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What is a Singularity in General Relativity?* 

ROBERT GEROCH+-* 

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey 08540 

The general covariance of relativity theory creates serious dit%cuIties in formulating 
a suitable definition of a singularity in this theory. We review and, by means of an 
example, add to these difficulties. We examine the arguments which lead from one’s 
intuitive picture of a singularity as “some quantity’s becoming infinite” to the notion of 
geodesic completeness. Even within the framework of geodesic completeness there is 
still a great variety of definitions to choose from. It is claimed that none of these 
definitions is entirely satisfactorv. 

I. INTRODUCTION 

The task of defining a singularity in general relativity is one of the most 
interesting-and perhaps also one of the most difficult-facets of the problem 
of singularities. Our intuitive idea of what a singularity should be in Einstein’s 
theory comes from the relatively well-understood infinities which arise in other 
classical field theories, e.g., electrodynamics and hydrodynamics. Unfortunately, 
general relativity differs from these theories in one important respect: whereas 
in other field theories one has a background (Minkowskian) metric to which the 
field quantities can be referred, in general relativity the “background metric” 
is the very field whose singularities one wishes to describe. In view of the faulty 
analogy with which we must work, it is not suprising that (a) there is no widely 
accepted definition of a singularity in general relativity, and (b) each of the proposed 
definitions is subject to some inadequacy. 

Our goal is to point out the serious difficulties involved in an attempt to define 
the term “singularity” in general relativity. In Section II we relate the line of 
argument which leads to geodesic completeness as the basic concept in all definitions 
of a singularity. These arguments are generally well known, but have not, as far 
as I know, been collected together and published before. In Section III we examine 
possible definitions based on geodesic completeness. 

* Part of a PhD thesis submitted to the Department of Physics, Princeton University. 
t This work was carried out under a National Science Foundation Graduate Fellowship. 
*Present address: Department of Mathematics, Birkbeck College, London, England. 
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We shall not be concerned here with so-called “coordinate singularities”. 
This term refers to a spacetime which has been expressed in an improper coordinate 
system. Thus, for example: 

1. The Schwarzschild solution has a coordinate singularity at r = 2m 
because Schwarzschild originally chose coordinates for his solution which are 
not applicable on this surface. 

2. The solar system has a coordinate singularity on a line extending from 
the center of the sun to a point in the constellation Draco since planetary orbits 
are sometimes calculated in a spherical polar coordinate system with this line 
as axis. 

The presence or absence of a coordinate singularity is not a property of the 
spacetime itself, but rather of the physicist who has chosen the coordinates by 
which the spacetime is described. 

II. DIALOGUE ON SINGULARITIES 

Sugredo: It should not be too difficult, Salviati, to discover a suitable 
definition of a singularity by analogy with electrodynamics. We know that there 
are solutions of Maxwell’s equations in which the electromagnetic field becomes 
infinite, that is, undefined, at some points. It is this feature that characterizes 
electromagnetic singularities. By direct analogy, we may define a spacetime in 
general relativity as having a singularity if it contains points at which the metric 
tensor is not defined. 

Salviati: But in general relativity the metric tensor may reside on whatever 
manifold we wish. In particular, given a spacetime which, according to the 
definition above, has a singularity, we simply remove from the manifold those 
regions in which the metric is undefined. The resulting spacetime has a metric 
defined everywhere, and so, by your very definition, must be nonsingular. Thus, 
by merely cutting the “real singularities” from the spacetime, one would be 
forced to admit the Schwarzschild and Friedmann solutions among the 
“nonsingular” spacetimes. Surely we should not wish to classify these two solutions 
as without singularity. 

Sagredo: Let us then define a spacetime as having a singularity if either 
the metric is undefined somewhere, or if any regions have been removed from 
the spacetime. 

Salviati: In electrodynamics, it is clear what is meant by “no regions have 
been removed from the spacetime”. The Minkowski background metric allows us 
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to define the entire spacetime without reference to an electromagnetic held which 
might later be placed on it. But the situation is very different in general relativity. 
Here, we have no “background metric” which specifies the spacetime before 
the field of interest is set down. There is no obvious intrinsic way to tell whether 
or not “regions have been removed from the spacetime.” That is, our definition 
of a singularity in general relativity must contain within it a technique to determine 
whether or not “real singularities” have been concealed by merely cutting them 
from the spacetime manifold. 

Sagredo: I cannot help but feel, Salviati, that you have raised the essential 
point about the definition of a singularity. Perhaps a further analogy with electro- 
dynamics will help us again. In the static coulomb solution, one would know 
of the presence of the singularity at the spatial origin even if the origin were 
removed from the spacetime, for the electric field becomes infinite as we approach 
the singularity. One might therefore define a spacetime in general relativity as 
having a singularity if the metric g,, becomes infinite anywhere. 

Salviati: But the g,, , being the components of a tensor, can be made as 
large or as small as we desire by a proper choice of the coordinate system. For 
example, the space: 

ds2 = -(l/t)” dt= + dx2 + dy2 + dz2, 

defined for t > 0, would appear to have a singularity at t = 0, for the “metric 
becomes infinite” as we approach the “surface (t = 0) which has been removed 
from the spacetime.” Yet this example is, of course, Minkowski space, which 
we should not like to describe as having a singularity. 

Sagredo: Your point is well taken. In order to detect the presence of a 
singularity, we must inquire into the behavior of scalars rather than the components 
of a tensor. Let us consider, then, the physical components1 of the Riemann tensor. 
In the first place, it is the Riemann tensor that determines many observable effects, 
for example, the deviation of geodesics. Secondly, the physical components of a 
tensor are scalars, and so the problem of coordinate transformations you raised 
a moment ago will be avoided. Let us call a spacetime nonsingular if the physical 
components of the Riemann tensor remain finite. 

Salviati: Unfortunately, Sagredo, even the most reasonable spacetime can 
be made to appear singular by an appropriate choice of the frame in which the 

1 The physical components of any tensor field are defmed as the components of that field along 
any orthonormal tetrad. For example, if ry<, , i = 1,2,3,4, are any four orthonormal vector 
fields, the physical components of a tensor A+ 
four scalar fields AMW = A+&,E$,Z&, . 

in the frame determined by the (T6, are the sixty- 
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physical components are to be described. In particular, in any spacetime which 
is not of constant curvature, one can always choose a frame in which the physical 
components of the Riemann tensor become infinite on approaching any point. 

Sagredo : It appears that we are left with only the scalar invariants to define 
singularities. Fortunately, an infinite number of scalar invariants can be derived 
from any given metric tensor (1). These might be interpreted as describing, in some 
sense, the curvature of the spacetime. In particular, if a scalar invariant becomes 
infinite, then this corresponds to infinite curvature. Let us say, then, that a spacetime 
has a singularity if any of the scalar invariants become infinite. 

Sahiati: Of course, each scalar invariant is a function of the point of the 
manifold. We must therefore ask of your definition: “scalar invariant approaches 
infinity as the manifold point approaches what ?” One would like to answer: 
“as the point on the manifold approaches a singularity which has been cut out 
of the manifold”. But as yet we have no prescription for determining which curves 
approach “singularities”, and which curves trail off harmlessly to “infinity”. 
Of course, should a scalar invariant become infinite along a curve of the latter type, 
we should not wish to call this circumstance a singularity. Our next task, it appears. 
is to make a distinction between the two types of curves. 

Sagredo: One possible way to make the distinction you mention would be 
as follows: a curve which approaches “infinity” might be expected to have infinite 
total length, while a curve approaching a “singularity removed from the spacetime” 
would have a finite total length. 

Sahiati: Were the spacetime metric positive-definite, I would be inclined 
to agree with you. But since we deal with an indefinite metric, any curve in space- 
time may be approximated as closely as desired by a curve of arbitrarily small 
total length. The total length of a curve is of no help in deciding whether or not 
that curve should be construed as approaching “infinity”. 

Sagredo: There is another concept we may use, even with an indefinite 
metric, to replace the notion of “distance.” We know that in Minkowski space 
each geodesic has the property that an affine parameter on that geodesic attains 
arbitrarily large values. This fact expresses the idea that each geodesic in Minkowski 
space goes off to infinity. On the other hand, if we remove some region R from 
Minkowski space, those geodesics which formerly entered R will now have only 
a finite affine length in the new space. Thus, affine length seems the perfect candidate 
to replace the notion of distance when the metric is indefinite. We may say that 
a spacetime has a singularity if there is a geodesic of finite total affine length along 
which a scalar invariant becomes infinite. 

595/48/3-11 
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Salviati: I think, Sagredo, that you have raised a most important point. 
It does seem that incomplete geodesics are a signal that we have “removed a 
region from the spacetime.” However, I am afraid that I’m now no longer clear 
as to what the scalar invariants have to do with singularities. I recall that Kundt (2) 
has pointed out that in a spacetime with indefinite metric there are two types of 
scalar invariants, which we may call type I and type II. Type I scalar invariants 
are formed by taking outer products of the Riemann tensor and its derivatives, 
and then contracting indices. Each type II invariant, on the other hand, is the 
“ratio” between two tensors (obtained from the Riemann tensor) which differ 
only by a factor. Now both types of invariants together are required to characterize 
the curvature properties of the spacetime. (For example, in the plane wave 
solutions all the type I invariants vanish, yet the Riemann tensor is not zero.) 
However, a type II invariant may become infinite in a region of spacetime in 
which the metric is defined and differentiable. In short, with an indefinite metric, 
we cannot find a collection of scalar invariants which both characterize the 
curvature of the spacetime and remain finite when the metric is regular. 

Sagredo: Let us revise our definition, then, in the following way: a spacetime 
is singularity-free if it is geodesically complete. With this definition we would, 
of course, include within the class of singular spaces a number that result from 
simply removing some region from an otherwise regular space. (For example, 
Minkowski space with the origin removed would be singular.) But perhaps an 
over-inclusive definition is not too high a price to pay for the satisfaction of 
knowing that all spacetimes from which “real singularities” have been removed 
would be included in the class of singular spacetimes. 

Salviati: Very well. 

III. DEFINITIONS BASED ON GEODESIC COMPLETENESS 

We now consider the formulation of a definition of a singularity in terms of 
geodesic completeness. 

It is convenient to define a half-geodesic as a geodesic curve which has one 
endpoint and which has been extended as far as possible in some direction from 
that endpoint. A spacetime is called timelike (respectively, null, spacelike) complete 
if an affine parameter on every timelike (respectively, null, spacelike) half-geodesic 
assumes arbitrarily large values. 

Let M be a spacetime which is complete in all three senses above, and let C 
be a closed subset of M. Then the spacetime M-C is timelike, null, and spacelike 
incomplete, for there are geodesics of each type that pass from M-C into C. 
One might hope, therefore, that a spacetime complete in any of the three senses 
is complete also in the other two. 
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Unfortunately, the three types of completeness are not equivalent (3). We 
illustrate this point by an example. Consider two-dimensional Minkowski space 
with metric r],, , written in the usual x, t coordinates. Define a new metric 
gaB = ~‘7)~~ where the positive scalar field y has the following three properties 
(Fig. 1): 

1. q~ = 1 outside of the region between the vertical lines x = -11 and 
x = -1; 

3 -. y is symmetric about the line x = 0, that is, ~(t, x) = cp(t, -x>; 

3. On the f-axis, 9 goes to zero sufficiently quickly as t + co (say, as t-“). 

By condition 2, the t-axis is a timelike geodesic. By condition 3, that geodesic 
has finite proper (and therefore affine) length. The metric g,, is therefore timelike 
incomplete. However, every spaceiike or nul1 geodesic which enters the region 
between the lines x = + 1 and x = - 1 must eventually leave and remain outside 
of this region. Therefore, by condition 1, g,, is null and spacelike complete. 

Slight modifications of this example, together with the examples of Kundt (3) 
provide spacetimes which fall into each of the following five categories: 

FIG. 1. An example of a 2-dimensional spacetime which is timelike incomplete, but spacelike 
and nuli complete. 
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1. timelike complete, spacelike and null incomplete; 

2. spacelike complete, timelike and null incomplete; 

3. null complete, timelike and spacelike incomplete; 

4. timelike and null complete, spacelike incomplete; 

5. spacelike and null complete, timelike incomplete. 

No example is known of a spacetime which is spacelike and timelike complete 
but null incomplete. On the other hand, no proof has been given, as far as I know, 
of the nonexistence of such a spacetime. 

We originally introduced geodesic completeness because this concept appeared 
to give a precise statement of 

PROPERTY 1. In a nonsingular spacetime, one should like to be sure that 
“no regions have been deleted from the spacetime manifold”. 

We now find that timelike, spacelike, and null completeness are not equivalent.2 
Property 1 offers no guide as to which type of completeness should be selected 
in formulating the definition of a singularity. However, in a timelike incomplete 
spacetime, there are freely falling observers whose total proper time is finite. 
This fact suggests that we break the symmetry between the three types of 
completeness by introducing 

PROPERTY 2. In a nonsingular spacetime, observers who follow “reasonable” 
(in some sense) world lines should have an infinite total proper time. 

(We could not have required that all timelike world lines have infinite total length, 
for this property does not obtain in any spacetime.) Properties 1 and 2 have been 
stated in vague terms because they express vague concepts. Our task is to combine 
the two properties, using geodesic completeness, into a suitable definition of a 
singularity. 

First of all, there is a serious problem involved in the use of geodesic 
completeness to describe property 1. It has been emphasized by Misner (4) that 
there are compact, geodesically incomplete, spacetimes. Now, it is not possible 
that a compact spacetime has resulted from the removal of a region from a larger 
spacetime, for no compact 4-manifold can be a proper submanifold of another 
connected (Hausforff) 4-manifold. Thus, there are spacetimes which are 
geodesically incomplete, but which satisfy a liberal interpretation of property 1. 
Geodesic completeness does not appear to describe property 1. This dilemma 
has led Shepley (5) and Misner (4) to propose the following definition. 

2 The distinction between the three types of completeness is important in practice. For example, 
the Reissner-Niirdstrom solution is timelike complete but neither spacelike nor null complete. 
Shall one say that the Reissner-Niirdstrom solution has a singularity ? 
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DEFINITION 1. A spacetime is nonsingular if every half-geodesic is either 
complete or else is contained in a compact set. 

According to Definition 1, every compact spacetime is nonsingular. Perhaps 
the principal objection to Definition 1 is that it represents but one of several 
possibilities. Consider, for example, 

DEFINITION 2. A spacetime is nonsingular if every half-geodesic r(h), where 
h is an affine parameter, is either complete or, if incomplete (say, with 0 < h < h,), 
has the property that for some compact set C and for every X’ < X,, there is a 
X E (X’, X,) with y(X) E C. 

The two definitions are illustrated in Fig. 2. Every spacetime having a singularity 
according to Definition 2 also has a singularity according to Definition 1, but the 
converse is, presumably, not true. A number of other possible definitions could 
be offered. On what basis was Definition 1 selected from among the alternatives? 

Compact set C 

!  

J 

/ 

d 

(0) 

(b) 

FIG. 2. Two possible definitions of a singularity. Definition 1 (a): Incomplete half-geodesics 
which are contained in a compact set are counted as complete. Definition 2 (b): Incomplete 
half-geodesics which continually reenter a compact set are counted as complete. 
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In view of the problems involved in expressing property 1 in terms of geodesic 
completeness, one is led to rely more heavily on property 2. In fact, property 2 
cannot adequately be described by geodesic completeness either. In the Appendix 
we give an example of a spacetime which is geodesically complete in all three 
senses, but which contains a timelike curve y with bounded acceleration and 
finite total proper length. The properties of y imply that one could construct 
a space ship with a rocket of finite thrust (the acceleration of y is bounded), using 
only a finite amount of fuel (the proper length of y is finite), which would traverse 
the world line y. An individual inside the rocket ship, however, has only a finite 
amount of time: after that he is no longer represented by a point on the spacetime 
manifold. However, the spacetime is geodesically complete: there is no possibility 
of extending the spacetime to include more points for our doomed observer to 
occupy. This example, though geodesically complete, does not satisfy even a very 
moderate interpretation of property 2. 

Geodesic completeness, which at first appeared to be ideally suited to formulating 
a definition of a singularity, turns out to lead to several difficult problems. It is not 
clear what is the best direction to turn to find a suitable definition of a singularity.3 

Finally, we remark that geodesic incompleteness (various combinations of the 
three types) is commonly used as a definition of a singularity because with such a 
definition one can show that large classes of solutions of Einstein’s equations 
are singular (7). 

APPENDIX 

We give an example of a spacetime which is spacelike, timelike, and null 
geodesically complete, but which contains a timelike curve of bounded acceleration 
and finite total length. 

Consider first the universal covering space of two-dimensional anti-de Sitter 
space (8). The metric may be written in the form: 

ds2 = -(1 + x2) dt2 + (1 + x3-l dx2. 

Several timeiike and null geodesics in this space are illustrated in Fig. 3. Note 
that each timelike geodesic which intersects the t axis at the point t = to intersects 
that axis again at t = t,, + rr. In our example, we shall exploit this “focusing 
effect” on the timelike geodesics. 

We now define a two-dimensional spacetime which depends on two continuous 
positive numbers, b and c, and on a positive integer II. This “(b, c; n)-space” 
is illustrated in Fig. 4. The metric in each of the four regions of Fig. 4 is given 
as follows. 

s I wish to thank A. Avez for pointing out to me that his proposed characterization of a 
singularity (6) is not well-defined. 
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A GEODESICS 

FIG. 3. Typical geodesics in anti-de Sitter space. 

Region A: 

ds2 = ; 2n [-(x2 + 1) Lit2 ii $ (.x2 + I)-1 cw]. 

That is, the metric of region A is the metric of anti-de Sitter space multiplied 
by the constant factor (&)2n. 

Region B: 

l/s’s2 = f (+ - 3)Q2% [-(x2 + 1) dt2 + (x2 + l)-’ dx2] 

+ [I - f (+ - 3)](3jzn [-lift2 + d.x2], 

where we have defined the Cm function (Fig. 5): 
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I 
0, Z<O 

f(z) = 
1,” wl-(y-2 + (Y - W2)1 4~ 
St expt-W + (Y - W31dy ’ 

O<z<l, 

1, z 3 1. 

We see that the metric in B joins smoothly with that in A across the line t = 4b, 
and approaches that of Minkowski space (multiplied by the constant factor (+)z”) 
as t -+ 3b. 

Region C: The metric in region C is to be conformal with Minkowski 2+pace, 
the C” conformal factor y having the properties: 

1. y(x, t) = 9(-x, t) = 9(x, -t); 

t=4b+n 

A 

t=4b 

B 
t =3b 

the space 
3 

D t=-4b 

t 

t 

A 

/ (x=bJt-2b’ 

FIG. 4. (b, c; n)-space with its four regions, A, B, C, and D, shown. 
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2. on the lines t = 3b and t = -3b, g, = (+)2* and all the derivitives of 9 
vanish: 

3. g, = (&)2n on the r-axis; 

4. y --f cc sufficiently quickly as we approach the two areas cut out of 
region C so that all geodesics which approach these areas do so in an infinite 
affine length. 

By condition 2, the metric in region C joins smoothly with that in region B 
across the line I = 3b. 

Region D: 

&” = f (- ; - 3)(y [-((x - c)2 + 1) dt2 + ((x - c)” + 1)-l dX2] 

$ [l - f (- ; - 3)]Qzn [-LIP + &“I. 

As t - -3b? the metric in D approaches that of Minkowski space (multiplied 
by the constant factor (&)2n), thus joining smoothly with region C. As t -+ -4b, 
the metric in D becomes that of anti-de Sitter space, multiplied by the factor ($)2n-2 
and shifted by an amount c in the x-direction. 

FIG. 5. The Cm function f(z). 
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Our (6, c; n)-space has been constructed so as to have the following three 
properties: 

P Every timelike geodesic which passes through region D either fails 
to rea& the line t = 4b, or else crosses that line at a value of x in the interval 
I x / < tan 4b. In the latter case, our geodesic strikes the line t = 4b + n also 
in the interval / x ( < tan 46. 

P 2' If c < 1, then every timelike geodesic which intersects the line t = -4b 
with a value of x less than -4b fails to reach region 3. 

P 3' Consider the C* curve y consisting of two parts: 

Yl : x=0 for -4b < t < 4b. 

y2 : x = (tan 46 + 4b)f((t - 4b)/r) for 4b < t < 4b + n. 

The curve yl has a total length less than 9b, and, if c < 0.5, an acceleration 
everywhere less than its acceleration at t =: --4b. The curve y2 has total length 
less than TV, and an acceleration everywhere less than 2%(b), where u(b) is 
some strictly increasing continuous function of b which vanishes when b = 0. 

We are now prepared to construct our example. Set bl = 0.01, c1 = 0. Choose 
any sequence of positive numbers b, , n = 2,3,..., having the properties 

P 4' 4b,+l) < M&J 

P 6' b,,, ,< 4bn. 

Set c, = tan(4b,J + 4b,-, for n = 2, 3 ,... . Consider the following sequence 
of 2-dimensional spacetimes: 

M, : The lower half (t < 0) of anti-de Sitter space. 

M, : (b, , c, ; n)-space, n = 1, 2,... . 

We connect all of these spaces together in the following way. Identify the lower 
edge of M, with the upper edge of Mnml according to the rule: the point 
(x, t = -46,) of M, is identified with the point (X + c, , t = 4b,-, + n-) of MnA1 . 
In the case of M,, the point (x, t = -4bJ of Ml is identified with the point 
(x, t = 0) of M,, . We thus obtain a C” spacetime M as shown in Fig. 6. 

We note that M has the following two properties: 

1. M is geodesically complete. We have chosen the conformal factor in 
each region C so that any geodesic which approaches one of the “cut-out” areas 
of Fig. 6 has infinite affine length. Anti-de Sitter space is geodesically complete. 
A geodesic may be incomplete, therefore, only if it can manage to pass from 
one M,, to the next, taking advantage of the decreasing conformal factor in each 
space to escape having infinite affine length. No spacelike or null geodesic can 
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t 
etc. 

MO 
FIG. 6. The geodesically complete two-dimensional spacetime M. The timelike curve r 

has finite length and bounded acceleration. 

pass through the narrow channel between the “cut out” areas of each region C 
(Fig. 4). Therefore, M is spacelike and null complete. Any timelike geodesic 
which passes through one channel must, according to property PI , intersect the 
line t = 4b, + 7r in that M, in the interval ) x ) < tan 4b, . But according to 
property P2 and the definition of the c,, in terms of the b, , this geodesic will not be 
unable to pass through the next channel. That is, no timelike geodesic in M is 
able to pass through more than one channel. We conclude that M is also timelike 
complete. 

2. M contains a timelike curve of bounded acceleration and finite total 
length. Draw the curve y in each of the spaces M,, (n > 1). These curves form 
a C” curve r in M (Fig. 6). The total length of .l’ may be written, according to 
property P3 : 

Because of property P, , this length is finite. Further, the maximal acceleration 
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of the curve r in the space M, is 2”a(b,,) (property Pa). Because of property Pa , 
this acceleration is bounded. 

Our example may now be made into a four-dimensional spacetime by crossing M 
with the Euclidean plane. 

Note that M is diffeomorphic to R2. Thus, the entire spacetime M could be 
expressed in terms of a single coordinate patch with coordinates X, t. Aside from 
the presence in M of an inextendable timelike curve of bounded acceleration 
and finite total length, the geodesically complete spacetime M has no particularly 
pathological properties. 

RECEIVED: July 18, 1967 
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