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ABSTRACT

On one popular view, the general covariance of gravity implies that change is relational in

a strong sense, such that all it is for a physical degree of freedom to change is for it to vary

with regard to a second physical degree of freedom. At a quantum level, this view of

change as relative variation leads to a fundamentally timeless formalism for quantum

gravity. Here, we will show how one may avoid this acute ‘problem of time’. Under our

view, duration is still regarded as relative, but temporal succession is taken to be absolute.

Following our approach, which is presented in more formal terms in (Gryb and Thébault

[2014]), it is possible to conceive of a genuinely dynamical theory of quantum gravity

within which time, in a substantive sense, remains.
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We should not be able to tell the story of our relations with another,

however little we knew him, without registering successive movements in

our own life. Thus every individual—and I myself am one of those

individuals—measured duration by the revolution he had accomplished

not only round himself but round others and notably by the positions he

had successively occupied with relation to myself.

Time Regained (Proust [1931])

1 Introduction

1.1 The problem of time

A key feature of Einstein’s theory of gravity is its invariance under arbitrary

transformations of the space-time manifold. This diffeomorphism symmetry

implies that only the coordinate-free information contained in the geometry

has a physical basis within the theory. Unfortunately, it is not entirely clear

how one should understand the implications of diffeomorphism invariance for

the specific role of time in the theory. In the Lagrangian formulation, where

the theory is expressed in terms of the Einstein–Hilbert action, this difficulty

manifests itself in our inability to find a representation of time in terms of an

action of the real numbers implementing time translations on the space of

physical (that is, diffeomorphism invariant) solutions.1 Similarly, in the

Hamiltonian formulation of the theory, which is the basis for many modern

approaches to the quantization of gravity, we find ourselves lacking a coord-

inate free means of representing time.2

Imagine a loaf of bread that we can irregularly cut up into a sequence of

slices. The loaf is space-time and the slices are instantaneous spatial surfaces.

A foliation is then a parameterization of a space-time by a time-ordered se-

quence of spatial slices. Such a parametrization is local in the sense that it is

defined for every point on every spatial slice. Diffeomorphism invariance

implies that space-times described by general relativity that are related by

re-foliations are physically equivalent. Within the Hamiltonian formulation,

which dates back to (Dirac [1958]), we make the restriction to space-times that

admit a foliation into such sequences of space-like hypersurfaces (the globally

hyperbolic space-times (Geroch [1970])). Space-time diffeomorphism invari-

ance is implemented in two parts: (i) spatial diffeomorphism invariance; and

1 See (Belot [2007]) for an extensive discussion of this and related points regarding the represen-

tation of time and change within Lagrangian field theories, including general relativity. With

regard to the Hamiltonian framework, the present analysis differs on several key interpret-

ational and formal points. See (Thébault [2012b]; Pitts [2014]) for critical discussion.
2 This is one key aspect of the ‘problem of time’ in quantum gravity. See (Isham [1993]) for a

classic or (Anderson [2012]) for an updated review.
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(ii) space-time foliation invariance.3 We thus have within the theory an ability

to re-slice a space-time into an infinite number of different decompositions of

space and time without changing anything physical. It is the conceptual and

technical complications involved in representing this symmetry that leads to

the acute ‘problem of time’ within the formalism.

Foliation symmetry further implies that any observable quantity within the

theory must not be dependent upon the local temporal labelling of space-

time.4 This leads us directly to the question of how we should understand

the change in physical quantities? In addition to not having a representation

of time, we seem also to have lost a clear methodology for representing

change! Our conceptual machinery appears in need of retooling.

According to the correlation, or partial observables, view of time in general

relativity, the radical moral one should draw from diffeomorphism invariance

is that change is relational in a strong sense, such that all that it is for a

physical degree of freedom to change is for it to vary with respect to a

second physical degree of freedom; and there is no sense in which this vari-

ation can be described in absolute, non-relative terms.5 This radical relation-

alist view of time implies that there is no unique parameterization of the time

slices within a space-time, and also that there is no unique temporal ordering

of states. Furthermore, it implies a fundamentally different view of what a

degree of freedom actually is: such parameters no longer have distinct physical

significance since they can no longer be understood as being free to change and

be measured independently of any other degree of freedom. This means that

all one-dimensional systems must be understood as stationary since a rela-

tional notion of change cannot be constituted: there is no degree of freedom

for the system to change with respect to. A one-dimensional pendulum is thus,

under this understanding of dynamics, a stationary system with no genuine

degrees freedom. And a two-dimensional pendulum is to be understood as a

one-dimensional system, with the change in the (arbitrarily chosen) free vari-

able expressed in terms of the other ‘clock’ variable.

3 Note that this does not constitute the full group of space-time diffeomorphisms since neither

large diffeomorphisms nor diffeomorphisms that fail to preserve the space-like embedding of

hypersurfaces are represented in the Hamiltonian formalism.
4 Formally, this is usually expressed in terms of the requirement that the functions that represent

observable quantities should commute with the Hamiltonian constraints, which are taken to

implement foliation invariance (Bergmann [1961]). There are, however, many subtleties regard-

ing both the role of Hamiltonian constraints and the definition of observables in canonical

general relativity (Anderson [2013]; Pitts [2014]).
5 The correlation view is most closely associated with the work of Carlo Rovelli (Rovelli [2002];

[2004]) and is put forward in slightly different ways by many physicists working on canonical

quantum gravity; for example, see (Dittrich [2006], [2007]; Thiemann [2007]; Bojowald et al.

[2011]). For a more detailed appraisal of the strengths and weaknesses of this view in the classical

gravity context, see (Thébault [2012b]). Also, see (Rovelli [2007]) for discussion of some subtitles

regarding the interpretation of the scheme.
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On this view, it should be no great surprise that when the equations of a

classically foliation-invariant theory are quantized, one arrives at a timeless

quantum gravity formalism,6 since, in essence, this facet is already implicit

within the classical theory. Both classically and quantum mechanically, the

functions that faithfully parametrize the true degrees of freedom of the

theory—the observables—are taken to be those which are completely inde-

pendent of the local time parametrization and, both classically and quantum

mechanically, these perennials cannot, by definition, vary along a dynamical

trajectory. Thus, we see that this first response to the problem of time in

classical and quantum gravity is essentially one of capitulation. The definition

of an observable quantity within the correlation view is such that it cannot

change along a dynamical trajectory. Although, we can recover a weak sense

of change as relative variation, there is no scope for the basic one-dimensional

ordering structure that, in our view, is constitutive of time. To us this seems

unsatisfactory as a solution, and in what remains of this article we will articu-

late an alternative.

1.2 Our solution

The starting point of our approach is the conviction that the radical variant of

relationalism with regard to change and time, discussed above, has gone a

little too far. The lessons for time drawn from general covariance are more

subtle, and do not imply we should dispense with time altogether. Rather, a

consistent interpretation of the underdetermination of possibilities implied by

the temporal relabelling symmetry of the theory leads to a view in which

temporal succession is understood as absolute. Temporal relabelling symme-

tries do not result in identification of instantaneous states as identical physical

possibilities, and thus the formalism of theories with these symmetries can be

interpreted such that both the change in a given degree of freedom and the

ordering of such change along a dynamical history are fundamental structures

in the theory.7 Given this, one can exploit the interpretational underdetermin-

ation present to take a further step regarding the status of duration. One may

insist that although change itself is taken to be absolute, the labelling of

change in terms of a measure of duration is something purely relative. Such

a Machian view of time is simple both to motivate and to realize within clas-

sical particle models with global temporal relabelling symmetry, but far less

6 This is the Wheeler–DeWitt-type ‘frozen formalism’, endemic within both the old quantum

geometrodynamics approach (DeWitt [1967]), and modern variants of canonical quantum grav-

ity (Thiemann [2007]).
7 It is important to note here that by ‘time ordering’ we specifically do not mean anything like an

arrow of time, or objective difference between past and future. Rather, ‘time ordering’ here, and

in what follows, merely implies the existence of a monotonically increasing parameterization of

time slices which is, by definition, time-reversal invariant.
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easily constituted within the full general theory of relativity due to the need to

define observables that respect foliation invariance. It is thus understandable

that the radical morals with regard to change and time discussed above are

often drawn. However, it is still true that within general relativity there exist

fundamental temporal structures relating to ordering in time. In canonical

general relativity, such structure is encoded within the fact that the arbitrary

slicings are always labelled in terms of a monotonically increasing local time

parameter (as implied by the positivity of the lapse multiplier). This structure

is also present in a more subtle sense within the Lagrangian theory due to the

form of the Einstein–Hilbert action. This is because the variation of the

Einstein–Hilbert action (subject to the appropriate boundary conditions)8 re-

quires finding a curve that minimizes the integral of the scalar curvature, and

these curves, by definition, require parametrization by a monotonically

increasing parameter. Thus, the formalism of general relativity should not

be seen as telling us to dispense with time ordering altogether.

Furthermore, on our view, that the (canonical) quantization of general

relativity leads to a timeless formalism should be understood as a consequence

of an incorrect treatment of the temporal symmetries of the classical theory.

By treating local temporal labellings as entirely unphysical, and change as

entirely relational, we do not retain in the quantum formalism the full classical

dynamics or the implicit temporal-ordering structure.9 The question remains,

however, that if conventional quantization techniques cannot preserve the

essential temporal structure of general relativity, how do we find a new meth-

odology that can?

Our solution involves two non-trivial steps, the motivation for which will be

outlined at length below. The first relates to a fundamental re-description of

gravity in terms of the shape dynamics formalism originally advocated by

Barbour and collaborators (Barbour [2003, 2012]; Anderson et al. [2003];

Anderson et al. [2005], and then brought into modern form in (Gomes et al.

[2011]). From the view of the current article (see also the more detailed argu-

ment of (Gryb and Thébault [2014])), the existence of shape dynamics as, in a

precise sense, a dual to general relativity reveals classical gravity to be essen-

tially Janus-faced (see Figure 1). There exist an underdetermination of sym-

metries that leave space for interpretation in terms of two distinct

gravitational ontologies: the traditional ‘Einstein ontology’ of space-times

invariant under four-dimensional coordinate transformations; and a second,

hitherto masked, ontology of sequences of scale-invariant three-dimensional

spatial surfaces (that is, spatial geometries invariant under re-scallings of

8 See (York [1986]) for a discussion of this variational principle in the context relevant here.
9 Equivalently, in more formal language, if Hamiltonian constraints are treated as generating

purely unphysical transformations, one does not, in quantum theory, retain their role in gen-

erating dynamics of the quantum state, nor in providing a temporal ordering.
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lengths). As shall be detailed later, this second ontology is closely related to a

proposal for the interpretation of the degrees of freedom of gravity made by

James York (York [1986]), and so we will call it the ‘York ontology’).

Given this understanding of gravity as having dual faces, when confronted

with the problem of understanding the role of time in classical gravitation, one

has the option of choosing whichever formalism—shape dynamics or general

relativity—is formally and conceptually easier to work with. Here, we choose

to use shape dynamics, and assume the particular characterization of the

theory is given by the York ontology. It is from this basis that the second

step in our proposal can be made. Originally in (Gryb and Thébault [2012])

and then more recently in (Gryb and Thébault [2014]), a procedure for the

‘relational quantization’ of theories with temporal relabelling symmetries was

outlined. Whereas the first of these two papers served to offer a range of

conceptual arguments leading to the need for relational quantization, the

Figure 1. Janus was the Roman god of gateways, transitions, and time, and is

usually depicted as having two, non-identical faces pointing in opposite directions,

as above. Thus, figuratively (and in fact geometrically) the two faces of Janus are

an apt representation for the two faces of gravity.
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second served to place relational quantization within a formal framework for

understanding symmetries in physical theory in general.

One of the principal motivations of the current article is to explicate further

the philosophical foundations of this approach to symmetries and time.

In particular, in what follows we will: first, introduce a general methodology

for the classification of symmetries and symmetry-related variables according

to physically motivated criteria (see Sections 2.1–2.2); second, demonstrate

that our classification scheme leads naturally to a procedure for quantization

via the introduction of dummy variables (see Section 2.3); third, provide philo-

sophical motivation for the Machian view of time discussed above (see Section

3.1); forth, show how our philosophical motivations for the treatment of time

symmetries mesh with our general prescriptions for symmetry and lead to the

procedure for relational quantization (see Section 3.2). These arguments es-

tablish a framework sufficient to motivate the relational quantization of grav-

ity from the perspective of the York ontology (see Sections 4.1–4.2) and in

doing so provide a demonstration that, given suitable starting assumptions,

time can remain in quantum gravity.

2 Understanding Symmetry

2.1 Mechanics and representation

In a classical physical theory, the relationship between a mechanical system

and its theoretical representation can be given through the specification of

three pairs of structures, one of each pair formal and one of each pair physical.

These pairs relate in turn to degrees of freedom, dynamical laws, and the

specifiable initial (or boundary) data. Explicitly, for a finite-dimensional clas-

sical system, we can consider a physical system as being represented formally

by: (i) a configuration space with n-configuration variables and some pre-

determined metric structure; (ii) a nomological restriction on curves in the

configuration space that selects only curves that are geodesic with respect to

the pre-determined metric structure; and (iii) a set of further initial (or end-

point) conditions on the curves.10 Such a specification serves as a representa-

tion of: a) the physical degrees of freedom; b) the dynamical law that deter-

mines the evolution of the system; and c) the physical conditions on the

preparation of the system. The representational pairings are then (i)-(a), (ii)-

(b), and (iii)-(c). We will designate the formal side of these pairings as the

‘formalism’ of the system and the physical side as the ‘characteristic behav-

iour’ of the system.

10 It can be shown (see, for instance, Lanczos [1970]) that these three requirements (which are

collectively known as Jacobi’s principle) are equivalent to Hamilton’s variational principle for

mechanics.
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One can be more explicit with regard to the formalism side of the set up by

defining the Lagrangian formalism. For an n-dimensional system, the config-

uration space is a manifold, C, with elements qi, where i ¼ 1; ::: ; n. At a given

point q 2 C we can define a tangent space, TqC. The disjoint union of all the

tangent spaces of C is the tangent bundle TC. The elements of the tangent

bundle are pairs ðq; _qÞ of configuration variables q and vectors tangent to

those variables _q. A curve within the tangent bundle, � : R!TC, will corres-

pond to a history of a system: a sequence of configurations and velocities. The

parameterization of the curve is given by some monotonically increasing par-

ameter, t. We then define the Lagrangian, L : TC!R, and the action,

I ½�� ¼

Z
�

L½qi; _qi�dt:

Given the specification of a curve (including its end-points), the extremization

of the action, dI ½�� ¼ 0, according to the principle of least action leads to the

Euler–Lagrange equations,

d

dt

qL

q_qi

� �
¼

qL

qqi

;

that specify a set of solutions, �S, which uniquely determine the possible clas-

sical histories of the system given an initial point in TC. We now have a formal

representation of physical degrees of freedom in terms of the velocity and

configuration variables; the relevant nomological restrictions, in terms of

the variational principle and Lagrangian; and the preparation conditions, in

terms of the specification of the end-points of the curves in the variation.

An alternative, but generally equivalent, Hamiltonian formalism can then

be derived by defining a cotangent bundle of our configuration manifold: the

phase space � ¼ T�C. This is the disjoint union of all the cotangent spaces T�q C

(these are dual to the tangent spaces, that is, elements of the cotangent space

are linear functionals on the tangent space). A point in phase space, (q, p),

consists of a point in our original configuration space, q 2 C, paired with a

covector at q, p 2 T�q C. These covectors, which we call the conjugate momenta,

are given by pi ¼
qL
q_qi

. We can equip phase space with a symplectic structure by

defining the symplectic potential � ¼ p ^ dq and the (closed) symplectic 2-

form o ¼ d�. If ! is non-degenerate, then one can equip phase space with a

Poisson bracket such that qi; pj

� �
¼ di

j. Using this Poisson structure, we can

define a Hamilton vector field, vf ðgÞ, for any phase-space functions

ðf ; gÞ : �!R, via vf ðgÞ ¼ g; f
� �

. We can then define the flow of some function

f by the integral curves of its Hamilton vector field.

To fix the dynamics, we introduce the Hamiltonian functional,

H½qi; pi� ¼ piqi � L, and derive Hamilton’s equations, p
_

i ¼ vH ðpÞ and
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_qi ¼ vH ðqÞ. The classical trajectories, �S, are thus uniquely defined by the flow

of the Hamiltonian functional on phase space. For the purposes of this for-

malism, the preparation conditions are represented by specification of initial

values of the positions and momenta variables.

All this is familiar to anyone with basic knowledge of mathematical physics.

It is important, however, to be clear regarding the relevant representational

relationships. For a given system, we have on the one hand the physical char-

acteristics of the system contained in the nature of the degrees of freedom, the

physical preparation of the system, and the law-like regularities in behaviour;

and on the other we have the formal description of the system contained in the

formal variables, the formal initial (or end-point) conditions, and nomological

restrictions on these. The connection between these two triples is precisely what

a physical theory gives us. In some very simple cases, such connections can be

understood unambiguously; invariably, however, when we want to understand

realistic systems, we often run into situations where the relationships between

the formal and physical aspects is no longer one-to-one. In such situations, we

can say that some form of representative redundancy is present within our

formal-physical set up. One of the main aims of this article is to detail a new

scheme for understanding this representative redundancy. In particular, we aim

to provide a general and physically motivated classification of different types of

symmetry transformations. This classification will entail which formal differ-

ences have the capability of representing distinct physical possibilities and which

correspond to pure redundancy.

Such a symmetry classification scheme has direct implications for the ontol-

ogy that can be associated with a physical theory. At a classical level, this is

because, by placing constraints on which formal differences can correspond to

different physical possibilities, our understanding of symmetry also places

constraints on the consistent interpretations of a theory. These constraints

will invariably still leave the ontology underdetermined: the same possibility

counting can be consistent with very different ontologies for a physical theory.

However, in some specific circumstances—including the case of time

parametrization symmetries that is our main focus—difference as to the sym-

metry classification scheme can have crucial ontological importance. The

ontological importance of symmetry classification is even greater when con-

sidered in the context of quantization. As we shall see in detail later, the way in

which we treat symmetries classically determines which possibilities will be

realized at the quantum level.

Clearly, then, a symmetry classification scheme is something of great im-

portance, and should be built upon a chain of sound physical and formal

inferences. What is needed are general principles that are based upon physical

reasoning, but which lead to precise mathematical diagnoses. Unfortunately,

from our perspective, what is provided by most existing approaches are precise
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mathematical principles leading to a diagnostic schema that is neither phys-

ically well-motivated nor formally rich enough.

The standard classification of symmetries follows a scheme where the exist-

ence of local or ‘gauge’ symmetries— namely, transformations that depend on

space or time, and under which the action is invariant— indicates that iden-

tical physical possibilities are being represented in terms of distinct instantan-

eous states in the formalism.11 The representative redundancy inherent in such

symmetries is directly connected to otiose degrees of freedom, which are then

eliminated during (or before) quantization. In this standard scheme, we can

remain agnostic regarding the status of redundancies associated with global

symmetries (that is, transformations that do not depend on space or time, and

under which the action is invariant). The representative redundancy related to

such symmetries need not be eliminated during (or before) quantization. Thus,

within this scheme, the difference between local and global symmetries has

huge potential impact at the level of both classical and quantum mechanical

interpretation.

In our view, the weight placed upon the local versus global distinction rep-

resents a first major problem with the scheme. There are theories that display

local symmetry but do not feature identical physical possibilities represented

in terms of distinct instantaneous states. In such theories, there are in fact no

excess degrees of freedom and thus the application of standard ‘local’ sym-

metry quantization techniques will lead to the elimination of genuine physical

differences. Moreover, the loss of representative machinery will have direct

interpretational consequences; there will be ontologies that are excluded from

the cast of possible interpretations for no good reason.

A second problem with the standard scheme is that it is ill-suited for dealing

with a recently discovered form of symmetry: the class of hidden symmetries.

These symmetries are of a peculiar form, in that they are derived from implicit

rather then explicit redundancies in the formal-physical relationship. When

hidden symmetries occur, we are able to ‘trade’ a certain symmetry of the

theory for a second set of transformations that was originally not a symmetry.

Such symmetries thus lead to a different form of interpretational underdeter-

mination since we have a choice as to different formulations of a theory with

different symmetries, over and above the way we understand the implications

of these symmetries.

11 The most comprehensive modern book on gauge theory and its quantization is (Henneaux and

Teitelboim [1992]), the original classic is (Dirac [1964]). See (Belot and Earman [2001]; Belot

[2003]; Earman [2003]; Rickles [2004], [2007]) for philosophical analysis of the connection be-

tween possibility spaces and this notion of gauge symmetry. The crucial factor in most of these

accounts is the ‘indeterminism’ that can result from not eliminating the excess possibilities

associated with local symmetries. See (Thébault [2012a]) for details on why such arguments

are not decisive in general. See (Pons [2005]) for an argument that the standard Dirac analysis of

canonical quantization is incomplete.
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Each of these problems with the standard scheme is directly related to issues

regarding time and gravity. With regard to the first problem, time reparame-

trization symmetries are an example of local symmetries that should not be

associated with excess degrees of freedom. The standard scheme leads to an

erroneous categorization of dynamically related instantaneous states as con-

stituting the same physical possibility. This rules out an interpretation of the

temporal ontology of the theory in hand in terms of anything other than

radical relationalism. With regard to the second problem, the identification

of hidden symmetries provides the basis of the duality between general rela-

tivity and shape dynamics mentioned above. It is thus only through the under-

standing of hidden symmetries that the ‘dual faces’ of gravity can be identified.

We will return to these points in detail when we enter into the specific discus-

sions of time (Section 3) and gravity (Section 4). Before then, we would like to

construct our own scheme for the categorizations of symmetries that does not

suffer from the identified defects. In order to do this, we need to find general

physical principles for distinguishing types of redundancy.

2.2 Freedom by degrees

The first physical principle for distinguishing types of redundancy we can

identify relies upon the notion of action, I ½��. As noted above, the action is

directly connected to the nomological restrictions that allow the formalism of

a theory to pick out physical dynamics. If we consider the infinitesimal vari-

ation of a curve in a particular direction in the configuration space (by ‘dir-

ection’ we will mean along an infinitesimal segment of the flow of a particular

phase-space function) and find that the action is invariant up to a total de-

rivative, then the degree of freedom associated with that direction (that is, the

degree of freedom identified with the particular phase-space function whose

flow is in the relevant direction) is related to a manifest form of symmetry. It is

important to point out, for our considerations, that a manifest symmetry can

either be a local symmetry or a global symmetry. This criterion relates to a

property of the action itself and has nothing to do with any additional vari-

ational principles one would like to further impose on the action (for example,

to extract classical equations of motion). To fully classify a degree of freedom,

we will need a second criterion, described below, which leads to a richer set of

physically distinct cases than that which is explicitly considered by standard

textbook definitions of symmetry.

Physically speaking, a manifest symmetry implies that there will be multiple

possible sequences of configurations (representing histories in the configur-

ation space) that are either physically indistinguishable or correspond to dif-

ferent values of a conserved charge. In the first case, the symmetry

corresponds to a mathematical transformation within the formalism that
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has no effect on physically measurable quantities. Thus, it can apply to the

Universe as a whole. In the second case, however, the transformation has an

experimental implication: it changes the value of the conserved charge. The

only way to attribute meaning to this is to have an emergent structure within

the formalism that allows one to measure changes of the variable conjugate to

the relevant conserved charge. Thus, the second case is only relevant to sub-

systems of the Universe that are dynamically isolated from the rest of the

Universe, which serves as an emergent background. For a more detailed dis-

cussion of how these backgrounds emerge, see (Giulini [2013]).

Furthermore, the physical indistinguishability of the histories could be due

either to practical limitations within the particular experimental set-up being

considered—as is nicely illustrated, for example, in (Wharton [2009])—or

to fundamental limitations within the system. On its own, the presence of a

manifest symmetry does not indicate that identical physical possibilities

are being represented in terms of distinct instantaneous states in the

formalism.

Given an orbit on configuration space, generated by the flow of some phase-

space function, in which the action is not invariant, there are two further

possibilities for the relevant degree of freedom identified with the phase-

space function in question: it might be the case that there are no symmetries

associated with it, or it might be the case that there are hidden symmetries

associated with it. This third case has not been explored until recently, but

will prove important for gravity. We will return to its detailed consideration

later.

The second principle we can identify relates specifically to the nature of the

variational principle used to vary the relevant variables in the action. As was

noted above, it is essential to remember that the abstract initial (or end-point)

conditions used in the variational principle are part of a formalism that stands

in a possibly non-unique representative relationship with a class of physical

systems defined in terms of their characteristic behaviour (that is, physical

observables within the system, physical preparations of the system, and dy-

namical laws obeyed by the system). Let us again consider the variation of the

action based upon the variation of a configuration space curve in a direction

associated with a particular degree of freedom (as defined more precisely

above). In this case, let us focus upon the details of the variational principle

used along the entire history of the system in question, including the boundary

(in space and time).

If the characteristic behaviour—which is fixed by the actual physical degrees

of freedom, the physical preparation of the system, and the dynamical law—

places no restriction upon such a variation, then we say that it is a free variation.

Under our proposed scheme, this type of variation implies that the relevant

degree of freedom is an otiose formal artefact since nothing in ‘the world’ places

Sean Gryb and Karim P. Y. Thébault674
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a restriction upon the relevant variable’s value. Nothing in the characteristic

behaviour of the system fixes anything in the mathematical formalism, and so it

must be a facet of redundancy within our representation. The alternative is that,

for a given direction and associated degree of freedom, restrictions are placed on

the variation. In such a situation, we say that we have a fixed end-point vari-

ation (because the end-points of the variation are fixed in configuration space),

or fixed variation for short, and we expect that the relevant degree of freedom

has some representative relationship to something physical.

It is important to note why one would expect that it is the second, and not

the first, principle, that is decisive in the categorization of a symmetry-related

degree of freedom as inherently redundant or not. Although the first principle

does derive from conditions on the action, it does not derive from conditions

specifically on the variation principle. It is precisely the variational principle

that fixes the full characteristic behaviour of the system. Thus, it is only the

variation principle that can ultimately be sensitive to the difference between

redundancies that are linked to dynamical conservation properties, and those

that are entirely due to our use of excessive coordinates within the instantan-

eous representation of a physical state.

Keeping this important point in mind, and given our two physically moti-

vated principles, we can set about categorizing types of redundancy according

to a physically motivated diagnosis. One would then hope that the mathem-

atical exactitude of standard techniques will be recoverable where these tech-

niques have proven physically reliable. This indeed proves to be the case if we

consider the most blatantly unphysical form of redundancies: those connected

to manifest symmetries and free variations. In such situations, the relevant

degree of freedom encodes no dynamical information and defines a direction

which is, by definition, superfluous to the representation of the world. Such

variables are gauge variables and the relevant symmetries are gauge symme-

tries. Thus, we can see the precise reasons why gauge symmetries (as classified

by our scheme) will lead to identical physical possibilities being represented in

terms of distinct instantaneous states in the formalism.

Our categorization is sufficient, although not necessary, to recover the con-

ventional mathematical categorizations of gauge symmetries (Henneaux and

Teitelboim [1992]). As discussed above, the standard account of gauge sym-

metries is usually in terms of a local (that is, functionally dependent on space

and time) transformation that leaves the action (or Lagrangian) invariant.

Our categorization of gauge symmetry is sufficient (but not necessary) for

this locality condition. It is also sufficient (but not necessary) to recover the

other standard notions of gauge symmetry in terms of: (i) the failure for the

Legendre transformation between the velocity-configuration and phase space

to be invertible, and; (ii) existence of first class primary constraints (Dirac

[1964]). This means that for all the standard cases where there is no perceived
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ambiguity about the cause and interpretation of redundancy—for example,

electromagnetism, Yang-Mills theories, and the standard model (all in the

presence of no spatial boundaries)—our definition will coincide with the

standard definition. However, as we shall see, for the case of time-labelling

symmetries, and indeed many other symmetries that will not be discussed at

length here,12 our scheme still allows for an alternative, physically motivated

categorization.

Here we should note an important point for the purposes of our discussion:

those degrees of freedom identified as gauge within the classical theory are

always (in some sense) eliminated within the process of constructing the quan-

tum theory. Since these degrees of freedom are not representing anything

about the physics of the system, the quantum correlates of these degrees of

freedom must not be associated with observable operators in the quantum

formalism. In essence, the methodology for ensuring faithful treatment of

gauge degrees of freedom is always the same: treat the direction associated

with the degree of freedom as non-physical.

A further, more subtle form of redundancy derives from the presence of a

degree of freedom associated with a manifest symmetry, but a fixed variation.

Since the variation is fixed, we know that the relevant variable is connected to

something physical. In general, we can understand this ‘something physical’ as

the conservation of some empirically determinable quantity throughout the

system’s evolution. For this reason, we call the relevant symmetries ‘conser-

vation symmetries’.13 There is no necessary connection between the existence

of conservation symmetries and identical physical possibilities being repre-

sented in terms of distinct instantaneous states (or sequences of states) in

the formalism. It is a further interpretational step, needing further motivation,

to eliminate such potential redundancy. We can thus understand the inter-

pretational implication of the existence of a conservation symmetry in terms of

an underdetermination of possibilities. One has the freedom to classify the

transformations related by the symmetry as connecting the same or different

physical possibilities. Our scheme does not provide means to adjudicate be-

tween these options.

12 Note that asymptotically flat general relativity and Yang–Mills theory in the presence of spatial

boundaries that break gauge invariance are examples of theories that also do not fall into the

category of pure gauge theories by our classification, although they would by the standard

treatments (Henneaux and Teitelboim [1992]). We believe that our classification scheme is

more appropriate for these cases because a notion of background is introduced by the relevant

boundary conditions.
13 By this terminology, we do not wish to imply that all conserved quantities are related to con-

servation symmetries (for example, electric charge is a conserved quantity arising in gauge

theories and is not a conservation symmetry by our definition), although conservation symme-

tries necessarily have conserved charges associated with them. Their distinguishing feature,

which is relevant for us here, is that—in the quantum theory—conservation symmetries allow

for superpositions of states with different values of the conserved charge.
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Again, our definition allows us to recover the parts of the standard scheme

that are physically well-motivated: all symmetries associated with Noether’s first

theorem are, under our definition, conservation symmetries.14 An example par-

ticularly relevant to the considerations of this article is that our classification

scheme non-standardly directs us to categorize symmetries associated with tem-

poral relabelling as conservation symmetries and, as well shall discuss later, this

proves absolutely pivotal for understanding the role of time in relational quan-

tum theories, including prospective theories of quantum gravity.15 The key

point is that, in general, conservation symmetries, since they are tied into the

characteristic behaviour of the system, must be treated entirely differently from

gauge symmetries when constructing the quantum formalism. They are asso-

ciated with physical directions on phase space and should correspond to clas-

sical observables. In the quantum theory, there should thus be self-adjoint

operators associated with the classical observables, which act on the physical

Hilbert space. One should, then, expect that general quantum states are formed

by taking superpositions of the eigenstates of these operators. This is entirely

unlike gauge symmetries, where the eigenvalues of the associated operators

(that is, the quantized generators of the classical symmetries) must be set to

zero in the quantum formalism (following the Dirac quantization algorithm).

A simple case of a conservation symmetry will illustrate this point well. Let

us consider a standard Newtonian point particle system, treated as an isolated

sub-system of the Universe, consisting of three particles starting in different

positions, which evolve under the force of gravity. Now consider what hap-

pens if one performs time-dependent spatial translations to this system of

particles, under which Newton’s equations are manifestly invariant.

In our terms, such a translation is precisely a manifest symmetry since it

corresponds to a global variation of configuration space curves in a direction

along which the action is invariant. We can further classify the symmetry as

manifest-fixed because, for a Newtonian system, we are not free to vary the

data on the end-points: the physics of the system places definite restrictions

such that only some spatially translated variations are equivalent. In this case,

these restrictions are just the conservation of linear momentum and the rele-

vant constant of motion is just the total linear momentum of the system. Thus,

we have a symmetry that is fixed and manifest: a conservation symmetry in our

14 Our scheme also allows us to capture classical symmetries exhibiting conserved charges that

would not normally fall under the treatment of Noether’s theorem. For example, general rela-

tivity with asymptotically flat boundary conditions is locally invariant under space-time diffeo-

morphisms. Nevertheless, it still has conserved charges associated with it (the Arnowitt, Deser

and Misner, or ADM, momenta (Arnowitt et al. [1962])) because the boundary variation is

performed in a fixed way, using our terminology, due to how the asymptotic boundary condi-

tions are imposed. Thus, the Poincaré invariance on the asymptotic boundary is a conservation

symmetry by our definition.
15 The conserved quantity associated with relabelling symmetry is the Hamiltonian function itself,

which, as one can easily show, is a conserved quantity of the classical evolution.
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terminology. Standard quantum mechanics, which is the quantum theory

defined based upon Newtonian mechanics, is then such that we can have

superpositions of momentum eigenstates, as one would expect from our gen-

eral prescription. If, on the other hand, one has misclassified the spatial trans-

lations as gauge symmetries (that is, manifest-free), then the quantum

formalism that resulted would be a quantum theory of a single momentum

eigenstate, which is clearly not a faithful quantization of Newtonian theory.

What is lost in this analysis is the ability to treat the centre-of-mass velocity of

the system as an operator in the quantum theory, since forcing the system to a

momentum eigenstate forces this observable to be precisely zero. However, if

the three-particle system is an isolated sub-system of the Universe, then the

behaviour of the centre-of-mass velocity clearly has meaning as part of the

characteristic behaviour of the system, and such a misclassification would fail

to capture the full behaviour of the system. It is precisely this form of categor-

ization error that we hold to be behind the idea that time disappears in quan-

tum gravity, in analogy to how centre-of-mass velocity disappears in the

example above.

The simplest case in our classification scheme occurs when there is no re-

dundancy in the relevant representative relationship between a physical degree

of freedom and its formal correlate. This is the case where there is no manifest

symmetry and the variation is fixed. This case corresponds to a conventional

dynamical degree of freedom. Its initial or boundary conditions are specified

by the variational principle and, in a phase-space formalism, it simply evolves

according to the flow of the energy function or Hamiltonian. The different

possibilities corresponding to the direction associated with the degree of free-

dom are physically distinguishable, and so must be counted as distinct possi-

bilities. Quantum mechanically, these degrees of freedom correspond to

observable operators that can exist in the appropriate superpositions.

The most non-trivial case is if there is no manifest symmetry and the vari-

ation is free. In this case, it is possible that there is a hidden symmetry in the

system. This can only happen if there is another manifest symmetry in the

theory that has a particular type of formal relationship with the one at hand: it

is second class with respect to it (that is, the Poisson brackets of the constraints

generating these symmetries is not weakly zero). If this is the case, the elements

of the formalism can be modified (without changing the physical predictions

of the theory) in such a way that the first symmetry becomes manifest. This is

called ‘symmetry trading’ and has been used to construct the shape dynamics

formalism introduced in (Gomes et al. [2011]). The general theory of sym-

metry trading is developed in (Gomes and Koslowski [2012]). The main formal

result behind the symmetry trading formalism is that the two symmetries in

questions can gauge fix each other since they are generated by constraints that

are second class with respect to each other. Thus, one has a choice to interpret
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one of the constraints to be the generator of a symmetry, while the other is the

gauge fixing of it; but the opposite interpretive choice can equally be made.

The two theories are equivalent because there is a special choice of gauge in

both theories where the evolution on phase space is identical, given some

initial data that solve the initial value constraints. We will give a more detailed

description of this idea in the context of general relativity below. For the time

being, we can merely point out the clear interpretational implication of the

existence of a hidden symmetry in terms of an underdetermination of symme-

tries. One has the freedom to reformulate a theory such that different sets of

transformations become symmetries. These new symmetries can be of either

the gauge or conservation type. The scheme does not provide means to adju-

dicate between these options.

The quantum mechanical implications of trading hidden for non-hidden

symmetries are subtle yet potentially very powerful. As shall be

outlined below, one of the major possible benefits of symmetry trading is

that it allows us to exchange one symmetry, which we are unsure how to

quantize, for another for which there are available techniques. Thus, the

underdetermination of the symmetries of a theory at the classical level can

give benefits regarding quantization: it gives one more options.

Finally, if there is no manifest symmetry, the variation is free and there is no

symmetry that can be traded, then the situation is more complicated because

extra constraints need to be imposed in order for the symmetry to be preserved

by the dynamics. These new constraints often lead, for the same reasons, to

even further constraints leading to an infinite regress of constraints. This is a

sign of an inconsistent system (that is, a mathematically poorly posed formal-

ism). We can now collect together all the possible types of degrees of freedom

classified as distinct within our scheme in Table 1. The appropriate interpret-

ation implications and prescription for treating the quantum mechanical

equivalents are then given in Table 2.

The tables make clear both the generality and potential physical importance

of our scheme. If a degree of freedom is misclassified then not only will the

Table 1. New symmetry classification defined using physical

principles

Variation Symmetry in action Classification

Free Manifest Gauge symmetry

Fixed Manifest Conservation symmetry

Fixed None Physical direction

Free Hidden Tradable symmetry

Free None Possible inconsistency
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interpretation of its role within the classical formalism be incorrect, the quan-

tum formalism derived will fail to capture the characteristic behaviour of the

classical system in the appropriate limit. A mistake at this stage will lead to an

incorrect quantum theory. The key claim that will be defended later in this

article is that precisely such a misclassification has been made for the case of

gravity, and that the so-called timelessness of quantum gravity is actually a

manifestation of this mistake and not the absence of basic temporal structure

in the relevant system class.

2.3 Voluntary redundancy

In the previous section, we outlined a classification scheme for the redundan-

cies that can occur within the representative relationship between classical

mechanical formalisms and classical physical systems. One of the most im-

portant applications for this scheme is to ensure a physically well-motivated

quantization of the theory in question (that is, one leading to a quantum

formalism where the relevant quantum mechanical analogues to the classical

degrees of freedom are faithfully represented). Unfortunately, for some clas-

sical systems, standard techniques for quantization do not lead to quantum

formalisms with such properties.16 Thus, even if we correctly classify the

symmetries in the classical formalism, we may lose track of them during the

process of quantization. Furthermore, while for simple systems and symme-

tries it can be a straightforward task to isolate the degree of freedom asso-

ciated with a particular symmetry, the general case is famously problematic

when explicit systems are considered (as an example, compare electromagnet-

ism to Yang–Mills theory). In order to prevent such problems, we recommend

a general formal procedure that provides a concrete method for explicitly

Table 2. Implications of new scheme

Classification Interpretational

implication

Quantum degree

of freedom

Gauge Symmetry Eliminate otiose variables Operator annihilates

wavefunction

Conservation

Symmetry

Underdetermination

of possibilities

Operator obeying

identity

Physical Direction Fixed possibilities Operator with no restriction

Tradable Symmetry Underdetermination

of symmetries

Represented in new way?

Possible Inconsistency Formalism inconsistent? Quantization blocked

16 This issue is over and above the occurrence of anomalies which we will not discuss here.
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D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/67/3/663/1753564 by guest on 03 June 2020

paper
Redundancy


isolating the degree of freedom associated with the symmetry in question. The

description we will give here for this procedure will be rather more intuitive

than explicit. More technically inclined readers may refer to Section 3 of the

companion paper (Gryb and Thébault [2014]) for details.

The procedure we recommend for dealing with this problem involves intro-

ducing even more redundancy into the formalism by introducing auxiliary

fields that artificially parametrize the symmetry in question. These auxiliary

fields—so named because they can be integrated out by inserting their classical

equations of motion—are introduced into the theory in such a way that they

shift all the degrees of freedom of the theory along the orbit of some gauge

group in a way that we will describe in more detail below. Formally, these

auxiliary fields ‘compensate’ for the symmetry group in question, giving them

a role very similar to that of a gauge compensator field. These auxiliary

degrees of freedom can then either be varied in a free way or fixed way, by

either imposing or not imposing a specific functional restriction onto the cor-

responding compensator field. This restriction will be referred to as the best-

matching constraint because it originally appeared in the context of a

procedure called ‘best matching’, developed by Barbour (for a nice introduc-

tion to best matching see (Barbour [2010])). Although the use of these com-

pensator fields is often a matter of finding a convenient way to mathematically

isolate a degree of freedom associated with some symmetry, for the case of

reparametrization symmetry—which is the primary case of interest to us

here—the introduction of a compensator field is a mandatory technical step

in being able to faithfully represent the symmetry.

To illustrate what the best-matching conditions achieve, we will briefly de-

scribe the role of the compensator fields in the formalism. These fields are

simply symmetry group parameters that represent an active transformation of

the configuration variables of the system. The group G itself is determined

upon specification of one’s formalism. In other words, once one chooses (i) the

set of configuration variables one would like to use to describe a particular

system and (ii) a particular parametrization of the physical observables of the

theory in terms of these variables, then the choice of group is given by the

quotient of the former by the latter. In the case where G can be represented as a

Lie group, the formalism becomes straightforward to describe. The active

transformation of the configuration variables, q, can be written by exponen-

tiating the contraction of the compensator fields, �, with the generators, t 2 h,

of the relevant Lie algebra. This gives a set of actively transformed quantities,

q ¼ e�� tq, that depend on the compensator fields, �. It is clear from this def-

inition what these barred coordinates represent; the difference between them

and the original q’s is just given by motion in the direction associated with the

symmetry group orbit (that is, along the flow of the constraints generating the
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symmetry in question). Thus, they can be used to absorb the symmetric degree

of freedom we are looking for.

For a simple example of how this works, consider the case of N Newtonian

particles in 1d with coordinates qi, and suppose we want to consider the dila-

tations as a symmetry group. The action of this group on these coordinates is

simply qi!e�ðtÞqi, where � here is the compensator field parameterizing the

dilatations. The effect this has on the theory is to perform time-dependent re-

scalings of the coordinates. We can ensure that this new field � does not change

the predictions of the theory (and is, thus, a genuine auxiliary field) by impos-

ing an additional phase-space constraint �� �
X

i

qi ¼ 0 onto the theory,

which is the infinitesimal generator of the gauge symmetry

qi!e��qi; �!� þ �; ð1Þ

under which the quantity qi ¼ e�qi is clearly invariant. The net effect of this

procedure is to mix up the part of the qi associated with the global scale with

the new field �. The additional gauge symmetry above shows how this auxil-

iary field acts to compensate the (at this moment) artificial dilatational sym-

metry just introduced.

The compensator fields are then used to implement either a fixed or free

variation in a two-step process. First, we define the momenta p, conjugate to q

and ��, conjugate to �, and perform a canonical transformation (that is, a

transformation that preserves the symplectic 2–form on the extended phase

space) from the original coordinates, ðq; �; p; ��Þ, to a set of barred coordin-

ates, ðq; �; p; ��Þ. This canonical transformation is completely determined by

the definition of q and the requirement that � ¼ � (for details, see Gryb and

Thébault [2014]). The effect of this transformation is to effectively mix the

compensator field with the symmetric degree of freedom in such a way that the

barred momentum, ��, represents the momentum conjugate to the symmetric

degree of freedom, as expressed in terms of the new variables.

The second step is to perform the actual variation. How we do this depends

crucially upon the free versus fixed distinction. If the variation is fixed, we

know that the degrees of freedom in the original phase space, (q, p), were all

physical. We should thus only treat the directions associated with the intro-

duction of the compensator fields (and their momenta) as corresponding to

surplus representative structure. This equates to making the variation inde-

pendent of two phase-space degrees of freedom for each compensator field,17

and can be done explicitly by enforcing the canonical restrictions �� ¼ 0. This

condition can be treated using standard gauge theory methods developed by

17 For the remainder of the text, we will count phase space—as opposed to configuration

space—degrees of freedom, as is conventional in canonical approaches to quantum gravity.
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Dirac (Dirac [1964]). Although the details are not important here, the main

result is that the restriction �� ¼ 0 eliminates the extra redundancy introduced

into the theory when adding the compensator fields.18

If the variation is free, then an additional step must be taken since the original

theory already had non-physical redundancies. This step involves adding an

additional constraint to the system that guarantees that the action is independ-

ent of the velocities of the �s. This will ensure that the theory is independent of

any freely specifiable information associated with the symmetric degree of free-

dom, independently of when the end-points of the variation are specified.

Formally, we can express the relevant requirement as the disappearance of

the transformed momentum variable to the compensator field, that is, via

imposing the best-matching constraint equation: �� ¼ 0.

Now, let us try and understand more clearly the role played by the com-

pensator fields after the transformation has mixed them with the symmetric

degrees of freedom. The manifest symmetry requirement states that the action

is invariant under the symmetry in question. In terms of the transformed

compensator fields, this property together with the Euler–Lagrange equations

of the system implies that �� ¼ constant. This means that, in the manifest

case, we always have a conserved quantity. This quantity is called the

Noether charge associated with a global symmetry.

In a fixed variation, this charge is determined by the initial conditions of the

system. For example, if the symmetry in question is represented by linear

translations in space, the momenta of the compensator fields correspond to

the total linear momentum in each of the three spatial directions. Such quan-

tities are, of course, conserved in the evolution of any isolated system and we

thus see that the conservation of the Noether charge relevant to linear trans-

lations simply is the expression of conservation of linear momentum.

Classically, the value of a conserved charge is something definitely determined

once and for all time by the initial state of the relevant system. Quantum

mechanically, however, things are more flexible. Systems can, and generally

do, exist in superpositions of different values of the relevant charge. This is a

direct manifestation of the fact that conservation symmetries are rooted in

physical dynamics, rather than redundant representative structure.

In the free case, however, there is no way to fix the corresponding charge.

Instead, this is done by the best-matching conditions, which force the charge

to vanish.19 This has important implications for the quantum theory. The

18 More explicitly, the condition �� ¼ 0 is a first class constraint that can be gauge-fixed by the

condition � ¼ � ¼ 0, thus eliminating two phase-space degrees of freedom, as outlined in, for

example, (Henneaux and Teitelboim [1992]).
19 In electrodynamics, the best-matching constraint reduces to the usual Gauss constraint, so the

terminology is a bit confusing: this ‘charge’ does not correspond to the usual electrodynamic

‘charge’.
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application of the quantum analogue of the best-matching conditions forbids

the existence of superpositions of eigenstates of that charge, since only the zero

eigenvalue is allowed. Below, we will see how this seemingly innocuous point

becomes essential to understanding time and its denial in the context of quan-

tum theories of gravity.

3 Understanding Time

3.1 Change and order

Things change and time, whatever it may be, certainly is at a minimum a means

for describing this change. Newton was father to a notion of time that gives us

much more than just a measure of change, since his absolute time ‘of itself, and

from its own nature, flows equably without relation to anything external’

(Newton [1962]). Such Newtonian time can be taken to constitute an absolute

temporal background against which both the temporal order of, and the tem-

poral distance between, events is defined, irrespective of any changes that may

take place. Thus, in a universe of no change, it makes sense to distinguish both

the order of and time between events that are, other than their absolutely deter-

mined temporal position, entirely identical. More precisely, we can say that on

the Newtonian view, both the metric (distance) and topological (ordering) struc-

ture of time are fixed absolutely, irrespective of changes in the material universe.

At the other end of the spectrum from a Newtonian notion of time, we can

conceive of a radically relationalist conception along the lines discussed in

Section 1. Recall that, on this correlation view of time—most closely asso-

ciated with the work of Rovelli ([2002], [2004])—all that it is for a physical

degree of freedom to change is for it to vary with regard to a second physical

degree of freedom. There is no sense in which this variation can be described in

absolute, non-relative terms. Within this picture of the world, we explicitly

deny both time’s metric and topological structures. The notion of time one

may recover from change is an inherently arbitrary and approximate one. We

are free to choose any degree of freedom as an internal clock, and such an

arbitrarily chosen clock may, for some finite interval, give us a useful means of

marking both the duration between, and order of, events as defined by cor-

relations between the other degrees of freedom. However, such an internal

clock can only reliably give us an approximation of a temporal ordering since

it may always start to run backwards after some finite interval, and so gener-

ally will not give us an ordering of events in ‘time’ that is globally defined in

terms of a linear sequence; the parametrization is not monotonically increas-

ing. Moreover, such a method of distinguishing one variable as ‘the clock’

inevitably involves neglecting the dynamics of precisely that variable: once the

internal clock choice is made we are no longer able to describe the change in
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that clock’s degree of freedom. This is, in effect, to reduce the dimensionality

of our system by one. Thus, in the context of this strong relationalism about

time, a one-dimensional system is always static, a two-dimensional system is

really a one-dimensional system, and so on.

Under a radical relationalist view, the ontology of time is constrained to be a

very sparse one. Only relative variation exists and there is no fundamental time-

ordering structure, only ordering relative to an arbitrary and approximate in-

ternal clock. Adoption of such a view has direct implications for the metaphys-

ics of time in that it is inconsistent with all three of the notions in the famous

McTaggart schema (McTaggart [1908]). Recall that McTaggart distinguishes

between, the dynamic time of the A-series; the directed, but non-dynamic

B-series; and the ordered but un-directed C-series. The C-series should reason-

ably be taken to be the minimal position since without such structure the richer

metaphysics of time cannot be defined.20 However, the ordering structure

required for the C-series is precisely what is denied within the radical relation-

alist view. Thus, we see that there is a precise sense that radical relationalism

involves giving up time, rather than simply relativizing it. If ordering structure

(C-series change) is taken as an essential feature of the time concept, then since

such a feature is inconsistent with radical relationalism, the view can be

categorized as an essentially timeless one.

Let us now consider a third ontology of time. This viewpoint constitutes a

middle way, with less absolute time structure than the Newtonian, but more

than the radical relationalist. Our starting point is set by the views of Ernst

Mach. Mach both criticized absolute notions of time on epistemic grounds

and put forward a positive account of the kind of temporal structure with

which we are presented. According to Mach, it is ‘utterly beyond our power to

measure the changes of things by time [. . .] quite the contrary, time is an

abstraction at which we arrive through the changes of things’ (Mach

[1960]). Thus, on the Machian view, a consistent notion of time can be ab-

stracted from change such that the inherently interconnected nature of every

possible internal measure of time is accounted for. According to the

Mittelstaedt–Barbour (Mittelstaedt [1976]; Barbour and Pfister [1995]) inter-

pretation of Mach, we can understand this second principle as motivating a

relational notion of time that is not merely internal, but also equitable in that

it can be derived uniquely from the motions of the entire system taken to-

gether. Thus, any isolated system —and, in fact, the universe as a whole—

should have its own natural clock emergent from the dynamics. The Machian

view of time thus involves a relative notion of duration as abstracted from

20 We are very grateful to Matt Farr for making us aware of this connection. See (Farr [2012a],

[2012b], [unpublished]) for insightful comments regarding McTaggart’s C-series, its relation to

the A- and B-Series, and details on the similar conception of time that appears in the work of

(Black [1959]; Reichenbach [1956]).
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change. There is then a clear sense in which we can think of the Machian

relationalist view of time as connected to the radical relationalist view: each

involves a relational view of duration as derived from relative change.

However, for a notion of time to be relational in the Machian sense, it is

not enough to be merely relational; it must also be unique and equitable.

We cannot, therefore, merely identify an isolated subsystem as our relational

clock, since to do so is not only non-unique but would also lead to an inequit-

able measure, insensitive to the dynamics of the clock system itself. This subtle

difference regarding the Machian and radical notions of relational duration

encodes a more extreme difference regarding the status of time ordering. In

assuming that there is a unique method for abstracting duration from change,

the Machian view is also assuming that there is an absolute ordering within the

change; otherwise, the abstraction process would be underdetermined. This

means that the Machian relationalist view involves the assumption of an ab-

solute temporal-ordering structure. The ordering of events is fixed absolutely,

irrespective of changes in the material universe. This is entirely different to the

radical relationalist view where such structure is explicitly forbidden.

Although the metric structure of time is relativized, under the Machian view

the topological structure is presumed to remain absolute.

We thus have three internally consistent views of time, each containing a

different level of absolute time structure: (i) Newtonian (absolute duration,

absolute ordering structure); (ii) Machian relationalist (relative duration, ab-

solute ordering structure); and (iii) radical relationalist (relative duration,

relative ordering). Given a physical theory with time relabelling symmetry,

is there any restriction as to which of the three ontologies we can consistently

interpret the theory in terms of ? Clearly this depends upon the symmetry

categorization scheme that one adopts.

According to one influential view,21 for theories that feature temporal rela-

belling symmetries, radical relationalism is forced upon us by the mathemat-

ical structure of the theories in question. Since the time symmetries present in

these theories are judged, according to the standard classification scheme, to

be gauge symmetries, we are compelled to take the interpretational step of

strong relationalism about time. As indicated above, to us the logic of such

arguments seems a strange one. Reliance upon a purely mathematical pre-

scription to determine our interpretation of the ontology associated with a

physical formalism seems to put the cart before the horse. Moreover, it can

actually be proved that the scheme in question does not apply to at least the

case of theories where global temporal relabelling is a symmetry (Barbour and

21 On this, see, in particular, (Rovelli [2004], Section 3.2.4).
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Foster [2008]).22 Our suggestion is that one should remain agnostic as to the

‘true nature of time’ implied by a physical theory until after one has carefully

considered the relationship between the formalism of that theory and the class

of systems that it is taken to represent. In particular, one must have an under-

standing of the physical basis of the relevant temporal symmetries in terms of

how the characteristic behaviour of the system class is related to the abstract

degrees of freedom, the boundary and initial (or end-point) conditions, and

the nomological restrictions on the evolution. Thus, on our view, it is only

after applying something like our physical prescription for classifying symme-

tries that one is able to consider the interpretation of the formalism in terms of

a temporal ontology.

Let us do this explicitly for the case of a simple finite-dimensional system

where global temporal relabelling is a symmetry. We will consider the more

difficult case of infinite-dimensional systems with local temporal relabelling

symmetry—that is, general relativity—in the following section. The situation

is then this: We have a class of physical systems that have a finite number of

physical degrees of freedom and for which there is no physical difference

between the system passing through a sequence of physical states at different

rates. Such a system may be represented via a slightly adapted version of

Newtonian mechanics called Jacobi’s theory.23 This theory can be constructed

in terms of a configuration space with an identical number of degrees of free-

dom as the corresponding Newtonian configuration space, but with an action

that displays an extra symmetry. This symmetry is reparametrization invari-

ance, and is equivalent to redefining the time parameter used to mark change

between states within the theory.

The key question is then: what kind of symmetry is reparametrization in-

variance. That is, is it manifest? And is it free or fixed? The answer to the first

question is fairly straightforward. Since, by construction, reparametrization

invariance is a symmetry of the action, it can only be considered a manifest

symmetry. What is interesting to note, however, is that the phase-space dir-

ection associated with the symmetry is in fact given by the flow of the energy

function or Hamiltonian. Thus the ‘symmetry direction’ is also the ‘dynamics

direction’.

The next step is to determine whether we are dealing with a conservation or

gauge symmetry by distinguishing whether we have a free or fixed variation.

Again, this is a fairly simple question to answer since, once more by

22 This proof is in addition to independent arguments questioning the role of the Hamiltonian

constraint as the generator of a gauge symmetry (Pons et al. [1997]; Pons and Salisbury [2005];

Pons et al. [2010]; Pitts [2014]). See Section 5.1.
23 This is after the great German mathematician Carl Jacobi. See (Lanczos [1970]) for details of

both the formalism and its historical context. Jacobi’s theory is called ‘relativistic mechanics’ in

(Rovelli [2004]).
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construction, we have a configuration space where all the abstract degrees of

freedom directly correspond to physical degrees of freedom: those of the cor-

responding Newtonian system. Explicitly, since infinitesimal change to the

end-points of the variational principle is in every direction parametrized by

physical degrees of freedom, such variation cannot be done freely. It is fixed by

the characteristic behaviour of the system, in particular the preparation con-

ditions. Thus, reparametrization invariance, or temporal relabelling sym-

metry, is a conservation and not a gauge symmetry.24 This is precisely as

one would expect since, as we have just noted, the phase-space direction

associated with the symmetry is precisely the direction of dynamical change

within the theory. Thus, if the symmetry were a gauge symmetry, then we

should not expect to have any physical dynamics whatsoever since the ‘dy-

namics direction’ would be an otiose representative structure. As we discussed

above, in the case of a gauge symmetry we find identical physical possibilities

being represented in terms of distinct instantaneous states. In this case, the

supposedly identical physical possibilities are dynamically related states. In

interpreting time relabelling symmetry as a gauge symmetry, we would be

interpreting dynamical change as unphysical. In that eventuality, the only

option for an interpretation of the relevant temporal ontology would be the

radical relationalism mentioned above. However, by the lights of our scheme,

such a move is formally unjustified. We do not see temporal relabelling as a

gauge symmetry and so can license an interpretation of theories with such a

symmetry in terms of a more substantive notion of time.

One important point regarding the conservation symmetry classification of

reparametrization invariant theories relates to the interpretation of the role of

energy. As noted above, all conservation symmetries have associated con-

served quantities or charges. For the case in hand, the charge will be equiva-

lent to the energy of the system. This means that the energy of the universe is

interpreted as a constant of motion. This is in contrast to many existing views

whereby, in a reparametrization invariant theory, energy is a constant of

nature. Classically, this difference has no empirical implications; but, quan-

tum mechanically, it implies that we should expect superpositions of energy

eigenstates, as we would usually for conserved charges in the quantum version

of a theory with conservation symmetry. We will return to this feature of what

we call ‘relational quantum theories’ in the following sub-section.25

24 The conserved quantity associated with it varies in interpretation depending on the system in

question. For time-like geodesics in space-time, it corresponds to the mass of the test particle.

For Jacobi mechanics, it corresponds to the energy of the system. In all cases, it is associated

with the constrained Hamiltonian of the system.
25 One might wonder why one shouldn’t expect the energy to simply be zero. At the moment, we

have no physical principle to impose this condition. Indeed, in gravity, the analogue of the total

energy (that is, the homogeneous part of the Hamiltonian constraint) is the cosmological con-

stant, which has been directly observed to be non-zero.
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Before then, we must first consider the interpretational implications of our

conservation symmetry approach to classical reparametrization invariant

theory. Under our symmetry classification scheme, global reparametrization

invariance is a conservation symmetry. The existence of global reparametriza-

tion invariance does not, therefore, motivate us to classify sets of instantan-

eous states as identical. Thus, the interpretation of a theory that displays

global reparametrization invariance in terms of radical relationalism is not

well-motivated by our symmetry classification scheme. Such an interpretation

would involve counting as identical possible instantaneous states that are not,

by our scheme, related by gauge symmetry transformations. Thus, our sym-

metry classification scheme renders an interpretation of the given class of

reparametrization invariant theories in terms of radical relationalism highly

implausible.

Our scheme does not, however, give us means to adjudicate between the two

remaining options. As is typical for a conservation symmetry, we have an

underdetermination of possibilities, and this underdetermination reflects pre-

cisely the difference between the Newtonian and Machian views. Under our

scheme, physical theories that display global reparametrization invariance can

be interpreted in terms of the Newtonian concept of time. Such an ontology of

time involves counting as distinct possibilities histories that are related by a

conservation symmetry.26 On the other hand, under our scheme, physical

theories that display global reparametrization invariance can also be inter-

preted in terms of Machian relationalism. Such a view involves counting as

identical histories that are related by conservation symmetries.

In the end, we are left with an interpretative choice regarding the status of

temporal duration. To make this choice, further arguments in addition to the

categorization of symmetries are need. Here we will adopt the Machian view.

This is because we find the Machian arguments in favour of an internal and

equitable notions of time very plausible. Such arguments are essentially epis-

temological and rely on the fact that the notion of duration we have available

is always derived from change. And since there is no way for us to ever have

access to an absolute duration measure, we would be better off doing without

it. However, by relying on such motivations to do away with absolute dur-

ation, are we not opening the door to a charge of double standards. Is there

not a parallel epistemological worry regarding ordering structure? There

seems to be no possible way for us to ever gain access to this ‘absolute time

ordering’ and so its adoption also seems to involve a rather strong metaphys-

ical act of faith. There are two obvious ways of addressing this worry.

26 Of course, this is unless one was to adopt some sophisticated form of ‘temporal substantivalism’

where, via the introduction of anti-Haecceitist reasoning about temporal points or otherwise,

the possibility counting matches that of the Machian (see Thébault [2012a], [2012b]).
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First, rather pragmatically, we can simply note that time ordering does

appear to correspond to part of our physical formalism, and so unless we

can find an empirically adequate re-formulation without it, we have no

good cause to question its status. There is, of course, a rather impressive

precedent for the use of background structures to solve pressing theoretical

problems, namely, Newton’s use of absolute space to give a coherent formu-

lation of the principle of inertia (Rynasiewicz [1995a], [1995b]; Pooley [forth-

coming]). And, in any case, if metaphysical minimalism is taken to be the main

motivation for the elimination of non-empirical backgrounds, then accepting

the fairly thin notion of a time ordering background is far more palatable than

a full-strength Newtonian-style notion of time.

More ambitiously, we could accept that time ordering should be founded in

accessible features of our theory, but that perhaps the arena for doing this is

quantum and not classical theory. It is possible that the process by which

temporal ordering in classical physics emerges is connected to the classical

limit of a fundamental quantum theory or even a broken symmetry in such a

theory. A (rather technical) example that suggests the plausibility of this idea

is in quantum field theory, where a monotonic ordering is naturally encoded in

the renormalization group (RG) flow near a conformal fixed point. Thus, the

RG flow equation of a such a field theory could be reinterpreted as a time

evolution equation in a shape dynamics theory. A simple toy model featuring

such behaviour was studied in (Barbour et al. [2013]). Furthermore, there are

exciting indications that a similar scenario could be used to reproduce certain

models of inflation (McFadden and Skenderis [2010]). However, many inter-

esting open questions remain, and such suggestions are still very tentative.

Given these two prospective justificatory strategies, let us accept, for the

time being at least, that our middle-way, succession-as-absolute-and-

duration-as-relative ontology of time can be coherently philosophically

defended. What fruits can it bear when brought back into the domain of

physical theory? Can it give us new insights into the nature of time in relational

quantum theories?

3.2 Quantization and succession

In the previous section, we defended both the classification of temporal

relabelling symmetries as conservation symmetries, and the interpretation of

theories with such symmetries in terms of a temporal ontology within which

duration is relative but succession absolute. Each of these moves gains signifi-

cance for the future development of physical theory when seen in the context

of quantization. This is particularly clear when considering the so-called prob-

lem of time that arises within attempts to quantize general relativity, but is also

the case for simple globally reparametrization invariant models. The temporal
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relabelling symmetries of such models should, according to conventional clas-

sification schemes, be understood as gauge symmetries. This means that

quantization, whether achieved via the voluntary redundancy route detailed

above or otherwise, leads to a quantum theory in which the phase-space dir-

ections defined by the flow of the Hamiltonian vector field are treated as

unphysical and, correspondingly, the quantum system is restricted to a zero

eigenstate of the relevant charge. For the case of globally reparametrization

invariant models, this is explicitly equivalent to treating dynamical directions

as unphysical and to restricting the system to a single zero energy eigenstate.

Thus, the classification of global temporal relabelling symmetries as gauge

symmetries leads directly to a frozen quantum formalism. The only ontology

we can associate with such a picture is that of radical relationalism; we are left

without time.

The alternative, for which we are arguing, is to treat global temporal rela-

belling as a conservation symmetry. The problem is then how to quantize the

theory such that both the reparametrization symmetry and absolute temporal

succession structure is retained. This is where the methodology of voluntary

redundancy comes into its own. To our knowledge, the only way to achieve

quantization of a classical model such that time remains in the sense desired is

to use this method. Explicitly, what we do is choose a particular extension of

the phase space such that our single configuration compensator field, �, has a

canonical conjugate, �t, proportional to the energy of the system (for more

details, see companion paper (Gryb and Thébault [2014])). Our single con-

straint is then constructed by the combination of the original Hamiltonian and

the new momentum variable, so we have Hðqi; piÞ þ �t ¼ 0. As discussed in

Section 2.3, imposition of this constraint leads to a variational principle de-

pendent upon all but two of the degrees of freedom (that is, precisely the

number we started with). The quantum theory we reach by applying standard

methods then preserves these physical degrees of freedom faithfully in that it

allows their quantum analogues to change independently of each other.

Furthermore, as expected, the quantum theory we arrive at is such that we

can represent states in superpositions of eigenvalues of energy since

total energy is the Noether charge associated with our conservation symmetry.

Our quantum formalism can thus accommodate fundamental temporal struc-

ture associated with succession via the parametrization chosen to distinguish

the distinct energy eigenstates. However, since this parametrization is arbi-

trary, unlike in conventional quantum theory, there is no preferred classical

temporal background that fixes a notion of duration. Time remains, but only

in the form of succession. Because time is retained in a relational sense, we call

this procedure for the quantization of theories with global reparametrization

symmetries ‘relational quantization’. From our perspective, it is one of the
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crucial ingredients in the construction of a genuinely dynamic theory of quan-

tum gravity that is consistent with the Machian view of time.

4 Time and Gravitation

4.1 The two faces of classical gravity

Our description of the universe is replete with different scales, from the un-

imaginably small distances of particle physics up to the unimaginably big

distances involved in modern astronomy and cosmology. The theories rele-

vant to these domains have one important feature in common: they treat such

scales as an absolute background structure. Thus, in almost all modern phys-

ical theory, if we uniformly double the lengths involved, the phenomena will

change.27 Such scale dependence is also part of our best theory of gravity:

general relativity. Although the theory incorporates a huge amount of descrip-

tive freedom, it still privileges length scales. Interestingly, however, the type of

argument that drove Einstein to try and eliminate coordinate dependence

from Newton’s theory of gravity also motivates us to eliminate scale depend-

ence from Einstein’s. Just as he argued that we have no empirical access to

absolute coordinate structures, only relative ones, we may argue that we have

no empirical access to absolute scale structures, only relative ones.

There are at least two distinct ways in which scale can enter a theory: the

first is through the presence of dimensionful couplings, while the second is

through the conformal factor of the metric (since this carries information

about the absolute lengths of vectors). The former notion of scale invariance

is intimately related to the renormalization group (RG) flow of a particular

theory because it is the fixed points of the RG flow that are characterized by

only dimensionless numbers. The latter is tied to geometry and whether or not

lengths are preserved under parallel transport. In particular, invariance under

local length scales can be expressed by requiring that gauge-invariant observ-

ables be invariant under the local symmetry

gabðxÞ! e�ðxÞgabðxÞ; ð2Þ

which is called a local Weyl or, often, a conformal transformation. Although

both notions of scale invariance should be required in a truly scale-invariant

theory, we will mostly be concerned with the more modest goal of implement-

ing local Weyl invariance within our framework, leaving the more technically

challenging problem of understanding the ultraviolet properties of our frame-

work for the future.

What remains to be seen is to what extent local scale invariance can be

implemented within a physically viable theory. Weyl’s early attempts at a

27 More specifically, the Higgs and gravitational sectors are not conformally invariant.
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four-dimensionally scale-invariant theory of gravity (Weyl [1922]) were ultim-

ately unsuccessful, in terms of leading to a theory of quantum gravity, because

of strong indications that the theory is unstable. Although work in this vein is

ongoing (Mannheim [2012]; Hooft [2010]), there are still significant issues to

be overcome.

Here we will outline a proposal, different from Weyl’s, which seeks to

implement both a Machian notion of time, and a three-dimensional version

of local scale invariance. The two ideas are in fact naturally connected. As has

been argued in (Barbour [2012]), Mach’s general stance of epistemic scepticism

with regard to non-relational concepts should lead us to the conclusion that it

is the local scale-invariant ‘shapes’ of instantaneous configurations of the

universe that should be taken as fundamental. These shapes can be determined

by local observers through measurements of angles, which are what is taken to

be fundamental on this view. The fundamental character attributed to angles

can be justified through a simple epistemological observation: all measure-

ments of lengths are, necessarily, local comparisons. Thus, real experiments

only ever measure ratios of lengths in some local region, then use these local

measurements to deduce lengths for distant objects. Such arguments can be

used to justify the expectation that real experiments should be insensitive to

local spatial Weyl transformations in the form of Equation (2), which do not

change the result of local measurements of ratios of lengths. What is left after

removing the information about absolute local lengths are simply local angles.

In order for our definition of angles to be meaningful, there must exist a

preferred notion of global time through which the instantaneous configur-

ations can be defined. This is for the simple reason that spatial angles are

clearly not invariant under local boosts or, more generally, under foliation-

changing space-time diffeomorphisms. Thus, we can see intuitively that the

local temporal relabelling symmetry (which we understand to be explicitly

foliation changing) is in conflict with three-dimensional scale invariance.

Just as observers using the space-time picture of gravity must assume the

information about scale for distant objects, observers using the scale-invariant

picture must assume information about time for distance clocks by choosing a

preferred time foliation.

Here we will examine this apparent conflict and offer conceptual founda-

tions for its resolution (following the more formal arguments of (Gomes et al.

[2011])) by showing that these are really complimentary, and not conflicting,

pictures of reality. The first step in our reasoning relies upon the notion of

hidden symmetry which has already been discussed briefly above. To recap,

the idea is to identify, for a particular theory, a direction in which there is no

manifest symmetry and the variation is free. In this case, it is possible that

there is a hidden symmetry in the system. This can only happen if there is

another manifest symmetry in the theory that has a particular type of formal
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relationship with the one at hand.28 If this is the case, the elements of the

formalism can be modified (without changing the physical predictions of the

theory) in such a way that the first symmetry becomes manifest. Intuitively,

one can think of these as transformation that redistribute scale from one

region to another in a way that is very similar to what happens to the two-

dimensional surface of a balloon when the balloon is squashed or deformed.

By definition, hidden symmetries can only be identified when there exists an-

other symmetry which is manifest and has the required formal relationship

such that the two sets can be understood as dual to each other. For the case in

hand, the relevant dual to the scale symmetry is almost all of the foliation

symmetry. This means that if we symmetry trade such that the hidden volume

preserving scale transformation symmetry becomes manifest, we simultan-

eously switch to a theory with merely global, rather than local, time relabelling

symmetry (this corresponds to a single, non-local Hamiltonian constraint).

Specifically, what was proven in (Gomes et al. [2011]) is that there exits two

theories on the phase space of general relativity that are physically equivalent

but have different symmetries: one is the standard ADM theory, which is

foliation invariant, and the other is shape dynamics, which is invariant

under (volume preserving) conformal transformations. The physical equiva-

lence of the formalisms is expressed by the fact that there is a special gauge

choice in both theories where the dynamical trajectories on phase space are

identical, given some valid initial data. It is possible, however, for these the-

ories to differ if, for whatever reason, there are global obstructions to impos-

ing the special gauges in both frameworks. These possibilities have been

explored, for instance, in the case of black holes (Gomes [2014]).

Once symmetry trading is completed, the theory we get has a neatly divided

set of symmetries: volume-preserving conformal transformations and spatial-

diffeomorphism symmetries can be classified as gauge symmetries; and global

time-relabelling can be classified as a conservation symmetry. This package of

symmetries provides a clear constraint on the possible interpretations since it

entails that spatial diffeomorphism and three-dimensional conformal trans-

formations connect physically identical instantaneous states, and leaves upon

the interpretation of the global time-relabelling symmetry. This is in contrast

to the symmetry package of general relativity. As discussed in Section 1, there

we have (i) spatial diffeomorphism symmetry; and (ii) local time relabelling

symmetry. The first of these corresponds to a manifest free variation and thus,

under our definition, is a gauge symmetry and thus involves transformations

between physically identical instantaneous states. This point is fairly uncon-

troversial (however, see Pitts [2013], [2014]). Local time relabelling symmetry

28 The formal requirement is that the constraint surfaces corresponding to the symmetries are

‘orthogonal’—that is, second class—on phase space. For the general theory behind symmetry

trading, see (Gomes and Koslowski [2012]).
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or re-foliation symmetry, on the other hand, in our scheme corresponds to a

(very complicated) manifest fixed variation. This means that there is scope for

a much greater degree of underdetermination regarding the implications of the

symmetry for possibility counting: the group of local time relabelling symme-

tries has an infinite number of parameters, the group of global relabelling

symmetries only has one. Our categorization is in contrast to the standard

scheme where re-foliation is classified as a gauge symmetry, and thus, sup-

posedly, gives us a means to identify physically identical instantaneous states.

However, the sense in which re-foliations can be understood as connecting

physically identical instantaneous states is a notoriously subtle and heavily

qualified one (Thébault [2012b]; Pitts [2014]). Thus, the strength of our clas-

sification scheme in this instance is that it leaves unresolved an ambiguity

regarding the implications of the symmetry for possibility counting, exactly

where it exists in practice.

Let us recapitulate: There exists a unique formal move that allows us to

re-describe gravitational systems in a fundamentally different way. In the

language introduced earlier, we have an underdetermination of symmetries.

This first level of underdetermination is regarding a choice between two pack-

ages of symmetries. According to our understanding of symmetries, there is

then also an underdetermination of possibilities depending upon how we

interpret the conservation symmetries within the two packages. If we wish

to break such underdetermination, further motivations are needed.

We saw earlier that there are good Machian motivations for breaking the

underdetermination of possibilities as related to global time-relabelling. Thus,

as far as the shape dynamics package of symmetries is concerned, we have a

means to fix the interpretation of gravity fairly precisely. Let us consider a

strategy for breaking the underdetermination of symmetries and see if we can

motivate passage to the shape dynamics formalism. Above we argued that, in

order to classify the symmetries relevant to a class of systems consistently, we

must first specify precisely what the relevant physical degrees of freedom and

preparation conditions are. This translates into asking what degrees of free-

dom are independently specifiable on the boundary of the variation or, in the

case in hand, ‘What is fixed on the boundary in the action principles of general

relativity?’ This question was posed by Wheeler to York, and is addressed in

(York [1986]). Our view corresponds to that taken in Section 4 of that paper:

what is fixed on the boundary is (i) a three geometry invariant under scale and

coordinate labelling symmetries; and (ii) the mean of the York time variable

(which is canonical conjugate to the spatial volume). We will refer to this

identification of the independent degrees of freedom of gravity as York’s

ontology. We take these variables to faithfully parametrize the characteristic

behaviour of gravity and, thus, take their variation to be of the fixed kind,

while variation with respect to all other variables is free. York’s identification

Time Remains 695

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/67/3/663/1753564 by guest on 03 June 2020

categorisation 


of a locally scale-invariant three geometry as a variable to be fixed in the

variational principle of gravity is consistent with the principle of scale invar-

iance just argued for on the basis of Mach’s principles. However, one might

note that York’s second requirement—to keep the variable conjugate to the

spatial volume fixed—is in direct conflict with the global principle of scale

invariance. Our view on this will be rather pragmatic at this stage. The fixing

of this York time can be motivated by the directly observable red-shift, which

is undeniably part of the characteristic behaviour of gravity. However, on

Machian grounds, one might expect the red-shift to result as an emergent

phenomenon from a fully scale-invariant theory. In this eventuality, we

would still expect York’s proposal to be valid in some effective limit in the

quantum regime. However, since a concrete proposal where such a scenario is

realized has not yet be developed, we will consider York’s ontology directly.

From the York perspective, canonical general relativity has the rather un-

desirable features of not having manifest invariance under volume preserving

conformal transformations, not being a conventional gauge theory with re-

spect to diffeomorphisms, and not varying the York time in fixed manner. The

first two difficulties can be resolved by noting that the volume preserving scale

transformations are a hidden symmetry of the canonical version of general

relativity (as we have just noted). The last difficulty can be dealt with using our

proposal for relational quantization procedure, detailed in the previous

section.

Before we embark on the final phase of our analysis and detail our specific

proposal for time in a substantive sense, to remain within a theory of quantum

gravity, let us take a moment to consider the philosophical consequences of

symmetry trading on the way we should think of the ontology of classical

gravity. The traditional understanding of general relativity (in canonical terms

or otherwise) is as a theory of space-times invariant under space-time diffeo-

morphisms. This is essentially the ontology for gravity that was implied by

Einstein’s seminal work in the early part of last century, and which is still one

key pillar of the scientific understanding of the universe. That this theory has

a unique and robust formal correspondence or duality to another theory

of gravity, which (under certain restrictions) has the same physical

consequences, is highly non-trivial.29 As mentioned in the introduction, on

our view it is taken to imply that gravity is essentially Janus-faced. From this

perspective, we should see the Einstein ontology of diffeomorphism invariant

four-dimensional space-time geometries as only one face of gravity. The other,

newly unveiled face is constituted by the ontology proposed by York: se-

quences of three-dimensional spatial geometries, accompanied by the

29 These restrictions amount to global foliability conditions of the space-time by foliations, where

the trace of the extrinsic curvature of the hypersurfaces, as embedded into the space-time, is

constant.
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specification of the York time variable, and invariant under both diffeo-

morphism and scale transformations.

The situation of dual theories that are empirically equivalent, yet

ontologically radically different is one of great interest within the

philosophy of science since it seems to imply a particularly pernicious species

of underdetermination.30 Interestingly, the case that has garnered the most

interest in the recent literature (Dawid [2007]; Rickles [2011]; Matsubara

[2013])—that of the anti-de Sitter/conformal field theory correspondence in

string theory/conformal field theory—is also one in which the two dual the-

ories are, respectively, a diffeomorphsism invariant theory of gravity and a

theory invariant under conformal transformations.31 However, one would not

have expected that such striking, and perhaps worrying, underdetermination

scenarios could crop up in one of our most established physical theories. Yet,

for our purposes, this seeming theoretical vice will prove a virtue. It is only by

recognizing the second, scale-invariant face of gravity that we can forge a new

path towards quantization without sacrificing time.

4.2 Retaining succession in quantum gravity

As was argued for extensively in Section 2, correct identification and treatment

of the physical degrees of freedom, and in particular their boundary variation

behaviour, is essential to a faithful quantization of any physical theory. One of

the major impediments to the quantization of gravity has been that, in

canonical form, the symmetry and dynamics of the theory are ‘deeply

entangled’.32 In the language of Section 2, this corresponds to the ‘fixed’

and ‘free’ aspects of the manifest symmetry being mixed together. Here we

make no attempt to tackle the fearsome, and as yet unsolved, problem of

disentangling the physical from gauge variations within the theory. Rather,

given the ‘gravity is Janus-faced’ revelation detailed above, we may simply

turn to the alternative scale-invariant formalism for classical gravity and hope

30 See (French [2011]) for a excellent overview and analysis of various notions of ‘metaphysical

underdetermination’ leading towards a motivation of the philosophical viewpoint of ‘onto-

logical structural realism’; see (Pooley [2006]; Thébault, [2012], Section 19) for discussion of

the problems that the radically different ontologies found within theories of gravity may pose for

the position.
31 Indeed, it has recently been argued (Gomes et al. [2013]) that the ‘bulk-bulk’ equivalence of

shape dynamics and general relativity can be used as an explanation for certain limiting regimes

of the AdS/CFT correspondence.
32 Formally, this facet is encoded within the non-trivial structure of the Dirac–Bergmann con-

straint algebra—in particular, that the bracket between two Hamiltonian constraints only closes

with structure functions is indicative of the dual dynamics-symmetry aspect of these constraints.

The constraint algebra of shape dynamics (and the relationally quantized theory), on the other

hand, is a genuine Lie algebra, and so a clear formal distinction between symmetry and dy-

namics can be made.
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for a simpler representation of the relevant symmetries more amenable to

quantization.

Starting with the canonical, or ADM, formulation of general relativity,

symmetry trading yields a theory with the following manifest symmetries: (i)

three-dimensional spatial coordinate invariance; (ii) three-dimensional (spa-

tial volume persevering)33 spatial conformal invariance; and (iii) invariance

under one-dimensional global time-relabelling (or reparametrization). If we

interpret this formalism in York’s terms, as discussed above, then we arrive at

a unique and unambiguous specification with regard to which of these sym-

metries correspond to free variations of the physical degrees of freedom at the

boundary. By our symmetry classification scheme, such degrees of freedom

are unphysical otiose variables. By construction, the York specification of

boundary data is insensitive to variation of the (volume-preserving ) confor-

mal and coordinate modes of the three-dimensional metric tensor that char-

acterizes three-dimensional spatial geometries. Thus, symmetries (i) and (ii)

are identified as gauge symmetries. Then we find, in correspondence with the

discussion of Section 3, that the reparametrization symmetry (iii) is of the fixed

kind. Thus, our prescription for quantization implies that we should introduce

two global degrees of voluntary redundancy that parametrize the direction

associated with the function that generates the reparametrization symmetry.

As for the simple particle case, this function is a global Hamiltonian, and this

means that our extra variables are a time-ordering label and a conserved

charge associated with the ‘total energy’. We then append the second of

these to the Hamiltonian to get an extended, but physically equivalent, for-

malism, which then can be quantized (at least in formal terms) via standard

methods.

What we have gained in this rather circuitous route of symmetry trading,

arbitrary extension, and quantization, is simple to state: we are now equipped

to represent the state of the universe at different times. This is because, as for

the particle case, we are able to take superpositions of energy eigenstates and

consider the independent evolution of observable operators. And yet we have

not introduced a Newtonian-style background time into the theory. Time

labellings are encoded in the arbitrary parameter that was introduced into

the theory during the extension procedure, and so are neither fundamental

nor observable. Rather, the temporal structure that this formalism for quan-

tum gravity contains is precisely the temporal succession structure we asso-

ciated with the ideas of Mach above. As was noted in the opening section, we

should not think of such a ‘temporal topological background’ as being entirely

alien to general relativity since it is implicit within the canonical formalism at

33 For the case of open spatial topology, this global restriction turns into a specification of asymp-

totic boundary conditions (Gomes and Koslowski [2012]).
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least (in terms of the positivity requirement on the lapse multiplier).

Moreover, it is only by retaining such structure that, in the case of gravity,

we can hope to preserve genuine change and avoid radical relationalism with

regard to time, as we have been advocating.

Our proposal for the quantization of gravity thus involves two substantive

interpretative moves: first, the switch from the Einstein ontology (as implied

by the general relativity formalism for gravity) to the York ontology (as

implied by the shape dynamics formalism of gravity); second, the promotion

of time-ordering (or topological) structure from an implicit formal to an ex-

plicit background feature. Both individually, and as a package, we can provide

a range of motivations for these non-trivial steps.

Most straightforwardly, there is the motivation from pragmatism: by follow-

ing our prescription one opens up new strategies for theory development, and

this, in the end, might be argued to be the true goal of foundational research.

It remains to be seen precisely what lasting value the much vaunted ‘spirit of

general covariance’ will prove to have as a heuristic for future theory construc-

tion. It may prove pivotal, or it may prove to have been misleading. Thus, if new

and viable theoretical avenues can be opened up by reinterpreting symmetry in

the context of gravity, we would be churlish to entirely ignore them since they do

not sit conformably with an existing abstract principle, no matter how funda-

mental it may currently appear to be. We should not let fetishism for

four-dimensional space-time diffeomorphism invariance be a bar to potential

progress.

Furthermore, over and above the conceptual novelty of our proposal, it

provides several notable formal advantages. In traditional approaches to the

quantization of gravity (that is, the Wheeler-DeWitt-type approaches), the

resultant quantum formalism is such that only one energy eigenvalue is

allowed. Evolution of the quantum states can then only be obtained by depar-

ametrizing with respect to a degree of freedom, in the choice of which one

must make an arbitrary decision. The definition of the functions used to rep-

resent observable quantities in the theory depend on this choice and, even for

simple models, can lead to extremely complicated expressions. Through our

approach, we arrive at a formalism where there can be superpositions of

energy eigenstates, and the evolution of the full state can be given with respect

to the auxiliary time label. Thus, the evolution does not depend on any arbi-

trary choice of auxiliary time label. The identification of the relevant observ-

ables is then also non-arbitrary, and is technically much easier (because of the

time-independence of the Hamiltonian).

Finally, in addition to conceptual novelty and formal tractability, there is

the simplest motivation of all: the motivation from time. It seems to be a basic

requirement that, in one way or another, we are able to abstract some concept

of time from our physical formalism. Without it our physics would simply fail
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to be descriptively adequate. If the only approach to the quantization of grav-

ity were via a timeless formalism, then it would perhaps be fair to insist that we

must make do with the conceptual paucity of time merely as relative variation.

However, given that there is a viable alternative route towards quantization—

via symmetry exchange and relational quantization—the conceptual cost

incurred by taking it should be counted as naught next to the benefit of re-

taining a minimal, yet substantive, concept of time.

5 Discussion

5.1 Related arguments

Here we would like to highlight related arguments appearing in recent work (Pitts

[2014]), in addition to closely connected earlier observations (Pons et al. [1997],

[2010]; Pons and Salisbury [2005]). In certain key respects, these authors reach

conclusions regarding time in general relativity that are closely related to our

own. In particular, for them as for us, the Hamiltonian constraint of general

relativity is not understood to generate a gauge transformation, in the sense

described by a local symmetry of the Lagrangian. The arguments of these authors

focus upon the idea that, to get the Hamiltonian framework to match up with the

Lagrangian notion of gauge symmetry, primary constraints must work in tandem

with their associated secondary constraints to produce a genuine notion of gauge

transformation. Although in many respects such arguments support essentially

the same conclusions as those presented here, the chain of reasoning involved is

largely independent. Contrasting and comparing the two approaches in a more

detailed way would be an interesting topic for further study.

5.2 Concluding remarks

The aim of this article was to argue that there are strong formal and philosoph-

ical reasons to expect time to remain within any theory of quantum gravity.

Although the temporal symmetries of classical gravity are subtle, such that the

redundant and physical aspects of the formalism are entangled, there does exist

a precise formal recipe for making the unambiguous distinction needed for a

faithful quantization. This recipe relies not just upon the technical notions of

symmetry trading and relational quantization discussed here (and presented

more formally elsewhere), but also upon two quite general and simple philo-

sophical morals; first, that physics is not mathematics—it is our understanding

of how the physical formalism relates to the world that should govern our

interpretation of its mathematical structures and not vice-versa; second, that,

at base, time has two aspects, metric and topological. While the first does seem

in conflict with the relational and ‘background free’ aspects of time in general
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relativity, the second appears implicitly even within the Einstein formalism.

Furthermore, when seen in the context of our shape dynamics plus relational

quantization proposal, topological or time-ordering structure plays an import-

ant and unambiguous role: it is The Remains of Time in quantum gravity. As

such, the virtues of a programme towards its conservation are self-evident.
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