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1. Introduction

We will survey the constrained theories that arise from setting to zero the conserved
quantities that arise from the symmetries of a Hamiltonian system. Sections 2 and
3 will discuss mechanics and symmetries; Section 4 constraints, and hence “gauge”
(from a Hamiltonian perspective). Section 5 will discuss reduction. Section 6 will
discuss relational mechanics as an example. Section 7 will discuss vacuum Maxwell
theory, and so the Aharonov-Bohm effect. Finally, we will turn to quantization.

2. Hamiltonian mechanics :

A phase space M > (¢,p) = (¢*,...;p1,..); H : M — R;¢* = 0H/dp; and pf =
—0H /0g;. A closed non-degenerate 2-form (a symplectic form, that makes M a
symplectic manifold), w, on M fixes the dynamical vector field Xz on M in terms
of the gradient dH, namely by solving for Xy in

w(Xg,") = dH. (1)

w defines the Poisson bracket of any two dynamical variables f,g : M — R by
{f,9} = w(Xy,X,). The rate of change of f under the evolution determined by
His: f = {f,H}. So Noether’s theorem can be expressed as: if f generates a
symmetry of the Hamiltonian in the sense that {H, f} = 0, then f = 0.

Alternatively, and a bit more generally: equip C*° (M) with a primitive Poisson
bracket (i.e. Lie algebra with a Leibniz rule; and so define a Poisson manifold.
This is a generalization of symplectic manifold: any Poisson manifold can be shown
to be foliated by symplectic manifolds [not necessarily all of the same dimension).

A simple mechanical system is given by a configuration space @ with metric g,
together with a smooth potential function V : @ — IR. So using the cotangent
bundle T*Q > (g, p), it is given by (T*Q, g, V).

Here g defines the kinetic energy T on T*Q via T : (¢,p) + g,(p,p), and we
take the Hamiltonian H : T*Q — IR to be defined by H(q,p) := T(q,p) + V(q).

3. Symmetries and mechanics
Recall: Let a finite-dimensional Lie group G' 3 g act on a manifold M > z: the
action can be: free, proper (a topological condition), fair (that the isotropy groups



of any two points in M are conjugate to each other). Fairness implies that the
dimension dim(G,) of the isotropy group G, of € M is independent of z.

Given a simple mechanical system (7*Q), g,V): suppose G acts on () by isome-
tries that leave V invariant; and that the action is proper and fair. Then (T*Q, g,V, G)
is called a simple mechanical G-system.

Example: N gravitating Newtonian point-particles. The familiar (“absolutist”)
configuration space IR*Y carries the Euclidean metric g and V. So we have a
simple mechanical system (T*IR*", g, V). The Euclidean group F(3) of rotations,
reflections and translations acts on IR*" properly—but not fairly. Alhough a
generic point ¢ € R*" is fixed only by e € E(3) so that dim(E(3),) = 0: a
suitably symmetric configuration (e.g. the particles all collinear in space) has an
isotropy group of larger dimension, i.e. larger than 0. So we excise these points
and call the remaining space Q := R* — {g € R* | dim(E(3)), # 0}. The
excised points are closed under the action of F(3), and so is Q). E(3) acts freely on
Q, and g and V are still well-defined on Q. So we conclude that (7*Q, g,V, E(3))
is a simple mechanical E(3)-system.

Given any simple mechanical G-system (T*Q, g,V, G):

(i): G’s action on () lifts to a proper and fair action on 7@

(iii) This lifted action leaves invariant: H and less obviously, the symplectic
structure of T*@, in particular the symplectic form w.

(iii): So if z,y € T*Q with z = g -y for some g € G, then x and y are “qualita-
tively identical” from the perspective of dynamics: e.g. coordinate expressions for
dynamical trajectories around x,y assume the same form for coordinate systems
related by g. Moreover, the orbit through z, O, == G-z = {y € T*Q | y =
g-x some g € G} is a regular sub-manifold of 7*@). That is: around any = € T*Q),
there is a neighbourhood U C T*Q,U > z and local coordinates {z1,... : z1,...}
on U such that:

0, NU={yeT"Q | 21(y) =0,2(y) =0,2(y) =0,...} (2)

(iv): Since varying the coordinates z; carries one along the orbit, i.e. between
“dynamically qualitatively identical” states, one can here envisage reduction: i.e.
setting up a relationist dynamics in which each orbit O, is treated as a basic
dynamical state. That is: one works with the set of orbits 7*Q)/G, endowed with
the “projected Hamiltonian structure”.

(v): But we will not do that here! For NB:

[a]: The quotient T*Q/G is in general not a symplectic manifold, but “at
best” a Poisson manifold. (Recall: a generalization of symplectic manifold: foliated
by symplectic manifolds [not necessarily all of the same dimension]).

[b]: The paradigm mechanical examples are the rigid body and the ideal



fluid. In these examples, the configuration space is isomorphic to the Lie group
G: think of each configuration being fixed by a motion from an arbitrary reference
configuration. So the quotient is T*G/G.

[c]: The paradigm mathematical example of a Poisson manifold is g%, the
dual of the Lie algebra of any Lie group, carrying the co-adjoint representation of
the group: this example was known to Lie in 1990-but forgotten and rediscovered
in the 1970s ... yielding the theorem:

[d]: For any Lie group G, there is an isomorphism of Poisson manifolds
(T*G/G) = g*.

We will restrict attention to a submanifold of T*Q before identifying G-related
points ...

4. Symmetry and constraint
A: Conserved quantities, momentum maps and Noether’s theorem:—
Recall: When a finite-dimensional Lie group G 3 g acts on a manifold M > z:
£ € g = L(G), the Lie algebra of G, defines a vector field &)y on M, by: &y(z) ==
(d/dt) (exp(t€) - 7)}eco.

For a simple mechanical G-system, {7+¢ is the Hamiltonian vector field of the
scalar J(£) = J¢ € C®(T*Q), i.e. &p+g = X e where

Jq,p) = (p, £0(@))eco - (3)

Since H is invariant under the G-action, the scalar J¢ is a constant of the motion:
J¢ = 0. In fact, the map J : £ € g — J¢ € C®(T*Q) is a Lie algebra homomor-
phism.

Side-remark: J¢ defines the dual momentum map J : T *Q — g via

(J(a,p); Eonge = J*(g,p) - (4)

Recall that since the action of G on @, and so also on T*(Q), is fair: the dimen-
sion of the isotropy group Gqp), dim(G/yp)), is independent of (g, p) € T*Q.

So J : g = C®(T*Q) maps g onto a subspace of dimension dim,,G :=
dlm(G) - dim(G(q,p)).

That is: a basis {;} in g (so ¢ runs from 1 to dim(G)) gives dim,G indepen-
dent conserved quantities, which generate a Poisson algebra that is a homomorphic
image of g. Besides: if the G-action is free (as in Sections 6 to 8), then this is
an isomorphism and there are dimG conserved quantities. This is (an abstract
version of) Noether’s theorem.

B. Setting the conserved quantities to zero.— Take a basis {¢;} in g, and define:

I''={(¢,p) € T"Q 0= J(&1)(q,p) = J(&)(g,p) = ... } (5)




So dim(I') = 2dim@Q — dim,.G.

There are two ways to think of I'. Considered extrinsically, it is a sheet in
the extended phase space T*(@), with a unique dynamical trajectory through each
(g¢,p) € T. But let us consider I' intrinsically. We replace H by H|p : I' = IR.
Then we want Xp.(q,p) € Tigpn. We will write Xy as short for Xpg.. We
can get this by using the identity injection map ¢ : I' — T*Q to pullback 77*Q’s
symplectic form w to give a form w|p := i*w on I'; and then defining Xy = X,
as solving

Wl (X, ) = d(HIr). (6)

But w|r is a degenerate, albeit closed, 2-form. It has a set of null vectors
Ker(wlr) == {v € T(gnT' | w|r(v,w) = 0 Vw € T(gn)T'} ; (7)

so that if Xy is a vector field on I' that solves the intrinsic dynamical problem,
eq. 7?7, and N is any null vector field on I', then Xy + NN also solves the intrinsic
dynamical problem.

In fact: w|r’s null vectors are the infinitesimal generators of the G-action at
that point, i.e.
Ker(wlr) = {ér+q(g,p) | £€9}. (8)

That is: the null vectors are the tangent vectors to the orbits of the action of G.
So I is foliated by orbits of G.

Combining the last two paragraphs: for all (¢,p) € T, the (tangent to the) in-
trinsic dynamical trajectory is fixed only up to an arbitrary infinitesimal generator
of the action of G on T*Q (and so by restriction on I'). In other words (integral
version): the intrinsic dynamical trajectories are of the form g(t)-(¢(t), p(t)) where
(q(t),p(t)) solves the extrinsic problem, and g : IR — Gj is a smooth function from
IR to G’s identity-connected component.

5. Symmetry and reduction

A. Taking the quotient:— We shorten (q,p) € T*Q to x € T*Q; and we define
the equivalence relation z ~ y for z,y € I' by: y = g - z. And we define I'/G =
{[z] | z € T}. So we have

dim(T/G) = dim(T) — dimee(G) = 2(dim(Q) — dim,(G)) - 9)

The action of G on T*() maps dynamical trajectories on to dynamical trajectories.
So if z ~ y, with z(t),y(t) the extrinsic dynamical trajectories through z and y
respectively, then z(t) ~ y(t) (indeed, with the same g € G). So the extrinsic
dynamics defines a unique curve through any point [z] of I'/G. Similarly, the
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pencil of intrinsic dynamical trajectories through = € I projects to a single curve
in I'/G. Summing up: through any point [z] of I'/G, there is a unque curve that is
the image of all the intrinsic and extrinsic dynamical trajectories through all the
points y € [z] C T.

These curves are generated by a Poisson structure and Hamiltonian on I'/G
that I'/G inherits from the identity embedding ;" — T*Q. For example:

(i): our original Hamiltonian on T*@Q was G-invariant; so it projects to a well-
defined Hamiltonian H : I'/G — IR.

(i): We take “C°°(I'/G)” to be the restrictions to I' of G-invariant smooth
functions on T*Q).

B. Another characterization of the quotient dynamics:— This equivalent char-
acterization is available because of the cotangent bundle structure, and the original
action of G' on () being proper and fair.

We define the reduced configuration space Q/G. (Philosophy of point-particle
mechanics! Leibniz, Mach, Barbour envisage a reduced configuration space whose
elements are the relative configurations of the particles; cf. Section 6 below.) The
dimensions of the orbits of G on @ and on T*Q are equal: viz. dim,(G). So

dim(Q/G) = dim(Q) — dimuy(G) . (10)

The metric g and the potential V on @ are G-invariant. So they define by projec-
tion § and V on ®R/G. So now, we take the cotangent bundle of Q/G and get a
simple mechanical system (T*(Q/G),§,V). This is called a reduced phase space.
Eq. 77 implies that its dimension is: 2(dim(Q) — dim,«(G)).

We see that this (‘“relationist”) theory and the theory in Subsection A (i.e.
defined on I'/G) both use a phase space whose dimension is: 2(dim(Q)—dim,(G)).
In fact: they are the same theory: I'/G = T*(Q/G).

To summarize: We have three main spaces carrying a dynamics:—

(a): T*Q: dim = 2dim(Q);

(b): I' c T*Q. dim(T") = 2dimQ — dim,G.

(c): Reduced phase space: I'/G = T*(Q/G) . dim(I'/G) = 2(dimQ — dim,4G).
And we have a diagram showing the commutation of taking a cotangent bundle
with quotienting:—

CC TR e T 2T
\Tr (ZT

A P Rl




Finally, a remark on gauge-firing and bundles:—

(1): A gauge-fixing is a smooth choice of a single representative of eac guage-
equivalence class. So in our notation: a choice in each G-orbit C I'. We of
course aim that the choice yields a symplectic manifold that is isomorphic to
I/G=T"(Q/G).

(2): If G’s action is free, then I' — I'/G (which, by the isomorphism I'/G =
T*(Q/@G), can be identified with I' — T*(Q/G)) and Q — Q/G are principal
G-bundles. So a gauge-fixing is a choice of a section of the principal G-bundle
= T*(Q/qG).

(3): Gauge-fixing is always possible locally, but can be globally impossible
(Gribov 1977, Singer 1978): even when I' — T*(Q/G) and T*(Q/G) is simply
connected. (Singer showed that under mild conditions, it is globally impossible for
non-abelian classical Yang Mills theory; cf. Healey 2007, p. 76-77.)

6. Relational mechanics

Consider N gravitating Newtonian point-particles. In Section 3, we started from
the familiar (“absolutist”) configuration space IR*" carrying the Euclidean metric
g and V, and so the simple mechanical system (T*IR*", g,V). Considering the
Euclidean group E(3) and excising the configurations that were unduly symmetric
(i.e. that have a non-trivial isotropy group), and calling the remaining space
Q:=R¥» — {g € R* | dim(E(3)), # 0 }, we had: E(3) acts properly and freely
on ), and g and V are well-defined on Q—and we concluded that (T*Q, g, V, E(3))
is a simple mechanical F(3)-system.

The relationist idea is:

to start from the reduced configuration space whose elements are the relative
configurations of the particles; this will be Q/E(3).

to have a velocity phase space (i.e. tangent bundle T'(Q)/ E(3)) on this preferred
configuration space) consisting of (i) the possible relative configurations, naturally
coordinatized by the set of relative distances, and (ii) the tangent vectors, naturally
coordinatized by the set of relative velocities.

to have as the momentum phase space, the cotangent bundle T*(Q/E(3));
(though Barbour et al. in fact pursue the Lagrangian framework).

Starting from the (“absolutist” ) simple mechanical E(3)-system (7*Q, g, V, E(3)):
the conserved quantities are the (components of) linear momentum and the (cen-
tre of mass) angular momentum. So I' = states with vanishing linear and angular

momentum . So the intrinsic dynamics is determined only upto a time-dependent
translation and rotation; (here SE(3) = E(3)o contains no reflections).

On the alternative approach, starting from the reduced configuration space
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Q/E(3) (cf. B of Section 5), we get a vividly relationist picture.

NB: the number of relative distances is N(N — 1)/2 while dim(Q/E(3)) =
3N —6. For N >>4,N(N —1)/2 >> 3N — 6. So though relative distances are
natural coordinates on )/ E(3), they are a vastly over-complete set of coordinates
on it. That is: There are many constraints on the relative distances (not just the
triangle inequality!)

Similarly “upstairs”: though relative distances and relative momenta are nat-
ural coordinates on 7*(Q)/E(3)), they are vastly over-complete. (And similarly, of
course for the Lagrangian approach using T'(Q/E(3)).)

Here there is an analogy with the Aharonov-Bohm effect: there, holonomies
will be a natural but vastly over-complete set of coordinates. Cf the end of Section

7.

There will also be a disanalogy. In mechanics, everyone except a relationist
will treat the extrinsic dynamics as fundamental; while we will see that in elec-
tromagnetism, it is normal to treat the intrinsic dynamics as fundamental (and
the same applies in classical Yang-Mills theory). Why? The answer is presumably
our different attitudes to whether the states off the constraints surface are genuine
physical possibilities. In mechanics, for everyone except a relationist, they are
possible. But as we will see: in electromagnetism, they are not—or better, they
are only possible by changing the theory concerned. Again: cf end of Section 7.

7. Vacuum Maxwell theory

The idea: This is a close (though infinite-dimensional) analogue of relational me-
chanics, with A (or B) configurational and £ momentum-like, and gauge trans-
formations the analogue of Euclidean motions, and holonomies the analogue of
inter-particle distances (viz. as an over-complete set of coordinates on a reduced
configuration space).

A. Basics: defining the simple mechanical G-system:
Let S be a flat Riemannian 3-manifold representing space. Maxwell’s equations in
terms of E, B are:

B=—curlE; E=curlB; divB=0; divE=0. (11)

Now take as the configuration space, the space of vector potentials in “temporal
gauge”, i.e.

A:={A:5—TR® | Asmooth}. - (12)

A is a vector space, so T4 A can be identified with A. The phase space (cotangent
bundle) is

T*A:={(AE) | A: S —R? E:S— IR? both smooth } (13)
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with the pairing between vector and covector given by integrating the naive scalar
product

<E, A)AEA :=/ A'Ed3$; (14)
s
the canonical symplectic form given by
W((Ar, Br), (As, Ep)) = / (Ey- Ay — By - Ar) & (15)
s

and the Poisson bracket given by

[ §FSG SFiG,
{F,G}.—/S(éAdE—é—Eé—A)da:. (16)

Then the Hamiltonian given by a sum of kinetic and potential terms, viz.

H(A, E) = % /S |B? + |curl A2 dz (17)

yields as Hamilton’s equations, A=—-F , E = curl curlA. If we then define B =
curlA, these give the first three equations of our Maxwell’s equations eq. ??7. For
the fourth equation, div £ = 0, cf. the definition below of the constraint surface
Gamma.

Let G be the additive group of smooth functions f : S — IR. (This will
be our “gauge group”.) G acts on A by setting f - A to be A+ Vf. That is:
®;: A A+ Vf. Then the lifted action on T*A is: d,: (A, E)— (A+ VS E).
This action leaves F, and so the kinetic energy, invariant. It also leaves the
potential energy % [ |curlA|? d®z invariant.

But G does not act fairly (since symmetric fields have larger-than generic
isotropy groups). So we restrict to the pointed gauge transformations G, := {f €
G| f(xzo) =0} for some fixed zg € S. Then G, acts fairly, indeed freely, on A and
T*A. (And using G, loses very little, in that G, is a normal subgroup of G, and
G/G. =U(1).) To sum up: we have a simple mechanical G,-system.

B. Defining I' and the quotient dynamics:
dim(G,) = 0o. So there are infinitely many conserved quantities: namely the value
of div E' at each z € S! Physically: Nothing in our framework determines the
charge distribution p, nor that charge should respond to the field (i.e. the Lorentz
force-law). Thus we now secure the fourth Maxwell equation, divE = 0, by fiat;
i.e. we restrict attention to

I:={(A,E)eT'A | divE=0} (18)



The null vectors of the presymplectic form w|r at the point (A, E) € T are the
infinitesimal generators of the G, action at that point, i.e. {{ra(A4,E) | € €
L(G.) }. So the intrinsic dynamical trajectories in I" are defined only up to a small
gauge transformation. That is: if A(t), E(¢) is a solution, so is (A + Vg(t), E(t))
for any smooth map g : IR — G,o.

We now quotient to consider I'/G; or isomorphically (by the general equiva-
lence discussed in Section 5.B), T*(A/G.), i.e. the cotangent bundle of the reduced
configuration space consisting of vector potential modulo pointed gauge transfor-
mations.

For S = IR?, A/G, = {divergence — freeB : S — IR?® }, and the reduced phase
space can be taken as {(B, FE) | divB = divE = 0 }, with equations of motion
given by the first two of Maxwell’s equations eq. ?7?. But for other topological
structures for S...

C. The Aharonov-Bohm effect: and comparison with relational mechanics:
If S is not simply connected, then: there are gauge-inequivalent A, A’ with curlA =
curlA’. That is: specifying a magnetic field does not determine a gauge-equivalence
class of vector potentials.

But note that for any closed curve « starting and ending at our base-point
xo € S, the holonomy of A around ~

H,(A) := expz’]{A - dx (19)

y
is gauge-invariant: H,(A) = H,(A+ Vf),Vf € G..

Moreover, AA’ (i.e. A, A’ are gauge-equivalent) iff for all v, H,(A) = H,(A").
Thus the set of holonomies are good coordinates on .A/G,—but over-complete!

To sum up: The Aharonov-Bohm effect brings out that “understanding elec-
tromagnetism” needs A/G,: you cannot manage with the coarse-grained infor-
mation in £ and B. In any case, you need holonomies for vacuum Yang-Mills
theory...[whose details we skip]

9 Quantization

The reduced theories in Sections 6, 7 and 8 are Hamiltonian; and they are defined
on a cotangent bundle, viz. the cotangent bundle of the reduced configuration
space Q say—thanks to the general equivalence discussed in Section 5.B. So in
principle, these theories can be subject to “usual canonical quantization”, mapping
a Poisson sub-algebra, A say, of C*°(T*Q), the C* functions on the cotangent
bundle, to a subalgebra of self-adjoint operators defined on L*(Q), the L? space of
functions on the reduced configuration space.

9



But in practice, there is trouble: due to the over-completeness of the natural
coordinates, and the non-locality of holonomies. This prompts the idea of Dirac
(aka: constrained) quantization. The idea is to proceed in two stages:

(i) first: quantize the original extended phase space theory, without constraints
¢; = 0 (for us: without setting to zero the values of conserved quantities J(&;) = 0;
getting a Hilbert space H

(ii) second: restrict your attention to the subspace of H consisting of vectors
annihilated by the quantum version of the constraints, i.e. to Hpiac := {¢ €
H|é&=0}

The hope is that this two-stage procedure gives the same quantum theory as
directly quantizing the reduced theory: in other words, that the following diagram
commutes (at least up to some canonical unitary equivalence in the bottom right

corner!): s e AN
TR > .

=0 o \/
R W A d

This hope turns out true for many finite-dimensional systems. We fix on a proce-
dure, geometric quantization, applied to a simple mechanical G-system (7*Q, g, V, G):
with some “extra meshing” conditions that imply a unique quantization that makes
the diagram commute up to canonical unitary equivalence.

Some details: The extra meshing implies that:

(i): G also acts on L*(Q) as: for g € G,q € Q : (¢ - 9)(q) := ¥(g - g). (This
implies that (¢ - (9192)(q) = (¢ - g1) - 92)(q); so G’s action on L?*(Q) is a right-
action.)

(ii): the infinitesimal generators of G’s action on L?(Q) are the operators J&
corresponding to the Jé and the & € g via &r+g = Xj¢;. So corresponding to the
classical restriction to the constraint surface I', i.e. J% = 0, we have the Dirac
condition, Jé (1)) = 0.

(iii): Since (i) means that G’s action on L%(Q) is given by expiJé; and if
J&(y) = 0, then expiJ% (1) = 1, we have: the Dirac Hilbert space, Hpiae =
{per|J5W)=0},is{peH|¢p-g=¢,YVgeCG}.

(iv): As (iii) suggests: Hpirac carries a representation (as self-adjoint operators)
of some G-invariant quantities. This suggests it can be written as, or is unitarily
equivalent to, L?(Q/G) equipped with such quantities: i.e. a quantization of the
reduced theory—so that the diagram commutes.
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