Lecture 3- Concavity and convexity

DEFINITION A set U is a convex set if for all $x \in U$ and $y \in U$, then for *all* $t \in [0, 1]$:

$$
t\mathbf{x} + (1 - t)\mathbf{y} \in U
$$

DEFINITION \vec{A} real valued function \vec{f} defined on a convex subset \vec{U} of R^n is concave, if for all x, y in U and for all $t \in [0, 1]$:

$$
f(t\mathbf{x} + (1-t)\mathbf{y}) \ge tf(\mathbf{x}) + (1-t)f(\mathbf{y})
$$

A real valued function g defined on a convex subset U of $Rⁿ$ is convex, if for all x, y in U and for all $t \in [0, 1]$:

$$
g(t\mathbf{x} + (1-t)\mathbf{y}) \leq tg(\mathbf{x}) + (1-t)g(\mathbf{y})
$$

- Note: f is concave if and only if $-f$ is convex.
- Note: linear functions are convex and concave.
- Concave and convex functions need to have convex sets as their domain. Otherwise, we cannot use the conditions above.

LEMMA Let f be a continuous and differentiable function on a convex subset U of $Rⁿ$. Then f is concave on U if and only if for all x, y in U :

$$
f(\mathbf{y}) - f(\mathbf{x}) \le Df(\mathbf{x})(\mathbf{y} - \mathbf{x})
$$

=
$$
\frac{\partial f(\mathbf{x})}{\partial x_1}(y_1 - x_1) + ...
$$

$$
+ \frac{\partial f(\mathbf{x})}{\partial x_n}(y_n - x_n)
$$

Proof on R^1 : since f is concave, then

$$
tf(y) + (1-t)f(x) \leq f(ty + (1-t)x) \Leftrightarrow
$$

\n
$$
t(f(y) - f(x)) + f(x) \leq f(x + t(y - x)) \Leftrightarrow
$$

\n
$$
f(y) - f(x) \leq \frac{f(x + t(y - x)) - f(x)}{t} \Leftrightarrow
$$

\n
$$
f(y) - f(x) \leq \frac{f(x+h) - f(x)}{h}(y - x)
$$

for $h = t(y - x)$. Taking limits when $h \to 0$ this becomes

$$
f(y) - f(x) \le f'(x)(y - x).
$$

- Why do we need concavity and convexity?
- We will make the following important assumptions, denoted by CC:
	- 1. The set Z is convex;
	- 2. The function g is concave;
	- 3. The function h is convex.

Recall the definition of the set B :

$$
B = \{(k, v) : k \ge h(z), v \le g(z) \text{ for some } z \in Z\}.
$$

PROPOSITION under CC , the set B is convex

Proof: suppose that (k_1, v_1) and (k_2, v_2) are in B, so there exists z_1 and z_2 such that:

$$
k_1 \geq h(z_1) \ k_2 \geq h(z_2)
$$

$$
v_1 \leq g(z_1) \ v_2 \leq g(z_2)
$$

By convexity of h :

$$
\theta k_1 + (1 - \theta) k_2 \ge \theta h(z_1) + (1 - \theta) h(z_2) \ge h(\theta z_1 + (1 - \theta) z_2)
$$

and by concavity of g :

 \bullet

$$
\theta v_1 + (1 - \theta)v_2 \le \theta g(z_1) + (1 - \theta)g(z_2) \le g(\theta z_1 + (1 - \theta)z_2)
$$

thus, $(\theta k_1 + (1-\theta)k_2, \theta v_1 + (1-\theta)v_2) \in B$ for all $\theta \in [0,1]$, implying that B is convex.

PROPOSITION assume that the maximum value exists, then under CC, the maximum value is a non decreasing, concave and continuous function of k .

Proof: we have already shown, without assuming convexity or concavity, that the maximum value is non decreasing. Also we have shown that if the maximum value function $v(k)$ exists, it is the upper boundary of the set B. Above we proved that under CC the set B is convex. The set B can be re-written as:

$$
B = \{(k, v) : v \in R, k \in K, v \le v(k)\}.
$$

But a set B is convex iff the function v is concave. Thus, v is concave, and concave functions are continuous, so v is continuous.

The Lagrangian Necessity Theorem

- Consider the COP .
- Assume CC.
- \bullet Assume that the constraint qualification holds, that is, there is a vector $z_0 \in Z$ such that $h(z_0) \ll k^*$.
- Finally suppose that z^* solves COP .

Then:

• (i) there is a vector $q \in R^m$ such that z^* maximizes the lagrangian $L(q, k^*, z) = g(z) + q[k^* - h(z^*)].$

(ii) the lagrange multiplier q is non negative for all components, $q \geq 0$.

(iii) the vector z^* is feasible, that is $z \in Z$ and $h(z^*) \leq k^*$.

(iv) the complementary slackness conditions are satisfied, that is: $q[k^*-\]$ $h(z^*)] = 0.$