area.

12 13 14 15 16 17 18 19 20 
C* '11 10 possible values of [j.

Posterior Student-/ distribution concerning the mean of the population of housewives' 
scores on the attitude survey

We could append a whole page of tables like the normal ones for each 
Student-/ curve; then we would have about 50 pages, one for df = I, one for 
df'= 2, and so forth on up to about df = 50, when the curve looks so normal 
that for larger degrees of freedom the normal table could be used. But this is 
not very practical, so instead it is usual practice to table the values of / for just 
a few credible intervals, but for many values of df. You will find such a table in 
Appendix G. To use the table, enter the left column with the degrees of freedom, 
then move over to the column with the desired credible interval and read off 
the value of /. Notice that the bottom row, for df = oo. gives values identical 
to those for a normal distribution, as you would expect.

For the housewife survey, we found that df = 15. To find the 99% 
credible interval we move down the left column to 15, then travel horizontally 
to the column headed 4 99' to read off / = 2-947. Now we can calculate the 
credible interval:

ji,ow = 16-2-947(1-2) = 12-46 
^hig h = 16 + 2-947(1-2)= 19-54

There is a 99% chance that the mean of the population of housewives is between 
12-46 and 19-54.

p(12-46 < 11 < 19-54) = 0-99
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It is instructive to see where this result fits among the other three inferences 
we have made on these same data. Turn back to the summary table at the end 
of the last section, page 247. The result we just obtained fits between the first 
and second cases, as we would expect. We obtain the biggest interval when we 
are so uncertain that we can only assume that the population is symmetrical. 
It becomes smaller when we make the additional assumption that the population 
is normal (the present case), and it shrinks a little more when we also know the 
variance of the normal population. The more we know, the smaller the credible 
interval, given the same data. By now, that should sound like a familiar story.

Exercise 11-3
Suppose that our investigator studying concept formation, having completed his 
preliminary testing on colleagues, secretaries and willing students, is ready to 
try the test for a population of middle-class men. He is willing only to assume 
that the population is normal, and he feels that uniform priors for n and log 
a are reasonable approximations to his fairly vague prior opinion.
He randomly chooses 10 subjects and runs them through the computer tests. 
Their scores are as follows:

35, 41, 28, 22, 13, 31, 38, 40, 31, 22 
What is his posterior 95% credible interval for the population mean?

Answer
Here are the steps to the solution:
Compute the mean and standard deviation of the data.

XX* XX2

35 1225 31 961
41 1681 38 1444
28 784 40 1600
22 484 31 961
13 169 22 484

2 X = 301 y X 2 = 9793

10(9793) - (301) 2 
"10(9)

7329 = 9-02
90

b The posterior concerning // is Student-/. Compute its parameters: 
£ = M = 30-1

<j"t = -4= = -^ = 2 ' 85
VN Vio

df" = N - 1 = 10 - 1 = 9
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c Look up in Appendix G the value of / for a Student-/ distribution with 9 degrees 
of freedom such that 95% of the curve falls between ± t. That value is 2-262.

d Find the posterior credible interval.

= 30-1 - 2-262(2-85) = 23-7 

/*high = & + 2-262 (r"t
= 30-1 + 2-262(2-85) = 36-5

Thus,/?(23-7 < ft < 36-5) = 0-95

For all the complicated discussion in this section, the mathematics are 
easy. You just have to know what you are doing!

Some comparisons
It is worth comparing the two cases we have covered for making inferences 

about the population mean.

Table 11-1 Inferences concerning the mean of a normal population

A .- D • n , • Posterior Assumptions Prior Posterior ,-LI - * /credible interval

population normal, uniform normal ,, a 
a known

population normal, uniform Student-/ M S 
a unknown

The extra uncertainty introduced when a is unknown causes the posterior to 
be Student-/ rather than normal, and the posterior credible interval to be com 
puted using the sample, rather than the population, standard deviation. In 
both cases the posterior mean is given by the sample mean.

Recall that for large samples the posterior degrees of freedom will be so 
large that the distribution is virtually normal rather than Student-/. When this 
is the case, you can see from Table 11-1 that we are back to making an inference 
about a normal population with a treated as if it were known. In this situation 
it is approximated by S.

For large samples, inferences concerning p when a is unknown can be treated as 
though a were known, with the sample standard deviation, 5, serving as an esti 
mate for o~.

In other words, the Student-/ distribution is only used for small samples.
This is the use that was proposed by W. S. Cosset, writing in 1908 under 

the pseudonym 'Student", a statistician who worked in an English brewery, and 
whose nom de plume now identifies this distribution.
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Posterior distribution of a

The posterior distribution of a is another newcomer to our collection of 
distributions. It is called the inverted gamma-2 distribution, a rather fancy 
name which perhaps disguises the ease of its use here. I shall refer to it by the 
abbreviation IG2.

The IG2 distribution has just two parameters. One of these corresponds 
to the mode of the distribution, while the other is called the degrees of freedom. 
In Fig. 11-11 you can see several IG2 distributions, all with the same mode of 1. 
Notice that the distribution covers only positive values of *, a feature that is 
particularly suitable for describing opinion about a since we know that <r cannot 
be less than zero.

2- <//= 16

l-

Fig. 11-11
Some inverted-gamma 2 distributions

How are values of the posterior parameters determined? Once again, 
when prior uncertainty about // and log a is uniform and when TV independent 
observations are randomly selected from the population, then Bayes' theorem 
tells us that the posterior distribution of G itself (not log <T) is IG2 with

posterior mode = mode" = S I ——
V N

and posterior degrees of freedom = df" = N — 1

Now let us apply this to our uncertainty concerning the population of 
housewives and their scores on the attitude questionnaire. Recall that the stan 
dard deviation of the sample of 16 was S = 4-8. Then, our posterior distribution 
concerning a is IG2 with

lN-1 An 115 A , c mode" = S . I —— = 4-8 / - = 4-65 
V N V 16

df" = N-l = 16-1 = 15 

I have shown this posterior distribution in Fig. 11-12.
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Posterior credible intervals are obtained by a very simple procedure. Since 
IG2 is not symmetrical, highest density regions have been determined and tabled. 
In Appendix E you will find highest density regions corresponding to 95, 99, 
and 99-9% credible intervals. However, these are for IG2 distributions whose 
modes are 1.

2-

1-

0
0123456789 10

Fig. 11-12
Posterior IG2 concerning a for the survey of housewives

Curves with modes other than 1 are simply multiplicative transformations 
of IG2 with mode = 1. Thus, to get the credible interval for an IG2 distribution 
whose mode is other than 1, you simply multiply the tabled values by the mode 
of your posterior distribution:

<r low = tabled low limit x posterior mode 
°high = tabled high limit x posterior mode
As applied to our example, if we wish to find the 99% credible interval, 

we move down the left column to df = 15, then over to the column headed 99, 
and read offthe values 0-66 and 1 -774. Those arethe limits of the IG2 distribution 
with 15 degrees of freedom and whose mode is 1. To get the credible interval 
for a we multiply those limits by 4-65:

<rlow =0-66x4-65 = 3-07 
tfhigh = 1-774x4-65 = 8-25

So, we are 99% sure that the true value of a lies between 3-07 and 8-25, that is, 
p(3-07 < a < 8-25) = 0-99

(I generated those data from a normal population whose standard deviation 
was 5, and the inference neatly brackets that value.)

Exercise 11-4
Return to the problem in Exercise 11-3. Compute the posterior 95% credible 
interval for the standard deviation of the population. Assume that the prior of 
log a is uniform.
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Answer
a Compute the sample standard deviation. That was done in Exercise 11-3. 

There we calculated S = 9-02.
b Compute the parameters of the posterior IG2 distribution.

mode" = S N~l = 9-02 /-- 
V N V 10 

= 8-56
df" = N - 1 - 10 - 1 = 9

c Look up the limits of the 95% credible interval for the IG2 distribution whose 
mode is 1 in Appendix E. For df '= 9, we get 0-661 and 1 -771.

d Compute the credible interval for a\
^low = tabled low limit x mode"

= 0-661 x 8-56 = 5-66
°hi&n — tabled high limit x mode"

= 1-771 x 8-55 = 15-2
Thus, p(5-66 < a < 15-2) = 0-95

As for inferences concerning /*, the mathematics are simple; it is the logic that 
counts.

Interpreting traditional results
You will on occasion come across a statement something like this in the 

social science literature: 'The confidence interval for the population mean is 
6-2 to 18-9\ What sense can we make of this from a Bayesian point of view?

Let us assume that the statement is made in the context of inference about 
the mean of a normal population whose mean and variance are unknown. We 
have seen that the credible interval for the mean is, in the last steps of the 
analysis calculated from this equation, assuming uniform priors:

M ± t-f=

This veision is exactly the same equation, using exactly the same /-distribution, 
that would be used in a traditional analysis to determine the confidence interval; 
only the route to the equation is entirely different.

Remember, though, that this point of contact between the two approaches 
holds only when the Bayesian assumes uniform priors over // and log o. We 
are led to this generalization:

In the case of inference about the mean of a normal population whose mean and 
variance are unknown, a traditional confidence interval can be interpreted as the 
Bayesian credible interval obtained from assuming uniform priors over p and log a.

A similar parallel holds for inference concerning the unknown population 
variance. Some Bayesian writers present methods for making inferences about 
the population variance, others, myself included, do it for the population stan 
dard deviation. I took this approach because it seems a little more intuitively
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appealing to deal directly with the standard deviation rather than the variance, 
but it has the drawback that the posterior credible interval is slightly different 
from the traditional confidence interval.

We have seen that when making an inference about a, the posterior is 
distributed as inverted gamma-2. If we were to make our inference about a2 
rather than cr, then the posterior would be in the form of a distribution that we 
have not yet encountered: chi-squared, a close relative of IG2. The identical 
chi-squared distribution forms the basis for the traditionalist's confidence 
interval, though he usually determines the limits of the interval by lopping off 
equal areas from the two tails; for example, he removes 2^% of the area in each 
tail to find the 95 % confidence interval. The chi-squared distribution, like IG2, 
is not symmetrical, so a Bayesian making an interval estimate of a2 will find 
the highest density region. Consequently, even if both traditionalist and Bayesian 
are concerned with a2 , and both use the same chi-squared distribution, they 
will come up with slightly different intervals. This is simply a matter of different 
conventions. A traditionalist could find a highest density region, and some do, 
but the vast majority of social scientists do not.

A Bayesian making an inference about cr rather than a2 will refer to the 
IG2 distribution. It is usually true that the highest density regions for the 
distribution of one variable, here cr, are not the same as for a transformation 
of that variable, say a2 or log cr 2 . Consequently, if you make your inference 
about cr 2 , which involves you with the chi-squared distribution, even if you 
take the square root of the limits to give an interval concerning cr, you will not 
get the same limits as for an inference concerning cr which uses the IG2 
distribution.

Table 11-2 Comparison of three approaches to finding an interval estimation 
for a or <r2 in Exercise 11-4.

. . n- ., • Type of 95% interval IntervalApproach Distribution • f , r \ /•^ interval for a2 jor a

Traditional Chi-squared equal area 38-5-271 6-2-16-5
in tails 

Bayesian Chi-squared highest 36-5-248 6-04-15-7
density 

Bayesian IG2 highest — 5-66-15-2
density

Take Exercise 11-4 as an example. First I computed the 95% confidence 
interval for cr 2 using the traditional approach. Then I found the 95 % posterior 
credible interval for cr 2 from a Bayesian viewpoint, assuming a uniform prior 
for log cr. Next, I took the square roots of the limits of those two intervals to 
give intervals concerning cr. These results are shown in Table 11-2, along with 
the interval for cr found in Exercise 11-4.

The results are not identical, so we cannot draw an exact parallel between 
usual traditional practice and Bayesian inference. However, there is enough 
similarity in the approaches to enable us to put an approximate Bayesian inter 
pretation on traditional results.
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In the case of inference about the standard deviation of a normal population whose 
mean and variance are unknown, the square roots of the limits of a traditional 
confidence interval about a2 will give an interval concerning a that is closely 
similar to the Bayesian credible interval obtained from assuming uniform priors 
over p. and log a.

Exercise 11-5
The author of an article in a social science journal reports that his 99 % confidence 
intervals for the mean and variance of a normal population are as follows:

for^/: 27-8-35-9 
for (T2 : 5-62-139-2

How would a Bayesian interpret these results ?

Answers
First, we have to ensure that the author has not done a Bayesian analysis. 
Some Bayesians use the words 'confidence interval' rather than 'credible interval'. 
If there is no reference to prior distributions, you can be quite sure that the 
approach is traditional.
Suppose the author has computed traditional confidence intervals. Take the 
square roots of the limits for the variance interval. This gives

for (r: 2-37-11-8
Now we can say that a Bayesian would have obtained exactly the same interval 
for ^, and a similar interval for a, if he had started with uniform priors concerning 
H and log o. In other words, for the Bayesian whose prior opinion was sufficiently 
vague to justify stable estimation,

p(21-S < n < 35-9) =0-99 
and

/?(2-37 < a < 11-8)^0-99
(Remember that * ~ ' means 'approximately equal to'.)

11.4 Inferences about proportions
This topic was covered in Chapter 6 under the sections concerned with 

the Beta distribution. There we saw that the Beta distribution conveniently 
expresses opinion about some uncertain proportion. I will use the Greek lower 
case 4pi', TT, to represent the unknown proportion; you should have no difficulty 
in distinguishing when TT stands for an unknown proportion and when it refers 
to the well-known constant, 3-1415 ....

A review
To make an inference about the value of TT, we first express prior opinion 

in the form of a Beta distribution.
nOp, ^parameters of the prior Betaq
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Next we make TV independent observation on each of which either a 'success' or 
'failure' is noted.

s = number of successes 
/ = number of failures
s+f=N

(The definition of a 'success' must accord with the expression of the uncertain 
quantity. For example, if one wishes to infer the proportion of working-class 
families in an area, then in the random sample each working-class family counts 
as a 'success' and all other classes of families count as 'failures'.)

Applying Bayes' theorem to the Beta prior in the light of these data gives 
a posterior that is also Beta.

n'O

„ ^parameters of the posterior Beta
q J

Furthermore, Bayes' theorem tells us that the values of the posterior parameters 
can be found by adding the numbers of successes and failures to the prior 
parameters.

The statistics of the Beta distribution are given on page 127 of Chapter 6.
Finding the posterior C per cent credible interval is simply a matter of 

entering the Beta tables, Appendix B, with values of p" and q" and with C, and 
then reading off the limits of the credible interval. If the values of p" and q" 
are bigger than those tabled, it is necessary to use the normal approximation 
to the Beta (see page 138 of Chapter 6).

Interpreting traditional results
If you run across a confidence interval for -n in the literature you will not 

be far wrong if you interpret it as a Bayesian credible interval obtained with a 
uniform prior. Confidence intervals are usually computed only when the sample 
size is fairly large because only then can methods be applied that make use of 
the normal distribution. For small samples the procedures are more complex 
and seldom covered in statistics textbooks written for the social sciences. So 
you are not likely to find in the literature confidence interval statements regard 
ing TT when samples are small.

In the case of inference about an unknown population proportion, TT, a traditional 
confidence interval is closely similar to a Bayesian credible interval obtained by 
assuming a uniform prior over TT.

In other words, if in your reading you come across a confidence interval state 
ment concerning some proportion, it is pretty safe to interpret it as if it were a 
Bayesian credible interval calculated on the assumption that the prior is uniform. 

It is worth pointing out that the Bayesian procedures given here which 
lead you to look up a credible interval in the table of Appendix B are applicable 
for any size of sample whatsoever.
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11.5 Transformations*

The methods in this chapter for making inferences about medians or means 
all carry with them certain assumptions about the form of the population: the 
distribution is either symmetrical or normal. But what can we do if the condition 
is not met, or, as is more commonly the case, we are uncertain as to whether the 
assumption holds? Sometimes neither our past experience nor our theories give 
us any information about the form of the population. What do we do then?

The answer is to look at the data, for they are a random sampling from 
the population, so their distribution gives us some notion of how the population 
looks. Having drawn a histogram or frequency distribution of the data, we can 
proceed in one of four ways, depending on the shape of the data distribution.

a If the data appear to be roughly normally distributed, you can use any 
of the procedures that assume the population is normal.

b If the data appear roughly symmetrical but definitely not normal (for 
example, bimodal data) then make your inference about the median.

c If the data look pretty spikey and scattery, so you are not at all sure if 
they came from a normal population, you can probably proceed as if the 
population is normal.

d If the data are clearly not normally distributed (for example, obviously 
skewed), then try using a mathematical transformation to change the 
data into a new set of numbers that do appear to be distributed in normal 
form. Then carry out the Bayesian analysis on these new numbers, and 
transform the resulting credible interval back into the original units.

I would like, now, to expand on these last two points.

When populations might be normal
When the frequency distribution of your data does not clearly rule out 

the possibility that the population may be normal, there are two points you 
should consider.

In the first place, most of the procedures in this book are what the statis 
tician calls 'robust'. He means that the resulting inference, in our case a credible 
interval, is fairly insensitive to violations of the assumptions. For example, in 
making an inference about the mean of a population, the posterior credible 
interval we compute under the assumption that the population is normal is 
almost identical to the one we would get if the population were, say, somewhat 
skewed, and we used Bayesian methods appropriate to a skewed population. 
Of course, if the skew is very great the results would be different, but the point is 
that the assumption of normality can withstand a fair amount of violation 
before we have to use other methods. This statement is particularly applicable 
to making inferences about means. The procedure for making an inference 
about the standard deviation is not as robust, and requires that the normality 
assumption be at least reasonable. There are statistical procedures that enable 
tests of normality to be made, and one is mentioned in Chapter 14 (chi-squared 
tests). But the test is seldom made because if the data distribution does not

This section is a diversion from the main development and could be omitted.
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clearly lead you to reject the possibility of normality, then the presumed depar 
ture from normality is probably well within the limits of robustness.

In the second place, most people's intuition about the representativeness 
of random samples is faulty in a conservative direction. So what may appear 
to you as non-normal may, in fact, be a random sample from a normal 
population.

As an illustration, suppose I select a random sample of size 40 from a 
normal population. A perfectly representative distribution is shown in Fig. 
11-13.

But, of course, one never gets such a distribution; purely by chance some 
measurements are over-represented while others are under-represented. Look 
at the histograms in Fig. 11-14. Which ones do you think were the result of 
random sampling from a normal population, and which do you think came 
from a non-normal population ?

Fig. 11-13
Normal distribution of 40 observations

The answer is that they all came from a normal population. And they are 
not a special selection of samples, they are the first six that I drew, shown in 
the order that I drew them. Furthermore, the horizontal axes of all the histo 
grams are directly comparable so you can see the shifts in the peaks of the 
distributions from one sample to the next. In particular, the modes of (b), (d) 
and (f) are quite different. The little arrow at the bottom of each column of 
histograms shows the class interval in which the population mean falls.

If your conclusion is that nothing appears so non-random as a random 
sample, then your sentiments echo exactly the findings of numerous investiga 
tions into how people perceive randomness. For our purposes the moral is 
simple: do not be too eager to discard the possibility that a population is normal 
simply because a random sample does not look very normal.

Thus, because our judgement about normality is likely to be conservative 
when it is based on random samples, and because the procedures in this book 
are robust, you will probably be on safe ground if you use the methods that 
assume normality even if you are not too sure.

Of course no population is probably ever exactly normal, and we usually 
never do find out the precise form of the population. We assume normality as 
a convenient approximation that enables us to use simple methods for making 
inferences. Fortunately, our statistical procedures are not very sensitive to 
that assumption.
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(a)

(c)

(e)

iq. 11-14 'F '9
Which histograms represent samples from a normal population ? (See text)

When populations are not normal
Not by any stretch of the imagination could we assume that the data 

shown in the left-hand histogram of Fig. 11-15 came from a normal population. 
Fairly drastic measures are needed for such highly skewed distributions, and 
one possibility is to effect a mathematical transformation of the scores so that
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a histogram of the transformed scores will appear reasonably normal. Here I have 
shown the effects of a logarithmic transformation: a histogram of the logs of 
the original scores looks reasonably normal in shape. I could then go on to find 
a posterior credible interval, using the usual Bayesian machinery, but since the 
interval would concern the logs of the original scores, I would have to take the 
antilogarithm* of the limits of the interval to get them back to the original units.

TRANSFORMATION

old

X old
X

Fig. 11-15
Logarithmic transformation on highly skewed data often yields a distribution that is 
approximately normal

Now let us see how the log transformation works. Imagine that an investi 
gator has measured the need-achievement of 11 subjects who were randomly 
selected from a larger group. He wishes to make an inference about the average 
level of need-achievement in the larger group. The eleven scores are as follows:

10, 6-84, 5-37, 443, 3-72, 3-16, 2-68, 2-26, 1-86, 1-46, 1 
It will be convenient to represent these scores along a horizontal scale:

X-—X X] X—X |X—X~~|—Xf- -X
10

A histogram of these 11 scores is shown in Fig. 11-16. Obviously the distribution
4H

oc
V

(T

H

y x X. x x | x x i—x—r-x—|——X]———r 
12345678

Fig. 11-16
Histogram of the need-achievement scores 

logarithms and antilogarithms are covered in Appendix H.

10
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is most unlikely to have arisen from a normal population. However let us try 
a logarithmic transformation on the scores. You can look them up in the table 
in Appendix H. Here is what you will get:

X Loglo X

10-00 
6-84 
5-37 
4-43 
3-72 
3-16 
2-68 
2-26 
1-86 
1-46 
1-00

1-000 
0-835 
0-730 
0-646 
0-571 
0-500 
0-428 
0-354 
0-270 
0-164 
0

You can see in Fig. 11-17 how the log transformation works. Values of X are 
shown along the horizontal axis, while the curve is a plot of Y = log X. Thus, 
the y-axis gives values of log X. Notice that when X = 1, 7=0; recall that 
the log of 1 is 0.

1-0 x

0-9 -]

0-8- 

X0-7-

0-6 -|

0-5

0-4-
4

0-3- 
j

0-2-
^

0-1-

y

/
0 

)]

1/
/{
f
//

* *. t —— _ . *

23456789 1(

Fig. 11-17
Logarithmic transformation applied to the need achievement data
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As an example, take the X-score of 3-16. Move vertically up from an 
lvalue of 3-16 until you meet the curve, then move horizontally to the left. 
The 7-value is 0-5, that is, the Iog 10 of 3-16 is 0-5.

Now look at the spacing of the 7-values. Here is the vertical scale, tipped 
horizontally.

x- X -X—i-X-—i—x—,—x ! x i : 
0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

The skew is gone, as you can see in the histogram of Fig. 11-18. Now it is 
appropriate to assume that the population of Iog10 X is normal, so I proceed 
using the new values. Assuming that the population variance is unknown, my 
calculations yield a posterior 99% credible interval of 0-2162 to 0-7838. But 
that is for log X, not X, so to get a credible interval for X, I take antilogarithms.

c 
<u 
3 
CT

3-1

2-

1-

X————|—X—i——X-|—X—rX——X——X i X—i-X——i-X——i———X

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0
Fig. 11-18
Histogram of the transformed need-achievement data

I enter the Y axis of Fig. 11-17 with 0-2162 and 0-7838 and read off the corre 
sponding lvalues. Better still, I use the log table in Appendix H. This gives 
1-65 to 6-08, that is,

p(l -65 <n< 6-08) = 0-99

Using a log transformation is not as easy as is implied by this example, 
however. A particularly vexing problem when the data do not swamp the 
prior is expressing prior opinion in terms of the units of the new scale rather 
than the original scale. In the example above, I assumed a uniform prior with 
respect to log ju, convenient mathematically but hard to justify intuitively. Also 
a linear transformation of the original data is often necessary so that the logs 
will range from 0 to 1. Because of these technical difficulties, you should prob 
ably seek the help of a statistician when you come across an obviously skewed 
distribution. Sometimes, of course, you can just switch to a different dependent 
variable, and it might turn out to be normally distributed. Then you discard the 
old, skewed one, and work with the new one.
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11.6 Summary

Four basic methods of making inferences about a single uncertain quan 
tity have been covered in this chapter :
a inferences about a population median when the population is assumed to 

be symmetrical;
b inferences about the mean of a normal population with known variance ;
c inferences about the mean and standard deviation of a normal population 

with unknown mean and variance;
d inferences about a proportion.
Each of these procedures is outlined at the end of this summary.

All of these procedures yield a posterior credible interval, which if the 
prior is uniform, is identical, or similar to the confidence interval that would be 
calculated under a traditional approach.

The inferences are generally robust with respect to the assumptions, 
though it may be necessary to apply a transformation to very skewed data to 
make their distribution normal,

Inferences concerning the population median
a Want to infer: the median of a population;
b Experiment: a random sample of N observations from the population, on 

each of which a numerical measurement, X, is made;
c Assumptions: population is symmetrical ; 
d Data: Rank-order the N scores ;
e Prior distribution: uniform over possible values of the median; 
f Posterior distribution concerning the ranks: 

approximately normal with
„ m" =

g C per cent credible interval concerning the ranks: 
m"-zs" < rank of population median < m" + zs"
where z is the standard deviate corresponding to the C per cent credible 
interval for the normal distribution; z is found by entering the normal 
table with C/100 and reading offz.
To get the credible interval for the median itself, find the scores in the 
data corresponding to the ranks of the credible interval just computed, 
interpolating if necessary.



270 Inferences concerning one uncertain quantity

Inferences concerning the population mean

a Want to infer: ju, the mean of a population;
b Experiment: a random sample of N observations from the population, on 

each of which a numerical measurement, X, is made;
c Assumptions: i population is normal; ii variance of population, a , is 

known;
d Data: Calculate . . .M =¥
e Prior distribution: normal over u, with prior mean = m', prior standard 

deviation = s';
f Posterior distribution: normal over ^u, with

for non-uniform prior for uniform prior

= m — + M -— m" = M

2

where ri = -—~ and n" = ri + N 
0)

g C per cent credible interval: 
m"-zs" <u< m" + zs"

where z is the standard deviate corresponding to the C per cent credible 
interval for the normal distribution; z is found by entering the normal 
tables with C/100 and reading offz.

Inferences concerning the population mean and standard deviation

a Want to infer: u, the mean of a normal population; <7, the standard devia 
tion of a normal population.

b Experiment: a random sample of TV observations from the population, on 
each of which a numerical measurement, X, is made;

c Assumptions: population is normal; 
d Data: Calculate . . .

S =
N V N(N-l)

Prior distributions: i uniform over fj. and log a; ii both prior distributions 
independent of one another.
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f Posterior distributions:
Concerning u: Student-/ with parameters

u't' = M <= ~ df" = N-\

Concerning a: Inverted-Gamma 2 with

mode" = S J ~~ df" = N-l

g C per cent credible intervals: 
Concerning u:

where / is the standard deviate corresponding to the C per cent credible 
interval for the Student-/ distribution; / is found by entering the Student-/ 
table with df= N- 1 and with C.
Concerning a:

IG2'°» X S V -jy- * ° * IG2»'.* X S V - AT

where IG2,OW and IG2high are the tabled limits of the credible interval for 
IG2 whose mode is 1. The tabled limits are found by entering IG2 table 
with df= N-\, and with C.

Inferences concerning the population proportion
a Want to infer: IT, the population proportion;
b Experiment: a random sample of TV observations, on each of which either 

a success or a failure is noted;
c Assumptions: -n does not change during experiment;
d Data: number of successes, s, and number of failures, /, where

s+f=N
e Prior distribution: Beta over possible values of TT, with parameters p' and q' ; 
f Posterior distribution: Beta with parameters p" and q", where

g C per cent credible interval: find from Beta table directly by entering the 
table with values of/?" and q" and with C.
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Problems
Questions 11-1 to 11-3 concern this experiment:
An investigator wishes to find out how much time per week students at English 
universities spend on activities directly relevant to their courses (including 
lectures, seminars, tutorials, and laboratory work). He asks a random sample 
of 20 students to keep diaries of how they used their time each day during a week 
in the middle of the autumn term. After collecting the diaries, he codes the records 
for various activities, and finds, for each student, the number of hours in the 
week devoted to activities directly relevant to the course. He computes the mean 
to be 38-8 hours and the standard deviation to be 8-6 hours.

11-1 Suppose that this investigation was one of a series he had been conducting over 
a period of years. Each year histograms of the data appeared roughly normal in 
shape, and while the mean number of hours spent on activities directly relevant 
to the course has fluctuated over the years, the standard deviation of the samples 
has remained fairly constant, hovering from year to year around 10. This 
past information enables the investigator to assume that the population is 
approximately normal with a standard deviation of 10. He describes his prior 
opinion concerning this year's population mean as normal with a mean of 40 
and a standard deviation of 2.

a What is his posterior 95 % credible interval for the population mean ? 
b Comment on the relative contribution to the posterior of his prior opinion and 

of the data.

11-2 Suppose his prior had been uniform.
a What, then, would his 95% credible interval for the mean be?
b Compare this interval with the one computed in (1); why is it different?

11-3 Suppose that these data are the first set the investigator has collected; he is 
willing to assume only that the population is normal, and is vague about the 
values of the population mean and standard deviation. He feels that stable 
estimation applies to his prior opinions.

a What are his posterior 95 % credible intervals concerning the population mean 
and standard deviation?

b Compare your answer concerning the mean with (1) and (2).

11-4 My wife and I enjoy playing 'Score-Four', a sort of three-dimensional noughts- 
and-crosses (tic-tac-toe) in which four balls of the same colour must be played 
in a horizontal, vertical or diagonal line for a 'win' to be scored. Out of the last 
98 games, I have won 45 and she has won 53. What inference could be made 
concerning our relative skills at this game ?

11-5 A survey carried out in England, Scotland and Wales on Tuesday, April 18, 
1972, by the Opinion Research Centre (reported in The Times, Wednesday, 
April 19, 1972) showed that 69% of those interviewed felt that a secret ballot 
should be held to find out if members of the railway union would accept the 
increased offer of 12% made on Sunday evening. The sample of 561 people was 
drawn from the electoral register and was selected to ensure that it was repre 
sentative of the electorate by sex, age, region, and socio-economic grouping. 
How accurate is the sample result ?

11-6 (Refers to Problem 8-4) If the population of numerical test scores is assumed 
to be symmetrical but not necessarily normal, what inference can be made about 
the central tendency of the population, given the data in the problem ?
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11-7 (Refers to Problem 9-4) What inferences could be made about the mean and 
standard deviation of the population of scores on the field dependence- 
independence task?

11-8 Theory A predicts that people will be unable to discriminate between two 
particular perceptual stimuli, while Theory B predicts that they can. Only two 
responses are possible, X and Y. Failure to discriminate would lead to an equal 
chance for either response to be given, while the Y response would tend to be 
made if people could discriminate the stimuli. Thirty subjects are tested; 21 
subjects give the Y response, and the remaining 9 give the X response. Explain 
what a Bayesian might do with these data, what statistical inference(s) he might 
make, and what he would say about the relative plausibility of the two theories.

11-9 A student wishes to find out the average number of times sociology books 
in the reserve-book collection of his university's library were checked out on 
overnight loan during the autumn term. During the Christmas vacation he 
selects 20 books at random by drawing from the sociology section of the reserve- 
book card-catalogue. He then locates the book and counts the number of 
times it was stamped with a due-date from the autumn term. Here are his 
results:

30, 32, 37, 22, 2, 37, 29, 33, 25, 24, 
34, 12, 33, 35, 33, 38, 22, 26, 16, 35

a Draw a histogram of these data to see if they are approximately normal.
b What is the 95% posterior credible interval for the mean number of times 

sociology books are checked out? Compare the credible interval computed 
without transforming the data with the one found from the transformed data.

11-10 Find an example from social science journals of each of the inference methods 
discussed in this chapter and give a Bayesian interpretation for each one.
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Now it is time to consider inferences about two variables. This is the type 
of inference most commonly found in the social sciences literature, because 
experimental work frequently is focussed on such questions as 'Is this different 
than that?', 'Are these two related in some way?', or 'How can this variable 
be predicted from knowing that one?'.

Take a specific example. Suppose a theory predicts that the speed of 
learning a new skill depends in part on the time lag between performing the 
task and receiving knowledge of results. The sooner a person is given knowledge 
of results, the more quickly he learns. To study this, a psychologist randomly 
assigns subjects to two groups, and subjects in both groups are given several 
trials in which to learn a simple task, like keeping a pointer on an erratically- 
moving spot. Subjects in one group, the control group, are only told at the end 
of each trial the number of seconds they kept the pointer on the spot. The other 
group, the experimental group, receives this information throughout the trial, 
so each subject in this group can check on his score as it accumulates. By 
comparing the mean performance of the subjects in the two groups, the experi 
menter can get some notion of the effectiveness of feedback given during the 
learning of the task.

That general concern reduces to this statistical problem: What is the 
difference between the population means of the two groups? Suppose the 
experiment reveals a slight difference. Is it then correct to infer that since the 
sample means are different that the population means must also be different? 
Not necessarily, for the differences between the samples could have arisen 
purely by chance. Then again, the difference might reflect a real difference in 
the populations. How can we decide?

Our approach to this question should by now be familiar. We make an 
inference, using the Bayesian machinery, concerning the difference between the 
population means, and we express this inference as a posterior credible interval. 
We will end up stating that there is, say, a 99% chance that the true difference 
lies between a particular low value and a particular high value. If that interval 
happens to include a difference of 0, then we cannot rule out the possibility 
that there is no difference between the effectiveness of the two kinds of know 
ledge of results.
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This chapter progresses fairly fast, for I am counting on your recognizing 
the basic operation of Bayes' theorem in all these methods. It is only the little 
details that make these methods appear different. As in the previous chapter, 
I have given detailed summaries of the methods at the end of the chapter. 
Comparing the summaries should help to highlight the similarities.

This chapter should enable you to
understand and carry out inferences concerning two uncertain quantities; 
know when these methods are appropriate and when they are not;
be able to interpret corresponding traditional analyses from a Bayesian 

viewpoint.

12.1 Differences between means

In this section I first introduce a simple method for making inferences 
about the difference between two population means that applies whenever the 
two posterior distributions (one for each population) are normal. Then I go on 
to discuss methods that apply to non-normal posteriors, and in the process 
we pick up a new distribution to add to our already extensive collection, the 
Behrens distribution.

General method for independent normal posteriors or priors
Suppose that our uncertainty about some uncertain quantity is normally 

distributed with mean m 1 and variance sf. Suppose, too, that our opinion about 
a second uncertain quantity is normal with mean m 2 and variance s 2 . Often 
we are interested in the difference between the uncertain quantities, call 
it 8 (Greek lower-case delta), and it is a useful fact that in this case the distri 
bution of d is also normal with mean given by m l — m 2 and variance equal to 
$i+sf. You subtract the two means and add the two variances to get the mean 
and variance of the new distribution. There is only one assumption to watch 
out for: the two original distributions must be independent.

This principle is often useful in Bayesian analysis. If you have measures 
on random samples drawn from two independent populations and you are 
interested in finding out how much greater the population mean of one group 
is than the population mean of the other, then if your posterior distributions 
concerning each sample mean are normal, you can apply this principle to get 
the posterior distribution concerning the difference between the population 
means. You can see how this works in the next example.

Exercise 12-1
A psychologist studying thought disorders in schizophrenic patients devises a 
special testing procedure which yields, among other measures, a single number 
that represents the degree to which concepts used to describe people are inter 
connected in the patient's thinking. High values of the index indicate high 
interconnectedness, or low discrimination between concepts, while low values 
suggest that an individual uses concepts that are seen as distinct and fairly 
unconnected.
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In developing his test he administers it to patients with clear-cut histories of 
schizophrenia, and also to normal individuals with no evidence or history of 
mental illness. He expects to find a difference between the means of the two 
groups. Failure to find much of a difference would suggest that his test is no 
good, or that current theories of schizophrenia need revision.
He is initially very unsure of the population mean and variance of each group, 
but because he administers the test to a large number of people, his posterior 
distributions concerning the means have so many degrees of freedom that 
normal approximations to the actual Student-/ distributions apply.
Suppose, then, that his posterior opinions about the population mean score of 
schizophrenics is normal with mean of 27 and standard deviation of 2-6, while 
the mean of the normal posterior for normal people is 19 with standard deviation 
of 3 -2. What is the posterior 99 % credible interval for the difference between 
the population means ?

Answer
First, some terminology. Let's refer to the population of schizophrenics as
population 1, the normals as population 2. We wish to find the difference
between the means of the populations, //! — ju2 . For short, let S = //i — 1*2-
Our goal is to find a posterior 99 % credible interval for 6.
We know that the two posterior distributions concerning //i and //2 are normal
with

ml = 27 m'z = 19 
5i =2-6 s"2 = 3-2

These distributions are shown in Fig. 12-1.

schizophrenics

12 14 16 18 20 22 24 26 28 30 32 34 36 
possible values of the population mean

Fig. 12-1
Posterior distributions for the population means of normal and schizophrenic groups on a particular test

The posteriors look fairly separate, though there is some overlap. It is in this 
region of overlap where at least some posterior opinion favours the possibility 
of the mean of the normal group being higher than that of the schizophrenics.
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We can get a better idea of how serious this overlap is by finding the distribution 
of <5. This distribution is itself normal with mean equal to m" — m'2' and 
variance given by (s'^2 + (s^2 . This means that the posterior concerning <5 is 
normal with

m" = ml — ml = 27 — 19 = 8 
and s" = V(sy* + (s^ = V(2-6)2 + (3-2)2 = Vl7 = 4-123
This posterior is shown in Fig. 12-2. The curve indicates that some posterior 
opinion falls over negative values of 6, suggesting that the mean of the normal 
group might be higher. We can see this in the credible interval:

8 - 2-58(4-12) < § < 8 + 2-58(4-12) 
- 2-64 < 6 < 18-64

i i i i i i i i i i i i i 
-4-20 24 6 8 10 12 14 16 18 20

possible values of 8 — io.j —jjt 2

Posterior distribution for the difference between the population means whose posterior 
distributions are shown in Fig. 12-1

Some values in the interval are negative. Even the shorter 95 % interval includes 
some negative values:

8 - 1-96(4-12) < 6 < 8 + 1-96(4-12) 
- 0-08 < S < 16-08

Thus, we conclude, there is some possibility that the mean performance of the 
normal group is higher than that of the schizophrenics.

You can see from this example that the overlap of two posterior distri 
butions must be no more than slight in order for the distribution of their 
differences to fall well away from 0.

Testing hypotheses
Although this topic will be discussed fully in Chapter 14, it is worth a 

brief introduction at this point while the previous exercise is still in mind. The 
question we now consider is how to assign probabilities to these two hypotheses:

Hj: schizophrenic population mean is greater than mean of normaJs 
H2 : mean of normals is greater than schizophrenic population mean
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or, put more succinctly, 
HI: iii > 1*2 
H 2 : ^2 > Hi

We can rule out the possibility that the means are equal, HI = H2> because that 
is equivalent to finding the probability of (5, an uncertain quantity, being equal 
to a specific value, 0. Recall that when we deal with continuous uncertain 
quantities we usually talk about probabilities of intervals of values, for the 
probability of any specific value must be 0. Thus, the probability of d = 0 is 0.
We could also phrase our two hypotheses in terms of d. 

H! : HI > H2» that is> <5 is positive 
H2 : H2 > Hi> that is, d is negative

Then it should be obvious from Fig. 12-2 that the probability of Hj is given 
by the area of the posterior to the right of 0, while the probability of H 2 is 
represented by the area to the left of 0 (see Fig. 12-3).

Shaded area p(H 2 |D) White area - p(HjD)

6 8 
possible values of 8

20

Fig. 12-3
How posterior probabilities of hypotheses are found from the posterior distribution of 8

To find the area to the left of d = 0, we follow the usual procedure for 
normal distributions: find the z-value corresponding to d = 0, then look up 
the area to the left of z in the cumulative normal tables. The z-value for this 
posterior is

z =
(3-m"_Q-8 

i"~" = 4^123 = -1-94

From the normal tables, the area to the left of z = 1 -94 is 0-9738, so the area 
to the left of z = - 1 -94 must be 1 -0-9738 = 0-0262. We conclude, then, that

and
p(H2 |D) =

= 0-974

Hi) = 0-026
In words, there is a 97-4% chance that the group mean of the schizophrenics is 
greater than that of the normals.
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This is just one example of how probabilities of hypotheses can be 
obtained from the posterior distribution concerning some uncertain quantity. 
The procedure is valid as long as the hypotheses are formulated in terms of 
intervals of the uncertain quantity. There is no very satisfactory parallel in 
traditional statistics, for the relative frequency notion of probability usually 
rules out the assigning of probabilities to intervals of an uncertain quantity.

When population variances are equal, though unknown
If we are making inferences about the means of two populations whose 

variances are unknown, then, as we saw in the previous chapter, the posterior 
distributions are Student-/. If we have only a modest amount of data, then the 
degrees of freedom associated with each posterior are too small to allow the 
Student-/ to be approximated by the normal. To find the posterior distribution 
of the difference between the population means we cannot, then, use the general 
method just given, for it applies only to posteriors that are normal. In this 
section and the next, methods will be presented for dealing with the difference 
between Student-/ posteriors. This section assumes that the unknown variances 
of the two populations can be assumed equal; the next section does not make 
that assumption.

Sometimes our past experience or our theories that we are putting to the 
test give us reason to believe that while the means of two populations may be 
different, their variances will be roughly the same. This will be true, for example, 
whenever the treatment we administer to an experimental group affects only 
the mean performance of the group, but has no appreciable influence on the 
variability of performance in the group. Then we would expect experimental 
and control groups to have different means, but similar variances.
When the posterior distributions for each of two independent population means 
are Student-f, then the posterior distribution concerning the difference between 
the means is itself Student-1, assuming the population variances are equal though 
unknown.

All that remains, now, is to specify the parameters. Some familiar termino 
logy will be used. Let the two populations be designated 1 and 2. Their means are 
Hi and // 2 and their variances a\ and a\. Assume that the populations are normal 
and that the variances are equal, G\ = o\ = a2 . We have drawn random and 
independent samples from the two populations, of size N^ and N2 . Numerical 
measurements were made on the samples; designate these as A\ and X2 .

Now we are ready to make some calculations on our data. First the means 
of the two samples:

and M

There is nothing new there. Now, instead of calculating the standard deviations, 
compute the sums of squares:
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Remember that if you do want to calculate the standard deviations, it is a short 
step from the sums of squares:

F / XX\1 = VN^
Sometimes we will find it more convenient to work with the sums of squares, 
other times with the standard deviations or variances.

Now we are ready to specify the parameters of the posterior distribution 
concerning 8, where 8 equals the difference between the population means, 
ju t —A* 2 - It ^ a Student-/ with these parameters:

N l +N2 -2 ) \N 1 N~2 ) 

posterior degrees of freedom = df" = N l + N2 — 2
Once you know the parameters you can find any posterior credible 

interval by travelling up and down / sigmas from the mean. In general, the C 
per cent credible interval is

where / is the standard deviate corresponding to the C per cent credible interval 
for the Student-/ distribution. Remember when finding / from the Student-/ 
table to enter the table with N 1 -{-N2 — 2 degrees of freedom.

Exercise 12-2
A scientist studying the effects of RNA on short-term memory in old people 
administers a drug containing RNA to a sample of 20 men and women over the 
age of 70. To ensure that any effects on memory he may observe are due to 
the drug and not, say, to the special attention given to his subjects, he administers 
a placebo drug to another sample of 20 people, the control group. These 20 
people are chosen at random from the same population as the experimental 
group, but with the restriction that IQ's in the control group must match those 
in the experimental group. In this way, the scientist ensures that differences in 
short-term memory are not associated with differences in intelligence. Only the 
scientist knows whether a subject received the drug or the placebo.
Each subject is tested a specified time after receiving the drug or placebo; the 
time lapse gives the drug time to be absorbed. An assistant who does not know 
whether the subject received the drug or the placebo carries out the tests. One 
test gives the subject's 'digit-span', the maximum number of digits a person can 
repeat back without error immediately after hearing them. Here are the results 
for the two groups.

Control:

54 53
45 56
65 46
65 46
65 57
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Experimental:
78 67
77 67
76 78
66 66
79 56

What is the posterior 99 % credible interval for the difference between the means 
of these groups ?

Answer
Now that the experimental group has been 'treated', we say that it represents 
a new population, even though all subjects in the experiment originally came 
from the same population. We are interested in the difference d between the 
mean n\ of the population of 'treated' patients and the mean //2 of the population 
of 'untreated' patients. The scientist has no reason to believe that RNA will 
increase the variability of digit-span in the experimental group, so he assumes 
that the unknown variances of the two populations are equal. He also assumes 
the populations are normal; histograms of his data give him no reason to 
disbelieve this. He is ready, now, to make the calculations in the following steps.

Compute the mean and sum of squares for each group. First he finds 2 X 
2 X* for each group :

IX IX2
Experimental 134 914 
Control 102 538

Then the means :
X, 134

102

And next the sums of squares:
20(914) - (134)2 = 324 

20 20
cc _ '>! Z, ^l — VZ, ^i; _ ^A^i*V — V*->-V _ -^T __ -J*JXXi — ~———————i7—————— — ——————^—————— ~~ ~^^ — 10 Z

cc ^2 I Xj-(IX2f 20(538) - (102)2 356 S5XX2 = -——-—————— = ————^0——— = lo = 1? ' 8

b If the scientist assumes uniform priors over /* lf //2 , and log a, then the posterior 
distribution concerning 6 is Student-/ with parameters

u t" = Mi- M2 = 6-7 - 5-1 = 1-6

N SX^Sf2)
16+ 17-8W20 + 20 
20 + 20 -2 A 20 X 20

387 V 400/
k / » '

and df" = TVi + N2 - 2 = 38

/ 40 \ ___ 
°Z _ = Vo-0895 = 0-299
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c Compute the posterior 99% credible interval: 
ti"t — tff"t < 6 < ft"t + t<r"t

Reference to the Student-/ table for 38 degrees of freedom gives / = 2-71 (by 
interpolation). Now we have all the ingredients for computing the credible 
interval.

1-6 - 2-71(0-299) < 6 < 1-6 + 2-71(0-299) 
1-6 - 0-81 < <5 < 1-6 + 0-81 

0-79 < d < 241

You might be interested to know that I generated these data from two 
normal populations with means of 5 and 7, so the true difference is 2. The 
credible interval contains that value.

This method is quite robust with respect to the assumptions of normality 
of the populations, and less so concerning the equal-variance assumption, 
especially if the samples are of different size. If there is any doubt about the 
variances being equal try to arrange for your samples to be of the same size.

You will, on rare occasions, find in the social science literature, a confi 
dence interval for the difference between population means. How should you 
interpret it? Well, it will be exactly the same as a Bayesian credible interval 
calculated under the assumption of uniform priors over n lt n 2 , and log a. 
However, be sure that the equal-variance assumption is made. If it is not, then 
the traditional confidence interval will not be the same as the Bayesian credible 
interval, as we shall see in the next section.

This exercise introduced two new concepts: blind trials and matching, 
It is often important for the subject not to know whether he received a genuine 
treatment. This controls for effects that might be connected with, for example, 
the subject's conscious or unconscious desire to please the experimenter, for it 
is hoped that the effect would work equally for both groups and so cancel out 
when the difference between groups is examined. As an extra precaution, the 
person doing the testing is kept in ignorance of the type of treatment each person 
received, so he cannot unconsciously influence the results. When both the 
subject and tester are not informed of the type of treatment, the experiment is 
said to be double blind.

Matching is introduced to cut down on variance due to uncontrolled 
effects. It is another way to exercise control in an experiment. If you think 
that differences between groups might be caused by factors other than the 
treatment, then you try to equalize the factors in the two groups, so their 
differences cancel. Ideally, random selection of control and experimental groups 
would cause these uncontrolled factors to cancel out, but especially in small 
samples there is no guarantee that will happen. You can cut down on uncon 
trolled sources of variability, and so make more efficient use of small samples, 
by matching groups on variables that you think might make a difference. 
Methods for doing this are discussed in books and articles on experimental 
design, and will not be pursued further here.

It is important to recognize that blind trials and matching are aspects of 
the design of experiments, and are not required by our statistical machinery. 
You will find many inferences made about the difference between population
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means where neither blind trials nor matching are employed. There is no 
requirement for the sample sizes to be equal, either, although they were for this 
experiment because of the matching. It is necessary for the samples to be 
independent, though. Cases where they are not, and the procedures to be 
followed then, are discussed in the section after the next one.

When population variances are unknown and possibly unequal
If we suspect that the population variances may be unequal, then the 

difference between our two Student-/ posteriors concerning the population 
means is no longer a Student-/, it is a Behrens distribution. This distribution, 
like the normal and Student-/, is bell-shaped and symmetrical, but it is much 
more complex. It is a five parameter distribution and even in its standardized 
form it still needs three parameters to be specified to complete its description. 
This makes tabling an almost impossible task. However, we need to use the 
Behrens distribution only for small samples, so extensive tables are not 
necessary.

The experimental situation is identical to the last section. There are only 
two differences up to the posterior distribution. First, in addition to the means, 
it will be convenient to compute the variances of the two samples.

X22 -
N2(N2 -1)

Secondly, we assume uniform priors over fji l and u2 , as before, but also over 
log 0-j and log <7 2 . All four of these prior distributions must be independent of 
one another.

Under these conditions, the posterior distribution concerning d, the 
difference between the means, is given by a Behrens distribution with these 
parameters:

posterior degrees of freedom j = dfi = N 1 — 1 
posterior degrees of freedom 2 = df2 = N2 — 1

posterior angle = co", where tan co ,, = /Sf/JV 
V S? /JV

(Once you have found tan o>", you can look up co" in Table L.)
Just as z identifies the independent variable along the horizontal axis of the 

standardized normal distribution, and / serves the same function for the Student-/ 
distribution, so d is used to signify the independent variable of the Behrens 
distribution. A rather coarse table of d is given in Appendix A. You enter it 
with dft, df2 and o> for the credible interval of interest, and then read off the 
value of d. Then you compute a credible interval in the usual way:
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Exercise 12-3
Students in my statistics class filled out a special abbreviated version of a 
questionnaire that measures what might be called 'ideological conservatism' 
(see Wilson and Patterson, 1968, for the full questionnaire). Possible scores 
could range from 0 to 24, a high score denoting greater conservatism. I decided 
to take a random sample of 7 men and 9 women (the samples are of unequal 
size purely for illustrative purposes), and these are their scores on the test:

Men Women

2 8
0 10
8 8
8

4 12
1 13

12 10
13 3
12

What is the posterior 99% credible interval for the difference between the 
means ?

Answer
If we assume uniform prior distributions over the means and logs of the standard 
deviations of the two populations, that the priors are independent, and that the 
populations are normal, then we proceed as follows:
Let //i = mean score of population of men, and //2 = mean score of population 
of women. We wish to find a credible interval for <5, the difference between the 
means, d = n\ — Hz-
Find the means and variances of the two samples. First we find N, ^ X and 
2 X2 for each sample.

1 X, = 44 2 ^2 - 80
2 XI = 360 y XI = 896

Ni = 7 N2 = 9 
The means are :

The variances are:
S2 = Ni I*?-(I*i)2 2 = A

7(360) - (44)2 9(896) - (8Q) 2

42
c Find the parameters of the posterior Behrens distributions. 

& = Mi- M2 = 6-29 - 8-89 = - 2-60

13-905 23-111

+ 2-5679 = \/4 :5543 = 2-13
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dft = N! - 1 = 7 - 1 - 6 
df; = N2 - 1 = 9 - 1 = 8

tanW/' = V^i V lT9864 = 1-14

Go to Table L, look up 1 -14 in the tan column, and read off the nearest angle. 
This gives

co" = 49°

Look up d for the 99 % credible interval in Table A. Enter the table with <#i = 6 
and with df2 = 8. The exact value of d for co = 49° is not tabled, but we can 
interpolate between co = 45° and co = 60°.

45 C

49 C
15 0-132<

3-363
•£ x 0-132 = 0-035

3-363 + 0-035 - 3-398

65°' v 3-495 

From the interpolation diagram we get d = 3-398. 
e Compute the credible interval. 

Pd ~ da"d < S < n"d + da"d
- 2-60 - 3-398(2-13) < d < -2-60 + 3-398(2-13)
- 9-84 < 6 < 4-64

Now we can be 99% sure that the true difference between the population means 
lies between — 9-83 and 4-63, the positive values signifying that the men's mean 
is greater. From this credible interval we might conclude that, on the average, 
men and women's scores are not very different.

The Behrens Table is fairly coarse, so interpolation is almost always 
necessary. But this is a tedious job for a table of triple entry, so let me suggest 
an alternative. Round dfv and df2 down to 6, 8, 12, or 24, whichever is nearest, 
and enter the table with those rounded-down values. (For dfless than 6, consult 
Table VIi, of Fisher and Yates, 1963.) Then, if w" is not equal to any of the 
values along the top of the table, round co" either up or down to one of those 
values, whichever direction of rounding gives the larger tabled value of d. The 
value of d that results from these procedures will be slightly larger than the 
correct one, so the credible interval will be a little on the conservative side.

When both samples are at least as big as 25, then the Student-/ distri 
bution provides a fair approximation to the Behrens, so you can use the pro 
cedures of the previous section. Of course, if the samples are large, the normal 
approximation will be very satisfactory, for the Behrens distribution tends to 
normality as the degrees of freedom increase.

You will almost never find in the social science literature a confidence 
interval for the differences between two means of independent populations 
when the variances are not assumed equal. There are several reasons for this. 
In the first place, this case is not even discussed in many social science statistics 
textbooks, so some investigators just assume that the variances are equal.
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Secondly, when it is discussed, writers usually note that there is controversy in 
the traditional literature as to what distribution is appropriate, so some scien 
tists avoid the procedures altogether and rely on methods (often called non- 
parametric statistics) that make few or no assumptions about the form of the 
population distribution. Thirdly, a convention has grown up among social 
scientists that places heavy emphasis only on finding out whether the population 
means differ by an amount greater than could be expected by chance, not on 
what the difference actually is. As a consequence, you are more likely to read 
'the means are significantly different' rather than be given a confidence interval. 
As you will see in Chapter 14, I think the emphasis is in the wrong direction. 
More attention should, in my opinion, be paid to inferences concerning the true 
values of the differences, and less to decisions about whether an observed 
difference is just a chance variation hiding a true difference of zero.

Finally, I should point out that the Bayesian credible interval you find 
with the methods of this section will be the same as the confidence interval 
calculated by those non-Bayesians who subscribe to Fisher's work on the Behrens 
distribution. But there are few statisticians who agree with the Behrens-Fisher 
result. The Bayesian viewpoint does, however, support the end result of Fisher's 
work, though not his argument since it is in the relative frequency tradition. 
Thus, if you do run across a traditional confidence interval, it is likely not 
derived from the Behrens-Fisher distribution, so it cannot be given an exact 
Bayesian interpretation. This is one point where Bayesian and traditional 
methods disagree.

When populations are not independent
So far, the methods of this Chapter have assumed that the populations 

are independent. As long as we are comparing two different groups that 
assumption will usually be valid. But suppose we have 'before' and 'after' 
measures on the same person. Can these two measures be taken as independent ? 
The answer is no, if you think that the scores will be correlated. The treatment 
may, for example, cause most people's scores to improve, so the relative standing 
of one person to the next may remain fairly stable. Thus, if a person scores low 
before treatment, his after-treatment scores is also likely to be low relative to 
the other scores. We would expect, then, to see a correlation between the 
'before' and 'after' scores, so the inference methods that assume independence 
could not be used.

To handle this situation, it is necessary to define a new variable, £>, which 
stands for the difference between the 'before', or X^ and ' after', or X2 , scores.

D = after score — before score

We can then use the methods of the previous chapter to make an inference 
about n, the mean of the population of difference scores.

Exercise 12-4
A statistics instructor wishes to find out how effective 'A First Program in 
Mathematics', the programmed textbook mentioned in Chapter 1, is for students 
taking his course. He has recommended the book to his students, but does not 
require them to read it. At the beginning of term he administers a mathematics
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test to all his students, and a month later administers an equivalent test which is 
not compulsory and which asks if the student has completed the program. 
Fifteen students replied that they had. Here are their before and after scores.

36
59
49
55
45
27
52
38
66
49
34
50
35
46
52

71
74
73
72
66
72
75
72
78
71
64
67
68
70
73

Student Before
score score

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

Suppose the instructor assumes that those 15 people are reasonably repre 
sentative of a population of potential students who will take his course and will 
conscientiously use the programmed textbook. What is the 95 % credible interval 
for the amount of improvement the population would show on the test scores ?
Answer
We start by defining a new variable, D, the difference between the test scores. 
Our interest is in //, the mean of the population of difference scores, and we are 
particularly concerned to find the 95 % credible interval for n- Assume that prior 
knowledge about the mean and variance of the population difference scores is 
vague, so the priors can be taken as uniform over n and log a, and assume 
that the population is normal. Now we proceed using the methods for making 
an inference about the mean of a normal population whose variance is unknown.
Find the difference score, /), for each person. Then find the mean and standard 
deviation of the difference scores.

Person v v D2
A2 — •*!

A 35 1225
B 15 225
C 24 576
D 17 289
E 21 441
F 45 2025
G 23 529
H 34 1156
I 12 144
J 22 484
K 30 900
L 17 289
M 33 1089
N 24 576
O _21 441 

2 D = 373 I D2 = 10389
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b The posterior concerning n is Student-/. Compute its parameters. 
lit = M = 24-87

" S 8 '92 ?™ at = —= = -—= = 2-30
VN Vis

df" = N - 1 = 14
c Look up in Appendix G the value of / for a Student-/ distribution with 14 

degrees of freedom such that 95 % of the curve falls between ± /. That value 
is 2-145.

d Find the posterior credible interval.
fit — to"t < ft < fit + ta"t
24-87 - 2-145(2-30) < ft < 24-87 + 2-145(2-30)
19-94 < n < 29-80

The instructor can safely conclude that students who voluntarily use the book 
will show a substantial improvement in their scores on the maths test. To find 
out whether this improvement lasted, and whether it affected performance in the 
statistics class, he would have to engage in further research.

12.2 Ratios of variances
Interest is sometimes centred not on the means of two populations but 

on their variances. To what extent is the variability in this group different from 
the variability in that group? We could talk about the difference between the 
variances of the two groups, but the mathematics are easier if we enquire about 
the ratio of the variances. Equal variances will yield a ratio of 1, while ratios 
greater or less than one come about when the variances are unequal. The goal 
of this section is to present a method for finding the posterior distribution 
concerning the ratio of two variances, so that we can find a credible interval 
for the ratio.

We start by defining some terms, all of them familiar. We have two 
populations whose means are // 2 and ju 2 , and whose variances are G\ and o\. 
A random sample is taken from each population in such a way that the samples 
are independent. From population 1 we take Nl observations on each of which 
a numerical measurement, Xl9 is made. Also, N2 observations are made from 
population 2, and a numerical measurement, X2 , is taken for each observation. 
This is the same procedure as in the last section.
Now we calculate the variances of the samples.

^2 _ SSXXl ™1 L^ ^1 ~ (2, ^l)

l ~N,-l~ N^N.-l) 

N2(N2 -l)
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Then we find their ratio, Sf/Sj. What does this sample ratio tell us about the 
population ratio? The posterior distribution of G\IG\ gives us the answer. If 
we assume that the populations are normal, and our prior knowledge is vague 
so that we assess uniform and independent priors over ju n ju 2 > l°g °"i» and log cr 2 , 
then the posterior is given by a distribution new to our arsenal, the F-distribu- 
tion. This is a skewed distribution that, like the IG2, extends from 0 to +00. 
However, it is not o2Jo22 that is distributed as F, but rather, for mathematical 
convenience, a simple transformation of G\la\ If we take the reciprocal of 
a\lG\ and then multiply by Sf/Sj, the ratio of the sample variances, then we 
get

S/S

and it is this quantity that has a posterior F-distribution. The parameters are

It is important to get the order of the parameters correct, for if you interchange 
them, you end up with a different F-distribution. We will help to forestall 
confusion by referring to the F-distribution as the F(dfl9 ^^'distribution. As 
I have just said, F(dfl9 df2 ) is different from F(df2 , <#i).

A little algebra is necessary to establish the credible interval for a\la\. 
First, we know that the limits on

go from Flm(dfi, df'fi to Fhigh(dfi,df'^. We can state that algebraically in this 
familiar form:

It will be convenient to express the interval in two equations
sf/siF»J(dX,df;) <

l/°2 
<2/o2

Rearranging terms in both equations gives:

sf/si
,-, dm
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Since we now have a\\o\ on the left side of both those equations, we can write 
the credible interval for G\\G\\

':—— < -4 < —
i"> dffi

Do not be alarmed that Fhigh appears in the expression for the lower limit 
and F,ow for the higher limit. This is a straightforward consequence of the 
algebraic steps needed to get the credible interval concerning o\lo\ from the 
credible interval for (Sj/5j)/(ffJ/<^).

If that is not confusing enough, I have to say that only tables for Fhigh exist, 
so a special procedure is needed to find Flow from the Fhigh tables. What you 
have to do is interchange the degrees of freedom, look up the corresponding 
value in the table and then take its reciprocal to get FIow . In symbols,

F\0v,(dfi, df2 ) = -

Substituting that expression into our equation for the credible interval gives:

'" Af"\ xr2 ~
l»«/2) ^2

For each credible interval there is a separate table of values for Fhigh , and they 
are given in Appendix D. After you have chosen the desired table, you enter 
with dfi and df'2 degrees of freedom, and the tabled value gives Fhigh(dfi, dfe). 
Now interchange the degrees of freedom, enter the table with the switched 
values, and the value you read off will be Fhigh(<#2> df[).

It all sounds rather confusing, but the application is terribly simple, as 
will be obvious from this example.

Exercise 12-5
The investigator in Exercise 12-3 wishes to examine the degree to which the 
population variances of men's and women's scores are different. How might 
he do this ?

Answer
One approach would be to find the posterior credible interval for the ratio of 
population variances. If he assumes uniform priors over /il9 //2, log <TI, and 
log <r2 , that the priors are independent, and that the populations are normal, he 
should follow these steps:
Let al = variance of population of men's scores, and a\ = variance of popula 
tion of women's scores. We wish to find a credible interval for o\\a\, the ratio 
of the variances.
Find the variances of the two samples. We did that in step 2 of Exercise 12-3. 
There we found that

SI = 13-905 and Si = 23-111 
Find the parameters of the posterior F-distribution. 

4K = N,. - 1 = 7 - 1 = 6 
dfi = N2 - 1 = 9 - 1 = 8
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Look up F(dfl 4Q, that is to say, F(6, 8), in Appendix D. Let us do it for the 
95% credible interval. From the table, F(6, 8) =4-65. Now interchange the 
degrees of freedom, and enter the table again. You should get F(8, 6) = 5-60.
Compute the 95% credible interval.

0-129 < -* < 3-37

Since the interval includes values that are less than 1 as well as greater than 1, 
these data do not give us any reason to believe that there is much of a difference 
between the population variances, even though the sample variances are different.

There is one final note. The values of F(dfl , df2) in the table of Appendix D 
do not, unfortunately, give the limits of the highest density region. The table 
gives values of Fhigh(^\, df2 ) above which falls half the area outside the credible 
interval. Thus, if you are concerned with a 95% credible interval, then 2^% 
of the area under the curve lies above the tabled value. Tables of limits for the 
highest density region have not yet been calculated.

12.3 Inferences concerning correlations
We turn now to procedures for making inferences concerning a corre 

lation coefficient. First we look at a method appropriate for the Pearson-r 
correlation when data consist of numerical measurements, and then we turn 
to a procedure that is sometimes useful for ranked data.

Procedure for numerical measurements
The experimental situation is that we have randomly selected TV elements 

from the population, and made two numerical measurements, X and 7, on 
each element. The Pearson correlation coefficient, r, between the measurements 
is computed, and now that we know the sample correlation, we wish to know 
what inference is valid about the population correlation coefficient, which 
we will call p (Greek lower case rho, not to be confused with Spearman's 
rho, rrho).

Let us look first at the assumptions that go into the Bayesian procedures 
for computing the posterior distribution. First, we assume that the population 
is bivariate normal. This is a distribution with five parameters, each of which 
has a straightforward interpretation:

Hx the mean of the population of Jf-scores;
ax the standard deviation of the population of T-scores;
U Y the mean of the population of 7-scores;
ff Y the standard deviation of the population of F-scores;
p the correlation coefficient between the population of X- Y scores.
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Two bivariate-normal distributions are shown in Fig. 12-4, one for p = 0-75, 
and one for p = 0-9.

The marginal distributions of the bivariate-normal distribution are each 
normally distributed themselves. As you might expect the means and standard 
deviations of the marginals are, for the ^-scores, \ix and ax , and for the 
F-scores, H Y and a Y . This fact gives us a means of determining whether the 
population is bivariate normal. If we think it is reasonable to consider the X 
and Y scores separately as being each normally distributed, then it is safe to 
conclude that the distribution of X and Y taken together is bivariate normal. 
Of course, it is important to remember that we are talking about the degree of 
linear correlation between X and Y. That, too, is an assumption of this method.

Fig. 12-4
Two bivariate-normal density functions.
From Schmitt, S.A., Measuring Uncertainty: An Elementary Introduction
to Bayesian Statistics, Reading, Mass., Addison-Wesley, 1969.

Returning, now, to the remaining assumptions, we take our prior uncer 
tainty to be vague, so that it can be considered uniform over ^x , // y , log vx , 
and log a Y - Your prior distribution concerning p is likely to be vague; as long 
as you are willing to assign at least a little opinion to all possible values from 
— 1 to + 1, then the results of this section will apply. We assume that you have 
observed enough data that your prior opinion about p is swamped. As usual, 
we-consider those five prior distributions to be independent of each other.

Now consider the data. We have TV pairs of measurements, so we calculate 
the Pearson-r. Recall the defining and computing formulae:

SSXY

2 -
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The posterior distribution of p is, sadly, highly skewed, and is not in any 
of the forms we have considered so far. However, Fisher has provided a trans 
formation which changes p into a new variable f (Greek lower case zeta), and 
Bayesian analysis shows that the distribution over f is approximately normal. 
The transformation is

where 4 ln' refers to the natural logarithm, that is, logarithm to the base e.
The posterior distribution concerning ( is approximately normal (the 

approximation is better the more data you have), with
m" = the Fisher-z transformation of r

= \N
N

To find the Fisher-z transformation of r you do not need to use the formula 
given above, for a table has been prepared. It is in Appendix K. You look up 
r in the left column and read off the Fisher-z in the right column.

Credible intervals are found in the usual way for a normal posterior. The 
credible interval for f is

m"-zs" <C < m" + zs"

where z is the standard deviate corresponding to the C per cent credible interval 
for the normal distribution. (Do not confuse this z with the Fisher-z transfor 
mation of r.) This procedure gives you £ low anc^ Chigh- T° get the posterior 
credible interval concerning r, you simply look up £ low and Chigh ' n tne z-column 
of the Fisher-z table, and read off the corresponding values of r to give/- low 
and rhigh .

As you will see from the following exercise, it is very easy to apply these 
procedures.

Exercise 12-6
In Fig. 10-6, scatterplots are shown for varying degrees of correlation. Consider 
the plot for which r = 0-44. If we assume that the plot represents a random 
sample from a population, what inference can be made about the population 
correlation coefficient ? Recall that TV = 40.

Answers
We really should know the context of the experiment in order to assess the prior 
distributions, but let us assume they are all independent and uniform over 
^x, ^y, log ffxt and log <7y, and that the prior over p is nowhere 0. Also, assume 
the population is bivariate normal. Now follow these steps.
Normally, we would first have to compute the correlation coefficient. But here 
that has already been done: r = 0-44.
Find the Fisher-z transformation of r. From Appendix K we find that 
Fisher-z = 0-47.
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c Find the statistics of the posterior concerning £. 

m" = Fisher-z transformation of r = 0-47

, /! = /I = c-158
V TV V 40

Compute, say, the 99% credible interval for C: 
m" - zs" < C < m" + zsT 
0-47 - 2-58(0-158) < C < 0-47 + 2-58(0-158) 
0-062 < C < 0-878

Convert that interval to one concerning r by working the transformation back 
wards. Look up 0-062 and 0-878 in the z-column of the Fisher-z table and read 
off the corresponding values of r. I get r low = 0-06 and rmgh = 0-70. The 99% 
credible interval concerning r is, then,

0-06 < r < 0-70

Notice how wide the limits are. That comes as a surprise to most people. On 
the basis of our sample of 40, we are 99 % sure that the population correlation 
is between 0-06 and 0-70.

This exercise shows that you have to collect a fair amount of data before 
you can be very sure about the value of the population correlation. Thus, there 
is not much point in presenting inference procedures for small samples.

It is possible, though unlikely, that you will come across a confidence 
interval for a correlation coefficient in your reading. If you do, it can be inter 
preted as a Bayesian credible interval that was calculated under the assumptions 
of this section.

Procedure for ranked data
Unfortunately, Bayesian methods have not been worked out for 

Spearman's-rho correlation, so there is no way we can make an inference about 
population values. For the time being, Bayesians will have to be content to 
treat Spearman's-rho as a descriptive statistic.

However, there is a procedure that can be followed for ranked data. It 
can be applied whenever you think that the ranks could reasonably represent 
an underlying variable which is normally distributed. When this is the case, 
you transform the ranks into normal scores, compute the Pearson-r between 
the pairs of scores and use the inference method just discussed.

Transforming ranks to normal scores is done by using the table in 
Appendix M. The heading of each column gives the number, N, of observations, 
while the scores themselves are listed in the column. Notice that the scores 
refer to the standardized normal distribution, so that only positive values are 
tabled. That takes care of half the ranks; the other half receive the same scores 
only with negative signs attached. Thus, the top rank receives the biggest score 
in the column, while the bottom rank is also assigned the biggest score but with 
a minus sign in front. The exercise should make this clear.
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Exercise 12-7
In a study of creativity, two artists rank-order nine paintings according to the 
degree of originality shown in each painting. Here are their rankings:

Painting Judge I Judge 2
A
B
C
D
E
F
G
H
I

8
2
1
6
7
3
4
9
5

6
1
4
5
9
8
2
7
3

If those nine paintings can be considered a random sampling from some specified 
population, what inference can be made about the correlation between the 
judges' rankings for the whole population ?
Answer
This time the judges' rankings are a sample of the rankings they might give if 
they were presented with the whole population of paintings. We might enquire 
about the 99 % credible interval concerning the population correlation coefficient. 
To make an inference we first convert the ranks to normal scores. It seems 
reasonable to represent the ranks with scores that are normally distributed if we 
assume that 'originality', however defined, is normally distributed: most people 
in the specified population show average originality in their paintings, a few 
are not at all original, and a few are very original.
Ranks are easily transformed to scores by referring to Appendix M. Find the 
column headed with 9, the sample size. Read off the positive scores corresponding 
to ranks 1-4, assign the middle or 5th rank a score of 0, and then give ranks 
6-10 scores that are negative and the mirror image of the first four scores.

Rank Score
1
2
3
4
5
6
7
8
9

1485
0-932
0-572
0-275
0-000

-0-275
-0-572
-0-932
-1-485

Now assign those scores to the judges' rankings 
Painting Judge 1 Judge 2
A
B
C
D
E
F
G
H
I

-0-932
0-932
1-485

-0-275
-0-572

0-572
0-275

- 1 -485
0

-0-275
1-485
0-275
0

-1-485
- 0-932

0-932
-0-572

0-572
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Next, compute the Pearson-r between the two sets of normal scores (see the 
simplified formula, below.) My calculations give r = 0-50. Now we can use the 
procedure in the previous section to make an inference about p. First, the 
posterior distribution concerning C is approximately normal with statistics

m" = Fisher-z transformation of 0-50 = 0-55

f = /!= /j = 1 = 0-333\J N \/ 9 3
(For small TV, the normal approximation is not at all bad when r is around 0-5.) 
That gives a 99% credible interval for C of

0-55 - 2-58(0-333) < C < 0-55 + 2-58(0-333)
- 0-31 < C < 1-41 

Transforming back to correlations gives
- 0-31 < p < 0-89

That is quite a wide interval, but with only nine pairs of observations you can 
not expect a narrow one.

It is very easy to calculate the Pearson-r for this case because of the 
symmetry of normal scores. You can see that the sum of the normal scores is, 
necessarily, zero; that is, £ X = £ Y = 0. In addition, since the ^-scores are 
the same as the F-scores, £ X 2 = £ Y2 . With a little algebra, you can verify 
that these facts about the normal scores simplify the expression for r to this:

r =

You will find the value of £ X 2 at the bottom of each column in the table of 
Appendix M, so that leaves you with having to calculate only the sum of the 
cross-products, £ XY. For the exercise above, the sum of the cross-products 
of the normal scores is

XY = 3-411 
From the table,

£ X2 = 6-953

and so the Pearson correlation coefficient is 
3-471

Returning now to the inferential procedure of this section, we are left 
with the problem of interpreting the result. Normally, the Pearson-r is inter 
preted as reflecting the degree of linear relationship between X and Y, but 
in this case, where X and Y are scores based on ranks, we cannot talk about a 
linear relationship between ranks. To be on the safe side, we should say only 
that a relationship between the normal scores reflects monotonicity in the rela 
tionship between the underlying properties. By a monotone increasing relation 
ship we mean no more than that increases in one variable are always associated
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with increases in the other variable. A monotone decreasing relationship means 
that increases in one variable always go with decreases in the other. A linear 
relationship is monotone; so is an exponential or power relationship. But a 
U-shaped function is not, for as X increases, Y first decreases then increases. 
You cannot have both in a monotone relationship.

The other problem of interpretation lies in the justification for representing 
ranks by normal scores. Is the underlying property, measured only crudely 
by the ranks, really normally distributed ? Only rarely will theory give a clear 
answer, so justification must be based on a combination of past experience, 
experimental evidence, and hunch.

In sum, caution is advised in making very much of the posterior credible 
interval calculated by the methods of this section. The posterior credible interval 
should be interpreted as giving a rough idea of the possible tendency toward 
monotonicity between the underlying properties and of the direction of the 
monotone relationship. If the interval contains only moderate to high positive 
values, we can be pretty sure that the relationship is monotone increasing while 
moderate to high negative values indicate a monotone decreasing relationship. 
If small values and zero are found in the interval, then either there is no rela 
tionship or it is not monotone. Even if there is a relationship, you will need a 
fair amount of data for the posterior credible interval to show that fact.

12.4 Inferences concerning linear regression
Next we consider how to make inferences that involve the linear regression 

equation. Remember that the equation for predicting Y from X is
* = AY \ X + BY \ X X

where yis the predicted value of F, and X is the predictor variable. The regres 
sion coefficients, A Y \ X and BY \ X , determine the exact location of a straight line 
through the data which minimizes the squared deviations between predicted 
and actual values of Y.

Inferences about the regression coefficients and the standard error of 
estimate
The regression coefficients are calculated from data, and insofar as the 

data are a representative sample from a population, one might wish to make 
inferences about the population values of the regression coefficients. We can 
imagine that there must be a regression line for predicting Y from ^applicable 
to the population itself, and that errors in the predictions made from this line 
are indexed by the population standard error of estimate. Let us designate the 
population regression coefficients as <X Y \X an<^ PY\X> following our convention 
of letting lower case Greek letters stand for uncertain quantities. (Incidentally, 
the regression coefficient PY \X is °ften called a 'beta-weight'; it has no relation 
ship to the Beta-distribution.) And, let us use 0Y}X to refer to the population 
standard error of estimate for Y. In this section methods are given for making 
inferences about aY \ x , P Y \ X , and G Y \ X .

Sometimes you will wish to know not only what value of Y is predicted 
from a specific value of X, but also what your posterior uncertainty is about 
that prediction. We shall see in this section how to develop a posterior credible
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interval for ?, given that you know a particular value of X. And we shall also 
consider the posterior credible interval for the true value of 7, given some 
value of X.

The experimental situation might be either of these:
a The experimenter controls the values of X and measures obtained values 

of Y. For example, an experimenter studying the effects of group size on 
riskiness of group behaviour randomly assigns 100 subjects to groups of 
different size. He creates four groups of size 3, four of size 4, four of 
size 5, four of size 6, and four of size 7.
No. of groups 44444

No. of subjects in 
the group

Total no. of subjects 12 16 20 24 28 100

He presents each group with problems involving risky choices, and 
measures the level of risk in the solutions given by the group. Thus, each 
of the 20 groups has associated with it two numerical measurements:

X: number of subjects in group 
Y: level of risk

Notice that the population consists not of people but of varying sized 
groups, so TV = 20. Random assignment of subjects to groups helps to 
ensure that the groups are a random sample from the population of groups. 
By creating more than one group of a fixed size, any biases introduced 
into the groups by chance will tend to cancel each other out.

b The experimenter samples from the population at random, and takes 
two numerical measurements, X and 7, on each element of the sample. 
An example: the experimenter administers a short questionnaire that 
measures a person's anxiety about testing situations to 100 randomly 
selected students in a university. He also notes each student's average 
grade in the end of year examinations. Thus, there are two measurements 
for each of the 100 students:

X: score on test-anxiety questionnaire 
Y: average examination grade

In both of these experimental situations the experimenter wishes to make 
inferences about the regression coefficients of the linear equation for predicting 
y from X. Once he has the regression equation, he may wish to make inferences 
about the uncertainty in any particular prediction.
Now consider the data. We calculate these statistics of the sample:

y xa Mx = ^—- (mean of X)

.My = — (mean of 7)
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N

EJ AJ yy
8 BY\X = — (slope of regression line)

= My — #y| X Mx ( F-intcrccpt of regression line)

V ce 
y"error (standard error of estimate)

You might also like to calculate the Pearson correlation coefficient.
SS j r = , XY —— (correlation coefficient)

\ ij ij xx y Y

Next, we look at the assumptions. First, we assume that the population 
distribution of Y conditional on X is normal, and that this is true for any value 
of X. Second, we assume that the standard deviations of these conditional 
distributions are all equal to one another, that is, G Y \X is the same for all values 
of X, a condition referred to as homoscedasticity. I have tried to show the 
conditional distribution of Y at a few selected values of X in Fig. 12-5. The' 
distributions are all normal, and they all have equal standard deviations.

As to the prior distributions, we assume they are uniform over OC Y \X> PY\X> 
and log 0y| X , and that the three distributions are independent of one another.

With these provisos in mind, we turn to the posterior distributions that 
result from applying Bayes' Theorem :

a The posterior distribution of a Y \x 1S Student-/ with parameters
A = AY\X

SSf_error\f Z* \ 
N-2 J\N(SSXX)J

df" = N— 2 
b The posterior distribution of /3 Y \x ' s Student-/ with parameters

14 =

5Sp.€
N-2 J\SSXX, 

df" = N-2
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c The posterior distribution of a Y \x > s Inverted Gamma-2 with 
mode" = SY \x 
df" = N-2

For oc Ylx and /? yjx we form credible intervals in the usual way for the 
Student-/ distribution:

-a or

These credible intervals agree exactly with the traditionalists' confidence 
intervals.

Fig. 12-5 * v
Distribution of F conditional on X, for a few selected values of X

For GYM, we follow the usual procedure for computing credible intervals 
for the IG2 distribution:

IG2low x mode"< 0Y \x ^ IG2high x mode"
This credible interval agrees approximately with the traditional confidence 
interval. Lack of precise agreement was discussed in the previous chapter.

Exercise 12-8
From my statistics class of first year students, I randomly selected three students 
from among the 18 year olds, three from the 19 year olds, three from the 20 
year olds and three from the 21 year olds. A special shortened version of the 
Wilson and Patterson (1968) conservatism questionnaire was administered to 
these twelve students. Here are their scores:

Age
18
19
20
21

Score
12, 3, 13 
2, 10, 8 
12, 0, 7 
2,6,3
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The higher the score, the greater the conservatism. Find the posterior 95% 
credible interval for the parameters of the population linear regression line for 
predicting conservatism score from age and for the population standard error 
of estimate.

Answers
Before we rush to calculate the coefficients of the regression equation, we 
should check the assumptions that must be met if we are to make meaningful 
inferences about the population regression coefficients.
First, is the population distribution of Y conditional on X normal for all XI 
As applied to this problem, we ask if the distribution of conservatism scores 
within each age grouping is roughly normal. I suspect that the population 
distribution is slightly skewed to the right because my students, who are studying 
social sciences, are a fairly non-conservative group, so tend to have low scores, 
with a few high ones contributing to the skew. But normality is not seriously 
violated, so this is a workable assumption.
Second, does homoscedasticity hold ? In simple terms, is the population standard 
deviation within an age group the same for all groups? Well, by one line of 
reasoning the standard deviation would seem to me to be smaller for the older 
ages, but then another argument occurred to me that gives the opposite result. 
Neither argument seems compelling, and I am left believing that homoscedasticity 
is at least tenable.
My prior opinions are very vague, so uniform and independent priors concerning 
«yix, /?YIX, and ovix are acceptable.
Now we turn to the data, making the necessary calculations.

X Y X2 Y2 XY
18 12 324 144 216
18 3 324 9 54
18 13 324 169 234
19 2 361 4 38
19 10 361 100 190
19 8 361 64 152
20 12 400 144 240
20 0 400 0 0
20 7 400 49 140
21 2 441 4 42
21 6 441 36 126
21 3 441 9 63

I X = 234 I Y = 78 I X2 = 4578 I Y2 = 732 I XY = 1495

^ = — = 19-5 

y Y 78 _
'" y TV 12

_ NIX2 -(IX)2 12(4578) - (234)2 = 180 = 
SSxx - —————TT 12 12

ssYY - I Y2 -(I Y)2 12(732) - (78)2 = 2700 _—YY - —— 12 12
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cc _NIXY-ZXZY_ 12(1495) - (234)(78) e SSXY - —————-———— - - - 12 -

312

8

= -26
12
SSYY SSXX - SSXY (225)(15) - (- 26)2

2f = 179-93 

^v -26

Note that the slope is negative. For this sample, older first year students are less 
conservative.
A Ylx = MY - By.xMx = 6-5 - (- 1 -73)(19-5) 

= 6-5 + 33-74 =40-24

And, just for information, here is the correlation coefficient.
r = ssXY = -^_ = -^ = _ Q45

VSSXX SSYY V(15)(225) V3375
This is a modest, inverse relationship.
Next, the posterior distributions. For aY \ x , it is Student-/ with these parameters:

A = A Y \ X = 40-24
179"93\ / 4578 \

N - 2 NSSXX \2-2)\\2(\5))

= V45T62 = 21-4 
df = N- 2 = 12- 2 = 10

And for /?X ir, the posterior is also Student-/: 
=fox = -1-73

SSy-erroA/ 1 \ = 7/179-93\/l\

N - 2 )\SSXX) V \\2 - 2)\\5)

io = MO
df" = N - 2 = 12 - 2 = 10

Finally, for the standard error of estimate, aY \ x, the posterior is IG2 with 
mode" = SY \ X = 4-04

df = N- 2 = 12 - 2 - 10
From these posterior distributions we can compute the 95 % credible intervals. 
Both Student-/ posteriors have 10 degrees of freedom; from the Student-/ 
table we read off / = 2-228 for the 95% credible interval. The credible interval 
for ay|x is:

40-24 - 2-228(21-4) < aY[x < 40-24 + 2-228(21-4) 
- 7-44 < ay ,x < 87-92
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The credible interval for /?m- is:
- 1-73 - 2-228(1-09) < 0Ylx < -1-73 - 2-228(1-09)

- 4-16 < A-ix < 0-70 
And the credible interval for aYlx is:

0-674(4-04) < <7y , x < 1-708(4-04) 
2-72 < (7YIX < 6-9

The values of IG2 low and IG2high , 0-674 and 1-708, were obtained from the 
IG2 table for 10 degrees of freedom under the 95 column.

Having gone through the mechanics of that exercise, we should not 
overlook the meaning of the results. In the first place, it does not make much 
sense to find the limits for a Y \ X9 because that coefficient is not really very inter 
esting. It gives us the value of Y when X = 0, and who wants to know the 
conservatism score for a new-born babe who has just joined the university's 
first-year class of social science students? We must remember that the linear 
regression equation was determined for a range of A'-values that extends from 
only 18 to 21. To predict outside that range is risky business, for the regression 
line may be linear only over the range investigated.

In the second place, note that the posterior credible interval for am is 
very large. As we will see in the next section, this is because we are finding an 
interval that corresponds to a value of X lying a fair distance outside the range 
covered in the problem. In general, the further the value of X from Mx , the 
wider will be the credible interval for Y.

Third, notice that the slope of the regression line for the sample is negative; 
the older students are less conservative. Now this finding contrasts with the 
results obtained by Wilson and Patterson in their original work. They found 
that conservatism increases with age. It increases slowly between 15 and 25, 
then more rapidly from 25 to 55, then slows down again. While a linear function 
will not do over the whole range, it is a reasonable approximation over the 
18-21 range. Over that range, Wilson and Patterson show a slight positive slope 
to the curve. If you will note the posterior credible interval for the population 
slope, you will see that it includes some positive values. Thus, while the sample 
result disagrees with the original investigation, our inference does not. We have 
to give some posterior opinion to the possibility that the slope is really positive, 
in agreement with the results of Wilson and Patterson.

Finally note that the non-Bayesian statistician would have calculated 
confidence intervals that are exactly the same as our credible intervals for a Y \ x 
and P Y \X> and approximately the same as our interval for ay \ x .

Posterior credible intervals for actual and predicted Y
When an investigator is interested in predicting Y for a given value of X, 

he of course recognizes that his prediction contains error to the extent that the 
sample regression line does not coincide with the population regression line. 
If the sample and population regression coefficients are not equal, the prediction 
is in error. One way of showing the effect of this error on the prediction is to 
establish a posterior credible interval for the predicted value of Y. Let us 
designate the value of A'we are interested in XQ \ the value of Y we would predict
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from knowing X0 we will call F0 - We get Y0 bV substituting X0 in the sample 
regression equation.

Under the assumptions and priors of the previous section, the posterior 
distribution for F0 is Student-/ with these parameters:

df" = N-2
The posterior credible interval is formed in the usual way for Student-/ 
distributions.

Be sure to notice the extreme right term in the posterior standard devia 
tion. It is (X0 -MX) 2 . If that term is large, then a" will be large, and so the 
credible interval will be wide. And (X0 -MX) 2 will be larger the further X0 is 
from Mx . In other words, predictions made for values of X that are far from the 
mean of X will result in a wide range of uncertainty in the posterior credible 
interval for the predicted value of Y. That is one reason why economists are 
wary of making predictions very far into the future, and why social scientists in 
general should be cautious in making predictions outside the range of their 
data. As I have said, another reason is that a linear relationship may not hold 
for values of X not covered by the experiment.

The posterior distribution concerning aYlx is a special case of this pro 
cedure in which X0 = 0. Two influences were at work to make the posterior 
credible interval for <X Y \ X so large: the distance of X0 = 0 from the mean of X, 
and the small sample. It is generally true that for small samples the interval 
will be very wide.

It is also possible to establish a posterior credible interval for the true 
value of Y, instead of the predicted value. In this case our uncertainty stems 
not only from lack of knowledge concerning the precise location of the popu 
lation regression line, but also from the scatter of the data around the line. 
Thus, error in predicting Y along with the uncertainty embodied in the standard 
error of estimate contribute to our uncertainty concerning the precise value 
of Y for a given value of X.

As before, let the value of X be designated X0 , and the corresponding 
true value of Y be Y0 . Under the assumptions and priors of the previous 
section, the posterior distribution for Y0 is Student-/ with these parameters:

— =

2 
df" = N-2

The posterior credible is, as usual,

This credible interval is wider than the one for ?0 , as you can verify by 
comparing the posterior sigmas. This one contains an extra term, 1, in the 
multiplier of SSp.error/(7V-2).



Inferences about differences between proportions 305

Exercise 12-9
Find the posterior 95 % credible intervals concerning Y0 and Y0 for XQ = 22, 
with reference to Exercise 12-8.

Answers
First, for predicted y, the parameters of the posterior Student-/ are: 

ti't = Y0 = AYlx + 0m *o = 40-24 + (- l-73)(22) 
= 40-24 - 38-06 = 2-18

r* = /179-93 r_l_ (22 - 19-5)2] 
1 V 12^2 [12 + T5 J

= ^(17-993X0-5) = V8-996 = 3-00 
df" = 12 - 2 = 10

The posterior 95 % credible interval for Y0 is :
2-18 - 2-228(3-00) < f 0 < 2-18 + 2-228(3-00)

- 4-50 < f o < 8-864 
Now consider the actual Y. The parameters of the posterior Student-/ are :

n"t = YQ = 2-18, as above.

= V(17-993)(l-5) = V26-990 = 5-2 
df" = 12 - 2 = 10

So, the posterior 95 % credible interval for Y0 is : 
2-18 - 2-228(5-2) < Y0 < 2-18 + 2-228(5-2) 

- 9-41 < Y0 < 13-77

Of course, in both cases we get negative values in the interval because we 
assumed that the population of scores was normal, which includes negative 
scores, and because the sample size is so small that the posterior distribution 
is quite spread out. However, for large samples the posterior standard deviation 
would be sufficiently small to preclude any appreciable amount of posterior 
opinion on negative values. The methods of this section are particularly sensitive 
to the assumptions of normal distributions for given values of X, and of equal 
variances (homoscedasticity). A non-Bayesian statistician would have obtained 
confidence intervals for f0 and Y0 in exact agreement with ours.

12.5 Inferences about differences between proportions
When a scientist wishes to make an inference about the difference between 

two population proportions, say n l and n2 , he has several options open to him, 
depending on how large his samples are.

If the samples are large, then his posterior distributions, which are in 
fact Betas, can be approximated by normal distributions, as we saw in 
Chapter 6. Then the problem of finding a posterior credible interval for n l — n2
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becomes one of finding the difference between two normal distributions, a 
procedure that was covered at the beginning of this chapter. All you have to 
do to apply those procedures is find the parameters of the two posterior Betas, 
then calculate the means and standard deviations from the parameters using 
the formulae on page 127 of Chapter 6, and apply the methods at the beginning 
of this chapter by assuming the Betas to be approximately normal.

With modest amounts of data it is convenient to make inferences about 
the difference of the logarithms of odds. The odds corresponding to a propor 
tion n are given by Q = n/(\-n). Let the log of the odds be designated 
Thus,

'7T TT

LQ t = log —L- and LQ2 = log 2V*A * ^* A^M 2. ^D 4

1— TTj 1—7T2

Inferences will be made about LQ^ — LQ2 :

—— - tog 7——^~

which is the same thing as

The reason for changing to log odds is that the posterior concerning 
is approximately normal, and the approximation is much better for modest TV 
than assuming that the posterior concerning n is normal.

Applying the procedures for the difference between two normal distri 
butions gives a posterior distribution concerning L£l l —LQ2 as approximately 
normal with

*vo 7
I /2

/^ 1 1J = J ~ + T + ~
V S, /j S 2«2 /2

where s l and /t are the numbers of success and failures in the sample from the 
first population, and s2 and/2 are the successes and failures from population 2. 
The credible interval is formed in the usual way for normal distributions. Once 
you have the limits you can take the antilogarithms to get the ratio of odds 
themselves, but unfortunately that is as far as you can go. There just is not 
enough information in the ratio of odds to recover the odds making up the 
ratio, let alone recover the difference in proportions. That is one difficulty with 
this approach, though for many applications the ratio of odds will provide 
sufficient information.

Another procedure is to use the BETADIF computer program, one of 
several programs written for Bayesian analysis by Robert Schlaifer (1971). 
The program can be implemented in conversational language, so that no 
familiarity with computers or computer programming is necessary. The program 
asks you for parameters B and C for each distribution. (Schlaifer's B is simply 
our posterior parameter/?", while his C is our /?"+<?".) The program then figures 
out for you the posterior distribution of the difference.



Summary 307

A fourth method is to use the chi-squared approximation introduced in 
Chapter 14. That is the most popular approach.

12.6 Summary

This chapter has covered several methods for making inferences con 
cerning two quantities. A general method for making inferences concerning 
the difference between two uncertain quantities was presented first. In this case, 
when opinion concerning one uncertain quantity is normal with mean m± and 
variance s\ , and opinion about another, independent uncertain quantity is also 
normal with mean m2 and variance sf, tnen opinion about the difference 
between the uncertain quantities is normal with mean m l — m2 and variance 
s\ + $2- The chapter ended with an application of this method: finding 
the posterior distribution of the difference between two population proportions 
when sample sizes are large and the samples are independent. When the samples 
are not large, it is necessary to make inferences about the ratio of the logarithms 
of the odds corresponding to the proportions, or to use the BETADIF computer 
program prepared by Schlaifer (1971) or to use the Chi-squared approximation 
presented in Chapter 14.

The other methods of making inferences are summarized as follows:

Inferences concerning the difference between two population means (variances 
assumed equal, though unknown)

a Want to infer: 6 = /^ — /* 2 , the difference between the means of two nor 
mal populations:

b Experiment: A random sample from each of the two populations; the 
samples independent. 7V\ observations from population 1, on each of 
which a numerical measurement, Xl9 is made; N2 observations from 
population 2, on each of which a numerical measurement, Y2 , is made;

c Assumptions: i a v = a2 = cr, that is, the standard deviations of the 
populations are equal, though unknown ii The populations are each 
normal.

d Data: Calculate . . .

-M )* - N-'-
1 M l) —

Tx, ^ , M2 = ^ ssXX2 = I (X 2 -M2 Y =
A^2 •/V 2

e Prior distributions: i Uniform over /^, ^ 2 , log a. ii All three prior distri 
butions are independent of one another.

f Posterior distribution concerning d: Student-/ with parameters

df" =
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g C per cent credible interval: 
u't'-t(r't'<d<n't' + t(T';

where t is the standard deviate corresponding to the C per cent credible 
interval for the Student-/ distribution. / is found by entering the Student-/ 
table with df = TV, + 7V2 - 2 and with C.

Inferences concerning the difference between two population means (variances 
unknown and not assumed equal)

a Want to infer: d = Ui — u2 , the difference between the means of two 
normal populations;

b Experiment: A random sample from each of the two populations; the 
samples independent. Nl observations from population 1, on each of 
which a numerical measurement, X^ is made; N2 observations from 
population 2, on each of which a numerical measurement, X2 , is made;

c Assumptions: The populations are each normal. (Variances are unknown 
and may be different.)

d Data: Calculate . . .

N2 N2(N2 -\)

e Prior distributions: i Uniform over u^ u 2 , log 0^, log a2 - » All four prior 
distributions are independent of one another.

f Posterior distribution concerning 6: Behrens with parameters

rf/;' = AT, - 1

df; = Nt -\ __
co", where tan co" = 7ff^

g C per cent credible interval:

where d is the standard deviate corresponding to the C per cent credible 
interval for the Behrens distribution, d is found by entering the Behrens 
table with df^ = A^-l, df2 = N2 -\, CD, and with C. To avoid inter 
polation, round df^ and df2 down to 6, 8, 12, or 24, whichever is nearest; 
then, if to is not equal to either 0°, 15°, 30°, 45°, 60°, 75°, or 90°, round it 
either up or down to one of these values, whichever rounding gives the 
larger tabled value of d.
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Inferences concerning the ratio of two variances
a Want to infer: o\la\, the ratio of variances of two normal populations;
b Experiment: A random sample from each of the two populations; the 

samples independent. Nl observations from population 1, on each of 
which a numerical measurement, Xl9 is made; N2 observations from 
population 2, on each of which a numerical measurement, X29 is made;

c Assumptions: Populations are each normal; 
d Data: Calculate . . .

=1

S2 = SSXX2 = N2 X X\ - (£ *2) 2 
2 N2 -l N2(N2 -l)

e Prior distributions: i Uniform over fji l9 p 2 , loga^ log o2 . ii All four 
prior distributions are independent of one another.

f Posterior distribution regarding (Sl/S%)/(ffl/ff 2 ): Fwith parameters 

g C per cent credible interval:^y *

where F(dfl, df'2 ) is found by entering the appropriate F table with 
dfl and ^ degrees of freedom. F(df2 , df{) is found by interchanging the 
values of dfl and df2 and entering the appropriate F table with the inter 
changed values. The value of C determines which table is appropriate: 
there is a separate table for each value of C: 90, 95, and 99.

Inferences concerning the population correlation coefficient
a Want to infer: p, the population correlation coefficient between two 

variables (not to be confused with Spearman's rho, rrho).
b Experiment: A sample of TV observations from the population, on each of 

which two numerical measurements, A' and F, are made;
c Assumption: Population is bivariate normal;
d Data: Calculate r, Pearson's coefficient of correlation :

Then find Fisher-z transformation of r by looking up r in Fisher-z table 
and reading off corresponding value of z.
Prior distributions: i Uniform over /^, ^y , log ax , log O Y . ii All four prior 
distributions are independent of one another and of the prior distribution 
of p. iii Prior distribution of p is gentle and is nowhere 0.
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f Posterior distribution concerning £ (the Fisher-z transformation of p) 
Approximately normal (as TV -» oo) with 
m" - the Fisher-z transformation of r

S -

g C/?er ce«f credible interval for p:
i First find the credible interval for £:

m"-zs"<£<m" + zs"
where z is the standard deviate corresponding to the C per cent 
credible interval for the normal distribution, z is found by entering 
the normal table with C/100 and reading off z.

ii Enter the z column of the Fisher-z tables with the two limits of the 
credible interval for £ just calculated. The corresponding numbers 
in the r column are the values of p low and phigh . 

In addition, a procedure for ranked data was given.

Inferences concerning the linear regression coefficients
a Want to infer: i am and P YIX9 the 7-intercept and slope of the population 

linear regression line for predicting Y from X; ii <T Y \ X , the standard error 
of estimate for 7, the predicted 7-scores.

b Experiment: A sample of N elements from the population; a pair of 
numerical measurements, X and Y, is available for each element ;

c Assumptions: i Population distribution of Y conditional on X is normal, 
for all values of X\ ii crm is same for all values of X.

d Data: Calculate . . .

v SSXY = I (X-MX)(Y-MY) =
N

_ /cc \z 
vi SSp.error =

vii Slope of the regression line for the sample data: 
SSXY

Bv.v-
SS,
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viii y-intercept of the regression line for the sample data:

ix Standard error of estimate for the sample:

SY\X V ^~z——— ^k ^* 

N-l

x (optional) Sample correlation coefficient 
SSXYr =

V
e Prior distributions: \ Uniform over am, /?m and logcrm ; ii All three 

prior distributions independent of each other.
f Posterior distributions:

\ Concerning a Y \ x \ Student-/ with parameters
Y A 2

N-2 / ^\ z /
ii Concerning ^y | X : Student-/ with parameters

SSP.,rrnr\ / 1 \ df, = N _ 2

Hi Concerning o-y^: Inverted Gamma-2 with

g C per cent credible intervals:
i For <X Y \ X and /?y|x* The general form is ...

where / is the standard deviate corresponding to the C per cent 
credible interval for the Student-/ distribution. / is found by entering 
the Student-/ table with df = N-2 and with C.

ii For <r Y \ x :
IG2 low x mode'7 < aY \ x < IG2high x mode"
where IG2 low and IG2high are the tabled limits of the credible interval 
for the IG2 whose mode is 1. The tabled limits are found by entering 
the IG2 table with df = N-2 and with C.

In addition, procedures for making inferences about the predicted value of Y 
and about the true value of Y were given.

Problems
12-1 (Refers to Problem 2-5) To what extent do the two standard devices for measur 

ing probability give different results ?
12-2 Group A was given traditional classroom instruction throughout the year, 

while Group B received a mixture of classroom instruction and computer-based
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instruction. Both groups were given a final examination at the end of the year. 
There were 26 students in each group.

Scores on final examination

Mean Standard deviation

Group A 65 5
Group B 75 3

Is computer-assisted instruction superior to traditional classroom instruction? 
Assume normal populations.

12-3 Alpert and Haber (1960) examined the extent to which anxiety helps or hinders 
a student on a final examination. They devised a questionnaire that measures 
facilitating anxiety and debilitating anxiety. For a sample of 283 students they 
found that facilitating anxiety correlated 0-26 with the final examination grade 
for the introductory psychology course, and debilitating anxiety scores cor 
related -0-28 with the final exam grade. What are the 95% credible intervals 
for the population correlations ?

12-4 A scientist wants to find out if brain-damaged children score lower on Test X 
than normal children. The population mean for normal children is 50 and the 
standard deviation is 10. For brain-damaged children the population mean is 
unknown, but the standard deviation is known to be the same as for normal 
children. The investigator's prior opinion about the population mean for the 
brain-damaged children is normal with a mean of 30 and a standard deviation 
of 12. He selects a random sample of 20 brain-damaged children; the mean test 
score turns out to be 35 with a standard deviation of 8.

a What is the posterior mean ?
b How would you answer the scientist's original question?
12-5 A random sample of 10 men and 10 women were given a test of intolerance of 

ambiguity. The average score for men was 51-0; for women, 44-0. For the 
men SSXX = 360; for the women SSXX = 450. On the basis of these data what 
conclusion would you draw about the difference in average performance of 
men and women on this test ?

12-6 An investigator wishes to discover whether the presence of other people in 
fluences the speed with which an individual will offer help to someone in distress. 
He decides to conduct a series of studies to see whether the speed is different 
when the person in distress and the person offering help are the same sex or 
different sex. His first study uses women in both roles. The scientist designs 
an experiment in which a 'personal emergency' arises, and the time for the 
subject to offer help is recorded. In Condition A no other person other than the 
subject knows of the emergency, while in Condition B the subject knows she 
is only one of several people who have just learned about the emergency. He 
finds that 25 out of 35 subjects in Condition A offer help, while 30 out of 45 
offer help in Condition B. Here are the response times (in seconds) for subjects 
who offered help.

Condition A Condition B

96 40 96 96 80 88 97 97 84 108 75
72 78 82 84 74 104 134 126 108 44 136
86 72 100 68 42 94 103 86 66 112 136
76 78 84 88 92 99 90 60 58 124 70
88 72 66 100 92 107 49 92 97 102 100
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a Is there any difference in the variability of response times between the two 
conditions?

b Is there any difference in the mean response times of the two groups ? 
c Does the presence of other people influence whether or not a person decides to 

offer help?
d What conclusions and possible suggestions for further work would you offer 

on the basis of these data and your inferences?
12-7 (Refers to Problem 10-3) Find the posterior 99% credible intervals for the 

population regression coefficients and for the standard error of estimate. In 
light of your answers, how useful, now, do you think the regression equation is?

12-8 (Refers to Problem 10-3) Suppose a student told you he spends about £1-75 
per week on drink and tobacco. If we assume that he is a member of the popula 
tion from which the sample of 20 was selected, what inference could you make 
about

a the predicted amount of money spent on books, etc. ? 
b the actual amount of money spent on books, etc. ?
12-9 (Refers to Problem 10-5) What inference could you make about the actual 

per cent increase in retail prices (over the 1955 figures) for 1970?
12-10 Murdoch and Smith (1969) examined the relationship between order of birth 

and affiliation. In a sample of student men, they found that men who were only 
children or born first tended to marry earlier than men who were later born 
children. Here are the means and standard deviations of marriage-age for both 
birth orders.

\r ** Standard N Mean , . „.deviation

Firstborns 73 22-8 2-13 
Later borns 67 23-6 3-02

What conclusions about birth order and affiliation would you draw on the basis 
of these data ?

12-11 Moskos and Bell (1964) report in a study on the attitudes of a sample of West 
Indian leaders towards democracy that 5 out of 21 revolutionary radicals and 
9 out of 22 counter-revolutionary reactionaries condoned overthrow of the 
government. Could one conclude that West Indian reactionary leaders are 
more likely than radical leaders to condone overthrow?

12-12 Find at least three examples in the social science journals of the different kinds 
of inferences discussed in this chapter and give a Bayesian interpretation for each.



13 • Traditional 
methods

This chapter deals with inferential methods that derive from a relative 
frequency interpretation of probability, and which do not make use of Bayes' 
theorem. I cover only those procedures most commonly encountered in the 
social science literature, but it is important to recognize that some traditional 
methods cannot be interpreted with the Bayesian machinery developed so far. 
Thus, while you are reading this chapter do not worry if you cannot see how a 
Bayesian might interpret the analysis. That will come in the next chapter.

On reading this chapter, you should
understand the concept of a sampling distribution;
be acquainted with the central roles played by sampling distributions and 
estimation in the making of non-Bayesian inferences;
understand what a non-Bayesian means by a confidence interval;
be aware of the procedures followed by a non-Bayesian in testing 
hypotheses.

The chapter explains only enough of the traditional logic to enable you 
to understand simple analyses you may read in the social science literature. 
For the most part, it does not give enough information for you to carry out 
traditional analyses, so no exercises are included.

13.1 Sampling
It will be helpful to keep in mind a specific problem as we discuss tra 

ditional approaches to statistical inference. Let us resurrect Exercise 12-4, the 
one in which a statistics instructor wished to find out how effective programmed 
instruction in mathematics was for students in his class. As it turned out, he 
was not interested only in the 15 students who completed the program, for 
he wanted to make an inference that would apply to the population of potential 
students who might take his course and use the programmed material. In 
other words, he is making a general enquiry about the effectiveness of the pro 
grammed instruction, and assumes that his 15 students are a representative 
sample of that population.
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He administered equivalent forms of a mathematics test before and after the 
programmed instruction was completed, and took the difference in those scores 
for each person. The mean and standard deviation of those difference scores were

M = 24-87 
S =8-92

Now, on the basis of those statistics for a sample of size 15, what inferences 
about the population mean can be made without resort to Bayes' theorem?

Sampling distributions
To answer that question the relative frequentist has to develop a mecha 

nism different from Bayes' theorem, a mechanism that will allow him to make 
inferences about the population. The device used is quite ingenious, and its 
development is an important landmark in the history of statistics. It is called a 
sampling distribution, and it is the result of repeated sampling from the popu 
lation. To get a feeling for what a sampling distribution is, imagine, for the 
example above, the population of difference scores. In other words, imagine 
all those potential students and their difference scores. Now suppose a sample 
of size 15 is selected, and the mean difference score is computed. We record 
the mean. Next another sample is drawn; its mean will probably be a little 
different than the mean of the first sample; we note it, too. We keep drawing 
samples of size 15, always computing the mean of each sample and recording it. 
Of course, because the sampling is random, we will not get the same value for 
the mean every time.

After we have done this a huge number of times, we have a very long list 
of means. There might be a few extreme means on the list, but not very many, 
for most means would tend to cluster around some central value, with fewer 
and fewer means taking values away from that central value. To see this we 
could construct a histogram of those means. The histogram will be fairly 
jagged if we have only 30 or 40 means on our list, but you can imagine that as 
more and more samples are taken, smaller and smaller class intervals can be 
chosen until eventually the histogram looks like a smooth distribution. We 
would then have a theoretical sampling distribution of means, and it is this 
distribution that is meant when reference is made to the sampling distribution of 
means. Figure 13-1 shows this process of sampling from a population, com 
puting the sample means, and then constructing a distribution of these means. 
Normally we would not know what the population distribution looks like; if 
we did, there would be no need to draw samples and make inferences. But 
for the moment, I want to show the population so that I can compare it to the 
sampling distribution. Once those points of similarity have been noted, we can 
then return to the more realistic situation in which the population distribution 
is unknown.

First, note that the peaks of the distributions occur in the same place over 
the Jf-axis, at X = 24. The mean of the sampling distribution equals the mean 
of the population. Recall that we let n stand for the parameter equal to the 
population mean; let us designate the parameter equal to the mean of the 
sampling distribution of means by UM . From the figure we see that

= = 24
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Fig. 13-1
Relationship between a population and the sampling distribution of means

33

Second, the variance of the sampling distribution is very much smaller 
than the variance of the population. We expect that, for the population shows 
the variability of the X-scores, while the sampling distribution gives the varia 
bility of the means of samples of fixed size. We do not expect nearly as much 
variability from one mean to the next as we do from one score to the next.

Suppose, however, that the samples had each been smaller, 5, say, instead
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of 15. And suppose several samples of size 5 had been drawn. Would you not 
expect the means of those samples to differ more from each other than the means 
of the larger samples differed from each other? If samples of size 2 had been 
selected, their means would have been even more different from one another.

N= 1

N= 4

yv- 16

Fig. 13-2
Some sampling distributions for samples from a normal population with a 11

At the extreme, we could have chosen samples of size 1; the 'mean' of such a 
sample is equal to the A'-score itself, so the distribution of means when the 
sample size is 1 is just the population distribution itself. In other words, the 
larger the sample size, the smaller is the variance of the sampling distribution 
of means. You can see this relationship in Fig. 13-2.
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We see, then, that while the mean of the sampling distribution equals 
the mean of the population, it is not true that the standard deviations of those 
two distributions are equal. But we can find the standard deviation of the 
sampling distribution of means, <TM, from the population standard deviation, a:

where N is the size of each sample. In words, the standard deviation of the 
sampling distribution is found by dividing the population standard deviation 
by the square root of the sample size. This equation confirms intuition about the 
sampling distribution of means; the distribution of sample means will be more 
spread out for smaller sample sizes, and for population distributions with 
larger standard deviations. Using this equation we can compute the standard 
deviation of the sampling distribution shown in the lower portion of Fig. 13-1. 
The population has a standard deviation of 11, so

° H 2-R46\A = —7= = ~T= = / 54

We have seen, then, that if we know the parameters of the population, we 
can find the parameters of the sampling distribution of means. We must add one 
qualification. Although the sampling distribution shown in Fig. 13-1 is normal, 
one must not conclude that all sampling distributions are normal. The sampling 
distribution of means will be normal whenever the population is normal, or, 
if the population is not normal, when large samples have been drawn. It may 
seem surprising that the sampling distribution of means could be normal when 
the population is not, but the central limit theorem says that the distribution 
of sample means is approximately normal and that the approximation gets better 
the larger the size of each sample. This is an important result for traditional 
statistics, for it allows inferences to be made even though the shape of the 
population distribution is not known.

Confidence intervals
Armed with the information of the last section, let us return to the 

problem of the statistics instructor who wishes to make an inference about the 
mean of the population of difference scores. For the moment assume that he 
knows the population is normal with standard deviation equal to 11. He does 
not known the population mean, but he has taken a sample which, you will 
recall, has a mean of 24-87. What inference can he make about the population 
mean?

The goal of this section is to explain how an inference can be made in 
the form of an interval of values that has a certain probability of containing 
the true mean. Such an interval is called a confidence interval A 95 % confidence 
interval, for example, is a range of values that are 95 % sure to include the 
true mean.

Our route to the confidence interval is via the sampling distribution. We 
know that the sampling distribution must be normal, and, since we know 
the population standard deviation, we can find the standard deviation of the 
sampling distribution of means; it was calculated above: aM = 2-84. The only
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thing we do not know is where the sampling distribution is located along the 
horizontal axis. We do know that our sample mean, 24-87, falls within the 
sampling distribution of means. If only we knew exactly where it falls, then we 
could locate the mean of the sampling distribution, and our problem would be 
solved, for we know that the mean of the sampling distribution equals the mean 
of the population. But we do not know whether the sample mean falls in the 
left tail, or the right tail, or near the middle of the sampling distribution, so we 
will not be able to pinpoint the mean of the sampling distribution precisely. We 
do know that the sample mean falls somewhere within a normal distribution 
whose standard deviation is 2-84, and we know that most values of a normal 
distribution fall within ± 3 standard deviations of the mean. So unless the 
sample mean is a freak result, we can be quite sure that the mean of the sampling 
distribution is not more than 3 standard deviations away.

Now let us give those intuitive ideas more precise form. Suppose our 
investigator wishes to find the 95 % confidence interval for the population mean. 
He first considers the possibility that the sample mean is located, say, in the 
left tail of the sampling distribution, at a point that leaves 2-5% of the 
area of the distribution to the left of 24-87. Where, then, must the mean be 
located? We know that for the standard normal distribution, a Z-score of 
- I -96 leaves 2-5% of the distribution to the left. Our investigator reasons that 
24-87 must be I-96 standard deviations below the mean. Thus, if he adds 1-96 
standard deviations to 24-87, the result will be one estimate of the mean of the 
sampling distribution:

high estimate ot>M = 24-87+ 1-96(2-84) = 30-4
The statistics instructor reasons further that the sample result could have 

been located in the right tail of the sampling distribution of means. He then 
asks where the sampling distribution would be located if that were the case. 
Allowing a 2-5 % chance for getting a sample mean of 24-87 or more, he figures 
that the mean of the sampling distribution would then have to fall 1 -96 standard 
deviations below 24-87, that is, at

low estimate of JIM = 24-87- 1-96(2-84) = 19-3
He concludes, then, that there must be a 95% chance that the interval from 
19-3 to 30-4 contains the mean of the sampling distribution. The steps in this 
development are shown graphically in Fig. 13-3. Since we know that the mean 
of the sampling distribution of means equals the mean of the population, the 
limits just calculated serve to define a confidence interval for the population 
mean. The investigator can now state that there is a 95 % chance that the interval 
from 19-3 to 30-4 contains the true value of the population mean.

The logic is a little involved, so go back over the argument if you did not 
understand it the first time. The basic idea is to figure out where the sampling 
distribution would be located if (a) the obtained sample mean is an unlikely 
result from the left tail of the sampling distribution, then, (b) the sample mean 
is an unlikely result from the right tail of the distribution. The sampling dis 
tribution can be located because you know its standard deviation and you know 
it is normal. Thus you know there is only a 2-5% chance for the mean of the 
sampling distribution to be greater than a value that is 1 -96 standard deviations 
above the mean of 24-87. Similarly, you know there is only a 2-5% chance for
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the mean of the sampling distribution to be less than a value that is 1 -96 
standard deviations below 24-87. And so you conclude that there is a 95% 
chance for the interval so calculated to include the true value of the population 
mean.

If we assume that 2-5% is in left tail . . .

. then the mean must be 
1-96 standard deviations 
above 24-87, at 
24-87+ 1-96(2-84) = 30-4

sample mean = 24-87

Or, if we assume that 
2-5° 0 is in right tail . . .

30-4

then the mean must be 1 -96 standard deviations 
below 24-87, at 24-87 -1-96(2-84)= 19-3

19-3 24-87

Thus, there is a 95% 
chance that . . .

the interval from 
19-3 to 30 4 contains 
the population mean

19-3 30-4
Fig. 13-3
Deriving a confidence interval by considering possible locations of the distribution of sample means

Notice that the probability in that statement is made about the interval, 
not about the population mean. Adherents of a relative frequency view of 
probability do not make probability statements about population parameters; 
either the true value is 24-87 or it is not. There is no probability about it. The 
sampling distribution is obtained by repeated sampling of the population, so 
statements derived from the sampling distribution are entirely consistent with 
the relative frequency view of probability. Thus, we can make probability 
statements about the interval, which was obtained by considering the location 
of the sampling distribution. We say that there is a 95% chance that the interval 
contains the true value of the population mean. The probability concerns the 
interval, not the population mean.



Estimation 321

A Bayesian faced with the data of this problem would find the posterior 
distribution of the population mean, assuming a normal population whose 
standard deviation is known and equal to II. If he also assumed a uniform 
prior over the population mean and the logarithm of the population standard 
deviation, then the posterior would be normal with

posterior mean = in" = M = 24-87

posterior standard deviation = s" = —/=---• = 2-84
\//V

Notice that under the assumption of uniform priors the posterior distribution 
has the same shape and parameters as the sampling distribution. That is why 
Bayesian and traditional methods often arrive at the same results. The calcula 
tion for the confidence interval is exactly the same as the calculation for the 
credible interval.

Another, more common term for the standard deviation of the sampling 
distribution, is the standard error. When we are making inferences about the 
population mean, then the standard deviation of the distribution of sample 
means is called the standard error of the mean.

13.2 Estimation
The argument in the previous section assumed that the population 

variance is known. 'How can a confidence interval be found/ you might ask, 
'when the population standard deviation is not known?' The answer seems 
simple enough: since we do not know the population variance, o 2 , we estimate 
it from the sample variance, S 2 . Thus, the equation for the standard error of 
the mean, crM , would then be

V estimated a 2 ~~" ~ ~Y, ~ " " 
N

As we shall see shortly, the 'best' estimate of a 2 is given by the sample variance, 
S 2 , provided that the sample variance is defined as in Chapter 9. Consequently, 
our 'best' estimate of the standard error of estimate for the population mean is

S 
estimated GM =

That is what we do when we have a single sample, and wish to find a confidence 
interval for the mean. But there is a complication: when the standard deviation 
of the population is not known and has to be estimated from a sample, then 
the confidence interval must be calculated with reference to a Student-/ distribu 
tion rather than the normal distribution of sample means. We turn next to the 
reason for this.

Sampling distributions of test statistics
When we do not know the population standard deviation, we have to 

develop a sampling distribution that takes into account that lack of knowledge. 
To see how this can be done, let us return to the situation in which we take 
repeated samples from the population in order to find the sampling distribution.
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This time, instead of just calculating the mean of each sample, we also compute 
the standard deviation. We then divide each sample standard deviation by the 
square root of TV; that gives us an estimate of OM for each sample, according 
to the formula a few lines back. Thus, for each sample we have the mean, M, 
and an estimate of <TM , which I will call est crM .

For each sample we next compute a t-value:

est ff.,WO I- \J JLf

For this hypothetical process we know the mean, /*, of the population, so we 
only have to subtract \i from each sample mean and then divide by est <TM to get 
the /-value for each sample. That gives us a /-value for each sample. We call 
the /-value a test statistic.

Let us draw a histogram of those /-values. If we have enough of them 
the histogram approaches a smooth distribution, and it probably comes as no 
surprise that the distribution is a Student-/, provided that the population itself 
is normal. Thus, the sampling distribution of the test statistic / is a Student-/, 
and it happens to have N— 1 degrees of freedom. As you might expect, the mean 
of the distribution of / is 0, for at this point M = //, so that M—\JL = 0.

Now let us return to the problem at hand: finding a confidence interval 
for the population mean, /^, when we do not know the standard deviation of 
the population. Recall that our statistics instructor obtained a sample of size 15 
whose mean and standard deviation were

M = 24-87 
S = 8-92

If we want a 95% confidence interval, we look up the /-values that include 
between them 95 % of the area of the Student-/ distribution that has 15—1 = 14 
degrees of freedom. The Student-/ table gives a value of 2-145. Ninety-five 
per cent of the curve falls between —2-145 and +2-145; that is, 2-5% falls to 
the left of -2-145 and 2-5% to the right of +2-145. If we assume for the 
moment that the sample result fell in the left tail so that only 2-5% of the 
area is to the left, then the /-value corresponding to the sample result is —2-145. 
Knowing this, we can solve the equation for computing /-values to give us the 
values of the mean of the population. Recall that

Solving for ju gives

For our example we know M and /, and we can compute est GM from the sample 
standard deviation :

S 8-92 est <TM = -= = -= = 2-3
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Now we solve for the population mean: 
H = M-f(est<TM) 

= 24-87-(-2-145)(2-3) 
= 29-8

In other words, if the population has a mean of 29-8, then the /-statistic for our 
sample would have been found 2-145 standard deviations below the zero mean 
of the sampling distribution of the test statistic. We just worked that logic 
backwards to find the population mean.

We can do it again to find the other limit for the confidence interval. 
This time we assume that the sample result fell in the right tail of the sampling 
distribution of the /-statistic. Under this condition we expect to find 2-5% of 
the sampling distribution to the right of a /-value of +2-145. Again, we solve 
for the population mean that would locate the sample at this spot on the 
sampling distribution:

H = M-f(est<7M) 
= 24-87-(2-145)(2-3) 
= 19-94

Now that we have both limits of the confidence interval, we can say that there 
is a 95 % chance that the interval from 19-94 to 29-8 contains the true value of ̂ . 
You can see that the logic used in finding the limits of the confidence interval 
is basically the same as for the case in which the population standard deviation 
is known. The only difference is in the nature of the sampling distributions. 
When a is known, the sampling distribution concerns the statistic M itself, 
but when G is not known the sampling distribution is for the test statistic t.

You may have noticed that the confidence interval computed for a 
unknown is actually shorter than the interval calculated for a known. Nor 
mally, you would expect that having to estimate a from the sample standard 
deviation would result in a longer interval than if a is known. That usually 
is the case; if you were to take a number of samples of size 15 and compute 
the confidence intervals first assuming that a is known and then assuming a 
is not known, you would find that the latter procedure would more often give 
the larger intervals. You can see that this would have to be true by considering 
the case where the sample variance turns out to be equal to the population 
variance. Then est <r Af equals aM , but because the tails of the /-distribution are 
lifted higher than the tails of the normal distribution, it is necessary to travel 
2-145 standard deviations from the sample mean rather than 1-96 standard 
deviations, so the confidence interval will be larger. The interval was shorter 
in the example given here because the sample standard deviation turned out 
to be less than the population standard deviation. The interval would have been 
larger, as expected, if the sample S has been just a little less than a, or equal 
to <r, or more than a.

Other sampling distributions
Two methods have now been shown for finding a confidence interval for 

the unknown population mean of a normal population. In one case the popu 
lation standard deviation was known, in the other it was not. It is possible to
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apply the arguments given here to inferences about any population parameter 
of interest; the standard deviation of a population, the difference between two 
population means, the ratio of two population variances, etc. In every case it 
is first necessary to know the test statistic of interest and also the form of the 
sampling distribution of the test statistic. Because test statistics and sampling 
distributions of the test statistics usually have the same names, for example, the 
r-statistic has a Student-/1 distribution, only the form of the sampling distribution 
along with the standard error are usually given. Recall that the standard error 
is the standard deviation of the sampling distribution. Thus, for inferences 
about a population mean when the variance is unknown, a traditional statistics 
book would say that the sampling distribution is a Student-/ and that the 
standard error of estimate is

est <T A/ = -7
N

Approximations, holding only for large samples, are often given when the 
population is not normal. Special procedures and tables are sometimes provided 
for use with small samples.

The main point to remember is that the standard error in a traditional 
analysis will often be equal to the standard deviation of the posterior distri 
bution in a Bayesian analysis that has been conducted with uniform priors. 
For example, let us compare traditional and Bayesian procedures for the 
case of inference about the mean of a normal population whose variance is 
unknown. The traditionalist will find limits of a confidence interval by solving 
this equation:

ji = M±f(est <7 M )
But we know that

Sest <JM = ^\'N 

Substituting this expression into the equation for the confidence interval gives
S// = A/ + r •-,\//v

The value of / is found by reference to the Student-r distribution with TV-1 
degrees of freedom.

The Bayesian notes that, if his priors are uniform, his posterior distri 
bution concerning ^ is Student-/ with N- 1 degrees of freedom, and that the 
posterior credible interval is found by solving this equation:

/( = tf ± ta'i 
But we know that the posterior parameters //,' and a] are given by
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Substituting these values into the expression for // gives:
S/i = M + t -j=

So, you see, the results are the same. As I have said before, only the route is 
different. Do not forget that the interpretation of the interval is different. The 
Bayesian says there is a 95% change that // is between 19-94 and 29-8, while 
the traditionalist says there is a 95% chance that the interval from 19-94 to 
29-8 contains the true value of//.

Properties of estimators
At the beginning of this section I said that the 'best' estimate of cr 2 , the 

population variance, was S 2 , the sample variance. We turn now to consider 
what 'best' means. This is an important question not only for estimating stan 
dard errors, but also for making point rather than interval estimates for popu 
lation parameters. Sometimes the investigator does not want a confidence 
interval, he just wants a 'best 7 guess. The Bayesian in this position can give the 
posterior mean, or any other measure of central tendency if the posterior is not 
symmetrical. He chooses whichever measure is appropriate in the circumstance, 
just as he reports whichever measure of central tendency in his data conveys 
the most accurate impression of his data.

The traditional statistician takes a different view. He asks that his statistic, 
to be a good estimator of a population parameter, should be unbiased, con 
sistent, and sufficient, and that the method of estimation should be efficient. 
An estimator may not satisfy all these properties, but it should satisfy some. 
Let us consider each of these properties in turn.

If we use some sample statistic as an estimator of a population parameter, 
the estimator is considered unbiased if the sample statistic is, on the average, 
neither larger nor smaller than the population parameter. Another way of 
saying this is that the mean of the sampling distribution is equal to the true 
value. As an example, suppose we wish to make an inference about the mean 
of a normal population. If we were to draw many samples of size N, and we 
note the mean of each sample, we would find that in the long run the mean of 
those sample means exactly equals the population mean. The sample mean is an 
unbiased estimate of the population mean. If we were trying to make an 
inference about the population proportion, it is also true that the sample 
proportion is an unbiased estimate of the population proportion. Furthermore, 
the sample variance, as it has been defined in this book, is an unbiased estimate 
of the population variance. It is worth noting that some statistics books define 
the sample variance with N rather than /V — 1 in the denominator, thus:

But that statistic is not an unbiased estimator of the population variance. It 
would be if the numerator were divided by TV— 1 rather than TV, and that is 
one reason why some non-Bayesian statistics textbooks define the sample 
variance as I have done in this book.

A statistic is consistent if it tends to the true value as N gets large. If we
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are making an inference about a population mean, then we would hope that the 
mean of a large sample is closer to the true value of ^ than the mean of a small 
sample. That is true for sample means, so we consider the sample mean a con 
sistent estimator of /*. The sample mean, the sample variance, the sample pro 
portion and all the other sample statistics we have discussed in this book are 
consistent estimators.

We have already met the concept of sufficiency in Chapter 9. There we 
said that a statistic is sufficient if it contains all of the information in the data 
that is needed to make an inference. For Bayesian inference, sufficient statistics 
are those summaries of the data that still allow us to obtain the posterior 
distribution, given the prior. For example, when making an inference about 
the mean of a normal population whose variance is known, we only need to 
know the sample mean and the sample size in order to find the posterior dis 
tribution. Thus, M and TV are sufficient for the posterior distribution of /j.

To take another example, suppose you are interested in making an 
inference about the population proportion. You need to know the number of 
successes, s, and the number of failures,/, in the sample so that you can calculate 
the parameters of the posterior. We say that 5 and / are together the sufficient 
statistics, because only their values are needed to find the posterior distribution. 
If you were presented with the data themselves, you would have some extra 
information: the order of the successes and failures. But as we saw in the bag- 
and-poker-chip example of Chapter 4, the order in which the successes and 
failures occur is irrelevant to the posterior probabilities. The same principle 
applies to making inferences about a population proportion; you get the same 
posterior distribution whatever the order of successes and failures. Thus, the 
original data tell us the number of successes, the number of failures, and the 
order in which they occurred, but to find the posterior distribution concerning 
the population proportion, we do not need all that information. Only the 
values of s and / are required, so they are the sufficient statistics. Notice that 
the ratio of successes to total number of trials, s/(s+/), is not a sufficient sta 
tistic. It is not enough to report the proportion of successes, for that statistic 
does not contain enough information to allow calculation of the posterior 
distribution. For example, if the proportion of successes is given as 0-8, one 
does not know if 8 successes out of 10 were observed, or 24 out of 30, or 400 
out of 500, etc., yet each of those hypothetical experiments would give succes 
sively more peaked posterior distributions.

Many statisticians, whatever their persuasion, have urged scientists to 
report the sufficient statistics of their investigation, along with whatever infer 
ences are made. This allows the reader to come to his own conclusions; a 
Bayesian reader, for example, could then apply his own opinions to the data 
of the experiment to see how his posterior opinion may differ from that of the 
experimenter. But the reader cannot do this unless the sufficient statistics are 
reported. Unfortunately, this advice has fallen on deaf ears in the social sciences. 
All too often the sufficient statistics are not given and only a statement that the 
results are unlikely to be due to chance is indicated, leaving the critical reader 
with insufficient information to form his own opinion.

Perhaps adopting a Bayesian point of view will add weight to the desir 
ability of reporting sufficient statistics. You will, surely, want your reader 
to be able to find his own posterior distribution, given your data. If you adopt a
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uniform prior, it is only necessary to give the parameters of the posterior 
distribution. Alternatively, or if your prior is not uniform, you can report the 
statistics of your data that you needed to find your posterior distribution. You 
will find them in the 'Compute . . .' sections of the summaries to Chapters 11 
and 12. Remember to give the sample size, too, for that is needed to compute 
the degrees of freedom.

This discussion about sufficiency has been given a Bayesian interpretation 
in the past few paragraphs, so you might ask what a non-Bayesian view is. 
Well, it is the same: a sufficient statistic is one that contains all the information 
necessary to make an inference about a population parameter. It is just that 
since Bayesians and non-Bayesians go about making inferences differently, their 
applications of the principle sometimes differ.

The last characteristic of an estimator is that it should be relatively 
efficient. We mean by this that the standard error associated with the statistic 
should be small relative to the standard errors of other statistics. In that way, 
the most efficient statistic will yield the shortest confidence interval, relative to 
other statistics that might have been used as estimators. For example, we might 
have used the sample median rather than the sample mean as an estimator of 
the mean of a normal population, since the mean and median of a normal 
population are equal. If we were to consider only the bias of the statistic, we 
would not have any basis for choosing between the sample mean or sample 
median, for both are unbiased estimators. But there is a choice if we also 
consider their efficiency. For sample sizes greater than 2 the sampling distri 
bution of means is less spread out than the sampling distribution of medians. 
In other words, the standard error associated with the mean is smaller than the 
standard error associated with the median. That makes the mean relatively 
more efficient than the median as an estimator. You saw the parallel to this 
characteristic in Chapter 11; when making an inference about the median of a 
normal population we found that the posterior credible interval was longer 
than when we made an inference about the population mean.

For many statistical problems, the sample mean fulfills all these criteria. 
But this is not always true, and then the scientist using traditional statistics 
must use his judgement about which criteria are most important for the inference 
in question, and choose accordingly the sample statistic to use as an estimator. 
The Bayesian is unconcerned with these characteristics of estimators because 
his estimation procedures derive from the posterior distribution. He can report 
the form and parameters of the posterior distribution as a complete description 
of his posterior opinion, or he can give summary statistics of his posterior, for 
example, the posterior mean and standard deviation, a posterior credible 
interval, etc.

13.3 Testing hypotheses
The theory of hypothesis testing looms large in the literature of tradi 

tional statistics. It is also a complicated topic, one that cannot be covered 
adequately in one section of one chapter of a predominantly Bayesian textbook. 
Instead, I have elected to discuss the practice of testing hypotheses, the pro 
cedures one encounters most frequently in the social science literature. Statis 
tical practice exemplified in the social science journals is usually considerably
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simpler than statistical theory, particularly insofar as certain arbitrary conven 
tions have become a substitute for careful judgement and thought.

In practice, social scientists frequently proceed as follows. First, they 
establish some statistical hypothesis, and they collect data to see if the hypo 
thesis is false. Next, they calculate the probability of the observed data or more 
extreme data given the truth of the hypothesis. If that probability is small, then 
the hypothesis is considered unlikely to be true. These steps can be put in the 
form of a syllogism applied after the scientist has observed the data, D.

If H is true, then it is unlikely that D or more extreme data would be 
observed.
D was observed.
Therefore it is unlikely that H is true.

If, on the other hand, the scientist's calculation gives a probability that is fairly 
high, then the hypothesis is not rejected. He does not necessarily accept the 
hypothesis; he can choose to suspend judgement.

As an example, suppose we attempt to find out if a coin is biased. Let us 
assume that the coin is not biased; our statistical hypothesis is that the long- 
run proportion of heads is 0-5. We toss the coin 100 times, and it comes up 
heads 83 times. Now 83 heads or more out of 100 is very unlikely if the coin is 
fair, so we reject the notion that the coin is unbiased.
A Bayesian objects to this procedure for three reasons.

1 It does not take account of prior probabilities. If the coin was just 
received in mint condition from a bank, then my prior opinion so strongly 
favours the hypothesis 'fair coin' that even 83 heads out of 100 is not enough 
evidence to lead me to reject the hypothesis. But if the coin is known to belong 
to a gambler of dubious reputation, then I am willing to reject the hypothesis on 
the strength of the evidence. Inferences depend in part on prior probabilities.

2 No alternative hypothesis is considered. Suppose we are reliably 
informed that the coin, if it is biased, favours tails, not heads. Then 83 heads 
or more out of 100, while unlikely for a fair coin, is even more unlikely for a 
coin with a tails bias. So if 'fair coin' and 'tails-bias coin' are the only two 
hypotheses possible, then the data favour the fair coin. Recall the point made 
in section 4.7 of Chapter 4: The posterior probability of a hypothesis depends 
not only on that hypothesis and the data but also on the other hypotheses.

3 The inference depends on data not observed. When calculating the 
probability of 83 heads or more out of 100, one must find not only the prob 
ability of the sequence of 83 heads and 17 tails that was observed, but also the 
probability of every other possible sequence of 83 heads and 17 tails, even 
though they did not occur, and the probability of every other sequence of more 
than 83 heads that did not happen. To compute p(D|H) in Bayes' theorem, one 
is required to consider only data that were observed, so data that were not 
observed are irrelevant for Bayesian inference. That seems an intuitively 
appealing principle: why should an inference be influenced by data that were 
not observed?

Traditional procedures employing the above syllogism are often called 
significance tests or tests of null hypotheses. We turn to them next.
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Null hypotheses and significance tests
Let us return to the statistics instructor's problem. Recall that he wants 

to make an inference about the mean of the population of difference scores, and 
that the sample mean is 24-87. For now, we again assume that the population 
standard deviation is known to be 11. Suppose that the instructor has some 
reason to suspect that the population mean is 35; he wishes to test this hypo 
thesis. He designates that hypothesis as H 0 . Symbolically,

H0 : /( = 35

The subscript 0 is intended only to serve as a reminder that the hypothesis in 
question is the 'null' hypothesis; that some specific hypothesis is being exa 
mined. In this case, the hypothesis is that the mean of the difference scores is 
exactly 35, a specific value.

Traditional procedure recognizes that inferences about a null hypothesis 
could be misleading if an alternative hypothesis is not specified. It is common 
practice to specify an inexact alternative hypothesis, usually of this form:

In words, the population mean is not equal to 35; some value other than 35 
is true. It should be assumed when making inferences about null hypotheses that 
if data are obtained which are unlikely given the truth of the null hypothesis, then 
the data are relatively likely under the truth of the alternative hypothesis. The
null hypothesis and the alternative should be specified so that this is true. 
Unfortunately, one can find, without any difficulty, violations of this assumption 
in statistical analyses in the social science literature. Frequently the alternative 
hypothesis is ignored and the syllogism discussed in the previous section is 
applied only to the null hypothesis.

To make the inference about the null hypothesis we begin by assuming 
H0 is true, that is, that the population mean really is 35. We observe that the 
sample mean is 24-87, so next we wish to find out how likely that result or one 
more extreme is if the null hypothesis is true. The sampling distribution of 
means enables us to answer that question. We know that the mean of the 
sampling distribution must be at 35, if the null hypothesis is true, and we know 
that since the population standard deviation is 11, the sampling distribution 
must have a standard deviation of ll/\ 15 = 2-84. That is the standard error 
of the mean. Figure 13-4 shows the sampling distribution of means, if the null 
hypothesis is true.

Now we are in a position to make a statement about the likelihood of 
the data given the truth of the null hypothesis. You can see from Fig. 13-4 
that a sample mean of 24-87 falls way out in the left tail of the sampling distri 
bution. Such an observation is quite unlikely if the population mean is really 35, 
so we might reject the null hypothesis.

We need to make that procedure a little more precise. An easy way is to 
establish regions of the sampling distribution which will be termed 'rejection 
regions'; if a sample result falls in these regions, we deem the sample or one 
more extreme so unlikely to have occurred given the truth of the null hypothesis 
that we agree to reject the null hypothesis. By traditional convention, these 
regions usually encompass either 5% of the sample results, or 1 %. Take the
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5% region as an example. One approach is to establish two-tailed rejection 
regions, with 2-5% in the left tail and 2-5% in the right tail. You know that 
when this is done for a normal distribution, the remaining 95% falls within 
± 1-96 standard deviations from the mean. This is shown in Fig. 13-5.

27 29 31 33 35 37 39 41 43
Fig. 13-4
Sampling distribution of means for samples of size 15, given that the population mean is 35

In other words, if a sample result falls farther than 1 -96 standard deviations 
from the mean of the sampling distribution, then we reject the null hypothesis. 
For the statistics instructor's problem, the borderline for the lower rejection 
region is 35-1-96(2-84) = 29-43, and the upper region is 35 + 1-96(2-84) = 
40-57. Notice that the sample mean of 24-87 falls in the left-tail rejection region.

Reject H 0 - H 0

Fig. 13-5
Regions of the sampling distribution for which a sample result would lead to rejection 
of the null hypothesis.

We say, then, that the null hypothesis is rejected at the 5 % level of significance. 
This result would probably be reported in the following manner: The sample 
mean is significantly different (p < 0-05) from 35'. The little bit in parentheses 
indicates the significance level.

A word of warning is needed at this point. Obtaining a significant result 
has nothing whatsoever to do with finding an important result. The word 
'significant' is used in a very special sense, and means only that a result is most 
likely not attributable to chance. A result that is small or trivial may be declared 
statistically significant, but that only means that the small, trivial result is not
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due to chance. The magnitude or importance of the result is not given by the 
significance level.

If an investigator finds his result is significant at the 5% level, he usually 
goes on to discover if it is significant at the I % level. In this case, the rejection 
regions of Fig. 13-2 are pushed farther out into the tails so that they extend, for 
the normal distribution, from -2-58 to +2-58. For our example, the lower 
limit would be found at 35-2-58(2-84) = 27-67. The sample mean falls below 
that limit, so the null hypothesis could be rejected at the 1 % level. We say that 
the sample mean is significantly different (p < 0-01) from 35.

Many social scientists have adopted the practice of finding the limit of the 
rejection region at which the result would be just significant. For our example, 
the limit would have to be moved farther to the left. How far ? It is only necessary 
to convert the sample mean to a Z-value, then find the area of the curve to the 
left of that value. In other words, we want to know how many standard devia 
tions the sample mean is below the mean of the sampling distribution of means. 
We get that by subtracting 35 from 24-87 and dividing the result by the standard 
error of the mean:

M-HM _ 24-87 -35
2-84 ~

From the normal table we see that only 0-0002 of the curve falls beyond a 
Z-value of 3-57. We expect that amount in each of the tails, so the total area 
in the tails is 0-0004. We say, then, that the sample mean is significantly 
different from 35 at the 0-04% level. Alternatively, we might declare the result 
significant and add the little parenthetical expression. We could indicate the 
level at which the result is just significant: (p < 0-0004); or round off the 
result to the nearest 5 or 10: (p < 0-0005); or, as is frequently done, simply 
report the smallest of 0-05, 0-01, or 0-001: (p < 0-001).

These results would most likely be reported as follows:
The sample mean is significantly different from 35 
(CR = 3-57; p < 0-001).

The abbreviation 'CR' stands for 'Critical Ratio' and refers to the test statistic 
given above when the sampling distribution is normal. It tells us how far, in 
standard deviation units, the sample mean is from the hypothesized value. 
As can be seen from the formula, the CR is computed by finding the difference 
between the sample mean and the hypothesized value of the population mean, 
and dividing the difference by the standard error of the mean. This procedure 
is often called a 'Critical Ratio test'.

For those cases in which the sampling distribution is a Student-/, a non- 
Bayesian will carry out a '/-test'. He computes the /-statistic by subtracting the 
hypothesized value of the population parameter from the sample value and then 
divides by the standard error of the statistic. The smallest rejection region, 0-05, 
0-01, or 0-001, at which the result is significant (if it is at all) is reported. As an 
example, suppose the statistics instructor does not know the population standard 
deviation. Then he must compute the /-value

M-^ 24-87-35
" ~
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For 14 degrees of freedom, a /-value of only 4-14 (see Appendix G) is required 
for significance at the 0-001 level, so the instructor might report his results as 
follows:

The sample mean is significantly different from 35 
(t = 4-398; p < 0-001).
The decision to put a rejection region in each tail was dictated by the 

prior desire to know only whether a sample result was different from 35. If the 
investigator was interested only in the possibility that the sample mean was, 
say, less than 35, he would put all of the rejection region in the left tail. That 
is an example of a one-tailed hypothesis test. Such tests are used by traditional 
ists when, before collecting any data, a directional hypothesis is of interest.

Because significance testing is so simple, it has become the most frequently- 
used non-Bayesian method in the social sciences. The investigator has only to 
compute the test statistic, then look up the appropriate table to see if the test 
statistic is larger than the tabled value. If it is, then he rejects the null hypothesis. 
The procedure is so simple that it can be communicated in cookbook form and 
applied with little thought about the underlying rationale. One consequence is 
that some social scientists behave as though they believe the significance level 
indicates how likely the null hypothesis is to be true. To reject a null hypothesis 
at the 0-01 level of significance does not mean that there is a 1 % chance or less 
of the null hypothesis being true, nor does it imply that the alternative hypo 
thesis has a 99% chance of being true. There is no way in which a relative 
frequency definition of probability can allow for probability statements to be 
made about hypotheses. Unfortunately, as Bakan (1966) has pointed out 
so well, this confusion is rife amongst social scientists.

Some common null hypotheses
In the literature you are likely to run across a number of very abbreviated 

statements that indicate rejection of the null hypothesis. In this section I mention 
a few of them so that you will know what the researcher is talking about.

One of the simplest types of inference is the one we have already covered; 
testing whether a population mean is a specific value. This type of inference 
can easily be extended to medians or variances of populations in addition to 
means. Always the question of interest is whether a sample value is significantly 
different (that is, unlikely to be due to chance) from some specific value. Infer 
ences about a population proportion can also be made in this way.

Another type of inference concerns the difference between two population 
means. Here the null hypothesis is often assumed to be that there is no difference, 
that is,

H 0 : /*i-A*2 =0

If an investigator concludes that Ihe two groups are significantly different' he 
probably means that he can rule out chance as causing the sample means to 
differ. Of course, two groups could be different because their variances are 
unequal, but if this kind of inference is being made, explicit reference is made 
to the variances. The investigator might report, The variances of the two 
groups are significantly different (p < 0-01)'. In either case, if the sample 
result fell within the 'do not reject' region of the sampling distribution, then the
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investigator would simply say, There was no significant difference between . . .'.
Another common type of inference concerns the Pearson correlation 

coefficient. The scientist may report a 'significant correlation of 0-67 (p < 0-05)'. 
He means that the null hypothesis of zero correlation was rejected at the 5% 
level of significance. Unless specified otherwise, you can assume that the test 
was two-tailed.

Interest sometimes focusses on the slope of the regression line in a regres 
sion problem. If a 'significant Beta-weight' is reported, the author means that 
the sample value of BY \ X is significantly different than zero. In other words, the 
slope of the population regression line is unlikely to be zero, indicating some 
degree of relationship between X and Y.

Many other examples could be given, but you should by now have the 
feel for the very abbreviated kinds of reports you will read in the social science 
literature. Generally, when the null hypothesis is not specifically spelled out, 
you can probably assume that 'no difference' or 'zero correlation' or 'no asso 
ciation 1 is meant. This usage is so common that the null hypothesis is sometimes 
thought always to mean that.

A Bayesian critique of null-hypothesis testing
Let me give very briefly the Bayesian objections to these procedures. In 

the first place, the Bayesian argues, the null hypothesis is rarely of much 
interest. To ask whether the population mean is exactly 35 is not very meaning 
ful, for, a priori, we are sure that the mean is not precisely 35. There are prob 
ably not two population means in the world whose difference is exactly zero. 
And some correlation, however small, can be found between any two variables.

Closely related to this objection, is the obvious point that the null hypo 
thesis is only one of many possible values of the uncertain quantity, and if our 
prior distribution over that uncertain quantity includes the null hypothesis, then 
only an infinitely small amount of prior opinion can be assigned to the null 
hypothesis. The continuous nature of an uncertain quantity assures this. In this 
sense, the prior probability of the null hypothesis is zero, so that even after 
data are observed, it will still be zero. Strictly speaking, we do not make prob 
ability statements about specific values of uncertain quantities, only intervals 
of uncertain quantities. The null hypothesis is a specific value of an uncertain 
quantity, so we would not normally make probability statements about it. 
The Bayesian argues that inferences should be made about all possible values 
of an uncertain quantity, not just one specific value of the uncertain quantity. 
I have yet to meet an example in the social sciences of a null hypothesis test that 
could not be expressed as an inference about an uncertain quantity. That sort 
of inference tells us much more than a null-hypothesis test, for it gives a posterior 
credible interval and so indicates how much of an effect there is, how different 
the population means are, how large the population correlation might be.

A third objection is that by continuing to collect data, one can always 
reject the null hypothesis, even if it is true, at any level of significance desired. 
At some point in collecting data chance deviation from the truth will be large 
enough and the standard error small enough that a significant result will be 
obtained.

A fourth problem is that null-hypothesis testing may lead to erroneous 
inferences. The general conclusion of such Bayesians as Good (1950, 1965) and
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Edwards, Lindman and Savage (1963), is that a significance level of 0-05 or 
even 0-01 does not necessarily indicate heavy weight against the null hypothesis. 
Pitz (1968) showed, for an example concerning inference about a population 
proportion, that rejection of the null hypothesis at the 0-05 level implied a 
posterior probability of at least 0-16 for the null hypothesis.

A fifth difficulty has been formulated by Lindley (1957) as a statistical 
paradox. He points out that it is possible for a random sample to lead a tradi 
tionalist to reject the null hypothesis at, say, the 0-05 level, while a Bayesian 
would assign a posterior probability to the null hypothesis of as much as 0-95. 
His analysis shows that for those random samples yielding a highly significant 
rejection of the null hypothesis, then the larger the size of the sample the closer 
to one is the posterior probability assigned to the null hypothesis. One conse 
quence is that a sample can always be found that strengthens the Bayesian's 
belief in the null hypothesis while leading the traditionalist to reject it.

Many of these and other inherent difficulties with traditional statistical 
methods are well known to statisticians of all persuasions. Various prescriptions 
for coping with these difficulties have been offered, such as the necessity for 
considering not only the significance level but also statistical 'power' when 
designing an experiment. (Power refers to the probability of correctly rejecting 
the null hypothesis.) But in practice power is rarely considered explicitly, 
judging by the rarity of its mention in journal articles. Instead scientists usually 
apply intuitive and judgemental 'adjustments' when interpreting significance 
and null-hypothesis tests. But, as Bakan (1966) has pointed out so well, these 
'adjustments' have led to a number of misinterpretations that are now widely 
believed, such as interpreting the level of significance as if it were the prob 
ability to be associated with the truth of the null hypothesis. Furthermore, 
Tversky and Kahneman (1971) have found the judgement and intuition of 
professional psychologists to be seriously in error when they were asked to 
make research decisions after being given the results of statistical tests from 
previous experiments. Thus, it appears that in many cases the 'adjustments' 
just do not work very well.

One way out of these difficulties is to adopt a Bayesian approach. When 
ever possible, inferences should be made about uncertain quantities, for these 
inferences are quite straightforward and less likely to lead to misinterpretation. 
Instead of reporting a traditional significance level, like p < 0-05, one should 
report the more informative posterior credible interval: p(\9-94 < n < 29-8) 
= 0-95. On occasion, interest will legitimately be centred on null hypotheses, on 
interval hypotheses, or on tests of independence. The Bayesian approach to 
them is covered in the next and concluding chapter.

13.4 Summary
Traditional methods of making inferences do not normally use Bayes' 

theorem; instead, inferences are based on the sampling distribution of a statistic. 
A sampling distribution is a hypothetical distribution, one that would result 
if repeated samples of size N were drawn from a population, the statistic of 
interest calculated for each sample, and then a distribution of those sample 
statistics were drawn.

The sampling distribution might be used in three ways: to find a confidence
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interval for a population parameter, to make an estimate of the specific value 
of some population parameter, or to test some hypothesis of interest.

A confidence interval for a population parameter is found by assuming 
that the sample statistic obtained in an experiment is an unlikely result found 
in one of the tails of the sampling distribution, and then locating the mean of 
the sampling distribution as so many standard deviations from the sample 
result. For example, in finding the 95% confidence interval concerning the 
population mean, one assumes that the mean of the sampling distribution is 
either 1 -96 standard deviations above the sample mean, or 1 -96 standard devia 
tions below the sample mean, or anywhere in between. Those extreme values 
of the mean of the sampling distribution form the limits of the 95% confidence 
interval for the population mean. This procedure is justified because the mean 
of the sampling distribution of means is equal to the population mean. A non- 
Bayesian states that there is a 95% chance that the confidence interval contains 
the true value of the population mean. A Bayesian would say there is a 95% 
chance that the population mean falls between the obtained limits. One is a 
probability statement about the interval, the other about the population para 
meter. Sometimes sampling distributions are given for test statistics, which are 
transformations of the data that involve population parameters.

In making an inference in the form of a point estimate about some 
population parameter, the non-Bayesian tries to select a sample statistic that 
will provide an unbiased, consistent, sufficient, and efficient estimator of the 
population parameter. Of particular importance to Bayesians and non-Bayesians 
alike, sufficient statistics are those statistics computed from the data that con 
tain enough information to enable an inference to be made. Sufficient statistics 
should always be included in communicating the results of an investigation 
so that the reader can form his own inference.

Sometimes an investigator wishes to test some hypothesis, often called the 
null hypothesis, against an alternative hypothesis. The non-Bayesian observes 
data in an experiment, and if he finds that the data are quite unlikely to have 
been obtained given the truth of the null hypothesis, then he rejects the null 
hypothesis. This procedure is carried out with reference to the sampling distri 
bution; the sampling distribution can be worked out given the truth of the null 
hypothesis, and regions of rejection can be established. These regions are usually 
in the tails of the sampling distribution, for it is assumed that if a sample result 
falls there, then the data were more likely to have been obtained given the truth 
of the alternative hypothesis. Finally, if the data for an experiment are found 
to fall in a rejection region, then the null hypothesis is rejected.

A Bayesian objects to testing null hypotheses by these procedures because 
they fail to take explicit account of prior probabilities, alternative hypotheses 
are easily ignored, the resulting inference depends on data not observed, they 
lay undue emphasis on null hypotheses that are not really of much interest, they 
are concerned with one specific value of an uncertain quantity and so must 
have virtually zero prior probability, and they tend to be too ready to reject the 
null hypothesis. The exercise of wisdom in applying and interpreting traditional 
significance tests is frequently based on an unsatisfactory collection of statistical 
lore and on misinformed intuition. Good sense has not been able to patch up 
the logical shortcomings of traditional methods; it has often made matters 
worse.
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Problems
13-1 Carry out significance tests for any of the problems given at the ends of Chapters 

11 and 12.

13-2 Find examples of non-Bayesian tests in the literature of your major subject, 
and try to interpret them from a Bayesian point of view.



14 • Testing 
hypotheses

So far our inferences about uncertain quantities have been expressed in 
terms of credible intervals. Now it is time to consider some other ways of 
making inferences, all within a Bayesian framework. The general theme under 
lying this chapter is that meaningful inferences can sometimes be made about 
hypotheses themselves, rather than about uncertain quantities. We will con 
sider three ways of doing this:

by making inferences about hypotheses that concern intervals of an 
uncertain quantity (tests of interval hypotheses);
by noting whether some hypothesis of interest falls outside the posterior 
credible interval of some uncertain quantity (significance tests);
by testing a specific null hypothesis against a diffuse alternative (null- 
hypothesis tests).
On completion of this chapter you should know how to carry out each 

kind of test. You should also be well aware of the limitations and possible 
misinterpretations of significance tests and null-hypothesis tests.

The topic of the next section was covered briefly in Chapter 12. Here it is 
discussed in more detail.

14.1 Tests of interval hypotheses
One is sometimes interested in whether an uncertain quantity is more or 

less than a fixed value. For example, we know that 100 denotes an average I.Q. 
If we are conducting an experiment on a sample of people drawn from a special 
population, we might need to know if the population has a mean I.Q. greater 
than 100. We set up two hypotheses:

H! : population mean greater than 100 
H 2 : population mean less than 100

Of course, we do not need to consider the hypothesis that it is exactly 100; 
recall that when we are dealing with an uncertain quantity we make probability 
statements only about intervals, because the probability of any precise value 
is zero.
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We wish to find the probabilities we should attach to those hypotheses, 
that is,

p(H 2 |D) = p(Ai < 100)
The methods explained in Chapter 6 and discussed briefly in Chapter 12 will 
solve the problem. We simply find the areas of the posterior distribution that 
lie to the right of 100 and to the left of 100; those areas give the probabilities 
of H! and H 2 .

Exercise 14-1
A scientist wishes to discover which of two theories of visual perception is more 
plausible. Theory A predicts that a certain measurement, or index, computed 
from hundreds of observations of an individual's choice behaviour will be 
greater than 1, while theory B predicts that the number will be less than 1. 
The scientist makes observations on 20 people and computes the measure for 
each person. Because of measurement error, some indices are below 1 and 
others are above. However, the scientist knows from previous experience what 
the measurement error is, so he treats his problem as one of inferring the mean 
of a normal population whose variance is known.
He carries out a Bayesian analysis which gives his posterior distribution con 
cerning fi as normal with

m" = 1 -2 
s" = 0-125

What probability should he associate with the hypothesis that the population 
mean is greater than 1 ?

Answer
The solution is obvious when you look at the posterior distribution. Here it is:

> 1)

0-9 1-0 1-1 1-2 1-3 1-4 1-5 1-6

The probability of M being greater than 1 is given by the shaded area. To find 
the area, we first find the z-value equivalent to an Jt-value of 1 -0.

1-0-1-2 -0-2z = —^—^—- = ——— = — 1 -6
0-125 0-125
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Next we consult the cumulative probability table for the normal distribution 
(Appendix F) to see how much area occurs to the right of z = —1-6. That is 
the same as asking how much area occurs to the left of z = 4- 1 -6. I get 0-9452. 
Thus,

pd*>\) =0-9452
There is a 94-52% chance that the population mean is greater than 1. Whether 
or not you attach that same probability to the truth of Theory A is an extra- 
statistical matter!

Of course, you cannot use cumulative normal tables for problems in 
which the posterior distribution is Student-/ (unless TV is very large) or IG2. 
Then you need cumulative tables for those distributions. You will find cumu 
lative Student-/ tables in Appendix G. Be sure you get the right one; each 
column is for a separate curve—note the degrees of freedom at the top of the 
column.

Exercise 14-2
A posterior distribution concerning the population mean is Student-/ with

A = 86-5 
a' = 2-5 

df" = 14

What is the probability that the true value of the mean is less than 90?

Answer
First, the /-value corresponding to 90:

90 - 86-5 3-5 , A '= -TS— = 2--5 = M

Next, consult the cumulative Student-/ function for 14 degrees of freedom. For 
a /-value of 1-4 note that 0-90836 of the curve lies to the left. So,

p(n < 90) = 0-90836

You will rarely, if ever, be interested in finding the probability that the 
true value of a is above or below some specific value, so I have not felt it worth 
while to compute and append the fairly extensive tables of the cumulative IG2 
distribution.

Of course, the methods in this section apply as well to any of the uncertain 
quantities discussed in Chapters 11 and 12. For example, to find the probability 
that the true value of a median is either above or below a certain value, you first 
find the rank that corresponds to that value (interpolating if necessary), and 
then find the areas of the posterior distribution that lie above and below that 
rank. Since the posterior is a normal distribution, the procedure is straight 
forward. Similarly, to find how probable it is that the mean of a normal popu 
lation (with known variance) is above or below a particular value, you find the 
areas of the normal posterior that lie above and below that value.
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To find the probability that an unknown proportion is above or below 
a certain value, you need cumulative tables for the Beta distribution. They take 
up a whole book in themselves because there are so many different Beta distri 
butions. You will find the cumulative function tabulated in Tables of the Incom 
plete Beta-Function, by K. Pearson, Biometrika, London, 1934. The tables cover 
values of/? and q up to 50, but only for values of/? greater than q. If you wish 
to find the cumulative probability up to some value TT* when q is greater than /?, 
you should interchange the values of/? and q, find the table corresponding to 
those values, then enter the table with 1 -TT*, and subtract the tabled cumulative 
probability from 1. This procedure works because the density function for 
q > p is the mirror image of the one for /? >q (see Fig. 14-1).

This function is not tabled This function is tabled.

So, to find this area . . .

. . . look up this area . . .

...and 
subtract 
it from 1

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0
-* 1—TT*

Fig. 14-1
How to find cumulative probabilities for Beta functions in which q is greater than p

In making an inference about whether the difference between two popu 
lation means is greater or less than some particular value (often, 0), you find 
the areas of the posterior distribution that are above and below the value of 
interest. If the population variances are assumed equal, then we know that the 
posterior is a Student-/, and cumulative tables are in Appendix G. But if you 
cannot make that assumption, then the posterior is a Behrens distribution, a 
distribution with so many parameters that cumulative tables have not been 
calculated. You should, in this situation, try to collect sufficient amounts of 
data to enable your posterior to be approximated with a Student-/ or a normal 
distribution. Alternatively, you might carry out a Bayesian significance test, as 
discussed in the next section.

A similar difficulty is encountered if you wish to know how probable it 
is that the ratio of two population variances is above (or below) a certain 
number (often, 1). Cumulative tables of the F-distribution do not exist, so 
your inferences must take the form of a credible interval. A Bayesian significance 
test is also possible.
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Sometimes an investigator is interested in whether a population correla 
tion coefficient is greater or less than a particular value (often, 0). He can find 
the probabilities by noting the areas under the normal posterior to the right and 
to the left of the Fisher-z transformation of that value.

Exercise 14-3
An investigator finds a Pearson correlation of 0-42 between two measures for 
a random sample of size 25. What are the posterior odds favouring a population 
correlation that is positive rather than negative?

Answer
To find the odds we must first find the areas of the posterior distribution to the 
right and to the left of the Fisher-z transformation of p = 0. Here are the steps.

1 Find the Fisher-z transformation of r = 0-42. From Table K, it is z = 0-45.
2 Find the parameters of the posterior distribution. They are 

m" = 0-45

. .VN V25
3 Find the Fisher-z transformation of p = 0. From Table K, it is 0.
4 At this point we have a normal distribution whose mean is 0-45 and whose 

standard deviation is 0-2. We want to find the areas of the curve to either side 
of 0. We can do this by referring to the cumulative normal distribution, but 
first we need to know the z-value corresponding to 0.

0-w" 0 - 0-45

From Appendix F, we see that 0-9878 of the area of the curve is found to the 
right of a z-value of - 2-25, leaving 0-0122 to the left. Thus, there is a 98-78% 
chance that the population correlation is positive.
The posterior odds favouring a positive correlation are, then,

,y_ P _ 0-9878 _ S1 
1-/7 0-0122

Thus, the odds are 81 to 1 in favour of a positive correlation.

14.2 Significance tests
I write this section with some reluctance because the procedure to be 

explained here does not allow the assigning of a probability to the hypothesis 
of interest, and because the test is easily misinterpreted.

The key idea is quite simple. Once a null hypothesis has been defined, the 
Bayesian has only to see whether that hypothesis lies outside or inside the 
C per cent credible interval. If the null hypothesis lies outside the interval, then 
the null hypothesis is said to be rejected at the (100-C) per cent level of sig 
nificance. For example, suppose we are interested in the hypothesis that the
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mean of a population is exactly 100, and we have found the posterior 99% 
credible interval for \i to be 104 to 119. The null hypothesis of 100 lies outside 
the interval, so we reject the null hypothesis at the 1 % level of significance.

Exercise 14-4
Carry out a Bayesian significance test of the null hypothesis that there is no 
difference between the means of the population of men's and women's scores 
for Exercise 12-3.

Answer
Recall that the difference between the population means is designated by <5, 
where d = jn^ — //2 . The null hypothesis, H0 , is defined as follows:

H0 : 5=0
In Exercise 12-3 we found that the posterior 99% credible interval for 6 is: 

-9-84 < <5 < 4-64
Since 0 is contained in that interval, we cannot reject the null hypothesis at the 
1 % level of significance.

This approach is particularly useful when interval hypotheses cannot be 
tested because tables of the cumulative posterior do not exist, or are not readily 
available, and when the methods of the next section do not apply. If the prior 
is uniform, then this test gives the same result as a traditional significance test. 
Thus, a non-Bayesian significance test can be interpreted, in most cases, as 
identical or similar to a Bayesian significance test carried out with a uniform 
prior.

My reservations about Bayesian significance tests are similar to those 
about non-Bayesian significance tests. The significance level does not give the 
posterior probability to be associated with the null hypothesis; strictly speaking, 
the posterior probability of the null hypothesis is zero, for it is a point hypothesis, 
one particular value of the uncertain quantity. The argument is sometimes made 
that the null hypothesis is not really a point hypothesis at all, it is instead a 
very narrow interval. The null hypothesis should not be defined as a difference 
of zero in the above exercise, it should be thought of as a difference of near zero 
or zero. But, the Bayesian argues, if you think of the null hypothesis as a narrow 
region, then it is a simple matter to find the probability of the parameter lying 
within that interval; you just calculate the area of the posterior distribution 
over that interval. Thus, the testing of a narrow null hypothesis is a straight 
forward application of principles discussed before.

On the whole, I think Bayesian significance tests of sharp null hypotheses 
are not fully sustained by Bayesian logic, and so should be avoided where 
possible. If one is really interested in a point null hypothesis, then the procedures 
of the next section make a little more sense from a Bayesian point of view, and 
so should be preferred to significance tests.

14.3 Null-hypothesis tests

Usually one wishes to know how much of an effect something has, so 
that interest focusses on the actual value of some uncertain quantity. We have
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seen, from a Bayesian point of view, that an inference about the uncertain 
quantity can be expressed as a posterior distribution, as a posterior credible 
interval, or as interval hypotheses. And we have expressed some doubt about 
the meaningfulness of Bayesian significance tests, which on the surface seem 
to be straightforward tests of null hypotheses. We have seen that they have at 
least two troubles: the probability, prior and posterior, associated with the null 
hypothesis is zero, and the alternative hypothesis is not explicitly taken into 
consideration.

The methods of this section avoid both those difficulties. Some of the 
methods have other troubles, usually difficulties in defining an alternative 
distribution or in assigning prior probabilities. But at least the limitations are 
out in the open to a greater degree than for significance tests.

A great deal of work on testing sharp null hypotheses against diffuse 
alternatives has been carried out by Jeffreys (1961). His book contains tests to 
cover all the experimental situations described in this book. However, his 
methods are not accepted by all Bayesians, so it is probably premature to give

H 0
Fig. 14-2
Some prior opinion concentrated on a specific (null) hypothesis with the remainder spread 
out over a diffuse alternative hypothesis

extensive coverage of them in an introductory textbook. Considering that the 
first edition of his book appeared in 1939, and that the first thoroughgoing 
Bayesian textbook appeared in 1959 (Schlaifer, 1959), it would appear that 
Jeffreys was and is well in advance of Bayesian practice.

Most of the methods of this section apply whenever the investigator has 
in mind some specific hypothesis, which we will again call a null hypothesis, to 
which he is willing to assign some prior probability. His remaining prior prob 
ability is spread out over the possible values that go to make up the diffuse 
alternative hypothesis. In other words, some of his prior probability is spread 
out over possible values of an uncertain quantity, while the rest of his prior 
opinion appears as a blob over one specific value of the uncertain quantity. 
I have shown this in Fig. 14-2.

Testing a specific proportion
Suppose that in making an inference about a proportion as an uncertain 

quantity, you believe before doing the experiment that there is some chance 
that the population proportion, TT, might be some specific value, call it 77*. 
The rest of your prior opinion you are willing to spread out uniformly over all 
the other possible values of TT. Your prior opinion is uniform over the interval 
from 0 to 1, with a lump of it sitting on TT* (see Fig. 14-3).



344 Testing hypotheses

Thus, we have two hypotheses, a null and an alternative, defined as 
follows:

H0 : n = 7i*
Hjl TT^TT*

Our prior probabilities are, as usual, designated as p(H0 ) and /?(Hi). If half 
your opinion is assigned to TT*, then,

p(H0) = 0-5 
!) = 0-5

<

1 — — 1 — • I 1 1 1 1

>

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

Fig. 14-3
A lump of prior opinion on TT*, with the remainder spread out uniformly over values of the 
population proportion from 0 to 1

An experiment is conducted in which s successes are observed, and / 
failures. In order to find the posterior probabilities in the light of these data, 
we need to know the likelihoods. It will be convenient to work with the likeli 
hood ratio, L:

p(5,/|null)
p(s, /[alternative)

For this problem, it turns out that the likelihood ratio is equal to the 7-value 
of a Beta distribution whose parameters are/? = s + 1 and q =/+ 1, at X = TT*. 
Recall that the equation for the Beta distribution is

If we substitute TT* for A; s + 1 for /?, and/fl for q, then we get an expression 
for the likelihood ratio:

To get the posterior odds, remember that it is necessary to multiply the likeli 
hood ratio by the prior odds.

Exercise 14-5
Let us resurrect our gambler discussed in Chapters 1 and 4. Recall that he has 
either a fair coin or a biased one. In Chapter 4 we had to specify the degree
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of bias in order to apply Bayes' theorem, but now we do not. Our two hypotheses 
are:

H0 : coin is fair, that is, TT* = 0-5 
HI: coin is biased, that is, n* ^ 0-5

We assign half our prior opinion to H 0 and we spread out the other half uni 
formly over the possible values of n* from 0 to 1 . The coin is flipped and 8 heads 
out of 10 flips are observed. What are the posterior probabilities?

Answer
First we evaluate the likelihood ratio.

(8 + 2+1)! 11 '
8! 2! 8T2! 

x 1° x 9 * 8 x 7x6x5x4x3x 2
(8 x 7 x 6 x 3TxT~x~3~x 2)(2) ( 10

Multiplying by prior odds of 1 gives the posterior odds :
a* = 0483 

Converting the odds to probabilities gives:

Thus, on the strength of this evidence, and considering a uniform prior over 
the diffuse alternative hypothesis, there is a 32-6% chance that the coin is fair.

Computing the likelihood ratio for sizeable values of s and / can be a 
chore, so it is best to use logarithms. Logs of the factorials are already worked 
out and tabled in Appendix H. As an example, here is the log of the likelihood 
ratio for the example above:

log L = log 11 !-log 8!-log 2! +10 log 0-5
= 7-6012-4-6055-0-3010 + 10(-0-3010) = -0-3153

Taking the antilog of that value gives L = 0-484, which is close enough.
This procedure, or some variation of it, is occasionally useful when 

numerical measurements have been made from a population of unknown dis 
tribution. Since the population cannot be assumed normal or even symmetrical, 
the methods of Chapters 11 and 12 do not apply. But if the investigator is 
willing to lose some information from his data, he can carry out a Bayesian sign 
test. Here is an example.

Exercise 14-6
In Exercise 12-4 a statistics instructor obtained scores on a mathematics test 
before and after students had completed programmed learning in mathematics. 
There we enquired about the population mean of the difference in scores. To 
do this we assumed the population was normal. If we do not make that assump 
tion, we can look at the proportion of times the after score was greater than



346 Testing hypotheses

the before score. If the instruction has no effect, we would expect that proportion 
to be around 0-5, for only chance would dictate which score was larger. The two 
hypotheses we wish to consider are

H0 : n = 0-5 
Hi: TT ^ 0-5 

What inference can we make about those hypotheses ?

Answer
Suppose that the statistics instructor thinks it is about three times as likely 
that the instruction will cause some change of score as that it will not. The prior 
odds are, then,

_

Looking at the before and after scores (on page 287 of Chapter 12), we see that 
all 15 of the after scores are larger, so s = 15 and/= 0. Now the likelihood 
ratio :

L = j^ (0-5) 15 (0-5)° = 16(0-5)15 = ~ = 0-000488

The posterior odds are
Q" = 1(0-000489) = 0-000163 

These odds imply a probability of

In words, that is overwhelming evidence for the effectiveness of the programmed 
instruction, as should have been obvious from inspection of the data.

The only assumption that goes into this test is that the observations must 
be independent. Otherwise it is a remarkably assumption-free test. Its equivalent 
in the non-Bayesian literature is called a sign test, too, but since it leads to a 
significance test, it does not give the same result as the Bayesian sign test which 
is based on the likelihood ratio and the prior odds. Incidentally, this test, like 
its non-Bayesian counterpart, is often classed as a non-parametric or distribu 
tion-free method because no assumption is made about the population of scores. 
Of course, the actual values of those scores is not taken into account in the 
test, only their relative magnitude is important, so some information contained 
in the original data is lost in this test. That means that this test is not very 
sensitive when the data are somewhat equivocal. Anyway, remember that the 
test only tells us that an effect is there, it does not tell us how big the effect is. 
Only by making an inference like the one in Exercise 12-4 do we find out what 
the difference in population means actually is. The Bayesian sign test would 
have given the same result if each person's 'after' score had been just 1 point 
larger than his 'before' score.

You might object, quite rightly, that the prior distribution for the alter 
native hypothesis in the exercise was not very realistic. Surely the statistics 
instructor does not really think all possible proportions are equally likely; it
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seems unlikely that instruction would cause the 'after' scores to be generally 
less than the 'before' scores, for example. I agree, but for this particular example 
the data are so overwhelming that the prior specification does not matter very 
much. Anyway, stable estimation applies here, too, so you can take the uniform 
prior for the alternative as equivalent to vagueness. As long as the prior is 
fairly flat in the vicinity of the data (it is) then the uniform prior will be satis 
factory. That is not to say that the Bayesian approach cannot accommodate 
a more realistic prior for the alternative. It can, but the mathematics are beyond 
the scope of this book.

Testing correlations
Suppose you are interested only in whether two sets of observations are 

correlated or not. You wish to consider just two hypotheses:
H0 : uncorrelated, that is, p = 0 
H! : correlated, that is, p ^ 0

You have computed the Pearson correlation coefficient for the data and wish 
to find the posterior odds favouring H0 . Jeffreys has shown that, if we take a 
uniform distribution over p, the likelihood ratio is given by this approximation:

^ /2JV-l (i _
\ n

In this expression, TV is the number of pairs of observations, n is the universal 
constant 3-1415 . . ., and r is the sample correlation. The approximation is 
better the larger the value of N.

Exercise 14-7
It is not uncommon to read in the social science literature a report of research 
in which an investigator obtained a correlation of, say, 0-35, with a sample 
size of 30. By a non-Bayesian analysis, this would be reported as significant at 
the 0-05 level, that is, the null hypothesis of zero correlation can be rejected at 
the 0-05 level of significance. What would a Bayesian say about this result?

Answer
Let us assume that the prior probabilities for H0 and HI are equal, so the prior 
odds are 1. Applying Jeffreys' equation gives us this likelihood ratio:

2(3°) ~ 1 (1 _ Q-1225)27 / 2 == / 2(3°)
\ n

At this point logarithms are needed to evaluate (0-8775) 13 * 5 . Finally, I got
L = 0-742.
Converting the odds to probabilities :

XH0 |D) = = 0-43

Thus, a correlation of 0-35 obtained on 30 pairs of observations would lead a 
Bayesian to conclude that there is only a 0-57 probability that a linear relation 
ship exists between the variables.
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The 'significance' of the result is not a very useful conclusion. That is 
what I meant in the previous chapter when I said that non-Bayesian significance 
tests are sometimes misleading, and too ready to reject the null hypothesis. 
Even the more stringent 0-01 level of significance may lead the reader to think 
that the probability of the null hypothesis is 1 %. But as we have seen, signi 
ficance levels should not be interpreted as probabilities to be associated with 
the null hypothesis. For example, a correlation of 0-5 obtained on 25 pairs of 
observations will be deemed by the non-Bayesian as significant at the 0-01 
level. Yet, applying Jeffreys' equation with equal prior odds gives a posterior 
probability for the null hypothesis of 0-14. There is a 14% chance of no linear 
relationship with these data, not 1 chance in 100.

Testing the mean of a normal population
You may find an occasion where it is reasonable to assign some prior 

probability to the hypothesis that a population mean is a specific value that 
you have in mind. The alternative hypothesis is that the mean is some other 
value.

H 0 : Ai = /i" 
H,: H*H* 

Jeffreys has given an approximation to the likelihood ratio:

^ - / ,2 \<JV-2)/2

I 1 + N=T)
In the equation, TT is the universal constant, TV is the number of observations, 
and / is given by

where M is the mean of the sample and S is the standard deviation of the sample. 
Note that t is the test statistic that was discussed in the previous chapter. This 
likelihood ratio presumes that opinion about the alternative value of ju is suffi 
ciently vague for stable estimation to apply. The approximation is better for 
larger values of TV. As usual, the likelihood ratio has only to be multiplied by the 
prior odds to give the posterior odds.

Exercise 14-8
An investigator who wishes to make an inference about the mean of a normal 
population whose variance is unknown obtains a sample, calculates the mean 
and standard deviation, and computes the value of the /-statistic. It is 2-8, 
which, for his sample of size 25, allows him to reject his null hypothesis by a 
traditional significance test (p < 0-01). What conclusions might a Bayesian 
draw?
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Answer
Let us apply Jeffreys' test. Assume the prior probabilities for the two hypotheses 
are equal. Then the posterior odds equal the likelihood ratio, so

(2 1 - 5 - 0-21R- 0238

Converting to probabilities gives

*H.ID) = £|f = <H92
Thus, that 'significant' rejection of the null hypothesis leaves the Bayesian 
believing there is almost 1 chance in 5 that the null hypothesis is correct.

Testing the difference between means
Imagine, now, that you want to test the null hypothesis that the difference 

between the means of two normal populations is zero, that is, that the means 
are equal. Assume that the populations are normal and that their variances 
are equal.

_0 • A*l ~~ A*2 

Hj : Hi ^ ^2

This is a rather complicated problem because the alternative hypothesis is 
more complex than it looks. Jeffreys provides an approximation for the 
posterior odds:

In this expression, TT is the universal constant, NI and 7V2 are the sizes of the 
samples from the two populations, and t is given by

t =
SSxxi + SSxx2

where SSXxn •S>Sxx2 > ^i> an<^ M2 are all defined on page 279 of Chapter 12.

Exercise 14-9
An investigator carrying out a non-Bayesian significance test of the difference 
between two means (normal populations, variances assumed equal) obtains 
samples each of size 25 from the two populations, and calculates a /-value of 
2-5. He declares the result significant at the 0-02 level (it did not quite make it 
to 0-01). Thus, he rejects the null hypothesis (p < 0-02). What conclusion 
would be reached by a Bayesian ?
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Answer
A Bayesian would probably prefer to find a posterior credible interval for the
difference between means, report that, and leave the reader to draw his own
conclusion. That applies as well to the previous three exercises. But if he insists
on carrying out a test of the null hypothesis, he might apply Jeffreys' approxi
mation.

48 
Those odds give a posterior probability of

- °'081
Even after 50 observations, the Bayesian still assigns better than 8% of his 
opinion to the null hypothesis.

These past few exercises should give adequate illustration of the Bayesian's 
claim that traditional significance tests are too ready to reject the null hypothesis.

Jeffreys gives many more methods for testing null hypotheses against 
alternatives, but I think the applications given here are sufficient to show the 
general approach. There is just one more kind of test that I want to discuss, 
one that is particularly useful in the early stages of an investigation when the 
scientist is still trying to discover what goes with what. We turn to it next.

Tests of independence
Much of the social science literature is concerned with discovering 

whether or not an independent variable has any relationship at all to a depen 
dent variable. We have seen that correlation provides one approach to answering 
such questions; we can enquire about the value of the population correlation 
coefficient between variables X and K, or we can test to see if the correlation is 
zero, implying no relationship, at least of a linear sort. But what do you do if 
you think the relationship may not be linear, or if the variables admit of no 
more than categorical measurement ?

The two methods to be presented in this section make almost no assump 
tions about the data, require only that observations be classified in categories 
(numerical measurement is not required, though it can be carried out and used 
as a basis for classification), can be applied to a great many experimental 
situations, and are very easy to work out. But these advantages are bought at 
a cost: the methods tell you only whether X and Y are independent in the 
statistical sense discussed at the end of Chapter 3. That is not very much infor 
mation, for if you carry out one of the tests and conclude that X and Y are 
not likely to be independent, then you are left knowing nothing whatsoever 
about the nature of the dependency. You do not know whether it is linear or 
nonlinear, whether it will allow meaningful predictions to be made or not, 
whether it is a small relationship or a large one.

In spite of these rather severe limitations, the methods are useful when an 
investigation is just beginning and the researcher wants to weed out independent
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variables that do not have any influence on his dependent variable. They may 
also be useful later in the study if it turns out that the assumptions that go into 
the tests mentioned up to now simply cannot be met. And the tests are very 
useful if only categorical measurement is possible on the data.

The first approach has a traditional counterpart; it is called a Chi-squared 
test of independence. It is a significance test, with all the attendant difficulties of 
that type of test. The second method is a Bayesian null-hypothesis test of 
independence due to Jeffreys. For both of these methods the experimental 
situation is the same. A random sample of size TV is selected, and each observa 
tion is classified in only one of the ^categories and in only one of the Y cate 
gories. An allowable variant on this procedure is to fix ahead of time the numbers 
of observations falling in either the X or the Y category.

As an example, suppose you are interested in finding out if there is any 
connection between the social class of parents and the age at which they wean 
their babies. You might set out to sample randomly middle and working class 
families, or you might decide ahead of time to observe, say, 50 middle class 
families and 30 working class. Let us suppose you tried to sample 60 families 
in each category, but ended up with less than that because some families 
dropped out of your study before it was finished. You followed these families 
over a period of time so you can observe when the child was weaned. Then you 
classified each family in one of the four cells of the following table (often called 
a 2-by-2 contingency table):

Weaning

Early Late
Social
Class

Middle
Working

33
17
50

22
31
53

55
48

103

Observed 
data

(These data were adapted from Miller and Swanson, 1960.)

In words, 33 middle class families weaned early while 22 weaned late. Early 
weaning was observed in 17 working class families, while 31 working class 
families weaned late. The marginal totals tell us that 55 families were middle 
class and 48 were working class, and that 50 families weaned early while 53 
weaned late. A total of 103 families were observed. These data will be called 
the observed data.

The next step is to calculate for each cell frequencies that would be 
expected if the variables were independent. At this point, it may be helpful to 
re-read the discussion at the end of Chapter 3 on independence. Recall that 
there we said that if two events were independent, then the probability of their 
joint occurrence is equal to the product of their individual probabilities.

Let us apply that to the upper left cell of the 2x2 table. The probabilities of 
observing a middle class family that weans early, //those events are independent 
is

p(middle class and early weaning) = p(middle class) p(early weaning)
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The probabilities on the right side of the equation can be obtained from the 
marginals; 55 families out of 103 are middle class, and 50 families out of 103 
weaned early. Thus,

p(middle class) = — = 0-534

50 
p(early weaning) = —— = 0-485

Now we can find the probability of the joint event:
p(middle class and early weaning) = 0-534 x 0-485 = 0-259

Now we repeat that process for the remaining three cells. The result is the 
probabilities of each joint event given pairwise independence.

Early Late
Middle 0-259 0-275 Joint probabilities expected 
Working 0-226 0-240 given independence

1-000

Notice that the probabilities sum to one as they should.
From that table we can construct one that gives expected frequencies. 

All we have to do is multiply each joint probability by 103. Here is the result:

Expected data

We call these cell frequencies expected data. Of course, they can be computed 
more easily than I have done; each expected frequency can be obtained by 
multiplying the appropriate marginal frequencies and dividing by the total. 
For example, the expected frequency in the upper left cell, 26-7, is obtained 
by multiplying the corresponding row marginal, 55, by the column marginal, 50, 
and then dividing that product by the total frequency, 103 : (55 x 50)/103 = 26-7. 
The more cumbersome method I used above was only intended to show the 
logic used in arriving at expected frequencies.

At this point we have a set of observed data and a set of data we might 
have obtained under the hypothesis of independence. The question we must 
answer is whether each observed cell frequency deviates from the corresponding 
expected cell frequency only because chance is operating or because X and Y 
are really not independent. To answer that question we must first compute 
the chi-squared statistic:

(0-E)2

Middle
Working

Early
26-7
23-3
50

Late
28-3
24-7
53

55
48

103

You take the difference between each observed and expected frequency, square
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the difference, divide by the expected frequency, and sum. Here is the calculation 
for these data:

2 = (33-26-7)2 (22-2S-3)2 (17-23-3)2 (31-24-7)2 
X ~ 26-7 + 28-3 + 2^3 + 24^7 

= 1-49 +1-40 +1-70+1-61 = 6-2
Obviously the bigger that number is, the more likely it is that the null hypothesis 
of independence is wrong, for large values are obtained only when observed and 
expected frequencies differ considerably.

A Bayesian analysis tells us that the posterior distribution of the # 2 
statistic has a chi-squared distribution with df" = (R—\)(C—\), where R is 
the number of rows in the contingency table, and C is the number of columns. 
The chi-squared distribution is a very close relative of IG2, and so has a similar 
shape. It extends from 0 to +00, and is skewed with a long right tail.

As applied to tests of independence, the posterior distribution is con 
ditional on the assumptions that went into calculating the expected frequencies, 
so for this problem we can use the Chi-squared distribution to give us the 
probability of obtaining our particular value of % 2 or greater, given that inde 
pendence between the two variables holds. If we find that probability is small, 
then we reject the assumption of independence. Thus, the posterior distribution 
is used to make a significance test. A non-Bayesian would arrive at the same 
conclusion but by a different route.

Specifically, we say that the departure of observed data from the data 
expected under independence is statistically significant (not due to chance) if 
the calculated value of % 2 is bigger than the tabled value found in Appendix C. 
Since the larger x2 is, the more likely it is that the null hypothesis of indepen 
dence is wrong, we put all of the rejection region in the right tail. The table 
gives, for the level of significance desired, the value of /2 at the borderline of the 
right-tail rejection region. The table is entered with the level of significance 
(along the top) and with (R— 1)(C— 1) degrees of freedom (along the left edge). 
For a 2 x 2 table there is just (2— 1)(2— 1) = 1 degree of freedom.

For the example, we enter the table with 1 degree of freedom. We see 
that at the 0-05 level, the tabled value is only 3-84; our value of 6-20 is larger, 
so we can declare the result significant at the 0-05 level. Moving farther to the 
right we see that the result is not quite significant at the 0-01 level, but is at the 
0-025 level. So, we might reject the null hypothesis of independence at the 
0-025 level. There would appear to be some relationship between social class 
and age of weaning; the data indicate that middle class mothers tend to wean 
earlier than working class mothers.

This test is an approximation, valid for moderate to large values of N. 
It should not be used if any of the expected cell frequencies is less than 5. 
You must ensure that all the observations are independent of each other and 
that each observation appears only once in the table.

The procedure given above applies also to tables larger than 2x2. If, 
for example, you are investigating the relationship between social class and 
voting preference, you might have five categories of social class, and four 
categories of voting preference. Your 5x4 table would contain 20 cells, there 
would then be 20 terms to sum in calculating the x2 statistic, and the posterior 
distribution would have (5- 1)(4- 1) = 12 degrees of freedom.
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For a 2 x 2 table, calculating the % 2 statistic is often easier if you use 
this formula:

Observed frequencies

X =
(ad-bc)2(a a

a + c b + d

a + b

c + d

a+b+c+d

That formula, which can be derived from the general expression given earlier, 
is particularly useful if you are making your calculations on an electronic 
calculator. For the problem given here, applying the formula gives the same 
result as before:

=
A

[(33)(31)-(22)(17)] 2 (103) 43,383,703
(55)(48)(50)(53) 6,996,000

= 6-20

L~

Of course, the significance level should not be interpreted as the prob 
ability to be associated with the null hypothesis. It is difficult to devise a Bayesian 
procedure that will yield a posterior probability for the null hypothesis because 
it is very difficult to specify what the alternative is to independence. There are 
all sorts of possibilities, and it is not clear just how opinion should be distributed 
over them. Jeffreys has given one solution but it only applies to a 2 x 2 table:

(smallest marginal frequency + 1)! Y\ (other marginal frequency)! 
(total frequency)! Y\ (cell frequency)!

^ 1 i , T-T i , , • , , r . /?(D|independence) Remember that the II symbol means multiply . L is —~rr-,—-—:——--.p(D | dependence)

Let us apply Jeffreys' procedure to the example. Suppose the prior odds 
are 1. Then,

^ (48 + 1)! 55! 50! 53! 
~ 103! 33! 22! 17! 3^!

Logarithms of factorials are needed to evaluate this.
log (49!) = 
log (55!) = 
log (50!) = 
log (53!) =

62-7841 
73-1037 
64-4831 
69-6309

270-0018

log (103!) = 
log (33!) = 
log (22!) = 
log (17!) = 
log (31!) =

163-9958 
36-9387 
21-0508 
14-5511 
33-9150

270-4514
logQ" = 270-0018-270-4514 =-0-4496 

Taking the antilog, 
Q" = 0-355
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and converting to a probability gives 

p(H 0 |D) = ~5 = 0-262

Thus, there is better than 1 chance in 4 that independence is true. We may 
reject independence at the 0-025 level of significance, but there is still a 0-262 
probability that social class and age of weaning are independent.

Difference between proportions
At the end of Chapter 12 in Section 12-5, I mentioned that chi-squared 

tests are often used to make inferences about the difference between the pro 
portions. The method should be clear — it is just an application of the chi- 
squared significance test for a 2x2 table discussed in the previous section. An 
example should provide sufficient explanation.

Exercise 14-10
In a survey of Vassar College alumnae, M. B. Freedman (1961) found that 
51% of 200 respondents from the Class of 1956 and 77% of 77 respondents 
from the Class of 1940-43 rejected the following item on the Public Opinion 
Survey that they filled out:

'Obedience and respect for authority are the most important virtues that 
children should learn.'

If those samples are taken as representative of their respective Classes, what 
inference could you make regarding the change in attitude reflected in the 
response to that one item?

Answer
One approach would be to make an inference concerning the difference in 
proportions between the two groups of alumnae. With such large samples, the 
normal approximation methods discussed in Section 12-1 are to be preferred, 
but any of the approaches in Section 12-5 could be used. 
A chi-squared significance test requires first a table of observed frequencies. 
The proportions given in the problem are first translated into frequencies:

Number rejecting item in Class of 1956 = 0-51 x 200 = 102 
Number rejecting item in Classes of 1940-43 =0-77 x 77 = 59

Now a 2 x 2 table can be constructed.
Item 

rejected accepted
1956 

Class
1956 

1940-43

102

59

98

18

200

77

161 116 ; 277 
Next, we apply the special formula that enables us to find /2 for a 2 x 2 table:

2 ((102X18) - (98)(59)}2277 = 4,313,143,732 
X (200)(77)( 161)(116) 287,610,400
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The chi-squared table, for 1 degree of freedom, shows that 15-0 is well out in 
the tail, far enough that we can reject the hypothesis of independence beyond a 
significance level of 0-001. We could conclude that the change in attitude from 
1940-43 to 1956 is real, and most likely not due to chance.

Goodness-of-fit
Another application of the chi-squared significance test is in comparing 

whole distributions. Suppose, for illustration, that a survey is conducted and 
the sample is taken from women who are passing by the main shopping area 
of a community and who are willing to participate in the survey. The marital 
status of each respondent is recorded along with the answers to the survey. 
Later the investigator wishes to see if his sample is representative, with regard 
to marital status only, of women in the community. The recent census for the 
area gives these percentages for adult women:

Never married 21 %
Widowed 4%
Married 63%
Divorced 10%
Separated 2%

The distribution in his sample of 100 is as follows:
Never married 9
Widowed 7
Married 72
Divorced 1 1
Separated 1

To find out if this distribution is different from the population, we calcu 
late expected frequencies from the census data and then compute the chi- 
squared statistic:

	 Expected Observed
Never married 21 9
Widowed 4 7
Married 63 72
Divorced 10 11
Separated 2 1

9) 2 . (4-7)2 (63 -72)
21 4 63

0 = 11-0

The degrees of freedom are equal to /- 1, where / equals the number of cate 
gories. For this problem, we have 5-1=4 degrees of freedom. Next we consult 
the chi-squared table for 4 degrees of freedom. We see that our obtained value 
of 1 1 is not quite significant at the 0-025 level, but is significant at the 0-05 level. 
Thus, we might declare the obtained distribution as significantly different
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(p < 0-05) from the population, though the result is a marginal one. You can 
see that the distributions are fairly similar; declaring them as 'significantly 
different' means only that the difference is not likely due to chance.

Goodness-of-fit tests can also be used to compare one continuous dis 
tribution with another. The procedures are more involved than those given 
here for discrete distributions; the reader is advised to consult an advanced 
textbook such as Hays (1963) for the details.

Chi-squared: A warning!
It is worth repeating that the chi-squared tests are not immune from the 

criticisms made in the previous chapter about significance tests. The null hypo 
theses of independence, or of exact identity between distributions, are probably 
untrue right from the start. At least a minute connection can probably be found 
between almost any two variables, and most likely no two distributions are 
precisely alike. Given enough data we can always reject those null hypotheses; 
you will have little trouble finding in the literature chi-squared tests on very 
large samples that yielded significant results—but not important ones. We do 
not want to know only 'Is there an effect ?' We want to know 'How big is the 
effect?' The latter question is not answered by the significance level. Significance 
at the 0-001 level does not necessarily mean that the effect is bigger or more 
sure or more substantial than significance at the 0-05 level. Quite the reverse 
could be true if the 0-001 level rejection occurred with a large sample and the 
0-05 result with a small sample.

My value judgements should by now be abundantly clear. Whenever 
possible, I think the investigator should frame his statistical hypotheses around 
uncertain quantities so that he can make interval estimates of those quantities. 
If this cannot be done, or if interest centres on a genuine null hypothesis, then 
tests of null hypotheses against alternatives are much to be favoured over 
significance tests. In any event, adoption of conventions or blind applications 
of statistical procedures should never be a substitute for careful thought.

Finally, let me repeat that two assumptions must be met in applying 
chi-squared methods:
a Observations must be independent. Repeated measures on the same 

person are not independent, so contingency tables based on such measures 
should not be analysed by chi-squared methods.

b Each observation must find a unique place when it is classified. An 
observation must fall in only one cell of a contingency table, or be placed 
in only one category of a distribution.

Failure to meet these assumptions may lead you to reject the null hypothesis 
even though it is true.

14.4 Summary
Inferences about hypotheses that relate to an uncertain quantity are 

usually carried out as a test of an interval hypothesis, as a significance test, or 
as a test of a null hypothesis.

If we wish to find the probability that the true value of some uncertain 
quantity is either less than or more than some specific value, then it is only



358 Testing hypotheses

necessary to determine the area under the posterior distribution to the left and 
to the right of that value. Tables of the relevant cumulative distribution facilitate 
this task.

In a Bayesian significance test a point null hypothesis is declared rejected 
at the (100-C) per cent level of significance if it falls outside the C per cent 
credible interval. This procedure does not allow a posterior probability to be 
associated with the null hypothesis or its alternative; certainly the significance 
level cannot be so interpreted. For this reason, significance tests are not fully 
consistent with the general Bayesian approach.

In a null-hypothesis test a sharp null hypothesis is usually compared to 
a diffuse alternative. The methods discussed, mostly due to Jeffreys, allow 
posterior probabilities to be assigned to the hypotheses. In comparing these 
approaches with the non-Bayesian significance test, the latter appear to be too 
ready to reject the null hypothesis.

Two methods for testing the independence between two variables are the 
chi-squared test, which is a significance test, and a null-hypothesis test due to 
Jeffreys, chi-squared significance tests are also useful in testing goodness-of-fit.

Problems 
14-1 (Refers to Problem 2-5)
a Use a Jeffreys approach to test the hypothesis of no difference between the two 

standard devices against a diffuse alternative hypothesis. Compare your result 
with that obtained in Problem 1 of Chapter 12.

b Test the hypothesis that using the urn gives higher probability assessments than 
using the spinner.

14-2 (Refers to Problem 8-5) Test the goodness-of-fit of the obtained sample to the 
expected distribution given the assumption that sampling is random.

14-3 (Refers to Problem 9-4) Suppose that extensive previous research has established 
that the mean score on the field dependence-independence task is 15 for the 
general population of people in Western countries. Test the hypothesis that the 
investigator's sample of 35 subjects is a representative sample, with respect to 
this task, of the general population.

14-4 (Refers to Problem 10-1) Test the hypothesis that there is zero correlation 
between debilitating and facilitating anxiety scores.

14-5 (Refers to Problem 11-4) Test the hypothesis that my wife and I are equal in 
ability to play 'Score-Four'.

14-6 (Refers to Problem 12-2) Test the hypothesis that computer-assisted instruction 
is superior to traditional classroom instruction.

14-7 (Refers to Problem 12-6) Answer part c from one or more of the points of view 
developed in Chapter 14.

14-8 (Refers to Problem 12-10) Test the hypothesis that first-borns marry earlier 
than later-borns.

14-9 Some Correlates of Primary Recidivism (Psychologists Monograph No. 77, 
Office of Chief Psychologist, Prison Department, Home Office, June 1966) 
reports an attempt to find out if there are any personality differences between 
first offenders and primary recidivists (individuals convicted of a criminal 
offence for a second time). One part of the study looks at the differences in
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neuroticism as measured by the 'N' scale of the Maudsley Personality Inventory. 
Here are the results for 636 imprisoned men aged 21 years or over:

First Primary 
offenders recidivists

Mean 4N' score
Standard deviation
Number in group

25-3
10-96
413

27-7
11-22
223

a Find the posterior probability associated with the null hypothesis of no difference 
between the population means. Assume that half your prior opinion is on the 
null hypothesis of no difference and that the other half is spread out uniformly 
under the diffuse alternative hypothesis.

b Find the posterior 99 % credible interval for the difference between the popula 
tion means, assuming uniform priors and normal populations.

c Compare a and b.
14-10 Karlins and Lamm (1967) hypothesized that people who are high in integrative 

complexity ask more questions in a problem-solving task than people of low 
integrative complexity. They say that 'Higher integrative complexity refers to a 
greater number of perceptual categories for receiving information about the 
world and more conceptual or combinatory rules for organizing such units of 
information.' Integrative complexity is measured by a semi-projective test. In 
their experiment, a complex problem was given to subjects who were either 
high or low in integrative complexity. The solution required that questions be 
asked of the experimenters; the number of questions asked was tallied for each 
subject. Here are the results: (Since their reported standard deviations were 
calculated by dividing the sums of squares by N rather than N — 1, the values 
below are re-calculations to conform with the definition of a standard deviation 
used in this book.)

Integrative complexity 
Low High

Mean no. of questions asked 56-60 69-26
Standard deviation 20-84 21-14
Number of subjects 30 30

a Find the posterior probability associated with the null hypothesis of no difference 
between the population means. Assume that half your prior opinion is on the 
null hypothesis of no difference and that the other half is spread out uniformly 
under the diffuse alternative hypothesis.

b Find the posterior 99 % credible interval for the difference between the popula 
tion means, assuming uniform priors and normal populations.

c Compare a and b.
14-llOrme (1972) hypothesizes that extra verted personalities give longer estimates 

in a time estimation task than introverted personalities. He tested his theory 
on psychiatric patients, for paranoid schizophrenics display extroverted 
personalities while non-paranoid schizophrenics are more introverted. Here are 
the numbers of patients whose time estimates were less than 25 minutes, or 25 
minutes and above.

Time estimates
less than 25 min.
25 min. or more

Non-paranoid schizophrenic 27 18 
Paranoid schizophrenic 3 14
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a Use both the Jeffreys and chi-squared approaches to test the hypothesis that there
is no difference between the two groups in their time estimates. 

b What conclusion would you draw regarding Orme's hypothesis?

14-12 In a survey of attitudes to traffic, residents of an area were asked: We have a 
certain amount of traffic which must use existing roads. If the only two ways 
of handling it were those shown opposite, which one would you choose? 
The two alternatives given opposite the question were:

a Most of the traffic going on main roads which are usually shopping streets
(making them more crowded) and only a little allowed where people live. 

b Traffic evenly spread on both main roads and residential streets.
Responses to a and b were categorized according to whether the respondent 
was a car owner or not. Of the 245 car owners, 162 preferred a, while of the 194 
non-car owners, 123 preferred a. Do these data favour the notion that an 
individual is less likely to favour restrictions on traffic if he owns a car?

14-13 Do a Jeffreys null-hypothesis test for Exercise 14-4. Compare your answer to 
the conclusions of Exercise 14-4 and of Exercise 12-3.
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Index of Symbols

a

A X \Y 

A Y \x 

ay(x

b

BX\Y

BY \x

0Y \x

C

CR 
D

df 
6

e 
E 
E
E!, E2 ,

En
est GM

/

a constant; the ^-intercept of a h 
linear function, 95 IG2 
A'-intercept of the linear regression 
line for predicting X from Y, 221 L 
y-intercept of the linear regression m 
line for predicting Y from X, 216 
y-intercept of the population re- M 
gression line for predicting Y n 
from X, 294
a constant; the slope of a linear 
function, 95
slope of the linear regression line //M 
for predicting X from Y, 221 
slope of the linear regression line //< 
for predicting Y from A', 216 
slope of the population regression 
line for predicting Y from X, 294 
a percentage denoting the area of 
the curve included within the 
credible interval, 114 
the number of columns in a con 
tingency table, 360 
chi-squared : the distribution or the 
statistic, 349 
critical ratio, 328
a difference between correlated 
scores, 283 
degrees of freedom, 248 
the difference between population v 
means, 272 a 
the constant, 2-7182..., 93 
an event, 24
the complement of E; 'not-£", 24 

.events on a list: the first event, ff t 
the second event, etc., 32 
the wth event on a list, 32 
estimate of the standard error of <*M 
the mean, 319
number of failures, 128 ay \ x 
denotes the F distribution with <//i 
and dfz degrees of freedom, 286

n
ri or n"

n\

N

precision (see 'primes'), 237 
denotes the inverted gamma-2 
distribution, 254 
a likelihood ratio, 79 
mean of prior or posterior distri 
bution (see 'primes'), 123, 237 
mean of a set of data, 176 
one of the parameters of a normal 
distribution; used to denote the 
unknown mean of a normal popu 
lation, 130
mean of the sampling distribution 
of means, 312
one of the parameters of the 
Student-/ distribution; used to 
denote the mean of the prior or 
posterior Student-/ distribution 
(see "primes'), 248 
the number of events on a list, 32 
prior or posterior n: the equivalent 
number of observations on which 
the prior or posterior is based, 237, 
238
/^-factorial: n x (n— 1) x (n— 2)x 

x 3 x 2 x 1, 124 
observations in

(n-3) x ... 
number of 
sample, 80, 182 
degrees of freedom, 248 
one of the parameters of a normal 
distribution; used to denote the 
standard deviation of a normal 
population, 130
one of the parameters of a 
Student-/ distribution (see 'primes'), 
248
standard error of estimate of the 
mean, 315
population standard error of esti 
mate for Y in regression problems, 
294



366 Index of Symbols

Q odds, 24
Q(E) odds favouring E over £", 24
^ one of the parameters of the Beta 

distribution, 124
p(D|H) a likelihood; the probability asso 

ciated with the data given the 
truth of the hypothesis, 59

p(E) probability of event E, 24, 30
/?(E|P,I) probability of event E given the 

person carrying out the assessment 
and the state of information 
available to him, 30

/?(F|E) probability of event F given that E 
has occurred, 38

p(H) probability of hypothesis H before 
observing data; the prior probabi 
lity, 59

/?(H|D) probability of hypothesis H after 
observing data; the posterior 
probability, 59

n the constant 3-1415... , 93 
population proportion, 258

n* hypothesized value of a population 
proportion, 340

n an operator meaning 'multiply', 80
primes used to denote prior or posterior: 

usually associated with parameters 
or statistics, a single prime denotes 
prior and a double prime denotes 
posterior, 79

q one of the parameters of a Beta 
distribution, 124

r Pearson correlation coefficient, 207
rrho Spearman correlation coefficient, 

214
R number of rows in a contingency 

table, 360
p population value of the correlation 

coefficient, 288
s standard deviation of prior or 

posterior (see 'primes'), 123

s number of successes, 128
S standard deviation of a set of data,

176
Z an operator meaning 'add', 33 
"LX sum of the Jf-scores, 182 
Z A'2 sum of the squares of the A'-scores,

182 
EX Y sum of the cross-products of X and

F, 200
Z Y sum of the K-scores, 200 
Z Y2 sum of the squares of the F-scores,

200
SS sum of squares, 221 
Sx standard deviation of A'-scores,

208 
SY standard deviation of F-scores,

208, 218
SY \x standard error of estimate in pre 

dicting rfrom X, 218 
x independent variable, 95 
*iow 1 lower and upper limits of a credible 
xhigh j interval, 113 
X a score; a numerical measurement,

182
y dependent variable, 95 
Y a score; a numerical measurement,

198
Y predicted value of Y, 216 
z the Fisher-z transformation of r, 

290
the independent variable for the 
standard normal distribution, 133 

Z a standard score, 195 
Zx an A'-score expressed as a standard

score, 208
Z a predicted standard score, 224 
ZY a 7-score expressed as a standard

score, 208
C the Fisher-z transformation of p, 

the population correlation coeffi 
cient, 290



Index

Absolute scales, 155
Achievement Anxiety Test, 227, 233
Acta Psychologica^ 76
Alpert, R., 227, 233, 312
Archimedes spiral after-effect illusion, 61-62
Association

statistical, 198-199
strength of, 212 

Averages, law of, 22 
Axiomatic systems, 153

Bakan, D., 332, 334 
Baldridge, B., 104 
Bayes' theorem 

additivity of evidence, 84 
automatic weighting of prior and sample,

241
general form, 63
log-odds log-likelihood ratio form, 83-84 
odds-likelihood ratio form, 79-83 
for several items of data, 64-68 
for student's driving problem, 56-58 
in tabular form, 60 
for two hypotheses, 58-60 

Bayesian criticism 
of null-hypothesis testing, 333-334 
of significance tests, 328 

Bayesian interpretation of traditional results 
for inferences concerning correlations, 294 
for inferences concerning the difference

between two means, 285-286 
for inferences concerning means, 245-247,

259-260
for inferences concerning proportions, 262 
for inferences concerning regression co 

efficients, 303
for inferences concerning standard devia 

tions, 260-261
for inferences concerning the standard error 

of estimate in regression, 303

Bayesian interpretation of traditional results
for inferences concerning the true and 

predicted values of Y in regression, 305
significance tests, 341-342 

Bayesian sign test, 345-346 
Beach, L. R., 22, 53, 70, 76 
Behrens distribution, 283

comments on use of table in Appendix A 
283, 285

normal approximation to, 285
Student-/1 approximation to, 285 

Behrens-Fisher distribution, 286 
Bell, W., 313 
Bernoulli, Daniel, 102 
Bernoulli, James, 22 
Best guesses, 189 
Beta distribution, 113

assessing prior, 126-127
comments on graphs in Appendix B, 125- 

126
comments on tables in Appendix B, 128, 

262
credible intervals, 128-129
equation for, 123
normal approximation to, 138-139
parameters, 124
statistics, 127

BETADIF computer program, 306 
Bivariate data, 200
Bivariate frequency distribution, 201-202 
Bivariate histogram, 202 
Bivariate-normal distribution, 291-292 
Blind trials, 282 
Bourne, L. K., Jr., 76 
Brain damage, 61-62

Calculators, automatic, 181-182 
California Psychological Inventory, 89 
Causation, 95, 199 
Central limit theorem, 318



368 Index

Chi-squared distribution, 260 
Chi-squared statistic, 352 
Chi-squared test

of goodness-of-fit, 356-357
of independence, 351
interpreting, 357 

Class interval, 167
Clinical versus statistical prediction, 23 
Clore, G. L., 104 
Coefficient of determination, 212 
Confidence interval, 245, 318-319 
Conservatism, 284 
Conservative revision of opinion, 70 
Consistency

in assessing probabilities, 29
in revising opinions intuitively, 69-70 

Consistent estimator, 325-326 
Constant

defined, 93
universal, 93 

Contingency table, 351 
Coombs, C. H., 150, 228 
Correlation coefficient,

defined, 207
interpreting, 210-213
partial, 213
credible interval for, 293
Pearson-r, 204-213 

calculating formula, 209 
defined, 207 
inference concerning, 291-294, 341, 347-

348 
interpretation of, 210-213

Spearman's rho, 214-215 
calculating formula, 214-215 
inference concerning, 294-297 

Credible interval
of Behrens distribution, 283
of Beta distribution, 128-129, 262
for a correlation, 293
defined, 114
for the difference between means, 277, 280, 

283
of F distribution, 290
of inverted gamma-2 distribution, 258, 300
for a mean, 242, 253
for a median, 235
of normal distribution, 132-138, 242, 246, 

293, 306
for the predicted value of Y in regression, 

304
for a proportion, 262
for a ratio of variances, 289
for the regression coefficients, 300
reporting, 120
for a standard deviation, 258
for the standard error of estimate in 

regression, 300
of Student-^ distribution, 253, 280, 300, 

304, 324

Credible inter /al
for the true value of Y in regression, 304 

Critical Ratio test, 331 
Cumulative probability distribution, 339-341

defined, 116

Data, raw, 166 
Davidson, D., 21 
Dawes, R. M., 150 
Decision theory, 9 
Decision making, 73 
Definitive experiment, 87 
Degrees of freedom, 192

for Behrens distribution, 283
for F distribution, 289
for inverted gamma-2 distribution, 257
for Student-/ distribution, 251 

Design of experiments, 78, 282 
Difference between means

credible interval for, 277, 280, 283
inference concerning, 275-277, 279-288, 

340
inference concerning, for non-independent

populations, 286-288 
Difference between proportions

inference concerning, 305-307 
Distribution

Beta, 113
bivariate probability, 247
bivariate frequency, 201-202
bivariate-normal, 291-292
cumulative probability, 115-119, 339-341
F, 289
frequency, 165-173
Gaussian, 113
inverted gamma-2, 257
marginal, 203, 248, 292
normal, 113
probability, 173-174
probability, defined, 107
rectangular, 139-140
sampling, 312
Student-/, 251
symmetrical, defined, 122
theoretical probability, 174-175
uniform, 112, 139-140 

Distribution-free tests, 158, 346 
Distributions

describing, 121
specifying, 121 

DuCharme, W. M., 70

Edwards, W., 53, 70, 76, 79, 140, 334
Efficient estimators, 327
Equally likely, defined, 15
Estimation, 321-327
Estimators, properties of, 325-327
Event

complement of, 24, 34
defined, 15
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Event
elementary, 14
empty, 15
joint, 37
unique, 22

Event class, defined, 15 
Events

collectively exhaustive, defined, 35
complex, 52-53
mutually exclusive, defined, 31 

Exclusive, mutually, defined, 31 
Exhaustive, collectively, defined, 35 
Expected data, 352 
Experiment, simple, defined, 14 
Experiments, design of, 78, 282

F-distribution, 289 
Factorial, defined, 124 
Family of distributions, 112 
Fisher, R. A., 285 
Fisher-z transformation, 293 
Fitts, P. M., 97 
Freedman, M. B., 355 
Frequency distribution, 165-173

grouped, 166
ungrouped, 166 

Frequency polygon, 171-173 
Function, 92-94

cumulative probability, 116
drawing graph of, 96-98
exponential, 102-103
as frequency distribution, 166
linear, 95-101
multiple-valued, 94
power, 101-102
single-valued, 94

Gamma-2 distribution, inverted, 257
Gaussian distribution, 113
Gentle prior opinion, 140
Good, I. J., 333
Goodman, B. C, 53, 76, 79
Goodness-of-fit, chi-squared test of, 356-357
Cosset, W. S., 256
Gough, H., 89
Graphs

plotting, 96-98
quadrants of, 101 

Guesses, best, 189 
Gustafson, D. H., 79

Haber, R. N., 227, 233, 312 
Hays, W. L., 53, 76, 79, 157, 357 
Hey wood, A., 3 
Histogram, 167-171

bivariate, 202
misleading, 168-169 

Highest density region
defined, 115
determining, 118

Homoscedasticity, 299 
Huff, D., 169 
Hypotheses

statistical, 7
testing interval, 277-279, 337-341
testing null, 329-333, 342-357 

Hypothesis testing, 84-88, 277-279, 327-334, 
337-357

difference between two means, 349-350
difference between two proportions, 355- 

356
of a mean, 348-349
one-tail, 332
of a Pearson-r correlation coefficient, 

347-348
of a proportion, 343-345
Bayesian criticism of, 333-334

Ignorance, quantifying, 140-142 
Independence

applied to a sequence of observations, 165
chi-squared test of, 353
defined, 46
of events, 46
Jeffreys test of, 354
tests of, 350-355
of trials, 49-50 

Indifference
between bets in measuring uncertainty, 19
in the definition of equally likely, 15 

Inference
difference between means, 275-277, 279- 

288, 340, 349-350
difference between means of non-inde 

pendent populations, 286-288
difference between proportions, 305-307, 

355-356
linear regression, 297-305
means, 237-247, 247-256, 339, 348-349
medians, 23«37, 339
Pearson-r correlation coefficient, 291-294, 

341, 347-348
proportions, 109-111, 128-129, 261-262, 

340, 343-345
ratio of variances, 288-291, 340
Spearman rho, 294-297
standard deviation, 247-251, 257-259
types of, 6-9
uncertain quantity, 337 

Interval, class, 167
Interval hypotheses, 277-279, 337-341 
Interval scales, 154-155 
Inverted gamma-2 distribution, 257

Jeffreys, H., 234, 343 
Jensen, A. R., 215

Kahneman, D., 334 
Kaplan, H. K., 61 
Karlins, M., 359
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Lamm, H., 359
Law, defined, 93
Least squares criterion, 218
Least squares, method of, 216-220
Lichtenstein, S., 70, 79
Likelihoods

assessing, 78-79
defined, 59
public nature of, 78
zero or one, 86-88 

Likely, equally, defined, 15 
Lindley, D. V., 9, 75, 334 
Lindman, H., 140, 334 
Logarithmic transformation, 103, 266, 306

McKeachie, W. J., 178
Marginal distribution, 203, 248, 292
Mars bet, 18-19
Matching, 282
Mean

characteristics of, 186-189
of continuous distribution, 121
inferences concerning, 237-256, 339, 348- 

349
of prior or posterior distribution, 123, 176
of sample, 176, 185-189 

Meaningfulness, 2, 152 
Means, difference between

inference concerning, 275-277, 279-288,
340 

Measurement
defined, 149
derived and fundamental, 2
judging level of, 157-158
level of, 155-156
of probability, 16-21
problems in, 152-157 

Median
of continuous distribution, 122
credible interval for, 235
of data, 184-185
inference concerning, 235-237, 339 

Miller, A. J., 76 
Miller, D. R., 351
Misinterpretation of significance tests, 332 
Mode

of data, 183-184
of continuous distribution, 122 

Model, 150 
Monotonicity, 296 
Moskos, C. C, 313 
Mosteller, F., 89 
Murdoch, P. H. J., 313 
Murphy, A. H., 79

Neyman, J., 72 
Nominal scales, 154 
Non-parametric tests, 158, 346 
Normal distribution, 113 

as approximation to Beta, 138-139

Normal distribution
assessing prior, 131-132
credible intervals, 132-138
equation for, 130
intuition concerning, 264
parameters of, 130
statistics of, 131
standard, 133
standard, use of tables in Appendix F for,

135 
Null hypotheses

common, 332-333
Null-hypothesis tests, 7-9, 86-88, 329-332, 

342-357
Bayesian criticism of, 333-334
of a correlation, 347-348
of a difference between proportions, 

355-356
of a difference between two means, 

349-350
of goodness-of-fit, 356-357
of independence, 350-355
of a mean, 348-349
of a proportion, 343-347

Observed data, 351 
Odds

betting, 24
defined, 24
mathematical, 24 

Odds-to-probability scale, 25 
One-tail tests, 332 
Operational definitions, 161-163 
Opinion

intuitive revision of, 68-70
prior, difficulty in quantifying, 53
revision of, 5 

Opinions
divergent, brought into agreement, 14 

Ordinal scales, 154 
Orme, J. E., 359

Page, H. A., 61 
Pankoff, L. D., 23 
Parameters

defined, 121
of Behrens distribution, 283
of Beta distribution, 124, 261
of F-distribution, 289
of inverted gamma-2 distribution, 257
of normal distribution, 130
of Student-/ distribution, 251 

Patterson, J. R., 284, 300 
Pearson, E. S., 72, 340 
Pearson product-moment correlation coeffi 

cient
calculating formula, 209
credible interval for, 293
defined, 207
inference concerning, 291-294, 347-348
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Peterson, C. R., 22, 53, 70, 76 
Peterson, J. R., 97 
Phillips, L. D., 53, 76, 79 
Pitz, G., 72, 334 
Polygon, frequency, 171-173 
Population, 110, 174, 175-177 
Posterior distribution

of a correlation, 293
of a difference between means, 275, 280, 

283, 287
of a difference between proportions, 306
of a mean, 240, 251-252, 286
of a mean and standard deviation, 251
of a predicted value of Y in regression, 304
of a proportion, 262
of ranks, 235
of a ratio of variances, 290
of a regression coefficient, 299
of Spearman's rho, 291
of a standard deviation, 257
of the standard error of estimate in re 

gression, 300
of a true value of Y in regression, 304 

Posterior probability
defined, 5, 59
dependence on set of hypotheses, 85
for large amount of data, 85
when likelihoods are zero or one, 86-88 

Power law, 101-102 
Power, statistical, 334 
Pratt, J. W., 182, 247 
Precision

of population, 240
of posterior, 241
of prior, 236, 250
in scientific investigations, 162 

Prediction, 199, 206, 215-225 
Pre-testing, 150
Principle of stable estimation, 140-142 
Prior distribution

approximate, 111-112
assessing, 107-109
assessing beta, 126-127
assessing bivariate, 247
assessing normal, 131-132
and null hypothesis, 333
in null-hypothesis testing, 343
uniform, 248-250 

Prior «, 240 
Prior opinion

disagreement about, 76-78
divergent, 14, 76-78
of null hypothesis, 333 
role of, 72-76, 328 

Prior probability, 5 
assessing, 16-21 
defined, 5, 59 
effect of, 72-76 

Prior probabilities 
disagreements about, 76-78

Prior probabilities
information conveyed by, 74
unknown, 75 

Probabilities
comparing, 21 

Probability
assessing, 16-21, 75-76
conditional, 30, 38
as degrees of belief, 13
defined, 13
of empty event, 16
measuring, 16-21
as relative frequency, 22-23
in simple experiment, 16
unconditional, 38

Probability, posterior: see Posterior proba 
bility

Probability, prior: see Prior probability 
Probability density, 108 
Probability density function, 108, 113 
Probability distribution: see Distribution,

probability
Probability, inverse, 63 
Probability laws

addition law, 33
Bayes' theorem, 56-58
first corollary to second law, 33-34
first corollary to third law, 40-45
first law, 30
multiplication law, 46
second corollary to second law, 35-37
second corollary to third law, 45-52
second law, 30-33
third law, 37^tO 

Probability-to-odds scale, 25 
Properties, 149 
Proportion

credible interval for, 129, 262
inference concerning, 109-111, 128-129,

261-262, 340, 343-347 
Proportions, difference between, inference

concerning, 305-307, 355-356 
Psychodiagnosis, 61-62, 73-74

Raiffa, H., 9, 53, 71, 79, 103, 182, 247
Rakita, G., 61
Random sampling, 163-165

intuition concerning, 264 
Range, 132, 191 
Rank correlation, 214-215

inference concerning, 291-297 
Ranks, tied, 215 
Ratio scale, 155
Rectangular distribution, 139-140 
Regression analysis, 215-225 
Regression coefficients, credible interval for,

300
Regression line, 216 
Regression, linear, 215-225

inference concerning, 297-305
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Regression, linear
toward mean, 224-225 

Relation, defined, 93 
Relationship

degree of, 7, 210
monotone increasing or decreasing, 296-

297
Relative frequency view of probability, 22-23 
Reporting statistical inferences, 120, 334 
Reporting statistical results, criterion for,

71-72
Representation, defined, 152 
Roberts, H. V., 23 
Robustness, 282 
Rule, function, 93-95

Samples, random-appearing, 164 
Sampling distribution, 315

of test statistics, 321-323 
Sampling frame, 174 
Sampling, random, 163-165

random, 163-165
sequential, 71-72 

Savage, L. J., 72, 140, 334 
Scale

absolute, 155
interval, 154-155
nominal, 154
ordinal, 154
ratio, 155
type, determining, 155-156 

Scaling, defined, 152 
Scatterplot, 203-204
Schlaifer, R., 9, 53, 71, 79, 182, 247, 306, 343 
Scientific investigation, phases in, 150-151 
Scores, standard, 194-195 
Siegel, S., 21, 158 
Sign test, Bayesian, 345-346 
Significance

of a correlation, 348
of a mean, 349
of a difference between means, 349-350 

Significance tests, 329-332
Bayesian, 341-342
Bayesian criticism of, 350
misinterpretation of, 332 

Sillitoe, A. F., 232 
Skew, 126
Skewed distributions, 265 
Slack, W. V., 79 
Slope, 100 
Slovic, P., 70, 79 
Smith, N. B., 61 
Smith, G. F., 313 
Spearman's rho, 214-215 
Spinner device for measuring probability, 20 
Squares, sums of, 221. 
Stable estimation, 140-142 
Standard deviation, 192-193

for continuous distribution, 122

Standard deviation
credible interval for, 258
inference concerning, 247-251, 257-259 

Standard device for measuring probability, 
17,20

difficulties with, 21 
Standard error, 321 
Standard error of estimate

for regression, 218
in regression, credible interval for, 300 

Standard normal distribution, 133 
Standard scores, 194-195 
Statistic

test, 322 
Statistics

Bayesian vs traditional controversy, 4-5
of Beta distribution, 127
descriptive and inferential defined, 4
of distributions, 121-123
of normal distribution, 131
reporting, 326-327
of Student-/ distribution, 252
sufficient, 181, 326-327 

Stein, Gertrude, 21 
Stevens, S. S., 101 
Stilson, D. W., 76 
Student, 256 
Student-/ distribution, 251

comments on use of table in Appendix G, 
254

normal approximation to, 254, 256 
Sufficiency, 326-327 
Sufficient estimator, 326-327 
Sufficient statistics, 181, 326-327 
Sums of squares, 221, 299 
Suppes, P., 21 
Swanson, G. E., 351 
Systems, man-computer, 53

/ distribution, 251
/-test, 331
Temperature, 2, 103, 149, 152, 154-155
Test statistic, 322
Theory, 150
Theories, disproof of, 86-88
Thurstone, L. L., 228
Transformations, 103, 263-268 

log odds, 306
of ranks to normal scores, 294 
to standard normal distribution, 133-135

Transitivity, 153
Truth, scientific, 14
Tversky, A., 150, 334

Ulehla, Z. J., 76
Unbiased estimator, 325
Uncertain quantity, inference concerning, 337
Uncertainty, 29, 53, 75-76, 206
Uniform distribution, 112, 139-140, 248-250
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Uniqueness, 152 Variances, ratio of
Urn device for measuring probability, 17 credible interval for, 289
Utility, 71, 102-103 inference concerning, 288-291, 339

Wakeford, J., 179
Vagueness, quantifying, 140-142 Walker, H., 3 
Variables, continuous, 92 Wallace, D., 89 
Variable Wilson, G. D., 284, 300

defined, 93 Winkler, R., 79, 116
independent and dependent, 94
predictor, 216 A'-scores, 182 

Variance, 191-192
accounted for in regression analysis, 218 >--intercept, 99
credible interval for, 260 Yates, F., 285
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Appendix A Behrens distribution
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1,9-SL
1.98
1.97
1.97
1.96

90°

2.U5
2.1*5
2.1*5
2.1*5
2.1*5

2.31
2.31
2.31
2.31
2.31

2.18
2.18
2.18
2.18
2.18

2.06
2.06
2.06
2.06
2.06

1,96
1.96
1.9-6
1.96
1.96

SOURCE : for the 95 % intervals: Novick and Jackson (1974) whose source is a more comprehensive table in 
Christ, Isaacs, Jackson and Novick (1973).



A2
Behrens distribution
Highest density regions

—d

99 

percent

df=6

df =8

df =12

df =2U

df =*»

df2

6
8

12
2U
oo

6
8

12
2U
oo

6
8

12
2h
CO

6
8

12
2k
00

6
8

12
2U
00

W

0°

3.71
3.36
3.06
2.80
2.58

3.71
3.36
3.06
2.80
2.58

3.71
3.36
3.06
2.80
2.58

3.71
3.36
3.06
2.80
2.58

3.71
3.36
3.06
2.80
2.58

15°

3.65
3.33
3.05
2.82
2.63

3.6U
3.32
3.0U
2.81
2.61

3.6U
3.31
3.03
2.79
2.60

3.63
3.30
3.02
2.79
2.59

3.63
3.30
3.01
2.78
2.58

30°

3.56
3.31
3.10
2.9k
2.80

3.50
3.2U
3.03
2.86
2.72

3.U5
3.19
2.98
2.80
2.66

3.k2
3.16
2.9k
2.76
2.61

3.kO
3.13
2.91
2.73
2.58

U5°

3.51
3.36
3.25
3.16
3.09

3.36
3.21
3.08
2.99
2.92

3.25
3.08
2.95
2.85
2.78

3.16
2.99
2.85
2.75
2.66

3.09
2.92
2.78
2.66
2.58

60°

3.56
3.50
3.U5
3.U2
3.UO

3.31
3.2U
3.19
3.16
3.13

3.10
3.03
2.98
2.9^
2.91

2.9^
2.86
2.80
2.76
2.73

2.80
2.72
2.66
2.61
2.58

75°

3.65
3.6U
3.64
3.63
3.63

3.33
3.32
3.31
3.30
3.30

3.05
3.0U
3.03
3.02
3.01

2.82
2.81
2.79
2.79
2.78

2.63
2.61
2.60
2.59
2.58

90°

3.71
3.71
3.71
3.71
3.71

3.36
3.36
3.36
3.36
3.36

3.06
3.06
3.06
3.06
3.06

2.80
2.80
2.80
2.80
2.80

2.58
2.58
2.58
2.58
2.58

SOURCE : for the 99 % intervals: Fisher and Yates (1963).



Appendix B Beta density functions
Mode — 0.5 (including uniform prior)

A3

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

50,50

20,20

10,101-

5,5 

2,2

0-48 0-52
0-47

0-55

o-57

0-61

0-33 0-67 
Intervals of equal area

SOURCE : Drawn for this volume.
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Appendix B Beta distribution
Highest density regions 
95 percent intervals

>) =

p =

p = 
p =

p = 
p = 
p= 
p = 
p =
p= 

p =
p =
p =
p=
p =
p =
p=
p=
p =
p=
p =
t> =
p=
p =
p=
p =
p =
p =
p=
p =
p=
p =
p =
p =
p =
p=
p =
p =
p =
p=
p =
P-
p =
p =
p =
p =
n _

O — •

p =
p =
p =
p =
p=
p =
p=
p =
p =

2

4 
5 
6
7 
8 
9 

10 
11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

o. 
0.
0. 
0.
o.
0.
n.
0. 
0. 
0.
3. 
0. 
0.
0.
0.
o.
0.
o.
0.
0.
0.
3.
o.
0.
3.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
3.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

2 
LflW HIGH 
0943 0.9057 
2276 0.956? 
3298 3.9740 
4094 0.9822 
4730 0.9867
5244 
5665

6325 
6587
6813 
7012 
7187
7343
7482
7607
7721
7825
7916
8010
8087
8160
8227
8291
8350
8406
8458
8506
8552
8594
8637
8673
8710
8744
8776
8806
8836
8863
8890
8915
8939
8962
8984
9005
9026
9045
9064
9082
9099
9116
9132
9148
9163
9177
9191
9204
9218
9230
9242

0. 
0. 
0.
o. 
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

9895 
9914 

,9927 
9937 
,9945
,9951 
9955 
9960
9963
9966
9968
9970
997?
,9974
9975
9977
9978
9979
9980
9981
9982
9982
9983
9984
9984
9985
9985
9^86
9986
9987
9987
9987
9988
9988
9989
9989
9989
9989
9990
9990
9990
9990
9991
9991
9991
9991
9991
9991
9992
9992
9992
9992
9992
9992

LOW 
0.0438 
0. 1466 
J.2387 
0.3154 
0.3790
0.4324 
0.4776 
0.5163 
3.5497 
0. 5790
J.6047 
3.6274 
0.6478
J.6660
0.6825
0.
0.
0.
0,
0.

,6974
,7110
,7236
,7349
,7454

0.7551
C).
0.
0.

,7641
7724
7802

0.7875
0.
0.
0.
0.
0.
0.
0.
a.
3.
0.
0.
0.
0.
0.
o.
0.
3.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

7943
8007
8067
8123
8177
8227
8275
8320
8363
8404
8443
8479
8515
8548
8581
8611
8S41
8669
8696
8722
8747
877 1
8794
8817
8838
8859
8878
8398
8916
8934
8952
8969
8985
9001

3 
HIGH 

0.7724 
0. 8534 
J.8952 
0.9195 
0.9350
0.9458 
0.9536 
0.9594 
0.9640 
0.9677
0.9707 
0.9732 
0.9754
0.9772
0.9787
0.9801
0.9813
0.9824
0.9833
0.9842
0. 9850
0.9857
0.9863
0.9869
0.9874
0.9879
0.9884
0.9888
0.9892
0.9896
0.9899
0.9902
0.9906
0.9908
0.9911
0.9914
0.9916
0.9918
0.9920
0.9922
0.9924
0.9926
0.9928
0.9930
0.9931
0.9933
0.9934
0.9936
0.9937
0.9938
0.9939
0.9941
0.9942
0.9943
0.9944
0.9945
0.9946
0.9947
0.9948

LCJW 
3.0260 
0.1048 
0 . 1840 
3.2536 
0.3146
0.3668 
3.4120 
0.451 5 
0.4862 
0.5168
0, 
3, 
0.

,5441 
,5685 
5935

0.6103
3.6234
0.
3.
3.
0.
3.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
0.
0.
3.
3.
0.
0.
3.
0.
3.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

6449
,6599
6738
6866
6934
7094
7196
7291
7380
7464
7542
761 6
7685
7750
781 1
7870
7925
7978
8328
8076
8121
8165
8206
8245
8233
8320
8354
8388
8420
8450
8480
8509
8536
8562
8588
8613
8636
8659
8682
8703
8724
8744
8764
8782

^ 
HIGH 

0.6702 
0.7613 
0.8160 
0.8515 
0. 8755
0.8932 
0.9066 
0.9171 
0.9255 
0.9324
0.9381 
3.9430 
0.9471
0.9507
3.9539
0.9567
0.9591
0.9613
0.9633
0.9651
0.9667
0.9682
3.9695
0.9708
0.9719
0.9730
0.9739
0.9749
0.9757
0.9765
0.9773
0.9780
0.9786
0.9792
0.9798
0.9804
0.9809
0.9814
0.9819
0.9823
0.9828
0.9832
0.9836
0.9839
0.9843
0.9846
0.9849
0.9853
0.9856
0.9858
0.9861
0.9864
0.9866
0.9869
0.9871
0.9873
0.9876
0.9878
0.9880

SOURCE:Computed for this volume.



A9

LOfc HIGH
0.0178 0.5906
0.0805 0.6846
0. 1485 0. 7464
0.2120 0.7880
0.268? 0.8186
0.3178 0.8417
0.3618 0.8596
0.40C8 0.8740
0.4355 0.8857
0.4671 0.8952
0.4951 0.9034
0.5203 0.9105
0.5432 0.9166
0. 5640 0. 9219
0.5830 0.9266
0.6005 0.9308
0.6166 0. 9345
0.6314 0.9378
0.6452 0.9409
0.6580 0.9436
0.6699 0.9461
0.6810 0.9484
0.6913 0.9505
0.7011 0.9524
0.7102 0.9542
0.7188 0.9559
0.7269 0.9574
0.7346 0. 9589
0.7418 0.9632
0.7487 0.9615
0.7552 0.9627
0.7613 0.9633
0.7673 0.9649
0.7729 0.9658
0.7782 0.9668
0.7833 0.9677
0.7881 0.9685
0.7928 0.9693
0.7972 0.9701
0.8015 0.9738
0.8056 0.9715
0.8095 0.9721
0.8133 0.9728
0.8169 0.9734
0.8204 0.9739
0.8237 0.9745
0.8270 0.9750
0.8301 0.9755
0.8331 0.9760
0.8360 0.9765
0.8388 0.9769
0.'8415 0.9773
0.8441 0.9778
0.8467 0.9782
0.8491 0.9785
0.8515 0.9789
0.8537 0.9793
0.8560 0.9796
0.8581 0.9800

LOW HIGH
0.0133 0. 5270
0.0650 0.6210
0.1245 0.6854
0.1814 0.7318
0.2338 0.7662
0.28Q8 0.7931
0.3230 0.8146
0.3609 0.8320
0.3951 0.8465
0.4261 0.8587
0.4541 0.8691
0.4796 0. 8781
0.5029 0.8860
0.5242 0.8929
0.5438 0.8990
0.5619 0.9045
0.5791 0.9092
0.5947 0.9136
0.6091 0.9176
0.6225 0.9213
0.6351 0.9247
0.6469 0.9277
0.6579 0.9306
0.668 3 0.9332
0.6781 0.9356
0.6873 0.9379
0.6960 0.9400
0.7042 0.9420
0.7120 0.9438
0.7194 0.9456
0.7265 0.9472
0.7331 0.9487
0.7395 0.9502
0.7456 0.9516
0.7514 0.9528
0.7569 0.9541
0.7622 0.9552
0.7673 0.9563
0.7722 0.9574
0.7768 0.9584
0.7813 0.9594
0.7856 0.9603
0.7898 0.9612
0.7937 0.9620
0.7976 0.9628
0.8013 0.9636
0.8049 0.9643
0.8083 0.9650
0.8116 0.9657
0.8148 0.9664
0.8179 0.9670
0.8209 0.9676
0.8238 0.9682
0.8266 0.9687
0.8294 0.9693
0.8320 0.9698
0.8346 0.9703
0.8370 0.9708
0.8394 0.9713

LOW HIGH
0.0105 0.^755
0.0542 3.5676
0.1068 0.6332
0. 1583 0. 6822
J.2069 0.7192
0. 2513 0.7487
0.2916 0.7727
0.3283 3.7926
0. 3617 0.8093
0.3921 0.8235
0.4199 0.8357
0.4454 0.8464
0.4688 0.8558
0.4904 0.85M
0.5103 0. 8715
0.5288 3.8782
0.5460 0. 8342
0.5619 0.8896
0.5768 0.89'+5
0. 5908 0. 8991
0.6038 0.9032
0.5161 0.9)70
0.6276 0.9106
0.6385 3.9139
0.6487 0.9159
0.6588 0. 9196
0*6680 3-9222
0.6767 0.9247
0.6849 0.9270
0.6928 0.9292
0.7002 0.9313
0.7074 0.9332
0.7142 3.9351
0. 7206 0.9368
0.7268 3.9385
0.7328 0.9^00
0.7384 0. 9415
0.7439 3.9429
0.7491 0.9443
0.7541 0.9456
0.7589 0.9468
0. 7636 0.9480
0.7680 0.9491
0.7723 0.9532
0. 7765 0.9512
0.7805 0.9522
0.7843 0.9532
0.7880 0.9541
0.7916 0.9549
0.7951 0.9558
0.7985 0.9566
0.8017 0.9574
0. 8049 0.9582
0.8079 0.9589
0.8109 0.9596
0. 8138 0.9603
0.8165 0.9639
0.8192 0.9516
0.8219 0.9622

LOW HIGH
0.0086 0.4335
0.0464 0. 5724
0.0934 3.5833
0. 1404 0. 6382
0.1854 0.6770
0.2273 0.7034
0.2659 3. 7341
0.301 1 0.7559
0.3335 3.7743
0.3633 3. 7902
0.3907 3.8043
0.4159 0.8161
0.4392 3. 8267
0.4609 3.8353
0.4809 0. 8448
0.4996 0.8525
0.5170 0.8594
0.5332 0. 8658
0.5484 3.8715
0.5627 0.8769
0.5761 0. 8818
0.5387 3.8863
0.6006 0.8905
0.6119 0. 8944
0.6225 3.8983
0.6326 0. 9014
0.6421 0.9046
0.6512 0.9075
0.6598 0. 9103
0.6631 3.9129
0.6759 0.9154
0.6834 0.9178
0.6905 3.9233
0.6973 0.9221
0.7038 0. 9741
0.7101 0.9263
0.7161 0. 9278
0.7219 3.9295
0.7274 0.9311
0.7330 0. 9325
0.7381 0.9343
0.7430 3.9355
0.7478 0.9368
0.7523 3.9381
0.7567 0.9394
0.7610 0.9406
0.7651 3.9418
0.7691 0. 9429
0.7729 0.9440
0.7766 0.9450
0.7802 0.9460
0.7837 0.9470
0.7870 3.9479
0.7903 0.9488
0.7935 3.9497
0.7966 0.9505
0.7995 0.9513
3.8024 3.9521
0.8053 0.9528



A10
95 per cent intervals

10 11

P= 3 
P= /V

P = 6
P= 7 
P= 8 
P= 9
P= 10
P= 11
P= 12
P = 13
P= 14
P= 15
P= 16
P= 17
P= 18
P= 19
P= 20
P= 21
P= 22
P= 23
P= 24
P= 25
P= 26
P= 27
P= 28
P= 29
P= 30
P= 31
P= 32
P= 33
P= 34
P= 35
P= 36
P= 37
P= 38
P= 39
P= 40
P= 41
P= 42
P= 43
P= 44
P= 45
P= 46
P= 47
P= 48
P= 49
P= 50
P= 51
P= 52
P= 53
P= 54
P= 55
P= 56
P= 57
P= 58
P= 59
P= 60

LCW HIGH 
0.0">73 0.3Q7P 
0.0406 0.4937 
0.0829 n.5485 
0. 1260 0.5992 
0.1680 0.6391
0.2074 0.6717 
0.2441 0.6969 
3.7781 0.7219
0. 3'95 0.7417
0.3384 0.7589
0.3653 0.7739
0. 3902 0.7872
0.4133 0.7990
0.4348 0.8096
0.4548 0.8191
0.4735 0.8277
0.4910 0.8355
0.5074 0.8426
3.5229 3.8492
0. 5374 0.8552
3.5510 0.8608
3.5639 0.8559
0.5761 0.8707
0.5876 0.8752
0.5985 0.8793
0.6C89 0.8832
0.6187 0.8869
0.6281 0.8903
0.6370 0.8935
3.6456 0.8966
0. 6537 0.8995
3.6615 0.9022
0.6689 0.9347
0.6760 0.9072
0.6828 0.9395
0.6893 0.9117
0.6956 0.9138
0.7016 0.9158
0.7074 0.9177
0.7130 0.9196
3.7184 3.9213
0.7235 0.9230
0.7285 0.9246
0.7333 0.9261
0.7380 0.9276
0.7424 0.9290
0.7468 0.9304
0.7510 0.9317
0.7550 0.9330
0.7589 0.9342
0.7627 0.9354
0.7664 3.9365
0.7700 0.9376
0.7735 0.9387
3.7768 0.9397
0.7801 0.9407
0.7832 0.9416
0.7863 0.9426
0.7895 0.9434

LUW HIGH 
0. ."»063 0.3675 
0.0360 0.4503 
0.07^5 0.^138 
0. 1143 D. 5645 
0.1535 J.6049
^.1937 (J.6383 
0. 2257 0. 6665 
0.2583 0.6905
0.28H6 0.7114
0.3168 0.7296
0.3430 0.7457
0.3675 0.7599
0.3933 0.7726
3.4116 0.7841
0.431 5 0. 7944
0.4502 0.8038
0.4577 0.8124
0.4842 0.8203
0.4997 0.8275
0.5143 0.8342
0.5281 0.8404
0.5412 3.8461
0.5536 0.8514
0.5653 0.8564
3.5755 0.8611
0.5871 0.8654
3.5972 0.8695
0.5068 0.8734
0.6159 0. 8770
3.6247 0.8804
0.6331 0.8837
0.6411 0.8867
0.6487 0.8897
0.6561 0.8924
0.6631 0.8951
0.5599 3.8976
0.6764 0.9000
0.6827 0.9022
0.5837 0.9044
0.6945 0.9065
0.7031 0.9085
0.7055 0.9104
0.7107 0.9122
0.7157 0.9140
0.7205 0.9157
0.7252 0.9173
0.7297 0.9189
0.7341 0.9204
0.7384 0.9218
0.7425 0.9232
0.7465 0.9246
0.7503 0.9259
0.7541 0.9272
0.7577 0.9284
0.7613 0.9296
0.7647 0.9307
0.7680 0.9318
0.7713 0.9329
0.7744 0.9339

LOW HIGH 
0.0055 0.3413 
3.0323 0.4210 
3.0576 0.4832 
0.1048 0.5329 
0. 141 3 0.5739
3 .1755 0.6079 
0.2098 0.6367 
3.241 1 0.6616
0.2734 0.6832
0.2978 0.7022
0.3234 0.7191
3.3473 3.7341
0. 3697 0. 7477
0 .3938 0.7599
0.4105 0.7710
0.4291 0.7811
0.4465 0.7933
0.4630 0. 7988
0.4786 0.8066
0.4933 3.8139
0.5072 0.8206
0.5204 0.8268
0.5329 3.8327
0.5448 0.8381
3.556 1 0.8432
0.5669 0.8480
0.5771 0.8525
0.5859 0.8568
0.5963 0. 8608
0.6052 0.8646
0.6138 0.8682
0.6220 0. 8716
0.6299 0.8748
0.6374 3.8779
0.6447 0.8808
0.6517 0.8836
0.6584 0.8863
0.6648 0.8888
0.6710 0.8912
0.6770 0.8936
0.6828 0.8958
0.6884 0.8979
0.6938 0.9000
0.6990 0.9020
0.7040 0.9038
0.7089 0.9057
0.7136 0.9074
0.7181 0.9091
0.7226 0.9108
0.7258 0.9123
0.7310 0.9138
0.7350 0.9153
0.7389 0.9167
0.7427 0.9181
0 .7464 0.9194
0.7500 0.9207
0.7535 0.9220
0.7569 0.9232
0.7602 0.9243



A11

12
LOW HIGH 

0.0049 0.3187 
0.0293 0.3933 
0.0619 0.4559 
0.0966 0. 5D49 
0.1309 0.5459
0.1643 3.5H01 
0.1960 0.6093 
3.2261 0.6347 
0.2543 0.6570 
0.28C9 0.6766
0. 3059 0. 6941 
0.3293 0.7098 
0.3513 0.7240 
0.3720 0.7369 
0.3915 0.7486
0.4099 0.7593 
0.4273 0.7691 
0.4437 0.7781 
0.4592 0.7865 
0.4739 0.7943
0.4879 0.8015 
0.5012 0.8082 
0.5138 0.8145 
0.5257 0.8203 
0.5372 0.8259
0.5481 0.8311 
0.5585 0.8359 
0.5684 0.8406 
0.5780 0.8449 
0.5871 0.8490
0.5958 0.8530 
0.6042 0.8567 
0.6122 0. 8602 
0.6199 0.8636 
0.6274 0.8668
0.6345 0.8698 
0.6414 0.8727 
0.6480 0.8755 
0.6544 0.8782 
0.6605 0.8808
0.6665 0.8832 
0.6722 0.8856 
0.6778 0.8878 
0.6831 0.8900 
0.6883 0.8921
0.6934 0.8941 
0.6982 0.8961 
0.7029 0.8979 
0.7075 0.8997 
0.7119 0.9015
0.7162 0.9032 
0. 7204 0. 9048 
0.7245 0.9064 
0.7284 0.9079 
0.7322 0.9093
0.7360 0.9108 
0.7396 0.9122 
0.7431 0.9135 
0.7465 0.9148

13 
LOW HIGH 

0.0345 0.29HB 
0.0268 0.3726 
0.0570 0. 4315 
0.0895 0.4797 
0.1219 0.5204
0.1536 0.5546 
0.1839 0.5841 
0.2128 0.6098 
0.2401 0.6325 
0.?659 J.6527
0.2902 0.6707 
0.3131 0.6869 
0.3346 0.7017 
0.3550 0.7150 
0.3742 0.7273
0.3924 0.7385 
0.4096 0.7488 
0.4260 0.7583 
0.4414 0.7672 
0.4561 0.7754
0.4701 0.7830 
0.4834 0.7902 
0.4960 0.7969 
0.5081 0.8031 
0.5196 0. 8090
0.5306 0.8146 
0.541 1 0.8198 
0.5511 0.8248 
0.5608 0.8294 
0.5700 0.8339
0.5789 0.8381 
0.5874 0.8421 
0.5956 0.8459 
0.6034 0.8495 
0.6110 0.8530
0.6183 0. 8563 
0.6253 0.8595 
0.632 1 0.8625 
0.6386 0.8654 
0.6449 0.8682
0.6510 0.8709 
0.6569 0.8734 
0.6626 0.8759 
0.6681 0.8782 
0.6734 0.8805
0.6786 0.8827 
0.6836 0.8848 
0.6885 0.8869 
0.6932 0.8888 
0.6977 0.8907
0.7022 0.8926 
0.7065 0.8944 
0.7107 0.8961 
0.7147 0.8977 
0.7187 0.8993
0.7225 0.9009 
0.7263 0.9024 
0.7299 0.9039 
0.7335 0.9053

14 
LOW HIGH 

0.0040 0. 281 3 
U.3246 J.3522 
0. 0529 0.4095 
0.0834 0.4568 
0.1140 0.4971
0. 1442 0. 5312 
0.1 733 0.5608 
0.2010 1.5857 
0.2274 0. 6097 
3.2523 'J.6333
0.2760 U.6437 
0.2983 0.6654 
0.3195 0.68D5 
0. 3395 0. 6943 
0. 3584 0.7070
0.3764 0.7187 
0. 3934 0.7294 
0.4096 0.7394 
0.4250 3.7^36 
0.4396 0.7572
3.4536 3.7653 
0.4668 3.7728 
0.4795 0.7799 
0.4916 0.7865 
0. 5031 0. 7927
0.5142 0. 7986 
0.5248 0.8341 
0. 5349 0.8094 
0.5447 0.8144 
0.5540 0.8191
0.5630 0.8236 
0.5716 0.8279 
0.5799 0.8320 
0.5878 0.8358 
0.5955 0.8395
0. 6029 0. 8431 
0.6101 0.8465 
0.6170 0.8497 
0.6236 0.8528 
0.6301 0.8558
0.5363 0.8537 
0.6423 0.8614 
3.6481 3.8641 
0.6538 0.8556 
0.6592 0. 8691
0.6645 3.8715 
0. 6696 0. 8737 
0.6746 0.8759 
0.6794 0.8781 
0.6841 0.8801
0.6887 0.8821 
0.6931 0.83VO 
0.6974 0.8859 
0.7016 0.8877 
0.7057 0.8894
0.7096 0.8911 
0.7135 0.8928 
0. 7173 0.8944 
0.7209 0.8959

15 
LUW HIGH 

0.0037 3. 2657 
0.0228 0.3343 
0.0493 1.3897 
0.0781 0.4360 
0.107 1 0.4758
0.1359 3. 5096 
0.1637 0. 5391 
3.1904 D.5652 
0.2159 0. 5884 
0.2401 J. 609?
0.2631 0.6283 
0.2850 0. 6453 
0.3057 0.6605 
0.3253 3.6747 
0.3440 0. 6877
0.3617 D.6999 
0.3785 0.7139 
0.3945 3. 7212 
3.4098 0.7339 
0.4243 0. 7398
3.4382 0. 7482 
0.4514 3.7563 
0.4641 0.7634 
0.476? 0.7704 
0.4878 3.7759
0.4989 0.7831 
0.5095 3-7889 
0.5197 0.7945 
0.5295 0. 7997 
0.5389 3.8047
0.5479 0. 8095 
3.5566 0. 8140 
3.5650 3.8183 
0.5731 0. 8224 
0.5809 0.8264
0.5884 0.8331 
0.5957 0. 8337 
0.6027 0.8372 
0.6094 3.8435 
0.6160 0. 8437
3.6223 3.8457 
0.6284 0. 8497 
0.6343 3. 8525 
0.6401 0.8552 
0.6457 0. 8578
0.6511 0.8604 
0.6563 0.8623 
0.6614 0. 8652 
0.6663 0.8675 
0.6711 0.8697
0.6758 0.8718 
0.6803 3.8738 
0.6847 0. 8758 
0.6890 0. 8778 
0.6932 3.8797
0.6973 0. 8815 
0.7012 0.8832 
0.7051 0.8849 
0.7088 0. 8866
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95 per cent intervals

Q=

P = 
P = 
P =
P = 
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =

2 
3
4 
5 
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

0. 
3. 
0. 
0. 
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

16 
LOW HISH 
0034 0.2518 
0?13 1.3175 
0461 0.3716 
0734 0.4170 
1010 0.4562
1285
1552
1809
2056
2290
2514
2727
2930
3123
3306
3481
3647
3805
3956
4101
4239
4371
4497
4618
4733
4844
4951
5053
5152
5246
5337
5425
5510
5591
5670
5746
5819
5890
5959
6025
6089
6152
6212
6270
6327
6382
6435
6487
6538
6587
6634
6680
6725
6769
6812
6854
6894
6934
6972

0.4897
0.5191
0.5452
0.5685
0.5895
0.6085
0.6258
3.6416
0.6560
0.6694
0.6817
0.6932
0.703Q
0.7138
0.7231
0.7318
0.7399
0.7476
0.7548
0. 7616
0.7681
0.7742
0.7800
0.7855
0.7908
0.7957
0.8005
0.8050
0.8094
0.8135
0.8175
0.8213
0.8249
0.8284
0.8318
0.8350
0.8381
0.8411
0.8440
0.8468
0.8495
0.8521
0.8546
0.8570
0.8593
0.8616
0.8638
0.8659
0.8680
0.8700
0.8719
0.8738
0.8756
0.8774

1
LOH 

0.0032 
0.0199 
O.H433 
0.0692 
0.0955
0. 1218
0.1475
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1723
1962
2189
24 D 7
?61 5
2813
3002
3183
3354
351 8
3675
3325
3968
4105
4236
4361
4482
4598
4709
4815
491 8
5016
511 1
5203
5291
5376
5458
5538
5614
5689
5750
5830
5897
5952
6025
6086
6145
6203
6259
6313
6366
5417
6467
6515
5562
6608
6653
5597
6739
6780
6821
6860

7 
HIGH 

0.2393 
0.3026 
0.3551 
0.3995 
0.4381
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

4712
,5004
5265
5498
5709
5901
6076
6236
6383
6519
6646
6763
6872
6974
7070
7159
7244
7323
7398
7469
7536
7599
7660
7717
7772
7824
7873
7921
7966
8009
8051
8091
8129
8166
8201
8235
8268
8300
8330
8359
8388
8415
8442
8467
8492
8516
8539
8562
8583
8605
8625
8645
8664
8683

1 
LOrt 

0.0030 
0.0187 
0.0409 
0.0655 
0.09^8
3 .1158
0. 1406
0
0
0
0
0
0
0
0
0
T
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
3
0
0
T
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.1645

.1876

.2097

.2309
.251 2
.2706
.2891
.3068
.3237
.3399
.3554
.3702
.3843
.3979
.4109
.4234
.4354
.4470
.4580
.4687
.4790
.4888
.4984
.5075
.5164
.5250
.5332
.5412
.5489
.5564
.5636
.5706
.5774
.5840
.5904
.5965
.6025
.6084
.6140
.6195
.6249
.633 1
.6352
.6401
.6449
.6496
.6541
.6585
.6629
.6671
.6712
.6752

a 
HIGH 

0.2279 
0.2890 
0.3401 
0.3834 
0.4209
0.4540
0.4830
0.5090
0.5323
0.5535
0.5727
0.5904
0.6066
0.6215
0.6353
0.6482
0.6601
0.6713
0.6817
0.6915
0.7007
0.7094
0.7176
0.7253
0.7326
0.7395
0.7461
0.7523
0.7583
0.7640
0.7694
0. 7745
0.7795
0.7842
0.7887
0.7930
0.7972
0.8012
0.8050
0.8087
0.8123
0.8157
0. 8190
0.8222
0.8253
0.8283
0.8311
0.8339
0.8366
0.8392
0.8417
0.8442
0.8465
0. 8488
0.8511
0.8532
0.8553
0.8574
0.8594
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19
LOW

0.0023
0.0176
0.0387
0.0622
0.0864
0.1104
0.1342
0.1574
0.1797
0.2012
0.2219
0.2417
0.2606
0.2788
0.2961
0. 3128
0.3287
0. 3440
0.3586
0.3727
0.3861
0.3990
0.4115
0.4234
0.4349
0.4459
0.4566
0.4668
0.4767
0.4862
0.4954
0.5043
0.5129
0.5212
0.5292
0.5370
0.5445
0. 5518
0.5588
0.5657
0.5723
0.5787
0.5850
0.5911
0.5970
0.6027
0.6083
0.6137
0.6189
0.6241
0.6291
0.6339
0.6387
0.6433
0.6478
0.6522
0.6565
0.6607
0.6648

HIGH
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.

2175
2764
3262
3686
4053
4381
4668
4926
5158
5370
5563
5740
5904
6055
6195
6325
6446
6560
6667
6767
6861
6950
7033
7113
7188
7259
7327
7391
7453
7511
7567
7621
7672
7721
7768
7813
7856
7897
7937
7976
8013
8049
8083
8116
8149
8180
8210
8239
8267
8294
8320
8346
8371
8395
8418
8441
8463
8484
8535

20
LOW HIGH

0.0026 0.2084
0.0167 0.2651
0.0367 0.3134
0.0591 0.3548
0.0824 0.3909
0.1055 0.4232
0.1284 0.4516
0.1508 0.4771
0.1725 0.5003
0.1934 0.5214
0.2135 0.5408
0.2328 0.5586
0.2514 0.5750
0.2692 0.5902
0.2862 0.6044
0.3026 0.6175
0.3183 0.6298
0.3333 0.6414
0.3478 0.6522
0.3617 0.6624
0.3750 0.6720
0.3878 0.6810
0.4002 0.6896
0.4120 0.6977
0.4234 0.7054
0.4345 0.7127
0.4451 0.7197
0.4553 0.7263
0.4652 0.7326
0.4747 0.7387
0.4839 0.7444
0.4928 0.7499
0.5014 0. 7552
0.5097 0.7603
0.5178 0.7651
0.5256 0.7698
0.5331 0.7743
0.5404 0.7786
0.5475 0.7827
0.5544 0.7867
0.5611 0.7905
0.5676 0.7943
0.5739 0.7978
0.5800 0.8013
0.5860 0.8046
0.5918 0.8079
0.5974 0.8110
0.6029 0.8140
0.6082 0.8169
0.6134 0.8198
0.6185 0.8225
0.6234 0.8252
0.6282 0.8278
0.6329 0.8303
0.6375 0.8327
0.6419 0.8351
0.6463 0.8374
0.6505 0.8396
0.6547 0.8418

21

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

LOW
0025
0158
0349
3564
0787
1009
1231
1448
1658
1861
2057
2246
2428
2602
2769
2930
3085
3233
3376
3513
3645
3772
3895
4013
4126
4236
4341
4443
4542
4637
4729
4818
4904
4987
5068
5146
5222
5296
5367
5436
5504
5569
5632
5694
5754
5813
5869
5925
5979
6031
6082
6132
6181
6228
6275
6320
6364
6407
6449

HIGH
0.
D.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.0.'

0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
u.
0.
0.
0.
0.
0.
0.
0.
3.

1990
25 '+6
3016
3420
3775
4092
4373
4626
4857
50S7
5261
5439
5534
5757
5399
6332
6157
6273
6383
6487
6534
6676
6764
63V 7
6925
7330
7371
7139
7234
7266
7325
7382
7436
7488
7538
7586
7632
7576
7719
7760
7800
7839
7376
7911
7946
7930
8012
8343
8374
8103
8132
8159
8186
8212
8238
8263
8237
8310
8333

0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

22
LOW
0023
3150
0333
0539
0753
0968
1182
1392
1596
1794
1985
2170
2347
2518
2682
2841
2993
3139
3280
3416
3546
3672
3794
3911
4023
4132
4237
4339
4437
4532
4624
4713
4799
4883
49S3
5042
5118
5192
5263
5333
5400
5466
5530
5592
5653
5711
5769
5825
5879
5932
5984
6034
6083
6131
6178
6223
6258
6312
6354

0
3
0
0
3
0
0
3
0
0
3
0
3
0
0
0
0
0
3
0
0
3
0
3
0
0
3
0
0
0
0
0
0
0
3
0
0
3
0
0
0
0
0
3
0
3
0
0
0
0
0
0
0
3
3
0
0
0
0

HIGH
. 1913
.2449
. 2906
.3301
.3649
.3962
.4239
.4493
.4719
.4928
.5121
. 5299
.545<t
. 5618
.5761
.5895
.6021
.6139
.6253
.6355
.6454
.6547
. 6636
.6723
. 6800
.6877
.6949
.7019
.7085
.7143
.7209
.7267
.7323
.7376
.7427
.7477
.7524
.7570
.7614
.7656
.7697
.7737
.7775
.7812
.7848
.7882
.7916
.7948
.7933
. 8010
.8040
.8069
.8097
.8124
.8153
.8176
.8203
.8225
.8248
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95 per cent intervals

0 =

p =
p =
n —

P ~

P —

p =
p =
p =
D =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

O =

P =

P =

P =

P =

? =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

P =

0 =

p =
p =
H> =
p =
p =
p =
p =
p =
p =
p =
p =
p =
p =
p =
p =
p =
p=

23

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
77
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
57
53
54
55
56
57
58
59
60

0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
o.

LOW
0022
0143
0318
0516
0723
0930
1137
1341
1539
1732
1918
2098
2272
2440
26 Jl
2756
2906
3050
3190
3324
3453
3577
3698
3814
3Q26
4034
4139
4240
4338
4432
4524
4613
4699
4782
4863
4942
5018
5092
5164
5233
5301
5367
5431
5494
5555
5614
5672
5728
5783
5836

0.5888
0.
n .
o.
o.
0.
0.
0.

5939
5988

,6037
6084
6130
6175
6219

0.6263

HIGH
0.1840
0.2359
0.2804
0.3190
0.3531
0.3839
0.41 13
0.4361
0.4588
0.4796
0.4988
0 .5166
0.5332
^.5486
0.5629
0.5764
0.5891
0.6010
0.6122
0.6228
0.6378
0.6423
0.6513
0.6598
0.6b80
0.6757
0.6331
0.6902
0.6970
0.7034
0.7096
0.7155
0.7212
0.7267
0.7320
0.7370
0.7419
0.7^66
0.7511
0.7555
0.7597
0.7638
0.7677
0.7715
0.7752
0.7787
0.7822
0.7855
0.7888
0.7919
0.7950
0.7979
0.8008
0.8036
0.8063
0.8090
0.8116
0.8141
0.8165

0.
0.
0.
0.
0.
0.
0.
0.
0.
D.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
u.
o.
0.
0.

24
LOW
002 1
0137
0305
0495
OS94
0894
1095
1293
1486
1S73
1855
7031
2201
2366
7524
2577
2874
2967
3104
3236
3364
3487
3606
372 1
3333
3940
4044
4145
4242
4337
4428
4517
4603
4686
4767
4845
4922
4996
5068
5138
5206
5272
5336
5399
5460
5520
5578
5634
5S90
5743
5796
5847
5897
5946
5994
6040
6086
6130
6174

HIGH
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1773
2276
2709
3087
3421
3724
3994
4239
4464
4671
4862
5040
5205
5359
5503
5639
5766
5885
5998
6105
6206
6302
6394
6480
6563
6642
6717
6789
6858
6923
6986
7047
7105
7161
7215
7267
7316
7364
7411
7455
7499
7540
7581
7620
7658
7694
7730
7764
7798
7830
7861
7892
7922
7950
7979
8006
8032
8058
8084

0,
0,
0,
0,
0 ,
0,
0,
0,
0,
0,
0,
0,
0«
0.
0,
0,
0,
0,
0,
0.
0 ,
0,
0,
0,
0.
0,
0,
0,
0,
0,
0.
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
0,
0,
0
0,
0,
0
0,
0
0
0,
0
0,
0,

25
LOW

,0020
,0131
,0292
,0476
.0668
,0861
,1056
.1248
,1436
,1619
,1797
, 1969
,2135
,22^6
,2452
,260 2
,2747
,2887
,3023
,3153
,3280
,3402
,3520
,3634
,3744
,3851
,3954
,4054
,4151
,4245
,4336
,4425
,4510
,4594
,4674
,4753
,4829
,490 3
,4975
.5045
.511 4
,5180
.5245
.5308
,5369
.5429
.5487
.5544
.5500
.5654
.5706
.5758
.5808
.5858
.5906
.595 3
.5999
.6043
.6087

HIGH
0. 1709
0.2198
0.2620
0. 2989
0.3317
0.3615
0.3881
0.4124
0.4347
0.4552
0.4743
0.4919
0.5084
0.5238
0. 5382
0.5518
0.5646
0.5766
0.5880
0.5987
0.6089
0.6186
0.6279
0.6366
0.6450
0. 6530
0.6606
0.6679
0.6749
0.6816
0.6880
0.6942*
0.7001
0.7058
0.7113
0.7165
0.7216
0.7265
0.7313
0.7358
0.7403
0.7445
0.7487
0.7527
0.7565
0.7603
0.7639
0.7675
0.7709
0.7742
0.7775
0.7806
0.7837
0.7866
0.7895
0.7923
0.7951
0.7977
0. 8003



A15

26 
LOW HIGH 

0.0019 0.1650 
0.0126 0.2125
0.0281 0.2536
0.0458 0.2898
0.0644 0.3219
0.0831 0.3513
0. 1020 0.3775
0.1207 0.4015
0. 1389 0.4235
0. 1568 0.4439
0.1741 0.4628
0. 1910 0.4804
0.2073 0.4969
0.2231 0.5122
0.2384 0.5267
0.2531 0.5402
0.2674 0.5530
0.2812 0. 5651
0.2946 0.5766
0.3075 0.5874
0. 3200 0.5977
0.3320 0.6074
0. 3437 0.6167
0.3550 0.6256
0.3660 0.6340
0. 3766 0.6421
0.3868 0.6498
0.3963 0.6572
0.4064 0.6643
0.4158 0.6711
0.4248 0.6776
0.4336 0.6839
0.4422 0.6899
0.4505 0.6957
0.4586 0.7013
0.4664 0.7067
0.4740 0.7119
0.4814 0.7169
0.4886 0.7217
0.4957 0.7264
0.5025 0.7309
0.5092 0.7352
0.5156 0.7395
0.5220 0.7436
0.5281 0.7475
0.5341 0.7514
0.5400 0.7551
0. 5457 U.7587
0.5513 0.7622
0.5567 0.7656
0.5620 0.7689
0.5672 0.7722
0.5723 0.7753
0.5772 0.7783
0.5821 0.7813
0.5868 0.7842
0.5914 0.7870
0.5959 0.7897
0.6004 0.7924

27 
LOW HIGH 

0.0018 0.1594 
0.0121 0.2057
0.0270 0.2458
0.0441 0.2812
0.0621 0.3127
0.0804 0.3412
0.0986 0.3674
0.1168 0.3911
0.1346 0.4129
0.1520 0.4331
0.1689 0.4519
0.1854 0.4694
0.2014 0.4858
0.2169 0.5011
0.2319 0.5156
0.2464 0. 5291
0.2605 0.5420
0.2741 0.5541
0.2873 0. 5655
0.3090 U.5764
0.3123 0.5868
0.3243 0.5966
0.3358 0.6060
0.3470 0.6149
0.3579 0.6234
0.3684 0.6316
0.3786 0.6394
0.3885 0.6469
0.3981 0.6541
0.4074 0.6609
0 .4164 0.6676
0.4252 0.6739
0.4337 0.6800
0.4420 0.6859
0.4500 0.6916
0.4578 0.6971
0.4655 0.7023
0.4729 0.7074
0.480 1 0.7123
0.4871 0.7171
0.4939 0.7217
0.5006 0.7262
0.5071 0.7305
0.5134 0.7346
0.5196 0.7387
0.5256 0.7426
0.5315 0.7464
0.5372 0.7501
0.5428 0.7537
0.5483 0.7572
0.5536 0.7606
0.5588 0.7639
0.5639 0.7671
0.5689 0.7702
0.5738 0.7733
0.5786 0.7762
0.5832 0.7791
0.5878 0.7819
0.592? 0.7846

28 
LOW HISH 

0.0018 0.1542 
0.0116 0.1993
0.0261 0.2384
0.0426 0.2731
0. 0600 0. 3040
0.0778 0.3320
0.0954 0.3579
0.1131 0.3813
0.1305 0.4028
0.1475 0.4229
0. 1641 0.4415
0.1802 0.4589
0. 1959 0.4752
0.2111 0.4905
0.2258 0.50'+9
0.2401 0.5185
0.2539 0.5313
0.2673 0.5'+34
0.2803 0.5549
0.2929 0.5659
0.3051 0.5763
0. 3169 0. 5861
0.3283 0.5956
0. 3394 0. 6046
0.3502 0.6132
0.3606 0.6214
0.3707 0.6293
0.3805 0.6369
0.3901 0.6VM
0.3993 0.6511
0.4083 0.6578
0.4170 0.6642
0.4255 0.6704
0.4338 0.6764
0.4418 0.6821
0.4496 0.6877
0.4572 0.6930
0.4646 0.6982
0.4718 0.7032
0.4788 0.7031
0.4857 0.7127
0.4924 0.7173
0.4989 0.7217
0.5052 0.7259
0.5114 0.7300
0.5174 0.7340
0.5233 0.7379
0.5291 0.7417
0. 5347 0. 7454
0.5402 0.7489
0.5455 0.7524
0.5508 0.7558
0.5559 0.7590
0.5609 0.7522
0.5658 0. 7653
0.5706 0.7684
0.5753 0.7713
0.5798 0.7742
0.5843 0.7770

29 
LOW HIGH 

0.0017 0.149^ 
0.0112 0.1933
0.0251 0.2315
0.0411 0.2654
0.0580 0.2953
0.0753 0. 3233
0.0925 0.3483
0. 1097 0. 3719
0.1266 0. 3932
0.1432 0.4131
0.1594 0.4316
0.1752 0.4489
0.1906 0.4651
0.2055 0.4803
0.2200 0.4947
0.2340 0.5082
0.2477 0. 5210
0.2609 0.5332
0.2737 0. 5447
0.2861 0. 5557
0.2981 0.5661
0.3098 0. 5760
0.3211 0.5855
0.3321 0.5946
0.3428 0.6032
0.3531 0.6115
0.3631 0.6195
0.3729 0.6271
0.3824 0.6344
0.3916 0.6415
0.4005 0. 6482
0.4092 0.6547
0.4177 0. 6610
0.4259 0.6671
0.4339 0.6729
0.4417 0. 6785
0.4493 0.6840
0.4567 0.6892
0.4638 0.6943
0.4709 0.6992
0.4777 0.7040
0.4844 0.7086
0.4909 0.7130
0.4972 0. 7174
0.5034 0.7216
0.5095 0.7257
0.5154 0. 7296
0.5211 0.7335
0.5268 0.7372
0.5323 0.7408
0.5376 0.7444
0.5429 0.7478
0.5480 0. 7511
0.5531 0.7544
0.5580 0. 7576
0.5628 0.7607
0.5675 0.7637
0.5721 0. 7666
0.5766 0.7695



A16
95 per cent intervals

Q =

P =
P =
P =
P =
P =
P =
P =
P =

4> =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
0 =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =

30

?
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
5?
53
54
55
56
57
58
59
60

3.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
3.
0.
0.
0.
-).
0.
0.
0.
0.
0.
0.
0.
3.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
3.
0.
0.
0.
0.
0.
0.n.
0.
3.

LOW
0016
0108
0243
3398
0562
0730
0897
1065
1?30
1392
155-1
1706
1856
2003
2145
2283
2417
2547
2674
2796
2915
3C30
3142
3251
3357
3459
3559
3656
3750
3841
3930
4017
4101
4183
4263
4340
4416
4490
4561
4632
4700
4767
4832
4895
4957
5018
5077
5134
5191
5246
5300
5353
5404
5455
5504
5553
5600
5646
5692

HIGH
0.1448
0.1877
0.2250
0.2582
0.2880
0.3151
0.3402
0.3630
0.3841
0.4037
0.4220
0.4392
0.4553
0.4705
0.4848
0.4984
0.5112
0.5233
0.5348
0.5458
0.5563
0.5662
0.5758
0.5849
0.5936
0.6019
0.6099
0.6176
0.6250
0.6321
0.6390
0.6^55
0.6519
0.6580
0.6539
0.6696
0.6751
0.6804
0.6856
0 .6906
0.6954
0.7001
0.7046
0.7090
0.7133
0.7174
0.7215
0.7254
0.7292
0.7329
0.7365
0.7400
0.7434
0.7'+67
0.7499
0.7531
0.7562
0.7592
0.7621

0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
J.
0.
0.
y.
0.
0.
(».
0.
0.
a.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.

3;
LOW
0316
0104
0235
0385
0544
0708
r>871
1034
1196
1354
1510
166 1
1309
1953
2092
2228
2360
2489
2613
2734
2352
2966
3377
3184
3289
339 1
3489
3585
3579
3770
3858
39^4
4028
4U9
4139
4266
4342
441 5
4487
4557
4625
4692
4757
4820
4882
4943
5002
5060
5116
5172
5226
5279
5330
533 1
543 1
5479
5527
5573
5619

L 32
HIGH

0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
(I.
0.
o.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
d.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1406
1823
2189
2513
2806
3072
3319
3544
3753
3948
4129
4300
4460
4611
4754
4889
5016
5138
5253
5363
5468
5568
5663
5755
5842
5926
6007
6084
6159
6230
6299
6366
6430
6492
6551
6609
6665
6719
6771
6821
6870
6918
6964
7008
7052
7094
7135
7174
7213
7251
7287
7323
7358
7392
7425
7457
7488
7519
7548

LOW
0.001 5
3.0131
0. 0227
0.0373
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0528
0687
0846
1005
1163
1318
1470
1619
1764
1905
2043
2176
2306
2433
2556
2675
279 1
2904
3014
3120
3224
3324
3422
3518
3610
3731
3789
3874
3958
4039
4118
4195
4270
4343
441 5
4485
4553
4620
4684
4748
481 0
4870
4930
4988
5044
5100
5154
5207
5259
5309
5359
5408
5456
5502
5548

HIGH
0.1363
3.1773
0.2130
0.2448
0.2735
0. 2998
0.3241
0.3463
0.3669
0.3862
0.4042
0.4211
0.4370
0.4521
0.4663
0.4797
0.4925
0.5046
0.5161
0.5271
0.5376
0.5476
0.5572
0.5664
0.5752
0.5836
0.5917
0.5995
0.6070
0.6142
0.6211
0.6278
0.6343
0.6405
0.6466
0.6524
0.6580
0.6635
0.6688
0.6739
0.6788
0.6836
0.6883
0.6928
0.6972
0.7015
0.7056
0.7097
0.7136
0.7174
0.7211
0.7248
0.7283
0.7317
0.7351
0. 7384
0.7416
0. 7447
0.7477



A17

33 34
LOW

0.0015
0.0098
0.0220
0.0362
0.0513
0. 0668
0. 0822
0.0978
0. 1133
0. 1284
0.1433
0.1579
0.1721
0.1860
0.1995
0.2127
0.2255
0.2379
0.2501
0.2618
0.2733
0.2845
0.2953
0.3058
0.3161
0.3261
0.3358
0.3453
0.3545
0.3634
0.3722
0.38C7
0.3890
0.3970
0.4049
0.4126
0.4201
0.4274
0.4345
0.4415
0.4483
0.4549
0.4614
0.4678
0.4740
0.4800
0.4859
0.4917
0.4974
0.5029
0.5084
0.5137
0.5189
0.5240
0.5289
0.5338
0.5386
0.5433
0.5479

HIGH
0. 1327
0. 1725
0.2075
0.2387
0.2669
0.2926
0. 3166
J.3385
0.3589
0.3780
0.3958
0.4126
0.4284
0.4434
0.4575
0.4709
0.4836
0.4957
0.5072
0.5182
0. 5287
0.5387
0.5483
0.5575
0.5664
0. 5748
0.5830
0. 5908
0. 5983
0.6056
0.6126
0.6193
0.6258
0.6321
0.6382
0.6441
0. 6498
0.6553
0.6606
0.6658
0.6708
0.6757
0.6804
3.6850
0.6894
0.6938
0.6980
0.7021
0.7060
0.7099
0. 7137
0.7174
0.7210
0.7245
0.7279
0.7312
0.7344
0.7376
0. 7407

0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0

LOW
.0014
.0094
.0214
.0351
.0498
.0649
.0800
.0953
.1103
.1252
.1398
.1541
.1680
.1817
,1950
.2079
.2205
.2328
.2448
.2564
.2677
.2788
.2895
.2999
.3131
.3200
.3296
.3390
.3481
.3570
.3657
.3742
.3824
.3904
.3983
.4059
.4134
.4207
.4278
.4347
.4415
.4481
.4546
.4610
.4671
.4732
.4791
.4849
.4906
.4961
.5016
.5069
.5121
.5172
.5222

0.5271
0.5319
0.5366
0.5412

HIGH
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1290
1680
2022
2327
2605
2858
3095
3311
3513
3701
3878
4044
4201
4350
4490
4624
4750
4871
4986
5096
5201
5301
5397
5490
5578
5663
5745
5823
5899
5972
6042
6110
6176
6239
6301
6360
6417
6473
6527
6579
6630
6679
6727
6773
681R
6862
6905
6946
6986
7026
7064
7101
7138
7173
7208
7241
7274
7306
7338

0.
P.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
D.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.

35
LOW
0014
0092
0208
0342
0484
0632
0779
0928
1076
1221
1364
1505
1642
1776
1906
2034
2158
2279
2397
2512
2624
2733
2839
2942
3043
3141
3236
3329
3420
3508
3595
3679
3761
3841
3919
3995
4069
4142
4213
4282
4349
4416
4480
4543
4605
4666
4725
4783
4839
4895
4949
5002
5055
5106
5156
5205
5253
5300
5346

HIGH
3.1Z56
0.1637
3.1972
0.2271
0. ?544
3.2794
0. 3327
0.3240
3.3439
0. 3626
0.3801
0.39SS
0.4122
0.4269
0.4439
0. 4542
0.4668
3.4738
0.4903
0.5313
0. 5117
0.5218
0.5314
0. 5406
0. 5495
3.5530
0. 5662
3.5741
0.5817
0.5891
0.5961
0.6330
0.6096
0.6159
0.6221
0.6281
0.6339
0.6395
3.6^49
0.6502
0.6553
0.6633
0.6651
0.6698
0.6743
0.6788
0.6831
0.6373
0.6914
0.6953
0.6992
0.7030
0.7367
0.7103
0.7138
0.7172
0.7206
0.7238
3.7270

3.
0.
0.
3.
0.
3.
U.
0.
0.
0.
0.
3.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
<3.
0.
0.
U.
3.
3.
0.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.

36
LOW
0013
3089
020?
0332
0472
0615
0759
0905
1049
1192
1332
1470
1605
1736
1865
1991
211 3
2232
2349
2462
2573
2680
2785
2887
2987
3084
3179
3271
3361
3449
3534
3618
3699
3779
3857
3932
4006
4079
4149
4218
4286
4352
4416
4479
4541
4601
4661
4718
4775
4830
4885
4938
4990
5041
5091
5141
5189
5236

0.5232

HIGH
3.122'+
3. 1596
0. 1924
3.2218
0. 2486
3.2732
0.296^
0.3172
0.3369
3.3553
0. 3726
3.3893
3.4045
0.4191
3.4333
0. 4462
3.4588
3.4703
3.4822
3.4932
3.5037
0.5137
3.5233
0.5326
0. 5414
3.5533
0. 5582
0. 5661
3.5737
3. 5811
0.5882
3.5951
0.6017
0.6031
0.6143
0.6?04
3.62S2
0.6318
0.6373
0.6426
0. 6478
0.6528
3.6577
0.6624
0.6670
3.6715
0.6759
0.6801
0. 6842
0.6883
0.6922
0.6960
0.6997
0.703^
0.7069
0.7104
0.7133
0.7171
3.7233
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95 per cent intervals

0 =

p = 
p = 
p= 
p = 
? =
p= 
p =
p = 
p =
p =
p =
p =
p =
p =
p =
p =
p=
p =
p =
p =
p =
p =
p =
p =
p=
p =
p =
p =
p =
p =
p =
f>s=

p =
p =
p =
p=
p =
p =
p =
p =
p=
p =
p =
p-
p =
p =
p=
p =
p =
p=
p =
p =
p =
p =
p =
p =
p =
p =
p =

7

3
4 
5 
6
7 
8 
9 

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
^0
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

0. 
0. 
0. 
0.
0.
0. 
o. 
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
3.
o.
3.
3.
0.
0.
0.
0.
0.
o.
0.
0.
0.
3.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
o.

37 
LOW HIGH 
0013 0.1194 
0086 0. 1557 
0196 0.1879 
0323 0.2167 
0459 0.2431
0600 
0740 
0883 
1024
1164
1302
1437
1569
1699
1825
1949
2070
2187
2302
?414
2523
2630
2733
2835
2933
3029
3123
3?15
3304
3391
3476
3559
3640
3719
3796
3872
3945
4017
4088
4157
4224
4290
4354
4417
4479
4539
4598
4656
4712
4768
4822
4875
4927
4979
5029
5078
5126
5173
5220

0.
0. 
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

2672
2899 
3107 
3301
3483
3655
3817
3971
41 16
4254
4386
4511
4530
4744
4854
4958
5058
5155
5247
5336
5422
5504
5583
5560
5734
5805
5874
5941
6005
6068
6128
6187
6244
6299
6353
6405
6455
6504
6552
6599
6644
6688
6731
6772
6813
6853
6892
6929
6966
7002
7037
7071
7105
7138

38 
L3W HIGH 

0.0013 0.1164 
0.0384 0.1521 
0.019 1 0.1835 
0.0315 0.2119 
0.0448 0.2378
0.0585 
0.0722 
0.0862 
).1330
0. 1137
0. 1273
0.1405
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1535
.1663
,1787
1909

,2328
2144
2257

,2368
2476
2581

0.2S84
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.

2784
,288 I
2977
3070
3160
3249
3335
3420
3502
3583
3561
3738
3813
3837
3958
4028
4097
4164
4229
4293
4356
4418
4478
4537
4595
4651
4707
4761
4814
4866
4917
4968
5017
5065
5112

0.5159

0.2616 
0.2839 
0.3044 
0.3236
0.3416
0.3586
0.3747
0.3899
0.4043
0.4181
0.4311
0.4436
0.4555
0.4669
0.4778
0.4882
0.4982
0.5078
0.5171
0.5260
0.5345
0. 5428
0.5507
0.5584
0.5658
U.5730
0.5799
0.5866
0.5931
0.5994
0.6055
0.6113
0.6171
0.6226
0.6280
0.6333
0.6384
0.6433
U.6481
0.6528
0.6574
0.6618
0.6662
0.6704
0.6745
0.6785
0.6824
0.686?
0.6900
0.6936
0.6971
0.7006
0.7040
0.7073

39 
LOW HIGH 

0.0012 0.1137 
0.0082 0.1485 
0.0186 0. 1 794 
0.0307 0.2072 
0.0437 0.2327
0.0571 
0.0705 
0.0842 
0.0978
0.
0.
0.
0.
0.

,1112
1245

,1375
1503
1628

0.175 1
0.
0.

1871
1988

0.2103
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
3;
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

221 4
2324
2430
2534
2636
2735
2831
2926
3018
3108
3196
3281
3365
3447
3527
3605
3S82
3756
3829
3901
3970
4039
4105
4171
4235
4297
4359
4419
4478
4535
4592
4647
4701
4755
4807
4858
4908
4957
5036
5053
5100

0. 2561 
3.2781 
0.2984 
0.3173
0.3352
0.3520
0.3679
0.3830
0. 3973
0.4110
0.4240
0. 4364
3.4482
0.4596
0.4704
0.4808
0.4908
0.5004
0.5097
0.5186
0.5271
0.5354
0. 5433
3.5510
0.5585
0.5657
0.5726
0.5793
0.5858
3.5921
0. 5983
0.6042
0.6099
0.6155
0.6210
0.6262
0.6314
0.6364
0.6412
0.6459
0.6505
0.6550
0.6594
0.6637
0.6678
0.6719
0.6758
0.6797
0.6834
0.6871
0.6907
0.6942
0.6976
0.7010
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40 
LOW HIGH 

0.0012 0. 1110 
0.0080 0.1452 
0.0181 0.1755 
0.0299 0.2028 
0.0426 0.2278
0.0557 0.2509 
0.0689 0.2726 
0.0823 0.2926 
0.0956 0.3113 
0.1088 0.3290
0.1218 0.3456 
0. 1346 0. 3614 
0.1472 0.3764 
0.1595 0.3906 
0.1716 0.4041
0.1834 0.4170 
0.1950 0.4294 
0.2063 0.4412 
0.2173 0.4525 
0.2281 0.4633
0.2386 0.4737 
0.2489 0.4836 
0.2589 0.4932 
0.2687 0.5025 
0.2783 0.5114
0.2877 0.5199 
0.2968 0.5282 
0.3057 0.5362 
D..3144 0.5439 
0.3229 0.5513
0. 3312 0. 5585 
0.3394 0.5655 
0. 3473 0.5722 
0.3551 0.5787 
0.3627 0.5851
U.37C1 0.5912 
0.3774 0.5972 
0.3845 0.6030 
0.3914 0.6086 
0.3982 0.6141
0.4049 0.6194 
0.4114 0.6245 
0.4178 0.6296 
0.4240 0.6344 
0.4301 0.6392
0.4361 0.6438 
0.4420 0.6484 
0.4477 0.6528 
0.4534 0.6570 
0.4589 0.661?
0.4643 0.6653 
0.4696 0.6693 
0.4749 0.6732 
0.4800 0.6770 
0.4850 0.6807
0.4899 0.6843 
0.4947 0.6879 
0.4995 0.6913 
0.5042 0.6947

41
LOW HIGH 

0.0011 0.1035 
0.0078 0.1419 
0.0177 0.1717 
0.0292 0. 1985 
0.0416 0.2232
0.0544 0.2459 
0.0675 0.2670 
0.0804 0.2870 
0.0935 0.3055 
0.1064 0.3230
0.1192 0.3395 
0.1318 0.3551 
0.1442 0.3699 
0.1563 0.3840 
0.1682 0. 3975
0.1799 0.4103 
0.1913 0.4226 
0.2024 0.4343 
0.2133 0.4456 
0.2240 0.4564
0.2344 0.4667 
0.2445 0.4767 
0.2545 0.4862 
0.2642 0.4955 
0.2736 0.5043
0.2829 0. 5129 
0.2919 0.5212 
0.3038 0.5291 
0.3094 0.5368 
0.3179 0.5443
0.3261 0.5515 
0.3342 0.5585 
0.3421 0.5653 
n.3498 0.5718 
0.3574 0.5782
0.3647 0.5843 
0.3720 0. 5903 
0.3790 0.5961 
0.3859 0.6018 
0.3928 0.6072
0.3993 0.6126 
0.4058 0.6178 
0.4122 0.6229 
0.4184 0.6278 
0.4245 0.6326
0.4305 0.6373 
0.4364 0.6418 
0.4421 0.6462 
0.4477 0.6506 
0.4533 0.6548
0.4587 0.6589 
0.4640 0.6629 
0.4692 0.6669 
0.4743 0.6707 
0.4793 0.6744
0.4842 0.6781 
0.4891 0.6817 
0.4938 0.6852 
0.4985 0.6886

42 
LOW HTGH 

0.0011 0.1051 
0.0076 0. 1389 
0.0172 0.1680 
0. 0285 0. 1944 
0.0406 0.2187
0.0532 0.2^1 1 
0. 0660 0.2619 
0.0787 0.2816 
0.0915 0.2399 
0. 1042 0.317?
0.1168 0.3335 
0. 1291 0.3^90 
0.1413 0.3637 
0.1533 0.3777 
0. 1650 0. 391 1
0. 1765 0.4038 
0.1877 0.4150 
0. 1987 0.4277 
0.2095 0.4389 
0.2200 3.4V96
0.2303 0.4600 
0.24 fJ3 3.4699 
0.2501 0.4794 
0.2597 0.4886 
0.2691 0.4975
0.2783 0. 5061 
0.2873 0.5143 
0.2960 0.5223 
0.3046 0.5300 
0.3130 0.5375
0.3212 D.5'^7 
0.3292 0. 5517 
0.3370 3.5535 
0.3447 0.5551 
0.3522 0. 5714
0.3595 0.5776 
0. 3667 0.5836 
0.3738 0. 5895 
0.3806 0.5951 
0.3874 0.6007
0.3940 0.6360 
0.4002 D.5115 
0.4068 0.6163 
0.4130 3.6213 
0.4191 0.6251
0.4250 0.6308 
0.4309 3.6354 
0.4366 0.6398 
0.4422 0.6442 
0.4477 0.6^35
0.4531 0.6526 
0.4584 0.6567 
0.^637 0.6536 
0.4688 0.6645 
0.4738 0.6683
0.4787 0.6720 
0.4835 0.6756 
0.4883 0.6791 
0.4929 0.6826

43 
LOw HIGH 

0.0011 3.1033 
0.0074 0. 1359 
0.0168 0.1645 
0.0279 0.1905 
0.0397 0.2144
0.0520 0.2364 
0.0645 0.2573 
0.0770 0.2765 
3.0896 3.2945 
0. 1021 0. 3116
0.1144 0. 3?78 
0.1266 0.3431 
0.1386 0. 3577 
0.1503 0.3715 
0.1619 3.3843
0.1732 0. 3975 
0.1843 0.4095 
0.1951 0.4213 
0.2057 0. 4324 
3.2161 3.4431
0. 2263 0. 4534 
0.2362 0. 4633 
0.2460 3.4723 
0.2555 0.4823 
0.2648 0.4908
0.2738 3.499^ 
0.2827 0.5076 
0.2914 0.5155 
0.2999 3.5233 
0.3082 0. 5308
0.3164 3.5333 
0. 3243 0. 5451 
0.3321 0.5519 
0.3397 3.5584 
0. 3472 0. 5648
0.3545 0.5710 
0.3616 3.5771 
0.3686 0. 5829 
0.3755 0.5885 
0.3822 0.5942
0.3885 0. 5998 
0.3952 3.6048 
0.4013 0.6101 
0.4077 0.6149 
0.4138 3.6197
0.4197 0. 6245 
0.4255 0.6291 
0.4312 0.6335 
0.4369 0. 6380 
0.4424 0.6422
0.4478 0.645^ 
0.4531 0.6505 
3.4583 3.6545 
0.4634 0. 6584 
0.4684 0.6622
0.4733 0.6659 
0.4781 0.6696 
0.4829 0.6731 
0.4875 0.6765
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95 per cent intervals

3= 44 
LOW HIGH
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P =
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p =
p =
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P =
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P =
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P =
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P =

P =

P =

P =

P =

P =
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P ——

P =

P =

P =

P =

P =

2
^
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
J3
34
35
3t>
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

p,
0.
0.
0.
o.
'J.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.

0.
0.
o.
0.
0.
o.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
n.
D.
0.
o.
0.
0.
0.
0.
0.
0.
y.
0.
0.
0.
0.
D.
0.
0.
0.
0.

0011
0072
0164
027?
0388
U509
0632
0754
^878
10()0
1 122
1241
1359
1475
1589
1700
1810
1917
2022
2124
2225
2323
2419
2513
2605
2695
2783
2870
2954
3036
3117
3196
3273
3349
3423
3496
3567
3636
3704
3771
3837
3899
3964
4023
4086
4145
4203
4260
4316
4371
4425
4478
4530
4581
4631
4680
4728
4776
4822

">.10l5
0.1331
f >.!6 12
0. 1«67
0.2102
0.2320
0.2522
0.2715
0.2893
0.3U62
0.3222
0.337'*
0.3519
0.3657
0.3788
0.3914
0 .4035
0.4150
0.4261
0.4368
0.4470
0.4569
^.4564
0.4755
0.4844
0.4929
0.5011
0.5J91
0. 5168
0.5243
0.5316
0.5386
0.5454
0.5520
0.5584
0.5546
0.5707
0.5765
0.5822
0.5878
0.5932
0.5987
0.6036
0.6088
0.6135
0.6183
0.6229
0.6274
0.6318
0.6361
0.6404
0.6445
0.6485
0.6524
0.6563
0.6500
0.6637
0.6673
0.6708

j ,
0.
0.
0.
0.
0.
0.
0.
0.
0.
J.
0.
0.
J.
0.
0.
0.
0.
0.
').
0.

0.
0.
0.
J.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

45
LUrt HIGH
0010
0070
016 1
>266

H3HO
049*
°>619
0739
0850
0980
1 100
1218
1334
1448
156U
1670
1778
1884
1987
2089
21 38
2285
2330
2473
?564
2654
2741
2826
2910
2992
3072
3150
3227
3302
3376
3448
3519
^588
3656
3722
3787
385 1
3912
3976
4033
4094
4152
4209
4265
4320
4374
4426
4478
4529
4579
4528
4677
4724
4771

i .
o.
u .
0.
0.

) •
0.
0.
0.
0.
0.
() m

0.
J .
r*.

0.
0.
o.
0.
0.

0.
').

u.
0.
0.
0.
0.
(' .

0.
0.
0.
0.
0.
0;
0.
(J.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0995
1304
1580
1831
2063
2277
2477
2667
2843
3010
3169
3319
3462
35.99
3730
3855
3975
4089
4200
4306
4408
4506
4601
4692
4780
4366
4948
5028
5105
5180
5252
5322
5390
5457
5521
5583
5644
5703
5760
5816
5870
5923
5977
6024
6076
6122
6168
6214
6258
6302
6344
6385
6426
6465
6504
5542
6579
6615
6650

0 ,
0.

46 
LOrt HIGH
001 0
0069

0.0157
0.
0.
0.
0.
0.
0 .
o.
0.
0 .
0.
0.
0.
o.
0 .
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
o .
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
D.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

,U261
0372
,0488
0606
0724
0843
0962
1079
1195
1309
1422
1532
1641
1747
1851
1954
2054
21 52
2248
2342
2435
2525
261 3
2700
2784
2R67
2948
3028
3106
3182
3257
3330
3401
3472
3541
3608
3674
3739
3803
3865
3974
3987
4043
4103
4160
421 5
4270
4324
4376
4428
4479
452S
4578
4626
4673
4720

0.0974
0.1278
'). 1550
0.1796
0.2024
0.2235
0.2433
0.2620
0.2795
0.2960
0. 3117
0.3266
0.3408
0 .3543
0.3673
0.3797
0.3916
0.4030
0.414U
0.4246
0. 434 1
0.4445
0.4540
0.4631
0.4719
0.4804
0.4886
n.4966
0.5043
0. 5118
0.5190
0.5260
0. 5329
0.5395
0.5459
0.5521
0.5582
0.5641
0.5699
0.5755
0. 5809
0. 5862
0.5914
0. 5967
0.6013
0.6064
0.6109
0.6154
0.6199
0.6243
0.6285
0.6327
0 . 6 36 8
0.6407
0.6446
0.6484
0.6522
0.6558
0.6594



A21

47
LOfc HIGH

0.0010 0.0955
0.0067 0.1253
0.0154 0. 1520
0.0255 0. 1763
0.0364 0. 1987
0.0478 0. 2195
0.0594 0.2390
0.0710 0.2576
0.0827 0.2748
0.0943 0.2911
0.1059 0.3066
0. 1173 0.3214
0.1285 0.3355
0. 1396 0. 3489
0.1505 0.3618
0.1612 0.3741
0.1717 0.3860
0.1820 0.3973
0.1921 0.4082
0.2020 0.4187
0.2118 3.4289
0.2213 0.4386
0.2306 0.4480
0.2397 0.4571
0. 2486 0. 4659
0.2574 0.4744
0.2660 0.4826

k 0.2743 0.4905
0.2826 0.4982
0.2906 0.5057
0.2985 0.5130
0.3062 0.5230
0. 3138 0.5268
0.3212 0.5334
0.3285 0.5399
0. 3356 0. 5461
0.3426 0.5522
0.3495 0.5581
0.3562 0.5639
0.3627 0.5695
0.3692 0.5750
0.3755 0.5803
0.3817 0.5855
0.3878 0.5906
0.3936 0.5957
0.3997 0.6003
0.4053 0.6052
0.4111 0.6096
0.4166 0.61^*1
0.4221 0.6185
0.4275 0.6228
0.4327 0.6270
0.4379 0.6311
0.4429 0.6351
0.4479 0.6390
0.4528 0.6428
0.4576 0.6466
0.4624 0.6502
0.4670 0.6538

48
LOW HIGH

0.0010 0. 0936
0.0066 0.1229
0.0151 0.1491
0.0250 0.1730
0.0357 0.1951
0.0468 0.2157
0.0582 0.2349
0.0696 0.2532
0.0811 0.2703
0.0926 0.2864
0.1039 0.3018
0.1152 0.3164
0.1263 0.3304
0.1372 0.3437
0.1479 0. 3565
0.1585 0.3687
0.1689 0.3805
0.1790 0.3917
0.1890 0.4026
0.1988 0.4131
0.2084 0.4231
0.2178 0.4328
0.2270 0.4422
0.2361 0.4513
0.2449 0.4600
0.2536 0.4685
0.2621 0.4767
0.2704 0.4846
0.2785 0.4923
0.2865 0.4998
0.2944 0.5070
0.3320 0.5141
0.3095 0.5209
0.3169 0. 5275
0.3241 0.5339
0.3312 0.5402
0.3382 0. 5463
0.3450 0.5522
0.3516 0.5580
0.3582 0.5636
0.3646 0.5691
0.3709 0.5745
0.3^71 0.5797
0.3832 0.5848
0.3891 0.5897
0.3948 0.5947
0.4008 0.5992
0.4062 0.6041
0.4119 0.6084
0.4173 0.6128
n.4227 0.6171
0.4279 0.6213
0.4331 0.6254
0.4381 0.6295
0.4431 0.6334
0.4480 0.6373
0.4528 0.6410
0.4575 0.6447
0.4622 0.6484

49
LOW HIGH

0. 0009 0.0918
0.0064 0.1236
0.0147 3.1^4
0.0245 0. 1699
0.0350 3.1917
0.0459 0.2120
0.0571 0.2309
0.0683 3.2490
0. 0796 0.2659
0.0909 0.2819
0.1021 0.2971
0. 1131 0.3115
0.1241 0.3254
0.1348 0.3336
0.1454 0.3513
0.1558 0.3634
0.1661 0.3751
0.1761 0. 3863
0.1860 0.3971
0. 1957 0.4075
0.2052 0.4175
0.2145 3.4272
0. 2236 0.4366
0.2325 0.4456
0.2413 0.43V3
0.2499 0.4628
0.2583 J.4709
0.2665 0.4799
0.2746 0.4866
0.2826 0.4940
0. 2903 0. 5012
0.2979 0.5083
0.3054 3.5151
0.3127 0.5217
0.3199 0.5282
0.3269 0.53'+4
0.3338 0.5405
0.3406 0.5465
0.3472 0.5523
0.3538 0. 5579
0.3602 3.5634
0. 3664 0. 5688
0.3726 0.5740
0.3786 0.5791
0.3846 0.5340
0.3904 0.5889
0.3959 3.5938
0.4018 0.5982
0.4071 0.6330
0.4127 0.6372
0.4178 0.6118
0.4232 3.6158
0.4284 0. 6199
0.4334 0.6240
0.4384 0.6279
0.4433 0.6318
0.4481 0.6356
0.4528 0.6393
0.4574 0.6430

50
LOW HIGH

0.0009 0.0931
0.0063 0. 1183
3.0144 3.1438
0.0240 0. 1669
0.0343 0. 1884
0.0451 0.203<>
0.0560 0.2271
0.0670 0.2450
0.0782 0.2616
0.0892 0.2774
0.1003 0.2925
0.1112 3.3063
0.1219 0. 3206
3.1325 3.3337
0. 1430 0. 3462
0.1533 0. 3583
0.1634 3.3699
0. 1733 0. 3811
0.1831 0.3918
0.1926 0.4021
0.2020 0.4121
0.2112 0.4217
0.2202 3.4313
0.2291 0.4400
3.2378 3.4487
0.2463 0.4572
0.2546 0.4653
0.2628 3.4732
0.2708 0.4809
0.2787 0.4884
0.2864 0.4956
0.2940 0.5026
0.3014 3.5094
0.3086 3.51S1
0.3158 0.5225
0.3228 3.5289
0.3296 0. 5349
0.3363 0. 5408
0.3430 3.5466
0.3494 0. 5523
0.3558 0.5578
0.3620 0.5631
0.3682 0. 5684
0.3742 0.5735
0.3801 3.5735
0.3859 0.5834
0.3916 3.5831
0.3970 0.5929
0.4027 0. 5973
0.4079 0.6019
0.4134 0. 6061
0.4184 0.6103
0.4238 0.6145
0.4286 0.6188
0.4338 0.6225
0.4386 3.6264
0.4434 0.6303
0.4481 3.6343
0.4528 0.6377



A22
95 per cent intervals

3=

p =
p =
p -
p =
p —

o —

p =
p=
p =
fj —

p —

p —

p =
p =
3 =

P =

P =

P =

P =

n —

0 =

p —
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p=
p =
0 =
p =
p =
p =
p =
p =
p *

p —

p =
p=
p =
p =
p=
p =
p =
p =
p =
p =
p =
p =
p —

p _—

p —

p —

p =
p —

p —

p *

p —

n ^

p =
p=
p =
p =

2
3
4
S
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4 f >
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51
10* 

0. 0009
0.0062
3.0142
0.0235
0 .1336
0.0442
0.0550
0.0658
0.0768
0.0877
0.0985
n. 1093
0.1199
0. 1303
0. 1407
0.1508
0.1608
0.1706
0.1802
0.1897
0. 1990
0.2081
0. 2170
0.2258
0.2344
0. 2428
0.251 1
0.2592
0.2671
3.2749
0.2826
0.2901
0.2974
0. 3^47
3.3117
0.3187
0. 3255
0.3322
0.3388
0.3452
0.3515
0.3578
0.3639
0.3698
0. 3757
0.3815
0.3872
0. 3928
0.'3981
0.4037
0.4088
3.4141
0.4191
0.4243
3.4290
0.4341
3.4387
0.4436
0.4482

HIGH 
0. 0884
0.1162
0.1412
0. 1640
0.1852
0.2049
0.2234
3.2411
0.2575
0.2732
0.2881
0. 3023
0.3159
0.3289
0.3413
0.3533
1.3548
0.3759
0.3866
0.3969
0.4068
0.4164
0.4257
0.4346
0.4433
0.4517
0.4598
0.4577
0.4754
0.4328
0.4900
0.4971
0.5039
0.5105
0.51 70
0.5232
n.5293
0.5353
0.5^11
0.5467
0.5523
0.5576
0.5629
0.5680
0.5730
0.5779
0.5827
0.5873
0.5921
0.5963
0.6009
0.6350
0.6094
0.6132
0.6174
0.6212
0.6252
0.6288
0.6324

0.
0.
0.
0.
0.
3.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
c.
0.
0.
o.
0.
3.
0.
0.
0.
0.
L).

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

52
1 Ort H 
0009 -.1.
0061
'1139
0231
0330
l'*34
0540
0646
0754
0862
0968
1074
1179
1282
1384
1484
1533
1680
1775
1868
1960
2050
2139
2225
231 1
2394
2476
2556
7635
2713
2789
2863
2936
3008
3078
3147
3215
328 1
3347
3411
3474
3536
3596
3656
371 5
3772
3829
3882
3939
3991
4046
4096
4149
4197
4248
4295
4344
4389
4438

0.
) •
0.
0.
0.
0.
1).
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
o.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
u.
0.
0.
u.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

IGH 
0868
1141
1387
1612
1821
2315
2198
2373
2535
2690
2838
2978
3113
3242
3366
3485
3599
3709
3815
3918
4016
4112
4204
4294
4380
4464
4545
4624
4700
4774
4846
4916
4984
5051
5115
5178
5239
5299
5357
5413
5469
5522
5575
5626
5676
5725
5773
5822
5866
5912
5954
5999
6039
6082
6120
6162
6198
6238
6273

53
LOW H 

O.Q019 0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.

0059
0136
0227
0324
0426
0530
0635
0741
0847
0952
1056
116C
1262
1362
1461
1558
1654
1748
1841
1931
2021
2108
2194
2278
2361
2442
2522
2600
2677
2752
2826
2899
2970
3040
3108
3176
3242
3317
3371
3433
3495
3555
3615
3673
3730

0.3787
0.
0.
0.

3342
3895

,3950
0.4001
0.4055
0.4134
0.,4155
0.4233
0.4253
0,,4299
0.4348
0.4392

0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.

IGH 
0852
1122
1364
1585
1791
1983
2163
2336
2497
2650
2796
2935
3069
3197
3320
3438
3551
3661
3766
3868
3966
4061
4153
4242
4328
4412
4492
4571
4647
4721
4793
4863
4931
4998
5062
5125
5186
5245
5304
5360
5416
5469
5522
5574
5624
5673
5721
5768
5816
5859
5904
5945

0.5989
0.
0.

6029
6071

0.6109
0.
0.

6149
,6185

0.6224



A23

54
LOW

0.0009
0.0058
0.0134
0.0222
0.0318
0.0418
0.0521
0.0624
0.0728
0.0833
0.0936
0.1039
0.1141
0. 1242
0.1341
0. 1438
0.1535
0.1629
0.1722
0.1814
0.1903
0. 1992
0.2078
0.2163
0.2247
0.2329
0.2410
0.2489
0.2566
0.2642
0.2717
0.2790
0.2862
0.2933
0. 30C3
0.3071
0.3138
0.3203
0.3268
0.3331
0.3394
0.3455
0.3515
0.3574
0.3632
0.3689
0. 3746
0.3801
0.3855
0.3906
0.3961
0.4011
0.4063
0.4111
0.4162
0.4209
0.4258
0.4303
0.4351

HIGH
0.0837
0.1102
0. 1341
0.1559
0. 1762
0. 1951
0.2130
0. 2300
0.2459
0.261 1
0.2755
0.2893
0.3026
0.3153
0.3275
0.3392
0. 3504
0.3613
0. 3718
0.3819
0.3917
0.4012
0.4103
0.4192
0.4277
0.4361
0.4441
0.4520
0.4596
0.4670
0.4741
0.481 1
0.4879
0.4945
0.5010
0.5073
0.5134
0. 5193
0.5251
0.5308
0.5363
0.5417
0.5470
0.5522
0.5572
0.5621
0.5669
0.5716
0.5762
0.5809
0.5851
0.5896
0.5937
0.5980
0.6019
0.6060
0.6097
0.6137
0.6173

55
LOW

0.0008
0.0057
0.0131
0.3218
0.0313
0.041 1
0.0512
0.0613
0.0716
0.0819
0.0921
0.1023
0.1123
0.1222
0.1320
0.1417
0.1512
0.1605
0.1697
0. 178ft
0.1876
0.1964
0.2050
0.2134
0.2217
0.2298
0.2378
0.2456
0.2533
0.2608
0.2683
0.2755
0.2827
0.2897
0.2966
0.3034
0.3130
0.3166
0.3230
0.3293
0.3355
0.3416
0.3476
0.3535
0.3593
0.3649
0.3705
0.3760
0.3812
0.3868
0.3918
0.3971
0.4020
0.4072
0.4119
0.4169
0.4215
0.4263
0.4307

HIGH
0.0823
0.1084
0.1318
0.1533
0.1734
0. 1921
0.2097
0.2265
0.2423
0.2573
0.2716
0.2853
0.2984
0.3110
0.3231
0.3347
0. 3459
0.3567
0.3671
0. 3772
0.3869
0.3963
0.4054
0.4142
0.4228
0.4311
0.4391
0.4469
0.4545
0.4619
0. 4691
0.4760
0.4828
0.4894
0.4959
0.5021
0.5083
0.5142
0. 5200
0.5257
0.5312
0. 5366
0.5419
0.5471
0.5521
9.5571
0.5619
0.5666
0.5714
0.5757
0.5803
0.5845
0. 5889
0.5928
0.5971
0.6009
0.6049
0.6086
0.6125

0.
0.
0.
0.
0.
0.

56
LOW
0008
0056
0129
0215
0307
0404

0.0503
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0603
0704
0806
0907
1007
1106
1203
1300
1395
1489
1582
1673
1762
1850
1937
2021
2105
2187
2267
2347
2424
2501
2575
2649
2721
2792
2862
2931
2998
3064
3129
3193
3256
3317
3378
3437
3496
3554
3610
3666
3721
3775
3826
3880
3929
3981
4029
4080
4126
4175
4220
4268

H
0.
0.
3.
0.
J.
0.
0.
3.
0.
0.
0.
0.
3.
o.
0.
0.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

I3H
0809
1366
1297
1509
17J6
1391
2065
2^32
2387
?536
2f>78
2813
2943
3068
3188
3333
3415
3522
3S?5
3725
3822
3916
4006
4394
4179
4262
4342
4420
4496
45 5 9
4641
4711
4773
4844
4939
4971
5032
5392
5150
5207
52S2
5316
5369
5 '+21
5471
5521
5569
5616
5662
5710
5752
5797
5838
5881
5920
5962
5999
6039
6075

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
3.
0.
0.
3.
0.
3.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

57
LOW
0008
0055
0127
0211
0302
0397
0495
0593
0693
0793
0892
0991
1089
1185
1281
1375
1468
1559
1649
1737
1824
1910
1994
2077
2158
2238
2316
2393
2469
2543
2616
2688
2759
2828
2896
2963
3029
3093
3157
3219
3230
3341
3400
3458
3516
3572
3627
3682
3736
3788
3838
3891
3940
3991
4038
4088
4134
4182
4226

HIGH
0.
3.
0.
0.
0.
3.
0.
3.
3.
0.
0.
0.
0.
0.
3.
3.
3.
0.
3.
0.
0.
3.
0.
0.
0.
0.
0.
3.
0.
3.
0.
0.
3.
0.
0.
0.
0.
0.
3.
0.
3.
0.
0.
3.
0.
0.
0.
0.
0.
3.
0.
3.
0.
0.
3.
0.
0.
3.
0.

0796
1048
1276
1485
1683
18S2
2034
2199
2353
2503
2643
2775
2904
3027
3146
3261
3371
3478
3531
3633
3777
3870
3960
4047
4132
4214
4294
4372
4447
4521
4592
4662
4729
4795
4859
4922
4983
5043
5131
5158
5213
5267
5320
5372
5422
5472
5520
5567
5614
5659
5705
5747
5791
5831
5874
5912
5953
5990
6029



A24
95 per cent intervals

u=
p =
p =
p =
p =
p =
p =
?~
p =
p =
p =
p =
p =
p =
p=
p =
p =
p =
p =
9-
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =
P =

58 
LOW HIGH

2
^
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
5 /
58
59
60

0.
r>.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
n m
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.

0008
0054
0124
0207
0297
0391
0487
0584
0682
0780
0878
0976
1072
1168
1262
1355
1447
1537
1626
1713
1800
1884
1968
2049
2130
2209
2287
2363
2438
2512
2584
2656
2726
2794
2862
2929
2994
3058
3121
3183
3244
3304
3363
3421
3478
3534
3590
3644
3697
3748
3802
3851
3903
3951
4001
4047
4096
4141
4188

0.0782
0.1331
0.1256
0.1463
0.1654
0.1835
0.2005
0.2168
0.2320
0.2465
0.2SO'*
0.2737
0.2865
0.2988
0.3106
3.3220
0.3329
0.3435
0.3537
0.3636
0.3732
0.3825
0.3914
0.4001
0.4086
0.4168
0.4747
0.4325
0.4400
0.4473
0.4544
0.4614
0.4681
0.4747
0.4811
0.4874
0.4935
0.4994
0.5053
0.5109
0.5165
0.5219
0.5272
0.5323
0.5374
0.5424
0.5472
0.5519
0.5566
0.5S13
0. 5656
0.5701
0.5742
0.5785
0.5825
0.5866
0. 5904
0.5944
0.5981

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.'J.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0-.
0.
0.
0.
0.
0.
0.
0.
0.

59 
LOW HIGH
0008
0053
0122
0204
0292
0384
0479
0574
0671
0768
0365
0961
1056
1151
1244
1336
1426
1516
1604
1690
1775
1359
1942
2023
210 3
213 1
7258
2334
2408
248 1
2553
2624
2694
2762
2829
2395
2960
3024
3087
3148
3209
32S9
3327
3385
3442
3498
3553
3607
3660
3712
3762
3815
3363
3914
3961
4310
4056
4103
4148

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0770
1015
1236
1440
1630
1808
1976
2137
2287
2431
2569
2701
2827
2949
3066
3179
3288
3393
3495
3593
3688
3781
3870
3957
4041
4122
4202
4279
4354
4427
4498
4567
4634
4700
4764
4827
4888
4947
5005
5062
5117
5171
5224
5276
5327
5376
5425
5472
5519
5564
5611
5652
5697
5737
5780
5818
5859
5897
5936

0.
0.

60 
LOW HIGH
0008
0052

0.0120
0. 0200
0.0287
0.0378
0. 0472
0.0566
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0661
0757
0852
0947
1041
1134
1226
1317
1406
1495
1582
1667
1752
1835
1916
1997
2076
2154
2230
2305
2379
2452
2523
2593
2662
2730
2797
2862
2927
2990
3053
3114
3174
3234
3292
3350
3406
3462
3516
3570
3623
3676
3727
3776
3827
3875
3925
3971
4019
4064
411 1

0.0758
0.0999
0.1218
0.1419
0. 1606
0.1781
0.1947
0.2105
3.2256
0.2398
0.2535
0.2665
0.2791
0.2912
0.3028
0.3140
0.3248
0.3352
0.3453
0.3551
0. 3646
0.3737
0.3826
0.3913
0.3996
0.4078
0.4157
0.4234
0.4308
0.4381
0.4452
0.4521
0.4588
0.4654
0.4718
0.4780
0.4841
0.4900
0.4958
0.5015
0. 5071
0.5125
0.5178
0.5229
0.5280
0.5330
0.5378
0.5426
0. 5472
0.5518
0.5562
0. 5608
0.5649
0.5693
0.573?
0.5774
0.5812
0.5852
0.5889



Beta distribution
Highest density regions 
99 per cent intervals

A25

P^ 2
P= 3
P= 4
P= 5
P= 6
P= 7
P= 8
P = 9
P= 10
P= 11
P= 12
P= 13
P= 14
P= 15
P = 16
P= 17
P= 18
P= 19
P= 20
P= 21
P= 22
P= 23
P= 24
P= 25
P= 26
P= 27
P= 28
P= 29
P= 30
P= 31
P= 32
P= 33
P- 34
P= 35
P= 36
P= 37
P= 38
P= 39
P= 40
P= 41
P= 42
P= 43
P= 44
P^= 45
P= 46
P= 47
P= 48
P= 49
P= 50
P = 51
P= 52
P= 53
P= 54
P= 55
P= 56
P= 57
P= 58
P= 59
P= 60

LOW HIGH
0.0414 0.9586
0.1332 0.9841
0.2180 0.9917
0.2917 0.9948
0.3548 0.9963
0.4087 0.9972
0.4549 0.9978
0.4947 0.9982
0.5294 0.9984
0.5598 0.9987
0.5866 0.9988
0.6104 0.9989
0.6316 C.9990
0.6507 0.9991
0.6680 0.9992
0.6836 0.9993
0.6979 0.9993
C.7109 0.9994
0.7229 0.9994
0.7339 0.9994
0.7441 0.9995
0.7535 0.9995
0.7623 0.9995
0.7705 0.9996
0.7781 0.9996
0.7852 C. 9996
0.7919 0.9996
0.7982 0.9996
0.8042 0.9996
0.8097 0.9997
0.8150 0.9997
0.82CO 0.9997
0.8248 0.9997
0.8292 0.9997
0.8335 0.9997
0.8376 0.9997
0.8414 0.9997
0.8451 0.9997
0.8487 0.9997
0.8520 0.9998
0.8552 0.9998
0.8583 0.9998
0.8613 0.9998
0.8641 0.9998
0.8668 0.9998
0.8694 0.9998
0.8720 0.9998
0.8744 0.9998
0.8767 0.9998
0.8789 0.9998
0.8811 0.9998
0.8832 0.9998
0.8852 C. 9998
0.8871 0.9998
0.8890 0.9998
0.8909 0.9998
0.8926 0.9998
0.8943 0.9998
0.8960 0.9998

LOW HIGH
0.0159 0.8668
0.0828 0.9172
0.1559 0.9433
0.2231 0.9579
0.2826 0.9669
0.3349 0.9729
0.3807 0.9771
0.4212 C.98C3
0.4569 0.9827
0.4837 0.9846
0.5171 0.9861
0.5426 0.9874
0. 5657 0. 9885
0.5865 0.9894
0.6055 0.9901
0.6229 0. 99C8
0.6388 0.9914
0.6534 0.9919
0.6669 0.9924
0.6794 0.9928
0.6911 0.9931
0.7019 0.9935
0.7120 0.9938
0. 7214 0. 9941
0.7302 0.9943
0.7385 0.9945
0.7463 0.9948
0.7537 0.9950
0. 7606 0.9951
0.7672 0.9953
0.7734 0.9955
0. 7793 0.9956
0.7849 0.9958
0.7902 0.9959
0. 7953 0. 9960
0.8001 0.9961
0.8C47 0.9962
0.8C91 0.9963
0.8133 0.9964
0.8173 0.9965
0.8212 0.9966
0.8249 0.9967
0. 8285 0.9968
0.8318 0.9969
0.8351 0.9969
0.8383 0.997C
0.8413 0.9971
0.8442 0.9971
0.8470 0.9972
0.8498 0.9972
0.8524 0. 9973
0.8549 0.9974
0.8573 0.9974
0.8597 0.9975
0.8620 0.9975
0.8642 0.9976
0.8664 0.9976
0.8684 0.9976
0.8705 0.9977

LOW HIGH
0.0083 0.7820
0.0567 0.8441
0. 1177 0. 8823
0.1773 0.9066
0.2321 0.9231
0.2816 0.9348
0.3259 0.9436
0.3656 0.9503
0.4013 0.9557
0.4334 0.9600
0.4624 0. 9636
0.4887 0.9666
0.5126 0.9692
0. 5344 C.9713
0.5545 0.9733
0.5729 0.9749
0.5899 0.9764
0.6056 0.9777
0.62C2 0. 9789
0.6337 0.9800
0.6463 0.9809
C.6581 C.9818
0.6692 0.9826
0.6795 0.9833
0.6893 C.9840
0.6984 0.9846
0.7C71 0.9852
0.7152 0.9857
0.7230 0.9862
0. 7303 0.9867
0.7372 0.9871
0. 7438 0.9875
0.7501 0.9879
0.7561 0.9883
0.7618 0.9886
0.7673 0.9889
0.7725 0.9892
0.7774 0. 9895
0.7822 0.9898
0. 7867 0.9900
0.7911 C.99C3
0.7953 0.9905
0.7993 0.9907
0.8032 0.9910
0.8070 0.9912
0.8105 0.9914
0.8140 0.9915
0.8174 0.9917
0. 82C6 0.9919
0.8237 0.9921
0.8267 0.9922
0.8296 0.9924
0.8324 0.9925
0.8351 0.9926
0.8378 0.9928
0.8403 0.9929
0.8428 0. 993C
0.8452 0.9932
0.8475 0.9933

SOURCE : Computed for this volume.



A26
99 per cent intervals

P= 2 
P= 3 
P = 4 
P= 5 
P= 6
P= 7 
P= 8 
P= 9 
P= 10 
P= 11
P= 12 
P= 13 
P= 14 
P = 15 
P= 16
P= 17 
P= 18 
P= 19 
P= 20 
P= 21
P= 22 
P= 23 
P= 24 
P = 25 
P= 26
P= 27
P= 28 
P= 29 
P= 30 
P= 31
P= 32 
P= 33 
P= 34 
P= 35 
P= 36
P= 37 
P= 38 
P= 39 
P= 4C 
P= 41
P= 42 
P= 43 
P= 44 
P= 45 
P= 46
P= 47 
P* 48 
P= 49 
P= 50 
P= 51
P = 52 
P= 53 
P= 54 
P= 55 
P= 56
P= 57
P= 58 
P= 59 
P= 60

LCW HIGH 
0.0052 0. 7C83 
0.0421 0.7769 
O.C934 C.8227 
0.1461 0.8539 
0.1961 0.8763
0.2422 C. 8929 
0.2844 0.9C58 
0.3227 0.9159 
0.3576 C.S241 
0.3893 0.9309
0.4183 0.9366 
0.4448 C.9415 
0.4690 0.9456 
0.4914 C.9492 
0.5120 0.9524
0.5310 0.9552 
0.5486 0.9577 
0.5650 0.9599 
0.5803 C.9620 
0.5945 C.9638
0.6079 0.9654 
C.6204 0.9669 
0.6321 0.9683 
0.6431 0.9696 
0.6535 C.9708
0.6634 0.9719 
0.6726 C.9729 
0.6814 C.9738 
0.6898 0.9747 
0.6977 C.9755
0.7C52 0.9763 
0.7124 0.9770 
0.7192 0.9777 
0.7257 0.9783 
0.7319 0.9789
0.7379 0.9795 
0.7435 0.9801 
0.7490 C.9806 
0.7542 C.9811 
0.7592 0.9815
0.7641 0.9820 
0.7687 0.9824 
0.7731 0.9828 
0.7774 0.9832 
0.7815 0.9836
0.7855 0.9839 
0.7893 C.9842 
0.7930 0.9846 
0.7966 C.9849 
0.8000 0.9852
0.8034 0.9855 
0.8066 0.9857 
0.8097 0.9860 
0.8127 0.9863 
0.8156 0.9865
0.8185 0.9868 
0.8212 0.9870 
0.8239 0.9872 
0.8265 0.9874

LCW HIGH 
0.0037 0.6452 
0.0331 0.7174 
0.0769 0.7679 
0.1237 0.8C39 
0.1693 0.8307
0.2122 0.8512 
C.2521 C.8674 
0.2888 0.8805 
C.3225 0.8913 
0.3535 0.9003
0.3820 0.9080 
C.4083 0.9146 
0.4326 0.9203 
0.4551 0.9253 
0.4759 0.9297
0.4952 0.9336 
0.5132 0.9372 
C.530C 0.94C3 
0.5457 0.9432 
C.5605 0.9458
0.5743 0.9482 
0.5873 0.9504 
0.5995 C.9524 
0.6110 0.9542 
C.6219 0.9559
0.6323 0.9575 
0.6420 0.9590 
C.6513 C.9604 
0.6601 0.9617 
0.6685 0.9629
0.6765 C. 9640 
0.6841 0.9651 
0.6914 0.9661 
0.6983 0.9670 
0.7049 0.9679
0.7113 0.9688 
C.7174 0.9696 
0.7232 0.9704 
C.7288 0.9711 
0.7342 0.9718
0.7394 0.9724 
0.7444 0.9731 
0.7491 0.9737 
C.7538 0.9742 
0.7582 C.9748
0.7625 0.9753 
0.7666 0.9758 
0.7706 0.9763 
0.7745 0.9768 
0.7783 0.9772
0.7819 0.9777 
0.7854 0.9781 
0.7888 C.9785 
0.7921 0.9789 
C.7953 C. 9793
0.7984 0.9796 
0.8013 0.9800 
C.8C42 C.98C3 
0.8071 0.9606

LOW HIGH 
0.0028 0.5913 
0.0271 0.6651 
0.0652 0.7184 
0.1C71 0.7578 
0.1488 0.787b
0.1887 0.8113 
C.2262 0.8302 
0.2612 0.8458 
0.2937 0.8587 
0.3238 0.8697
0.3517 0.8791 
C.3776 0.8873 
0.4016 0.8944 
0.4240 0.9007 
0.4448 0.9063
0.4642 0.9113 
0.4824 0.9158 
0.49S4 0.9199 
0.5154 0.9236 
0.5304 0.9269
0.5446 0.9300 
0.5579 0.9329 
C. 5705 0.9355 
0.5824 0.9379 
0.5937 0.9402
C.6044 0.9422 
0.6145 0.9442 
0.6242 0.9460 
0.6334 0.9477 
0.6421 0.9493
C.6505 C.9508 
0.6584 0.9523 
0.6661 0.9536 
0.6734 0.9549 
0.6803 0.9561
0.6870 0.9572 
0.6934 0.9583 
0.6996 0.9593 
C.7C55 0.9603 
0.7112 0.9612
0.7167 0.9621 
0.7220 0.9630 
0.7271 0.9638 
0.7320 0.9646 
0.7367 0.9653
0.7413 0.9660 
0. 7457 0.9667 
0.7500 0.9674 
0.7541 0.9680 
0.7581 0.9686
0.7619 0.9692 
0.7657 0.9698 
C.7693 0.9703 
0.7728 0.9708 
0.7762 0.9713
0.7796 C.9718 
0.7828 0.9723 
0.7859 C.9728 
0.7889 0.9732



A27

8 
LOW HIGH 

O.OC22 0.5451 
0.0229 0.6193 
0.0564 0.6741 
0.0942 0.7156 
0.1326 C.7479
0.1698 0.7738 
C.2051 0.7949 
0.2384 0.6124 
0.2696 0.8272 
C.2987 0.8399
0.3259 0.8508 
0.3512 0.8603 
0.3749 0.8688 
0.3970 0.8762 
0.4177 0.8829
0.4371 0.6889 
0.4553 0.8943 
0.4724 0.8992 
0.4885 0.9037 
C.5Q37 0.9078
C.5181 0.9115 
0.5316 0.9150 
0.5445 0.9182 
0.5566 C.5212 
0.5682 0.9239
C.5791 0.9265 
0.5€96 C.S289 
0.5995 0.9312 
0.6C90 0.9333 
0.6180 0.9353
0.6267 0.9372 
C.635C O.S390 
0.6429 0.9406 
0.6504 0.9422 
0.6577 C.9437
0.6647 0.9451 
0.6714 O.S465 
0.6778 O.S478 
0.6840 0.9490 
0.6900 0.9502
0.6957 0.9513 
0.7013 0.9524 
0.7C66 C.9534 
0.7117 0.9544 
C.7167 0.9553
0.7215 0.9562 
0.7262 0.9571 
0.7307 0.9579 
0.7350 0.9587 
0.7392 0.9595
0.7433 C.96C3 
0.7473 0.9610 
0.7511 C.S617 
0.7548 0.9623 
0.7585 0.9630
0.7620 0.9636 
0.7654 0.9642 
0.7687 0.9648 
0.7719 0.9654

9 
LOW HIGH 

0.0018 0.5053 
0.0197 0.5788 
0.0497 0.6344 
0.0841 0.6773 
0.1195 0.7112
0.1542 0.7388 
0.1876 0.7616 
0.2193 0.7807 
0.2492 0.7970 
0.2772 0.8111
0.3036 C.8234 
0.3283 0.8341 
0.3515 0.8437 
0.3733 0.8522 
0.3938 0.8598
0.4131 0.8667 
0.4312 0.8729 
0.4483 0.8786 
0.4645 0.8838 
0.4797 0.8886
0.4942 0.8930 
0.5679 0.8970 
0.5209 0.9008 
0.5332 0.9043 
0.5450 0.9076
0.5561 0.9106 
0.5668 0.9135* 
0.5770 0.9161 
0.5867 0.9187 
0.5959 0.9210
0.6048 0.9233 
0.6133 0.9254 
0.6215 0.9274 
0.6293 0.9293 
0.6368 0.9311
0.6440 0.9328 
0.6509 0.9344 
0.6576 C.9360 
0.6640 0.9375 
0.6702 0.9389
0.6762 C. 9402 
0.6819 0.9415 
0.6875 0.9427 
0.6928 0.9439 
0.6980 0.9451
0.7030 0.9462 
0.7079 0.9472 
0.7126 0.9482 
0.7172 0.9492 
0.7216 0.9501
0.7258 0.9510 
0.7300 0.9519 
0.7340 0.9527 
0.7379 0.9536 
0.7417 0.9543
0.7454 0.9551 
0.7490 0.9558 
0.7525 0.9565 
0.7558 0.9572

10 
LOW HIGH 

0.0016 0.47C6 
0.0173 0.5431 
0.0443 0.5987 
0.0759 0.6424 
0.1087 0.6775
0.1413 0.7C63 
0.1728 0.7304 
0.2030 0.7508 
0.2316 0. 7684 
0.2587 0.7836
0.2842 0.7970 
0.3083 0.8C88 
0.3310 0.8193 
0.3524 0.8288 
0.3726 0.8373
0.3916 0.8449 
0.4C96 0. 8519 
0.4267 0.8583 
0.4428 0.8642 
0.4581 0.8696
0.4726 0.8746 
0.4863 0.8792 
0.4994 0.8835 
0.5119 0.8875 
0.5237 0. 8912
0.5351 0.8947 
0.5459 0.8980 
0.5562 C.9011 
0.5661 0.9040 
0.5755 0.9067
0.5846 0.9C93 
0.5933 0.9117 
0.6016 0.9140 
0.6096 0.9162 
0.6173 0.9183
0.6247 0.92C3 
0.6319 0.9222 
0.6387 0.9240 
0.6453 0.9257 
0.6517 0.9274
0.6579 0.9290 
0.6638 0.9305 
0.6696 0.9319 
0.6751 C.9333 
0.6805 0.9346
0.6857 0.9359 
0.6907 0.9371 
0.6956 0.9383 
0.7003 0-9395 
0.7049 0.9406
0.7093 0.9416 
0. 7136 0.9426 
0.7178 0.9436 
0.7219 0.9446 
0. 7259 0.9455
0.7297 0.9464 
0.7334 0.9473 
0.7371 0.9481 
0.7406 0.9489

11
LCW HIGH 

0.0013 0.4402 
0.0154 0.5113 
0.0400 0.5666 
0.0691 0.6107 
0.0997 0.6465
0.1303 0.6762 
0. 1601 0. 7013 
0.1889 0.7228 
0.2164 0.7413 
0.2424 0.7576
0.2672 0.7719 
0.2906 0. 7846 
0.3128 0.7959 
0.3338 0.8062 
0.3536 C. 8154
0.3724 0.8238 
0.3902 0.8315 
0.4C71 0.8385 
0.4231 0.8450 
0.4384 0.8510
0.4528 0.8565 
0.4666 0.8616 
0.4798 0. 8664 
0.4923 0.8709 
0.5042 0.8750
0.5157 0.8789 
0.5266 0.8826 
0.5370 0.8861 
0.5470 0.8893 
0.5566 0.8924
0.5658 0.8953 
0.5747 0.8981 
0.5832 0.9007 
0.5913 C.9032 
0.5992 0.9055
0.6067 0.9078 
0.614C 0.9099 
0.6211 0.9120 
0.6278 0.9140 
0.6344 0.9158
0.6407 0.9176 
0.6466 C.9193 
0.6527 0.9210 
0.6584 0.9226 
0.6639 0.9241
0.6693 0.9255 
0.6745 0.9270 
0.6795 0.9283 
0.6844 0.9296 
0.6891 0.9309
0.6937 0.9321 
0.6982 0.9333 
0.7C25 C.9344 
0.7067 0.9355 
0.7108 0.9365
0.7148 0.9376 
0.7187 0.9386 
0.7225 0.9395 
0.7261 0.9405



A28

99 per cent intervals

Q =

P = 
P= 
P = 
P= 
P =
P= 
P= 
P = 
P= 
P=
P = 
P=
P= 
P= 
P=
P = 
P= 
P= 
P = 
P =
P= 
P= 
P= 
P= 
P=
P= 
P = 
P= 
P= 
P =
p= 
P= 
P = 
P= 
P=
P= 
p_
P= 
P=
P=
P = 
P= 
P= 
P= 
P=
P= 
P= 
P= 
P= 
P=
P= 
P= 
P= 
P= 
P=
P= 
P= 
P= 
P=

2 
3 
4 
5 
6
7
8 
9 

10 
11
12 
13 
14 
15 
16
17 
18 
19 
20 
21
22 
23 
24 
25 
26
27
28 
29 
30 
31
32 
33 
34 
35 
36
37 
38 
39 
40 
41
42 
43 
44 
45 
46
47 
48 
49 
50 
51
52 
53 
54 
55 
56
57 
58 
59
60

12
LOW HIGH 

0.0012 0.4134 
0.0139 0.4829 
0.0364 0.5376 
0.0634 0.5817 
0.0920 0.616C
0. 
C. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
C.
0.

1209 
1492 
1766 
2030 
2281
2521 
2749 
2965 
3170 
3365
3550 
3726 
3893 
4052 
4203
4348 
4485 
4617 
4742 
4862
4977
5087 
5192 
5293 
5390
5483 
5573 
5659 
5742 
5822
5899 
5973 
6045 
6114 
6180
6245 
63C8 
6368 
6426 
6483
6538 
6591 
6643 
6693 
6742
6789 
6835 
6880 
6923 
6965
7006 
7046 
7085 
7123

0.6483 
C.6741 
0.6964 
0.7158 
0. 7328
0.7479 
0.7614 
C.7735 
0.7844 
0. 7S43
0.8034 
0.8116 
C. 8193 
0.8263 
0.8328
0. 8388 
0.8444 
C.8496 
0.8545 
0.8591
0.8634 
0.8674 
0.8713 
0. 8749 
0.8783
0.8815 
C.8845 
0.8874 
C.8902 
0.8928
0.8953 
0.8977 
0.9000 
0.9022 
C.9C43
0.9063 
C.9C82 
0.9101 
0.9118 
0.9135
0.9152 
0.9167 
0.9183 
0.9197 
0.9211
0.9225 
0.9238 
C.9251 
0.9263 
0.9275
C. 9287 
0.9298 
0.9309 
C.9319

13 
LDH HIGH 

0.0011 0.3896 
0.0126 0.4574 
0.0334 0.5113 
0.0585 0.5552 
0.0854 0. 5917
0.1127 
0.1397 
0.1659 
0.1912 
0.2154
0.2386 
0.2607 
C.2818 
0*3019 
0.3210
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
C.
0. 
0. 
0. 
0. 
C.
0. 
0. 
0. 
0. 
C.
C. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.

3392 
3565 
3730
3888 
4038
4182 
4319 
4450 
4575 
4695
4810 
4920 
5026 
5128 
5226
5320 
5410 
5497 
5581 
5662
5740 
5815 
5886 
5958 
6C26
6092 
6156 
6217 
6277 
6335
6391 
6446 
6498 
6550 
6600
6648 
6695 
6741 
6786 
6829
6871 
6912 
6952 
6991

0.6224 
0.6488 
0.6717 
0.6917 
0. 7C94
C. 
0. 
0. 
0. 
0.
0. 
0. 
C. 
C. 
0.
0. 
0. 
0. 
C. 
0.
C. 
C. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
0.
0. 
0. 
C. 
0. 
C.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.

7251 
7393 
752C 
7635 
7740
7836 
7925 
8006 
8C81 
8151
8215 
8276 
8332 
8385 
8435
8481 
8525 
8567 
8606 
8643
8678 
8711 
8743 
8773
8802
8830 
8856 
8881 
8905 
8928
8950 
8971 
8992 
9011 
9030
9048 
9065 
9082 
9098 
9114
9129 
9144 
9158 
9172 
9185
9198 
9210 
9222 
9234

14 
LOW HIGH 

0.0010 0.3684 
0.0115 0.4343 
C.C3C6 0.4674 
0.0544 0.5310 
C.C797 0.5674
0. 1C56 
0.1312 
0. 1563 
0.1807 
0.2041
0.2265 
0*2480 
0.2686 
0.2882 
0.3069
0. 
C.
0. 
C. 
0.
0. 
0. 
0. 
C. 
0.
0. 
C. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
0.
0. 
0. 
C. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0* 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
C.

3248 
,3416 
3581 
3737
3886
4028 
4164 
4295 
442C 
454C
4655 
4765 
4871 
4973 
5072
5166 
5257 
5345 
5430 
5511
5590 
5667 
574C 
5812 
5881
5947 
6012 
6075 
6135 
6194
6251 
6307 
6361 
6413 
6464
6514 
6562 
6609 
6654 
6699
6 742 
6784 
6825 
6665

0.5984 
0.6251 
0.6485 
0.6690 
0.6872
0.7C35 
0.7182 
0.7314 
0. 7435 
0.7545
0.7646 
0.7739 
0.7825 
0.7905 
0.7979
0.8048 
0.8112 
0.8172 
0.8229 
C.8282
0.8332 
0.8379
0.8423 
0.8465 
0.8505
0.8543 
0.8579 
0. 8614 
0.8646 
0.8678
0.8707 
0.8736 
0.8763 
0.8789 
0.8814
0.8838 
0.8861 
0.8883 
0.6905 
0.8925
0.8945 
0.8964 
0.8982 
0.900C 
0.9017
0.9034 
0.9050 
0.9065 
0.9080 
0.9095
0.9109 
O.S122 
0.9135 
0.9148
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15
LCVi

O.OC09
0.0106
C.C287
0.0508
0.0747
G.C993
0.1238
0.147d
0.1712
0.1938
C.2156
0.2365
0.2565
0.2757
0 .2940
0.3115
0.3263
0.3444
C.3597
0.3745
0.3886
C.4C21
C.4151
0.4275
0.4395
0.4509
0.4620
0.4726
0.4828
C.4S27
0.5022
0.5113
C.5202
0.5287
0.5369
0.5449
0.5526
C.560C
0.5672
0.5742
C.5810
0.5875
0.5939
0.6001
0.6060
0.6118
0.6175
0.6230
0.6283
0.6335
0.6385
0.6434
0.6482
0.6529
0.6574
0.6618
0.6661
0.6703
0.6744

HIGH
0.3493
0.4135
0.4656
C.5C86
0.5449
0.5760
0.6030
-0.6267
C.6476
0.6662
0.6830
0.6981
0.7118
0.7243
0.7358
0.7464
0.7561
0.7651
0.7734
0.7812
0.7885
0. 7953
0.8016
0.8076
0. 6132
0.8185
0.8236
C. 8283
0.8328
0.6371
0.6411
0.8450
0.8486
0.8521
0.8555
0.8567
0.8617
0.6647
0.6675
0.8702
0.8727
0.8752
0.8776
0.6799
0.8821
0.8843
0. 6663
0.8883
0.6902
0.8921
0.8939
0.8956
0.8973
0.8989
0.9005
0.9020
0.9035
0.9049
0.9063

16
LDW

0.0008
0.0099
0.0267
C.0476
0.0703
O.C937
0. 1171
0.1402
0.1627
0.1846
0.2057
0.2260
0.2455
0.2642
0.2822
0.2993
0.3158
0.3317
0.3468
0.3614
0.3753
0.3887
0.4016
0.4140
0.4259
0.4373
0.4484
0.4590
0.4692
0.4791
0.4866
0.4978
0.5066
0. 5152
0.5235
0.5315
0.5393
0.5468
0.5540
0.5611
0.5679
0.5745
0.5810
0.5872
0.5933
0.5992
0.6049
0.6104
0.6158
0.6211
0.6262
0.6312
0.6361
0.6408
0.6454
0.6499
0.6543
0.6586
0.6628

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

HIGH
.3320
.3945
.4455
.4880
.5241
.5552
.5823
.6062
.6274
.6464
.6635
.6790
.6931
.7060
.7178
.7288
.7389
.7482
.7570
.7651
.7727
.7798
. 7865
.7928
.7987
.8043
.8096
.8146
.8193
.8239
.8281
.8322
.8361
. 8399
.8434
.8468
.8501
.8532
.8562
.8590
.8618
. 8645
.8670
.8695
.8718
.8741
.8763
.8785
.8805

0.8825
0
0
0
0

.8844

.8863

.8881

.8898
0.8915
0
0
.8932
.8948

C.8963
0.8978

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

17
LOW
0007
OC92
0251
0448
0664
0887
1111
1333
1551
1762

0. 1966
0.
0.

2164
2354

0.2536
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

2712
2881
3043
3199
3348
3492
363C
3763
3891
4013
4132
4246
4356
4461
4564
4662
4757
4849
4938
5024
5107
5188
5266
5342
5415
5486
5555
5622
5686
5749
5811
5870
5928
5985
6039
6C93
6145
6195
6245
6293

0.6340
0.
0.
0.
0.

6385
6430
6473
6516

HIGH
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

3164
3771
4271
4690
5C48
5358
5629
5669
6084
6276
645C
66C8
6752
6885
7007
7119
7223
732C
7411
7495
7574
7648
7718
7783
7845
7904
7S59
8012
8C62
8109
8154
8198
8239
8278
8315
8351
8386
8419
8451
8481
8510
8538
8566
8592
8617
8641
8665
8687
8709
8730
8751
8771
8790
88C9
8827
8644
8661
8878
8894

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

18
LDW
0007
OC86
0236
0423
0628
0842
1057
1271
1481
1685
1884
2075
2261
2439
2611
2777
2936
3C89
3236
3378
3514
3646
3773
3895
4012
4125
4235
4340
4442
4541
4636
4728
4817
4903
4966
5067
5146
5221
5295
5367
5436
5503
5569
5632
5694
5754
5813
5870
5925
5979
6032
6083
6133
6182
6229
6276
6321
6365
6408

HIGH
0.3021
0.3612
0.4101
0.4514
0.4868
0.5176
0.5447
0. 5688
0.5904
0.6098
0.6274
0.6435
0.6582
0.6717
0.6842
0.6957
0.7064
0.7164
C.7257
0.7344
0.7426
0.7503
0.7575
0. 7643
0.7708
0.7769
0. 7826
0.7881
0.7933
0.7983
0.8030
0.8075
0.8119
0.8160
C. 8199
0.8237
0.8273
0.83C8
0.8341
0.8373
0.8404
0.8434
0.8462
0.8490
0.8517
C.8542
0.8567
0.8591
0.8614
0.8637
0. 8658
0.8679
0.8700
0. 672C
0.8739
0.8757
0.8775
0.8793
0.8810



A30
99 per cent intervals

Q»

P= 2
P= 3
9- 4
P= 5
P= 6
P= 7
P= 8
P= 9
P= 10
P= 11
P= 12
P= 13
P= 14
P= 15
P= 16
P= 17
P= 18
P= 19
P= 20
P= 21
P= 22
P= 23
P= 24
P= 25
P= 26
P= 27
P= 28
P= 29
P= 30
P= 31
P= 32
P= 33
P= 34
P= 35
P= 36
P= 37
P= 38
P= 39
P- 40
P= 41
P= 42
P= 43
P= 44
P= 45
P= 46
P= 47
P= 48
P= 49
P= 50
P= 51
P= 52
P= 53
P= 54
P= 55
P= 56
P= 57
P= 58
?= 59
P= 60

19
LOfc HIGH

0.0006 0.2891
0.0081 0.3466
0.0223 C.3944
0.0401 0.4350
C.0597 C.470C
0.0801 C.5CC6
0.1008 0.5276
0.1214 0.5517
0.1417 0.5733
0.1615 0.5929
C. 1807 C.6107
0.1994 0.6270
0.2175 0.6419
0.2349 0.6556
0.2518 0.6683
0.2680 C.68C1
0.2836 C.6911
0.2987 0.7013
0.3132 C.71C9
0.3272 0.7199
0.3406 0.7283
0.3536 0. 7362
0.3662 0.7437
0.3783 C.7507
0.3899 C.7574
0.4012 0.7637
0.4121 0.7697
0.4226 0.7754
0.4327 0.7808
0.4426 C.786C
0.4521 0.7909
0.4613 0.7956
0.4702 C. 8CC1
0.4788 0.8044
0.4871 C.8C85
0.4952 0.8125
0.5031 0.8162
C.5107 C. 8199
0.5181 0.8234
0.5253 0.8267
0.5322 0.83CC
0.5390 0.8331
0.5456 C.8361
0.5520 C.839C
0.5582 0.8418
0.5643 0.8445
0.5702 0.8471
0.5760 0.8496
0.5816 C. 8521
0.5870 0.8544
0.5923 0.8567
0*5975 C.8589
0.6026 0.8611
0.6075 0.8632
0.6123 0.8652
0.6170 0.8672
0.6216 0. 8691
0.6261 0.8709
0.6304 0.8727

20
LCW HIGH

C.OC06 0.2771
0.0076 0.3331
C.0211 0.3798
0.0380 C.4197
0.0568 0.4543
0.0764 C.4846
0.0963 0.5115
0.1162 0.5355
0.1358 0.5572
0.1550 0.5769
C.1737 0.5948
0.1919 C.6H2
0.2095 0.6263
C.2266 0.64C3
0.2430 0.6532
0.2589 0.6652
0.2743 C.6764
0.2891 0-6868
0.3034 0.6966
0.3172 0.7C58
0.3305 0.7144
C.3434 0.7225
C.3558 C.73C2
0.3677 0.7375
C.3793 0.7444
0.3905 0.7509
0.4013 0.7571
0.4117 0.7630
0.4219 0.7686
0.4316 0.7739
0.4411 C.779C
0.4503 0.7839
C.4592 C.7886
0.4678 0.7931
0.4762 0.7973
0.4843 C.8015
0.4921 0.8054
0.4998 0.8092
C.5C72 C.8128
0.5144 0.8163
0.5214 0.8197
0.5282 0.8230
0.5348 0.8261
0.5413 C.8291
0.5475 0.8321
0.5536 C.8349
0.5596 C. 8376
0.5654 0.8403
0.5710 0.8428
0.5765 C.8453
0*5819 0.8477
0*5871 C.8500
0.5922 0.8523
0.5972 0.8545
0*6021 0.8566
0.6068 0.8587
0.6115 0.8607
0.6160 0*8626
0.6204 0*8645

21
LCW HIGH

0.0006 0.2661
O.CC72 0.3206
C.0200 0.3663
C.C362 0.4055
0.0542 0.4395
0.0731 0.4696
0.0922 0.4963
0.111*4 0.5203
C. 13C4 0.5419
0.1490 0.5616
0.1672 0.5797
C.1849 0.5962
0.2021 0.6114
0.2188 0.6255
0.2349 0.6386
0.2505 0.6508
0.2656 0.6622
C.2801 0.6728
0.2942 0.6828
C.3C78 0.6922
0.3209 0.7010
0.3337 0.7093
0.3459 0.7172
0.3578 0.7247
C.3692 0.7317
0.3803 0.7385
0.3911 0.7448
0.4C14 0. 7509
0.4115 0.7567
0.4213 0.7622
C.43C7 0. 7675
0.4399 0.7725
0.4487 0.7773
0.4573 0.782C
0.4657 0.7864
C.4738 0.7907
0.4817 C.7948
0.4893 0.7987
C.4967 0.8025
0.5040 0.8061
0.5110 0.8096
0.5178 0.813C
0.5245 0.8163
0.5310 0.8195
0.5373 0.8225
0.5434 0.8254
0.5494 0.8283
0.5552 0.8311
0.5609 0.8337
0.5664 0.8363
0.5718 0.8388
0.5771 C.8413
0.5823 0.8436
0.5873 0.8459
0.5922 0.8481
0.5970 0.8503
0*6017 0.8524
0.6C63 0.8544
0.6107 0.8564
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22 
LCW HIGH 

0.0005 0.2559 
0.0069 0.3C89 
0.0191 0.3537 
C.0346 0.3921 
0.0518 0.4257
0.0700 
O.C665 
0.1070 
0.1254 
0.1435
0.1612 
0.1785 
0.1952 
0.2115 
0.2273
0.2426 
0.2574 
C.2717 
0.2856 
0.2990
C.3120 
0.3245 
C.3366 
0.3484 
0.3597
C.3707 
0.3814 
0.3917 
0.4C17 
0.4114
C.4208 
0.4299 
0.4387 
0.4474 
0.4557
0.4638 
0.4717 
0.4793 
0.4868 
0.4940
0.5010 
0.5C79 
0.5146 
0.5211 
0.5274
0.5336 
0.5396 
0.5454 
0.5511 
C.5567
0.5622 
0.5675 
0.5727 
0.5777 
0.5827
0.5875 
0.5923 
0.5969 
0.6014

0.4554 
0.4819 
0.5058 
0.5274 
C.5472
0.5652 
C.5818 
0.5972 
0.6114 
0.6247
C. 
0. 
0. 
0. 
0.

6370 
6486 
6594 
6695 
6791

0.688C 
0.6966 
0. 7C46 
0.7122 
0.7195
0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
G. 
0. 
0. 
0.
0. 
0. 
C. 
0. 
0.
0. 
0. 
0. 
0. 
C.
C. 
0. 
0. 
0. 
0.
0. 
0.
0. 
0.

7263 
7329 
7391 
7451
7508
7562 
7614 
7664 
7711 
7757
7801 
7844 
7884 
7923 
7961
7998 
8033 
8067 
8099 
8131
8162 
8191 
8220 
8248 
£275
6301 
8326 
8351 
8374 
8398
6420 
8442 
8463 
8484

23 
LOW HIGH 

0.0005 0.2465 
0.0065 0.2981 
0.0182 0.3419 
0.0331 0.3796 
0.0496 0.4127
0.0671 0.4421 
0.0850 0.4684 
0.1030 0.4921 
0.1208 0.5137 
0.1384 0.5334
0.1556 C.5515 
0.1724 0.5681 
0.1888 0.5836 
0.2047 0.5979 
0.2202 0.6113
0.2352 0.6237 
0.2497 0.6354 
0.2638 0.6464 
0.2775 0.6566 
0.2907 0.6663
0.3034 0.6755 
0.3158 0.6842 
0.3278 0.6924 
0.3394 0.70C2 
0.3507 0.7075
0.3616 0.7146 
0.3722 0.7213 
0.3824 0.7277 
0.3923 0.7338 
0.4C20 0.7396
0.4113 0.7452 
0.4204 0.7505 
0.4292 0.7556 
0.4378 0.7606 
0.4461 0.7653
0.4542 0.7698 
0.4621 0.7742 
0.4697 0.7784 
0.4772 0.7824 
0.4844 0.7863
0.4915 0.7901 
0.4983 0.7937 
0.5050 0.7972 
0.5115 0.8006 
0.5179 0.8039
0.5241 0.8070 
0.5301 0.8101 
0.5360 0.8131 
0.5417 0.8159 
0.5474 0.8187
0.5528 0.8214 
0.5582 0.8241 
0.5634 0.8266 
0.5685 0.8291 
0.5735 0.8315
0.5784 0.8338 
0.5831 0.8361 
0.5878 0.8383 
0.5924 0.8405

0. 
0. 
0. 
0. 
0.

24 
LDW HIGH 
0005 0.2377 
0062 0.2880 
C174 C.33C8 
,0317 0.3679 
0476 0.4C05

0.0645 
0.0818 
0.0992 
0.1165 
0.1336
0. 
0. 
0. 
0. 
0.

1504 
1668 
1828 
1934 
2135

0.2282 
0.2425 
0.2563 
0. 2698 
0.2828
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.

2954 
3C76 
3195 
3310 
3421
3529 
3634 
3736 
3834 
393C
4023 
4114 
4201 
4287 
4370
4450 
4529 
4605 
4680 
4752
4823 
4891 
4958 
5C24 
5087
5149 
5210 
5269 
5327 
5383
5438 
5492 
5545 
5596 
5646
5695 
5743 
5790 
5836

0.4295 
0 .4555 
0.4791 
0.5006 
0.5202
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0.
o.
0 . 
0.
0. 
0- 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
C. 
0. 
0.

5363 
5550 
57C5 
5649 
5984
6109 
6227 
6338 
6442 
6541
6634 
6722 
6805 
6885 
6<56C
7032 
7100 
7165 
7228 
7287
7344 
7399 
7452 
7502 
7550
7597 
7642 
7685 
7727 
7767
76C5 
7843 
7879 
7914 
7948
7980 
8012 
8043 
8C73 
8101
8129 
8157 
8183 
8209 
8234
8258 
8282 
8304 
8327

C. 
0. 
G. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.

25
LCW HIGH 
0004 0.2295 
0059 0.2786 
0167 0.3205 
0304 0.3569 
0458 0.3890
0621 
0788 
0957 
1125 
1291
1455 
1615 
1771 
1924 
2072
2217 
2357 
2493 
2625 
2753
2878 
2998 
3115 
3229 
3339
3446 
3550 
3651 
3749 
3844
3937 
4027 
4114 
4199 
4282
4362 
4441 
4517 
4591 
4664
4734 
4803 
4870 
4935 
4999
5061 
5122 
5182 
5239 
5296
5351
5405 
5458 
5510 
556C

0.5609 
0.5658 
0.5705 
0.5751

0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
C.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
C.
0. 
0. 
0. 
0. 
C.

4176 
4434 
4668 
4861 
5077
5258 
5425 
5580 
5725 
5860
5987 
61C5 
6217 
6323 
6422
6516 
6606 
6690 
6771 
6847
6921 
6990 
7C57 
7120 
7181
724C 
7296 
7349 
7401 
7450
7498 
7544 
7588 
7631 
7672
7712 
7751 
7788 
7824
7859
7892 
7925 
7956 
7987 
8017
8046 
8074 
8101 
8128 
8153

0.8179 
0.8203 
0.8227 
0.8250



A32

99 per cent intervals

G =

P= 
p- 
P= 
P= 
P =
P = 
P= 
P= 
P= 
P=
P= 
P= 
P = 
P= 
P=
P- 
P= 
P=
P= 
P=
P = 
P= 
P = 
P = 
P=
P^= 
P= 
P= 
P= 
P=
P= 
P= 
P = 
P= 
P =
P= 
P= 
P= 
P= 
P=
P= 
P= 
P= 
P =
P=
P= 
P= 
P = 
P= 
P=
P = 
P= 
P= 
P* 
P=
P= 
P« 
P= 
P=

2 
3 
A 
5
6
7 
8 
9 

10 
11
12 
13 
14 
15 
16
17 
18 
19 
20 
21
22 
23 
24 
25 
26
27 
28 
29 
30 
31
32 
33 
34 
35 
36
37 
38 
39 
40 
41
42 
43 
44 
45 
46
47 
48 
49 
50 
51
52 
53 
54 
55 
56
57 
58 
59
60

C. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.

26 
LOW HIGH 
0004 0.2219 
,0057 0.2698 
0160 0.3107 
0292 0.3465 
0441 0.3781
0598 
0761 
0924 
1088 
1250
1409 
1565 
1718 
1868 
2013
2155 
2292 
2426 
2556 
2683
2805 
2925 
3040 
3153 
3262
3368 
3471 
3571 
3668 
3762
3855 
3944 
4031 
4115 
4198
4278 
4356 
4432 
4506 
4579
4649 
4718 
4785 
4850 
4914
4976 
5C37 
5097 
5155 
5211
5267 
5321 
5374 
5426 
5477
5526 
5575 
5622 
5669

0.4063 
C.4318 
0.4550 
C.4763 
C.4S58
0.5138 
C. 5305 
0.5460 
0.5605 
0. 5741
0.5868 
0.5S88 
C.61C1 
0.6207 
0.63C8
0.64C3 
0.6493 
0.6579 
0.6661 
0.6738
0.6813 
0.6883 
C.6951 
0.7016 
0.7078
0.7137 
0.7194 
0.7249 
C. 7302 
0.7353
0.7402 
C.7449 
0.7494 
C.7538 
0.7580
0.7621 
C. 766C 
0.7698 
0.7735 
C.7771
0.7806 
C.7839 
0.7872 
0.7903 
0. 7934
0.7964 
C.7992 
0. 8C21 
0.8048 
C.8074
0.8100 
0.8125 
C.8150 
0.8174

2 
LOW 

0.0004 
C.OC55 
0.0154 
0.0281 
0.0425
0.0578 
C.C735 
0.0894 
0.1053 
0.1211
0.1366 
0.151S 
0. 1668 
0.1815 
C. 1957
C.2C96 
0.2231 
C.2363 
0.2491 
0.2615
0.2737 
0.2854 
0.2968 
C.3C7S 
0.3187
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
C. 
0. 
0.

3293 
3394 
3494 
3590 
3684
3775 
3864 
3951 
4035 
4117
4197 
4275 
4351 
4425 
4497
4567 
4636 
4703 
4768 
4832

0.4894 
0.4955 
0.5015 
0.5073 
0.5130
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.

5185 
5240 
5293 
5345 
5396
5446 
5495 
5542 
5589

7
HIGH 

0.2148 
C.2615 
0.3016 
0.3366 
C.3677
0.3956 
C.42C9 
0.4439 
0.4649 
C. 4843
0.5023 
C.519C 
0. 5345 
0.5491 
0.5627
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
G. 
0.
0. 
0. 
0. 
C. 
0.
0. 
C. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
0.
0. 
0. 
C. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
C. 
C.

5754 
5875 
5988 
6095 
6197
6293 
6384 
6471 
6554 
6632
67C7 
6779 
6848 
6914 
6977
7C38 
7C96 
7152 
7205 
7257
7307 
7355 
7401 
7446 
7489
7531 
7571 
7611 
7648 
7685
7720 
7755 
7788 
7821 
7852
7883 
7912 
7941 
7969 
7997
8023 
8049 
8074 
8099

28 
LOW HIGH 

0.0004 0.2081 
C.OC52 0.2537 
0.0148 0.2929 
0.0271 0.3274 
C.C410 0.3580
0.0558 
0.0711 
0.0865 
0.1020 
0. 1174
0.1326 
0.1475 
C.1621 
0.1764 
0.1904
0, 
0. 
C. 
C. 
0.

,2C41 
2174 
23C3 
2429 
2552

0.2671 
0.2787 
0.2900 
C.3C10 
0.3117
0. 
0. 
0. 
C. 
C.
0. 
0. 
0. 
0.
0.
0. 
C.
0. 
0. 
G.
0.
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0* 
0. 
0.
C. 
0. 
0. 
0.

3221 
3322 
3420 
3516 
3609
3700 
3788 
3874 
3958 
4C3<5
4119 
4197 
4272 
4346
4418
4488 
4557 
4624 
4689 
4753
4815 
4876 
4936 
4994 
5051
5107 
5161 
5215 
5267 
5318
5368 
5417 
5465 
5512

0.3855 
0.4104 
0.4332 
0.4541 
0.4734
C.4913 
0.5080 
0.5235 
0.5380 
0.5516
0. 5644 
0.5765 
0.5879 
0.5987 
0.6089
0.6186 
0.6278 
0.6366 
0.645C 
0.6529
0.66C6 
0.6678 
0.6748 
0.6815 
0.6879
0.6941 
0.700C 
0.7057 
0.7111 
0.7164
0.7215 
C.7264 
0.7311 
0.7356 
0.7401
0.7443 
0.7484 
0.7524 
0.7563 
C.7601
0.7637 
0.7672 
0.7706 
0.7740 
0.7772
0.7803 
0.7834 
0.7863 
0.7892 
0.7920
0.7947 
0.7974 
0.8000 
0.8025



A33

29
LGta HIGH 

0.0004 0.2018 
C.0050 0.2463 
C.C143 0.2848 
0 .0262 0.3186 
0.0396 0.3487

30
LCW HIGH 

0.0004 0. 1958 
0.0049 0.2394 
0.0138 0.2770 
0.0253 0.3102 
0.0383 0.3399

31
LOW HIGH 

O.OC03 0.1903 
0.0047 0.2328 
0.0133 0.2697 
0.0245 0.3C23 
0.0371 0.3315

32
LOW HIGH 

0.0003 0.1850 
O.OC45 0.2266 
0.0129 0.2628 
0.0237 0.2948 
0.036C 0.3235

0.0540 C.3758 
0.0688 0.4005 
0.0639 0.4230 
G.0989 0.4438 
0.1139 0.4630

0.0523 0.3666
0.0667 0.3910
0.0813 0.4133
0.0960 0.4339
0.1107 0.4530

0.0507 0.3579 
0.0647 0. 382C 
0.0790 0.4041 
0.0933 0.4245 
0.1076 0.4434

0.0492 0.3495
0.0628 0.3733
0.0767 0.3952
0.0907 0.4154
0. 1047 0.4342

C.1287 0.4808 
0.1433 0.4974 
0.1577 0.5129 
0.1717 C.5274 
0.1854 0.5410

0.1251 0.4707
0.1394 0.4872
0.1535 0.5027
0.1672 0.5172
0.1807 0.5308

0.1217 0.4610 
0.1357 0.4774 
0.1495 0.4928 
0.1629 0.5073 
0.1761 0.52C9

0.1185 0.4517
0.1322 0.4680
0. 1457 0.4834
0.1589 0.4978
0.1719 0.5114

C.1988 0.5539 
0.2119 0.5660 
C.2246 0.5774 
C.237C 0.5883 
0.2491 0.5986

0.1938 0.5436
0.2067 0.5558
0.2192 0.5673
0.2314 0.5781
0.2433 0.5885

0.1891 0.5338
0.2017 0.5459
0.2140 0.5574
0.2261 0.5684
0.2378 0.5787

0.1846 C.5243 
0.1970 0.5364 
0.2091 0.5479 
0.2210 0.5589 
0.2325 0.5693

0.2609 0.6083 
0.2722 C.6176 
0.2835 0.6264 
0.2943 0.6349 
0.3C49 0.6429

0.2549 0.5983
0.2662 0.6077
0.2772 0.6166
0.2880 0.6251
0.2984 0.6332

0.2492 0.5886 
0.2604 0.5980 
0.2713 0.6C70 
0.2819 0.6156 
0.2922 0.6238

0.2436 C.5792 
0.2548 0.5887 
0.2656 0.5977 
0.2760 0.6063 
0.2863 0.6145

0.3152 0.6506 
C.3252 0.6580 
0.3350 0.6650 
0.3444 0.6718 
0.3537 C.6783

0.3086 0.6410
0.3185 0.6484
0. 3282 0.6556
0.3376 0.6624
0.3468 0.6690

0. 3023 0.6316 
0.3121 0.6391 
0.3217 0.6463 
0.331C 0.6532 
0.3401 0.6599

0.2962 0.6225
0.3059 0.6300
0.3154 0.6373
0.3247 0.6443
0.3337 0.6510

0.3627 0.6846 
0.3715 0.6906 
0.3800 C.6963 
0.3883 0.7019 
0.3965 C.7073

0.3557 C.6753 
0.3644 0.6814 
0.3729 0.6873 
0.3812 0.6929 
0.3893 0.6983

0.3490 0,6663
0.3576 0.6725
0.3661 0.6784
0.3743 0.6841
0.3823 0.6896

0.3425 0.6575 
0.3511 C.6637 
0.3595 0.6697 
0.3677 0.6755 
0.3757 0.6811

0.4C44 0.7124 
0.4121 0.7174 
0.4197 0.7222 
0.4270 0.7269 
0.4342 0.7314

0.3972 0.7036
0.4048 0.7087
0.4124 0.7135
0.4197 0.7183
0.4269 0.7228

0.3902 0.6949 
0.3978 0.7C01 
0.4053 0.7051 
0.4126 0.7099 
0.4198 0.7145

0.3835 0.6865
0. 3911 0.6917
0.3985 0.6967
0.4058 0.7016
0.4129 0. 7063

0.4412 0.7357 
0.4480 0.7399 
0.4547 0. 7440 
0.4613 C.7479 
0.4676 0.7518

0.4338 0.7273 
0.44C7 0.7316 
0.4473 0.7357 
0.4539 0. 7397 
0.4602 0.7436

0.4267 0.7190
0.4335 0. 7234
0.4402 0.7276
0.4467 0.7317
0.4531 0.7357

0.4198 0.7109
0.4266 0.7153
0.4333 0.7196
0.4398 0.7238
0.4461 0.7278

0.4739 0.7555 
0.4800 0.7591 
0.4859 0.7626 
0.4918 C.766C 
0.4975 0.7693

0.4665 0.7474 
0.4726 0.7511 
0.4785 0.7547 
0.4844 0.7581 
0.49C1 0.7615

0.4593 0.7395
0.4654 0.7433
0.4713 0.7469
0.4772 0.7504
0.4829 0. 7539

0.4524 0.7317
0.4584 0.7356
0.4644 0.7393
0.4702 0.7429
0.4759 0.7464

C.5C3C 0.7725 
0.5085 0. 7756 
0.5138 0.7786 
0.5191 0.7816 
0.5242 0.7845

0.4956 0.7648
0.5011 0.7680
0.5065 0.7711
0.5117 0.7741
0. 5168 0.7770

0.4885 0.7572 
0.4939 0.7605 
0.4993 0. 7636 
0.5045 0.7667 
0.5C97 0.7697

0.4815 C.7498 
0.4870 0.7531 
0.4923 0.7563 
0.4976 0.7595 
0.5027 0.7625

0.5292 0.7873
0.5341 0.7900
0.5389 0.7926
0.5437 0.7952

0.5219 0.7799
0.5268 0.7827
0. 5316 0.7854
0.5364 0.7881

0.5147 0.7726
0.5197 0.7755
0.5245 0.7783
0.5293 0.7810

0.5C78 0.7655
0.5127 0.7684
0.5176 0.7713
0. 5224 0.7740



A34
99 per cent intervals

Q=

P = 
P= 
P = 
P = 
P =
P= 
P= 
P- 
P = 
P=
P= 
P= 
P= 
P = 
P=
P= 
P = 
P= 
P= 
P=
P= 
P= 
P= 
P= 
P =
P = 
P = 
P = 
P= 
P =
P= 
P= 
P = 
P= 
P=
P= 
P= 
P= 
P = 
P=
P= 
P= 
P= 
P = 
P =
P= 
P= 
P= 
P=
P =
P= 
P = 
P=
P= 
P =
P= 
P= 
P= 
P=

2 
3 
4 
5 
6
7 
8 
9 
10 
11
12 
13 
14 
15 
16
17 
18 
19 
20 
21
22 
23 
24 
25 
26
27
28 
29 
30 
31
32 
33 
34 
35
36
37
38 
39
40 
41
42 
43 
44 
45 
46
47 
48 
49 
5C 
51
52 
53 
54 
55 
56
57 
58 
59 
60

0 
0 
0 
0 
C
0 
0 
0 
0
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
C 
G 
0 
0

33
LDW H 
.0003 0. 
.0044 C. 
.0125 0. 
.0230 0. 
.0349 0.
.0477 
.0610 
.0746 
.0863 
.1019
. 1155 
.1289 
.1421 
.1550 
.1678
. 1802 
.1925 
.2044 
.2161 
.2275
.2386 
.2495 
.2601 
.27C4
.280t>
.2904 
.3000 
.3094 
.3186 
.3275
.3363 
.3448 
.3531 
.3613 
.3692
.3770 
.3845 
.3920 
.3992 
  4C63
.4132 
.4200 
.4266 
.4331 
.4394
.4456 
.4517 
.4576 
.4635 
.4692
.4748 
.4802 
.4856 
.49C3 
.4960
.5011 
.5060 
.5109 
.5156

0. 
0. 
0. 
0.
0.
C.
0. 
C. 
0. 
0.
0. 
0. 
0. 
C. 
0.
C. 
C. 
0. 
C. 
0.
0. 
C. 
0. 
0. 
0.
0. 
C.
0. 
0. 
0.
0. 
0. 
G. 
0. 
C.
0. 
0. 
0. 
0. 
0.
C.
0. 
C. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0- 
C.

IGH 
1800 
22C7 
2562 
2876 
3159
3416 
3650 
3867 
4067 
4253
4427 
4590 
4743
4887 
5022
5151 
5272 
5387 
5497 
5601
57C1 
5796 
5886 
5973 
6C56
6136 
6212 
6285 
6356 
6424
6489 
6552 
6613 
6671
6728
6782 
6835 
6886 
6935 
6983
7030 
7075 
7118 
716C 
7201
7241 
7280 
7318 
7354 
7390
7425 
7458 
7491 
7523 
7554
7585 
7615 
7643 
7672

34 
LDW HIGH 

0.0003 0.1752 
0.0042 0.2151 
0.0121 C.2499 
0.0223 0.2808 
0.0339 0.3C86
0.0464 
0.0594 
C.0726 
C.Oe6C 
0.0993
0.1126 
0.1257 
0.1386 
0.1514 
0.1639
0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
C. 
0. 
C.
0. 
0. 
0. 
0. 
C.
C.
0. 
0. 
0. 
0.
0. 
0. 
C. 
C. 
0.
C. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
C.
C. 
0. 
0. 
0.

1761 
1881 
1999 
2114 
,2227
2336 
2444 
2548 
2651 
2751
2848 
2943 
3037 
3127 
3216
3303 
3387 
347C 
3551 
3630
3707
3782 
3856 
3928 
3999
4C68 
4135 
4201 
4266 
4329
4391 
4452 
4511 
4569 
4626
4682 
4737 
4790 
4843 
4894
4945 
4995 
5043 
5091

0.3339 
0.3571 
0.3785 
C.3984 
0.4168
0.4341 
0.4503 
0.4655 
C.4798 
0.4934
0.5062 
C.5183 
0.5298 
0. 5408 
0.5513
0.5613 
C.5708 
0.5799 
0.5886 
C. 5969
0.6049 
0.6126 
0.6200 
0.6271 
0.6339
0.6405 
0.6469 
0.6530 
0.6589 
0.6646
C.67C1 
0.6755 
C.6806 
0.6856 
0.6905
C. 6952 
0.6997 
0.7C41 
C.7G84 
0.7126
0.7166 
0.7206 
0.7244 
C. 7281 
0.7317
0. 7353 
0. 7387 
0.7420 
0.7453 
0.7485
0.7516 
0.7546 
0.7575 
0. 7604

35 
LCW HIGH 

O.OC03 0. 17C8 
0.0041 0.2098 
C.C117 0.2439 
0.0217 0.2743 
0.0330 0.3017
C.0451 
0.0578 
0.0707 
C.G638 
0.0966
0.1098 
0.1227 
0.1354 
0. 1479 
C.1601
0. 
C. 
0.
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
C.
G. 
C. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
C. 
0.
0. 
G. 
0. 
0. 
0.
0. 
0. 
0. 
0.

1722
1840 
1956 
2069 
2180
2289 
2394 
2498 
2599 
2698
2795 
2889 
2S81 
3071 
3159
3245 
3329 
3411 
3491 
3570
3646 
3721 
3795 
3866 
3937
4CC5 
4C72 
4138 
4203 
4266
4327
4388 
4447 
45C5 
4562
4618 
4673 
4726 
4779 
4631
4881 
4931 
4979 
5027

0.3266 
0.3496 
0.3707 
0.3904 
0.4087
0.4258 
0.4419 
0.4570 
0.4713 
0.4848
0.4976 
0.5097 
0.5212 
0.5322 
0.5427
0.5526 
0.5622 
0.5713 
0.5801 
0.5885
0.5965 
0.6042 
0.6117 
0.6188 
0.6257
0.6323 
0.6387 
0.6449 
0.6509 
0.6566
0.6622 
0.6676 
0.6728 
C.6779 
0.6828
0.6875 
0.6S22 
0.6966 
0.701C 
0.7052
0.7093 
0.7133 
0.7172 
C.7209 
0.7246
0.7282 
0.7317 
0.7351 
0.7384 
C.7416
0.7448 
0.7478 
0.7508 
0.7538



A35

36 
LCW HIGH

C.OC03 0.1665
O.OC4C 0.2C47
0.0114 0.2382
O.C211 0.2681
0.0321 0.2951
0.0439 0.3197
O.C563 C.3423
0.0689 0.3632
O.C817 C.3827
0.0945 0.40C8
0.1072 0.4178
0.1198 0.4338
0.1322 0.4489
0.1445 0.4631
0.1566 C.4765
0.1685 0.4893
0.1801 0.5014
0.1915 0.5129
C.2C27 0.5238
0.2136 0.5343
0.2243 0.5443
0.2347 0.5539
C.245C 0.5630
0.2550 0.5718
0.2647 0.5802
0.2743 C.5883
0.2836 0.5961
0.2927 0.6035
0.3C17 0.61C7
0.3104 0.6177
0.3189 0.6243
0.3272 0.6308
0.3354 0.6370
0.3434 C.6430
0.3512 0.6488
0.3588 0.6545
0.3662 0.6599
0.3735 0.6652
0.38C7 0.6703
0.3876 0.6753
0.3945 0.6801
0.4C12 0.6847
0.4077 0.6893
0.4142 0.6937
0.4204 0.6979
0.4266 0.7021
C.4326 0.7061
0.4386 C.7101
0.4443 0.7139
0.4500 0.7176
0.4556 0.7212
0.4611 0.7248
0.4664 C.7282
0.4717 0.7316
0.4768 0.7349
0.4819 0.7381
0.4869 0.741-2
0.4917 0.7442
0.4965 0.7472

37
LOW HIGH

0.0003 0.1624
0.0039 0.1999
0.0111 0.2327
0.0205 0.2621
0.0312 0.2387
0.0428 0.3130
0.0549 0.3353
0.0672 0.3560
0.0797 0.3753
0.0922 0.3933
0.1047 0.4101
0.1170 0.4260
0.1293 0.4410
0.1413 0.4551
0.1532 0.4685
0.1649 0.4812
0.1763 0.4933
0.1875 0.5048
0.1985 0.5157
0.2093 0.5262
0.2199 0.5362
0.2302 0.5458
0.2403 0.5550
0.2502 0.5638
0.2598 0.5722
0.2693 0.5803
0.2785 0.5881
0.2876 0.5956
0.2964 0.6028
0.3051 0.6098
0.3135 0.6165
0.3218 0.6230
0.3299 0.6293
0.3378 0.6354
0.3455 0.6412
0.3531 0.6469
0.3605 0.6524
0.3678 0.6577
0.3749 0.6629
0.3818 0.6679
0.3886 0.6727
0.3953 0.6775
0.4018 0.6820
0.4082 0.6865
0.4145 0.6908
0.4206 0.6950
0.4266 0.6991
0.4325 0.7031
0.4383 0.7070
0.4440 0.7107
0.4496 0.7144
0.4550 0.7180
0.4604 0.7215
0.4656 0.7249
0.4708 0.7282
0.4759 0.7315
0.4808 0.7346
0.4857 0.7377
0.4905 0.7408

38 
LOW HIGH

0.0003 0.1586
0.0038 0.1953
C.C108 0.2275
0.0199 0.2565
0.0304 0.2826
0.0417 0.3C66
0.0535 0.3286
0.0656 0.3491
0.0778 0.3681
0.0901 0.3860
0. 1023 0.4C27
0.1144 0.4185
0.1264 0.4333
0.1383 0.4474
0.1499 0.4607
0. 1614 0.4734
0. 1727 0.4854
0.1838 0.4969
0. 1946 0. 5C79
0.2052 0.5183
0.2156 0.5283
0.2258 0.5379
0.2358 0.5471
0.2456 0.5559
0.2551 0.5644
0.2645 0.5725
0.2736 C.58C3
0.2826 0.5879
0.2913 0.5952
0.2999 0.6C22
0.3083 0.6089
0.3165 0.6155
0.3245 0.6218
0.3324 0.6279
0.3401 0.6338
0.3476 0.6395
0.3550 0.6450
0. 3622 0.65C4
0.3693 0.6556
0.3762 C.6607
0.3829 0.6656
0.3896 0.6703
0.3961 0. 6749
0.4025 0.6794
0.4087 0.6838
0.4148 0.6881
0.4208 0.6922
0.4267 0.6962
0.4325 0.7CC2
0.4382 0.7040
0.4437 0.7077
0.4492 0.7113
0.4545 0.7149
0.4597 0.7183
0.4649 0.7217
0.470C 0.7250
0.4749 0.7282
0.4798 0.7313
0.4846 0.7344

39 
LOV< HIGH

0.0003 0.1549
0.0037 0.1909
0.0105 0.2226
0.0194 0.2510
0.0296 0.2768
0.0407 0.3004
0.0522 0.3222
0.0640 0.3424
0.0760 C.3613
0.0880 0.3789
0.1000 0.3955
0.1119 0.4112
0.1237 0.4260
0. 1353 C.4400
0.1468 0.4532
0.1581 0.4658
0.1692 0.4779
0.1801 0.4893
0.1908 0.5002
0.2013 0.5107
0.2116 0.5207
0.2216 C. 5303
0.2315 0.5395
0.2412 0.5483
C.2506 C. 5568
0.2599 0.5649
0.2689 0.5728
0.2778 0.5803
0.2865 0.5876
0.2949 0.5947
0.3033 0.6015
0.3114 0.6080
0. 3194 0. 6144
0.3272 0.6205
0.3348 0.6265
0.3423 0.6322
0.3496 0.6378
0.3568 0.6432
0.3638 0.6485
0.3707 0.6536
0.3774 0.6585
0.3840 0.6633
0.3905 0.6680
0.3969 0.6725
0.4031 0.6769
0.4C92 0.6812
0.4152 0.6854
0.4210 0.6895
0.4268 0.6935
0.4324 0.6973
0.4380 0.7011
0.4434 0. 7048
0.4488 0.7084
0.4540 0.7119
0.4592 0.7153
0.4642 0.7186
0.4692 0. 7218
0.4740 0.7250
0.4788 0.7281



A36
99 per cent intervals

Q =

P = 
P = 
P= 
P=
P =
p=
P = 
P= 
P= 
P-
P= 
P= 
P= 
P= 
P=
P= 
P= 
P = 
p= 
P=
P=
P=
P= 
P= 
P=
P = 
P= 
P= 
P = 
P=
P =
P = 
P= 
P= 
p=
P= 
P = 
P= 
P=
P=
P= 
P=
P= 
P=
P=
P= 
P= 
P- 
P= 
P=
P = 
P= 
P= 
P = 
P =
P = 
P = 
P= 
P=

2 
3 
4 
5 
6
7 
8 
9 

10 
11
12 
13 
14 
15 
16
17 
18 
19 
20 
21
22 
23 
24 
25 
26
27 
28 
29 
30 
31
32 
33 
34 
35 
36
37 
38 
39 
40 
41
42 
43 
44 
45 
46
47
48 
49 
50 
51
52 
53 
54 
55 
56
57 
58 
59 
60

0. 
0. 
C. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
C. 
0.
0. 
C. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
C.
0. 
0. 
0. 
0.

40 
LCW 
0003 
0036 
0102 
0189 
0289
0397
0510 
0625 
0743 
0860
0978 
1095 
1211 
1325 
1438
1549 
1659 
1766 
1872 
1975
2077 
2176 
2273 
2369 
2462
2554 
2644 
2731 
2817 
2901
2964 
3065 
3144 
3221 
3297
3371 
3444 
3515 
3585 
3654
3721 
3787 
3851 
3S14 
3976
4037 
4097 
4155 
4213 
4269
4324 
4379 
4432 
4484 
4536
4586 
4636 
4684 
4732

HIGH 
0.1513 
0.1867 
0.2178 
0.2458 
0.2712
0.2945 
0.3160 
0.3360 
0.3547 
0.3722
0.3886 
C.4C42 
0.4188 
0.4328 
0.446C
0.4585 
C.47C5 
0.4819 
0.4928 
C.5033
0.5132 
0.5228 
0.532C 
0.5409 
0.5494
0.5575 
0.5654 
0. 5730 
0.58C3 
0.5874
C. 5S42 
0.6008 
C.6072 
0.6134 
0.6193
0.6251 
0.6307 
0.6362 
0.6415 
0.6466
0.6516 
0.6564 
0.6612 
0.6657 
0.6702
0.6745 
C.6788 
0.6829 
0.6869 
0.6SC8
0.6946 
0.6983 
0.7019 
0.7055 
0. 7C89
0.7123 
0.7156 
0. 7188 
0.7220

0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
C. 
0.
0. 
C. 
0. 
0. 
0.
0. 
0. 
0. 
0.
0.
0. 
0. 
C. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0.
o.
C. 
0. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
C.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.

41 
LCW 
0002 
OC35 
0100 
0185 
0282
0388 
0498 
0611 
0726 
C842
0957 
1072 
1186 
1298 
14-10
1519 
1627 
1733 
1837 
1939
2C39 
2137 
2233 
2328 
2420
2511 
2599 
2686 
2772 
2855
2937 
3017 
3095 
3172 
3247
3321 
3393 
3464 
3534 
3602
3669 
3734 
3798 
3861 
3923
3984 
4043 
4101 
4159 
4215
4270 
4324 
4377
4430 
4481

0.4531 
0.4581 
0.4630 
0.4677

HIGH 
0.1480 
C.1827 
0.2133 
C.2408 
0.2658
0. 
C. 
0. 
0. 
C.
0. 
0. 
0. 
0. 
C.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0.

2888 
3100 
3298 
3483 
3656
3820 
3974 
4119 
4258 
4389
4514 
4633 
4747 
4856 
4960
5060 
5156 
5248 
5336 
5421
5503 
5582 
5658 
5731 
5802
5871 
5937 
6001 
6063 
6124
6182 
6238 
6293 
6346 
6398
6448 
6497 
6545 
6591 
6636
6680 
6722 
6764 
6804 
6844
6882 
6920 
6956 
6992 
7027
7C61 
7095 
7127 
7159

0. 
C. 
0. 
0. 
0.
0.
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
C.
0. 
0. 
C. 
0. 
0.
C. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0*
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0.

42
LOW HIGH 
0002 0.1448 
0034 0* 1788 
0097 0.2089 
0180 0.2359 
0276 0.2606
0379 
0487 
0598 
0710 
0824
0937 
1050 
1162 
1273 
1382
1490 
1596 
17CO 
1803 
1904
2002 
2099 
21S5 
2288 
2379
2469 
2557 
2643 
2727
2810
2891 
2970 
3048 
3125 
3199
3273 
3344 
3415 
3484 
3552
3618 
3683 
3747 
3810 
3871
3932 
3991 
4049 
4106 
4162
4217 
4271 
4324 
4376 
4428
4478 
4528 
4576 
4624

0.2833 
0.3043 
0.3238 
0.3421
0.3593
0.3755 
0.3908 
0.4C53 
0.4190 
0.4321
0.4445 
0.4564 
0.4678 
0.4786 
0.4890
0.499C 
0.5085 
0.5177 
0.5266 
0.5351
0.5433 
0.5512 
0.5588 
0.5662 
0.5733
0.5802 
0.5868 
0.5932 
0.5995 
0.6055
0.6114 
0.6171 
0.6226 
0.6279 
0.6331
0.6382 
0.6431 
0.6479 
0.6525 
0.6571
0.6615 
0.6658 
0.670C 
0.6741 
0.6781
0.6819 
0.6857 
0.6894 
0.6931 
0.6966
0.700C 
0.7034 
0.7067 
0.7099



A37

43 
LCW HIGH 

0.0002 0.1417 
O.CC33 0.1751 
0.0095 0.2C47 
0.0176 0.2313 
O.C269 0.2556
0.0370 
0 . 04 76 
0.0585 
0.0695 
0.0807
0.0918 
0.1029 
0.1139 
0.1248 
0.1355
C.1462 
0.1566 
0.1669 
0.177C 
0.1870
0.1967 
0.2C63 
0.2157 
0.2249 
0.2340
0.2429 
0.2516 
0.2601 
0.2684 
0.2766
0.2847 
0.2925 
0.3003 
0.3078 
C.3153
0.3225 
0.3297 
0.3367 
0.3436 
C.35C3
0.3569 
0.3634 
0.3697 
0.3760 
0.3821
C.3881 
0.3940 
0.3998 
0.4055 
0.4111
0.4166 
0.4220 
0.4273 
0.4325 
0.4376
0.4426 
0.4475 
0*4524 
0.4572

0.2780 
0.2987 
C.3181 
0.3362 
C.3532
0.36S2 
0.3844 
0.3988 
0.4125 
0.4255
0.4378 
0.4497 
0.4610 
C.4718 
0.4822
C.4921 
C.5017 
0.5109 
0.5197 
0.5282
0.5364 
C.5443 
0.5520 
0.5593 
0.5665
0.5734 
0.5800 
0.5865 
0.5928 
0.5988
0.6047 
0.6104 
0.6160 
0.6213 
0.6266
C.6317 
0.6366 
0.6414 
0.6461 
0.6507
0.6551 
0.6595 
0.6637 
0.6678 
0.6718
0.6758 
0.6796 
0.6833 
0.6870 
0.6906
0.6940 
0.6974 
0.7008 
0.7040

44 
LOW HIGH 

C.0002 0.1387 
0.0032 0.1715 
0.0093 0.2007 
0.0172 0.2269 
0.0263 0.2509
0.0362 
0.0466 
0.0573 
0.0081 
0.0790
0. 0899 
0.1008 
0.1117 
C. 1224 
0.1330
0.1434 
0. 1538 
0.1639 
0.1739
0.1837
0.1933 
0.2028 
0.2121 
0.2212 
0.2302
0.2389 
0.2476 
0.2560 
0.2643 
0.2724
0.2804 
0.2882 
0.2959 
0.3034 
0.3107
0.3180 
0.3251 
0.3320 
0.3388 
0.3455
0.3521 
0.3586 
0.3649 
0.3711 
0.3772
0.3832 
0.3891 
0.3948 
0.4005 
0.4061
0.4115 
0.4169 
0.4222 
0.4274 
0.4325
0.4375 
0.4425 
0.4473 
0.4521

0.2729 
0.2934 
0.3125 
0.3304 
0.3473
0.3632 
0.3783 
0.3925 
0.4061 
0.4190
0.4314 
0.4431 
0.4544 
0.4652 
C.4755
0.4354 
0.4950 
0.5042 
0.5130 
0.5215
0.5297 
0.5376 
0.5453 
0.5527 
0.5598
0.5667 
0.5734 
0.5799 
0.5862 
0.5923
0.5982 
0.6039 
0.6095 
0.6149 
0.6202
C.6253 
0.6303 
0.6351 
0.6398 
0.6444
0.6489 
0.6533 
0.6575 
0.6617 
0.6657
0.6697 
0.6736 
0.6773 
0.6810 
0.6846
0.6881 
0.6916 
0.6949 
0.6982

0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.

45 
LCW HIGH 
0002 0. 1359 
0031 0.1682 
0090 0.1968 
0168 0.2226 
0258 0.2462
0354 
0456 
0561 
0667 
0774
0882 
C989 
1095 
1201 
1305
1408 
1510 
1610 
1709 
1805
1901 
1994 
2C86 
2176
2265
2352 
2437 
2521 
2603 
2683
2762 
2840 
2916 
2990 
3063
3135 
3206 
3275 
3343 
3409
3475 
3539 
3602 
3664 
3724
3784 
3842 
3900 
3956 
4012
4066 
4120 
4173 
4224 
4275

0.4325 
0.4375 
0.4423 
0.4471

0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.
0.
0. 
0.
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
C. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.

2680 
2883 
3072 
3249
3416
3*74 
3723 
3865 
3999 
4128
4251 
4368 
4480 
4587 
469C
4789 
4885 
4976 
5065 
5150
5232 
5311 
5387 
5461 
5533
56C2 
5669 
5734 
5797 
5858
5918 
5975 
6031 
6C86 
6139
6190 
6240 
6289 
6336 
6383
6428 
6472 
6515 
6557 
6597

0.6637 
0.6676 
0.6714 
0.6751 
0.6788
0. 
0. 
C. 
0.

6823 
6858 
6892 
6925

0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0.
o.
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.

46 
LOW 
OC02 0 
0031 0 
0088 0 
0164 0 
0252 0
0347 
0447 
0549 
0654 
0759
0865 
0970 
1C75 
1179 
1282
1383 
1483 
1562 
1679 
1775
1869 
1961 
2052 
2141 
2229
2315 
2399 
2482 
2564 
2643
2722 
2799 
2874 
2948 
3021
3092 
3162 
3231 
3298 
3364
3429 
3493 
3556 
3617 
3678
3737 
3795 
3853 
3909 
3964

0.4019 
0.4072 
0.4125 
0.4176 
0.4227
0. 
0. 
0. 
0.

4277 
4326 
4374 
4422

0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
C 
0 
0
C 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0

HIGH 
.1332 
.1649 
.1930 
.2185 
.2418
.2633 
.2833 
.3020 
.3195 
.3361
.3517 
.3665 
.3806 
.3940 
.4067
.4189 
.4306 
.4418 
.4525 
.4627
.4726 
.4821 
.4913 
.5001 
.5086
. 5168 
.5247 
.5324 
. 5398 
.5469
.5539 
.5606 
.5671 
. 5734 
.5796
.5855 
.5913 
.5969 
.6024 
.6077
.6129 
.6179 
.6228 
.6276 
.6322
.6368 
.6412 
.6455 
.6497 
.6538
.6579 
.6618 
.6656 
.6694 
.6730
.6766 
.6801 
.6835 
.6869



A38

99 per cent intervals

G=

9- 
P= 
P = 
P= 
P =
P = 
P= 
P= 
P= 
P=
P = 
P = 
P= 
P = 
P=
P = 
P=
P= 
P= 
P =
P = 
P = 
P = 
P=
P =
P= 
P = 
P = 
P=
9-
P= 
P= 
P = 
P= 
P=
P= 
P= 
P = 
P= 
P=
P = 
P = 
P=
P= 
P=
P= 
P= 
P=
P = 
P=
P = 
P = 
P= 
P=
P=
9= 
P = 
P=
P-

2 
3 
4 
5 
6
7
8 
9 

10 
11
12 
13 
14 
15 
16
17 
18 
19 
20 
21
22 
23 
24 
25 
26
27
28 
29 
30 
31
32 
33 
34 
35 
36
37
38 
39 
40 
41
42 
43 
44 
45 
46
47 
48 
49 
50 
51
52 
53 
54 
55 
56
57 
58 
59
60

47
LOW HIGH 

0.0002 0.1306 
0.0030 0.1617 
0.0086 0.1895 
0.0161 0.2145 
0.0247 0.2375
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
G. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.
0.

0340 
0433 
0538 
0641 
0745
0848 
0952 
1055 
1157 
1259
1359 
1458 
1555 
1651 
1746
1838 
1930 
2020 
2108 
2194
2280 
2363 
2445 
2526 
2605
2683 
2759 
2834 
2907 
2979
3050 
3119 
3188 
3255 
3320
3385 
3449 
3511 
3572 
3632

0.3691 
0.3749 
C.3806 
0.3863 
0.3918
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.

3972 
4025 
4078 
4129
4180
4230 
4279 
4327 
4374

0.2587 
0.2785 
C.2S7C 
0.3143 
C.3307
0.3462 
0.3609 
C. 3749 
0.3882 
G.4008
C.413C 
0.4246 
C.4357 
0.4464 
0.4566
C.4664 
0.4759 
0.4851 
0.4939 
0.5024
C.51C6 
0.5185 
0.5261 
0.5335 
0.5407
0.5476 
0. 5544 
0.5609 
0.5673 
0.5734
0.5794 
0.5852 
0.5908 
0.5963 
0.6C16
0.6068 
0.6119 
C.6168 
0.6216 
0.6263
0.6309 
0.6353 
C.6397 
0.6439 
0.6480
0.6521 
0.656C 
0.6599 
0.6637 
0.6674
0.6710 
0.6745 
0.6780 
0.6813

0 
0 
0 
0
C
C 
0 
C 
0
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
C 
0 
0 
0 
0
0 
C 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
C 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
0 
0

48 
LOW HIGH 
.0002 0.1280 
.0029 0.1587 
.OC85 C. 1860 
.0158 0.2107 
.0242 0.2334
.0333 
.0429 
.0528 
.0629 
.0730
.0833 
.0935 
. 1036 
.1137 
.1237
.1335 
.1433 
.1529 
.1624 
.1717
.1809 
.1899 
.1988 
.2075 
.2161
.2245 
.2328 
.2409 
.2489 
.2567
.2644 
.2720 
.2794 
.2867 
.2939
.3009 
.3078 
.3146 
.3212 
.3278
.3342 
.3405 
.3467 
.3528 
.3588
.3647 
.3705 
.3761 
.3817 
.3872
.3926 
.3979 
.4032 
.4083 
.4133
.4183 
.4232 
.4280 
.4328

0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
C. 
0. 
0. 
C.
0. 
0. 
C. 
0. 
0.
0. 
0. 
C. 
0. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
C. 
0.
0. 
0. 
0. 
0. 
0.
0. 
0. 
0. 
0.

2543 
2738 
2921 
3093 
3255
34C9 
3554 
3693 
3825 
3951
4C72 
4187 
4298 
4404 
4506
4604 
4699 
4790 
4878 
4963
5045 
5124 
5200 
5274 
5346
5416 
5483 
5548 
5612 
5674
5734 
5792
5848 
5903 
5957
6CC9 
6060 
6109 
6158 
6205
6251 
6295 
6339 
6382 
6423
6464 
6504 
6543 
6581 
6618
6654 
6690 
6725 
6759

49 
LCW HIGH 

0.0002 0.1256 
0.0029 0.1558 
C.CC83 0.1826 
0.0154 0.2070 
0.0237 0.2294
O.C326 
0.0421 
O.C518 
0.0617 
0.0717
0 
0 
0 
C 
0
0 
0 
0 
C 
0
0 
C 
0 
0 
0
0 
0 
0 
0 
0
0 
0 
C 
0 
0
0 
0 
0 
0 
0
C 
0 
0 
0 
0
C 
0 
0 
C 
0
0 
0 
0 
0 
0
0 
0 
0 
0

.0817 
.0918 
.1018 
.1117 
.1215
. 1313 
.1409 
.1504 
.1597 
.1689
.1780 
.1869 
.1957 
.2044 
.2126
.2212 
.2294 
.2374 
.2453 
.2531
.2607 
.2682 
.2756 
.2828 
.2899
.2969 
.3038 
.3105 
.3171 
.3236
.3300 
.3363 
.3425 
.3485 
.3545
.3603 
.3661 
.3718 
.3773 
.3828
.3882 
.3935 
.3987
.4C38 
.4C88
.4138 
.4187 
.4235 
.4282

C.250C 
0.2693 
0.2874 
0.3044 
0.3205
0.3357
0.3502 
0.3639 
0.377C 
0.3896
0.4015 
0.413C 
0.4240 
0.4346 
0.4448
0.4546 
0.464C 
0.4731 
0.4818 
0.4903
0.4985 
0.5064 
0.5141 
0.5215 
0.5287
0.5356 
0.5424 
0.5489 
0.5553 
0.5614
0.5675 
0.5733 
0.5790 
0.5845 
0.5899
0.5951 
0.6002 
0.6052 
0.6100 
0.6147
0.6194 
0.6239 
0.6282 
0.6325 
0.6367
0.6408 
0.6448 
0.6487 
0.6526 
0.6563
0.6600 
0.6636 
0.6671 
0.6705



A39

50 
LCW HIGH 

O.CC02 0. 1233 
0.0028 0.1530 
0.0081 0.1794 
0.0151 C.2034 
0.0232 0.2255
O.C32C 0.2459 
0.0413 0.2650 
0.0508 0.2828 
0.0605 0.2997 
0.0704 0.3156
0.0803 0.3307 
O.C5C2 0.345C 
0.1000 0*3587 
0.1C98 C.3717 
0.1195 0.3842
0.1291 0.3961 
0.1386 0.4075 
0.1479 0.4184 
0.1572 0.4290 
C.1663 0.43S1
0.1752 0.4489 
0. 1841 0.4583 
0.1927 0.4673 
0.2013 0.4761 
0.2CS7 0.4845
0.2179 0.4927 
0.2260 0.5006 
0.2340 0.5082 
0.2419 0.5156 
0.2496 0.5228
0.2571 0.52S8 
0.2646 0.5365 
0.2719 0.5431 
0.2791 0.5495 
0.2861 0.5557
0.2930 0.5617 
0.2998 0.5675 
0.3065 0.5732 
0.3131 C.5787 
0.3196 0.5841
C.325S C.5894 
0.3322 0.5945 
0.3383 0.5995 
0.3443 0.6044 
0.3503 0.6091
0.3561 0.613/ 
0.3618 0.6183 
0.3675 0.6227 
0.3730 0.6270 
0.3785 0.6312
0.3838 0.6JbJ 
0.3891 0.6393 
0.3943 0.6433 
0.3994 0.6471 
0.4C44 0.6509
0.4094 0.6546 
0.4142 0.6582 
0.41SC 0.6617 
0.4237 0.6652

51
LOW HIGH 

0.0002 0.1211 
O.OC28 0.1502 
0.0079 0.1763 
0.0148 0.2000 
0.0228 0.2217
0.0314 0.2419 
0.04C5 C.26C8 
0.0499 0.2784 
0.0594 0.2951 
0.0691 0.3109
0.0789 0.3258 
0.0886 0.3400 
0.0983 0.3536 
0.1079 0.3665 
0. 1175 0.3789
0.1270 0.3907 
0.1363 0.4021 
0. 1456 C.413G 
0.1547 0.4235 
0.1637 0.4336
0.1725 0.4433 
0.1813 0.4526 
0.1899 0.4617 
0.1983 0.4704 
0.2066 0.4789
0.2148 0.4870 
0.2228 0.4949 
0.2307 0.5025 
0.2385 0.5099 
0.2461 0.5171
0.2536 0.5241 
0.2610 0.5308 
0.2683 0.5374 
0.2754 0.5438 
0.2824 0.5500
0.2893 0.5560 
C.2960 0.5618 
0.3027 0.5676 
0.3092 0.5731 
0.3156 0.5785
0.3219 0.5838 
0.3282 0.5889 
0.3343 0.5939 
0.3403 0.5988 
0.3462 0.6036
0.3520 0.6082 
0.3577 0.6128 
0.3633 0.6172 
0.3688 0.6215 
0.3742 0.6258
0.3796 0.6299 
0.3848 0.6340 
0.3900 0.6379 
0.3951 0.6418 
0.4001 0.6456
0.4050 0.6493 
0.4099 0.6529 
0.4147 0.6565 
0.4194 0.6600

52 
LQW HIGH 

0.0002 0 .1189 
O.OC27 0.1476 
0.0078 0.1733 
0.0145 0. 1966 
0. C223 0.2181
0.0308 0.2381 
0.0397 0.2567 
0.049C 0.2742 
0.0584 0.2907 
0.0679 0.3063
0.0775 0.3211 
0.0871 0.3352 
O.C966 0.3466 
0.1061 0.3615 
0.1156 0.3738
0. 1249 0.3855 
0.1342 0.3S68 
0.1433 0.4C77 
0.1523 0.4181 
0.1612 0 .4282
0. 1699 0.4378 
0.1786 0.4472 
0.1871 0.4562 
0. 1954 0.4649 
0.2036 0.4733
0.2117 0.4815 
0.2197 C.4893 
0.2275 0.4970 
0.2352 0.5044 
0.2428 0.5115
0.2502 0.5185 
0.2575 0.5252 
0.2647 0.5318 
0.2718 0.5382 
0. 2788 0. 5444
0.2856 0.5504 
0.2923 0.5563 
0.2989 0.5620 
0.3054 0.5676 
0. 3118 0. 573C
0.3181 0.5783 
0.3242 0.5834 
0. 3303 0. 5685 
0.3363 0.5934 
0.3421 0.5981
0.3479 0.6C28 
0.3536 0.6074 
0.3592 0.6118 
0.3647 0.6162 
0.3701 0.6204
0.3754 C. 6246 
0.3806 0.6287 
0.3858 0.6326 
0.3909 0.6365 
0.3959 0.6403
0.4008 0.6441 
0.4056 0.6477 
0.4104 0.6513 
0.4151 0.6548

53 
LCW HIGH 

0.0002 0.1168 
0.0026 0.1451 
O.CC76 C.17C4 
0.0143 0.1934 
0.0219 0.2146
0.03C2 0.2343 
0.0390 0.2527 
0.0481 0.2700 
0.0574 0.2864 
0.06b7 0.3018
C.C762 0. 3165 
0.0856 0.3305 
0.0950 0.3438 
C.1C44 0.3566 
0.1137 0 .3688
0.1229 0.3805 
0.1321 0.3917 
0.1411 0.4025 
0.15CC C.4129 
0.1587 0.4229
0.1674 0.4325 
0. 1759 0.4418 
0.1843 0.4508 
0.1926 0.4595 
0.2C08 0.4679
0.2088 0.4760 
0.2166 0.4839 
0.2244 0.4915 
0.2320 0.4989 
0.2395 0. 5061
0.2469 0.5130 
0.2542 0.5198 
0.2613 0.5263 
0.2683 0.5327 
0.2752 0.5389
0.2820 0.5450 
0.2887 0.5508 
0. 2952 0. 5566 
0.3017 0.5621 
0.3080 0.5676
0.3143 0.5729 
0.3204 0.5780 
0.3264 0.5831 
0.3324 0.5880 
0.3382 0.5928
0.3440 0. 5975 
0.3496 0.6021 
0.3552 0.6065 
0.36C7 0.6109 
0.3660 0.6152
0.3713 0.6194 
0.3766 0.6234 
0.3817 0.6274 
0.3867 0.6314 
0.3917 0.6352
0.3966 0.6389 
0.4C15 0.6426 
0.4062 0.6462 
0.4109 0.6497
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99 per cent intervals

Q =

P= 2 
P= 3 
P= 4 
P= 5 
P= 6
P^ 7 
P= 8 
P= 9 
P= 10
P= 11
P^ 12
P= 13
P= 14
P= 15
P= 16
P= 17
P= 18
P= 19
P= 20
P= 21
P= 22
P= 23
P= 24
P= 25
P= 26
P= 27
P= 28
P= 29
P= 30
P= 31
P= 32
P= 33
P= 34
P= 35
P= 36
P= 37
P= 38
P= 39
P= 40
P= 41
P= 42
P= 43
P* 44
P= 45
P= 46
P= 47
P= 48
PS 49
P= 50
P= 51
P- 52
P= 53
P= 54
P= 55
P= 56
P= 57
P- 58
P= 59
P= 60

54 
LCfc HIGH 

O.OOC2 0.1148 
0.0026 0.1427 
C.OC75 C.1676 
0.0140 0.1903 
0.0215 0.2112
0.0297 C.23C7 
0.0383 0.2489 
0.0473 C.2660 
0.0564 C.2822
0.0656 0.2975
C.0749 C.3120
0.0842 0.3259
0.0935 0.3391
0. 1C27 0.3518
0.1119 0.3639
0. 1210 0.3755
0.1300 0.3867
0.1389 0.3974
0.1477 C.4078
0.1564 C.4177
0.1649 0.4273
C.1734 0.4366
0.1817 0.4455
0.1899 0.4542
0. 1979 0.4626
0.2059 0.47C7
0.2137 0.4785
0.2214 0.4862
0.2289 0.4935
0.2364 C.5CC7
0.2437 0.5077
0.2509 0.5144
0.2580 0.5210
0.2649 0.5274
0.2718 0.5336
0.2785 C.5396
0.2851 0.5455
0.2916 0.5512
0.2981 0.5568
0.3044 0.5623
0.3106 C.5676
0.3167 0.5727
0.3227 0.5778
0.3286 0.5827
0.3344 0.5875
C.3401 0.5922
0.3457 0.5968
0.3513 0.6013
0.3567 C.6057
0.3621 0.6100
0.3674 0.6142
0.3726 0.6183
0.3777 0.6223
0.3827 0.6263
0.3877 C.63CI
0.3926 0.6339
0.3974 0.6376
0.4021 0.6412
0.4068 0.6447

55 
LEW HIGH 

C.OC02 0. 1129 
0.0025 0.1403 
0.0074 0.1649 
0.0137 0. 1873 
0.0211 0.2079
C.0292 0.2272 
C.0377 0.2452 
0.0464 0.2621 
C.0554 0.2781
0.0645 0.2933
0.0737 0.3077
0.0828 0.3214
0.0920 0.3346
C.1C11 0.3471
C.1102 0.3592
0.1191 0.3707
C.1280 0.3818
0.1368 0.3925
0.1455 0.4028
C.1541 0.4127
0.1626 0.4223
0.1709 0.4315
0.1791 0.4404
0.1872 0.4490
0.1952 0.4574
C.2C31 C.4655
0.2108 0.4733
0.2184 C.48C9
0.2259 0.4883
0.2333 0.4955
0.2405 C. 5C24
0.2477 0.5092
0.2547 C.5157
0.2616 C.5221
0.2684 0.5283
0.2751 0.5344
0.2817 0.5403
0.2881 0.5460
C.2945 C.5516
0.3008 0.5570
0.3069 0.5624
0.3130 0. 5675
0.3190 0.5726
0.3249 0.5776
C.3306 C.5824
0.3363 0.5871
0.3419 0.5917
0.3474 0.5962
0.3529 0.6006
0.3582 0.6C49
0.3635 0.6091
0.3686 0.6133
0.3737 0.6173
0.3788 0.6212
0.3837 0.6251
0.3686 0.6289
0.3934 0.6326
0.3981 0.6362
0.4028 0.6398

56 
LCH HIGH

O.OC02 0.1110 
O.OC25 0. 138C 
0.0072 0.1622 
O.C135 0.1844 
0.0207 0.2047
0.0287 0.2238 
C.C37C 0.2415 
0.0457 0.2583 
0.0545 0.2741
0.0635 0.2892
0.0725 0.3035
C. C815 0.3171
O.C905 C.3301
0.0995 0.3426
C.1C85 0.3546
0.1173 0.3660
0.1261 0.3771
0.1348 0.3877
0.1434 0.3979
C. 1519 C.4078
0.1602 0.4173
0.1685 0.4265
0. 1766 0.4354
0.1847 0.4440
0.1926 0.4523
C.2C03 0.4604
0.2080 0.4682
0.2155 0.4758
0.2230 0.4832
0.2303 0.4903
0.2375 0.4973
0.2446 0.504C
0.2515 0.5106
C.2584 0.5169
0.2651 0.5232
0.2718 0.5292
0.2783 0. 5351
0.2847 0.5408
C.2511 0.5464
0.2973 0.5519
0.3034 0.5572
0. 3C94 0.5624
0.3154 0.5675
0.3212 0.5725
0.3270 0.5773
0.3326 0.5820
0.3382 0.5867
0.3437 0.5912
0.3491 0.5956
C.3544 C.5999
0.3597 0.6041
0.3648 0.6083
0.3699 0.6123
0.3749 0.6163
0.3798 0.6202
0.3847 0.6240
0.3895 0.6277
C.3942 0.6314
C.3988 0.635C
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57 
LOW HIGH 

0.0002 0.1091 
O.C024 0.1358 
0.0071 0.1597 
0.0132 0.1815 
0.02C4 C.2C16
0.0282 0.2204 
C.0364 0.2380 
0.0449 0.2546 
0.0536 0.2703 
0.0624 0.2852
0.0713 0.2994 
0.0802 0.3129 
0.08S1 0.3258 
0.0980 0.3382 
0.1068 0.3501
0.1156 C.3615 
0.1243 0.3724 
0.1326 0.3830 
0.1413 0.3932 
0.1497 0.4030
0.1580 0.4125 
0.1662 0.4216 
0.1742 0.4305 
0.1821 0.4391 
0.1900 0.4474
0.1977 0.4554 
0.2C53 0.4632 
0.2127 0.4708 
0.2201 0.4781 
0.2274 0.4853
0.2345 0.4922 
0.2415 0.4S89 
0.2484 0.5055 
0.2552 0.5119 
0.2619 0.5181
0.2685 0.5241 
0.275C C. 5300 
0.2814 0.5358 
0.2877 0.5414 
0.2939 0.5469
0.3000 0.5522 
0.3060 0.5574 
0.3119 C.5625 
0.3177 0.5675 
0.3234 0.5723
0.3290 0.5770 
0.3346 0.5817 
0.34CC 0.5862 
0.3454 0.5906 
0.3507 0.5950
0.355S C.59S2 
0.3611 0.6034 
0.3661 0.6C74 
0.3711 0.6114 
0.3760 0.6153
0.3809 0.6191 
0.3856 0.6229 
0.3903 0.6266 
0.3950 C.6302

58 
LOW HIGH 

0.0002 0.1074 
0.0024 0.1336 
O.OC7C 0.1572 
0.0130 0.1788 
0.0200 0.1987
0.0277 0.2172 
0.0358 0.2346 
0.0442 0.2510 
0.0527 0.2666 
0.0614 0.2813
0.07C2 0.2954 
0.0790 0.3088 
0.0878 0.3216 
0.0965 0.3339 
0.1052 0.3457
0.1139 0.3570 
0.1225 0.3679 
0.1309 0.3784 
0.1393 0.3885 
0.1476 0.3983
0.1558 0.4077 
0.1639 0.4169 
0.1718 0.4257 
0.1797 0.4342 
0. 1875 0.4425
0.1951 0.4505 
0.2026 0.4583 
0.21CO 0.4659 
0.2173 0.4732 
0.2245 0.4803
0.2316 0.4873 
0.2385 0.4940 
0.2454 0. 5005 
0.2522 0.5069 
0.2588 0.5131
0.2654 0.5192 
0.2718 0.5251 
0.2782 0.5308 
0.2844 0.5364 
0.2905 0.5419
0.2966 0.5472 
0.3026 0.5525 
0.3084 0.5575 
0.3142 0.5625 
0.3199 0.5674
0.3255 0.5721 
0.331C 0.5768 
0.3364 0.5813 
0.3418 0.5858 
0.3471 0.5901
0.3523 0.5944 
0.3574 C. 5985 
0.3624 0.6026 
0.3674 0.6066 
0.3723 0.6105
0.3771 0.6144 
0.3819 0.6181 
0.3865 0.6218 
0.3912 0.6254

59 
LCW HIGH 

0.0002 0. 1C57 
0.0024 0.1316 
0.0068 0.1548 
0.0128 0.1761 
0.0197 0.1958
0.0272 0.2141 
0.0352 0.2213 
0.0435 0.2475 
O.C51S 0.262S 
0.0605 0.2775
0.0691 0.2915 
0.0778 0.3C48 
0.0865 0.3175 
0.0951 0.3297 
C.1C37 0.3414
0.1122 0.3527 
0. 1207 0.3635 
0.1291 0.3739 
0.1374 0.3840 
0. 1456 C.3S37
0.1537 0.4031 
0.1617 0.4122 
0.1696 0.421C 
0.1773 0.4295 
0.1850 0.4378
0.1926 0.4458 
0.2000 0.4535 
0.2C74 0.4611 
0.2146 0.4684 
0.2217 0.4755
0.2287 0.4824 
0.2357 0.4891 
0.2425 0.4957 
0.2492 0.5C21 
0.2558 0.5083
0.2623 0.5143 
0.2687 0.52C2 
0.2750 0.5260 
0.2812 0.5316 
0.2873 0.5370
0.2933 0.5424 
0.2992 0. 5476 
0.3051 0.5527 
0.3108 0.5577 
0.3165 0.5626
0.3220 0.5673 
0.3275 0.5720 
0.3329 0.5765 
0.3383 0.5810 
0.3435 0.5853
0.3487 0.5896 
0.3538 0.5938 
0.3586 0.5S79 
0.3638 0.6019 
0.3686 0.6058
0.3734 0.6C97 
0.3782 0.6135 
0. 3829 0.6171 
0.3874 0.62C8

60 
LCW HIGH 

0.0002 0.1040 
0.0023 0.1295 
0.0067 0.1525 
0.0126 0. 1735 
0.0194 0.1929
0.0268 0.2111 
O.C346 C.2281 
0.0428 0.2442 
0.0511 0.2594 
0.0595 0.2739
0.0681 0.2877 
0.0766 0.3009 
0.0852 0.3135 
0.0937 0.3256 
0. 1C22 0.3372
0.1106 0.3484 
0.1190 0.3592 
0.1273 0. 3696 
0.1355 0.3796 
0.1436 0.3893
0.1516 C.3986 
0.1595 0.4076 
0.1673 0.4164 
0.1750 0.4249 
0.1826 0.4331
C. 19C1 0.4411 
0.1975 0.4488 
0.2048 0.4563 
0.211S 0.4636 
0.2190 0.4707
0.2260 0.4776 
0.2328 0.4844 
0.2396 0.4909 
0.2462 0.4973 
0.2528 0.5035
0.2592 0.5095 
0.2656 C. 5154 
0.2719 0.5212 
0.2780 0.5268 
0.2841 0.5323
0.2901 0.5376 
0.2960 0.5428 
0.3018 0.5479 
0.3075 0.5529 
0.3131 0.5578
0.3187 0.5626 
0.3241 0.5672 
0.3295 0.5718 
0.3348 0.5763 
0.3400 0.5806
0.3452 0.5849 
0.3503 0.5891 
0.3553 0.5932 
0.3602 0.5972 
0.3650 0.6012
0.3696 0.6050 
0.3746 0.6088 
0*3792 0.6126 
0.3838 0.6162



A42 Appendix C Chi-squared distribution
Values of x 2 for which indicated area 
lies to the right.

4/\
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
40
50
60

70
80
90
100

Area in right tail

0250

1-32330
2-77259
4-10834
6-38527

6-62568
7-84080
9-03715
10-2189
11-3888

12-5489
13-7007
14-8454
15-9839
17-1169

18-2451
19-3689
20-4887
21-6049
22-7178

23-8277
24-9348
26-0393
27-1413
28-2412

29-3389
30-4346
31-5284
32-6205
33-7109

34-7997
45-6160
56-3336
66-9815

77-5767
88-1303
98-6499
109-141

0100

2-70554
4-60517
6-25139
7-77944

9-23636
10-6446
12-0170
13-3616
14-6837

15-9872
17-2750
18-5493
19-8119
21-0641

22-3071
23-5418
24-7690
25-9894
27-2036

28-4120
29-6151
30-8133
32-0069
33-1962

34-3816
35-5632
36-7412
37-9159
39-0875

40-2560
61-8051
63-1671
74-3970

85-5270
96-5782
107-565
118-498

0050

3-84146
6-99146
7-81473
9-48773

11-0705
12-5916
14-0671
15-5073
16-9190

18-3070
19-6751
21-0261
22-3620
23-6848

24-9958
26-2962
27-5871
28-8693
30-1435

31-4104
32-6706
33-9244
35-1725
36-4150

37-6525
38-8851
40-1133
41-3371
42-5570

43-7730
55-7585
67-5048
79-0819

90-5312
101-879
113-145
124-342

0025

6-02389
7-37776
9-34840
11-1433

12-8325
14-4494
16-0128
17-5345
19-0228

20-4832
21-9200
23-3367
24-7356
26-1189

27-4884
28-8454
30-1910
31-5264
32-8523

34-1696
35-4789
36-7807
38-0756
39-3641

40-6465
41-9232
43-1945
44-4608
45-7223

46-9792
69-3417
71-4202
83-2977

95-0232
106-629
118-136
129-561

0010

6-63490
9-21034
11-3449
13-2767

15-0863
16-8119
18-4753
20-0902
21-6660

23-2093
24-7250
26-2170
27-6882
29-1412

30-5779
31-9999
33-4087
34-8053
36-1909

37-5662
38-9322
40-2894
41-6384
42-9798

44-3141
45-6417
46-9629
48-2782
49-5879

60-8922
63-6907
76-1539
88-3794

100-426
112-329
124-116
135-807

0005

7-87944
10-5966
12-8382
14-8603

16-7496
18-5476
20-2777
21-9550
23-5894

25-1882
26-7568
28-2995
29-8195
31-3194

32-8013
34-2672
35-7185
37-1565
38-5823

39-9968
41-4011
42-7957
44-1813
45-5585

46-9279
48-2899
49-6449
50-9934
52-3356

63-6720
66-7660
79-4900
91-9517

104-215
116-321
128-299
140-169

0001

10-828
13-816
16-266
18-467

20-515
22-458
24-322
26-125
27-877

29-588
31-264
32-909
34-528
36-123

37-697
39-252
40-790
42-312
43-820

45-315
46-797
48-268
49-728
61-179

62-618
54-052
55-476
56-892
58-301

59-703
73-402
86-661
99-607

112-317
124-839
137-208
149-449

SOURCE: Pearson and Hartley (1966).



Appendix D f distribution
Values of Fhigh for which indicated area 
lies to the right
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Appendix E Inverted gam ma-2 
distribution
Highest density regions

D.F.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0.

LCW

0.445
0.507
C.54C
C.582
0.607
0.628
C.646
0.661
0.674
L.685
0.696
^.705
0.713
•0.721
0.728
0.735
0.741
C. 746
0.751
r . 756
0.761
C .765
0.76S
0.773
0.777
C.78C
C.783
G.787
0.790
0.793
0.79?
0.798
C .80 n
0.80?
C.835
C.80 7
0.810
0.812
C.814
0.816
C.818
0.819
C.821
C . 8 2 "*
C.825
f .826
0.828
0.829

95

HIGH

5.437
3.4C-6
2.638
2. 326
2. K6
1.059
1.85?
1.771
1 . 7 " 8
1 .656
1.613
1. 577
1. 546
1.519
1.495
1.474
1.456
1.439
1.423
1.41*
1. 397
1.385
1 • ~*7^
1.364
1.355
1.346
1 .3^8
1.331
1.324
1 .317
1.311
1. 305
J. • £-

1 . 29?
1.236
1.28?
1 . 27 Q
1.774
1.270
1.266
1.262
1.259
1.255
1.251
1.248
1.245
1.241
1.238

Area within HDR 
0.99

LCW

0.379
0.437
0.478
0.511
0.537
0.559
0.578
C.594
C.60«
C .621
0.632
C.642
0..652
C • 6 6 r
0.66?
0.675
0.682
0.638
0.694
C.70C
0.705
0.71 r
0.715
r .719
0.724
0.77P
0.732
C . 7 3 5
0.739
0-74?
0.745,
C.748
0.751
C . 7 5 4
0.757
0.760
0.762
0.765
0.767
C.769
0.772
0.774
C.776
0.778
0 . 7 3 r
C.782
0.78^
0.786

HIGH

12.235
5. 02^
4.126
3.315
2.859
2.567
2.?64
2.214
2.^99
2 . P (.R
1.934
1. °<72
1. 819
1.774
1.735
1 - 7C r
1.670
1 .64?
1.618
1. 596
1. 576
1 .557
1.5 40
1. 525
1. 510
1.497
1.484
1. 472
1.461
1.4bl
1.441
1.432
1.423
1.415
1.4^.8
1 . 4Ci,
1.^93
1 .736
1 . ^^O
1.374
1.368
1 .362
1.357
1 . 3 r* 2
1 .347
1.^42
1. 337
1. 333

0.

LC'V

C.323
0.376
0.416
C.447
0.473
0.495
0.514
C.53T
0.545
0.55P
0.57C
0.581
0.591
C..602
C. 6 n 9
C.617
C.624
".631
C.637
0.643
0.649
C . 65 5
C.66-"
•J. 06 c
0.669
0.674
0.678
0.632
L .636
r . 6 9 0
0.694
0.697
0.701
0- • 7 n t^
0.707
C . 7 1 (
0.713
0.716
0.718
0.771
0.724
0.726
C .729
0.731
0.733
C - 7 3 5
0.738
•j.74 r

999

HIGH

33. 588
12. 342
7.^36
5.^5°
4. 30?
3. £71
3.258
9 . ^64
2.745
2. r 77
2.441
2.333
2.239
2. 161
2. r 94
2.037
1.986
1.941
1.901
1. 365
1.332
1 . 3->2:
1.775
1. 751
1.778
1.7-.7
1. 637
1.669
1.652
1 . 6 ? f
1.621
1.607
1 . 594
1 „ c 8 1
1.569
1. 55"
1 .547
1.537
1. 528
1.519
1.5 1C
1 . r "* 1
1.493
1 . - '+ 8 6
1.478
1. 471
1.465
! . ^ b a

SOURCE: Computed for this volume.
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Area within HDR 
0.95 0.99 0.999

D.F. LCW HIGH LCW HIGH LCW HIGH

54
59
64
69
74
79
84
89
94
99

104
109
114
119
124
129
134
139
144
149
154
159
164
169
174
179
184
189
194
199
204
209
214
219
224
229
234
239
244
249

G.836
0.843
C.84P
0.853
0.858
0.86?
0.865
0.869
C.872
0.875
C.878
o.ear
0.883
C.885
0.887
0.889
0.891
C.893
0.894
C.896
0.898
C.899
C.901
0.902
0.903
C.905
0.906
C.907
C.908
C.9CS
0.910
0.911
C,912
C.913
0.914
C.915
C.916
0.917
C.917
C . S 1 8

1.225
1.213
1.2T3
1.195
1. 187
i . i a;.
1.174
1.168
1. 163
1. 158
1.154
1. 150
1. 146
1. 142
1.139
1. 136
1. 13?.
1.131
1.128
1. 126
1. 123
1.121
1. 119
1. 117
1.115
1.114
1. 112
1. IK
1.109
1.107
1. 106
1.1 r 4
1.1°?
1.1C?
i. i r :
1.099
1.^98
1.C97
1.^96
l. r> 95

C.794
t.802
C.8^8
0.814
C.8?~
C. 825
0.829
C.833
C.837
0.841
0.844
0 . 84 P
C.85C
C.853
0.856
C . 8 5 6
0.861
0.86?
( . 865
C.867
0.869
0.871
C.87?
C.874
C.876
C.87P
0.87^
C . 8 8 1
f. 882
C.88?
0.885
C.836
0.887
C .888
0.889
0.891
0.892
C.893
C.894
0.895

1.313
1.796
1.281
1.269
l.?58
1.P46
1.23^
l.?3(.
1.223
1.216
1.21 r'
l..?C^
1.1^9
1. 194
1 . 1 9C
1.185
1. 181
1. 177
1.174
1.171
1. 167
1. 164
1.161
1.159
1. 156
1. 154
1.151
1. 149
1. 147
1. 145
1. 143
1.141
1.139
1.137
1.136
1. 134
1. 132
1.131
1.129
1. 128

0.749
0.758
C.766
C.7 7 3
t.779
0.785
Q.79T
0.795
C.80C
0.804
0.8^9
0.812
0.816
0.819
C.82?
<^.825
0.828
0.831
0.833
0.836
C . 8 3 P
C.84C
0.842
C.844
0.846
0.848
0.85C
C.852
0.853
C.855
C.857
0.858
0.86C
C.861
0.862
0.864
0.865
0.866
r'.868
0.869

1.429
1.4T4
1.383
1.365
1*348
1. 334
1.3?1
1.310
1.370
1.?<K
1.281
1.273
1. ?66
1.^59
1.25^
1.247
1.241
1.236
1.231
1.276
1.22?
1.218
l.?14
1.210
1 .2 r 7
1.20
1.2CC
1. 197
1.194
1.191
1. 186
1. 186
1.183
1.1«1
1.176
1 .176
1.174
1.172
1. 17C
1.168



Appendix F

y * pi " \

z left tail

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09
-10

.1 1
-12
.13
.14
.15

,16
.17
.18
.19
.20

.21

.22
• 23
.24
.25

.26

.27

.28
• 29
• 30

• 31
.32
• 33
.34
• 35

.36

.37
• 38
• 39
.40

.41

.42

.43

.44

.45

• 5000
• 5040
• 5080
• 5120
.5160
.5199

• 5239
.5279
• 5319
.5359
.5398

.5438

.5478

.5517

.5557

.5596

• 5'636
.5675
.5714
.5753
.5793

• 5832
• 5871
.5910
.5948
.5987

• 6026
.6064
.6103
.6141
.6179

.6217
• 6255
.6293
.6331
.6368

.6406

.6443

.6480

.6517
• 6554

.6591

.6628

.6664

.6700

.6736

right tai

. 5000

.4960

.4920

.4880

.4840

.4801

.4761

.4721

.4681

.4641

.4602

.4562

.4522

.4483

.4443

.4404

.4364

.4325

.4286

.4247

.4207

.4168
• 4129
.4090
.4052
• 4013

.3974

.3936

.3897
• 3859
.3821

• 3783
.3745
.3707
.3669
• 3632

.3594

.3557
• 3520
.3483
.3446

.3409

.3372
• 3336
.3300
.3264

1 ' "** X
centre

.0000

.0080

.0160

.0239

.0319

.0399

.0478

.0558

.0638

.0717

.0797

.0876

.0955

. 1034

.1113

.1 192

• 1271
• 1350
• 1428
.1507
. 1585

• 1663
. 1741
. 1819
. 1897
.1974

.2051

.2128

.2205
• 2282
.2358

.2434

.2510

.2586
• 2661
• 2737

• 2812
.2886
.2961
• 3035
• 3108

.3182

.3255

.3328
• 3401
.3473

Standardized normal 
distribution
Areas

X
z
.46
.47
.48
.49
.50

.51

.52

.53

.54

.55

• 56
.57
.58
.59
.60

.61
• 62
.63
n64
• 65

.66

.67

.68

.69

.70

.71

.72
• 73
.74
• 75

.76

.77

.78

.79
• 80

.81
• 82
• 83
• 84
• 85

.86
• 87
.88
.89
.90

H \
left tail

.6772

.6808

.6844

.6879

.6915

.6950

.6985

.7019

.7054

.7088

.7123

.7157

.7190

.7224

.7257

.7291

.7324

.7357

.7389

.7422

.7454

.7486

.7517

.7549

.7580

.761 1

.7642

.7673

.7704

.7734

.7764

.7793

.7823

.7852

.7881

.7910

.7939

.7967

.7995

.8023

• 8051
.8078
• 8106
.8133
.8159

right tai

.3228

.3192

.3156
• 3121
• 3085

• 3050
• 3015
.2981
.2946
.2912

.2877

.2843

.2810

.2776

.2743

.2709

.2676

.2643

.261 1

.2578

• 2546
.2514
.2483
.2451
.2420

• 2389
• 2358
.2327
.2296
.2266

• 2236
.2207
.2177
.2148
• 21 19

.2090
• 2061
.2033
.2005
-1977

.1949
- 1922
-1894
.1867
• 1841

| / ———— ̂
centre

.3545

.3616

.3688

.3759

.3829

.3899

.3969

.4039

.4108

.4177

.4245

.4313

.4381

.4448

.4515

.4581

.4647

.4713

.4778

.4843

.4907

.4971

.5035

.5098

.5161

.5223

.5285

.5346

.5407

.5467

• 5527
.5587
.5646
.5705
.5763

.5821

.5878
• 5935
.5991
.6047

.6102

.6157
• 621 1
• 6265
.6319

SOURCE : Computed for this volume.
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Z

.91
• 92
-93
.94
.95

• 96
.97
.98
-99

1 .00

1 .01
1 .02
1 .03
1 .04
1 .05

1 .06
1 .07
1 .08
1 .09
1 .10

1.11
1 -12
1.13
1 ,14
1.15

1.16
1 .17
1 .18
1 .19
1 .20

1 .21
1 .22
1 .23
1 .24
1 .25

1 .26
1 .27
1 .28
1 .29
1 .30

1 .31
1 .32
1 .33
1 .34
1 .35

left tail

• 8186
• 8212
• 8238
• 8264
• 8289

• 831 5
• 8340
• 8365
• 8389
• 8413

• 8438
• 8461
• 8485
• 8508
.8531

.8554
• 8577
.8599
.8621
.8643

• 8665
• 8686
• 8708
• 8729
.8749

.8770
• 8790
• 8810
.8830
.8849

.8869

.8888

.8907
• 8925
.8944

.8962

.8980

.8997

.9015

.9032

.9049

.9066

.9082

.9099
-91 15

* Ab&J. V l.fc*J

• 1814
• 1788
• 1762
'•1736
• 1711

.1 685
• 1 660
• 1635
• 1611
• 1587

. 1 562

.1539
• 1515
. 1492
.1469

.1446

. 1423

.1401
• 1379
.1357

• 1335
.1314
• 1292
.1271
.1251

.1230

.1210

.1 190

.1 170

.1151

.1 131

.1112

.1093

.1075

.1056

.1038

.1020

.1003

.0985

.0968

.0951

.0934

.0918

.0901

.0885

centre

.6372
• 6424
• 6476
• 6528
• 6579

• 6629
• 6680
.6729
.6778
• 6827

.6875

.6923

.6970
• 7017
.7063

.7109

.7154
• 7199
.7243
.7287

.7330

.7373
• 7415
.7457
.7499

• 7539
.7580
.7620
.7660
.7699

^7737
.7775
.7813
.7850
.7887

.7923

.7959

.7995

.8029

.8064

• 8098
.8132
.8165
.8198
.8230

Z

1 .36
1 .37
1 .38
1 .39
1 .40

1 .41
1 .42
1 .43
1 .44
1 .45

1 .46
1 .47
1 .48
1 .49
1 .50

1 .51
1 .52
1 .53
1 .54
1 .55

1 .56
1 .57
1 .58
1 .59
1 .60

1 .61
1 .62
1 .63
1 .64
1 .65

1 .66
1 .67
1 .68
1 .69
1 .70

1 .71
1 .72
1 .73
1 .74
1 .75

1 .76
1 -77
1 .78
1 -79
1 .80

left tail

.9131

.9147
• 91 62
• 9177
.9192

.9207

.9222
• 9236
.9251
.9265

.9279
• 9292
.9306
.9319
• 9332

• 9345
.9357
.9370
.9382
.9394

.9406
• 9418
.9429
.9441
.9452

.9463

.9474

.9484

.9495

.9505

.9515

.9525

.9535

.9545

.9554

.9564

.9573

.9582

.9591

.9599

.9608

.9616

.9625

.9633

.9641

1 1 C^ll t IU1

.0869

.0853

.0838

.0823

.0808

.0793

.0778

.0764

.0749

.0735

.0721

.0708

.0694
• 0681
.0668

.0655

.0643

.0630

.0618
• 0606

.0594

.0582

.0571

.0559

.0548

.0537

.0526

.0516

.0505

.0495

.0485

.0475

.0465

.0455

.0446

.0436

.0427

.0418

.0409

.0401

.0392

.0384
• 0375
.0367
.0359

centre

.8262

.8293
• 8324
.8355
.8385

.8415

.8444

.8473

.8501

.8529

.8557

.8584

.861 1
• 8638
.8664

• 8690
.8715
.8740
• 8764
.8789

• 8812
• 8836
.8859
• 8882
.8904

.8926

.8948

.8969

.8990

.901 1

• 9031
.9051
.9070
.9090
.9109

.9127

.9146

.9164

.9181

.9199

• 9216
• 9233
.9249
.9265
.9281



A50

•••;-<•••••••••••••••••"••<•', —— ngni lan 
Z left tail

1 .81
1 .82
1 .83
1 .84
1 .85

1 .86
1 .87
1 .88
1 .89
1 .90

1 .91
1 .92
1 .93
1 .94
1 .95

1 .96
1 .97
1 .98
1 .99
2.00

2.01
2.02
2.03
2.04
2.05

2.06
2.07
2.08
2.09
2.10

2.11
2.12
2-13
2.14
2.15

2.16
2.17
2.18
2.19
2.20

2.21
2.22
2.23
2*24
2.25

.9649

.9656

.9664

.9671

.9678

• 9686
.9693
.9699
.9706
.9713

.9719
• 9726
.9732
.9738
.9744

.9750
• 9756
• 9761
• 9767
.9772

.9778

.9783

.9788

.9793

.9798

.9803

.9808

.9812

.9817

.9821

.9826

.9830

.9834

.9838

.9842

.9846

.9850

.9854

.9857

.9861

.9864
• 9868
.9871
.9875
.9878

.0351

.0344

.0336

.0329

.0322

.0314

.0307

.0301

.0294

.0287

.0281

.0274

.0268

.0262

.0256

• 0250
.0244
.0239
.0233
.0228

.0222

.0217

.0212

.0207

.0202

.0197

.0192

.0188

.0183

.0179

.0174

.0170

.0166

.0162

.0158

.0154

.0150

.0146

.0143

.0139

.0136

.0132

.0129

.0125
• 0122

centre

.9297

.9312

.9327

.9342

.9357

.9371

.9385

.9399

.9412

.9426

.9439

.9451

.9464

.9476

.9488

.9500

.9512

.9523

.9534

.9545

.9556

.9566

.9576

.9586

.9596

.9606
• 9615
.9625
.9634
• 9643

.9651

.9660

.9668

.9676

.9684

.9692

.9700

.9707
• 9715
.9722

• 9729
.9736
.9743
.9749
• 9755

^.vvv.v.v.v.V.vvw.-V.-, ———— HglHUtll

Z left tail

2.26
2.27
2.28
2.29
2.30

2.31
2.32
2.33
2.34
2.35

2.36
2.37
2.38
2.39
2.40

2.41
2-42
2.43
2.44
2.45

2.46
2.47
2.48
2.49
2.50

2.51
2.52
2.53
2.54
2.55

2.56
2.57
2.58
2.59
2.60

2.61
2*62
2.63
2.64
2.65

2.66
2.67
2.68
2.69
2.70

.9881

.9884

.9887

.9890

.9893

.9896

.9898

.9901

.9904

.9906

.9909

.991 1

.9913

.9916

.9918

.9920

.9922

.9925

.9927

.9929

.9931

.9932

.9934
• 9936
.9938

.9940

.9941

.9943

.9945

.9946

.9948

.9949

.9951

.9952

.9953

.9955

.9956

.9957
• 9959
.9960

.9961

.9962

.9963

.9964

.9965

.01 19

.01 16

.01 13

.01 10

.0107

.0104

.0102

.0099

.0096

.0094

.0091

.0089

.0087

.0084

.0082

.0080

.0078
• 0075
.0073
.0071

.0069
• 0068
• 0066
.0064
.0062

• 0060
.0059
.0057
.0055
.0054

.0052

.0051

.0049
• 0048
.0047

• 0045
• 0044
.0043
• 0041
• 0040

• 0039
• 0038
• 0037
.0036
.0035

centre

.9762
• 9768
.9774
.9780
.9785

.9791

.9797

.9802

.9807

.9812

.9817

.9822

.9827

.9831

.9836

.9840

.9845

.9849

.9853
-9857

• 9861
.9865
.9869
.9872
• 9876

.9879

.9883

.9886
• 9889
• 9892

• 9895
.9898
.9901
.9904
.9907

.9909

.9912
• 9915
.9917
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• 9929
• 9931
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.9966

.9967

.9968

.9969

.9970

.9971

.9972

.9973

.9974

.9974

.9975

.9976

.9977

.9977

.9978

.9979

.9979

.9980

.9981

.9981

.9982

.9982

.9983

.9984

.9984

.9985

.9985

.9986

.9986
-9987

iigm tan

.0034

.0033

.0032
• 0031
• 0030

.0029

.0028

.0027

.0026

.0026

.0025

.0024
• 0023
.0023
.0022

.0021

.0021

.0020

.0019

.0019

.0018

.0018

.0017
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.9990
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.9991
.9992
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.9979
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.9981

.9982
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.9984

• 9984
.9985
.9985
.9986
.9986
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.9987
• 9988
.9988
.9988

.9989
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.9990

.9990



Appendix G Student-f distribution
Highest density regions

—t +t

df
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
60

120
oo

Area within interval 
0.20 0.50 0.80 0.90 0.95 0.98 0.99 0.995 0.998
0-325

•289
•277
•271

0-267
•265
•263
•262
•261

0-260
•260
•259
•259
•258

0-258
•258
•257
•257
•257

0-257
•257
•256
•256
•256

0-256
•256
•256
•256
•256

0-256
•255
•254
•254
•253

1-000
0-816

•765
•741

0-727
•718
•711
•706
•703

0-700
•697
•696
•694
•692

0-691
•690
•689
•688
•688

0687
•686
•686
•685
•685

0684
•684
•684
•683
•683

0683
•681
•679
•677
•674

8-078
•886
•638
533

•476
•440
•415
•397
•383
•372
•363
•356
•350
345
341
337
333
330
328

•325
323

•321
•319
•318
316
315

1-314
1 313
1 311
1-310
1-303
1 296
1-289
1-282

6-314
2-920
2353
2-132
2015

•943
•895
•860
833

•812
•796
•782
•771
•761
•753
•746
•740
•734
•729
•725
•721
•717
•714
•711
•708
•706
•703
•701

1-699
1-697
1-684
1 671
1 658
1645

12-706
4303
3-182
2-776
2571
2-447
2-305
2-306
2-262
2-228
2-201
2-179
2-160
2 145
2-131
2-120
2-110
2-101
2093
2086
2-080
2074
2-069
2-064
2-060
2056
2052
2-048
2-045
2-042
2-021
2000
1 980
1-960

81-821
6-966
4-541
3-747
3365
3-143
2-998
2-896
2821
2764
2718
2681
2-650
2-624
2-602
2583
2567
2652
2539
2528
2-518
2-508
2500
2-492
2-485
2479
2-473
2-467
2-462
2-467
2423
2-390
2358
2326

63-657
9925
6841
4-604
4032
3-707
3499
3355
3250
3-169
3 106
3-055
3012
2-977
2-947
2921
2898
2-878
2861
2-845
2-831
2819
2-807
2-797
2-787
2-779
2-771
2-763
2-756
2-750
2-704
2660
2617
2-676

127-32
14-089
7-453
6-598
4-773
4-317
4029
3833
3-690
3581
3-497
3-428
3372
3326
3286
3252
3-222
3-197
3-174
3-153
3-135
3 119
3-104
3091
3-078
3067
3057
3047
3-038
3-030
2971
2-916
2-860
2-807

318-31
22-327
10214
7-173
0-893
5-208
4-785
4-501
4-297
4-144
4-025
3-930
3-852
3-787
3733
3686
3646
3610
3-579
3-652
3-627
3-605
3485
3467
3450
3435
3-421
3-408
3-396
3-386
3-307
3-232
3 160
3090

0.999
63662

31-598
12-924
8610
6-869
6-959
5-408
6-041
4-781
4-687
4-437
4-318
4-221
4-140
4073
4015
3-965
3-922
3-883
3850
3-810
3-792
3-767
3-745
3-725
3-707
3-690
3674
3659
3646
3551
3460
3-373
3291

SOURCE: Pearson and Hartley (1966).



Appendix G Student-? distribution
Cumulative areas

V
A
0-0
0-1
0-2
0-3
0-4

0-6
0-8
0-7
0-8
0-9

1-0
1-1
1-2
1-3
1-4

15
1-6
1-7
1-8
1-9

2-0
2-1
2-2
23
2-4

2-6
2-6
2-7
2-8
2-9

3-0
3-1
3-2
33
34
3-5
33
3-7
3-8
3-9

4-0
4-2
4-4
4-6
4-8

6-0
6-2
6-4
5-6
5-8

6-0
6-2
6-4
66
6-8

7-0
7-2
7-4
7-6
7-8

8-0

(area to left of +0

i

0-60000
•63173
•66283
•69277
•62112

0-64768
•67202
•69440
•71478
•73326

0-76000
•76615
•77886
•79129
•80257

0-81283
•82219
•83075
•83859
•84579

0-85242
•85854
•86420
•86945
•87433

0-87888
•88313
•88709
•89081
•89430

0-89768
•90067
•90359
•90634
•90896

0-91141
•91376
•91598
•91809
•92010

0-92202
•92560
•92887
•93186
•93462

0-93717
•93952
•94171
•94375
•94565

0-94743
•94910
•95066
•95214
•95352

0-96483
•95607
•95724
•95836
•95941

0-96042

2

0-60000
•63527
•67002
•60376
•63608

0-66667
•69529
•72181
•74618
•76846

0-78868
•80698
•82349
•83838
•85177

0-86380
•87464
•88439
•89317
•90109

0-90825
•91473
•92060
•92593
•93077

0-93519
•93923
•94292
•94630
•94941

0-95227
•95490
•95733
•95958
•96166

0-96358
•96538
•96705
•96860
•97005

0-97141
•97386
•97602
•97792
•97962

0-98113
•98248
•98369
•98478
•98577

0-98666
•98748
•98822
•98890
•98953

0-99010
•99063
•99111
•99156
•99198

0-99237

3

0-50000
•63667
•67286
•60812
•64203

0-67428
•70460
•73284
•75890
•78277

0-80460
•82416
•84187
•85777
•87200

0-88471
•89605
•90615
•91516
•92318

0-93034
•93672
•94241
•94761
•95206

0-95615
•95981
•96311
•96607
•96875

0-97116
•97335
•97633
•97713
•97877

0-98026
•98162
•98286
•98400
•98504

0-98600
•98768
•98912
•99034
•99140

0-99230
•99309
•99378
•99437
•99490

0-99536
•99577
•99614
•99646
•99675

0-99701
•99724
•99745
•99764
•99781

0-99796

4

0-60000
•63742
•67438
•61044
•64620

0-67834
•70958
•73875
•76574
•79060

0-81306
•83346
•85182
•86827
•88295

0-89600
•90758
•91782
•92688
•93488

0-94194
•94817
•95367
•95853
•96282

0-96662
•96998
•97295
•97669
•97794

0-98003
•98189
•98355
•98503
•98636

0-98755
•98862
•98958
•99045
•99123

0-99193
•99315
•99415
•99498
•99568

0-99625
•99674
•99715
•99750
•99780

0-99806
•99828
•99847
•99863
•99878

0-99890
•99901
•99911
•99920
•99927

0-99934

5

0-50000
•53788
•57532
•61188
•64716

0-68085
•71267
•74243
•76999
•79531

0-81839
•83927
•86805
•87485
•88980

0-90305
•91475
•92506
•93412
•94207

0-94903
•95512
•96045
•965 IT
•96919

0-97275
•97587
•97861
•98100
•98310

0-98495
•98657
•98800
•98926
•99037

0-99136
•99223
•99300
•99369
•99430

0-99484
•99575
•99649
•99708
•99756

0-99795
•99827
•99853
•99875
•99893

0-99908
•99920
•99931
•99940
•99948

0-99954
•99960
•99964
•99969
•99972

0-99975

6

0-60000
•63820
•67596
•61285
•64850

0-68256
•71477
•74493
•77289
•79860

0-82204
•84325
•86232
•87935
•89448

0-90786
•91964
•92998
•93902
•94691

0-96379
•95976
•96495
•96945
•97335

0-97674
•97967
•98221
•98442
•98633

0-98800
•98944
•99070
•99180
•99275

0-99359
•99432
•99496
•99552
•99601

0-99644
•99716
•99772
-99815
•99850

0-99877
•99899
•99917
•99931
•99942

0-99952
•99959
•99966
•99971
•99976

0-99979
•99982
•99984
•99986
•99988

0-99990

7

0-60000
•53843
•67642
•61356
•64946

0-68380
•71629
•74674
•77500
•80099

0-82469
•84614
•86541
•88262
•89788

0-91136
•92318
•93354
•94256
•95040

0-95719
•96306
•96813
•97260
•97627

0-97950
•98229
•98468
•98674
•98851

0-99003
•99134
•99247
•99344
•99428

0-99500
•99563
•99617
•99664
•99705

0-99741
•99798
•99842
•99876
•99902

0-99922
•99937
•99950
•99959
•99967

0-99973
•99978
•99982
•99985
•99987

0-99990
•99991
•99993
•99994
•99995

0-99996

8

0-50000
•53860
•67676
•61409
•65019

0-68473
•71745
•74811
•77659
•80280

0-82670
•84834
•86777
•88510
•90046

0-91400
•92587
•93622
•94522
•96302

0-95974
•96553
•97050
•97476
•97841

0-98153
•98419
•98646
•98840
•99005

0-99146
•99267
•99369
•99457
•99532

0-99596
•99651
•99698
•99738
•99773

0-99803
•99850
•99886
•99912
•99932

0-99947
•99959
•99968
•99975
•99980

0-99984
•99987
•99990
•99992
•99993

0-99994
•99995
•99996
•99997
•99997

0-99998

9

0-50000
•53873
•57704
•61450
•65076

0-68546
•71835
•74919
•77784
•80422

0-82828
•85006
•86961
•88705
•90249

0-91608
•92797
•93833
•94731
•95506

0-96172
•96744
•97233
•97650
•98005

0-98307
•98563
•08780
•98964
•99120

0-99252
•99364
•99459
•99539
•99606

0-99664
•99713
•99754
•99789
•99819

0-99845
•99885
•99914
•99936
•99951

0-99963
•99972
•99978
•99983
•99987

0-99990
•99992
•99994
•99995
•99996

0-99997
•99997
•99998
•99998
•99999

0-99999

10

0-50000
•53884
•67726
•61484
•65122

0-68605
•71907
•76006
•77885
•80536

0-82955
•85145
•87110
•88862
•90412

0-91776
•92966
•94002
•94897
•95669

0-96331
•96896
•97378
•97787
•98134

0-98428
•98676
•98884
•99060
•99208

0-99333
•99437
•99525
•99599
•99661

0-99714
•99758
•99795
•99826
•99852

0-99874
•99909
•99933
•99951
•99964

0-99973
•99980
•99985
•99989
•99991

0-99993
•99995
•99996
•99997
•99998

0-99998
•99999
•99999
•91)999
•99999

0-99999

SOURCE: Pearson and Hartley (1966).
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V\'\
0-0
0-1
0-2
0-3
0-4

0-6
0-6
0-7
0-8
0-9

•0
•1
•2
•3
•4

•6
•6
•7
•8

1-9

2-0
2-1
2-2
23
24

2-5
2-6
2-7
2-8
2-9

3-0
3-1
3-2
33
3-4

3-6
3-6
3-7
3-8
3-9

4-0
4-2
4.4
46
4-8

0-0
6-2
6-4
5-6
6-8

6-0
6-2
6-4
6-6
6-8

7-0

(area to left of + /)

11

0-50000
•53893
•57744
•61511
•65169

0-68654
•71967
•75077
•77968
•80630

0-83060
•85259
•87233
•88991
•90546

0-91912
•93105
•94140
•95034
•95802

0-96460
•97020
•97496
•97898
•98238

0-98525
•98765
•98967
•99136
•99278

0-99396
•99495
•99577
•99646
•99703

0-99751
•99791
•99825
•99853
•99876

0-99896
•99926
•99947
•99962
•99972

0-99980
•99985
•99989
•99992
•99994

0-99995
•99997
•99997
•99998
•99998

0-99999

12

0-50000
•53900
•57759
•61534
•65191

0-68694
•72017
•75136
•78037
•80709

0-83148
•85355
•87335
•89099
•90658

0-92027
•93221
•94256
•95148
•95914

0-96567
•97123
•97593
•97990
•98324

0-98604
•98839
•99035
•99198
•99334

0-99447
•99541
•99618
•99683
•99737

0-99781
•99818
•99848
•99874
•99895

0-99912
•99938
•99967
•99969
•99978

0-99985
•99989
•99992
•99994
•99996

0-99997
•99998
•99998
•99999
•99999

0-99999

13

0-50000
•631)07
•67771
•61554
•65217

0-68728
•72059
•75187
•78096
•80776

0-83222
•85436
•87422
•89191
•90754

0-92125
•93320
•94354
•95245
•96008

0-96658
•97209
•97675
•98067
•98396

0-98671
•98900
•99090
•99249
•99380

0-99488
•99578
•99652
•99713
•99763

0-99804
•99838
•99867
•99890
•99909

0-99924
•99948
•99964
•99975
•99983

0-99988
•99992
•99994
•99996
•99997

0-99998
•99998
•99999
•99999
•99999

14

0-50000
•53912
•57782
•61571
•65240

0-68758
•72095
•75230
•78146
•80833

0-83286
•85506
•87497
•89270
•90836

0-92209
•93404
•94439
•95328
•96089

0-96736
•97283
•97745
•98132
•98457

0-98727
•98951
•99137
•99291
•99418

0-99522
•99608
•99679
•99737
•99784

0-99823
•99855
•99881
•99902
•99920

0-99934
•99955
•99970
•99979
•99986

0-99990
•99993
•99995
•99997
•99998

0-99998
•99999
•99999
•99999

15

0-50000
•63917
•67792
•61585
•65260

0-68783
•72127
•75268
•78190
•80883

0-83341
•85566
•87562
•89339
•90907

0-92282
•93478
•94512
•95400
•96158

0-96803
•97347
•97805
•98189
•9S509

0-98775
•98995
•99177
•99327
•99450

0-99551
•99634
•99702
•99757
•99802

0-99839
•99869
•99893
•99913
•99929

0-99942
•99961
•99974
•99983
•99988

099992
•99995
•99996
•99997
•99998

0-99999
•99999
•99999

16

o-coooo
•53921
•57800
•61598
•65278

0-68806
•72155
•75301
•78229
•80927

0-83390
•85620
•87620
•89399
•90970

0-92346
•93542
•94576
•95463
•96220

0-96861
•97403
•97858
•98238
•98554

0-98816
•99033
•99211
•99358
•99478

0-99576
•99656
•99721
•99774
•99817

0-99852
•99880
•99903
•99921
•99936

0-99948
•99966
•99978
•99985
•99990

0-99993
•99996
•99997
•99998
•99999

0-99999
•99999

17

0-60000
•63924
•67807
•61609
•65293

0-68826
•72179
•75330
•78263
•80965

083433
•85667
•87670
•89452
•91025

0-92402
•93599
•94632
•95518
•96273

0-96913
•97452
•97904
•98281
•98594

0-98853
•99066
•99241
•99385
•99502

0-99597
•99675
•99738
•99789
•99830

0-99863
•99890
•99911
•99928
•99942

0-99954
•99970
•99980
•99987
•99992

0-99995
•99996
•99998
•99998
•99999

0-99999

18

050000
•53928
•67814
•61619
•65307

0-68843
•72201
•75356
•78293
•81000

0-83472
•85709
•87716
•89500
•91074

0-92452
•93650
•94683
•95568
•96321

0-96959
•97495
•97945
•98319
•98629

0-98885
•99095
•99267
•99408
•99523

0-99616
•99691
•99762
•99801
•99840

0-99872
•99898
•99918
•99934
•99948

0-99968
•99973
•99983
•99989
•99993

0-99996
•99997
•99998
•99999
•99999

0-99999

19

0-50000
•63930
•67820
•61628
•65319

0-68859
•72220
•75380
•78320
•81031

0-83506
•85746
•87756
•89542
•91118

0-92498
•93695
•94728
•95612
•96364

0-97000
•97634
•97981
•98352
•98660

0-98913
•99121
•99290
•99429
•99541

0-99632
•99705
•99764
•99812
•99850

0-99880
•99905
•99924
•99939
•99952

0-99962
•99976
•99985
•99990
•99994

0-99996
•99997
•99998
•99999
•99999

20

0-60000
•63U33
•57825
•61636
•65330

0-68873
•72238
•75400
•78344
•81058

0-83537
•85780
•87792
•89581
•91168

0-92538
•93736
•94768
•95652
•96403

097037
•97509
•98014
•98383
•98688

0-98938
•99144
•99311
•99447
•99557

099646
•99718
•99775
•99821
•99858

099887
•99911
•99929
•99944
•99956

0-99965
•99978
•99986
•99991
•99995

0-99997
•99998
•99999
•99999
•99999



A55

X
0-00
0-06
0-10
0-15
020

0-25
0-30
0-35
0-40
0-45

0-60
0-65
060
0-65
0-70

0-75
0-80
0-85
0-90
095

•00
•05
10

•15
•20

•25
•30
35

•40
•45

•50
•55
•60
•65
•70

•76
•80
•85
•90

1-95

2-0
2-1
2-2
2-3
2-4

2-6
2-6
2-7
2-8
2-9

30
3-1
3-2
3-3
3-4

3-6
3-6
3-7
3-8
3-9

4-0

5-0

(area to left of -ff)

20

0-50000
•61969
•53933
•65887
•57826

0-59743
•61636
•63500
•65330
•67122

0-68873
•70579
•72238
•73846
•75400

0-76901
•78344
•79731
•81058
•82327

0-83537
•84688
•86780
•86814
•87792

0-88714
•89581
•90395
•91158
•91872

0-92538
•93159
•93736
•94272
•94768

0-95228
•96652
•96043
•96403
•96733

0-97037
•97669
•98014
•98383
•98688

0-98938
•99144
99311

•99447
•99557

0-99646
•99718
•99776
•99821
•99858

0-99887
•99911
•99929
•99944
•99966

0-99965

0-99997

21

0-50000
•51970
•53935
•65890
•67830

0-69749
•61644
•63509
•65340
•67134

0-68886
•70594
•72254
•73863
•75419

0-76921
•78367
•79754
•81084
•82354

0-83565
•84717
•85811
•86846
•87825

0-88747
•89616
•90431
•91194
•91908

0-92575
•93196
•93773
•94309
•94805

0-95264
•95688
•96078
•96437
•96767

0-97070
•97601
•98043
•98410
•98712

0-98961
•99164
•99329
•99463
•99572

0-99659
•99729
•99785
•99829
•99865

0-99893
•99916
•99933
•99948
•99959

0-99967

0-99997

22

0-60000
•61971
•53938
•65893
•67834

0-59755
•61650
•63517
•65349
•67144

0-68898
•70607
•72268
•73879
•76437

0-76940
•78387
•79776
•81107
•82378

0-83591
•84744
•85839
•86875
•87855

0-88778
•89647
•90463
•91227
•91942

0-92608
•93230
•93807
•94342
•94839

0-95297
•95720
•96110
•96469
•96798

0-97100
•97629
•98070
•98435
•98735

0-98982
•99183
•99346
•99478
•99585

0-99670
•99739
•99793
•99837
•99871

0-99899
•99920
•99937
•99951
•99961

0-99970

0-99998

23

0-50000
•51972
•63939
•65896
•57838

0-69760
•61G56
•63524
•65358
•67154

0-68909
•70619
•72281
•73893
•75453

0-76957
•78405
•79796
•81128
•82401

0-83614
•84769
•85864
•86902
•87882

0-88807
•89676
•90492
•91257
•91972

0-92639
•93260
•93838
•94373
•94869

0-95327
•95750
•96140
•96498
•96827

0-97128
•97655
•98094
•98467
•98756

0-99000
•99200
•99361
•99492
•99596

0-99681
•99748
•99801
•99844
•99877

0-99904
•99925
•99941
•99954
•99964

0-99972

0-99998

24

0-50000
•51973
•63941
•65899
•67842

0-69764
•61662
•63530
•65365
•67163

0-68919
•70630
•72294
•73907
•75467

0-76973
•78422
•79814
•81147
•82421

083636
•84791
•85888
•8B926
•87907

0-88832
•89703
•90519
•91285
•92000

0-92667
•93289
•93866
•94401
•94897

0-95355
•95778
•96167
•96524
•96852

0-97153
•97679
•98116
•98478
•98774

0-99017
•99215
•99375
•99504
•99607

0-99690
•99756
•99808
•99849
•99882

0-99908
•99928
•99944
•99956
•99966

0-99974

0-99998

30

0-50000
•51977
•53950
•65912
•67858

0-59785
•61688
•63561
•65400
•67203

0-68964
•70080
•72349
•73968
•75534

0-77045
•78500
•79897
•81236
•82515

0-83735
•84895
•85996
•87039
•88023

0-88952
•89825
•90644
•91411
•92128

0-92797
•93419
•93996
•94531
•95026

0-95483
•95904
•96291
•96646
•96971

0-97269
•97788
•98218
•98571
•98860

0-99094
•99284
•99436
•99557
•99654

0-99730
•99791
•99838
•99875
•99904

0-99926
•99943
•99957
•99967
•99975

0-99981

0-99999

40

0-50000
•61981
•63958
•55924
•57875

0-69807
•61713
•63591
•65436
•67243

0-69009
•70731
•72405
•74030
•75601

0-77118
•78578
•79981
•81325
•82609

0-83834
•84999
•86105
•87151
•88140

0-89072
•89948
•90770
•91539
•92257

0-92927
•93549
•94127
•94661
•95155

0-95611
•96030
•96414
•96767
•97089

0-97384
•97896
•98318
•98663
•98943

0-99169
•99350
•99494
•99608
•99698

0-99768
•99823
•99865
•99898
•99923

0-99942
•99957
•99967
•99976
•99982

0-99987

0-99999

60

0-60000
•51986
•63966
•55937
•67892

0-59828
•61739
•63622
•66471
•67283

0-69055
•70782
•72462
•74091
•76668

0-77191
•78657
•80065
•81414
•82704

0-83934
•85104
•86214
•87265
•88257

0-89192
•90071
•90896
•91667
•92387

0-93057
•93680
•94257
•94792
•95284

0-95738
•96156
•96538
•96888
•97207

0-97498
•98003
•98416
•98763
•99024

0-99241
•99414
•99550
•99657
•99740

0-99804
•99853
•99890
•99918
•99940

0-99956
•99968
•99976
•99983
•99988

0-99991

120

0-50000
•61990
•53974
•55949
•67909

0-59849
•61765
•63652
•65507
•67324

0-69100
•70833
•72518
•74153
•75736

0-77264
•78735
•80149
•81504
•82799

0-84034
•85209
•86323
•87378
•88375

0-89313
•90195
•91022
•91795
•92517

0-93188
•93811
•94389
•94922
•95414

0-95866
•96281
•96661
•97008
•97326

0-97612
•98109
•98514
•98841
•99103

0-99312
•99475
•99603
•99702
•99778

0-99836
•99879
•99912
•99936
•99954

0-99967
•99977
•99984
•99989
•99992

0-99995

00

0-50000
•51994
•63983
•65962
•57926

0-69871
•61791
•63683
•65542
•67364

0-69146
•70884
•72575
•74215
•75804

0-77337
•78814
•80234
•81594
•82894

0-84134
•85314
•86433
•87493
•88493

0-89435
•90320
•91149
•91924
•92647

0-93319
•93943
•94520
•95053
•95543

0-95994
•96407
•96784
•97128
•97441

0-97725
•98214
•98610
•98928
•99180

0-90379
•99534
•99653
•99744
•99813

0-99865
•99903
•99931
•99952
•99966

0-99977
•99984
•99989
•99993
•99995

0-99997



Appendix H Logarithms
Log, 0 /V

N

10
1 1
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
31
32
33
34

35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53
54

0

0000
0414
0792
1 139
1461

1761
2041
2304
2553
2788

3010
3222
3424
3617
3802

3979
4150
4314
4472
4624

4771
4914
5051
5185
531 5

5441
5563
5682
5798
591 1

6021
6128
6232
6335
6435

6532
6628
6721
6812
6902

6990
7076
7160
7243
7324

1

0043
0453
0828
1 173
1492

1790
2068
2330
2577
2810

3032
3243
3444
3636
3820

3997
4166
4330
4487
4639

4786
4928
5065
5198
5328

5453
5575
5694
5809
5922

6031
6138
6243
6345
6444

6542
6637
6730
6821
691 1

6998
7084
7168
7251
7332

2

0086
0492
0864
1206
1523

1818
2095
2355
2601
2833

3054
3263
3464
3655
3838

4014
4183
4346
4502
4654

4800
4942
5079
521 1
5340

5465
5587
5705
5821
5933

6042
6149
6253
6355
6454

6551
6646
6739
6830
6920

7007
7093
7177
7259
7340

3

0128
0531
0899
1239
1553

1847
2122
2380
2625
2856

3075
3284
3483
3674
3856

4031
4200
4362
4518
4669

4814
4955
5092
5224
5353

5478
5599
5717
5832
5944

6053
6160
6263
6365
6464

6561
6656
6749
6839
6928

7016
7101
7185
7267
7348

4

0170
0569
0934
1271
1584

1875
2148
2405
2648
2878

3096
3304
3502
3692
3874

4048
4216
4378
4533
4683

4829
4969
5105
5237
5366

5490
561 1
5729
5843
5955

6064
6170
6274
6375
6474

6571
6665
6758
6848
6937

7024
71 10
7193
7275
7356

5

0212
0607
0969
1303
1614

1903
2175
2430
2672
2900

31 18
3324
3522
371 1
3892

4065
4232
4393
4548
4698

4843
4983
51 19
5250
5378

5502
5623
5740
5855
5966

6075
6180
6284
6385
6484

6580
6675
6767
6857
6946

7033
71 18
7202
7284
7364

6

0253
0645
1004
1335
1644

1931
2201
2455
2695
2923

3139
3345
3541
3729
3909

4082
4249
4409
4564
4713

4857
4997
5132
5263
5391

5515
5635
5752
5866
5977

6085
6191
6294
6395
6493

6590
6684
6776
6866
6955

7042
7126
7210
7292
7372

7

0294
0682
1038
1367
1673

1959
2227
2480
2718
2945

3160
3365
3560
3747
3927

4099
4265
4425
4579
4728

4871
501 1
5145
5276
5403

5527
5647
5763
5877
5988

6096
6201
6304
6405
6503

6599
6693
6785
6875
6964

7050
7135
7218
7300
7380

8

0334
0719
1072
1399
1703

1987
2253
2504
2742
2967

3181
3385
3579
3766
3945

41 16
4281
4440
4594
4742

4886
5024
5159
5289
5416

5539
5658
5775
5888
5999

6107
6212
6314
6415
6513

6609
6702
6794
6884
6972

7059
7143
7226
7308
7388

9

0374
0755
1 106
1430
1732

2014
2279
2529
2765
2989

3201
3404
3598
3784
3962

4133
4298
4456
4609
4757

4900
5038
5172
5302
5428

5551
5670
5786
5899
6010

61 17
6222
6325
6425
6522

6618
6712
6803
6893
6981

7067
7152
7235
7316
7396

SOURCE: Computed for this volume.



A57

N

55
56
57
58
59

60
61
62
63
64

65
66
67
68
69

70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

85
86
87
88
69

90
91
92
93
94

95
96
97
98
99

0

7404
7482
7559
7634
7709

7782
7853
7924
7993
8062

8129
8195
8261
8325
8388

8451
8513
8573
8633
8692

8751
8808
8865
8921
8976

9031
9085
9138
9191
9243

9294
9345
9395
9445
9494

9542
9590
9638
9685
9731

9777
9823
9868
9912
9956

1

7412
7490
7566
7642
7716

7789
7860
7931
8000
8069

8136
8202
8267
8331
8395

8457
8519
8579
8639
8698

8756
8814
8871
8927
8982

9036
9090
9143
9196
9248

9299
9350
9400
9450
9499

9547
9595
9643
9689
9736

9782
9827
9872
9917
9961

2

7419
7497
7574
7649
7723

7796
7868
7938
8007
8075

8142
8209
8274
8338
8401

8463
8525
8585
8645
8704

8762
8820
8876
8932
8987

9042
9096
9149
9201
9253

9304
9355
9405
9455
9504

9552
9600
9647
9694
9741

9786
9832
9877
9921
9965

3

7427
7505
7582
7657
7731

7803
7875
7945
8014
8082

8149
8215
8280
8344
8407

8470
8531
8591
8651
8710

8768
8825
8882
8938
8993

9047
9101
9154
9206
9258

9309
9360
9410
9460
9509

9557
9605
9652
9699
9745

9791
9836
9881
9926
9969

4

7435
7513
7589
7664
7738

7810
7882
7952
8021
8089

8156
8222
8287
8351
8414

8476
8537
8597
8657
8716

8774
8831
8887
8943
8998

9053
9106
9159
9212
9263

9315
9365
9415
9465
9513

9562
9609
9657
9703
9750

9795
9841
9886
9930
9974

5

7443
7520
7597
7672
7745

7818
7889
7959
8028
8096

8162
8228
8293
8357
8420

8482
8543
8603
8663
8722

8779
8837
8893
8949
9004

9058
91 12
9165
9217
9269

9320
9370
9420
9469
9518

9566
9614
9661
9708
9754

9800
9845
9890
9934
9978

6

7451
7528
7604
7679
7752

7825
7896
7966
8035
8102

8169
8235
8299
8363
8426

8488
8549
8609
8669
8727

8785
8842
8899
8954
9009

9063
91 17
9170
9222
9274

9325
9375
9425
9474
9523

9571
9619
9666
9713
9759

9805
9850
9894
9939
9983

7

7459
7536
7612
7686
7760

7832
7903
7973
8041
8109

8176
8241
8306
8370
8432

8494
8555
8615
8675
8733

8791
8848
8904
8960
9015

9069
9122
9175
9227
9279

9330
9380
9430
9479
9528

9576
9624
9671
9717
9763

9809
9854
9899
9943
9987

8

7466
7543
7619
7694
7767

7839
7910
7980
8048
81 16

8182
8248
8312
8376
8439

8500
8561
8621
8681
8739

8797
8854
8910
8965
9020

9074
912R
9180
9232
9284

9335
9385
9435
9484
9533

9581
9628
9675
9722
9768

9814
9859
9903
9948
9991

9

7474
7551
7627
7701
7774

7846
7917
79R7
8055
8122

8189
8254
8319
8382
8445

8506
8567
8627
8686
8745

8802
8R59
8915
8971
9025

9079
9133
9186
9238
9289

9340
9390
9440
9489
9538

9586
9633
9680
9727
9773

9818
9863
9908
9952
9996



Logarithms of factorials
Loglo /V!

n n loglo n! n log,0 n| n log,, n I n log,0 n!

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
26

26
27
28
29
30

31
32
33
34
36

36
37
38
39
40

41
42
43
44
46

46
47
48
49
60

0-0000000
0-301 0300
0-778 1513
1-3802112
2-079 1812

2-857 3325
3-702 4305
4-605 5205
5-559 7630
6-559 7630

7-601 1557
8-680 3370
9-794 2803
10-940 4084
12-1164996

13-320 6196
14-651 0685
15-806 3410
17-085 0946
18-386 1246

19-708 3439
21-050 7666
22-412 4944
23-792 7057
25-190 6467

26-605 6190
28-036 9828
29-484 1408
30-946 6388
32-423 6601

33-9160218
35-420 1717
36-938 6857
38-470 1646
40-014 2326

41-5705351
43-138 7369
44-7185205
46-309 6851
47-911 6451

49-624 4289
61-147 6782
62-781 1467
64-424 5993
56-077 8119

67-740 5697
59-412 6676
61-093 9088
62-784 1049
64-483 0749

61
62
53
54
65

56
57
58
59
60

61
62
63
64
65

66
67
68
69
70

71
72
73
74
76

76
77
78
79
80

81
82
83
84
85

86
87
88
89
90

91
92
93
94
95

96
97
98
99

100

66-1906450
67-906 6484
69-630 9243
71-363 3180
73-103 6807

74-851 8687
76-607 7436
78-371 1716
80-1420236
81-920 1748

83-705 5047
85-497 8964
87-297 2369
89-1034169
90-916 3303

92-736 8742
94-561 9490
96-394 4679
98-233 3070
100-078 4050

101-929 6634
103-786 9959
105-650 3187
107-619 5505
109-3946117

111-2754253
113-161 9160
115-0540106
116-961 6377
118-854 7277

120-763 2127
122-677 0266
124-596 1047
126-620 3840
128-449 8029

130-384 3013
132-323 8206
134-268 3033
136-217 6933
138-171 9358

140-1309772
142-094 7650
144-063 2480
146-036 3758
148-014 0994

149-996 3707
151-983 1424
153-974 3685
155-9700037
167-970 0037

101
102
103
104
105

106
107
108
109
110

111
112
113
114
115

116
J17
118
119
130

121
122
123
124
125

126
127
128
129
130

131
132
133
134
135

136
137
138
139
140

141
142
143
144
145

146
147
148
149
150

159-974 3250
161-982 9252
163-995 7624
166-012 7958
168-033 9851

170-059 2909
172-088 6747
174-1220985
176-1695250
178-200 9176

180-246 2406
182-295 4586
184-3485371
186-4054419
188-466 1398

190-530 5978
192-598 7836
194-670 6656
196-746 2126
198-825 3938

200-908 1792
202-994 6390
205-084 4442
207-177 8658
209-274 7759

211-375 1464
213-478 9501
215-586 1601
217-6967498
219-810 6932

221-927 9645
224-048 5384
226-172 3900
228-299 4948
230-429 8286

232-563 3675
234-700 0881
236-839 9672
238-982 9820
241-129 1100

243-278 3291
245-430 6174
247-586 9535
249-744 3160
251-905 6840

264-070 0368
256-237 3542
258-407 6159
260-580 8022
262-756 8934

151
152
153
154
155

156
157
158
159
160

161
162
163
164
165

166
167
168
169
170

171
172
173
174
175

176
177
178
179
180

181
182
183
184
185

186
187
188
189
190

191
192

264-935 8704
267-117 7139
269-302 4054
271-4899261
273-680 2578

275-873 3824
278-069 2820
280-267 9391
282-469 3363
284-673 4562

286-880 2821
289-089 7971
291-301 9847
293-516 8286
295-734 3125

297-954 4206
300-177 1371
302-402 4464
304-630 3331
306-860 7820

309-093 7781
311-3293066
313-567 3527
315-807 9019
318-050 9400

3202964526
322-544 4259
324-794 8459
327-047 6989
329-302 9714

331-660 6500
333-820 7214
336 083 1725
338-347 9903
340-615 1620

342-884 6750
345-1565166
347-430 6744
349-707 1362
351-985 8898

354-266 9232
356-550 2244

J93 S 358-8357817
194
195

196
197
198
199
200

361-123 5835
363-413 6181

365-706 8742
368-000 3404
370-297 0066
372-695 8586
374-896 8886

201
202
203
204
205

206
207
208
209
210

211
212
213
214
215

216
217
218
219
220

221
222
223
224
225

226
227
228
229
230

231
232
233
234
235

236
237
238
239
240

241
242
243
244
246

246
247
248
249
250

377-200 0847
379-605 4361
381-8129321
384-1226623
386-434 3161

388-748 1834
391-064 1537
393-382 2170
395-702 3633
398-024 5826

400-348 8651
402-675 2009
405-003 5805
407-333 9943
409-666 4328

412-000 8865
414-337 3463
416-676 8027
419-016 2469
421-358 6695

423-703 0618
426-049 4148
428-397 7197
430-747 9677
433-100 1502

435-454 2586
437-810 2845
440-1682193
442-528 0548
444-889 7827

447-253 3946
449-618 8826
451-986 2385
454-355 4544
456-726 5223

459-099 4343
461-474 1826
463-860 7696
466-229 1575
468-609 3687

470-991 3857
473-3752011
476-760 8074
478-148 1972
480-637 3633

482-928 2984
485-320 9954
487-715 4470
490-111 6464
492-509 6864

SOURCE: Pearson and Hartley (1966).
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Logarithms

A Finding the logarithm of a number, N.

//7V>7:e.g.,log10 62.3
Step 1 Count the number of digits to 
the left of the decimal place, and 
subtract 1.
e.g., 62 is two digits. 
2—1 = 1

Step 3 Iog 10 62.3 ="1.'7945 

0.0623ffN< 7:e.g.,log10
Step 1 Enter the log table with N,
disregarding the decimal, interpolating
if necessary.
e.g., enter with 623
tabled value is,7945,

Step 3 Iog10 0.0623 = .7945 — 2
= —1.2055

Step 2 Enter the log table with N, 
disregarding the decimal, interpolating 
if necessary.
e.g., enter with 623 
tabled value is,7945,

Step 2 Count the number of zeros 
to the right of the decimal, and add 1. 
e.g., .0623 has 1 zero 1 + 1 =

B Finding the number whose logarithm is given, i.e., finding an anti-logarithm.

IfN is positive: e.g., log N = 2...794S,

Step 1 Add 1 to this number to get
the number of decimal places in the
antilog.
e.g., 2 + 1 =.3 places,

Step 3 N = 623.0

Step 2 Look up this number in the 
body of the log table and read off the 
co-ordinates to get the antilog. 
e.g., the co-ordinates for 7945 are,623,.
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IfN is negative: e.g., log /V — —^2.2055
fl

Step 1 Take the absolute value of 
this number to get the number of 
zeros in the antilog. 
e.g., 2 zeros,

Step 3 N = .00623

Step 2 Take the complement of this
number, look up the complement in
the body of the log table and read off
the co-ordinates.
e.g., 10000 — 2055-7945
the co-ordinates for 7945 are,623,.

C Rules

1 log A-r-log A-+ log Y

2 log^-logA-— log Y

3 log Xtt = a log X
4 log 1 = 0
5 log lo e = 0.4343
6 log IO TT = 0.4971



Appendix I Interpolation

Interpolation is necessary whenever you wish to enter a table with a number that falls 
between the table entries. Linear interpolation will be adequate for the tables in this 
book.
Suppose, for example, you wish to find the logarithm of 4.126. The log table in 
Appendix H gives

log 4.12 = .6149, 
and log 4.13- .6160,

but is not "fine" enough to give log 4.126. You can see that 4.126 is >fo of the distance 
from 4.120 to 4.130. We assume in linear interpolation that log 4.126 is, then, >fo of the 
distance from log 4.120 to log 4.130, i.e., .6 of the distance from .6149 to .6160. 
That distance is .0011, and .6 of it is .0011 x .6 = .00066, or .0007. If we add that 
distance to .6149 we get,

log 4.126 = .6149 + .0007 = .6156
You can see this more clearly in the following interpolation diagram. 

/V logN

.006

4.126

4.13

.01 .0011

.0011 x ^--.0007

-.6149 + .0007 
= .6156
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J'N N

Powers and roots
\/N

1
2
3
4

5
6
7
8
9

10
1 1
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
31
32
33
34

35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

1
4
9

16

25
36
49
64
81

100
121
144
169
196

225
256
289
324
361

400
441
484
529
576

625
676
729
784
841

900
961
1024
1089
1 156

1225
1296
1369
1444
1521

1600
1681
1764
1849
1936

2025
21 16
2209
2304
2401

V

1 .0000
1 .4142
1 .7321
2.0000

2.2361
2.4495
2.6458
2.8284
3.0000

3.1623
3.3166
3.4641
3.6056
3.7417

3.8730
4 .0000
4.1231
4.2426
4.3589

4.4721
4.5826
4.6904
4.7958
4.8990

5.0000
5.0990
5.1962
5.2915
5.3852

5.4772
5.5678
5.6569
5.7446
5.8310

5.9161
6 .0000
6 .0828
6.1644
6.2450

6.3246
6.4031
6.4807
6 .5574
6.6332

6.7082
6.7823
6.8557
6.9282
7 .0000

50
51
52
53
54

55
56
57
58
59

60
61
62
63
64

65
66
67
•68
69

70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94

95
96
97
98
99

2500
2601
2704
2809
2916

3025
3136
3249
3364
3481

3600
3721
3844
3969
4096

4225
4356
4489
4624
4761

4900
5041
5184
5329
5476

5625
5776
5929
6084
6241

6400
6561
6724
6889
7056

7225
7396
7569
7744
7921

8100
8281
8464
8649
8836

9025
9216
9409
9604
9801

7 .071 1
7.1414
7 .21 1 1
7.2801
7.3485

7-4162
7.4833
7.5498
7.6158
7.681 1

7.7460
7.8102
7.8740
7.9373
8-0000

8.0623
8.1240
8.1854
8.2462
8.3066

8-3666
8-4261
8-4853
8.5440
8.6023

8.6603
8.7178
8.7750
8.8318
8.8882

8.9443
9.0000
9.0554
9.1 104
9.1652

9.2195
9.2736
9.3274
9.3808
9.4340

9.4868
9.5394
9.5917
9.6437
9.6954

9.7468
9.7980
9.8489
9.8995
9.9499

100
101
102
103
104

105
106
107
108
109

1 10
1 11
1 12
113
114

115
1 16
1 17
1 18
1 19

120
121
122
123
124

125
126
127
128
129

130
131
132
133
134

135
136
137
138
139

140
141
142
143
144

145
146
147
148
149

10000
10201
10404
10609
10816

11025
1 1236
1 1449
1 1664
1 1881

12100
12321
12544
12769
12996

13225
13456
13689
13924
14161

14400
14641
14864
15129
15376

15625
15876
16129
16384
16641

16900
17161
17424
17689
17956

18225
18496
18769
19044
19321

19600
19881
20164
20449
20736

21025
21316
21609
21904
22201

10 .0000
10.0499
10.0995
10.1489
10.1980

10.2470
10.2956
10.3441
10.3923
10.4403

10.4881
10.5357
10.5830
10.6301
10.6771

10.7238
10.7703
10.8167
10.8628
10.9087

10.9545
1 1 .0000
1 1 .0454
1 1 .0905
11 .1355

1 1 .1803
1 1 .2250
11 .2694
11 .3137
11 .3578

1 1 .4018
1 1 .4455
1 1 .4891
11 .5326
1 1 .5758

11 .6190
11 .6619
1 1 .7047
1 1 .7473
1 1 .7898

11 .8322
11 .8743
11 .9164
1 1 .9583
12 .0000

12.0416
12.083a
12.1244
12-1655
12.2066

SOURCE : Computed for this volume.
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N N N
150
151
152
153
154

155
156
157
158
159

160
161
162
163
164

165
166
167
168
169

170
171
172
173
174

175
176
177
178
179

180
181
182
183
184

185
186
187
188
189

190
191
192
193
194

195
196
197
198
199

22500
22801
23104
23409
23716

24025
24336
24649
24964
25281

25600
25921
26244
26569
26896

27225
27556
27889
28224
28561

28900
29241
29584
29929
30276

30625
30976
31329
31684
32041

32400
32761
33124
33489
33856

34225
34596
34969
35344
35721

36100
36481
36864
37249
37636

38025
38416
38809
39204
39601

12.2474
12.2882
12.3288
12.3693
12.4097

12-4499
12.4900
12.5300
12.5698
12.6095

12.6491
12.6886
12.7279
12.7671
12.8062

12.8452
12.8841
12.9228
12.9615
13.0000

13.0384
13.0767
13.1 149
13.1529
13.1909

13.2288
13.2665
13.3041
13.3417
13.3791

13.4164
13.4536
13.4907
13.5277
13.5647

13.6015
13.6382
13.6748
13.71 13
13.7477

13-7840
13.8203
13.8564
13.8924
13.9284

13.9642
14.0000
14.0357
14.07 12
14.1067

200
201
202
203
204

205
206
207
208
209

210
211
212
213
214

215
216
217
218
219

220
221
222
223
224

225
226
227
228
229

230
231
232
233
234

235
236
237
238
239

240
241
242
243
244

245
246
247
248
249

40000
40401
40804
41209
41616

42025
42436
42849
43264
43681

44100
44521
44944
45369
45796

46225
46656
47089
47524
47961

48400
48841
49284
49729
50176

50625
51076
51529
51984
52441

52900
53361
53824
54289
54756

55225
55696
56169
56644
57121

57600
58081
58564
59049
59536

60025
60516
61009
61504
62001

14.1421
14.1774
14.2127
14.2478
14.2829

14.3178
14.3527
14.3875
14.4222
14.4568

14.4914
14.5258
14.5602
14.5945
14.6287

14.6629
14.6969
14.7309
14.7648
14.7986

14.8324
14.8661
14.8997
14.9332
14.9666

15-0000
15.0333
15.0665
15.0997
15.1327

15.1658
15.1987
15.2315
15.2643
15.2971

15.3297
15.3623
15.3948
15.4272
15.4596

15.4919
15.5242
15.5563
15.5885
15.6205

15.6525
15.6844
15.7162
15.7480
15.7797

250
251
252
253
254

255
256
257
258
259

260
261
262
263
264

265
266
267
266
269

270
271
272
273
274

275
276
277
278
279

280
281
282
283
284

285
286
287
288
289

290
291
292
293
294

295
296
297
298
299

62500
63001
63504
64009
64516

65025
65536
66049
66564
67081

67600
68121
68644
69169
69696

70225
70756
71289
71824
72361

72900
73441
73984
74529
75076

75625
76176
76729
77284
77841

78400
78961
79524
80089
80656

81225
81796
82369
82944
83521

84100
84681
85264
85849
86436

87025
87616
88209
88804
89401

15.81 14
15.8430
15.8745
15.9060
15.9374

15.9687
16 .0000
16.0312
16.0624
16.0935

16.1245
16.1555
16.1864
16.2173
16.2481

16.2788
16.3095
16.3401
16.3707
16.4012

16.4317
16 .4621
16.4924
16.5227
16.5529

16.5831
16-6132
16.6433
16.6733
16.7033

16.7332
16.7631
16.7929
16.8226
16-8523

16.8819
16.91 15
16.941 1
16.9706
17.0000

17.0294
17.0587
17.0880
17.1 172
17.1464

17.1756
17.2047
17.2337
17.2627
17.2916
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\/N N N

300
301
302
303
304

305
306
307
308
309

310
311
312
313
314

315
316
317
318
319

320
321
322
323
324

325
326
327
328
329

330
331
332
333
334

335
336
337
338
339

340
341
342
343
344

345
346
347
348
349

90000
90601
91204
91809
92416

93025
93636
94249
94864
95481

96100
96721
97344
97969
98596

99225
99856
100489
101 124
101761

102400
103041
103684
104329
104976

105625
106276
106929
107584
108241

108900
109561
1 10224
1 10889
1 1 1556

1 12225
1 12896
1 13569
1 14244
1 14921

1 15600
1 16281
1 1 6964
1 17649
1 18336

1 19025
1 19716
120409
121 104
121801

17.3205
17.3494
17-3781
17 .4069
17.4356

17.4642
17.4929
17.5214
17.5499
17 .5784

17 .6068
17.6352
17.6635
17.6918
17^7200

17.7482
17.7764
17 .8045
17.8326
17.8606

17.8885
17 .9165
17 .9444
17.9722
18.0000

18-0278
18.0555
18.0831
18.1 108
18.1384

18.1659
18.1934
18.2209
18.2483
18.2757

18.3030
18.3303
18.3576
18.3848
18.4120

18.4391
18.4662
18.4932
18.5203
18.5472

18.5742
18.601 1
18.6279
18.6548
18.6815

350
351
352
353
354

355
356
357
358
359

360
361
362
363
364

365
366
367
368
369

370
371
372
373
374

375
376
377
378
379

380
381
382
383
384

385
386
387
388
389

390
391
392
393
394

395
396
397
398
399

122500
123201
123904
124609
125316

126025
126736
127449
128164
128881

129600
130321
131044
131769
132496

133225
133956
J34689
135424
136161

136900
137641
138384
139129
139876

140625
141376
142129
142884
143641

144400
145161
145924
146689
147456

148225
148996
149769
150544
151321

152100
152881
153664
154449
155236

156025
156816
157609
158404
159201

18.7083
18-7350
18.7617
18.7883
18.8149

18.8414
18-8680
18.8944
18.9209
18.9473

18-9737
19.0000
19.0263
19.0526
19.0788

19.1050
19.131 1
19.1572
19.1833
19.2094

19.2354
19.2614
19.2873
19.3132
19.3391

19.3649
19.3907
19.4165
19-4422
19.4679

19.4936
19.5192
19.5448
19.5704
19.5959

19.6214
19.6469
19.6723
19.6977
19.7231

19.7484
19.7737
19-7990
19.8242
19.8494

19.8746
19.8997
19.9249
19.9499
19.9750

400
401
402
403
404

405
406
407
408
409

410
41 1
412
413
414

415
416
417
418
419

420
421
422
423
424

425
426
427
428
429

430
431
432
433
434

435
436
437
438
439

440
441
442
443
444

445
446
447
448
449

160000
160801
161604
162409
163216

164025
164836
165649
166464
167281

168100
166921
169744
170569
171396

172225
173056
173889
174724
175561

176400
177241
178084
178929
179776

180625
181476
182329
183184
184041

184900
185761
186624
187489
188356

189225
190096
190969
191844
192721

193600
194481
195364
196249
197136

198025
198916
199809
200704
201601

20.0000
20.0250
20.0499
20.0749
20.0998

20.1246
20.1494
20.1742
20.1990
20-2237

20.2485
20.2731
20.2978
20.3224
20.3470

20.3715
20.3961
20.4206
20.4450
20.4695

20.4939
20.5183
20.5426
20-5670
20.5913

20.6155
20.6398
20.6640
20.6882
20.7123

20.7364
20.7605
20.7846
20.8087
20.8327

20.8567
20.8806
20.9045
20.9284
20.9523

20.9762
21 .0000
21 .0238
21 .0476
21 .0713

21 .0950
21 ̂ 1 187
21 .1424
21 .1660
21 .1896
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450
451
452
453
454

455
456
457
458
459

460
461
462
463
464

465
466
467
468
469

470
471
472
473
474

475
476
477
478
479

480
461
482
483
484

485
486
487
488
489

490
491
492
493
494

495
496
497
498
499

202500
203401
204304
205209
2061 16

207025
207936
208849
209764
210681

21 1600
212521
213444
214369
215296

216225
217156
218089
219024
219961

220900
221841
222784
223729
224676

225625
226576
227529
228484
229441

230400
231361
232324
233289
234256

235225
236196
237169
238144
239121

240100
241081
242064
243049
244036

245025
246016
247009
248004
249001

21 .2132
21 .2368
21 .2603
21 .2838
21 .3073

21 .3307
21 .3542
21 .3776
21 .4009
21 .4243

21 .4476
21 .4709
21 .4942
21 .5174
21 .5407

21 .5639
21 .5870
21 .6102
21 .6333
21 .6564

21 .6795
21 .7025
21 .7256
21 .7486
21 -771 5

21 .7945
21 .8174
21 .8403
21 .8632
21 .8861

21 .9089
21 .9317
21 .9545
21 .9773
22 .0000

22.0227
22.0454
22.0681
22.0907
22.1 133

22.1359
22. 1585
22.181 1
22.2036
22.2261

22.2486
22.271 1
22.2935
22.3159
22.3383

500
501
502
503
504

505
506
507
508
509

510
51 1
512
513
514

515
516
517
518
519

520
521
522
523
524

525
526
527
528
529

530
531
532
533
534

535
536
537
538
539

540
541
542
543
544

545
546
547
548
549

250000
251001
252004
253009
254016

255025
256036
257049
258064
259081

260100
261 121
262144
263169
264196

265225
266256
267289
268324
269361

270400
271441
272484
273529
274576

275625
276676
277729
278784
279841

280900
281961
283024
284089
285156

286225
287296
288369
289444
290521

291600
292681
293764
294849
295936

297025
298116
299209
300304
301401

22.3607
22.3830
22.4054
22.4277
22.4499

22.4722
22.4944
22.5167
22.5389
22.5610

22.5832
22.6053
22.6274
22.6495
22.6716

22.6936
22.7156
22.7376
22.7596
22.781 6

22.8035
22.8254
22.8473
22.8692
22.8910

22.9129
22.9347
22.9565
22.9783
23 .0000

23.0217
23.0434
23.0651
23.0868
23.1084

23.1301
23.1517
23.1733
23.1948
23.2164

23.2379
23.2594
23.2809
23.3024
23.3238

23.3452
23.3666
23.3880
23.4094
23.4307

550
551
552
553
554

555
556
557
558
559

560
561
562
563
564

565
566
567
568
569

570
571
572
573
574

575
576
577
578
579

580
581
582
583
584

585
586
587
588
589

590
591
592
593
594

595
596
597
598
599

302500
303601
304704
305809
306916

308025
309136
310249
31 1364
312481

313600
314721
315844
316969
318096

319225
320356
321489
322624
323761

324900
326041
327184
328329
329476

330625
331776
332929
334084
335241

336400
337561
338724
339889
341056

342225
343396
344569
345744
346921

348100
349281
350464
351649
352836

354025
355216
356409
357604
358801

23.4521
23.4734
23.4947
23-5160
23.5372

23.5584
23.5797
23.6008
23*6220
23-6432

23.6643
23.6854
23.7065
23.7276
23.7487

23.7697
23.7908
23.81 18
23.8328
23.8537

23.8747
23.8956
23.9165
23.9374
23.9583

23.9792
24.0000
24.0208
24.0416
24.0624

24.0832
24.1039
24.1247
24.1454
24.1661

24.1868
24.2074
24.2281
24.2487
24.2693

24.2899
24.3105
24.331 1
24.3516
24.3721

24.3926
24.4131
24.4336
24.4540
24.4745
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600
601
602
603
604

605
606
607
608
609

610
61 1
612
613
614

615
616
617
618
619

620
621
622
623
624

625
626
627
628
629

630
631
632
633
634

635
636
637
638
639

640
641
642
643
644

645
646
647
648
649

360000
361201
362404
363609
364816

366025
367236
368449
369664
370881

372100
373321
374544
375769
376996

378225
379456
380689
381924
383161

384400
385641
386884
388129
389376

390625
391876
393129
394384
395641

396900
398161
399424
400689
401956

403225
404496
405769
407044
406321

409600
410881
412164
413449
414736

416025
417316
418609
419904
421201

V

24.4949
24.5153
24.5357
24.5561
24.5764

24.5967
24.6171
24.6374
24.6577
24.6779

24.6982
24.7184
24.7386
24.7588
24.7790

24.7992
24.8193
24.8395
24.8596
24.8797

24.8998
24.9199
24.9399
24.9600
24.9800

25.0000
25.0200
25.0400
25.0599
25.0799

25.0998
25.1 197
25.1396
25.1595
25.1794

25.1992
25.2190
25.2389
25.2587
25.2784

25.2982
25.3180
25.3377
25.3574
25.3772

25.3969
25.4165
25.4362
25.4558
25.4755

650
651
652
653
654

655
656
657
658
659

660
661
662
663
664

665
666
667
668
669

670
671
672
673
674

675
676
677
678
679

680
681
682
683
684

685
686
687
688
689

690
691
692
693
694

695
696
697
698
699

422500
423801
425104
426409
427716

429025
430336
431649
432964
434281

435600
436921
438244
439569
440896

442225
443556
444889
446224
447561

448900
450241
451584
452929
454276

455625
456976
458329
459684
461041

462400
463761
465124
466489
467856

469225
470596
471969
473344
474721

476100
477481
478864
480249
481636

483025
484416
485809
487204
488601

T

25-4951
25.5147
25-5343
25.5539
25-5734

25.5930
25.6125
25.6320
25.6515
25.6710

25-6905
25.7099
25.7294
25.7488
25.7682

25.7876
25.8070
25.8263
25.8457
25.8650

25.8844
25.9037
25-9230
25.9422
25.9615

25.9808
26.0000
26.0192
26.0384
26.0576

26.0768
26.0960
26 .1 151
26.1343
26.1534

26,1725
26.1916
26.2107
26.2298
26.2488

26.2679
26-2869
26.3059
26.3249
26.3439

26.3629
26.3818
26.4008
26.4197
26.4386

700
701
702
703
704

705
706
707
708
709

710
71 1
712
713
714

715
716
717
718
719

720
721
722
723
724

725
726
727
728
729

730
731
732
733
734

735
736
737
738
739

740
741
742
743
744

745
746
747
748
749

490000
491401
492804
494209
495616

497025
498436
499849
501264
502681

504100
505521
506944
508369
509796

51 1225
512656
514089
515524
516961

518400
519841
521284
522729
524176

525625
527076
528529
529984
531441

532900
534361
535824
537289
538756

540225
541696
543169
544644
546121

547600
549081
550564
552049
553536

555025
556516
558009
559504
561001

26.4575
26.4764
26.4953
26.5141
26.5330

26.5518
26.5707
26.5895
26.6083
26.6271

26.6458
26.6646
26.6833
26.7021
26.7208

26.7395
26.7582
26.7769
26.7955
26.8142

26.8328
26.8514
26.8701
26.8887
26.9072

26.9258
26.9444
26 .9629
26.9815
27.0000

27.0185
27.0370
27.0555
27.0740
27.0924

27-1109
27-1293
27.1477
27.1662
27-1846

27.2029
27.2213
27.2397
27.2580
27.2764

27.2947
27.3130
27.3313
27.3496
27.3679
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TV2 N N

750
751
752
753
754

755
756
757
758
759

760
761
762
763
764

765
766
767
768
769

770
771
772
773
774

775
776
777
778
779

780
781
782
783
784

785
786
787
788
789

790
791
792
793
794

795 i * *j
796
797
7Qft / Vo

799

562500
564001
565504
567009
568516

570025
571536
573049
574564
576081

577600
579121
580644
582169
583696

585225
586756
588289
589824
591361

592900
594441
595984
597529
599076

600625
602176
603729
605284
606841

608400
609961
61 1524
613089
614656

616225
617796
619369
620944
622521

624100
625681
627264
628849
630436

632025
633616
635209
636804
638401

27.3861
27.4044
27.4226
27 .4408
2V. 4591

27.4773
27.4955
27.5136
27.5318
27 .5500

27 .5681
27.5862
27 .6043
27 .6225
27.6405

27.6586
27.6767
27.6948
27.7128
27.7308

27.7489
27.7669
27 .7849
27 .8029
27.8209

27.8388
27.8568
27.8747
27.8927
27.9106

27.9285
27.9464
27.9643
27.9821
28.0000

28.0179
28.0357
28.0535
28.0713
28.0891

28.1069
28.1247
28.1425
28.1603
28.1780

28-1957
28.2135
28.2312
28.2489
28.2666

800
801
802
803
804

805
806
807
808
809

810
811
812
813
814

815
816
817
818
819

820
821
822
823
824

825
826
827
828
829

830
831
832
833
834

835
836
837
838
839

840
841
842
843
644

845
846
847
848
849

640000
641601
643204
644809
646416

648025
649636
651249
652864
654481

656100
657721
659344
660969
662596

664225
665856
667489
669124
670761

672400
674041
675684
677329
678976

680625
682276
683929
685584
687241

688900
690561
692224
693889
695556

697225
698896
700569
702244
703921

705600
707281
708964
710649
712336

714025
7 1 57 1 6
717409
719104
720801

28.2843
28.3019
28.3196
28.3373
28.3549

28.3725
28.3901
28.4077
28.4253
28.4429

28.4605
28.4781
28.4956
28.5132
28.5307

28.5482
28-5657
28-5832
28.6007
28.6182

28.6356
28.6531
28.6705
28.6880
28.7054

28.7228
28.7402
28.7576
28.7750
28.7924

28.8097
28.8271
28.8444
28.8617
28.8791

28.8964
28.9137
28.9310
28.9482
28-9655

28.9828
29.0000
29.0172
29.0345
29.0517

29.0689
29.0661
29.1033
29.1204
29.1376

850
851
852
853
854

855
856
857
858
859

860
861
862
863
864

865
866
867
868
869

870
871
872
873
874

875
876
877
878
879

880
881
882
883
884

885
886
887
868
889

890
891
892
893
894

895
696
897
898
899

722500
724201
725904
727609
729316

731025
732736
734449
736164
737881

739600
741321
743044
744769
746496

748225
749956
751689
753424
755161

756900
758641
760384
762129
763876

765625
767376
769129
770884
772641

774400
776161
777924
779689
781456

783225
784996
786769
788544
790321

792100
793881
795664
797449
799236

801025
802816
804609
806404
808201

29.1548
29.1719
29.1890
29.2062
29.2233

29.2404
29.2575
29.2746
29.2916
29.3087

29.3258
29.3428
29.3598
29.3769
29.3939

29.4109
29.4279
29.4449
29.4618
29.4788

29.4958
29.5127
29.5296
29.5466
29.5635

29.5804
29.5973
29.6142
29.631 1
29.6479

29.6648
29.6816
29.6985
29.7153
29.7321

29.7489
29.7658
29.7825
29.7993
29.8161

29.8329
29.8496
29.8664
29-8831
29.8998

29.9166
29.9333
29.9500
29.9666
29.9833
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900
901
902
903
904

905
906
907
908
909

910
911
912
913
914

915
916
917
918
919

920
921
922
923
924

925
926
927
928
929

930
931
932
933
934

935
936
937
938
939

940
941
942
943
944

945
946
947
948
949

810000
811801
813604
815409
817216

819025
820836
822649
824464
826281

828100
829921
831744
833569
835396

837225
839056
840889
842724
844561

846400
848241
850084
851929
853776

855625
857476
859329
861 184
863041

864900
866761
868624
870489
872356

874225
876096
877969
879844
881721

883600
885481
887364
889249
891 136

893025
894916
896809
898704
900601

V

30.0000
30.0167
30-0333
30.0500
30.0666

30.0832
30.0998
30.1 164
30.1330
30.1496

30.1662
30.1828
30.1993
30.2159
30.2324

30.2490
30.2655
30.2820
30.2985
30*3150

30.3315
30.3480
30.3645
30.3809
30.3974

30.4138
30.4302
30.4467
30.4631
30.4795

30.4959
30.5123
30.5287
30.5450
30.5614

30.5778
30.5941
30.6105
30.6268
30.6431

30.6594
30.6757
30.6920
30.7083
30.7246

30.7409
30.7571
30.7734
30.7896
30.8058

950
951
952
953
954

955
956
957
958
959

960
961
962
963
964

965
966
967
968
969

970
971
972
973
974

975
976
977
978
979

980
981
982
983
984

985
986
987
988
989

990
991
992
993
994

995
996
997
998
999

902500
904401
906304
908209
9101 16

912025
913936
915849
917764
919681

921600
923521
925444
927369
929296

931225
933156
935089
937024
938961

940900
942841
944784
946729
948676

950625
952576
954529
956484
958441

960400
962361
964324
966289
968256

970225
972196
974169
976144
978121

980100
982081
984064
986049
988036

990025
992016
994009
996004
998001

30.8221
30-8383
30.8545
30.8707
30.8869

30.9031
30.9192
30.9354
30.951 6
30.9677

30.9839
31 .0000
31 .0161
31 .0322
31 .0483

31 .0644
31 .0805
31 .0966
31 .1 127
31 .1288

31 .1448
31 ^1609
3 1 . 1 7 69
31 .1929
31 .2090

31 .2250
31 .2410
31 .2570
31 .2730
31 .2890

31 .3050
31 .3209
31 .3369
31 .3528
31 -3688

31 .3847
31 .4006
31 .41 66
31 .4325
31 .4484

31 .4643
31 .4802
31 .4960
31 .51 19
31 .5278

31 .5436
31 .5595
31 .5753
31 .591 1
31 .6070

1000 1000000 31-6228



Appendix K Fisher-z transformation
The function tabled is 2 =

• 00
.01
.02
.03
.04

.05

.06

.07

.08

.09

.10

.1 1

.12
-13
.14

.15

.16

.17

.18

.19

.20

.21

.22

.23
• 24

0 .00
• 01
.02
.03
• 04

• 05
• 06
• 07
.08
• 09

• 10
.1 1
-12
• 13
.14

-15
-16
-17
.18
-19

• 20
.21
• 22
• 23
.24

.25
• 26
• 27
• 28
.29

.30

.31
• 32
.33
• 34

.35

.36
• 37
• 38
• 39

.40

.41

.42
• 43
.44

.45

.46

.47

.48

.49

• 26
.27
• 28
.29
.30

.31
• 32
• 33
• 34
• 35

.37
• 38
• 39
• 40
• 41

.42

.44

.45

.46

.47

.48
• 50
• 51
.52
• 54

.50 

.51
• 52 
.53 
.54

• 55 
.56
• 57 
.58
• 59

.60
• 61 
.62 
.63 
.64

.65 

.66 

.67 

.68 

.69

.70 

.71 

.72 

.73 

.74

• 55 
.56 
.58
• 59
• 60

.62 

.63 

.65 

.66 

.68

• 69 
.71 
.73 
.74 
.76

.78
• 79
• 81
• 83 
.85

.87
• 89
• 91 
.93 
.95

i '+r'"l-r

r

• 75
.76
.77
.78
.79

.80

.81

.82

.83

.84

.85
• 86
• 87
.88
• 89

.90

.91

.92
• 93
.94

.95

.96

.97
• 98
• 99

z

.97
1 .00
1 .02
1 .05
1 .07

1 .10
1.13
1.16
1 .19
1 .22

1 .26
1 .29
1 .33
1 .38
1 .42

1 .47
1 .53
1 .59
1 .66
1 .74

1 .83
1 .95
2.09
2.30
2.65

SOURCE: Computed for this volume.



Appendix L
CO tan co co tan co

Tangents

CO tan co

0
1
2
3
4

5
6
7
8
9

10
1 1
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

0 .000
.017
.035
.052
.070

• 087
.105
.123
-Ml
-158

.176

.194

.213
• 231
.249

.268

.287

.306
• 325
.344

.364

.384

.404

.424

.445

.466

.488

.510
• 532
• 554

30
31
32
33
34

35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53
54

55
56
57
58
59

.577

.601

.625

.649

.675

,700
= 727
.754
.781
.810

.839

.869

.900

.933

.966

1 .000
1 .036
1 .072
1.111
1 .150

1 .192
1 .235
1 .280
1 .327
1 .376

1 .428
1 .483
1 .540
1 .600
1 .664

60
61
62
63
64

65
66
67
68
69

70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

85
86
87
88
89

1 .732
1 .804
1 .881
1 .963
2.050

2.145
2.246
2.356
2.475
2.605

2.747
2.904
3.078
3.271
3.487

3.732
4.01 1
4.331
4.705
5.145

5.671
6.314
7.115
8.144
9.514

1 1 .430
14.301
19.081
28.636
57.290

SOURCE: Pearson and Hartley (1966)



Appendix M Transformation of ranks 
to normal scores

<x
1
2 
3
4
5 
6

2

0-564

3

0-846 
•000

4

1-029 
0-297

5

1-163 
0-495

•000

6

1-267 
0-642

•202

IX 2 0-636 1-431 2-294 3-195 4-117

7

1-352 
0-757

•353
•000

5-051

8

1-424 
0-852

•473
•153

9

1-485 
0-932

•672
•276

0-000

6-002 6-953

10

1-539 
1-001
0-656

•376
0-123

7-915

11

1-586 
1-062
0-729

•462
0-226

•000

8-878

12

1-629 
1-116
0-793

•537
0-312

•103

9-849

\ n 
» \

1
2
3
4
5
6
7
8
9

10
11
12
13

13

1-668
1-164
0-850

•603
0-388

•190
•000

14

1-703
1-208
0-901

•662
0-456

•267
•088

15

1-736
1-248
0-948

•716
0-516

•335
•165
•000

16

1-766
1-286
0-990

•763
0-670

•396
•234
•077

17

1-794
1-319
1-029
0-807
0-619

•461
•295
•146
•000

18

1-820
1-350
1-066
0-848
0-665

•602
•351
•208
•069

19

1-844
1-380
1-099
0-886
0-707

•548
•402
•264
•131

0-000

20

1-867
1-408
1-131
0-921
0-745

•690
•448
•316
•187

0-062

21

1-89
1-43
1-16
0-95
0-78

•63
•49
•36
•24

0-12
•00

22

1-91
1-46
1-19
0-98
0-82

•67
•63
•41
•29

0-17
•06

23

1-93
1-48
1-21
1-01
0-85

•70
•57
•45
•33

0-22
•11
•00

24

1-95
1-60
1-24
1-04
0-88

•73
•60
•48
•37

0-26
•16
•05

25

1-97
1-52
1-26
1-07
0-91

•76
•64
•52
•41

0-30
•20
•10
•00

IX 2 10-S20 11-793 12-774 13-749 14-726 15-712 16-692 17-675 18-62 19-69 20-62 21-60 22-64

\. n
» N.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
11^o
24
25

IX 2

26

1-98
1-54
1-29
1-09
0-93

•79
•67
•55
•44

0-34
•24
•14
•06

28

2-01
1-58
1-33
1-14
0-98

•85
•73
•61
•51

0-41
•32
•22
•13
•04

30

2-04
1-62
1-36
1-18
1-03
0-89

•78
•67
•57

0-47
•38
•29
•21
•12

0-04

32

2-07
1-65
1-40
1-22
1-07
0-94

•82
•72
•62

0-53
•44
•36
•28
•20

0-12
•04

34

2-09
1-68
1-43
1-25
Ml
0-98

•87
•76
•67

0-58
•60
•41
•34
•26

0-18
•11
•04

36

2-12
1-70
1-46
1-28
1-14
1-02
0-91

•81
•71

0-63
•54
•47
•39
•32

0-24
•17
•10
•03

38

2-14
1-73
1-49
1-32
1-17
1-05
0-94

•85
•75

0-67
•59
•51
•44
•37

0-30
•23
•16
•10
•03

40

2-16
1-76
1-52
1-34
1-20
1-08
0-98

•88
•79

0-71
•63
•56
•49
•42

0-35
•28
•22
•16
•09

0-03

42

2-18
1-78
1-54
1-37
1-23
Ml
1-01
0-91

•83
0-75

•67
•60
•53
•46

0-40
•33
•27
•21
•15

0-09
•03

44

2-20
1-80
1-57
1-40
1-26
1-14
1-04
0-95

•86
0-78

•71
•64
•57
•50

0-44
•38
•32
•26
•20

0-14
•09
•03

46

2-22
1-82
1-59
1-42
1-28
M7
1-07
0-98

•89
0-81

•74
•67
•60
•54

0-48
•42
•36
•30
•26

0-19
•14
•08
•03

'48

2-23
1-84
1-61
1-44
1-31
1-19
1-09
1-00
0-92
0-84

•77
•70
•64
•68

0-62
•46
•40
•34
•29

0-24
•18
•13
•08
•03

50

2-25
1-85
1-63
1-46
1-33
1-22
1-12
1-03
0-95
0-87

•80
•74
•67
•61

0-65
•49
•44
•38
•33

0-28
•23
•18
•13
•07

0-03

23-r,r, 25-58 27-55 29-80 31-52 33-49 35-48 37-43 39-47 41-58 43-49 45-36 47-38

SOURCE: Pearson and Hartley (1966). Values of IX 2 were computed for this volume and do not appear in 
the original table.




