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ABSTRACT. I analyse the conceptual and mathematical foundations of Lagrang-
ian quantum field theory (QFT) (that is, the ‘naive’ (QFT) used in mainstream
physics, as opposed to algebraic quantum field theory). The objective is to see

whether Lagrangian (QFT) has a sufficiently firm conceptual and mathematical basis
to be a legitimate object of foundational study, or whether it is too ill-defined. The
analysis covers renormalisation and infinities, inequivalent representations, and the

concept of localised states; the conclusion is that Lagrangian QFT (at least as de-
scribed here) is a perfectly respectable physical theory, albeit somewhat different in
certain respects from most of those studied in foundational work.

1. INTRODUCTION

From its beginning, quantum field theory (QFT) has been plagued
with mathematical difficulties. Any attempt to apply the theory to
interacting systems led to the appearance of infinities, and although
methods were found1 to remove those infinities from the calculated
cross-sections by cutting off certain integrals at finite (though very
high) energies, these methods had a sufficiently ad hoc feel that the
theory was not felt to be on remotely satisfactory conceptual ground.

From the 1950s onwards, there has been a major program to re-
solve this problem by reformulating QFT on an axiomatic basis: that
is, starting from what seem to be physically necessary – and mathe-
matically precise – principles which any QFT would have to satisfy,
and then finding QFTs which actually satisfy them. This program is
now generally referred to as algebraic quantum field theory (AQFT);
see Haag (1996), and references therein, for extensive discussion of it.

The major problem with AQFT is that very few concrete theories
have been found which satisfy the AQFT axioms. To be precise, the
only known theories in four dimensions which do satisfy the axioms
are interaction-free: no examples are known of AQFT-compatible
interacting field theories, and in particular the standard model cannot
at present be made AQFT-compatible.
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Nonetheless, the great majority of foundational discussions of
QFT are carried out in an AQFT framework, for obvious reasons:
the precise axiomatic nature of AQFT makes it ideal for foundational
study, since we can specify with mathematical precision exactly what
the entity is that we are studying.

Meanwhile, the mainstream physics community has continued to
work with what we might call (for want of a better name)
‘Lagrangian’ QFT, the original QFT developed in the 1930s and
whose infinities were tamed (at least pragmatically speaking) in the
1950s. In Lagrangian QFT, an entirely different program exists for
understanding those infinities, in terms of the renormalisation group;
this program, due primarily to Wilson, does not eliminate the finite
cutoffs introduced to deal with the infinities, but rather attempts to
‘legitimise’ them. It is in the framework of Lagrangian QFT that the
Standard Model is formulated.

This paper is an investigation of whether Lagrangian QFT is
sufficiently well-defined conceptually and mathematically that it too
can be usefully subjected to foundational analysis. The reasons for
making such an investigation are threefold. First, the problem with
restricting our foundational studies to AQFT is that – pending the
discovery of a realistic interacting AQFT – we have only limited
reason to trust that our results apply to the actual world, which
appears to be described rather well by the Standard Model.

One response to this criticism is to say that Lagrangian QFT is so
mathematically ill-defined that we cannot regard it as a proper theory
at all, so we cannot trust its results either! Our second reason for the
investigation is then to see whether this criticism is justified.

The third motivation is somewhat more philosophical. Wilson’s
explanation of the renormalisation procedure relies upon the failure of
the QFT to which it is applied at very short distances. It is then
intriguing to askhow toputonafirmconceptual footing a theorywhich
relies for its mathematical consistency on its own eventual failure.

The structure of the paper is as follows. Section 2 reviews the
definition of a Lagrangian QFT. This definition is very formal and
mathematically totally ill-defined; Sections 3 and 4 address this
problem, dealing respectively with renormalisation and with the
existence of inequivalent representations of the observable algebra.
Section 5 considers the problem of how to define local objects in
QFT. This is also a problem in AQFT and much of this section’s
argument applies in that domain; however, the framework of Sections
2–4 offers some interesting insights. Section 6 is the conclusion.
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Three comments should be made before the main part of the
paper:

1. This paper is not intended as an attack on the AQFT program.
The program to construct an AQFT-compatible interacting field
theory is well-motivated and, if successful, would be of enormous
import; the foundational results which have emerged from AQFT
have been of considerable importance in understanding QFT and
in general they apply also to Lagrangian QFTs. This paper should
be read as complementary to, rather than in competition with,
these results.

2. There is a strong tradition in foundational studies of QFT to treat
the theory from an operational viewpoint, formalised by regarding
the local algebras of AQFT as describing operations which can be
carried out by an observer localised in a given region. This paper
does not follow that viewpoint: it treats QFT instead as a closed
theory (a ‘universal theory’ in Deutsch’s (1985) sense), and regards
measurement devices, observers, etc. as just subsystems of the
QFT state. This difference of approach has only limited signifi-
cance for most of the paper but is important in Section 5.3.

3. Although much of the discussion below applies equally to bosonic
and fermionic field theories, the specific examples discussed are
exclusively bosonic.

2. WHAT IS A LAGRANGIAN QFT?

For better or for worse, most canonical QFTs are found by starting
with a classical field theory and then ‘quantising’ it. To be sure, there
is something intellectually unsatisfactory about this: given that
quantum theory is the more fundamental theory, we would prefer to
work in the other direction, that is, to recover classical field theories
from quantum starting points (see Deutsch (1984) for a development
of this criticism). Nonetheless, the classical starting point has proven
a powerful method for finding QFTs, and we adopt it here.

2.1. Classical Field Theories

A classical relativistic field theory can be considered as consisting of a
relativistic space time M (such as Minkowski spacetime), a set of
fields (that is, maps fromM to some other space, such as the real or
complex numbers2), and a Lagrangian density: a real-valued function
L onM whose value at a given point x depends only on the fields and

CONCEPTUAL STATUS OF LAGRANGIAN QFT 35



their first partial derivatives, evaluated at x. For a given region D of
M, we define the action SD as the integral of L over D; SD is thus a
functional of the fields, and we define the dynamically allowed field
configurations within D to be those for which SD is extremal under
variations of the fields which vanish at the boundary of D.

To go further, it is necessary to takeM to be globally hyperbolic,
and then to fix a foliationM¼ R�R: Let R1;R2 be any two spatial
slices in the foliation, with associated time coordinates t1; t2 respec-
tively; let the spacetime region between the two slices be D12. If the
fields are required to fall off rapidly enough at spatial infinity, then we
can define the action SD12

:

ð1Þ SD12
¼
Z
D12

d4lL ¼
Z t2

t1

dt

Z
R
d3lðtÞL

where d4l is the four-dimensional volume element onM and d3lðtÞ is
the induced three-dimensional volume element on R. As the notation
indicates, the three-volume element is in general time-dependent;
however, whenM has a time-translation symmetry then we can al-
ways choose a foliation such that this time-dependence vanishes.

We can now define the Lagrangian LðtÞ of the theory by

ð2Þ LðtÞ ¼
Z

R
d3lðtÞL:

L is now a functional of the fields on R and their time-derivatives, and
the action SD12

is given simply by

ð3Þ SD12
¼
Z t2

t1

dtLðtÞ;

so the field theory is now in Lagrangian form (albeit infinite-dimen-
sional).

The final step before quantisation is to transform from Lagrangian
to Hamiltonian form, which we do by a straightforward infinite-
dimensional generalisation of the Legendre transform in classical
mechanics: to each field /i we associate a conjugate momentum field
pi by

ð4Þ piðxÞ ¼
dL

d _/iðxÞ
;

and we define the Hamiltonian H by

ð5Þ H½/; p� ¼
X
i

Z
R

piðxÞ _/iðxÞ � L½/; _/�;
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where _/i is defined implicitly in terms of the pi, via (4). Points in the
phase space P of the field are then given by specifying sets of func-
tions ð/i; piÞ (for all i); it is easy to check that the dynamics are given
by Hamilton’s equations, as in the finite-dimensional case:

ð6Þ _/iðxÞ ¼
dH

dpiðxÞ
;

ð7Þ _piðxÞ ¼ �
dH

d/iðxÞ
:

The Poisson bracket on P is given by

ð8Þ A½/;p�;B½/; p�f g

¼
X
i

Z
R
d3x

dA
d/iðxÞ

dB
dpiðxÞ

� dA
dpiðxÞ

dB
d/iðxÞ

� �
;

and /i and pi obey natural infinite-dimensional analogues of the
canonical relations: /iðxÞ;/jðyÞ

� �
¼ piðxÞ; pjðyÞ
� �

¼ 0 and /iðxÞ;f
pjðyÞg ¼ di;jdðx� yÞ:

Before going on to quantise this theory, we make two observa-
tions:

1. Despite the somewhat casual approach of this section, classical
field theories have perfectly well-defined Lagrangian and Hamil-
tonian forms, and the above analysis can be carried out in a fully
rigorous way; see chapter 7 of Woodhouse (1991), Chapter 3 of
Marsden and Ratiu (1994) and references therein for such an
analysis. In this more rigorous approach it is necessary to replace
the point functionals /iðxÞ and piðxÞ with smoother functionals on
phase space, and to eschew use of the delta-function Poisson
bracket between such point functionals; such objects have a status
not dissimilar to that of position eigenstates in non-relativistic
quantum mechanics (NRQM), in that they cannot easily be rig-
orously defined but (if used with a little caution) are of great
conceptual and calculational convenience.

2. The almost immediate introduction of a foliation ofM may cause
some readers to worry about violation of relativistic covariance.
However, recall that each point in P defines a unique trajectory
through P, so that we may set up an isomorphism between phase-
space and the space of all solutions to the field equations. The
latter space is covariant (in the sense that it can be defined without
use of any preferred foliation) and if desired all talk of ‘phase
space’ may be reinterpreted as talk of solution space.
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Both of these points are developed further in Wald (1994) (from an
AQFT perspective, and in the somewhat restricted context of free
fields).
For convenience, in the remainder of this paper we assume that we
are dealing with a single real field, and so drop the subscripts on /
and p; this has no significant consequences.

2.2. Quantisation: Observables

In an ideal world, quantisation would work as follows: it would yield
a Hilbert space H, together with a map Q from the functions on P
(which can be thought of as the classical observables) into the space
of self-adjoint operators onH. Q would have the property that, if f; g
is the classical Poisson bracket, then QðfA;BgÞ ¼ iðQðAÞQðBÞ�
QðBÞQðAÞÞ.

This is not an ideal world: quantisation as defined above is
provably impossible (see, e.g., Abraham and Marsden (1978) for a
discussion). What is possible is to find such a Q for a much more
restricted class of observables: in non-relativistic particle mechanics,
for instance, we choose spatial position and the momentum conjugate
to it. There is no known algorithm for choosing this restricted class,
and no real reason to expect one to exist (c.f. the criticisms of
quantisation in Deutsch, 1984); two different choices will sometimes
lead to empirically inequivalent quantum theories, in which case
experiment is the only way to determine which is correct.3 In general,
however, Nature is fairly kind to us, and making the most obvious
choice of observables tends to work. QFT is no exception: choosing
/ðxÞ and pðxÞ as preferred observables leads to the empirically cor-
rect theory.

The question of which observables count as ‘fundamental’ is also
relevant for the interpretation of the quantum theory which we hope
to produce. For any fixed dimension, all Hilbert spaces are isomor-
phic, so it is through the observables that we are able to give physical
meaning to a theory. In practice, this usually involves a connection
between certain observables and the spacetime of the theory: in
NRQM, for instance, it is the designation of the momentum opera-
tors as generators of translations which allows us to identify certain
states as eigenstates of position.4 The obvious strategy in QFT is to
use the spatiotemporal dependence of the observables to give the
theory physical meaning: when quantised, /ðxÞ and pðxÞ will become
operators which we will treat as localised at x.
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This approach can be taken further. First we shift from the
Schrödinger to the Heisenberg picture, so that the field operators are
functions of spacetime points x rather than just spatial points x. Then,
given any (bounded, open) subset O of M, we define the algebra
AðOÞ as the algebra of all operators which can be constructed fromb/ðxÞ and bpðxÞ whenever x 2 O – so O includes such operators as
bpðxÞ2ðx 2 OÞ, RO fðxÞb/ðxÞ, etc. This gives us (formally) what is tech-
nically known as a net of operator algebras: a map from bounded,
open subsets of a topological space into operator algebras, such that
if O1 � O2, then AðO1Þ is a subalgebra of AðO2Þ. It is a central claim
of algebraic quantum field theory – and one which appears consistent
with the way QFT is used in physics – that a QFT is entirely specified
by the structure of this algebra net: in other words, that all physical
facts about the theory can be determined from knowing the spacetime
dependence of the observables, without any need to know (for in-
stance) which observable is bpðxÞ and which is b/ðxÞ. In particular, this
allows the possibility that field theories generated from different
classical Lagrangians are actually the same QFT; two such field
theories are generally referred to as Borchers equivalent.

As such, to specify an AQFT, all that is needed is a net of algebras,
which is required to satisfy certain axioms (basically relating to
locality and causality; see Haag (1996) for an extended discussion of
these axioms). Any such AQFT implicitly specifies a Borchers
equivalence class of ‘concrete’ QFTs each of which generates the
same algebra net; all such concrete QFTs are Borchers equivalent to
one another, and they are usually regarded simply as different ways of
describing the AQFT, analogous to different coordinate systems on a
manifold.

The assumption that the net of algebras captures all physical
information about a theory gives a very elegant realisation of the idea
that quantum theories gain physical content via a specification of the
spatiotemporal properties of their observables. We will refer to it as
the Net Assumption.

We have glossed one question, though: what does it mean to say
that an operator is localised somewhere? In much of the AQFT lit-
erature an operationalist answer is given to this question: operators
represent physical operations which can be performed, by the ob-
server, on the QFT state, and in particular AðOÞ is the algebra of all
operations which can be performed, and all measurements which can
be made, by an observer who is external to the field system but
localised within O. However – as mentioned in the Introduction – we
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wish to understand a given QFT as self-contained (in which case
observers, measurement devices and the like must be built out of
states of the QFT) so this approach is not available to us. Instead,
we take the expectation values of operators in a given spatial region
as giving us information about the degree of excitation of the field
in that region. This view will be further developed in the next
section.

2.3. Quantisation: States

We now address the practical task of actually finding the operator
representations of the field observables. In NRQM we usually do this
via wave-functions: we take our Hilbert space to be the space of
complex functions wðqÞ on the configuration space of the classical
theory, and quantise the classical observables q; p via

ð9Þ bqw ¼ qwðqÞ; bpw ¼ �idw
dq

:

Formally (and only formally; but see Sections 3 and 4) we can easily
generalise this to infinite-dimensional systems: the configuration
space of the system is the infinite-dimensional space of all field con-
figurations on R, so the quantum states will be complex-valued
functionals on that space. We will denote the Hilbert space of such
functionals by HR, and proceed to quantise the classical observables
/ðxÞ and pðxÞ as

ð10Þ ð d/ðxÞWÞ½v� ¼ vðxÞW½v�;

ð11Þ ð dpðxÞWÞ½v� ¼ �i dW
dvðxÞ ½v�;

where v is any field configuration on R. It is easy to check that
infinite-dimensional generalisations of the canonical commutation
relations are satisfied:

ð12Þ d/ðxÞ; d/ðyÞh i
¼ dpðxÞ; dpðyÞh i

¼ 0;

ð13Þ d/ðxÞ; d/ðyÞh i
¼ idðx� yÞ:

(For simplicity we have considered only the case of one real field, but
the generalisation to multiple fields is obvious.)

Now the Hilbert space HR has a natural tensor-product structure.
Let R1; . . . ;Rn be disjoint subsets of R whose union is R; then
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(formally) we can define Hj as the space of complex functionals on
functions on Rj. Any function f on R can be specified uniquely by
giving those n functions which are the restrictions of f to each Rj;
hence we have

ð14Þ HR ¼ �n
i¼1HRi

:

If x 2 Rj then d/ðxÞ and dpðxÞ act trivially on HRi
for i 6¼ j. Hence, the

HRi
can be thought of as representing those subsystems of the field

which are localised within Ri. This viewpoint can be reversed: we can
take spatially localised subsystems of the field as our starting point, in
which case d/ðxÞ and dpðxÞ are localised in Rj because they act trivially
on the other HRi

.

3. INFINITIES AND RENORMALISATION

The reader is likely to have noticed that nothing in the previous
section would win prizes for mathematical rigor! Indeed, on the face
of it the approach of the whole section is appallingly badly defined. It
will be the purpose of this section, and Section 4, to explain how we
can attain peaceful coexistence with this ill-definedness.

3.1. The Problem of Infinities

Where to start in analysing the mathematical shortcomings of Section
2.3? We could begin by noting the various ambiguities glossed over
when considering functionals on an infinite-dimensional space: what
topology should be placed on the space of functionals? How smooth
must a field configuration be to be admitted?, etc. However, there is a
more crucial problem which applies to any attempt to make wave-
functional space a Hilbert space. This is the problem of how to define
the inner product. In the finite case, of course, we define the inner
product of two wave-functions by

ð15Þ ðw1;w2Þ ¼
Z
<n

dnqw�1ðq1; . . . ; qnÞw2ðq1; . . . ; qnÞ;

generalising this to wave-functionals gives a functional integral:

ð16Þ ðW1;W2Þ ¼
Z
S
DvW�1½v�W2½v�;

where S is field configuration space and Dv is a ‘functional measure’
on S.
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Unfortunately, defining measures on infinite-dimensional spaces is
extremely hard. Indeed, simple attempts to define Dv tend to give
infinity as the result of the functional integral, which clearly isn’t
satisfactory (see, e.g., Binney et al. (1992, 409) for an example of how
this occurs). The integral can be made well-defined if we restrict
ourselves to a finite-dimensional subspace of S, but as soon as we
start to consider functions which can vary on arbitrarily short length-
scales, we lose the ability to define it.

Blithely ignoring this little problem, we can press on with the
development of our QFT, but we soon run into other infinities: in
particular, when we try to calculate the effects of interactions, we find
that our calculations include terms which involve integrating over
arbitrarily short length-scales, and that some of these terms are
infinite when the integral is taken over such length-scales. With care
we can avoid the infinities in free-field theories (such theories can be
exactly defined in AQFT) but no examples are known of realistic
QFTs in which these infinities do not have to be confronted.

One highly principled attitude to the problem might be to say: very
well, none of our supposed ‘interacting QFTs’ count as real theories,
so let us reject all of them and go looking for properly defined ones.
Needless to say, though, this is not the mainstream approach in
particle physics, where algorithms for extracting useful information
from QFT despite the infinities have been known for nearly fifty
years. To understand why these algorithms work – and why they can
be understood not just as ‘algorithms’, but as a valid resolution of the
problem of infinities – we take a brief digression into condensed-
matter physics.

3.2. High-Energy Cutoffs and Renormalisation

Functional integrals are not restricted to relativistic quantum theory:
they occur throughout physics, and in particular in condensed-matter
physics. There too they formally lead to infinities; however, there is
no question of a conceptual problem. For the integrals are taken on
the assumption that (for instance) the density of matter is continu-
ously varying, and can vary on arbitrarily short length-scales. But this
continuum assumption can only be an approximation, for matter is
made of atoms, and any variations on a length-scale short relative to
the interatomic distance clearly lie beyond the scope of the approx-
imation. So the functional integral must be cut off at some short, but
finite, length-scale.
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It might be thought that this would lead to enormous computa-
tional difficulties, for the functional integral is dominated by the
short-distance variations and hence the precise details of the cutoff
procedure ought to be important. Remarkably, this is not so: it can be
shown that if we restrict our attention to the behaviour of the system
on length-scales which are very long relative to the cutoff, then:

1. All but a finite number of possible interaction terms (the so-called
‘renormalisable’ terms) have negligible effect on the system’s
behaviour.

2. The only effect of the high-energy (i.e. short-distance) degrees of
freedom on the system’s long-distance behaviour is to modify
(‘renormalise’) the coefficients of the renormalisable interaction
terms. As such, the only effect of getting the cutoff details wrong is
to change the effective values of the coefficients in the Hamilto-
nian. If, instead of trying to calculate these effective values based
on the true values (which in any case is often impossible) we
simply measure them, the details of the cutoff procedure are
completely irrelevant to the long-distance behaviour of the system.

These results were established in the 1970s, primarily by Kenneth
Wilson (see Wilson and Kogut 1974, and references therein); Binney
et al. (1992) give an exceptionally lucid exposition.

At least mathematically, this process can be applied equally well to
relativistic QFTs: instead of allowing our functional integrals to
range over all field configurations, we restrict them to only those
configurations whose short-distance variation is not too quick (the
conceptually simplest way, at least in Minkowski spacetime, is to
exclude all configurations whose Fourier coefficients vanish above
some fixed value of jkj, where 1=jkj is the intended cutoff length). This
yields a well-defined theory, and if we require the cutoff length to be
far smaller than the length-scales at which we study the theory, then
that cutoff length affects the theory’s predictions only through re-
normalisation of the coefficients in the effective Hamiltonian.5 Since
the latter coefficients are in any case only known empirically, this has
no practical consequences.

What physical justification might there be for imposing a cutoff in
relativistic QFT? Three possibilities are generally mentioned in the
literature (see, e.g., Cao 1997 or Binney et al. (1992) for details):

– It is easy to construct field theories in which some of the degrees of
freedom are ‘frozen out’, i.e. become irrelevant, below some given
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energy scale. Below this scale, the field theory can be described by
an ‘effective field theory’ (EFT), which does not explicitly include
the frozen-out degrees of freedom; however, those degrees of free-
dom do have the effect of imposing an effective cutoff of the EFT.
This is believed to happen for a number of actually studied low-
energy theories, whose cutoff energies are experimentally accessible;
see Binney et al., (1992, 372–373), for a brief discussion. Of course,
when a cutoff is generated this way, it relies on the existence of the
‘true’ field theory, which in turn can only be rigorously defined with
a cutoff of its own. This implies either some infinite tower of EFTs,
which describe physics at successively higher energy scales, or else
some other cutoff mechanism which truncates the tower.

– Possibly at sufficiently high energy scales (say, beyond the ‘Grand
Unification energy’ (see, e.g., Peskin and Schroeder, 1995, 786–
787), about 1016 GeV, above which the strong and electroweak
forces are conjectured to become unified) the entire field-theoretic
description of physics may break down and be replaced by some
other theory (such as string theory). This new theory would then
impose an effective cutoff, and might itself be free of infinities.

– At still higher energy levels (and hence still shorter length-scales), it
is widely believed that the concept of spacetime as a continuum will
itself break down, to be replaced by some quantised version. On
dimensional grounds this is expected to happen at around the
Planck energy, or 1019 GeV; this is equivalent to a breakdown on
length-scales of order 10�34 m (the Planck length).

In practice, the second and third alternatives may not be all that
distinct: although string theory is usually formulated as a pertur-
bative theory on a flat background spacetime, it is generally accepted
that this background spacetime must eventually be eliminated from
the theory – in which case, presumably, we would again expect
spacetime to be an effective concept emerging only on length-scales
greater than the Planck length.

3.3. The Conceptual Status of a Cutoff QFT

The introduction of a finite cutoff, then, mathematically resolves the
infinities problem, and might turn out to be justifiable on a number of
physical grounds. However, it is prima facie unfortunate from a
foundational perspective, for the following reason: in foundational
work, it is usual to start with a well-defined (and, preferably, axi-
omatisable) theory, and then to investigate the implications of that
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theory. If QFTs are intrinsically approximate theories, which can be
trusted only at certain energy scales and whose behaviour is unknown
at other scales, it is hard to take this attitude to them. Should we then
regard a QFT as a well-defined theory at all, or as Buchholz has
advocated as

an efficient algorithm for the theoretical treatment of certain specific problems in
high-energy physics (2000, 1–2).

Cao (1997, 350–352) identifies three different, commonly adopted,
attitudes to the foundations of QFT:

[1] The current situation is genuinely unsatisfactory: we should reject
the cutoff theories as not mathematically well-defined, and con-
tinue to look for non-trivial theories defined at all length-scales.

[2] The picture of ‘an infinite tower of effective field theories’ men-
tioned in the previous section is to be taken seriously. As Cao
stresses, this would require

a drastic change of our conception of fundamental physics itself, a change from

aiming at a fundamental theory (as the foundation of physics) to having
effective theories valid at various energy scales. (1997, 351)

[3] QFTs as a whole are to be regarded only as approximate
descriptions of some as-yet-unknown deeper theory, which gives a
mathematically self-contained description of the short-distance
physics.

[1] is of course the viewpoint of the entire algebraic QFT program:
that program’s ultimate long-term goal is to produce a mathemati-
cally rigorous description of interacting QFTs (specifically, of the
Standard Model or of some successor to it). Obviously, completion of
that goal would dramatically change the foundational status of QTF;
it is only because the goal has not been achieved that it is interesting
to investigate alternatives to [1]. Conversely, anyone regarding either
[2] or [3] as fully satisfactory from a foundational viewpoint would
have reason to doubt whether the eventual success of the AQFT
program is possible.

(Note that the difference between [1] and [3] is that the former
rejects current QFT in toto, and looks for mathematically rigorous
versions of our current QFTs: QED, k/4, the Standard Model, etc. By
contrast [3] accepts that these current theories are indeed best
understood in terms of Lagrangian QFT, and looks for a deeper-level
theory in which Lagrangian QFT as a whole can be grounded.)
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[2] will not be discussed further here: adopting it would require
dramatic changes to many aspects of our attitude to the foundations
of physics, and a discussion of such changes lies far beyond this
paper. See Castellani (2002) and Hartmann (2001) for further
discussion.

The rest of this discussion will focus on [3], and its attendant
foundational problem: how can we give a clean conceptual descrip-
tion of a theory which can be rigorously defined only as the low-
energy limit of another theory which we do not yet have?

To see the problem here, contrast this case with a more
straightforward one: the current status of CM, given that we believe
it to be in some sense superseded by NRQM. What is our justifi-
cation for continuing – as in many situations we do continue – to
use CM, given that we believe NRQM to be the more valid
description? It is not enough to observe that NRQM tends to CM
as �h! 0, for �h does not tend to zero: it is a constant. Furthermore,
simply considering successively larger systems (so that the quantity
(�h=typical action) tends to zero) is singular and contains various
surprises (Zurek 1998). A better approach is to identify what might
be called ‘classical domains’ of NRQM: that is, domains of NRQM
in which NRQM is approximately isomorphic to CM. (A system of
large bodies decohered by interactions with an environment would
be an example of such a domain.) Within such a domain, we could
then tentatively apply CM, whilst remaining aware that CM could
fail to give accurate answers to some questions, and that its pre-
dictions should only be treated as accurate to within the accuracy of
the ‘approximate isomorphism’ between CM and the restricted
domain of QM. (This approach to inter-theoretic reduction is dis-
cussed in much more detail, and in the specific context of the
relationship between CM and NRQM, in Wallace (2001b); it is
based loosely on the pattern-based theory of ontology proposed by
Dennett (1991) and developed (in the context of quantum physics)
by Wallace (2003).6)

Approach [3] presumes the existence of some theory – call it X – to
which QFT is to be an approximation (in some domains). There are,
however, a number of important differences between the X–QFT
relationship and the NRQM–CM one:

1. Most obviously, we know NRQM, whereas we have only the
sketchiest idea of what X will turn out to be. This makes it
difficult to delineate the domains in which QFT is approximately
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isomorphic to X, since we have to describe those domains in
QFT-language rather than X-language. In particular, we would
like to say that these domains are those in which the states do
not vary on too-short length-scales, but this implicitly suggests
that it even makes sense to talk about states which do vary on
such length-scales – which may not be possible in X: indeed, X
may not contain any elements which are even approximately
isomorphic to too-rapidly-varying states of QFT. In solid-state
physics, by analogy, it isn’t even meaningful to talk about den-
sity fluctuations on length-scales shorter than the interatomic
separation.

2. When using CM, in situations where we are unsure about its
validity we can always cross-check with NRQM to check that its
predictions agree with CM. Since we don’t have X, we can’t do
this in QFT: the only tests available for its validity in describing a
given phenomenon are empirical.

3. CM is a mathematically well-defined and self-consistent theory,
whereas QFT as we have described it so far is not.

It is useful to separate the first and second points from the third. For
if we had a mathematically well-defined QFT, we would have a
perfectly good physical theory which, however, we would have good
reason to believe empirically inadequate for describing certain phe-
nomena, even though we have no better alternative. This has been a
common situation throughout physics: CM in the early 20th century
is an example of such a theory; general relativity today is another. In
fact, until and unless we come up with a theory which we are su-
premely confident is ‘final’, this should be our attitude to any well-
tested physical theory: its predictive utility and explanatory power
require us to take seriously those entities which the theory claims to
exist (such as classical particles, or general-relativistic spacetimes),
but to remember that

– these entities may be patterns or structures in some more funda-
mental ontology, rather than fundamental entities in their own
right;

– our theory may describe the world not by virtue of being ‘funda-
mental’, but by virtue of being instantiated in the structure of a
deeper theory;

– this instantiation may be only approximate, leading to domains in
which the theory fails.
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(See Wallace (2003) for a discussion of the ontology of patterns and
structures in physics.)

So, if we had a mathematically well-defined QFT then we could
happily interpret it in the same way we now interpret CM. Can we
obtain such a QFT?

The easiest way to do so is to choose a concrete implementation of
the short-distance cutoff. A simple recipe for such an implementation
is as follows:

1. Choose a cutoff length-scale l.
2. Choose a spacetime foliation.
3. On each leaf of the foliation, replace the continuum of field

operators b/ðxÞ, bpðxÞ with a discrete grid of such operators (to be
called grid observables) with the grid spacing being � l.

4. Discretise the Hamiltonian, replacing its integral over functions of
field operators with a discrete sum over operators on the grid.

5. Replace the (formal) Hilbert space HR of the QFT (defined in
Section 2.3 as the space of complex functionals over all field
configurations on R) with the space of functionals over some
subset of field configurations, chosen to vary in some suitably
chosen way between points of the grid. (The details of how this is
to be done don’t matter – i.e., have no consequences for the large-
scale behaviour of the model – provided that specifying the value
of a field configuration at all grid points is enough to identify it
uniquely).

Such a theory is a close relative of the QM description of a crystal: in
the latter, we specify the position and momentum of each crystal
atom; in the former, the field strength and conjugate momentum at
each gridpoint. (It is also very similar to the ‘‘lattice gauge theories’’
studied in lattice QCD.) It is also perfectly well-defined mathemati-
cally, and as such a valid entity to be viewed as approximately iso-
morphic to some subtheory of X.

We are interested in the structure of states of such theories, when
studied at length-scales � l. To give a precise meaning to this, recall
that the physical meaning of a state is given by its expectation value
on elements of the algebra of observables. We can define the large-
scale observables of a discretised QFT as those which are averages of
grid observables over regions which are very large compared to the
grid spacing; then we can regard the large-scale structure of a state as
specified by its expectation value with respect to all large-scale ob-
servables.7 The small-scale structure of a state is not to be treated as
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physically significant, since it is defined at length-scales at which we
expect the approximate isomorphism between X and our discretised
QFT to break down. (Analogously, the structure of a classical phase-
space distribution can be fairly reliably viewed as telling us about the
actual world if it is studied on action scales large compared to �h, but
is probably meaningless on scales small compared to �h.)

Now, obviously there is a very large number of possible discreti-
sations of a field theory: one for each possible choice of grid, at least
(and no claim is being made here that the method above is the only
way of implementing the cutoff). But renormalisation tames this
profusion of theories to some extent, for it implies that the large-scale
structure of two different discretisations can be made to be virtually
identical (and totally identical in the limit as the two theories are
studied on larger and larger length-scales) by finite rescaling of the
field observables and finite adjustments in finitely many parameters of
the Hamiltonians of the theories.

By analogy with Section 2.2, we can construct an algebra net by
associating to each region O which is large compared with the cutoff
length l, an algebra AðOÞ of large-scale observables localised in O.
The statement that two discretised QFTs are structurally equivalent
at large scales is then equivalent to the statement that both generate
the same large-scale nets – a large-scale variant of the Net Assump-
tion of Section 2.2.

In fact, we can mimic the algebraic description of Section 2.2
further, by defining our cut-off QFTs directly in terms of their alge-
braic structures: we define a scale-l AQFT as a map from regions of
M which are large compared with l, to operator algebras, such that
the axioms of AQFT are approximately satisfied on scales large
compared with l. (Obviously this is not intended to be precise.) Two
‘concrete’ QFTs, such as two versions of the discretised QFT above,
are then scale-l equivalent if they generate the same scale-l AQFT;
hence scale-l equivalence is a generalisation of Borchers equivalence.

The results of renormalisation theory can now be simply stated:
two discretisations of the same renormalisable QFT can be made
scale-l equivalent just by finite renormalisations of the coefficients in
one of them. So, for /4 QFT (for instance) there is a two-parameter
family of scale-l AQFTs, parametrised by the renormalised mass and
coupling constant.

Now if we know that a given scale-l AQFT is empirically accurate,
we can find any number of concrete QFTs which are members of its
scale-l equivalence class. We can choose any such member to calculate
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with, and make our choice based upon calculational convenience, but
we need not regard any of them as candidates for the fundamental
theory of nature. Rather, they are to be viewed as candidate theories
to be approximately isomorphic to a subtheory of X.

From this perspective, the profusion of discretisations is no em-
barassment. For suppose QFT1 and QFT2 are members of the same
scale-l equivalence class, and suppose the scale-l AQFT correspond-
ing to that equivalence class accurately describes our observations (on
scales large compared with l). Then it follows that QFT1 and QFT2

are both approximately isomorphic to a subtheory of X8 with that
approximate isomorphism breaking down around the cutoff length-
scale. But if so, then there can be no fact of the matter as to which of
QFT1 and QFT2 is ‘correct’: both are approximately instantiated by
X. If X is itself a QFT (presumably some interacting QFT which
exactly satisfies the axioms of AQFT) then X itself will be inside the
scale-l equivalence class, but if X is something else – a string theory,
or some theory in which spacetime is quantised – then no elements of
the equivalence class are fundamental: all are useful purely because of
their structural resemblance to a subtheory of X.

3.4. Covariance

One of the least aesthetic features of discretised QFTs is their non-
covariance, which manifests itself in (at least) two ways. First, a
lattice is inevitably not preserved under Poincare transformations
(indeed, it is not even preserved under translations). Second, the
commutators of field operators which are space-like separated are in
general not zero (although they drop off extremely rapidly if the field
operators are separated by distances large compared with the cutoff
distance). This second effect is because of the discretisation of the
Hamiltonian, in which spatial derivatives like r/ðxÞ are replaced
with terms like ð/ðxÞ � /ðxþ 1ÞÞ=l, where l is the cutoff length and 1

is a vector of length l. As a consequence, influences can propagate
instantaneously from x to xþ 1, although the effect is miniscule for
widely separated points.

This is not to say that the approach advocated in Section 3 implies
that the actual world has faster-than-light signalling or a preferred
reference frame. Recall that in this approach, our discretised QFT is
taken to describe the actual world only insofar as it is isomorphic to a
subtheory of the deeper ‘theory X’, and we expect that this isomor-
phism will hold only for expectation values of field observables
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averaged over regions large compared with the cutoff length. But for
these expectation values, we find that violations of covariance are
very small, tending to zero as the regions over which the observables
are averaged increase in size. In other words, non-covariance is
essentially a small-scale property of discretised QFTs, and such
properties are precisely those for which, it was argued, we should not
regard QFT as telling us about the actual world.

Notwithstanding this, the situation is still rather unsatisfactory, at
least if we view covariance (understood as, say, the absence of a
preferred spacetime foliation) as a fundamental property of the world
rather than as some effective limiting property of a non-covariant
theory. There are a number of ways of coming to terms with this:

1. We might manage to find a manifestly covariant way of defining
discretised QFTs. Obviously this would remove the covariance
problem; however, it seems rather unlikely since cutoffs are about
short length-scales, and length is not a relativistic invariant. (Of
course, if we look for a covariant QFT defined without a cutoff, we
are moving away from the approach described here, and back
towards the AQFT program.)

2. We might bite the bullet and accept that covariance is only an
approximation and that the world ultimately has a preferred
foliation. This would follow, for instance, if X were itself a non-
covariant theory (such as Barbour (1994a, 1994b, 1999) has
advocated in quantum gravity).

3. We might find that X is itself a totally covariant theory. There
seems no reason why such a theory should not have a family of
useful non-covariant approximations, describable only in terms of
an (arbitrary) choice of spacetime foliation.

4. Perhaps most interestingly, X may be a theory which does not
involve spacetime at all at a fundamental level (as is conjectured
would be the case in loop-space quantum gravity, or non-pertur-
bative string theory). In this case, relativistically covariant space-
times would have to emerge as effective, approximate concepts
from such a theory, and it would seem to be a curiosity rather than
a pathology if this emergence proceded via non-covariant inter-
mediate theories. After all, when we say that we expect spacetime
to be quantised, we generally do not mean that it is literally to be
divided into grid squares, but rather that it is to be replaced in toto
with some fundamentally discrete entity which in some circum-
stances is approximately isomorphic to spacetime – yet in
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recovering that spacetime it might be necessary to use an inter-
mediate step which does involve treating spacetime as a grid. (To
take an analogy, we think that the phase space of CM breaks
down at scales of � �h, but that doesn’t mean that we think that
phase space really is a grid of �h-sized squares.)

4. INEQUIVALENT REPRESENTATIONS

In Section 2.2, we defined algebraic QFTs in terms of a net of oper-
ator algebras. The usual definition, however, is of a net of abstract
algebras, which can be represented as Hilbert-space operators in a
number of inequivalent ways. At first sight these inequivalent rep-
resentations seem to cause problems for QFT since there seems no
principled way to select the ‘right’ one; it is also not immediately
obvious what has happened to the inequivalent representations in our
previous quantisation (in Section 2.3) of QFT in terms of wave-
functionals on configuration space. In this section we shall address
these issues, and will show that inequivalent representations – al-
though important and interesting in QFT – pose no problems for its
foundations.

4.1. The Algebraic Approach

Consider the QM of some finite number of non-relativistic, scalar
particles. We could specify this theory by starting with the Hilbert
space, and then describing the actions of the various observables
(position, momentum and functions thereof) on the space. We would
need to specify a specific function of the observables as the Hamil-
tonian, so as to tell us how states evolve in time.

Once we have these observables, we could shift to the Heisenberg
representation by using the Hamiltonian to time-evolve the observ-
ables:

bXðtÞ ¼ expð�it bHÞ bX expðþit bHÞ:
(The Hamiltonian would then be unnecessary, since all the infor-
mation about the system’s time evolution would be contained within
the time-evolved observables.) Let A be the algebra of these
observables.9

Now suppose we take A considered as an abstract algebra (with
the norm topology, i.e., a C�-algebra) and discard the Hilbert space.
We would still have a great deal of dynamical information encoded in
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the algebraic and topological structure of the algebra, but would have
lost the action of the algebra on physical states.

Suppose we try to recover the Hilbert-space action. That is, we wish
to find an isomorphism between the abstract algebra A and some
subalgebra of the bounded operators on a Hilbert space H, i.e., a
representation10 ofA. If this representation turns out to be unique up to
unitary equivalence (an assumption which was often made uncritically
in the early days of quantum theory) then we must have recovered the
original Hilbert space, i.e., the representation must be isomorphic to
the original choice of Hilbert space and of observables on it.

In fact, for a system of finitely many particles the representation
is indeed unique – provided we require it to be irreducible. This last
is the requirement that the Hilbert space does not split into
orthogonal subspaces preserved by the action of A. Equivalently,
there must exist in the Hilbert space a cyclic vector whose image
under the action of A is dense in the Hilbert space. Physically this
requirement rules out the existence of superselection rules: super-
selection sectors can be identified with the irreducible sectors of a
reducible representation.

By an algebraic quantum theory, we shall mean one which is
specified by giving the algebraic structure of the observables but not
the Hilbert space on which they act. A theorem of Stone and Von
Neumann tells us that any such quantum theory with a finite number
of degrees of freedom – i.e., finitely many ‘position’ and ‘momentum’
observables, corresponding to a classical theory with a finite-dimen-
sional phase space – has a unique irreducible representation (up to
unitary equivalence). Hence for such systems the algebraic and Hil-
bert-space ways of specification are equivalent.

4.2. Infinite-Dimensional Systems

When the number of degrees of freedom of a theory becomes infinite,
the Stone–von Neumann theorem fails. Such theories generally have
a large number of inequivalent representations, and so giving the
algebraic structure does not completely specify the theory.

Nonetheless it still seems natural to specify a theory algebraically,
because

1. The way in which we usually describe a system is to describe its
observables. Furthermore, a theorem of Fell (see below) tells us
that no amount of empirical data can tell us what the ‘real’
representation is.
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2. As explained in Section 2.2, the ‘quantisation’ process begins with
the classical observables and tries to map them onto quantum-
mechanical operators. Since in this process we are trying to impose
purely algebraic restrictions on this map (specifically, the restric-
tion that Poisson brackets go over to commutators) it will gen-
erally specify only the algebraic structure of a quantum theory,
with an ambiguity left as to the Hilbert-space action. In other
words, two quantum theories which are algebraically identical
could be regarded as equally valid quantisations of the classical
system.11

If we were to take a robustly instrumentalist viewpoint there would
be no particular problem: Fell’s theorem says that a finite number of
measurements, each conducted with finite accuracy, cannot distin-
guish between representations. Hence we could reproduce any
experimental results using whichever representation was most con-
venient.12

From a realist standpoint, however, we appear to have a dilemma.
Even if no empirical data lets us distinguish between representations,
nonetheless there should be a fact of the matter as to which is the
‘correct’ representation; yet it is provably impossible for us ever to
discover this fact. To see this, suppose we have two representations
on Hilbert spaces H1 and H2, and suppose the ‘real’ representation is
the first. Then if the system is in some state Aj i, Fell’s theorem tells us
that

For any operation O carried out with finite accuracy on Aj i, there is a state O;Aj i in
H2 such that all data resulting from the operation are consistent with the real rep-
resentation being on H2 and the real state being O;Aj i.

In fact, this dilemma will prove only apparent, as we will find in the
next three sections when we study representation ambiguities in more
detail. To do so, we distinguish two ways in which inequivalent
representations can occur: one associated with the short-distance and
high-energy (‘ultra-violet’, UV) degrees of freedom, one with the
long-distance (‘infra-red’, IR) ones. Given our tolerant attitude to
short-distance cutoffs (cf. Section 3), it should come as no surprise
that all the important sources of inequivalent representations of a
given QFT fall into the second category: for the Stone–von Neumann
theorem guarantees uniqueness of representation for any theory with
finitely many degrees of freedom, and a field theory in any finite
region has only finitely many degrees of freedom below a finite energy
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bound. We will argue that the UV representation ambiguity is a pure
mathematical artefact, whilst the IR ambiguity is physically real but
non-pathological.

4.3. Ultra-Violet Degrees of Freedom

It is probably already clear to the reader why we can ignore the UV
representation ambiguity: UV-inequivalent representations occur
because of the existence of degrees of freedom at arbitrarily short
length-scales, and in Section 3 it was argued that real QFTs are cut
off at short, though finite length-scales. In particular, the discretised
QFTs of Section 3.3 have only finitely many degrees of freedom per
spacetime point, and hence no UV-inequivalent representations.
Since renormalisation theory tells us that any QFT is scale-l equiv-
alent to some such discretised QFT (on length-scales long compared
to the grid size for the latter theory), it follows that any occurence of
UV-inequivalent representations is purely a mathematical artefact
and has no physical significance.

4.4. Inequivalent Representations in Non-Relativistic Physics

The physical significance of IR-inequivalent representations has long
been appreciated in AQFT; it will be reviewed here from the per-
spective which this paper adopts towards QFT, but with no claim to
originality. We begin by returning to NRQM: imagine a line of n two-
state systems – spin-half particles fixed in place, say. The Hilbert
space of each system is two-dimensional, and we can construct the
overall Hilbert space by taking the n-fold tensor product. The
resulting space will have dimension 2n, which is as we expect since we
must make n yes–no choices to choose a state with (say) given spin in
the z-direction for each component system.

Now suppose our system becomes infinitely large. The dimension
of the system will be infinite, of course, but it will be a larger infinity
than those to which we are used – specifically it will be 2@0 , the
cardinality of the continuum, which is strictly larger than the cardi-
nality @0 of the integers.13

It follows that systems with infinitely many components have a
Hilbert space which is non-separable (i.e., has uncountable dimen-
sion). To see the consequences of this, consider the operator algebra
of our set of two-state systems. It consists of the set of linear
combinations of spin operators, and hence has countably many lin-
early independent elements. The action of this algebra on any given
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state will generate only countably many linearly independent states,
hence the action of the operator algebra on the total, non-separable
space is highly reducible.

In other words, the non-separable space has decomposed into
various superselection sectors (uncountably many, in fact), each
giving an irreducible representation of the operator algebra.

To see what these sectors are, suppose we start with all compo-
nents having spin up. Then the action of any element of the algebra
can, at most, cause finitely many components to have spin down. So
no amount of algebraic action can transform such a state into one in
which, say, every second component has spin up. This state, in turn,
can be transformed into other states differing from it in finitely many
places, but not into a state in which all components are spin down . . .
or every third component is spin down . . . or where half the states are
spin up but the spin-up states are grouped in pairs . . ..

In other words, the different representations describe states which
are ‘infinitely’ different from one another, see (Morrison (1962) for a
full discussion). In statistical mechanics, different representations
describe different phases, since at arbitrarily large length-scales –
tending to the thermodynamic limit – only the infinite differences
between representations remain visible.

For such systems, of course, the use of different representations is
an idealisation, since the actual systems are finite.

4.5. IR-Inequivalence in QFT

Guided by the non-relativistic example, we look for inequivalent
representations in field theory by looking for states differing on
asymptotically large scales. The difference from the previous section
is that here infinite systems are perfectly respectable: in fact, our
discretised QFTs are effectively infinite crystals.

This resolves the problem mentioned at the start of Section 4: what
is the connection between inequivalent representations and the wave-
functional approach of Section 2.3? The answer is that the space over
which the wave-functionals are defined – the field-configuration-space
S – is infinite-dimensional both because functions may vary on
arbitrarily short length-scales, and because they may have arbitrary
large-distance boundary conditions. The former reason is nullified
when a short-distance cutoff is imposed (as in Section 3) but the latter
one also interferes with the definition of the functional integral, and
has to be dealt with by imposing boundary conditions at infinity

DAVID WALLACE56



(such as the requirement that functions in S be square-integrable).
Each choice of boundary condition generates a different, and in-
equivalent, representation.

Examples of inequivalent representations are then:

Differing mass-densities at infinity
The closest analogue to the previous section is the case of states with
asymptotically non-vanishing mass density: average density is su-
perselected (Haag 1996) and different densities correspond to differ-
ent representations. It is worth noting that this rules out the Fock
representation for an open universe, even a flat one, since any realistic
state of such a universe will have non-zero mass density; the Fock
representation, which has finite-energy states, stands in the same
relation to a realistic open-universe representation as an asymptoti-
cally empty classical spacetime does to a realistic open cosmology
(Wald 1984).

The overall velocity of the universe is also superselected, of course,
except in the special case where the (expected value of the) stress-
energy tensor is asymptotically diagonal.

Differing total charge
Even when the spacetime is asymptotically empty, inequivalent rep-
resentations exist. The total charge of a system leaves its imprint on
the spacetime at arbitrarily long distances in the form of the
asymptotic Coulomb field, whose flux through a sphere is indepen-
dent of the size of that sphere. As such, total charge is superselected
(Strocchi and Wightman 1976). (Another way to see this is to
remember that field lines extend to infinity, so no amount of local
operations will remove them.)

In fact, the centre-of-mass velocity of a charged system is also
superselected (Haag 1996), since the asymptotic field will be a
Lorentz-boosted Coulomb field and the associated magnetic field
lines also extend to infinity.

Inequivalent vacua
A major component of the Standard Model of particle physics
(Peskin and Schroeder 1995) is the presence of field theories with
degenerate vacua. Classically this corresponds to the existence of
non-zero field configurations which are global minima of the energy.
If the field theory has a continuous global symmetry then there will
exist a continuum of vacuum states, wave-packets around which will
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give us the quantum ground states. Since these states differ from one
another everywhere in space, they too belong to inequivalent repre-
sentations.

Changes in the interaction parameters
A famous theorem (Haag’s theorem; see Haag, 1996) tells us, in ef-
fect, that interacting fields cannot be represented on the same Hilbert
space as the corresponding free fields, even when we consider
asymptotically early or late field operators. In the current framework
this may be understood as follows: introducing the interaction will
change the ground state everywhere in space, causing it to be infi-
nitely different from the free-field ground state and so in a different
superselection sector.

In fact, and as these examples show, there is not really anything
‘quantum’ about IR-inequivalent representations: in many cases,
picking a representation is rather like picking boundary conditions at
infinity in a classical problem. The following classical – and utterly
banal – version of Fell’s theorem shows why the ‘dilemma for realism’
mentioned in Section 4.1 is nothing of the kind as far as IR-in-
equivalent representations are concerned:

Classical Fell ‘theorem’: the spatial average of a classical quantity over an infinite
universe cannot be empirically determined by measurements confined to a finite

spatial region.

4.6. Retrospective

From a realist perspective the sting of the representation ambiguity
has largely been drawn. Locally, any representation ambiguity is
artificial, caused by the presence of unphysical degrees of freedom
beyond the high-energy limit of the theory’s validity. Globally, there
may indeed be representation ambiguities – depending on cosmology,
and the topology of the universe – but the inaccessible information
which they encode is ‘respectable’, analogous to the classical inac-
cessibility of the long-distance structure of the universe.

Nonetheless it would be more aesthetic to lose the long-distance
ambiguity as well. This can only be done if the universe is finite.
There has long been a divide between observational cosmology
(favouring an open universe) and theory (preferring closed universes);
this analysis of representations makes a modest contribution to
keeping the divide open.
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For the purposes of this paper, representational ambiguities need
no longer concern us. In practice we are always analysing a theory in
a finite region – and idealising the system beyond that region in
whatever manner is convenient – so different choices of representa-
tion should not affect our conclusions.

5. LOCALISATION IN QFT

The phenomenology of particle physics – and indeed, of virtually all
of science – makes extensive use of the concept of localisation: that is,
of the concept that physical systems have at least some states which
localised in finite spatial regions. There are a number of results in
AQFT which apparently rule out the possibility of such states, and
this is sometimes described as a paradox in QFT. In this section, the
problem of localisation will be analysed from the viewpoint of the
previous sections, and it will be argued that nothing paradoxical is
going on.

In a relativistic theory, there are two natural ways of thinking
about localisation: spatial localisation, where something is localised
in some subregion Ri of a space-like slice R (and therefore not
localised anywhere else in R), and spacetime localisation, where
something is localised in some subregion O of spacetime (and
therefore not localised in any region of spacetime space-like sepa-
rated from OÞ. The latter concept makes sense in AQFT (including
the scale-l approximate AQFTs of Section 3.3); the former needs
some concrete QFT to be interpreted. In this section we will move
freely between the two notions, using a discretised QFT where nec-
essary to make sense of spatial localisation, and relying on renor-
malisation theory to ensure that we are not making cutoff-dependent
statements.

5.1. Localisation and the Reeh–Schlieder Theorem

We have already established (in Section 2.2) that in QFT the idea of
localisation arises through the spatial localisation of the field ob-
servables b/ðxÞ and bpðxÞ (here, for convenience, we work with a
concrete element of the scale-l equivalence class of the QFT in
question). But how are we to go from localised observables to
localised states? We might begin by trying the following (phrased in
terms of spacetime localisation):
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Naive localisation: A state jwi is localised in a region O iff hwjbAjwi ¼ 0 for any

observable bA localised in a region space-like separated from O.

This seems plausible when we compare to the classical case: there a
state is localised in O if pðxÞ ¼ /ðxÞ ¼ 0 for any x space-like sepa-
rated from O. But it is mathematically impossible for any states to
satisfy it, for it implies that for any such x ¼ ðx; tÞ, and for any n,

ð17Þ hwjb/n
ðx; tÞjwi wjbpnðx; tÞjwh i ¼ 0:

But this would imply that /j i was a simultaneous eigenstate of bpðxÞ
and b/ðxÞ, and these operators have no eigenstates in common (the
mathematics, once we have introduced a cut-off to deal with opera-
tors defined at a point, is the same as for the non-relativistic operatorsbX; bP, which are well-known to have no eigenstates in common).

Physically it is easy to see what is happening here. The vacuum
state of a field theory (which we will denote by Xj i) is not ‘nothing-
ness’, or ‘empty space’; it is simply a slightly colourful way of
describing the ground state of the field’s Hamiltonian. In solid-state
systems this state is just the zero-temperature state of the solid, in
which the atoms will not be at rest but will have zero-temperature
fluctuations; the same will be true for the field excitations of a rela-
tivistic field theory.

This suggests, however, an alternative: rather than consider states
which are local simpliciter, we could consider states which differ only
locally. The vacuum could be used as a reference state, and states
could be declared ‘local’ if they differed only locally from the vacuum.

To make this quantitative, we need to understand what it could
mean for two quantum states to ‘differ locally’. Recall that in Section
2.3 we defined spatially local subsystems of the QFT, with Hilbert
spaces HRj

, which described the degrees of freedom of the QFT
localised in Rj. This formally defined concept can be exactly defined
in discretised QFT, provided that the grid spacing is small compared
to each Rj and that R is finite (i.e., that the universe is closed). (The
restriction to finite R is necessary to ensure that there are a finite
number of lattice points, which rules out the possibility of IR-in-
equivalent representations. If instead the Universe is infinite, there
would be no guarantee that a given representation had the correct
tensor-product structure. To be sure, this restriction is a little
unsatisfactory – unless the universe is actually closed, of course.
Although on heuristic physical grounds we would expect no signifi-
cant local differences to our QFT whether the universe is infinite or
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merely 1020 lightyears across, nonetheless it would be useful to get a
more solid grasp on the mathematics of the situation in the case of
infinite R. This question, however, lies beyond the scope of this
paper.)

If the vacuum were a product state with respect to any decom-
position of the form HR ¼ HR1

�HR2
(where R ¼ R1 [ R2 and

R1 \ R2 ¼ ;)14 then defining ‘differing locally’ would be straightfor-
ward: the vacuum would have form Xj i ¼ X1j i � X2j i, and any state
wj i could be said to differ from the vacuum only in R1 if (a) wj i was
also a product state, wj i ¼ w1j i � w2j i, and (b) w2j i ¼ X2j i.

However, the vacuum is not a product state, but a highly entan-
gled one (this can be readily seen by calculating expectation values
such as

ð18Þ hXjb/ðxÞb/ðyÞjxi � hXjb/ðxÞjXihXjb/ðyÞjXi
and showing that they are non-zero for all space-like separated x; y. 15

If x lies in R1 and y in R2 (as defined above) then this implies cor-
relations between measurements made in HR1

and in HR2
, and – given

that the vacuum is pure – this implies thatHR1
andHR2

are entangled.
Vacuum entanglement is discussed in detail by Clifton and Halvorson
(2001).)

As such, defining ‘differing locally’ is somewhat more subtle, since
it is difficult and even controversial to say what the state of a sub-
system of a quantum system is, when the total state of the system is
entangled. Some possible definitions might be:

1. Two states might be said to differ only within R1 if their expec-
tation values coincide with respect to all operators localised out-
side R1.

2. We might take the ‘state of a subsystem’ to be the density operator
obtained when all degrees of freedom of the other subsystems are
traced over. In this case, two states waj i and wbj i could be said to
differ only within R1 if (with TrHR1

being tracing over degrees of
freedom inside R1)

ð19Þ TrHR1
waj i wah j ¼ TrHR1

wbj i wbh j:

3. The problem with the above definition of the state of a subsystem
is that we cannot then recover the state of the whole system from
the states of its components. This could be taken to indicate the
intrinsic non-locality of quantum states; this view was recently
rejected by Deutsch and Hayden (2000), who propose that locality
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in QM is best understood in the Heisenberg picture. They pick a
specific Hilbert-space vector as a reference state, to be used to
calculate all expectation values irrespective of the particular initial
conditions and then treat the quantum state as being specified at
time t by the set of all Heisenberg operators at time t. The obvious
definition of ‘differing locally’ within this framework is that two
states differ only within R1 if they have the same Heisenberg
operators outside R1.

4. Leaving aside the question of how to specify the state of a sub-
system, we might define two states as differing only within R1 if
they are connected by a unitary operator localised within R1 (such
an operator will have form bUR1

� b1R2
acting on the tensor-product

space HR ¼ HR1
�HR2

).

Fortunately, all of these definitions coincide16 and this in turn sup-
ports the naturalness of each of them as a definition of ‘differing
locally’. Using the vacuum as our reference state, and using for
convenience the first definition, we obtain our definition of localised
states, which we refer to as Knight localisation after Knight (1961)
who first proposed such a definition. We state it in the more general
context of AQFT (for which reason we return to spacetime, as op-
posed to spatial, localisation):

Knight localisation: a state wj i is localised in a region O iff wj bAjwD E
� Xj bAjXD E

¼ 0
for any observable bA localised in a region spacelike separated from O.

However, Knight localisation differs in one important respect from
the sort of localisation which we encounter in NRQM. In the latter,
properties like ‘is localised in O0 are treatable in the same way as
properties like ‘has energy E0 or ‘has momentum less than p0: that is,
we can define a projection operator whose intended interpretation is
‘localised in O0, whose range is the space of all such states. This would
be possible for Knight-localised states iff they form a subspace: that
is, iff any superposition of two states Knight-localised in O is also
Knight-localised in O.

The fact that Knight-localised states do not have this property is a
consequence of the Reeh–Schlieder theorem (Reeh and Schlieder
1961).

Reeh–Schlieder theorem: for any region O, the set of vectors AðOÞ Xj i generated by
the action of operators localised within O upon the vacuum, spans the Hilbert space
of the QFT.
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(For a proof, and further discussion, see Haag 1961). It follows17

from the Reeh–Schlieder theorem that states Knight-localised at O
span the entire state space, which rules out any possibility of a pro-
jector meaning ‘localised with certainty in O0.

It has long been understood that the Reeh–Schlieder theorem is
closely related to the entanglement of the QFT vacuum. NRQM
furnishes us with many examples where, given an entangled state of
the Hilbert space HA �HB, unitary operations on HA alone suffice to
produce a basis for HA �HB. One example, which plays an impor-
tant role in quantum teleportation (Bennett et al., 1993), is the Bell
basis: we take a system of two qubits (i.e., two-state systems) and
prepare them in one of these four states

ð20Þ

B1j i ¼ 1ffiffi
2
p j0i � 0j i þ 1j i � 1j ið Þ

B2j i ¼ 1ffiffi
2
p j0i � 0j i � 1j i � 1j ið Þ

B3j i ¼ 1ffiffi
2
p j1i � 0j i þ 0j i � 1j ið Þ	

B4j i ¼ 1ffiffi
2
p j1i � 0j i � 0j i � 1j ið Þ

Obviously this is a basis for the combined two-qubit system, but also
any element of it is cyclic under unitary operations carried out on the
first qubit alone, as is easily shown:

ð21Þ
ðMA � b1Þ B1j i ¼ B2j i
ðMB � b1Þ B1j i ¼ B3j i
ðMC � b1Þ B1j i ¼ B4j i

where

MA ¼
1 0
0 �1

� �
; MB ¼

0 1
1 0

� �
; MC ¼

0 1
�1 0

� �

in the ð 0j i; 1j iÞ basis. In other words, even if the qubits are macro-
scopically separated, if they begin in an appropriately entangled state
then it is possible by operating on one qubit to generate a set of states
which span the Hilbert space. (Examples of this kind are analysed in
rather more detail by Redhead (1995) and Clifton and Halvorson
(2001).)

Since (as discussed above) the QFT vacuum is entangled, the Reeh-
Schlieder theorem is not particularly surprising (though of course it is
a much stronger statement than that the vacuum is entangled). Nor
does it cause any logical problems for Knight’s definition of locali-
sation: there are many perfectly respectable properties of quantum
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states which are not preserved under linear superposition, such as
being an eigenstate of energy, or being an entangled state.

It does, however, cause us practical problems. The sort of locali-
sation which we use in NRQM is preserved under linear superposi-
tions, and this fact is essential to the analysis of NRQM problems –
so, at least on the face of it, NRQM localisation and Knight locali-
sation must be different concepts. Nor is the problem confined to
NRQM: in scattering theory, for instance, it is crucial to be able to
discuss the amplitude for a particle to be scattered to a given area,
and such discussions presuppose that spatial localisation is preserved
under superpositions.

So what is going on? In the face of the Reeh–Schlieder theorem,
there is little prospect of finding an alternative to Knight localisation
which does have the required properties (see Halvorson and Clifton
(2002) for a wide variety of no-go theorems); so, how are NRQM,
and scattering phenomenology, compatible with QFT?

The key to this question is the fact that NRQM is not supposed to
be perfectly compatible with QFT: rather, it is supposed to be an
approximation to QFT valid only in certain regimes of QFT. (And
the same is true for scattering theory, which is a marvellous tool to
analyse high-energy collisions, but of limited use in understanding,
e.g., quark confinement.) With this in mind, we will lower our sights
and seek an approximate form of locality which, in certain domains
of QFT, will be approximately preserved under linear superposition.
Section 5.2 will construct such an approximation, and Section 5.3 will
address the question of whether it is after all adequate for our needs.

5.2. Effective Localisation

Our approximate concept of localisation will be defined as follows (it
is again defined in terms of spatial localisation, partly for ease of
comparison with non-relativistic localisation):

1. Effective localisation (qualitative form): A state wj i is effectively
localised in a spatial region Ri iff for any function bf of field oper-
ators b/; bp; wjbfjwD E

� XjbfjXD E
is negligibly small when bf is evalu-

ated for field operators outside Ri, compared to its values when
evaluated for field operators within Ri.

2. The effective localisation principle (ELP) (qualitative form): A
subspaceH of the QFT Hilbert spaceHR obeys the ELP on scale L
iff for any spatial region S large compared with L, a superposition
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of states effectively localised in S is effectively localised in effec-
tively the same region.

These qualitative notions can be made precise in a number of ways,
such as:

1. Effective localisation (quantitative form): A state is L-localised in a
region Ri, iff for any function bf of field operatorsb/; bp; wjbfjwD E

� XjbfjXD E
falls off for large d like (or faster than)

expð�d=LÞ, where d is the distance from Ri at which the functionbðfÞ is evaluated. (Note that there is no difference, according to this
definition, between a state L-localised at some spatial point x and
a state L-localised in a region of size � L around x.)

2. ELP (quantitative form): A state obeys the ELP on scale L iff, for
any 3-sphere S of radius > L, a superposition of states L-localised
in S is L-localised in S.

Obviously ELP cannot hold on any scale for the Hilbert space HR of
the full QFT, on pain of violating the Reeh–Schlieder theorem (the
space of states effectively localised in a region obviously includes all
those Knight-localised in a region, and as mentioned in Section 5.1,
the span of all such states is the whole of HR.) However, if some
subspace H of HR is such that:

1. ELP holds, for all regions large compared with some lengthscale
L;

2. the current state of the QFT lies within H; and
3. H is approximately conserved, on timescales of interest to us, by

the QFT dynamics

then we will, approximately, be able to define projection operators in
H which project onto states localised in a given region, provided that
that region is large compared to L. (Note that L is nothing to do with
the cutoff length-scale l, except that L must be large relative to l for
our results to be cutoff-independent.)

Why should we expect ELP to hold for any subspaces of HR? To
answer this, we need to analyse the entanglement of the vacuum in
somewhat more detail. For if it were completely non-entangled, ELP
would indeed hold for all of HR, as argued for above. We might
expect, then, that if the vacuum entanglement drops off rapidly above
certain distance-scales, then above those scales localisation would be
‘almost’ preserved under superposition, and only extremely careful
superposition of states would spoil this; hence, we would expect it to
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be fairly typical for a given subspace of HR to satisfy ELP on these
length-scales.

Does vacuum entanglement in fact decrease with distance; equiv-
alently, do the correlations in the vacuum decrease with distance? For
a massive QFT it can be shown that they drop off exponentially, with
the length-scale given by the ‘Compton wavelength’ 1=m (where m is
the renormalised mass term in the QFT Hamiltonian): this is prov-
able rigorously for any QFT satisfying the AQFT axioms
(Fredenhagen, 1985), and can be calculated perturbatively in the case
of QFTs with weak large-scale interaction terms. (QCD, and other
theories with strong long-distance interactions, may not be covered
by either case – rather little is known about the QCD vacuum, in
fact.)

To see intuitively the significance of the 1=m length-scale, recall
that the Hamiltonian for a free scalar QFT has the form

ð22Þ bHW½v� ¼ 1

2

Z
R
d3x

d2

dvðxÞ2
þ ðrvÞðxÞ2 þm2vðxÞ2

 !
W½v�;

and that in a discretised QFT we replace derivative terms like rb/ðxÞ
with terms like ð/ðxÞ � /ðxþ lÞÞ=l, where jlj ¼ l and l is the cutoff
length. These discretised derivative terms are the only ones in the
Hamiltonian which lead to entanglement, as they are the only ones
which couple observables at different lattice points.

Now there is no requirement that l
 1=m – all we require of l is
that it is small compared with the length-scales at which we want to
study the QFT’s structure. Admittedly, if l is smaller than, or com-
parable to, 1=m, then the coupling terms ð/ðxÞ � /ðxþ lÞÞ=l, which
are responsible for entanglement, will be significant relative to the
other terms in the Hamiltonian. However, as l becomes large com-
pared with 1=m, the coupling terms become only a small perturbation
on the Hamiltonian

ð23Þ bHW½v� ¼ 1

2

Z
R
d3x

d2

dvðxÞ2
þm2vðxÞ2

 !
W½v�;

which is the Hamiltonian of a set of uncoupled oscillators, one at
each lattice point. Thus, on such scales we should expect to find the
ground state only slightly entangled.

So, we expect that for a massive QFT with mass m, we should find
it to be common for the ELP to hold for subspaces on length-scales
large relative to 1=m. Obviously, this heuristic argument has to be
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tested for any specific subspace in which we are interested. In par-
ticular, we find it to hold for the one-particle sector of any free (or
asymptotically free) massive bosonic QFT, suggesting that such
theories have a quite satisfactory notion of particle localisation (this
result is proved, and analysed in extenso, in Wallace (2001a)).

For a QFT which describes some massless fields, the vacuum
correlation functions still drop off with distance, but follow a power-
law dropoff rather than an exponential one; hence there is no char-
acteristic length-scale on which correlations exist. This does not rule
out finding subspaces of the Hilbert space of the QFT for which ELP
applies on some useful scale; however, it suggests that the scale will
vary according to the specific problem being examined.

Furthermore, we expect there to be physically relevant sectors of at
least some massless QFTs in which states are localised only on ex-
tremely large length-scales (if at all). For instance, there should be a
low-energy sector of QED in which electron number is approximately
conserved, in which the electromagnetic field has effectively no inde-
pendent degrees of freedom, and in which each electron has an asso-
ciated Coulomb field. In such sectors, the state of the electromagnetic
field is not really localised at all, or at least not on any characteristic
length-scale; analysis of such sectors would be necessary to establish
the validity of ELP for non-relativistic, interacting particles. (See
chapter VI of Haag (1996) and references therein for further discus-
sion of the state space of QED, from the perspective of AQFT.)

5.3. The Conceptual Justification of Effective Localisation

We have now constructed a definition of localisation which approx-
imately has the properties we wish: that is, it designates a set of states
which are approximately localised, and that set is closed under linear
superpositions. But is this approximate localisation good enough?
After all, in general ‘effectively localised’ states are not exactly
localised – particle states, in particular, invariably differ from the
vacuum everywhere in space. It follows that particle creation and
annihilation operators cannot be exactly localised, which seems to
preclude localised particle-detecting devices.

This problems has recently been addressed from an AQFT view-
point by Halvorson and Clifton (2002) (see also Haag (1996) for a
more technical discussion along similar lines). Their argument is as
follows:

1. What we actually measure are (exactly) local operators.
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2. Although particles cannot be detected by measurements of any
local operator, they can be detected by measurements of operators
which are very close (in operator norm) to local operators.

3. It follows that to a high degree of accuracy, we can detect particles;
however, the detection will not be 100% reliable.

In their approach,

It is not (strictly speaking) true that we observe particles. Rather, there are ‘obser-

vation events’, and these observation events are consistent (to a good degree of
accuracy) with the supposition that they are brought about by (localisable) parti-
cles.(Halvorson and Clifton, 2002)

From the perspective of this paper, the problem with this approach is
its a priori assumption that what we measure are always exactly
localised operators. This is, of course, an interpretive axiom of AQFT
as it is often presented, but it effectively assumes the presence of
outside observers whose measurements cannot be treated within the
ordinary dynamics of the QFT. We shall instead construct an account
which treats observers as part of the internal dynamics of the system
(although, apart from that difference of emphasis, the solution below
will be rather similar in character to that of Halvorson and Clifton).

If we wish instead to treat our QFT as a closed system, and the
measurement process as part of the internal dynamics of that system,
then it is an open question whether or not we must treat our mea-
surements as localised. Furthermore, we have at least some reason to
think that the answer to the question is negative – for we believe our
measuring devices (including ourselves) to be made out of particles,
and we have already noted the fact that particles are never exactly
localised.

But does it even make sense to consider non-localised measuring
devices? To see that it does (at least in some sense), we return (again)
to NRQM. In NRQM it is unproblematic, at least in principle, to
construct measurement devices out of atoms. Such devices usually
have rather large masses, so despite the uncertainty principle they can
be put in states whose position and momentum are both very sharp.
In particular, if a measurement device’s momentum is sharply peaked
around zero then the system will effectively remain in a single well-
determined region.

But will it exactly remain in that region? The mathematics says
not, for it is mathematically impossible for any centre-of-mass wave-
function to remain localised in a finite spatial region for any finite
period of time. (A rather general proof of this result has been given by
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Hegerfeldt (1998a b), and is discussed by Halvorson and Clifton.
2002.) This is implicit, in fact, in the wave-functions we usually use in
NRQM to describe ‘localised’ systems: they are generally described
by fairly sharp Gaussians, but any Gaussian – no matter how sharp –
is non-zero everywhere in space.

Does this mean that the Geiger counter in my lab has finite
amplitude to be in Andromeda? No, for the representation of a
quantum object by a Gaussian state relies on the fact that the object
is not entangled with its environment. But the part of the wave-
function representing the device as (for instance) in the walls of the
lab will obviously interact with its environment in a rather different
way from the part which represents the device as in the middle of the
lab. As such, the device should not strictly speaking be represented by
a pure state at all, but is instead entangled with its surroundings.

The reason why we do not in practise need to allow for this entan-
glement is that it is ludicrously small. Consider, for instance, a device of
mass m whose centre-of-mass wave-function has Gaussian form

ð24Þ w / expð�r2=2L2Þ:
If the device is allowed to evolve freely, after some time t the centre-
of-mass wave-function will evolve to

ð25Þ wðr; tÞ / expð�r2=2L2
t Þ

where L2
t ¼ L2 þ it=2m. The probability density for finding the par-

ticle a distance r from the origin at time t is

ð26Þ jwðr; tÞj2 / expð�r2=D2
t Þ

where D2
t ¼ ðL4 þ t2=4m2Þ=L2; hence the device’s wave-function will

have essentially constant half-width as long as t
 2mL2. For a one-
kilogram device whose initial half-width is 10�11 m, this means that
the half-width will stay approximately constant on timescales of or-
der 106 years. The probability of finding the particle in a given volume
a distance r from the origin, compared with the probability of finding
it in a similar-sized volume around the origin, is jwðr; 0Þj2=jwð0; 0Þj2 ¼
expð�r2=L2Þ: If we take r ¼ 1lm, then this probability ratio is
approximately equal to 10�10

10

. Only if we are working to 1010-sig-
nificant-figure accuracy do we need to allow for terms like this, and
calculations are seldom done to such accuracy!

The truth, of course, is that the real state of any realistic model of
NRQM is an entangled mess. It contains no exactly localised objects
and no truly isolated subsystems, and there is no chance of working

CONCEPTUAL STATUS OF LAGRANGIAN QFT 69



out its exact dynamics. Our actual strategy is to find a decomposition
into subsystems such that they are approximately isolated, and to
accept the errors that may result from this strategy.

We can quantify this by means of the Hilbert-space norm. Let wj i
be the actual state of the system, and bUðtÞ the unitary operator
generating its actual time evolution. Then to say that the state is
approximately two isolated subsystems (during a period of length T)
is to say that:

1. There is some state j � wi ¼ jw1i � w2j i such that j wj � wh ij ’ 1;
2. There is some unitary operator bU�ðtÞ ¼ bU1ðtÞ � bU2ðtÞ, such that,

for t < T, jhwj bUyðtÞ bU�ðtÞj � wij ’ 1.18

(Note that we are not requiring bU�ðtÞ ’ bUðtÞ in any sense; our dis-
cussion is entirely state-dependent.)

If our standard description of a certain complex object (a DNA
strand, a Geiger counter, a computer, whatever) describes it as an
isolated object, and if isolated subsystems are only ever approxima-
tions to the ‘true’ quantum state, it might seem that we should say
something like ‘complex objects don’t exist, they only approximately
exist’. But this is to misunderstand the status of complex objects in
physics. Such objects are actually identified by their structural prop-
erties (interacting with other DNA strands in a certain way, detecting
radiation, calculating p, whatever) and such structural properties can
tolerate small amounts of noise. (Put another way, an object which
operates like a computer with 99:999999 . . .% accuracy is still a
computer!) From this viewpoint, to say that a certain complex object
is present is to say that making that approximation is an extremely
effective method of analysing the dynamics (see Wallace (2003) for a
more extended discussion of this approach to complex objects).

Localisation enters this framework as a pragmatic criterion for
isolation. If, in the state � wj i ¼ w1j i � w2j i, the states w1j i and w2j i
have negligible amplitude to be in the same spatial location, and if the
actual dynamics (as described by bUðtÞ) are generated by a Hamilto-
nian in which the inter-particle forces drop off strongly with distance,
then we can apply the isolated-subsystem approximation with con-
siderable confidence as to its accuracy; conversely, if at some point
this approximation predicts that w1j i and w2j i have come to be
localised, with high amplitude, in the vicinity of one another, then we
should abandon the approximation from that point onwards.

This means that – not withstanding the existence in NRQM of a
precisely definable position operator – we should treat the spatial
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location of a given object as approximate. It is not that my Geiger
counter is localised in a number of exact locations with different
amplitudes for each; rather, it is determinately19 localised in some
approximately defined location. The exponentially small tails of the
centre-of-mass wave-function are totally irrelevant to any consider-
ations of the counter’s spatial location, for it is only in the approxi-
mation where these are neglected that we can treat the Geiger counter
as isolated anyway.

Before applying these ideas to QFT, we should acknowledge a
lacuna in the argument: we have assumed that the Hilbert-space
norm is the appropriate measure of closeness of approximation, but
what justifies this assumption? From a purely mathematical point of
view, to be sure, it is an extremely obvious choice: it is a very natural
metric on the space of states, and the unitarity of Hilbert-space
dynamics means that the Hilbert-space distance between two points is
time-invariant. But the situation is more complicated than this: Re-
utsche (1998) (writing in the context of the modal interpretation of
QM) points out that whilst a state like

ð27Þ a Spin upj i þ b Spin downj i

(where a ’ 1 and b ’ 0) may legitimately be regarded as ‘almost’ a
spin-up state, it is highly problematic to suppose that a macroscopic
superposition like

ð28Þ a Living catj i þ b Dead catj i

is almost a live cat, whatever the values of a and b. She describes this
sort of approximation (borrowing her terminology from Teller, 1984)
as ‘ontological distortion’, as against the mere ‘‘numerical distortion’’
that occurs when, say, the position of a classical particle is predicted
with slight inaccuracy: a macroscopic superposition is not (prima
facie) even approximately the same as a system in a macroscopically
definite state, but an ontologically new and problematic entity.

It is now clear that justifying the use of the Hilbert-space norm in
this way takes us into the murky waters of the quantum measurement
problem. We can see this another way by considering how easily an
instrumentalist could dismiss our worries: from his perspective, the
empirical content of the Hilbert-space norm is simply given by the
probabilities of measurements to yield certain results, and states
differing only very slightly in Hilbert space will give only slightly
different probabilities for a given outcome on measurement. It is the
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illegitimacy of using ‘measurement’ as a primitive concept in our
approach which causes the difficulties.

In fact (staying in the non-relativistic domain) our problem is very
closely related to some standard foundational questions in a number
of interpretations:

– In the modal interpretation Van Fraassen (1991), Dieks and Ver-
maas (1998) the question is essentially equivalent to the Albert-
Loewer 1990, 1991; Albert 1992) problem of vagueness, discussed
by Reutsche (1998) (see also references therein): the idea of a modal
interpretation is to pick out a certain set of properties as definite,
whilst it seems likely that the properties actually picked out are
slightly different from the ‘‘right’’ ones – where ‘slightly’ means
‘slightly in Hilbert-space norm’. The standard (‘vague property’)
response to this is to replace precise properties (like spatial local-
isation) with a family of ‘vague’ properties, all very close in Hil-
bert-space norm to the ‘precise’ property under consideration.20

– In collapse interpretations such as those of Ghirardi et al. (1986)
and Pearle (1989) the question is equivalent to the ‘problem of tails’
(Albert and Loewer 1996): the collapse mechanism is generally
chosen to cause the wave-function to be sharply peaked around a
given spatial position but it is impossible to construct mechanisms
which prevent the wave-function having exponential tails extending
to infinity. The problem of tails can be addressed (Albert and
Loewer 1996) by postulating some rule such as ‘a particle is
localised in spatial region R if the squared modulus of the wave-
function integrated over R exceeds ð1� pÞ’, where p is taken as
small. There has been recent controversy (Lewis 1997; Ghirardi
and Bassi 1999; Bassi and Ghirardi 1999; Clifton andMorton 1999,
2000) as to whether this rule should be understood as a meta-
physical principle (which leads to difficulties both because of the
arbitrariness of p and because of alleged failures of the arithmetic
of macroscopic objects) or, as advocated by Clifton and Monton
(1999), as a mere facon de parler useful in describing the wave-
function (in which case there is presumably need for a defence of
treating the tails as irrelevant to observational predictions).

– From the viewpoint of the Everett interpretation our problem is
that of justifying the neglect of parts of the wave-function of ex-
tremely low weight. This is essentially the probability problem of
Everett interpretations: what justifies our strategy of disregarding
low-weight branches when making decisions?
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Although expanding on these rather brief comments would take us
deep into interpretational questions and far beyond the scope of this
paper, it seems likely that (at least for the interpretations above) a
resolution of the quantum measurement problem would include a
justification of the Hilbert-space norm as the appropriate measure of
approximation. This seems particularly certain in the Everett inter-
pretation, which is probably the interpretational program most nat-
urally extendible to QFT and most in keeping with the spirit of this
paper.

Given an interpretational justification of our use of the Hilbert-
space norm, the concepts above carry through to QFT with only
minor changes. The dynamical impossibility of constructing exactly
isolated subsystems in NRQM becomes a kinematic impossibility in
QFT if we consider the spatially localised subsystems HRi

, but for
essentially the same reasons: interactions between those subsystems
are so prevalent that the energy cost of constructing non-entangled
states would take us out of the domain of validity of the QFT alto-
gether. Also, in QFT it is even more apparent than in NRQM that
objects can only be defined approximately unless they are isolated, for
all that exist in QFT are the field observables, excitations of them, and
patterns in those excitations, and if two patterns overlap and interact
then there can be no exact criteria for individuating them. And in QFT
there are no action-at-a-distance interactions, so spatial location is an
even better criterion for isolation: two subsystems can be treated as
isolated iff they are effectively localised in spatially separated regions.

Consequently, the approximate criteria developed above for
NRQM apply just as well in QFT. In particular, QFT particles
(unlike NRQM particles, which are part of the basic formalism) are
themselves just certain patterns of excitations in the fields. As such,
the appropriate concept of localisation for them is approximate, and
so perfectly adequately treated by the methods of Section 5.2. If we
say, for instance, that a particle is localised in (spatial) region Ri, and
that the region in the vicinity of Ri is empty, then what we mean is

– that the field state restricted to Ri coincides almost exactly with the
restriction to Ri of some state in the one-particle Hilbert spaceH1P;

– that in the region surrounding Ri the field state almost coincides
with the vacuum.

These requirements are perfectly consistent with the actual field state
being that of a particle (or of a particle together with some other
excitations, created by operators strictly localised far from Ri); they
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are also consistent with the actual state itself being strictly (i.e.,
Knight-) localised in Ri. The point is, we neither know nor care: dif-
ferent ways of realising the requirements just mean different – but tiny
– amounts of noise added to our highly-accurate description of the
quantum state and of its dynamics. Ditto for particle detectors: there is
no more need (and no more prospect) to regard them as exactly
localised, provided that they are very well localised. If we model such a
detector as made out of particles then that model will describe it as
differing from the vacuum all the way to infinity, but it will also de-
scribe those differences as incredibly small beyond a certain very-well-
defined, but not precisely defined, region. Then if the actual state of the
QFT is almost the same as that of the model within that region, and is
almost the same as the vacuum outside that region, then the criterion
has been met for us to say that the region contains a detector.21

6. CONCLUSION

This completes our analysis of Lagrangian QFTs. We have argued
that such QFTs can be made into perfectly well-defined quantum
theories provided we take the high-energy cutoff absolutely seriously;
that the multiple ways of doing this are not in conflict provided that
we understand them as approximations to the structure of some
deeper, as yet unknown theory; that the existence of inequivalent
representations is not a problem; that a concept of localisation can be
defined for such theories which is adequate to analyse at least some of
the practical problems with which we are confronted; and that the
inexactness inherent in that concept is neither unique to relativistic
QM, nor in any way problematic.

If there is one underlying theme to the approach to QFT advo-
cated in this paper, it is this: the sort of information which we are
interested in getting from physical theories is structural information.
The reason that states with isolated subsystems approximate real
quantum states well (both kinematically and dynamically) is because
the two have virtually the same structure; the reason that we can be
indifferent as to which concrete realisation of a scale-l AQFT to use is
that structurally they are all virtually identical (at least until we get to
scales of order l, at which point we no longer believe that any of them
give us valid structural information).

The need to understand theories in structural terms is not restricted
to QFT, but it is more starkly obvious there. It is not just that QFT is
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strictly speaking false, or that it is expected to be replaced someday by
a deeper ‘theory X’; that is true for virtually every physical theory we
study. It is rather that – if Wilson’s approach to renormalisation is
taken seriously – QFT only makes sense if we include in it some
vestigial aspects of the very theory which we expect to replace it.

From this viewpoint, we can see that Lagrangian QFT (as I have
defended it) is not really in conflict with AQFT at all. Success in the
AQFTprogramwould leave uswith a field theory exactly defined on all
scales, and such a theory would be a perfectly valid choice for ‘theory
X’: furthermore, even if we found such an exact QFT it would not
prevent us from defining low-energy, ‘effective’ QFTs – which would
not bewell definedwithout a cutoff; nor, probably, would it obviate the
need for these theories in describing certain low-energy limits of X.

If AQFT has any rival programs, in fact, they are string theory
and other theory-of-everything candidates. Success in any of these
programs would, of course, revolutionise physics, but that success
would scarcely change the current status of Lagrangian QFT: as an
inherently approximate, but nonetheless extraordinarily powerful
tool to analyse the deep structure of the world.
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NOTES

1 By Dyson, Feynmann, Schwinger and Tomonaga, amongst others; see Cao (1997,
185–209) for a historical discussion.
2 In more advanced treatments, we might take the fields to be sections of some fibre
bundle over M; this technicality does not significantly affect the arguments of the

paper, and will be ignored.
3 Carlip (1998) points out (97) that ‘old quantum theory’ can be (somewhat
anachronistically) understood as wrongly selecting action-angle variables as the

preferred observables.
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4 The argument, adapted from Newton and Wigner (1949), is as follows (in one

dimension): if a state /j i is localised at some point, then any translation expðik bPÞ
applied to it will leave it localised at a different point; thus expðik bPÞ /j i must be
orthogonal to /j i; hence the position eigenstates are precisely those satisfying
/h j expðik bPÞ /j i for all k. If f kj ig are the (improper) eigenstates of bP, and if we define

xj i ¼
R
dk expð�ikxÞ kj i, then xjyh i ¼ dðx� yÞ, and expðik bPÞ xj i ¼ x� kj i; hence,

xh j expðik bPÞ xj i ¼ xjx� kh i, and so the xj i states are exactly localised.
5 See Chapter 12 of Peskin and Schroeder (1995) for the technical details of this

process.
6 There appear to be relations between the Dennettian approach to ontology and the
‘structural realist’ program inaugurated by Worrall (1989) and discussed in, e.g.,

(Psillos 1995; Ladyman 1998); these relations are explored further in Ross et al.
(2006).
7 By ‘grid observables’ I mean the basic field observables b/ðxÞ and bpðxÞ, not their
pointwise products – so for instance

R
dxdyfðxÞgðyÞb/ðxÞb/ðyÞ is a large-scale ob-

servable (if f and g vary slowly compared to l ) but
R
dxfðxÞb/ðxÞ2 is not, irrespective

of how smoothly f varies. This means, in particular, that the energy density is not a
large-scale observable. In fact, the energy density of a discretised QFT is (a) cutoff-

dependent, and (b) extremely large: this is the origin of the ‘cosmological constant
problem’.
8 Note that QFT1 and QFT2 must be approximately isomorphic to the same sub-

theory of X, since they are intended to describe the same physical domains as one
another.
9 If we were being mathematically rigorous, we would instead work with the algebra

of bounded functions of the observables, since bX and bP are unbounded and thus very
awkward to work with.
10 Technically, a representation need not be an isomorphism. However, here we are
working with simple C�-algebras, for which all irreducible representations are

faithful (i.e., isomorphic to the original algebra).
11 Separately from this, of course, we might not in general expect quantisation even
to produce a unique algebraic structure for the quantum observables, because of

ambiguities about operator ordering.
12 It is important in this approach that we have all the observables in the algebra. If,
for instance, the (renormalised) stress-energy tensor is not in the algebra, then its

values may distinguish representations (Wald 1994).
13 See, e.g., Enderton (1977).
14 Since we are working with discretised QFT here, a more accurate statement would

be ‘all grid points in R are contained either in R1 or R2, but not both.’
15 For a free scalar field, with x ¼ ðx; tÞ and y ¼ ðy; tÞ we get

Xh jb/ðxÞb/ðyÞ Xj i � hjb/ðxÞjXihXjb/ðyÞjXi ¼ 1

2
ðm2 �r2Þ�

1
2dðx� yÞ;

smearing b/ðx; tÞ and b/ðx; tÞ out with non-overlapping spatial test-functions f; g, this
becomes 1

2

R
R fðxÞ½ðm2 �r2Þ�1=2g�ðxÞ. That this is non-zero for generic f; g, irre-

spective of the spatial separation of their supports, follows from the antilocality of

the operator ðm2 �r2Þ�1=2 (Segal 1964). Adding interactions to the free field will
lead to perturbative modifications to these results but should not change their
qualitative nature, provided the interactions are weak enough at large distance-scales
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to treat perturbatively – hence adding a k/4 interaction will have only quantitative

effect, but adding a coupling to a non-Abelian gauge field may have more drastic
consequences.
16 The equivalence of (1), (2) and (4) is trivial; the equivalence of (3) and (4) is given
in Deutsch and Hayden (2000) (and is, again, trivial once Deutsch and Hayden’s

formalism is understood). As an aside, if we work within full AQFT (i.e., if we
abandon the lattice) then in general the tensor-product structure used above will
break down and (2) and (3) will not be definable. However, (1) and (4) remain

equivalent (given the duality axiom, that the commutant of AðOÞ is equal to AðO0Þ,
where O0 is the region space-like to O). The proof may be found in Licht (1963).
17 To see that it follows, we need only note that the unitary elements of a (bounded)

operator algebra AðOÞ span AðOÞ. This can be proved as follows: for any bounded
Hermitian element bH of AðOÞ, and any t 6¼ 0, ðitÞ�1ðexpðit bHÞ � b1Þ is a linear com-
bination of unitary elements of AðOÞ. As t! 0, this sequence tends to bH, hence bH is

in the span of the unitary operators. To complete the proof, simply recall that any
linear operator can be written as bAþ i bB, where bA and bB are Hermitian.
18 There are two simplifications in this account. First, in general a state of NRQM
contains large numbers of identical particles, so the tensor product in (1) should be

symmetrised and/or antisymmetrised to allow for these particles. Secondly, many
subsystems (particularly those of macroscopic dimension) undergo decoherence, and
hence cannot literally be said to be isolated in the sense used here. For systems whose

dynamics are regular (i.e., non-chaotic) this is not particularly significant: decoher-
ence will be significant if the system is not in some state of a certain preferred basis,
but if it is in such a state then the isolated quantum dynamics will fairly accurately

predict its evolution. For chaotic systems we cannot ignore decoherence in this
manner (see Zurek (1998) for details).
19 No comment on the measurement problem is intended here; Everettians should
read this as ‘determinately localised relative to the branch which we are

considering’.
20 In fact, the considerations of this section suggest a more serious problem for the
modal interpretation: the very concept of macroscopic (non-relativistic) subsystems

is threatened by wave-function spreading. Reutsche (1998) discusses a library book,
localised approximately in her office but with exponential tails giving it a non-zero
amplitude to be anywhere in space, and claims that such a book ‘is in no way

compatible with my ordinary notion of located in my office’ ((Reutsche 1998, 233);
italics hers) – but in fact, the interaction of those tails with the walls of the office will
lead to the sort of rapid interaction that removes any prospect of distinguishing

‘book’ and ‘wall’ subsystems.
21 We could, to be sure, define a detector as being present if the QFT state is almost
the same as the model state within the localisation region, and exactly the same as the
vacuum outside it – but what would be the justification for so doing? We do not have

any reason to suppose that actual lab detectors are precisely localised in this way.
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