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 Brit. J. Phil. Sci. 52 (2001), 417-470

 Are Rindler Quanta Real?
 Inequivalent Particle Concepts in

 Quantum Field Theory
 Rob Clifton and Hans Halvorson

 ABSTRACT

 Philosophical reflection on quantum field theory has tended to focus on how it revises
 our conception of what a particle is. However, there has been relatively little discussion
 of the threat to the 'reality' of particles posed by the possibility of inequivalent
 quantizations of a classical field theory, i.e. inequivalent representations of the algebra
 of observables of the field in terms of operators on a Hilbert space. The threat is that
 each representation embodies its own distinctive conception of what a particle is, and
 how a 'particle' will respond to a suitably operated detector. Our main goal is to clarify
 the subtle relationship between inequivalent representations of a field theory and their
 associated particle concepts. We also have a particular interest in the Minkowski
 versus Rindler quantizations of a free Boson field, because they respectively entail two
 radically different descriptions of the particle content of the field in the very same
 region of spacetime. We shall defend the idea that these representations provide
 complementary descriptions of the same state of the field against the claim that they
 embody completely incommensurable theories of the field.
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 2.1 The Weyl algebra
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 2.3 Physical equivalence of representations
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 3.1 First quantization ('splitting the frequencies')
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 418 Rob Clifton and Hans Halvorson

 Sagredo: Do we not see here another example of that all-pervading
 principle of complementarity which excludes the simultaneous appli-
 cability of concepts to the real objects of our world?

 Is it not so that, rather than being frustrated by this limitation of our
 conceptual grasp of the reality, we see in this unification of opposites the
 deepest and most satisfactory result of the dialectical process in our
 struggle for understanding?

 Are Quanta Real? A Galilean Dialogue (Jauch [1973], p. 48)

 1 Introduction

 Philosophical reflection on quantum field theory has tended to focus on how

 it revises our conception of what a particle is. For instance, though there is a

 self-adjoint operator in the theory representing the total number of particles

 of a field, the standard 'Fock space' formalism does not individuate particles

 from one another. Thus, Teller ([1995], Ch. 2) suggests that we speak of
 quanta that can be 'aggregated', instead of (enumerable) particles-which
 implies that they can be distinguished and labelled. Moreover, because the
 theory does contain a total number of quanta observable (which, therefore,

 has eigenstates corresponding to different values of this number), a field state

 can be a nontrivial superposition of number eigenstates that fails to predict

 any particular number of quanta with certainty. Teller ([1995], pp. 105-6)
 counsels that we think of these superpositions as not actually containing any

 quanta, but only propensities to display various numbers of quanta when the

 field interacts with a 'particle detector'.

 The particle concept seems so thoroughly denuded by quantum field theory

 that is hard to see how it could possibly underwrite the particulate nature of

 laboratory experience. Those for whom fields are the fundamental objects of

 the theory are especially aware of this explanatory burden:

 quantum field theory is the quantum theory of a field, not a theory of
 'particles'. However, when we consider the manner in which a quantum
 field interacts with other systems to which it is coupled, an interpretation

 of the states in [Fock space] in terms of 'particles' naturally arises. It is, of
 course, essential that this be the case if quantum field theory is to describe

 observed phenomena, since 'particle-like' behaviour is commonly
 observed (Wald [1994], pp. 46-47).

 These remarks occur in the context of Wald's discussion of yet another threat

 to the 'reality' of quanta.
 The threat arises from the possibility of inequivalent representations of the

 algebra of observables of a field in terms of operators on a Hilbert space.
 Inequivalent representations are required in a variety of situations; for
 example, interacting field theories in which the scattering matrix does not exist
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 Inequivalent Particle Concepts in Quantum Field Theory 419

 ('Haag's theorem'), free fields whose dynamics cannot be unitarily imple-
 mented (Arageorgis et al. [2001]), and states in quantum statistical mechanics

 corresponding to different temperatures (Emch [1972]). The catch is that each

 representation carries with it a distinct notion of 'particle'. Our main goal in

 this paper is to clarify the subtle relationship between inequivalent
 representations of a field theory and their associated particle concepts.

 Most of our discussion will apply to any case in which inequivalent
 representations of a field are available. However, we have a particular interest

 in the case of the Minkowski versus Rindler representations of a free Boson

 field. What makes this case intriguing is that it involves two radically different

 descriptions of the particle content of the field in the very same spacetime
 region. The questions we aim to answer are:

 * Are the Minkowski and Rindler descriptions nevertheless, in some sense,
 physically equivalent?

 * Or, are they incompatible, even theoretically incommensurable?
 * Can they be thought of as complementary descriptions in the same way

 that the concepts of position and momentum are?

 * Or, can at most one description, the 'inertial' story in terms Minkowski
 quanta, be the correct one?

 Few discussions of Minkowski versus Rindler quanta broaching these
 questions can be found in the philosophical literature, and what discussion

 there is has not been sufficiently grounded in a rigorous mathematical
 treatment to deliver cogent answers (as we shall see). We do not intend to

 survey the vast physics literature about Minkowski versus Rindler quanta,
 nor all physical aspects of the problem. Yet a proper appreciation of what is

 at stake, and of which answers to the above questions are sustainable,
 requires that we lay out the basics of the relevant formalism. We have strived

 for a self-contained treatment, in the hopes of opening up the discussion to

 philosophers of physics already familiar with elementary non-relativistic

 quantum theory. (We are inclined to agree with Torretti's recent diagnosis
 that most philosophers of physics tend to neglect quantum field theory
 because they are 'sickened by untidy math' ([1999], p. 397).)

 We begin in Section 2 with a general introduction to the problem of
 quantizing a classical field theory. This is followed by a detailed discussion of

 the conceptual relationship between inequivalent representations in which we
 reach conclusions at variance with some of the extant literature. In Section 3,

 we explain how the state of motion of an observer is taken into account when

 constructing a Fock space representation of a field, and how the Minkowski

 and Rindler constructions give rise to inequivalent representations. Finally,
 in Section 4, we examine the subtle relationship between the different particle

 concepts implied by these representations. In particular, we defend the idea
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 420 Rob Clifton and Hans Halvorson

 that they supply complementary descriptions of the same field against the
 claim that they embody different, incommensurable theories.

 A certain number of mathematical results play an important role in our

 exposition and in our philosophical arguments. The results are stated in the
 main text as propositions, and the proofs of those that cannot be found in the

 literature are included in an appendix.

 2 Inequivalent field quantizations

 In Section 2.1 we discuss the Weyl algebra, which in the case of infinitely

 many degrees of freedom circumscribes the basic kinematical structure of a
 free Boson field. After introducing in Section 2.2 some important concepts

 concerning representations of the Weyl algebra in terms of operators on

 Hilbert space, we shall be in a position to draw firm conclusions about the
 conceptual relation between inequivalent representations in Section 2.3.

 2.1 The Weyl algebra

 Consider how one constructs the quantum-mechanical analogue of a classical

 system with a finite number of degrees of freedom, described by a 2n-
 dimensional phase space S. Each point of S is determined by a pair of vectors

 a, be R" whose components {aj} and {bj} encode all the position and
 momentum components of the system

 x(a-) = ajxj, p(b) = bjpj. (1) j= 1 j= 1

 To quantize the system, we impose the canonical commutation relations
 (CCRs)

 [x(), x(d')] = [p(b ), p(b')] = 0, [x(d), p(b)] = i(a'- b)I, (2)
 and, then, seek a representation of these relations in terms of operators on a

 Hilbert space 7-. In the standard Schridinger representation, - is the space of
 square-integrable wavefunctions L2(IRn), x(d) becomes the operator that

 multiplies a wavefunction P(xl,..., x,) by X=,aixi, and p(b) is the partial
 differential operator -itTlbj(O/(Oxj)).
 Note the action of x(d) is not defined on an element P e L2((nW) unless

 x(ad)P is again square-integrable, and p(b) is not defined on T unless it is
 suitably differentiable. This is not simply a peculiarity of the Schr6dinger

 representation. Regardless of the Hilbert space on which they act, two self-
 adjoint operators whose commutator is a nonzero scalar multiple of the
 identity, as in (2), cannot both be everywhere defined (Kadison and Ringrose

 (henceforth, KR) [1997], Remark 3.2.9). To avoid the technical inconvenience
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 Inequivalent Particle Concepts in Quantum Field Theory 421

 of dealing with domains of definition, it is standard to reformulate the
 representation problem in terms of unitary operators which are bounded, and

 hence everywhere defined.

 Introducing the two n-parameter families of unitary operators

 U(a):= eix( ), V(b):= eiP(), a, bE n, (3)
 it can be shown, at least formally, that the CCRs are equivalent to

 U(d)U(d') = U(d + d'), V(b )V(b') = V(b + b'), (4)
 U(#) V(b) = e(cF) V(b)U(a), (5)

 called the Weylform of the CCRs. This equivalence holds rigorously in the

 Schr6dinger representation, however there are 'irregular' representations in

 which it fails (see Segal [1967], Sec. 1; Summers [2001], Sec. 1). Thus, one
 reconstrues the goal as that of finding a representation of the Weyl form of

 the CCRs in terms of two concrete families of unitary operators {U(d),
 V(b): d, b E R") acting on a Hilbert space 7- that can be related, via (3), to
 canonical position and momentum operators on -1 satisfying the CCRs. We
 shall return to this latter 'regularity' requirement later in this section.

 Though the position and momentum degrees of freedom have so far been

 treated on a different footing, we can simplify things further by introducing

 the composite Weyl operators

 W(d, b):= ei(b'/2 V(b) U(d), d, b E R". (6)

 Combining this definition with Eqns. (4) and (5) yields the multiplication rule

 W(d, b) W(d', b') = e-i((,b),("',b))/2 W(d+ d', b+ b'), (7)
 where

 a((, b), (5, b')):=(d' -b) - (5. b'). (8)

 Observe that c(., -) is a symplectic form (i.e. an anti-symmetric, bilinear

 functional) on S. (Note, also, that c is nondegenerate; i.e., if for any fe S,
 o(f, g) = 0 for all g E S, then f= 0.) We set

 W(d, b)*:= e-i(cb)/2 U(-d) V(-b) = W(-d, - b). (9)
 Clearly, then, any representation of the Weyl operators W(d, b) on a Hilbert

 space H7- gives rise to a representation of the Weyl form of the CCRs, and vice
 versa.

 Now, more generally, we allow our classical phase space S to be a vector

 space of arbitrary dimension; e.g. S may be an infinite-dimensional space
 constructed out of solutions to some relativistic wave equation. We assume S
 comes equipped with a (nondegenerate) symplectic form c, and we say that a
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 422 Rob Clifton and Hans Halvorson

 family { W,(f): f e S} of unitary operators acting on some Hilbert space '-(
 satisfies the Weyl relations just in case (cf. (7), (9))

 W,(f) Wn(g) = e-i'(f'g)/2 Wn(f+ g), f, g E S, (10)
 Wr(f)* = Wt(-f), fE S. (11)

 We may go on to form arbitrary linear combinations of the Weyl operators,

 and thus obtain (at least some of) the self-adjoint operators that will serve as

 observables of the system.

 Let F be the complex linear span of the set of Weyl operators { W(f):

 f S} acting on R(. (It follows from (10) that F is closed under taking
 operator products.) We say that a bounded operator A on H~, may be
 uniformly approximated by operators in F just in case for every g > 0, there is
 an operator A e F such that

 II(A - A)xll < F, for all unit vectors x e EH. (12)

 If we let W, denote the set of all bounded operators on H-, that can be
 uniformly approximated by elements in F, then /V, is the C*-algebra
 generated by the Weyl operators { W,(f): f e S). In particular, W, is a C*-

 subalgebra of the algebra B(H,) of all bounded operators on R-,, which is
 itself uniformly closed and closed under taking adjoints A--~A*.

 Suppose now that { (~(f): f e S} and { W(f): f e S} are two systems of
 Weyl operators representing the same classical system but acting, respec-

 tively, on two different Hilbert spaces 7H, and RI,. Let W,, W, denote the
 corresponding C*-algebras. A bijective mapping L: Wi--W4, is called a
 *-isomorphism just in case a is linear, multiplicative, and commutes with the

 adjoint operation. We then have the following uniqueness result for the C*-
 algebra generated by Weyl operators (see Bratteli and Robinson (henceforth,

 BR) [1996], Thm. 5.2.8).

 Proposition 1. There is a *-isomorphism a from W,, onto W4, such that

 a(Wn,(f)) = W~4(f) for all fe S.

 This Proposition establishes that the C*-algebra constructed from any
 representation of the Weyl relations is, in fact, a unique object, independent

 of the representation in which we chose to construct it. We shall denote this

 abstract algebra, called the Weyl algebra over (S, u), by W[S, cr] (and, when
 no confusion can result, simply say 'Weyl algebra' and write W for W[S, a]).

 So our problem boils down to choosing a representation (n, 3,) of the Weyl

 algebra, given by a mapping x: W[S, c]l-+B(-,) preserving all algebraic
 relations. Note, also, that since the image x(W) will always be an isomorphic
 copy of W, i will always be one-to-one, and hence provide a faithful
 representation of W.
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 Inequivalent Particle Concepts in Quantum Field Theory 423

 With the representation-independent character of the Weyl algebra W, why

 should we care any longer to choose a representation? After all, there is no

 technical obstacle to proceeding abstractly. We can take the self-adjoint
 elements of W to be the quantum-mechanical observables of our system. A
 linear functional o on W is called a state just in case o is positive (i.e.
 u(A*A), 0) and normalized (i.e. o(I) = 1). As usual, a state o is taken to be
 pure (and mixed otherwise) just in case it is not a nontrivial convex
 combination of other states of W. The dynamics of the system can be

 represented by a one-parameter group a, of automorphisms of W (i.e. each a,
 is just a map of W onto itself that preserves all algebraic relations). Hence, if

 we have some initial state oo, the final state will be given by o, = oo o t,. We

 can even supply definitions for the probability in the state C, that a self-
 adjoint element A E W takes a value lying in some Borel subset of its
 spectrum (Wald [1994], pp. 79-80), and for transition probabilities between,
 and superpositions of, pure states of W (Roberts and Roepstorff [1969]). At

 no stage, it seems, need we ever introduce a Hilbert space as an essential
 element of the formalism. In fact, Haag and Kastler ([1964], p. 852) and
 Robinson ([1966], p. 488) maintain that the choice of a representation is
 largely a matter of analytical convenience without physical implications.

 Nonetheless, the abstract Weyl algebra does not contain unbounded
 operators, many of which are naturally taken as corresponding to important

 physical quantities. For instance, the total energy of the system, the

 canonically conjugate position and momentum observables--which in field
 theory play the role of the local field observables --and the total number of
 particles are all represented by unbounded operators. Also, we shall see later

 that not even any bounded function of the total number of particles (apart

 from zero and the identity) lies in the Weyl algebra. Surprisingly, Irving Segal

 (one of the founders of the mathematically rigorous approach to quantum
 field theory) has written that this:

 has the simple if quite rough and somewhat oversimplified interpretation
 that the total number of 'bare' particles is devoid of physical meaning
 (Segal [1963], p. 56; see also his [1959], p. 12).

 We shall return to this issue of physical meaning shortly. First, let us see how

 a representation can be used to expand the observables of a system beyond
 the abstract Weyl algebra.

 Let F. be a family of bounded operators acting on a representation space

 -. We say that a bounded operator A on ', can be weakly approximated by
 elements of F just in case for any vector x e N, and any e > 0, there is some
 A E F" such that

 I(x, Ax) - (x, Ax) l < e. (13)
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 424 Rob Clifton and Hans Halvorson

 (Note the important quantifier change between the definitions of uniform and

 weak approximation, and that weak approximation has no abstract

 representation-independent counterpart.) Consider the family t(W)- of
 bounded operators that can be weakly approximated by elements of nt(W),

 i.e. t(W)- is the weak closure of it(W). By von Neumann's double
 commutant theorem, nt(W)- = t(W)", where the prime operation on a
 family of operators (here applied twice) denotes the set of all bounded

 operators on N,, commuting with each member of that family. t(W)" is called

 the von Neumann algebra generated by t(W). Clearly ic(W)_ n(W)", however, we can hardly expect that t(W) = I(W)" when N-,, is infinite-
 dimensional (which it must be, since there is no finite-dimensional
 representation of the Weyl algebra for even a single degree of freedom).
 Nor should we generally expect that x(W)" = B(H,), though this does hold in
 'irreducible' representations, as we explain in the next subsection.

 We may now expand our observables to include all self-adjoint operators

 in t(W)". And, although n(W)" still contains only bounded operators, it is
 easy to associate (potentially physically significant) unbounded observables

 with this algebra as well. We say that a (possibly unbounded) self-adjoint

 operator A on N, is affiliated with nt(W)" just in case all A's spectral
 projections lie in nt(W)". Of course, we could have adopted the same
 definition for self-adjoint operators 'affiliated to' nt(W) itself, but C*-algebras
 do not generally contain nontrivial projections (or, if they do, will not
 generally contain even the spectral projections of their self-adjoint members).

 As an example, suppose we now demand to have a (so-called) regular

 representation nt, in which the mappings IR ti-+it(W(tf)), for all fE S, are
 all weakly continuous. Then Stone's theorem will guarantee the existence of

 unbounded self-adjoint operators {J(f): fe S} on -,, satisfying nt(W(tf)) =

 ei~(f)t, and it can be shown that all these operators are affiliated to rt(W)" (KR
 [1997], Ex. 5.7.53(ii)). In this way, we can recover as observables our original
 canonically conjugate positions and momenta (cf. Eqn. (3)), which the Weyl
 relations ensure will satisfy the original unbounded form of the CCRs.

 It is important to recognize, however, that by enlarging the set of
 observables to include those affiliated to n(W)", we have now left ourselves

 open to arbitrariness. In contrast to Proposition 1, we now have

 Proposition 2. There are (even regular) representations n, d of W[S, cr] for
 which there is no *-isomorphism o from nr(W)" onto 4(W)" such that
 oa(n(W(f)))= -( W(f)) for all fE S.

 This occurs when the representations are 'disjoint', which we discuss in the
 next subsection.

 Proposition 2 is what motivates Segal to argue that observables affiliated to

 the weak closure it(W)" in a representation of the Weyl algebra are
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 Inequivalent Particle Concepts in Quantum Field Theory 425

 'somewhat unphysical' and 'have only analytical significance' ([1963], pp. 11-
 4, 134).1 Segal is explicit that by 'physical' he means 'empirically measurable

 in principle' ([1963], p. 11). We should not be confused by the fact that he
 often calls observables that fail this test 'conceptual' (suggesting they are
 more than mere analytical crutches). For in Baez et al. ([1992], p. 145), Segal

 gives as an example the bounded self-adjoint operator cosp + (1 + x2)-1 on
 L2(R) 'for which no known "Gedanken experiment" will actually directly
 determine the spectrum, and so [it] represents an observable in a purely
 conceptual sense'. Thus, the most obvious reading of Segal's position is that

 he subscribes to an operationalist view about the physical significance of
 theoretical quantities. Indeed, since good reasons can be given for the
 impossibility of exact ('sharp') measurements of observables in the von
 Neumann algebra generated by a C*-algebra (see Wald [1994]; Halvorson
 [2001 a]), operationalism explains Segal's dismissal of the physical (as opposed

 to analytical) significance of observables not in the Weyl algebra per se. (And

 it is worth recalling that Bridgman himself was similarly unphased by having

 to relegate much of the mathematical structure of a physical theory to 'a
 ghostly domain with no physical relevance' ([1936], p. 116).)

 Of course, in so far as operationalism is philosophically defensible at all, it

 does not compel assent. And, in this instance, Segal's operationalism has not
 dissuaded others from taking the more liberal view advocated by Wald:

 one should not view [the Weyl algebra] as encompassing all observables
 of the theory; rather, one should view [it] as encompassing a 'minimal'
 collection of observables, which is sufficiently large to enable the theory
 to be formulated. One may later wish to enlarge [the algebra] and/or
 further restrict the notion of 'state' in order to accommodate the

 existence of additional observables (Wald [1994], p. 75).

 The conservative and liberal views entail quite different commitments about

 the physical equivalence of representations- or so we shall argue.

 2.2 Equivalence and disjointness of representations

 It is essential that precise mathematical definitions of equivalence be clearly
 distinguished from the, often dubious, arguments that have been offered for

 their conceptual significance. We confine this section to discussing the
 definitions.

 Since our ultimate goal is to discuss the Minkowski and Rindler quanti-
 zations of the Weyl algebra, we only need to consider the case where one of the

 Actually, Segal consistently finds it convenient to work with a strictly larger algebra than our
 (minimal) Weyl algebra, sometimes called the modefinite or tame Weyl algebra. However, both
 Proposition 1 (see Baez et al. [1992], Thm. 5.1) and Proposition 2 continue to hold for the tame
 Weyl algebra (also cf. Segal [1967], pp. 128-9).
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 426 Rob Clifton and Hans Halvorson

 two representations at issue, say nt, is 'irreducible' and the other, 4), is 'factorial'.

 A representation nt of W is called irreducible just in case no non-trivial subspace

 of the Hilbert space H7 is invariant under the action of all operators in nt(W). It

 is not difficult to see that this is equivalent to it(W)" = B(7,) (using the fact that
 an invariant subspace will exist just in case the projection onto it commutes with

 all operators in t(W)). A representation 4 of W is called factorial whenever the

 von Neumann algebra 40(W)" is a factor, i.e. it has trivial centre (the only

 operators in O(W)" that commute with all other operators in 4(W)" are

 multiples of the identity). Since B(7-?) is a factor, it is clear that n's irreducibility

 entails its factoriality. Thus, the Schr6dinger representation of the Weyl algebra
 is both irreducible and factorial.

 The strongest form of equivalence between representations is unitary
 equivalence: 4 and n are said to be unitarily equivalent just in case there is a

 unitary operator U mapping -, isometrically onto 7-, and such that

 U4(A)U-1 = it(A) VA e W. (14)

 There are two other weaker definitions of equivalence.

 Given a family ni of irreducible representations of the Weyl algebra on

 Hilbert spaces 7-4, we can construct another (reducible) representation 4 of
 the Weyl algebra on the direct sum Hilbert space Xi (e i, by setting

 )(A) E ti(A), AE W. (15)

 If each representation (ti, 7-Hi) is unitarily equivalent to some fixed repre-
 sentation (t, H), we say that 4) = E i is a multiple of the representation it.
 Furthermore, we say that two representations of the Weyl algebra, 4
 (factorial) and in (irreducible), are quasi-equivalent just in case 4 is a multiple

 of it. It should be obvious from this characterization that quasi-equivalence
 weakens unitary equivalence. Another way to see this is to use the fact (KR

 [1997], Def. 10.3.1, Cor. 10.3.4) that quasi-equivalence of 4 and nt is
 equivalent to the existence of a *-isomorphism ct from 4(W)" onto nt(W)"

 such that a(4(A)) = nr(A) for all A E W. Unitary equivalence is then just the
 special case where the *-isomorphism a can be implemented by a unitary
 operator.

 If 4 is not even quasi-equivalent to n, then we say that 4) and n are disjoint

 representations of W.2 Note, then, that if both nt and 4 are irreducible, they
 are either unitarily equivalent or disjoint.

 2 In general, disjointness is not defined as the negation of quasi-equivalence, but by the more
 cumbersome formulation: Two representations nr, are disjoint just in case n has no
 'subrepresentation' quasi-equivalent to 4, and 4 has no subrepresentation quasi-equivalent to
 nt. Since we are only interested, however, in the special case where n is irreducible (and hence
 has no non-trivial subrepresentations) and 4 is 'factorial' (and hence is quasi-equivalent to each
 of its subrepresentations), the cumbersome formulation reduces to our definition.
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 Inequivalent Particle Concepts in Quantum Field Theory 427

 We can now state the following pivotal result (von Neumann [1931]).

 Stone-von Neumann Uniqueness Theorem. When S is finite-dimensional, every

 regular representation of the Weyl algebra W[S, a] is quasi-equivalent to the
 Schrddinger representation.

 This theorem is usually interpreted as saying that there is a unique quantum

 theory corresponding to a classical theory with finitely-many degrees of
 freedom. The theorem fails in field theory-where S is infinite-dimen-
 sional -opening the door to disjoint representations and Proposition 2.

 There is another way to think of the relations between representations, in

 terms of states. Recall the abstract definition of a state of a C*-algebra, as
 simply a positive normalized linear functional on the algebra. Since, in any

 representation nt, t(W) is just a faithful copy of W, it induces a one-to-one
 correspondence between the abstract states of W and the abstract states of

 x(W). Note now that some of the abstract states on nt(W) are the garden-
 variety density operator states that we are familiar with from elementary

 quantum mechanics. In particular, define oD on rt(W) by picking a density
 operator D on -1, and setting

 OD(A):= Tr(DA), A E It(W). (16)

 In general, however, there will be abstract states of in(W) that are not given by

 density operators via Eqn. (16).3 We say then that an abstract state 0 of in(W)
 is normal just in case it is given (via Eqn. (16)) by some density operator D on

 7-H,. We let 3( t) denote the subset of the abstract state space of W consisting
 of those states that correspond to normal states in the representation in, and

 we call 3( t) the folium of the representation nt. That is, o0 E3(t) just in case
 there is a density operator D on H,, such that

 0(A) = Tr(Di(A)), A E W. (17)
 We then have the following equivalences (KR [1997], Prop. 10.3.13):

 n and 4 are quasi-equivalentc-= 3(rt) = 3( ),

 n and 4 are disjoint=-3(t) ()n (4) = 0.

 In other words, nt and 4 are quasi-equivalent just in case they share the same

 normal states. And in and 4 are disjoint just in case they have no normal states
 in common.

 In fact, if it is disjoint from 4, then all normal states in the representation nr
 are 'orthogonal' to all normal states in the representation 4. We may think of

 Gleason's theorem does not rule out these states because it is not part of the definition of an
 abstract state that it be countably additive over mutually orthogonal projections. Indeed, such
 additivity does not even make sense abstractly, because an infinite sum of orthogonal
 projections can never converge uniformly, only weakly (in a representation).
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 428 Rob Clifton and Hans Halvorson

 this situation intuitively as follows. Define a third representation * of W on

 7-4 t 7@H by setting

 *i rt( = n(A) (A), A E W. (18)
 Then, every normal state of the representation nt is orthogonal to every
 normal state of the representation 4.4 This makes sense of the oft-repeated
 phrase (see e.g. Gerlach [1989]) that 'The Rindler vacuum is orthogonal to all
 states in the Minkowski vacuum representation'.
 While not every abstract state of W will be in the folium of a given

 representation, there is always some representation of W in which the state is

 normal, as a consequence of the following (see KR [1997], Thms. 4.5.2 and
 10.2.3).

 Gelfand-Naimark-Segal Theorem. Any abstract state o of a C*-algebra A

 gives rise to a unique (up to unitary equivalence) representation (x,, 7-,) of A

 and vector Q, E , such that

 (A) = (o,, Q to,(A)SQ), A E A, (19)

 and such that the set {tt(A)Qo,: Ae A} is dense in 7-4,. Moreover, nto, is
 irreducible just in case 0) is pure.

 The triple (n,, 7-,, 2,) is called the GNS representation of A induced by the
 state o, and Q, is called a cyclic vector for the representation. We shall see in
 the next main section how the Minkowski and Rindler vacuums induce

 disjoint GNS representations of the Weyl algebra.
 There is a third notion of equivalence of representations, still weaker than

 quasi-equivalence. Let nt be a representation of W, and let Z(rt) be the folium

 of nt. We say that an abstract state c0 of W can be weak* approximated by
 states in Z(nit) just in case for each , > 0, and for each finite collection
 {Ai: i = 1, ..., n} of operators in W, there is a state 6' e 2(nt) such that

 IO(A;) - 0'(Ai)l < c, i = 1, ..., n. (20)

 Two representations in, are then said to be weakly equivalent just in case all

 states in 3(nt) may be weak* approximated by states in Q(4) and vice versa.
 We then have the following fundamental result (Fell [1960]).

 Fell's Theorem. Let nt be a faithful representation of a C*-algebra A. Then,
 every abstract state of A may be weak* approximated by states in Z(it).

 In particular, then, it follows that all representations of W are weakly
 equivalent.

 4 This intuitive picture may be justified by making use of the 'universal representation' of W (KR
 [1997], Thm. 10.3.5).
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 In summary, we have the following implications for any two representa-

 tions tn, 4:

 Unitarily equivalent ==- Quasi-equivalent == Weakly equivalent.

 If nt and 4 are both irreducible, then the first arrow is reversible.

 2.3 Physical equivalence of representations

 Do disjoint representations yield physically inequivalent theories? It depends

 on what one takes to be the physical content of a theory, and what one means

 by 'equivalent theories' - subjects about which philosophers of science have
 had plenty to say.

 Recall that Reichenbach [1938] deemed two theories 'the same' just in case
 they are empirically equivalent, i.e. they are confirmed equally under all
 possible evidence. Obviously this criterion, were we to adopt it here, would

 beg the question against those who (while agreeing that, strictly speaking,
 only self-adjoint elements of the Weyl algebra can actually be measured)
 attribute physical significance to 'global' quantities only definable in a
 representation, like the total number of particles.

 A stronger notion of equivalence, formulated by Glymour [1971] (who
 proposed it only as a necessary condition), is that two theories are equivalent

 only if they are 'intertranslatable'. This is often cashed out in logical terms as

 the possibility of defining the primitives of one theory in terms of those of the

 other so that the theorems of the first appear as logical consequences of those
 of the second, and vice versa. Prima facie, this criterion is ill suited to the

 present context, because the different 'theories' are not presented to us as

 syntactic structures or formalized logical systems, but rather two competing

 algebras of observables whose states represent physical predictions. In
 addition, intertranslatability per se has nothing to say about what portions of

 the mathematical formalism of the two physical theories being compared
 ought to be intertranslatable, and what should be regarded as 'surplus
 mathematical structure' not required to be part of the translation.

 Nevertheless, we believe the intertranslatability thesis can be naturally
 expressed in the present context and rendered neutral as between the
 conservative and liberal approaches to physical observables discussed earlier.

 Think of the Weyl operators {4(W(f)): fE S} and {ft(W(f)): fe S} as the
 primitives of our two 'theories', in analogy with the way the natural numbers

 can be regarded as the primitives of a 'theory' of real numbers. Just as we
 may define rational numbers as ratios of natural numbers, and then construct

 real numbers as the limits of Cauchy sequences of rationals, we construct the

 Weyl algebras 4(W) and r(W) by taking linear combinations of the Weyl
 operators and then closing in the uniform topology. We then close in the
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 430 Rob Clifton and Hans Halvorson

 weak topology of the two representations to obtain the von Neumann

 algebras 4f(W)" and n(W)". Whether the observables affiliated with this
 second closure have physical significance is up for grabs, as is whether we
 should be conservative and take only normal states in the given representa-
 tion to be physical, or be more liberal and admit a broader class of algebraic
 states. The analogue of the 'theorems' of the theory are then statements about

 the expectation values dictated by the physical states for the self-adjoint
 elements in the physically relevant algebra of the theory.

 We therefore propose the following formal rendering of Glymour's inter-

 translatability thesis adapted to the present context. Representations ?4 and it
 are physically equivalent only if there exists a bijective mapping a from the

 physical observables of the representation ? to the physical observables of the

 representation n, and another bijective mapping P from the physical states of
 the representation ? to the physical states of the representation n, such that

 c(c(W(f))) = in(W(f)), Vf e S, (21)
 ('primitives')

 3(o)(a(A)) = co(A), V states o, V observables A. (22)
 ('theorems')

 Of course, the notion of equivalence we obtain depends on how we construe the

 phrases 'physical observables of a representation n' and 'physical states of a
 representation n'. According to a conservative rendering of observables, only

 the self-adjoint elements of the Weyl algebra n(W) are genuine physical obser-
 vables of the representation n. (More generally, an -unbounded self-adjoint
 operator on R,, is a physical observable only if all of its bounded functions lie in

 n(W).) On the other hand, a liberal rendering of observables considers all self-

 adjoint operators in the weak closure n(W)- of n(W) as genuine physical
 observables. (More generally, those unbounded self-adjoint operators whose

 bounded functions lie in n(W)-, i.e. all such operators affiliated with n(W)-,
 should be considered genuine physical observables.) A conservative with
 respect to states claims that only the density operator states (i.e. normal states)

 of the algebra n(W) are genuine physical states. On the other hand, a liberal with

 respect to states claims that all algebraic states of n(W) should be thought of
 as genuine physical states. We thereby obtain four distinct necessary
 conditions for physical equivalence, according to whether one is conservative
 or liberal about observables, and conservative or liberal about states.5

 5 The distinction between the conservative and liberal positions about observables could be
 further ramified by taking into account the distinction--which is suppressed throughout this
 paper - between local and global observables. In particular, if all (and only) locally measurable
 observables have genuine physical status, then physical equivalence of t and 4o would require a
 bijection at between local observables in n(W)- and local observables in 4(W)-. Similarly, the
 distinction between the conservative and liberal positions about states could be further ramified
 by taking into account the distinction between normal states and 'locally normal' states.
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 Inequivalent Particle Concepts in Quantum Field Theory 431

 Arageorgis ([1995], p. 302) and Arageorgis et al. ([2001], p. 3) also take the

 correct notion of physical equivalence in this context to be intertranslat-

 ability. On the basis of informal discussions (with rather less supporting
 argument than one would have liked), they claim that physical equivalence of

 representations requires that they be unitarily equivalent. (They do not
 discuss quasi-equivalence.) We disagree with this conclusion, but there is still

 substantial overlap between us. For instance, with our precise necessary
 condition for physical equivalence above, we may establish the following
 elementary result.

 Proposition 3. Under the conservative approach to states, 4) (factorial) and tn
 (irreducible) are physically equivalent representations of W only if they are
 quasi-equivalent.

 With somewhat more work, the following result may also be established.6

 Proposition 4. Under the liberal approach to observables, d) (factorial) and n
 (irreducible) are physically equivalent representations of W only if they are
 quasi-equivalent.

 The above results leave only the position of the 'conservative about
 observables/liberal about states' undecided. However, we claim, pace
 Arageorgis et al., that a proponent of this position can satisfy conditions

 (21), (22) without committing himself to quasi-equivalence of the representa-

 tions. Since he is conservative about observables, Proposition I already

 guarantees the existence of a bijective mapping a--in fact, a *-isomorphism
 from the whole of 4(W) to the whole of n(W) -satisfying (21). And if he is
 liberal about states, the state mapping P need not map any normal state of

 Q4(W) into a normal state of rt(W), bypassing the argument for Proposition 3.
 Indeed, since the liberal takes all algebraic states of 4(W) and n(W) to be
 physically significant, for any algebraic state o of 4(W), the bijective
 mapping 0 that sends o to the state oo oc- on n(W) trivially satisfies
 condition (22) even when 4) and n are disjoint.

 Though we have argued that Segal was conservative about observables, we

 are not claiming he was liberal about states. In fact, Segal consistently
 maintained that only the 'regular states' of the Weyl algebra have physical
 relevance ([1961], p. 7; [1967], pp. 120, 132). A state e of W[S, a] is called

 regular just in case the map ft--+m0(W(f)) is continuous on all finite-
 dimensional subspaces of S; or, equivalently, just in case the GNS repre-

 sentation of W[S, cr] determined by 0 is regular (Segal [1967], p. 134).
 However, note that, unlike normality of a state, regularity is representation-

 6 Our proof in the appendix makes rigorous Arageorgis' brief (and insufficient) reference to
 Wigner's symmetry representation theorem in his ([1995], p. 302, fn.).
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 independent. Taking the set of all regular states of the Weyl algebra to be
 physical is therefore still liberal enough to permit satisfaction of condition

 (22). For the mapping 13 of the previous paragraph trivially preserves
 regularity, in so far as both o and to o at- induce the same abstract regular
 state of W.

 Our verdict, then, is that Segal, for one, is not committed to saying only

 quasi-equivalent representations can be physically equivalent. And this
 explains why he sees fit to define physical equivalence of representations in
 such a way that Proposition I secures the physical equivalence of all

 representations (see Segal [1961], Defn. l(c)). (Indeed, Segal regards
 Proposition 1 as the appropriate generalization of the Stone-von Neumann

 uniqueness theorem to infinite-dimensional S!) One might still ask what the
 point of passing to a concrete Hilbert space representation of W is if one is
 going to allow as physically possible regular states not in the folium of the
 chosen representation. The point, we take it, is that if we are interested in

 drawing out the predictions of some particular regular state, such as the
 Minkowski vacuum or the Rindler vacuum, then passing to a particular
 representation will put at our disposal all the standard analytical techniques
 of Hilbert space quantum mechanics to facilitate calculations in that
 particular state.7

 Haag and Kastler ([1964], p. 852) and Robinson ([1966], p. 488) have
 argued that by itself the weak equivalence of all representations of the Weyl

 algebra entails their physical equivalence.8 Their argument starts from the

 fact that, by measuring the expectations of a finite number of observables {Ai}

 in the Weyl algebra, each to a finite degree of accuracy E, we can only
 determine the state of the system to within a weak* neighborhood. But by

 Fell's density theorem, states from the folium of any representation lie in this

 neighborhood. So for all practical purposes, we can never determine which
 representation is the physically 'correct' one and they all, in some (as yet,
 unarticulated!) sense, carry the same physical content. And as a corollary,

 choosing a representation is simply a matter of convention.

 Clearly the necessary condition for physical equivalence we have proposed
 constitutes a very different notion of equivalence than weak equivalence, so

 we are not disposed to agree with this argument. Evidently it presupposes
 that only the observables in the Weyl algebra itself are physically significant,

 7 In support of not limiting the physical states of the Weyl algebra to any one representation's
 folium, one can also cite the cases of non-unitarily implementable dynamics discussed by
 Arageorgis et al. ([2001]) in which dynamical evolution occurs between regular states that
 induce disjoint GNS representations. In such cases, it would hardly be coherent to maintain
 that regular states dynamically accessible to one another are not physically co-possible.

 8 Indeed, the term 'physical equivalence' is often used synonymously with weak equivalence; for
 example, by Emch ([1972], p. 108), who, however, issues the warning that 'we should be
 seriously wary of semantic extrapolations' from this usage. Indeed!
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 Inequivalent Particle Concepts in Quantum Field Theory 433

 which we have granted could be grounded in operationalism. However, there

 is an additional layer of operationalism that the argument must presuppose:

 scepticism about the physical meaning of postulating an absolutely precise
 state for the system. If we follow this scepticism to its logical conclusion, we

 should instead think of physical states of the Weyl algebra as represented by

 weak* neighborhoods of algebraic states. What it would then mean to falsify

 a state, so understood, is that some finite number of expectation values
 measured to within finite accuracy are found to be incompatible with all the

 algebraic states in some proposed weak* neighborhood. Unfortunately, no
 particular 'state' in this sense can ever be fully empirically adequate, for any

 hypothesized state (= weak* neighborhood) will be subject to constant
 revision as the accuracy and number of our experiments increase. We agree
 with Summers [2001] that this would do irreparable damage to the predictive

 power of the theory -damage that can only be avoided by maintaining that
 there is a correct algebraic state.

 We do not, however, agree with Summers' presumption (tacitly endorsed
 by Arageorgis et al. [2001]) that we not only need the correct algebraic state,

 but 'the correct state in the correct representation' ([2001], p. 13; italics ours).

 This added remark of Summers' is directed against the conventionalist
 corollary to Fell's theorem. Yet we see nothing in the point about predictive

 power that privileges any particular representation, not even the GNS
 representation of the predicted state. We might well have good reason to
 choose deliberately a representation in which the precise algebraic state
 predicted is not normal. (For example, Kay [1985] does exactly this, by
 'constructing' the Minkowski vacuum as a thermal state in the Rindler
 quantization.) The role Fell's theorem plays is, then, at best, methodological.

 All it guarantees is that when we calculate with density operators in our chosen

 represention, we can always get a reasonably good indication of the predictions

 of whatever precise algebraic state we have postulated for the system.

 So much for the conservative stance on observables. An interpreter of
 quantum field theory is not likely to find it attractive, if only because none of

 the observables that have any chance of underwriting the particle concept lie

 in the Weyl algebra. But suppose, as interpreters, we adopt the liberal
 approach to observables. Does the physical inequivalence of disjoint
 representations entail their incompatibility, or even incommensurability? By

 this, we do not mean to conjure up Kuhnian thoughts about incommensur-
 able 'paradigms', whose proponents share no methods to resolve their
 disputes. Rather, we are pointing to the (more Feyerabendian?) possibility of

 an unanalyzable shift in meaning between disjoint representations as a
 consequence of the fact that the concepts (observables and/or states) of one
 representation are not wholly definable or translatable in terms of those of
 the other.

This content downloaded from 
������������158.143.233.108 on Sat, 27 Feb 2021 13:03:38 UTC������������ 

All use subject to https://about.jstor.org/terms



 434 Rob Clifton and Hans Halvorson

 One might think of neutralizing this threat by viewing disjoint representa-

 tions as sub-theories or models of a more general theory built upon the Weyl

 algebra. Consider the analogy of two different classical systems, modelled,
 say, by phase spaces of different dimension. Though not physically
 equivalent, these models hardly define incommensurable theories in so far
 as they share the characteristic kinematical and dynamical features that
 warrant the term 'classical'. Surely the same could be said of disjoint
 representations of the Weyl algebra?

 There is, however, a crucial disanalogy that needs to be taken into account.

 In the case of the Minkowski and Rindler representations, physicists freely
 switch between them to describe the quantum state of the very same

 'system'--in this case, the quantum field in a fixed region of spacetime (see
 e.g. Unruh and Wald [1984] and Wald [1994], Section 5.1). And, as we shall
 see later, the weak closures of these representations provide physically
 inequivalent descriptions of the particle content in the region. So it is
 tempting to view this switching back and forth between disjoint representa-

 tions as conceptually incoherent (Arageorgis [1995], p. 268), and to see the

 particle concepts associated to the representations as not just different, but

 outright incommensurable (Arageorgis et al. [2001]).
 We shall argue that this view, tempting as it is, goes too far. For suppose

 we do take the view that the observables affiliated to the von Neumann

 algebras generated by two disjoint representations 4 and Rt simply represent
 different physical aspects of the same physical system. If we are also liberal

 about states (not restricting ourselves to any one representation's folium),
 then it is natural to ask what implications a state o of our system, that

 happens to be in the folium of ?, has for the observables in rt(W)". In many
 cases, it is possible to extract a definite answer.

 In particular, any abstract state o of W gives rise to a state on rt(W), which
 may be extended to a state on the weak closure nr(W)" (KR [1997], Thm.
 4.3.13). The only catch is that unless (o E 3(t), this extension will not be
 unique. For, only normal states of nt(W) possess sufficiently nice continuity

 properties to ensure that their values on it(W) uniquely fix their values on the

 weak closure nt(W)" (see KR [1997], Thm. 7.1.12). However, it may happen
 that all extensions of o agree on the expectation value they assign to a

 particular observable affiliated to nr(W)". This is the strategy we shall use to
 make sense of assertions such as 'The Minkowski vacuum in a (Rindler)

 spacetime wedge is full of Rindler quanta' (cf. e.g. DeWitt [1979a]). The very
 fact that such assertions can be made sense of at all takes the steam out of

 claims that disjoint representations are necessarily incommensurable. Indeed,

 we shall ultimately argue that this shows disjoint representations should not

 be treated as competing 'theories' in the first place. Rather, they are better
 viewed as supplying physically different, 'complementary' perspectives on the
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 same quantum system from within a broader theoretical framework that does

 not privilege a particular representation.

 3 Constructing representations

 We now explain how to construct 'Fock representations' of the CCRs. In
 Sections 3.1 and 3.2 we show how this construction depends on one's choice
 of preferred timelike motion in Minkowski spacetime. In Section 3.3, we

 show that alternative choices of preferred timelike motion can result in
 unitarily inequivalent - indeed, disjoint - representations.

 3.1 First quantization ('splitting the frequencies')

 The first step in the quantization scheme consists in turning the classical
 phase space (S, u) into a quantum-mechanical 'one particle space'-i.e. a
 Hilbert space. The non-uniqueness of the quantization scheme comes in at this

 very first step.

 Depending on our choice of preferred timelike motion, we will have a one-

 parameter group Tt of linear mappings from S onto S representing the
 evolution of the classical system in time. The flow t i-+ Tt should also preserve

 the symplectic form. A bijective real-linear mapping T: SI-.+S is called a
 symplectomorphism just in case T preserves the symplectic form; i.e.,
 c(Tf, Tg) = (f, g) for all f, g E S.

 We say that J is a complex structure for (S, c) just in case

 6. J is a symplectomorphism,

 7. J2 --I,
 8. c(f, Jf) > 0, O f e S.

 Relative to a complex structure J, we may extend the scalar multiplication on

 S to complex numbers; viz., take multiplication by a + ib as given by
 (a + ib)f:= af+ bJf E S. We may also define an inner product (-, .), on the
 resulting complex vector space by setting

 (f, g)j:= C(f, Jg) + ico(f, g), f, g E S. (23)

 We let Sj denote the Hilbert space that results when we equip (S, o) with the
 extended scalar multiplication and inner product (., .),.

 A symplectomorphism T is (by assumption) a real-linear operator on S.

 However, it does not automatically follow that T is a complex-linear operator

 on SJ, since T(if) = i(Tf) may fail. If, however, T commutes with J, then T
 will be a complex-linear operator on SJ, and it is easy to see that (Tf, Tg), =

 (f, g)j for all f, g E SJ, so T would in fact be unitary. Accordingly, we say

This content downloaded from 
������������158.143.233.108 on Sat, 27 Feb 2021 13:03:38 UTC������������ 

All use subject to https://about.jstor.org/terms



 436 Rob Clifton and Hans Halvorson

 that a group T, of symplectomorphisms on (S, a) is unitarizable relative to J

 just in case [J, T,] = 0 for all t E R.

 If T, is unitarizable and t-*+ T, is weakly continuous, so that we have
 T, = eitH (by Stone's theorem), we say that T, has positive energy just in case

 H is a positive operator. In general, we say that (H, U,) is a quantum one
 particle system just in case 7-R is a Hilbert space and U, is a weakly continuous

 one-parameter unitary group on - with positive energy. Kay ([1979]) proved:

 Proposition 5. Let T, be a one-parameter group of symplectomorphisms of

 (S, o). If there is a complex structure J on (S, o) such that (Sj, T,) is a
 quantum one particle system, then J is unique.

 Physically, the time translation group T, determines a natural decomposition

 (or 'splitting') of the solutions of the relativistic wave equation we are
 quantizing into those that oscillate with purely positive and with purely
 negative frequency with respect to the motion. This has the effect of uniquely

 fixing a choice of J, and the Hilbert space Sj then provides a representation of

 the positive frequency solutions alone.9
 We shall see in the next section how the representation space of a 'Fock'

 representation of the Weyl algebra is constructed directly from the Hilbert

 space Sj. Thus, as we claimed, the nonuniqueness of the resulting repre-
 sentation stems entirely from the arbitrary choice of the time translation

 group T, in Minkowski spacetime and the complex structure J on S it
 determines.

 3.2 Second quantization (Fock space)

 Once we have used some time translation group T, to fix the Hilbert space Sj,

 the 'second quantization' procedure yields a unique representation (x, 7-H,) of
 the Weyl algebra W[S, a].

 Let 7-"' denote the n-fold symmetric tensor product of Sj with itself. That

 is, using S" to denote Sj, ... Sj (n times), 7-n" = P+(Sj) where P+ is the
 projection onto the symmetric subspace. Then we define a Hilbert space

 -(Sj):-= C E H.1' ED H.2 ,3 D . ? ? , (24)
 called the bosonic Fock space over Sj. Let

 (:=1~0ED 0 --, (25)

 denote the privileged 'Fock vacuum' state in .F(SJ).
 Now, we define creation and annihilation operators on .F(SJ) in the usual
 way. For any fixed fe S, we first consider the unique bounded linear

 9 For more physical details, see Fulling ([1972], Secs. VIII.3,4) and Wald ([1994], pp. 41-42, 63,
 111).
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 extensions of the mappings a *(f): Sn--' - S" and an(f): Sj -+ Sj-' defined
 by the following actions on product vectors

 a*(f)(f 9... fn,-1) = fof, 0 Q .. fn-i, (26)
 an(f)(f 9 - ... fn) = (f, f)J f2 0 - "" fn. (27)

 We then define the unbounded creation and annihilation operators on T(Sj)
 by

 a*(f):= af(f) E /2P+af(f) D vP+a(f) . . . , (28)
 a(f):= 0 D a,(f) e /12a2(f) Vf3a3(f) e --. (29)

 (Note that the mapping fi--a*(f) is linear while fi--+a(f) is anti-linear.)
 As the definitions and notation suggest, a*(f) and a(f) are each other's

 adjoint, a*(f) is the creation operator for a particle with wavefunctionf, and

 a(f) the corresponding annihilation operator. The unbounded self-adjoint
 operator N(f) = a*(f)a(f) represents the number of particles in the field with

 wavefunction f (unbounded, because we are describing bosons to which no
 exclusion principle applies). Summing N(f) over any J-orthonormal basis of

 wavefunctions in Sj, we obtain the total number operator N on F(Sj), which
 has the form

 N=0e 1 i2(30--.. (30)

 Next, we define the self-adjoint 'field operators'

 $(f):= 2-1/2(a*(f) + a(f)), fe S. (31)

 (In heuristic discussions of free quantum field theory, these are normally
 encountered as 'operator-valued solutions' F(x) to a relativistic field equation
 at some fixed time. However, if we want to associate a properly defined self-

 adjoint field operator with the spatial point x, we must consider a
 neighborhood of x, and an operator of form 0(f), where the 'test-function'

 f S has support in the neighborhood.)'0 Defining the unitary operators

 X(W(tf)):= exp(itD(f)), t E , fER S, (32)

 it can then be verified (though it is not trivial) that the ic(W(f)) satisfy the

 Weyl form of the CCRs. In fact, the mapping W(f)i--+n(W(f)) gives an

 irreducible regular representation nt of W on F~(Sj).
 We also have

 (Q, it(W(f))Q) = e-(f'f)J/4, f e S. (33)
 10 The picture of a quantum field as an operator-valued field-or, as Teller ([1995], Ch. 5) aptly

 puts it, a field of 'determinables' - unfortunately, has no mathematically rigorous foundation.
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 (We shall always distinguish the inner product of F(Sj) from that of Sj by

 using angle brackets.) The vacuum vector fe E (Sj) defines an abstract
 regular state omj of W via Ow(A):= (Q, n(A)Q2) for all AE W. Since the action
 of 7t(W) on F(Sj) is irreducible, {It(A).: A E W} is dense in F(Sj) (else its
 closure would be a non-trivial subspace invariant under all operators in

 n(W)). Thus, the Fock representation of W on F(Sj) is unitarily equivalent
 to the GNS representation of W determined by the pure state oj.

 In sum, a complex structure J on (S, c) gives rise to an abstract vacuum

 state Coj on W[S, o] whose GNS representation (nRj, 1-,,, O,) is just the
 standard Fock vacuum representation (n1, F(SJ), Q). Note also that inverting
 Eqn. (31) yields

 a*(f) = 2-1/2(F(f) - i(if)), a(f) = 2-1/2(((f) + iD(if)), fe S. (34)

 Thus, we could just as well have arrived at the Fock representation of W

 'abstractly' by starting with the pure regular state oj on W[S, a] as our
 proposed vacuum, exploiting its regularity to guarantee the existence of field

 operators {J(f): fe S} acting on Ro,, and then using Eqn. (34) to define
 a*(f) and a(f) (and, from thence, the number operators N(f) and N).

 There is a natural way to construct operators on F(Sj) out of operators on
 the one-particle space Sj, using the second quantization map F and its
 'derivative' dF. Unlike the representation map ?n, the operators on F(SJ) in
 the range of F and dF do not 'come from' W[S, a], but rather B(Sj). Since
 the latter depends on how S was complexified, we cannot expect second
 quantized observables to be representation-independent.

 To define dF, first let H be a self-adjoint (possibly unbounded) operator on

 Sj. We define Hn on Wn by setting H0 = 0 and

 H,(P+(fl 0?...0fn)) = P+( fl Of20...0@Hfi 0...0)f,, (35) i= 1

 for allf, in the domain of H, and then extending by continuity. It then follows

 that ~n>H, is an 'essentially self adjoint' operator on TF(Sj) (see BR [1996],
 p. 8). We let

 dF(H):= H, (36)
 n >, 0

 denote the resulting (closed) self-adjoint operator. The simplest example

 occurs when we take H = I, in which case it is easy to see that dF(H) = N.
 However, the total number operator N is not affiliated with the Weyl
 algebra."

 " Our proof in the appendix reconstructs the argument briefly sketched in Segal ([1959], p. 12).
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 Inequivalent Particle Concepts in Quantum Field Theory 439

 Proposition 6. When S is infinite-dimensional, t(W[S, o]) contains no non-

 trivial bounded functions of the total number operator on F(Sj).

 In particular, t(W) does not contain any of the spectral projections of N.
 Thus, while the conservative about observables is free to refer to the abstract

 state co of W as a 'vacuum' state, he cannot use that language to underwrite
 the claim that coz is a state of 'no particles'!

 To define F, let U be a unitary operator on Sj. Then U,n = P+(U ... 0 U)
 is a unitary operator on H-". We define the unitary operator F(U) on Y(Sj) by

 F(U):= ? Un. (37)
 n>0

 If U, = eitH is a weakly continuous unitary group on Sj, then F(U,) is a

 weakly continuous group on .T(Sj), and we have

 F(U,) = eitdf(H). (38)

 In particular, the one-particle evolution T, = eitH that was used to fix J 'lifts'

 to a field evolution given by F(T/), where dF(H) represents the energy of the
 field and has the vacuum Q as a ground state.

 It can be shown that the representation and second quantization maps
 interact as follows:

 nx(W(Uf)) = F(U)*x(W(f))F(U), fe S, (39)

 for any unitary operator U on Sj. Taking the phase transformation U = eiI,
 it follows that

 x( W(eitf)) = e-`itN( W(f))eitN, fE S, t E R. (40)

 Using Eqn. (33), it also follows that

 (F(U)Q, x(W(f))F(U)2) = (Q, 7r(W(Uf))2) = (Kf, rt(W(f))Q). (41)

 Since the states induced by the vectors Q and F(U)Q. are both normal in nt and

 agree on nt(W), they determine the same state of n(W)" = B(.T(Sj)). Thus Q
 must be an eigenvector of F(U) for any unitary operator U on Sj. In
 particular, the vacuum is invariant under the group F(T,), and is therefore
 time-translation invariant.

 3.3 Disjointness of the Minkowski and Rindler representations

 We omit the details of the construction of the classical phase space (S, o),
 since they are largely irrelevant to our concerns. The only information we
 need is that the space S may be taken (roughly) to be solutions to some
 relativistic wave equation, such as the Klein-Gordon equation. More
 particularly, S may be taken to consist of pairs of smooth, compactly
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 supported functions on R3: one function specifies the values of the field at
 each point in space at some initial time (say t = 0), and the other function is

 the time-derivative of the field (evaluated at t = 0). If we then choose a
 'timelike flow' in Minkowski spacetime, we will get a corresponding flow in

 the solution space S; and, in particular, this flow will be given by a one-

 parameter group T, of symplectomorphisms on (S, o).
 First, consider the group T, of symplectomorphisms of (S, a) induced by

 the standard inertial timelike flow. (See Figure 1, which suppresses two
 spatial dimensions. Note that it is irrelevant which inertial frame's flow we

 pick, since they all determine the same representation of W[S, a] up to
 unitary equivalence; see Wald [1994], p. 106.) It is well known that there is a

 complex structure M on (S, a) such that (SM, T,) is a quantum one-particle
 system (see Kay [1985]; Horuzhy [1988], Ch. 4). We call the associated pure

 regular state 0M of W[S, a] the Minkowski vacuum state. As we have seen, it
 gives rise via the GNS construction to a unique Fock vacuum representation

 n.m on the Hilbert space H0,, = .F(SM). Next, consider the group of Lorentz boosts about a given centre point O in

 spacetime. This also gives rise to a one-parameter group Ts of symplecto-
 morphisms of (S, a) (cf. Figure 1). Let S(.i) be the subspace of S consisting of
 Cauchy data with support in the right Rindler wedge (xi > 0); i.e. at s = 0,

 both the field and its first derivative vanish when x, < 0. Let W,:= W[S(<), a]
 be the Weyl algebra over the symplectic space (S(<), a). Then, T, leaves S(<)
 invariant, and hence gives rise to a one-parameter group of symplectomorph-

 isms of (S(<), o). Kay ([1985]) has shown rigorously that there is indeed a

 t

 left wedge right wedge
 t=s=0

 Rindler

 Minkowski

 Fig. 1. Minkowski and Rindler motions
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 complex structure R on (S(<), ar) such that (S(<)R, Ts) is a quantum one

 particle system. We call the resulting state 0w of W, the (right) Rindler
 vacuum state. It gives rise to a unique GNS-Fock representation Rt< of W, on

 R-o, = F(S(<1)R) and, hence, a quantum field theory for the spacetime
 consisting of the right wedge alone.

 The Minkowski vacuum state 0oM of W also determines, by restriction, a
 state o;, of W, (i.e. o' := OMIw ). Thus, we may apply the GNS construction

 to obtain the Minkowski representation (R <, Joi4) of W,. It can be shown (using the 'Reeh-Schlieder theorem' - see Clifton and Halvorson [2001]) that

 o', is a highly mixed state (unlike om). Therefore, nM4 is reducible.
 To obtain a concrete picture of this representation, note that (again, as a

 consequence of the 'Reeh-Schlieder theorem') ,,M is a cyclic vector for the

 subalgebra nM(W,) acting on the 'global' Fock space .T(SM). Thus, by the
 uniqueness of the GNS representation (n<o, H,< ), it is unitarily equivalent
 to the representation (no7wCIw, F~(SM)). It can be shown that n,,M(W,)" is a
 factor (Horuzhy [1988], Thm. 3.3.4). Thus, while reducible, n.< is still
 factorial.

 Under the liberal approach to observables, the representations n,i

 (factorial) and n.< (irreducible) provide physically inequivalent descriptions
 of the physics in the right wedge.12

 Proposition 7. The Minkowski and Rindler representations of W, are disjoint.

 Now let > denote the left Rindler wedge, and define the subspace S(>) of S as

 S(<) was defined above. (Of course, by symmetry, Proposition 7 holds for W,

 as well.) Let W,:=W[S(t>) e3 S(<), y] denote the Weyl algebra over the

 symplectic space (S(t>) S(<), cr). Then W, = W14, 0 W<, and zo):= "OMIWu is
 pure (Kay [1985], Defn., Thm.1.3(iii)).'3 The GNS representation co induces
 is therefore irreducible, and (again invoking the uniqueness of the GNS

 representation) it is equivalent to (nioMlw, F(SM)) (since ?.M e .F(SM) is a
 cyclic vector for the subalgebra n7,M(W,) as well).

 12 If only locally measurable observables have genuine physical significance (see fn. 5), then the
 Minkowski and Rindler representations are physically equivalent. Indeed, since both ao and
 (0 are 'of Hadamard form', it follows that n7,. and nw are 'locally quasi-equivalent' (Verch
 [20001; cf. Verch [1994], Theorem 3.9). That is, for each algebra A(O) of local observables in
 W<, n,I 1A(o) is quasi-equivalent to n,| IA(O). Clearly, this fact only strengthens our case against
 the claim that the Minkowski and Rindler representations correspond to incommensurable
 theories of the quantum field.

 13 The restriction of MM to W, is a pure 'quasifree' state. Thus, there is a complex structure M' on
 S(>)) e S(a) such that

 (oM(W(f)) = exp(-o(f, M'f)/4) = exp(-cr(f, Mf)/4), (42)

 for allffe S(>) D S(,<) (Petz [1990], Prop. 3.9). It is not difficult to see then that MIs(t)es( ,) = M' and therefore that M leaves S(>) ~ S(<) invariant. Hereafter, we will use M to denote the
 complex structure on S as well as its restriction to S(>r) D S(<.).
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 The tensor product of the pure left and right Rindler vacua coR:= co o
 is of course also a pure state of W l.'4 It will induce a GNS representation of

 the latter on the Hilbert space -,Nx given by .F(SR) - T(S(,)R) 9 .(,S(,)R). It
 is not difficult to show that om and om, both now irreducible, are also

 disjoint."5

 Proposition 8. The Minkowski and Rindler representations of W, are disjoint.

 In our final main section we shall discuss the conceptually problematic

 implications that the M-vacuum states oM and o" have for the presence
 of R-quanta in the double and right wedge spacetime regions. However,
 we note here an important difference between Rindler and Minkowski
 observers.

 The total number of R-quanta, according to a Rindler observer confined to

 the left (resp., right) wedge, is represented by the number operator N, (resp.,

 N,) on YT(S(t>)R) (resp., .F(S(O)R)). However, because of the spacelike
 separation of the wedges, no single Rindler observer has access, even in
 principle, to the expectation value of the 'overall' total Rindler number

 operator NR = N, I+ I ? N, acting on .T(S(t>)R) 0 .T(S()R).
 The reverse is true for a Minkowski observer. While she has access, at least

 in principle, to the total number of M-quanta operator NM acting on F(SM),

 NM is a purely global observable that does not split into the sum of two
 separate number operators associated with the left and right wedges (as a
 general consequence of the 'Reeh-Schlieder theorem'- see Redhead [1995]).
 In fact, since the Minkowski complex structure M is an 'anti-local' operator

 (Segal and Goodman [1965]), it fails to leave either of the subspaces S(>r) or

 S(<) invariant, and it follows that no M-quanta number operator is affiliated

 with n.<V(W,)".16 Thus, even a liberal about observables must say that a
 Minkowski observer with access only to the right wedge does not have the

 capability of counting M-quanta.
 So, while it might be sensible to ask for the probability in state o" that a

 Rindler observer detects particles in the right wedge, it is not sensible to ask,

 conversely, for the probability in state o) that a Minkowski observer will
 detect particles in the right wedge. Note also that since NM is a purely global

 observable (i.e. there is no sense to be made of 'the number of Minkowski

 quanta in a bounded spatial or spacetime region'), what a Minkowski

 14 More precisely, (o arises from a complex structure R, on S(<), 0o arises from a complex
 structure R, on S(r>), and o~ arises from the complex structure R, R, of S(>)) E S(<). When
 no confusion can result, we will use R to denote the complex structure on S(>)) D S(<) and its
 restriction to S(.<).

 15 We give proofs of Propositions 7 and 8 in the appendix. For another proof, employing quite
 different methods, see the appendix of Beyer [1991].

 16 See Halvorson [2001b] for further details and a critical analysis of different approaches to the
 problem of particle localization in quantum field theory.
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 observer might locally detect with a 'particle detector' (over an extended, but

 finite, interval of time) can at best give an approximate indication of the

 global Minkowski particle content of the field.

 4 Minkowski versus Rindler quanta

 We have seen that a Rindler observer will construct 'his quantum field theory'

 of the right wedge spacetime region differently from a Minkowski observer.

 He will use the complex structure R picked out uniquely by the boost group

 about 0, and build up a representation of W, on the Fock space F(S(O)R).
 However, suppose that the state of W, is the state 6o of no particles
 (globally!) according to a Minkowski observer. What, if anything, will our
 Rindler observer say about the particle content in the right wedge? And does

 this question even make sense?

 We shall argue that this question does make sense, notwithstanding the
 disjointness of the Minkowski and Rindler representations. And the
 answer is surprising: Not only does a Rindler observer have a nonzero
 chance of detecting the presence of R-quanta, but if a Rindler observer were

 to measure the total number of R-quanta in the right wedge, he would always

 find (as we show in Section 4.2) that the probability of an infinite total
 number is one!

 We begin in Section 4.1 by discussing the paradox of observer-dependence

 of particles to which such results lead. In particular, we shall criticize Teller's

 ([1995, 1996]) resolution of this paradox. Later, in Section 4.3, we shall also

 criticize the arguments of Arageorgis [1995] and Arageorgis et al. [2001] for

 the incommensurability of inequivalent particle concepts, and argue, instead,

 for their complementarity (in support of Teller).

 4.1 The paradox of the observer-dependence of particles

 Not surprisingly, physicists initially found a Rindler observer's ability to

 detect particles in the Minkowski vacuum paradoxical (see Rilger [1989],
 p. 571; Teller [1995], p. 110). After all, particles are the sorts of things that are

 either there or not there, so how could their presence depend on an observer's
 state of motion?

 One way to resist this paradox is to reject from the outset the physicality

 of the Rindler representation, thereby withholding bona fide particle status

 from Rindler quanta. For instance, one could be bothered by the fact the
 Rindler representation cannot be globally defined over the whole of
 Minkowski spacetime, or that the one-particle Rindler Hamiltonian lacks a
 mass gap, allowing an arbitrarily large number of R-quanta to have a fixed

 finite amount of energy ('infrared divergence'). Arageorgis ([1995], Ch. 6)
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 gives a thorough discussion of these and other 'pathologies' of the Rindler

 representation.17 In consequence, he argues that the phenomenology
 associated with a Rindler observer's 'particle detections' in the Minkowski
 vacuum ought to be explained entirely in terms of observables affiliated to the

 Minkowski representation (such as garden-variety Minkowski vacuum
 fluctuations of the local field observables).

 This is not the usual response to the paradox of observer-dependence.
 Rilger [1989] has characterized the majority of physicists' responses in terms

 of the field approach and the detector approach. Proponents of the field
 approach emphasize the need to forfeit particle talk at the fundamental level,

 and to focus the discussion on measurement of local field quantities. Those of

 the detector approach emphasize the need to relativize particle talk to the
 behaviour of concrete detectors following specified world-lines. Despite their

 differing emphases, and the technical difficulties in unifying these programs

 (well-documented by Arageorgis [1995]), neither eschews the Rindler
 representation as unphysical, presumably because of its deep connections
 with quantum statistical mechanics and blackhole thermodynamics (Sciama

 et al. [1981]). Moreover, pathological or not, it remains of philosophical
 interest to examine the consequences of taking the Rindler representation
 seriously -just as the possibility of time travel in general relativity admitted

 by certain 'pathological' solutions to Einstein's field equations is of interest.

 And it is remarkable that there should be any region of Minkowski spacetime

 that admits two physically inequivalent quantum field descriptions.

 Teller ([1995, 1996]) has recently offered his own resolution of the paradox.

 We reproduce below the relevant portions of his discussion in Teller ([1995],
 p. 111). However, note that he does not distinguish between left and right
 Rindler observers, 10; M) refers, in our notation, to the Minkowski vacuum

 vector M,, Ec F(SM), and I1, 0, 0, ... )M (resp., 11, 0, 0,... )R) is a one-

 particle state 0 E fe 0 D 0 @ . . . e T(SM) (resp., E -(SR)).

 Rindler raising and lowering operators are expressible as superpositions
 of the Minkowski raising and lowering operators, and states with a
 definite number of Minkowski quanta are superpositions of states with
 different numbers of Rindler quanta. In particular, 10; M) is a super-
 position of Rindler quanta states, including states for arbitrarily large
 numbers of Rindler quanta. In other words, 10; M) has an exact value of
 zero for the Minkowski number operator, and is simultaneously highly
 indefinite for the Rindler number operator.

 In 10; M) there is no definite number of Rindler quanta. There is only a
 propensity for detection of one or another number of Rindler quanta by
 an accelerating detector. A state in which a quantity has no exact value is
 one in which no values for that quantity are definitely, and so actually,

 17 See also, more recently, Belinskii [1997], Fedotov et al. [1999], and Nikolic [2000].
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 exemplified. Thus in 10; M) no Rindler quanta actually occur, so the
 status of 10; M) as a state completely devoid of quanta is not impugned.

 To be sure, this interpretive state of affairs is surprising. To spell it out
 one step further, in I1, 0, 0, . .. )m there is one actual Minkowski
 quantum, no actual Rindler quanta, and all sorts of propensities for

 manifestation of Rindler quanta, among other things. In 1I, 0, 0,... )R
 the same comment applies with the role of Minkowski and Rindler
 reversed. It turns out that there are various kinds of quanta, and a state
 in which one kind of quanta actually occurs is a state in which there are

 only propensities for complementary kinds of quanta. Surprising, but
 perfectly consistent and coherent.

 Teller's point is that R-quanta only exist (so to speak) potentially in the M-

 vacuum, not actually. Thus it is still an invariant observer-independent fact
 that there are no actual quanta in the field, and the paradox evaporates.
 Similarly for Minkowski states of one or more particles as seen by Rindler
 observers. There is the same definite number of actual quanta for all observers.

 Thus, since actual particles are the 'real stuff', the real stuff is invariant!

 Notice, however, that there is something self-defeating in Teller's final

 concession, urged by advocates of the field and detector approaches, that
 different kinds of quanta need to be distinguished. For if we do draw the

 distinction sharply, it is no longer clear why even the actual presence of R-
 quanta in the M-vacuum should bother us. Teller seems to want to have it

 both ways: while there are different kinds of quanta, there is still only one
 kind of actual quanta, and it better be invariant.

 Does this invariance really hold? In one sense, Yes. Disjointness does not

 prevent us from building Rindler creation and annihilation operators on the

 Minkowski representation space .F(SM). We simply need to define Rindler
 analogues, a*(f) and aR(f), of the Minkowski creation and annihilation
 operators via Eqn. (34) with J?(Rf) in place of f(if) (= -(Mf)) (noting that
 fI--+aR(f) will now be anti-linear with respect to the Rindler conjugation R).
 It is then easy to see, using (31), that

 aR(f) = 2-1[a* ((I + MR)f) + aM((I - MR)f)]. (43)
 This linear combination would be trivial if R = +M. However, we know

 R - M, and R = -M is ruled out because it is inconsistent with both

 complex structures being positive definite. Consequently, Q,, must be a nontrivial superposition of eigenstates of the Rindler number operator
 NR(f) (f)aR(f); f; or an easy calculation, using (43), reveals that

 NR(f)Qo, = 2-2[1m + at((I - MR)f)ah((I + MR)f)Q,4], (44)
 which (the presence of the nonzero second term guarantees) is not a simply a

 multiple of Q,4. Thus, Teller would be correct to conclude that the
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 Minkowski vacuum implies dispersion in the number operator NR(f). And
 the same conclusion would follow if, instead, we considered the Minkowski

 creation and annihilation operators as acting on the Rindler representation

 space .F(SR). Since only finitely many degrees of freedom are involved, this is

 guaranteed by the Stone-von Neumann theorem.
 However, therein lies the rub. NR(f) merely represents the number of R-

 quanta with a specified wave function f. What about the total number of R-

 quanta in the M-vacuum (which involves all degrees of freedom)? If Teller
 cannot assure us that this too has dispersion, his case for the invariance of

 'actual quanta' is left in tatters. In his discussion, Teller fails to distinguish
 NR(f) from the total number operator NR, but the distinction is crucial. It is a

 well-known consequence of the disjointness of no, and n,eg that neither
 representation's total number operator is definable on the Hilbert space of
 the other (BR [1996], Thm. 5.2.14). Therefore, it is literally nonsense to speak

 of Z, as a superposition of eigenstates of NR!18 If xn, Xm E E (SR) are
 eigenstates of NR with eigenvalues n, m respectively, then x, + Xm again lies in
 .F(SR), and so is 'orthogonal' to all eigenstates of the Minkowski number

 operator NM acting on .F(SM). And, indeed, taking infinite sums of Rindler
 number eigenstates will again leave us in the folium of the Rindler repre-
 sentation. As Arageorgis ([1995], p. 303) has also noted: 'The Minkowski
 vacuum state is not a superposition of Rindler quanta states, despite
 "appearances" '.19

 Yet this point, by itself, does not tell us that Teller's discussion cannot be

 salvaged. Recall that a state p is dispersion-free on a (bounded) observable X

 just in case p(X2) = p(X)2. Suppose, now, that Y is a possibly unbounded

 observable that is definable in some representation nt of W. We can then

 18 In their review of Teller's [19951 book, Huggett and Weingard [1996] question whether Teller's
 'quanta interpretation' of quantum field theory can be implemented in the context of
 inequivalent representations. However, when they discuss Teller's resolution of the observer-
 dependence paradox, in terms of mere propensities to display R-quanta in the M-vacuum, they
 write 'This seems all well and good' ([1996], p. 309)! Their only criticism is the obvious one:
 legitimizing such propensity talk ultimately requires a solution to the measurement problem.
 Teller's response to their review is equally unsatisfactory. Though he pays lip-service to the
 possibility of inequivalent representations ([1998], pp. 156-57), he fails to notice how
 inequivalence undercuts his discussion of the paradox.

 19 Arageorgis presumes Teller's discussion is based upon the appearance of the following purely

 formal (i.e. non-normalizable) expression for Qg as a superposition in .T(SR)= _ R(S()R)
 ?F(S(.i)R) over left ('I') and right ('II') Rindler modes (Wald [1994], Eqn. (5.1.27)):

 17 I exp(-nroi/a)Inii) 0 9Inii) . (45) i n=o

 However, it bears mentioning that, as this expression suggests: (a) the restriction of olm to
 either W, or W. is indeed mixed; (b) o? can be shown rigorously to be an entangled state of
 W4, W, (Clifton and Halvorson [2001]); and (c) the thermal properties of the 'reduced density
 matrix' for either wedge obtained from this formal expression can be derived rigorously (Kay
 [1985]). In addition, see Propositions 9 and 10 below!
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 rightly say that an algebraic state p of W predicts dispersion in Y just in case,

 for every extension P of p to t(W)", is not dispersion-free on all bounded
 functions of Y. We then have the following result.

 Proposition 9. If J1, J2 are distinct complex structures on (S, a), then o,
 (resp., wJ2) predicts dispersion in Ns2 (resp., NJ )).

 As a consequence, the Minkowski vacuum ot indeed predicts dispersion in

 the Rindler total number operator NR (and in both N,0 I and I? N,,
 invoking the symmetry between the wedges).

 Teller also writes of the Minkowski vacuum as being a superposition of
 eigenstates of the Rindler number operator with arbitrary large eigenvalues.

 Eschewing the language of superposition, the idea that there is no finite

 number of R-quanta to which the M-vacuum assigns probability one can also

 be rendered sensible. The relevant result was first proved by Fulling ([1972],
 Appendix F; [1989], p. 145):

 Fulling's 'Theorem'. Two Fock vacuum representations (nt, F(7-R), ) and

 (nt', F(-1'), Q') of W are unitarily equivalent if and only if (f, N'Q) < c (or,
 equivalently, (KY', N ') < oc).

 As stated, this 'theorem' also fails to make sense, because it is only in the case

 where the representations are already equivalent that the primed total
 number operator is definable on the unprimed representation space and an

 expression like '(Q, N'Q)' is well defined. (We say more about why this is so

 in the next section.) However, there is a way to understand the expression

 '(f, N'1) < oc' (resp., '(f, N'1) = oo') in a rigorous, non-question-begging
 way. We can take it to be the claim that all extensions ^ of the abstract

 unprimed vacuum state of W to B(FF(-')) assign (resp., do not assign) N' a

 finite value; i.e. for any such extension, T,,1 (Pw,)n' converges (resp., does not converge), where {P,,} are the spectral projections of N'. With this
 understanding, the following rigorization of Fulling's 'theorem' can then be
 proved.

 Proposition 10. A pair of Fock representations nto, , oj2 are unitarily equivalent
 if and only ifcoj, assigns Nj2 afinite value (equivalently, oj2 assigns Nj, afinite
 value).

 It follows that Wo cannot assign probability one to any finite number of R-
 quanta (and vice versa, with R ++ M).

 Unfortunately, neither Proposition 9 or 10 is sufficient to rescue Teller's

 'actual quanta' invariance argument, for these propositions give no further

 information about the shape of the probability distribution that om prescribes
 for NR's eigenvalues. In particular, both propositions are compatible with
 there being a probability of one that at least n > 0 R-quanta obtain in the
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 M-vacuum, for any nE N. If that were the case, Teller would then be forced to

 withdraw and concede that at least some, and perhaps many, Rindler quanta
 actually occur in a state with no actual Minkowski quanta. In the next section,

 we shall show that this--Teller's worst nightmare - is in fact the case.

 4.2 Minkowski probabilities for Rindler number operators

 We now defend the claim that a Rindler observer will say that there are
 actually infinitely many quanta while the field is in the Minkowski vacuum
 state (or, indeed, in any other state of the Minkowski folium).20 This result

 applies more generally to any pair of disjoint regular representations, at least

 one of which is the GNS representation of an abstract Fock vacuum state.
 We shall specialize back down to the Minkowski/Rindler case later on.

 Let p be a regular state of W inducing the GNS representation (n,, %p,),
 and let oj be the abstract vacuum state determined by a complex structure J

 on (S, cr). The case we are interested in is, of course, when np, no,j are disjoint.
 We first want to show how to define representation-independent probabilities

 in the state p for any J-quanta number operator that 'counts' the number of

 quanta with wavefunctions in a fixed finite-dimensional subspace F C Sj.
 (Parts of our exposition below follow BR ([1996], pp. 26-30), which may be
 consulted for further details.)

 We know that, for any fe S, there exists a self-adjoint operator Ip(f) on

 7-4, such that

 tp(W(tf)) = exp(itID(f)), te R. (46)

 We can also define unbounded annihilation and creation operators on 7-p, for
 J-quanta by

 ap(f):= 2-1/2(Qa (f) + iFp(Jf)), a*(f):- 2-1/2(,(f) - iDp(Jf)). (47)
 Earlier, we denoted these operators by aj(f) and a*(f). However, we now
 want to emphasize the representation space upon which they act; and only the

 single complex structure J shall concern us in our general discussion, so there

 is no possibility of confusion with others.

 Next, define a 'quadratic form' np(F): -,l/--+>+. The domain of n,(F) is

 D(np(F)):= f D(ap(f)), (48)
 fEF

 2o In fact, this was first proved, in effect, by Chaiken [1967]. However, his lengthy analysis focused
 on comparing Fock with non-Fock (so-called 'strange') representations of the Weyl algebra,
 and the implications of his result for disjoint Fock representations based on inequivalent one-
 particle structures seem not to have been carried down into the textbook tradition of the
 subject. (The closest result we have found is BR ([1996], Thm. 5.2.14) which we are able to
 employ as a lemma to recover Chaiken's result for disjoint Fock representations ---see the
 appendix.)

This content downloaded from 
������������158.143.233.108 on Sat, 27 Feb 2021 13:03:38 UTC������������ 

All use subject to https://about.jstor.org/terms
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 where D(ap(f)) is the domain of ap(f). Now let {fk: k = 1, . .., m} be some J-
 orthonormal basis for F, and define

 m [np(F)](*):= S Iap (fk)'112, (49)
 k=1

 for any * e D(np(F)). It can be shown that the sum in (49) is independent of

 the chosen orthonormal basis for F, and that D(n,(F)) lies dense in -p. Given
 any densely defined, positive, closed quadratic form t on 7-4,, there exists a

 unique positive self-adjoint operator T on H7-, such that D(t) - D(T1/2) and

 t() - (T1/2 *, T'l/2), * e D(t). (50)

 We let N,(F) denote the finite-subspace J-quanta number operator on ',p
 arising from the quadratic form np(F).
 We seek a representation-independent value for 'ProbP(N(F) e A)', where

 A C N. So let - be any regular state of W, and let N,(F) be the corresponding

 number operator on H,. Let WF be the Weyl algebra over (F, OIF), and let
 E,(F) denote the spectral measure for N,(F) acting on R,. Then, [E,(F)](A)
 (the spectral projection representing the proposition 'N,(F) e A') is in the
 weak closure of R,(WF), by the Stone-von Neumann uniqueness theorem. In

 particular, there is a net {Ai)} WF such that tn,(Ai) converges weakly to
 [E,(F)](A). Now, the Stone-von Neumann uniqueness theorem also entails

 that there is a density operator Dp on H, such that

 p(A) = Tr(Dpr,(A)), A E WF. (51)

 We therefore define

 ProbO(N(F) E A):= lim p(Ai) (52)

 = lim Tr(DOx,(Ai)) (53)

 = Tr(Dp[E,(F)](A)). (54)

 The final equality displays that this definition is independent of the chosen

 approximating net {I(n(Ai)}, and the penultimate equality displays that this
 definition is independent of the (regular) representation 7t,. In particular,
 since we may take r = p, it follows that

 ProbP(N(F) e A)= (Q, [Ep(F)](A)Q,), (55)

 exactly as expected.

 We can also define a positive, closed quadratic form on 7-, corresponding
 to the total J-quanta number operator by:

 np() = sup [n,(F)](4), (56)
 FeF
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 D(np) = { e -H: * enD(a,(f)), np() < oo}, (57)
 where F denotes the collection of all finite-dimensional subspaces of Sj. If

 D(np) is dense in Hp,, then it makes sense to say that the total J-quanta
 number operator N, exists on the Hilbert space 7-3,. In general, however,
 D(np) will not be dense, and may contain only the 0 vector. Accordingly, we
 cannot use a direct analogue to Eqn. (54) to define the probability, in the state

 p, that there are, say, n or fewer J-quanta.

 However, we can still proceed as follows. Fix n E N, and suppose F C F'
 with both F, F' e F. Since any state with n or fewer J-quanta with wave-
 functions in F' cannot have more than n J-quanta with wavefunctions in the

 (smaller) subspace F,

 ProbP(N(F) E [0, n]) ? ProbP(N(F') e [0, n]). (58)

 Thus, whatever value we obtain for 'ProbP(N e [0, n])', it should satisfy the

 inequality

 ProbP(N(F) e [0, n]);> ProbP(N e [0, n]), (59)

 for any finite-dimensional subspace F C Sj. However, the following result
 holds.

 Proposition 11. If p is a regular state of W disjoint from the Fock state oj, then

 infFEr{ProbP(N(F) E [0, n])} = 0 for every n E N.

 Thus p must assign every finite number of J-quanta probability zero; i.e., p

 predicts an infinite number of J-quanta with probability 1!

 Let us tighten this up some more. Suppose that we are in any regular

 representation (nt,, 7-,) in which the total J-quanta number operator N,o

 exists and is affiliated to nt,(W)". (For example, we may take the Fock
 representation where o = oj.) Let E, denote the spectral measure of No on

 7,. Considering p as a state of nr,(W), it is then reasonable to define

 ProbP(N e [0, n]):= p(E,([0, n])), (60)

 where P is any extension of p to nr,(W)", provided the right-hand side takes

 the same value for all extensions. (And, of course, it will when p E3(t),
 where (60) reduces to the standard definition.) Now clearly

 [E,(F)]([O, n]);> Eco([O, n]), F E F. (61)

 ('If there are at most n J-quanta in total, then there are at most n J-quanta

 whose wavefunctions lie in any finite-dimensional subspace of Sj.') Since
 states preserve order relations between projections, every extension p must
 therefore satisfy
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 ProbP(N(F) E [0, n]) = d([E,(F)]([0, n])) ?> (E,([0, n])). (62)

 Thus, if p is disjoint from co, Proposition 11 entails that ProbP(N e [0, n]) = 0
 for all finite n.21

 As an immediate consequence of this and the disjointness of the
 Minkowski and Rindler representations, we have (reverting back to our
 earlier number operator notation):

 Prob"m(NR E [0, n]) = 0 = ProbU"R(NM e [0, n]), for all n E N, (63)

 Prob`'?(N, e [0, n]) = 0 = ProbeI(N, e [0, n]), for all n E N. (64)

 The same probabilities obtain when the Minkowski vacuum is replaced with
 any other state normal in the Minkowski representation.22 So it could not be

 farther from the truth to say that there is merely the potential for Rindler

 quanta in the Minkowski vacuum, or any other eigenstate of NM.
 One must be careful, however, with an informal statement like 'The M-

 vacuum contains infinitely many R-quanta with probability 1'. Since Rindler

 wedges are unbounded, there is nothing unphysical, or otherwise metaphy-
 sically incoherent, about thinking of wedges as containing an infinite number

 of Rindler quanta. But we must not equate this with the quite different
 empirical claim 'A Rindler observer's particle detector has the sure-fire
 disposition to register the value 'oo' '. There is no such value! Rather, the

 empirical content of equations (63) and (64) is simply that an idealized 'two-
 state' measuring apparatus designed to register whether there are > n Rindler

 quanta in the Minkowski vacuum will always return the answer 'Yes'. This is

 a perfectly sensible physical disposition for a measuring device to have. Of

 course, we are not pretending to have in hand a specification of the physical

 details of such a device. Indeed, when physicists model particle detectors,

 these are usually assumed to couple to specific 'modes' of the field,
 represented by finite-subspace, not total, number operators (cf. e.g. Wald
 [1994], Sec. 3.3). But this is really beside the point, since Teller advertises his

 resolution of the paradox as a way to avoid a 'retreat to instrumentalism'

 about the particle concept ([1995], p. 110).

 On Teller's behalf, one might object that there are still no grounds for
 saying any R-quanta obtain in the M-vacuum, since for any particular
 number n of R-quanta you care to name, equations (63) and (64) entail that n

 21 Notice that such a prediction could never be made by a state in the folium of no., since density
 operator states are countably additive (see fn. 3).

 22 This underscores the utter bankruptcy, from the standpoint of the liberal about observables, in
 taking the weak equivalence of the Minkowski and Rindler representations to be sufficient for
 their physical equivalence. Yes, every Rindler state of the Weyl algebra is a weak* limit of
 Minkowski states. But the former all predict a finite number of Rindler quanta with probability
 1, while the latter all predict an infinite number with probability 1! (Wald ([1994], pp. 82-83)
 makes the exact same point with respect to states that do and do not satisfy the 'Hadamard'
 property.)
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 is not the number of R-quanta in the M-vacuum. But remember that the same

 is true for n = 0, and that, therefore, n> 1 R-quanta has probability 1! A
 further tack might be to deny that probability 0 for n = 0, or any other n,

 entails impossibility or non-actuality of that number of R-quanta. This would

 be similar to a common move made in response to the lottery paradox, in the
 hypothetical case where there are an infinite number of ticket holders. Since

 someone has to win, each ticket holder must still have the potential to win,

 even though his or her probability of winning is zero. The difficulty with this

 response is that in the Rindler case, we have no independent reason to think

 that some particular finite number of R-quanta has to be detected at all.

 Moreover, if we were to go soft on taking probability 0 to be sufficient for

 'not actual', we should equally deny that probability 1 is sufficient for
 'actual', and by Teller's lights the paradox would go away at a stroke
 (because there could never be actual Rindler or Minkowski quanta in any
 field state).

 We conclude that Teller's resolution of the paradox of observer-depen-
 dence of particles fails. And so be it, since it was ill motivated in the first
 place. We already indicated in the previous subsection that it should be
 enough of a resolution to recognize that there are different kinds of quanta.

 We believe the physicists of the field and detector approaches are correct to

 bite the bullet hard on this, even though it means abandoning naive realism
 about particles (though not, of course, about detection events). We turn,
 next, to arguing that a coherent story can still be told about the relationship

 between the different kinds of particle talk used by different observers.

 4.3 Incommensurable or complementary?

 At the beginning of this paper, we reproduced a passage from Jauch's
 amusing Galilean dialogue on the question 'Are Quanta Real?' In that
 passage, Sagredo is glorying in the prospect that complementarity may be
 applicable even in classical physics; and, more generally, to solving the
 philosophical problem of the specificity of individual events versus the
 generality of scientific description. It is well known that Bohr himself sought

 to extend the idea of complementarity to all different walks of life, beyond its

 originally intended application in quantum theory. And even within the
 confines of quantum theory, it is often the case that when the going gets
 tough, tough quantum theorists cloak themselves in the mystical profundity

 of complementarity, sometimes just to get philosophers off their backs.
 So it seems with the following notorious comments of a well-known

 advocate of the detector approach that have received a predictably cool
 reception from philosophers:

This content downloaded from 
������������158.143.233.108 on Sat, 27 Feb 2021 13:03:38 UTC������������ 

All use subject to https://about.jstor.org/terms



 Inequivalent Particle Concepts in Quantum Field Theory 453

 Bohr taught us that quantum mechanics is an algorithm for computing
 the results of measurements. Any discussion about what is a 'real,
 physical vacuum', must therefore be related to the behaviour of real,
 physical measuring devices, in this case particle-number detectors.
 Armed with such heuristic devices, we may then assert the following.
 There are quantum states and there are particle detectors. Quantum field
 theory enables us to predict probabilistically how a particular detector
 will respond to that state. That is all. That is all there can ever be in
 physics, because physics is about the observations and measurements
 that we can make in the world. We can't talk meaningfully about whether
 such-and-such a state contains particles except in the context of a
 specified particle detector measurement. To claim (as some authors
 occasionally do!) that when a detector responds (registers particles) in
 somebody's cherished vacuum state that the particles concerned are
 'fictitious' or 'quasi-particles', or that the detector is being 'misled' or
 'distorted', is an empty statement (Davies [1984], p. 69).

 We shall argue that, cleansed of Davies' purely operationalist reading of
 Bohr, complementarity does, after all, shed light on the relation between
 inequivalent particle concepts.

 Riiger [1989] balks at this idea. He writes:

 The 'real problem'- how to understand how there might be particles for
 one observer, but none at all for another observer in a different state of

 motion-is not readily solved by an appeal to Copenhagenism ...
 Though quantum mechanics can tell us that the properties of micro-
 objects (like momentum or energy) depend in a sense on observers
 measuring them, the standard interpretation of the theory still does not
 tell us that whether there is a micro-object or not depends on observers.
 At least the common form of this interpretation is not of immediate help
 here (Riiger [1989], pp. 575-76).

 Well, let us consider the 'common form' of the Copenhagen interpretation.

 Whatever one's preferred embellishment of the interpretation, it must at least

 imply that observables represented by noncommuting 'complementary' self-

 adjoint operators cannot have simultaneously determinate values in all states.

 Since field quantizations are built upon an abstract noncommutative algebra,

 the Weyl algebra, complementarity retains its application to quantum field
 theory. In particular, in any single Fock space representation -setting aside
 inequivalent representations for the moment-there will be a total number
 operator and nontrivial superpositions of its eigenstates. In these super-
 positions, which are eigenstates of observables failing to commute with the

 number operator, it is therefore perfectly in line with complementarity that

 we say they contain no actual particles in any substantive sense.23 In addition,

 23 As Riiger notes earlier ([1989], p.71), in ordinary non-field-theoretic quantum theory,
 complementarity only undermined a naive substance-properties ontology. However, this was
 only because there was no 'number of quanta' observable in the theory!
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 there will be different number operators on Fock space that count the number

 of quanta with wavefunctions lying in different subspaces of the one-particle

 space, and they will only commute if the corresponding subspaces are
 compatible. So even before we consider inequivalent particle concepts, we
 must already accept that there are different complementary 'kinds' of quanta,
 according to what their wavefunctions are.

 Does complementarity extend to the particle concepts associated with

 inequivalent Fock representations? Contra Riiger [1989], we claim that it
 does. We saw earlier that one can build finite-subspace J-quanta number
 operators in any regular representation of W[S, o], provided only that J
 defines a proper complex structure on S that leaves it invariant. In particular,

 using the canonical commutation relation [1(f), (D(g)] = icr(f, g)I, a tedious
 but elementary calculation reveals that, for any f, g e S,

 [Nj, (f), Nj2(g)]

 = i/2{cy(f, g)[((f), D(g)], + o((f, J2g)[D(f), 2((J2g)]+
 +o(Jlf, g)[((Jlf), F(g)]+ + oy(J f, J2g)[$D(Jlf), (J2g)]+1, (65)

 in any regular representation.24 Thus, there are well-defined and, in general,

 nontrivial commutation relations between finite-subspace number operators,

 even when the associated particle concepts are inequivalent. We also saw in

 Eqn. (44) that when J2 : J1, no Nj2(f), for any f Sj2, will leave the zero-

 particle subspace of Nj, invariant. Since it is a necessary condition that this
 nondegenerate eigenspace be left invariant by any self-adjoint operator

 commuting with Nj,, it follows that [Nj2(f), N1] # 0 for all fE S,2. Thus,
 finite-subspace number operators for one kind of quanta are complementary

 to the total number operators of inequivalent kinds of quanta.

 Of course, we cannot give the same argument for complementarity between

 the total number operators Nj, and Nj, pertaining to inequivalent kinds of
 quanta, because, as we know, they cannot even be defined as operators on the

 same Hilbert space. However, we disagree with Arageorgis ([1995], pp. 303-
 4) that this means Teller's 'complementarity talk' in relation to the
 Minkowski and Rindler total number operators is wholly inapplicable. We
 have two reasons for the disagreement.

 First, since it is a necessary condition that a (possibly unbounded) self-

 adjoint observable Y on o.,I commuting with Nj, have O0,, as an
 eigenvector, it is also necessary that the abstract vacuum state o0j, be
 dispersion-free on Y. But this latter condition is purely algebraic and makes

 sense even when Y does not act on 'o4,. Moreover, as Proposition 9 shows,
 this condition fails when Y is taken to be the total number operator of any

 24 As a check on expression (65), note that it is invariant under the one-particle space phase
 transformations f -- (cos t + J1 sin t)f and g -+ (cos t + J2 sin t)g, and when J1 = J2 = J,
 reduces to zero just in case the rays generated by f and g are compatible subspaces of Sj.
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 Fock representation inequivalent to n , . So it is entirely natural to treat
 Proposition 9 as a vindication of the idea that inequivalent pairs of total
 number operators are complementary.

 Secondly, we have seen that any state in the folium of a representation
 associated with one kind of quanta assigns probability zero to any finite
 number of an inequivalent kind of quanta. This has a direct analogue in the
 most famous instance of complementarity: that which obtains between the
 concepts of position and momentum.

 Consider the unbounded position and momentum operators, x and p

 (= -i(O/Ox)), acting on L2(R). Let Ex and E, be their spectral measures. We
 say that a state p of B(L2(IR)) assigns x a finite dispersion-free value just in
 case p is dispersion-free on x and there is a k E IR such that p(E,((a, b))) = 1 if

 and only if k e (a, b). (Similarly, for p.) Then the following is a direct
 consequence of the canonical commutation relation [x, p] = iJ (see Halvorson
 and Clifton [1999], Prop. 3.7).

 Proposition 12. If p is a state of B(L2(IR)) that assigns x (resp., p) a finite

 dispersion-free value, then p(Ep((a, b))) = 0 (resp., p(Ex((a, b))) = 0) for any
 a, bEIR.

 This result makes rigorous the fact, suggested by Fourier analysis, that if

 either of x or p has a sharp finite value in any state, the other is 'maximally

 indeterminate'. But the same goes for pairs of inequivalent number operators

 (NJ,, Nj2): if a regular state p assigns Nj, a finite dispersion-free value, then

 p e 3(~t,,J) which, in turn, entails that p assigns probability zero to any finite
 set of eigenvalues for Nj2. Thus, (NjI, Nj2) are, in a natural sense, maximally
 complementary, despite the fact that they have no well-defined commutator.

 One might object that our analogy is only skin deep; after all, x and p still

 act on the same Hilbert space, L2( R)! So let us deepen the analogy. Let W be
 the Weyl algebra for one degree of freedom, and let U(a)- W(a, 0) and
 V(b)- W(O, b) be the unitary operators corresponding, respectively, to
 position and momentum. Now, if we think of position as analogous to the
 Minkowski number operator and momentum as analogous to the Rindler
 number operator, the standard Schr6dinger representation is not the

 analogue of the Minkowski vacuum representation--since the Minkowski
 vacuum representation is constructed so as to have eigenvectors for NM,
 whereas the Schr6dinger representation obviously does not have eigenvectors

 for x. Thus, to find a representation analogous to the Minkowski vacuum

 representation, first choose a state p of W that is dispersion-free on all

 elements {U(a): a E ). In particular, we may choose p such that p(U(a))

 = eiax" for all a E R. If we then let (2t0, 7-,, Q,) denote the GNS representation of W induced by p, it follows that we may construct an unbounded position

 operator x on 7-4, which has Q, as an eigenvector with eigenvalue X. But, lo
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 and behold, it is not possible to define a momentum operator p on the Hilbert

 space 7-,.
 Indeed, since p is dispersion-free on U(a), it is multiplicative for the product

 of U(a) with any other element of W (KR [1997], Ex. 4.6.16). In particular,

 p(U(a))p(V(b)) = eiab p(V(b))p(U(a)), a, b E R. (66)

 Since p(U(a)) = eiaX ' 0, this implies

 p(V(b)) = eiabp(V(b)), a, b R. (67)

 However, when a : 0, (67) cannot hold for all b : 0 unless p(V(b)) = 0.
 Thus,

 (Qpq, pr(V(b))Q) = 0, Vb f 0. (68)
 On the other hand,

 (Ql, tp(V(0))Q,) = (2,, IQ,) = 1. (69)

 Thus, t(nV(b)) is not weakly continuous in b, and there can be no self-adjoint
 operator p on -, such that xn(V(b))- eibp. On the other hand, since

 R~a * a--p(U(a)) = eiax is continuous, and hence rt is regular with respect to
 the subgroup of unitary operators { U(a): a IR}, there is a position operator
 on 7-,.

 Similarly, if o is a state of W that is dispersion-free on the momentum

 unitary operators { V(b): b IR}, then it is not possible to define a position
 operator on the Hilbert space H7-.. Moreover, the GNS representations n, and
 7t are disjoint- precisely as in the case of the GNS representations induced
 by the Minkowski and Rindler vacuum states. Indeed, suppose for reductio

 that there is a unitary operator Tfrom 7-4 , to 7-t such that T-'t,(A)T = n,,,(A)
 for all A e W. Then, it would follow that n,(U(a)) = T-'rn(U(a))T is weakly
 continuous in a, in contradiction to the fact that x cannot be defined on ,,.

 So we maintain that there are compelling formal reasons for thinking of
 Minkowski and Rindler quanta as complementary. What is more, when a
 Minkowski observer sets out to detect particles, her state of motion
 determines that her detector will be sensitive to the presence of Minkowski

 quanta. Similarly for a Rindler observer and his detector. This is borne out by

 the analysis of Unruh and Wald [1984] in which they show how his detector
 will itself 'define' (in a 'nonstandard' way) what solutions of the relativistic
 wave equation are counted as having positive frequency, via the way the
 detector couples to the field. So we may think of the choice of an observer to
 follow an inertial or Rindler trajectory through spacetime as analogous to the

 choice between measuring the position or momentum of a particle. Each
 choice requires a distinct kind of coupling to the system, and both measure-
 ments cannot be executed on the field simultaneously and with arbitrarily
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 high precision.25 Moreover, execution of one type of measurement precludes

 meaningful discourse about the values of the observable that the observer did

 not choose to measure. All this is the essence of 'Copenhagenism'.
 And it should not be equated with operationalism! The goal of the detector

 approach to the paradox of observer-dependence was to achieve clarity on
 the problem by reverting back to operational definitions of the word 'particle'

 with respect to the concrete behaviour of particular kinds of detectors (cf. e.g.

 DeWitt [1979b], p. 692). But, as with early days of special relativity and
 quantum theory, operationalism can serve its purpose and then be jettisoned.

 Rindler quanta get their status as such not because they are, by definition, the

 sort of thing that accelerated detectors detect. This gets things backwards.
 Rindler detectors display Rindler quanta in the Minkowski vacuum because
 they couple to Rindler observables of the field that are distinct from, and
 indeed complementary to, Minkowski observables.

 Arageorgis [1995] himself, together with his collaborators (Arageorgis et al.

 [2001]), prefer to characterize inequivalent particle concepts, not as com-
 plementary, but incommensurable. At first glance, this looks like a trivial

 semantic dispute between us. For instance, Glymour, in a recent introductory

 text on the philosophy of science, summarizes complementarity using the
 language of incommensurability:

 Changing the experiments we conduct is like changing conceptual
 schemes or paradigms: we experience a different world. Just as no world
 of experience combines different conceptual schemes, no reality we can
 experience (even indirectly through our experiments) combines precise
 position and precise momentum (Salmon et al. [1992], p. 128).

 However, philosophers of science usually think of incommensurability as a

 relation between theories in toto, not different parts of the same physical
 theory. Arageorgis et al. maintain that inequivalent quantizations define
 incommensurable theories.

 Arageorgis [1995] makes the claim that 'the degrees of freedom of the field

 in the Rindler model simply cannot be described in terms of the ground state

 and the elementary excitations of the degrees of freedom of the field in the

 25 Why can't both a Minkowski and a Rindler observer set off in different spacetime directions
 and simultaneously measure their respective (finite-subspace or total) number operators? Would
 it not, then, be a violation of relativistic causality when the Minkowski observer's measurement
 disturbs the statistics of the Rindler observer's measurement outcomes? No. We must
 remember that the Minkowski particle concept is global, so our Minkowski observer cannot
 make a precise measurement of any of her number operators unless it is executed throughout
 the whole of spacetime, which would necessarily destroy her spacelike separation from the
 Rindler observer. On the other hand, if she is content with only an approximate measurement
 of one of her number operators in a bounded spacetime region, it is well known that
 simultaneous, nondisturbing 'unsharp' measurements of incompatible observables are possible.
 For an analysis of the case of simultaneous measurements of unsharp position and momentum,
 see Busch et al. [1995].
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 Minkowski model' ([1995], p. 268; our italics). Yet so much of our earlier
 discussion proves the contrary. Disjoint representations are commensurable,

 via the abstract Weyl algebra they share. The result is that the ground state of

 one Fock representation makes definite, if sometimes counterintuitive,
 predictions for the 'differently complexified' degrees of freedom of other
 Fock representations.

 Arageorgis et al. [2001] offer an argument for incommensurability -based
 on Fulling's 'theorem'. They begin by discussing the case where the primed

 and unprimed representations are unitarily equivalent. (Notice that they
 speak of two different 'theorists', rather than two different observers.)

 while different, these particle concepts can nevertheless be deemed to be
 commensurable. The two theorists are just labelling the particle states in
 different ways, since each defines particles of a given type by mixing the
 creation and annihilation operators of the other theorist. Insofar as the
 primed and unprimed theorists disagree, they disagree over which of two
 inter-translatable descriptions of the same physical situation to use.

 The gulf of disagreement between two theorists using unitarily inequi-
 valent Fock space representations is much deeper. If in this case the
 primed-particle theorist can speak sensibly of the unprimed-particle
 theorist's vacuum at all, he will say that its primed-particle content is
 infinite (or more properly, undefined), and the unprimed-theorist will say
 the same of the unprimed-particle content of the primed vacuum. Such
 disagreement is profound enough that we deem the particle concepts
 affiliated with unitarily inequivalent Fock representations incommensur-
 able ([2001], p. 26).

 The logic of this argument is curious. In order to make Fulling's 'theorem'
 do the work for incommensurability that Arageorgis et al. want it to, one
 must first have in hand a rigorous version of the theorem (otherwise their

 argument would be built on sand). But any rigorous version, like our
 Proposition 10, has to presuppose that there is sense to be made of using a
 vector state from one Fock representation to generate a prediction for the

 expectation value of the total number operator in another inequivalent
 representation. Thus, one cannot even entertain the philosophical implica-
 tions of Fulling's result if one has not first granted a certain level of
 commensurability between inequivalent representations.

 Moreover, while it may be tempting to define what one means by
 'incommensurable representations' in terms of Fulling's characterization of

 inequivalent representations, it is difficult to see the exact motivation for such
 a definition. Even vector states in the folium of the unprimed 'theorist's' Fock

 representation can fail to assign his total number operator a finite expectation

 value (just consider any vector not in the operator's domain). Yet it would be
 alarmist to claim that, were the field in such a state, the unprimed 'theorist'
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 would lose his conceptual grasp on, or his ability to talk about, his own
 unprimed kind of quanta! So long as a state prescribes a well-defined
 probability measure over the spectral projections of the unprimed 'theorist's'

 total number operator--and all states in his and the folium of any primed
 'theorist's' representation will--we fail to see the difficulty.

 5 Conclusion

 Let us return to answer the questions we raised in our introduction.

 We have argued that a conservative operationalist about physical
 observables is not committed to the physical inequivalence of disjoint
 representations, so long as he has no attachment to states in a particular
 folium being the only physical ones. On the other hand, a liberal about
 physical observables, no matter what his view on states, must say that disjoint

 representations yield physically inequivalent descriptions of a field. However,

 we steadfastly resisted the idea that this means an interpreter of quantum field

 theory must say disjoint representations are incommensurable, or even
 different, theories.

 Distinguishing 'potential' from 'actual' quanta will not do to resolve the
 paradox of observer-dependence. Rather, the paradox forces us to
 thoroughly abandon the idea that Minkowski and Rindler observers moving
 through the same field are both trying to detect the presence of particles

 simpliciter. Their motions cause their detectors to couple to different
 incompatible particle observables of the field, making their perspectives on
 the field necessarily complementary. Furthermore, taking this complementary

 seriously means saying that neither the Minkowski nor Rindler perspective
 yields the uniquely 'correct' story about the particle content of the field, and

 that both are necessary to provide acomplete picture.

 So, 'Are Rindler Quanta Real?' This is a loaded question that can be
 understood in two different ways.

 First, we could be asking 'Are Any Quanta Real?' without regard to
 inequivalent notions of quanta. Certainly particle detection events, modulo a

 resolution of the measurement problem, are real. But it should be obvious by

 now that detection events do not generally license naive talk of individuat-
 able, localizable, particles that come in determinate numbers in the absence of

 being detected.

 A fuller response would be that quantum field theory is 'fundamentally' a

 theory of a field, not particles. This is a reasonable response given that: (i) the

 field operators {(Ff): f e S} exist in every regular representation; (ii) they can
 be used to construct creation, annihilation, and number operators; and (iii)
 their expectation values evolve in significant respects like the values of the
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 460 Rob Clifton and Hans Halvorson

 counterpart classical field, modulo non-local Bell-type correlations. This 'field

 approach' response might seem to leave the ontology of the theory somewhat

 opaque. The field operators, being subject to the canonical commutation
 relations, do not all commute; so we cannot speak sensibly of them all
 simultaneously having determinate values! However, the right way to think of

 the field approach, compatible with complementary, is to see it as viewing a

 quantum field as a collection of correlated 'objective propensities' to display
 values of the field operators in more or less localized regions of spacetime,
 relative to various measurement contexts. This view makes room for the

 reality of quanta, but only as a kind of epiphenomenon of the field associated

 with certain functions of the field operators.

 Second, we could be specifically interested in knowing whether it is sensible

 to say that Rindler, as opposed to just Minkowski, quanta are real. An

 uninteresting answer would be 'No'--on the grounds that quantum field
 theory on flat spacetime is not a serious candidate for describing our actual
 universe, or that the Rindler representation is too 'pathological'. But, as
 philosophers, we are content to leave to the physicists the task of deciding the

 question 'Are Rindler Quanta Empirically Verified?' All we have tried to
 determine (to echo words of van Fraassen) is how the world could possibly be

 if both the Rindler and Minkowski representations were 'true'. We have
 argued that the antecedent of this counterfactual makes perfect sense, and
 that it forces us to view Rindler and Minkowski quanta as complementary.

 Thus, Rindler and Minkowski would be equally amenable to achieving
 'reality status' provided the appropriate measurement context were in place.
 As Wald has put it: 'Rindler particles are "real" to accelerating observers!
 This shows that different notions of "particle" are useful for different
 purposes' ([1994], p. 116).
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 Appendix

 Proposition 3. Under the conservative approach to states, 4 (factorial) and nt
 (irreducible) are physically equivalent representations of W only if they are

 quasi-equivalent.

 Proof. Let (o be a normal state of 4(W). Then, by hypothesis, 1(o0) is a
 normal state of It(W). Define a state p on W by

 p(A) = w(4(A)), Ae W. (70)

 Since w is normal, p e 3((). Define a state p' on W by

 p'(A) = P(w)(Tr(A)), AE W. (71)

 Since P(ow) is normal, p' e 3((t). Now, conditions (21) and (22) entail that

 w( (A)) = P3()(a(4(A))) = P(o)(t(A)), (72)

 for any A = W(f) e W, and thus p(W(f)) = p'(W(f)) for anyf e S. However,
 a state of the Weyl algebra is uniquely determined (via linearity and uniform

 continuity) by its action on the generators { W(f): fe S}. Thus, p = p' and

 since p (E4) f (Nt), it follows that ? and nt are quasi-equivalent.

 Proposition 4. Under the liberal approach to observables, 4 (factorial) and nt
 (irreducible) are physically equivalent representations of W only if they are

 quasi-equivalent.

 Proof. By hypothesis, the bijective mapping a must map the self-adjoint

 part of ?(W)" onto that of it(W)". Extend o to all of ?(W)" by defining

 c(X):= a(Re(X)) + ia(Im(X)), X e (W)". (73)

 Clearly, then, a preserves adjoints.

 Recall that a family of states So on a C*-algebra is called full just in case So

 is convex, and for any A e A, p(A) >0 for all p e So only if A > 0. By
 hypothesis, there is a bijective mapping P from the 'physical' states of 4(W)"

 onto the 'physical' states of it(W)". According to both the conservative and
 liberal construals of physical states, the set of physical states includes normal

 states. Since the normal states are full, the domain and range of P contain full

 sets of states of the respective C*-algebras.

 By condition (22) and the fact that the domain and range of P are full sets

 of states, C arises from a symmetry between the C*-algebras 4(W)" and

 t(W)" in the sense of Roberts and Roepstorff ([1969], Sec. 3).26 Their
 Propositions 3.1 and 6.3 then apply to guarantee that a must be linear and

 26 Actually, they consider only symmetries of a C*-algebra onto itself, but their results remain
 valid for our case.
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 preserve Jordan structure (i.e., anti-commutator brackets). Thus a is a Jordan

 *-isomorphism.

 Now both 4)(W)" and t(W)" = B(H-t,) are von Neumann algebras, and the
 latter has a trivial commutant. Thus KR ([1997], Ex. 10.5.26) applies, and a is

 either a *-isomorphism or a *-anti-isomorphism, that reverses the order of

 products. However, such reversal is ruled out, otherwise we would have,
 using the Weyl relations (10),

 c(40( W(f)) ( W(g))) = e-ia(f g)/2 C(4( W(f + g))), (74)
 = 0()( W(g)))a(C( W(f))) - e-ia(fg)/2cx(4)( W(f + g))), (75)

 = n( W(g))t(W(f)) = e-i'(fg)/2t( W(f + g)), (76) = eiia(fg)/2( W(f + g)) = e-i'(fg)/2it( W(f+ g)), (77)

 for allf, g e S. This entails that the value of a on any pair of vectors is always

 is a multiple of 21r which, since a is bilinear, cannot happen unless a = 0
 identically (and hence S = {0}). It follows that a is in fact a *-isomorphism.
 And, by condition (21), a must map 4b(A) to t(A) for all AE W. Thus 4 is
 quasi-equivalent to nt.

 Proposition 6. When S is infinite-dimensional, t(W[S, cr]) contains no non-

 trivial bounded functions of the total number operator on F"(Sj).

 Proof. For clarity, we suppress reference to the representation map nt.
 Suppose that F: NI-+C is a bounded function. We show that if F(N) E W,
 then F(n) = F(n + 1) for all n E N.

 The Weyl operators on .F(SJ) satisfy the commutation relation (BR [1996],
 Prop. 5.2.4(1,2)):

 W(g)D(f) W(g)* = (f) - a(g, f)I. (78)

 Using the definition of the inner product (-, -), (Eqn. (23)) and the equation

 a*(f) = 2-'/2(((f) - i(D(if)), we find

 W(g)a*(f) W(g)* = a*(f) + 2-1/2i(g, f)l, (79)

 and from this, [W(g), a*(f)] = 2-1/2i(g, f)sW(g). Now let * e F(Sj) be in the domain of a*(f). Then a straightforward calculation shows that

 (a*(f)*, W(g)a*(f)*)

 = 2-1/2i(g, f)j(a*(f)4, W(g)J) + (a(f)a*(f)I, W(g) j). (80)

 Let {fk} be an infinite orthonormal basis for SJ, and let , e FT(S,) be the
 vector whose n-th component is P+(f ?. -. ?f? f) and whose other components
 are zero. Now, for any k > n, we have a(fk)a*(fk)\f = (n + 1)j. Thus, Eqn.
 (80) gives
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 (a*(fk)*, W(g)a*(fk)*)

 = 2-'/2i(g, fk)j(a*(fk)J, W(g)4) + (n + 1)(f, W(g)f)r. (81)

 Hence,

 lim (a*(fk), W(g)a*(fk)4) = (n + 1)(i, W(g)J). (82)
 k--oo

 Since W is generated by the W(g), Eqn. (82) holds when W(g) is replaced with

 any element in W. On the other hand, i is an eigenvector with eigenvalue n
 for N while a*(fk)4 is an eigenvector with eigenvalue n + 1 for N. Thus,

 (i, F(N)1) = F(n)ll11112 while

 (a*(fk)/, F(N)a*(fk)x) = F(n + 1)l a*(fk)Il2 (83)
 = (n + 1)F(n + 1)11*112, (84)

 for all k > n. Thus, the assumption that F(N) is in W (and hence satisfies (82))

 entails that F(n + 1) = F(n). O

 Proposition 7. The Minkowski and Rindler representations of W, are disjoint.

 Proof. By Horuzhy ([1988], Thm. 3.3.4), noi(W,)" is a 'type III' von Neumann algebra which, in particular, contains no atomic projections. Since

 n,< is irreducible and nt, factorial, either n,, and n7c are disjoint, or they

 are quasi-equivalent. However, since n,<(W,)" = B(.(S(<)R)), the weak
 closure of the Rindler representation clearly contains atomic projections.
 Moreover, *-isomorphisms preserve the ordering of projection operators.

 Thus there can be no *-isomorphism of n,< (W,)" onto nt,(W,)", and the Minkowski and Rindler representations of W, are disjoint. O

 Proposition 8. The Minkowski and Rindler representations of W, are disjoint.

 Proof. Again, we use the fact that nro (WJ)" ( Int<(W,)") does not contain

 atomic projections, whereas xno(W,)" ( -,R(W,)") does. Suppose, for
 reductio ad absurdum, that nt4 and nt7 are quasi-equivalent. Since the states

 Co and mo are pure, the representations no4 and it4 are irreducible and
 therefore unitarily equivalent. Thus, there is a weakly continuous *-

 isomorphism oc from n 7(W )" onto no (W,)" such that ct(noi(A))=
 nt74(A) for each AE W,. In particular, a maps nit(WJ) onto nit(W,); and,
 since a is weakly continuous, it maps nitx(WJ)" onto int(W,)". Conse-
 quently, nt~(W1)" contains an atomic projection, in contradiction with the

 fact that n,~(Wj)" is a type III von Neumann algebra. O1

 Proposition 9. If J1, J2 are distinct complex structures on (S, cr), then 01j

 (resp., oj2) predicts dispersion in NJ2 (resp., NJ ).

 Proof We shall prove the contrapositive. Suppose, then, that there is some

 extension i1, of os, to B(.F(SJ2)) that is dispersion-free on all bounded
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 functions of N,2. Then 6s, is multiplicative for the product of the bounded

 operator e+i'tN2 with any other element of B(.F(Sj2)) (KR [1997], Ex. 4.6.16).
 Hence, by Eqn. (40),

 m0, (W(cos t + sin tJzf)) = (60, (e-itNs2 nos2 (W(f))eitNs2) (85)
 = ,v e-itNJ2 )oi ( W(f))6,^ (eitNJ2) (86)
 = oJ, ( W(f)), (87)

 for all f E S and t E IR. In particular, we may set t = nt/2, and it follows that

 o , (W(J2f)) = o, (W(f)) for all fE S. Since e-x is a one-to-one function of
 x E IR, it follows from (33) that

 (f, f)j~ = (J2f, J2f)j,, f S, (88)

 and J2 is a real-linear isometry of the Hilbert space Sj,. We next show that J2

 is in fact a unitary operator on Sj,.

 Since J2 is a symplectomorphism, Im(J2f, J2g)j1 = Im(f, g), for any two elements f, g E S. We also have

 If+ g1l = IfJI + IgI, + 2Re(f, g)j,, (89)

 IJ2f+ J2gl, = IJ2fl, + IJ2gl, + 2Re(J2f, Jzg)j, (90)
 = IflI, + IgI2 + 2Re(J2f, J2g)j, (91)

 using the fact that J2 is isometric. But J2(f+ g) = J2f+ J2g, since J2 is real-
 linear. Thus,

 IJ2f+ Jz2g2, = IJ2(f+ g)12 = If+ gl,, (92)

 using again the fact that J2 is isometric. Cancellation with Eqns. (89) and (91)

 then gives Re(f, g)j, = Re(J2f, J2g)j,. Thus, J2 preserves the inner product
 between any two vectors in Sj,. All that remains to show is that J2 is
 complex-linear. So let f S ,. Then,

 (J2(if), J2g), = (if, g)j, = -i(f, g)j, = -i(J2f, J2g)J, = (iJ2f, J2g)i, (93)

 for all g e -. Since J2 is onto, it follows that (J2(if), g)1 (iJ2f, g)j for all
 g e Sj, and therefore J2(if)= iJ2f

 Finally, since J2 is unitary and J2 = -I, it follows that J2 = ?i= ?J1.
 However, if J2 = --J, then

 -o(f, Jlf) = o(f, J2f)3 0, fE S, (94)

 since J2 is a complex structure. Since J1 is also a complex structure, it follows

 that o(f, Jlf) = 0 for all fE S and S = {0}. Therefore, J2 = J1- [-
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 Proposition 10. A pair of Fock representations nt, , n,2 are unitarily equivalent

 if and only ifo j, assigns Nj2 afinite value (equivalently, mj2 assigns Nj, afinite
 value).

 Proof. S may be thought of as a real Hilbert space relative to either of the

 inner products gl,, 12 defined by

 91,2(-, -):= Re(-, -)JI,2 -= (- , J1,2-). (95)
 We shall use Van Daele and Verbeure's [1971] Theorem 2: n, ,7o, are
 unitarily equivalent if and only if the positive operator -[J1, J2]+ - 21 on S is

 trace-class relative to .t2. (Since unitary equivalence is symmetric, the same 'if
 and only if' holds with 1 2.)

 As we know, we can build any number operator N2 (f) (f S) on 4,,1 by
 using the complex structure J2 in Eqn. (34). In terms of field operators, the
 result is

 Nj2(f) = 2-'1((ff)2 + (J2f)2 + i[p(f), D(J2f)]). (96)

 Observe that N,2 (Jf)= Nj2(f), which had better be the case, since Nj,(f)
 represents the number of J2-quanta with wavefunction in the subspace of Sj2
 generated byf The expectation value of an arbitrary 'two-point function' in
 the J -vacuum state is given by

 (Qn%,, (fI)4(f2)A)A ) (97)
 = (-0i)2 Ot It2 , (W(tlfi) W(t2f2)) I =t2=0 (98)

 02
 -- - t exp(- I t1 t2(f l f2)j - _l t f2), )l=12=0 (99) 0tl(t 2 2,20)-2t20
 = (fi, f2)j,, (100)

 invoking (32) in the first equality, and the Weyl relations (10) together with

 Eqns. (23), (33) to obtain the second. Plugging Eqn. (100) back into (96) and
 using (95) eventually yields

 ,, NJ2 (f)l) = 2-212(f, (-[J1, ,J21+ - 21)f). (101)

 Next, recall that on the Hilbert space -oJ2 Nj2 = N2 (fk), where
 {fk} C Sj2 is any orthonormal basis. Let &j, be any extension of oj, to
 B(-,,2). The calculation that resulted in expression (101) was done in 7Y,_,
 however, only finitely many-degrees of freedom were involved. Thus the

 Stone-von Neumann uniqueness theorem ensures that (101) gives the value

 of each individual 5, (NJ,2(fk)). Since for any finite m, y7=, NJ2(fk) ~NJ2 as
 positive operators, we must also have
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 , E J(N2(fk)) = N(, k< (NJ2). (102)
 k= 1 k= 1

 Thus, 6;, (Nj2) will be defined only if the sum

 S J, (N (f)) = E Z J, (N (J2fk)) (103) k= 1 k=1

 converges. Using (101), this is, in turn, equivalent to

 E '2(, (-[JI J2]+ - 21)fk) + E92(J2Jk, (-[Jl, J2]+ - 21)J2fk) < oo. k= 1 k= 1

 (104)

 However, it is easy to see that {fkJ is a J2-orthonormal basis just in case
 {fk, J2fk} forms an orthonormal basis in S relative to the inner product 2*.

 Thus, Eqn. (104) is none other than the statement that the operator

 -[J1, J2]+ - 21 on S is trace-class relative to A2, which is equivalent to the
 unitary equivalence of o,n , i,2 . (The same argument, of course, applies with

 1 *2 throughout.) El

 Proposition 11. If p is a regular state of W disjoint from the Fock state Qoj, then
 infF1FProbP(N(F) e [0, n])) = 0 for every n E N.

 Proof. Suppose that ozj and p are disjoint; i.e. 3(on) n 3(p) = 0. First, we

 show that D(np) = 1{0, where n, is the quadratic form on -,p which, if densely
 defined, would correspond to the total J-quanta number operator.

 Suppose, for reductio ad absurdum, that D(np) contains some unit vector #.

 Let o) be the state of W defined by

 o(A) = (i, rnp(A)f), A E W. (105)

 Since Co E (p), it follows that o is a regular state of W (since p itself is
 regular), and that o) ' ~(oj). Let P be the projection onto the closed subspace

 in 7-4, generated by the set ~p(W)I. If we let Pit, denote the subrepresentation

 of np on P3-,, then (Pr, P-,) is a representation of W with cyclic vector *.
 By the uniqueness of the GNS representation, it follows that (Pp, P7p) is

 unitarily equivalent to (no,, 7-,). In particular, since Q0, is the image in H7-.o of

 i Pp,, D(no) contains a vector cyclic for o,(W) in R-o,. However, by BR

 ([1996], Thm. 4.2.14, (3) , (1)), this implies that o E )(os)-- a contra-
 diction. Therefore, D(n,) = {0).
 Now suppose, again for reductio ad absurdum, that

 inf{Prob (N(F) e [0, n])} / 0. (106) FEF
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 Let EF:=[E,(F)]([0, n]) and let E:= AFEF 1EF. Since the family {EF) of

 projections is downward directed (i.e. F C_ F' implies EF>, EF), we have

 0 = inf{(;(,, EFO)I} -= (O, Eb,) = IIES, 112. (107) FeF

 Now since EFESP, = EQf,, it follows that

 [n,(F)](EOp) < n, (108)

 for all FE F. Thus, ED, D(np) and D(n,)~ {0} - contradicting the con-
 clusion of the previous paragraph. OI
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