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a b s t r a c t

What if gravity satisfied the Klein–Gordon equation? Both particle physics from the 1920–30s and the
1890s Neumann–Seeliger modification of Newtonian gravity with exponential decay suggest considering
a “graviton mass term” for gravity, which is algebraic in the potential. Unlike Nordström's “massless”
theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the
Poincaré group but not the 15-parameter Bateman–Cunningham conformal group. It therefore exhibits
the whole of Minkowski space–time structure, albeit only indirectly concerning volumes. Massive scalar
gravity is plausible in terms of relativistic field theory, while violating most interesting versions of
Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor
guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal
coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term.
What is the ‘true’ geometry, one might wonder, in line with Poincaré's modal conventionality argument?
Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress–energy's trace as
source; thus geometry does not explain the field equations. The irrelevance of the Ehlers–Pirani–Schild
construction to a critique of conventionalism becomes evident when multi-geometry theories are con-
templated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of
theories by data between massless and massive scalar gravities—indeed an unconceived alternative. At
least one version easily could have been developed before General Relativity; it then would have
motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated “physical
strategy” and particle physics and would have suggested a rivalry frommassive spin 2 variants of General
Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam–Grünbaum debate on con-
ventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive
scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th–21st
century space–time philosophy in the light of particle physics. An appendix reconsiders the Malament–
Weatherall–Manchak conformal restriction of conventionality and constructs the ‘universal force’
influencing the causal structure.

Subsequent works will discuss how massive gravity could have provided a template for a more Kant-
friendly space–time theory that would have blocked Moritz Schlick's supposed refutation of synthetic a
priori knowledge, and how Einstein's false analogy between the Neumann–Seeliger–Einstein modifica-
tion of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured
massive gravity as a conceptual possibility.

& 2015 Elsevier Ltd. All rights reserved.
When citing this paper, please use the full journal title Studies in History and Philosophy of Modern Physics
1. Introduction

Plausibly, when one comes to recognize the historical con-
tingency of hitherto apparently unavoidable ideas about the world,
one can take a more critical attitude and rework one's beliefs to fit
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evidence and argument more fully. Mach's historical-critical
investigations in physics exemplified that idea. More formally, it
is plausible that the order in which one receives pieces of evidence
ought not to affect one's final degrees of belief (Wagner, 2002), a
criterion for avoiding one sort of historical accident. Failure of
imagination can lead to our not entertaining theories that are
comparably good to the ones that we did entertain; such uncon-
ceived alternatives undermine scientific realism (Stanford, 2006).
In the interest of freeing ourselves from historical accidents
regarding space–time theory, it is prudent, therefore, to employ
whatever systematic means exist for generating plausible alter-
native theories.

Fortunately, there is a largely untapped source here, namely,
the literature that studies all possible classical (i.e. not quantum)
relativistic wave equations. That literature has gone untapped for a
number of reasons, including a superficially quantum vocabulary.
That literature is particle physics, of which Wigner's taxonomy of
relativistic wave equations in terms of mass and spin (Wigner,
1939) is a prominent example. The terms “mass” and “spin,” which
misleadingly suggest concepts appropriate to quantum particles
rather than relativistic waves, exemplify the vocabulary issue, on
which more below. While space–time physics ought to be
quantization-ready in the sense of recognizing that electrons and
other fermions exist (though not much like light and gravity, the
usual stars of space–time philosophy Pitts, 2012) and that classical
theories are not the last word, this paper's use of particle physics
literature will be entirely as a resource for classical relativistic
fields and the space–time philosophy thereof.

In the 1910s Gunnar Nordström proposed a theory of gravity
that met the strictures of Special Relativity (Bergmann, 1956;
Norton, 1992; Renn & Schemmel, 2007; von Laue, 1917) in the
sense of having, at least, Lorentz transformations as well as space-
and time-translations as symmetries, and displaying retarded
action through a field medium, as opposed to Newtonian instan-
taneous action at a distance. This use of the 10-parameter Poincaré
symmetry group reflects a Kleinian subtractive strategy of gradu-
ally depriving coordinates of physical meaning via symmetries,
as opposed to a Riemannian additive strategy (Norton, 1999b).
There is a larger group of potential symmetries that one might
contemplate, namely, the Bateman–Cunningham 15-parameter
conformal group (Bateman, 1909, 1910; Cunningham, 1910);
Nordström's theory, which is massless spin 0 in terms of particle
physics, is invariant under that group, whereas massive theories
are strictly Poincaré-invariant. Nordström's scalar gravity was a
serious competitor to Einstein's program for some years during the
middle 1910s. Neglecting time dependence and nonlinearity, it
gives Poisson's equation just as Newton's theory does. Nordström's
theory was eclipsed first by the theoretical brilliance of Einstein's
much more daring project and the latter's better treatment of
Mercury in 1915 (though a “dark matter” patch might have been
possible), and then by the empirical success of Einstein's theory in
the bending of light in 1919, a result manifestly inconsistent with
Nordström's theory.

It is well known that Nordström's theory does not bend light
(Kraichnan, 1955). That is an immediate consequence of the con-
formal flatness of the metric in Nordström's theory in geometrical
form (Einstein & Fokker, 1914) and the conformal invariance of
Maxwell's electromagnetism (Wald, 1984): space–time is flat in
Nordström's theory except for the volume element, but light
doesn't see the volume element in Maxwell's theory in 4 space–
time dimensions.

While representing gravity primarily by a scalar field is no
longer a viable physical proposal, there is a great deal that can be
learned, surprisingly, by filling in a hole left by the premature
abandonment of Nordström's scalar gravity theory due to Ein-
stein's inventing General Relativity (GR) ‘too soon.’ While it is
evident to particle physicists that Einstein's theory would have
arisen eventually without Einstein (see, e.g, Feynman et al., 1995),
Hans Ohanian, author of a General Relativity textbook (Ohanian &
Ruffini, 1994) and not a particle physicist, has been prepared to
offer, along with some vigorous opinions, even a fairly specific
date:

… [I]f Einstein had not introduced the mistaken Principle of
Equivalence and approached the theory of general relativity via
this twisted path, other physicists would have discovered the
theory of general relativity some twenty years later, via a path
originating in relativistic quantum mechanics. (Ohanian, 2008,
p. 334).

Personally I can imagine it perhaps taking as long as 30 years, but
one mustn't be too particular about dates in counterfactual history.
In any case the task at hand is to learn what could have been
learned in the intervening 20–30 years of that counterfactual
history before Einstein's equations were found. Scalar gravity has
the disadvantage of having been empirically falsified in 1919, but
that isn't as bad as it sounds—witness the ongoing reflections on
scalar gravity by physicists, often with no particular philosophical
or historical interests (Alcántara Félix, Calogero, & Pankavich,
2014; Calogero, 2003; Calogero & Rein, 2004; Deruelle, 2011;
Deruelle & Sasaki, 2011; Dowker, 1965; Garrett, 2011; Girelli, Lib-
erati, & Sindoni, 2009; Gursey, 1953; Harvey, 1965; Littlewood,
1953; Manrique & Reuter, 2010; Pietenpol & Speiser, 1972; Romero,
Fonseca-Neto, & Pucheu, 2012; Shapiro & Teukolsy, 1993; Sun-
drum, 2004; Watt & Misner, 1999; Wellner & Sandri, 1964; Yo,
Baumgarte, & Shapiro, 2001).

Thinking seriously about scalar gravity helps one to separate
the wheat from the chaff in Einstein's arguments. For example, as
early as 1907 Einstein concluded that a relativistic field theory of
gravity could not describe gravity with a scalar potential. In the
common sympathetic Einstein historiography, this conclusion is
often presented as a result, or at least isn't challenged. As it hap-
pens, Einstein's argument was wrong (Giulini, 2008):

On his way to General Relativity, Einstein gave several argu-
ments as to why a special-relativistic theory of gravity based on
a massless scalar field could be ruled out merely on grounds of
theoretical considerations. We re-investigate his two main
arguments, which relate to energy conservation and some form
of the principle of the universality of free fall. We find such a
theory-based a priori abandonment not to be justified. Rather,
the theory seems formally perfectly viable, though in clear
contradiction with (later) experiments. (Giulini, 2008)

Einstein here seems to have made a lucky mistake, a habit to
which Ohanian calls attention.

HOW MUCH OF AN ADVANTAGE did Einstein gain over his
colleagues by his mistakes? Typically, about ten or twenty
years. (Ohanian, 2008, p. 334, sic)

There would have been much less reason to consider a tensor
theory of gravity so early without erroneous arguments against
scalar gravity.

Giulini illustrates two important themes: both the a priori
plausibility of a graviton mass (to borrow quantum terms for a
classical context) and the haste in which the idea is typically
eliminated on narrowly empirical grounds, as though nothing
conceptually interesting lay in the possibility of a small but non-
zero graviton mass.

In modern terminology, a natural way to proceed would be to
consider fields according to mass and spin, [footnote sup-
pressed] discuss their possible equations, the inner consistency
of the mathematical schemes so obtained, and finally their
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experimental consequences. Since gravity is a classical, mac-
roscopically observable, and long-ranged field, one usually
assumes right at the beginning the spin to be integral and the
mass parameter to be zero. The first thing to consider would
therefore be a massless scalar field. What goes wrong with such
a theory? (Giulini, 2008)

That route leads first to Nordström's theory (massive spin-0), but
there is no compelling reason to think that the mass is 0 rather
than just small. In entertaining scientific theories, one might wish
to consider not only trying to get to the truth (in terms of prior
probability and evidence), but also utilities (Maher, 2008). While
there are other kinds of utilities, the utility of being philosophically
interesting is especially relevant in this context. Grinding out one
more decimal place might or might not be very important,
depending on the details. Keeping a precise count of the number
of pigeons in Chicago, though it would yield ecological facts, seems
not worth the effort. But adding a mass term in gravity has a
high philosophical utility in that one can thereby make a large
conceptual-metaphysical difference with an arbitrarily small em-
pirical difference (Pitts, 2011b). Such theories can show us that
what seemed to be inevitable philosophical lessons given current
scientific knowledge, might in fact be optional. If today's lessons
are not optional because other paths would have converged on
them, the lessons might still be justified by reasons other than
those usually given.

This introductory section will close with an outline of what is to
come. One section gives further background on relativistic wave
equations and particle physics, including potentially confusing but
standard and nearly unavoidable quantum terminology for the-
ories that might be classical. If (following Pascual Jordan) one
expects to take a classical field theory and quantize it, it doesn't
seem important to avoid quantum words that apply literally to the
expected finished product and that have clear classical analogs.
Subsequent sections consider various major issues in space–time
philosophy and show how massive scalar gravity, either in itself or
in the strong hints that it gives for massive spin-2 gravity (which
relates to General Relativity as massive scalar gravity relates to
Nordström's theory) or both, gives a very different perspective.
Gravity could have fit within Minkowski space–time (with only
the Poincaré symmetry group) if gravity had been a massive scalar
field. The apparent explanatory utility of geometrical descriptions
of gravity depends mostly upon considering only a narrow col-
lection of theories with the special property of having only one of
each type of geometric object plausibly related to geometry
(metric, volume element, connection, projective connection, etc.);
in general it is much more helpful to consider the laws or (more or
less the same thing assuming that a variational principle exists)
the Lagrangian density. The mass term is a tool for violating pretty
much all of Einstein's famous Principles, at least in the strong
senses that imply interesting conclusions. Mass terms being
plausible, Einstein's Principles are correspondingly less plausible
than one might have thought (even given their supposed empirical
success). Debates on conventionalism (including critiques of
Poincaré by Eddington and of Grünbaum by Putnam et al.) are
seen to depend crucially on what one takes the relevant modal
scope of the discussion to be. Conventionalism at its best considers
a broad modal scope including multi-geometry theories, and
invokes universal forces only in the less friendly special case of
single-geometry theories, whereas the opposing views appear
simply to ignore the possibility of multi-geometry theories. An
appendix reconsiders the Malament–Weatherall–Manchak view
that conventionality of the space–time metric must be restricted
to conformally related metrics, leaving only the volume element as
conventional. Taking Thomas's conformal-volume decomposition
of a metric into its irreducible parts and applying it to both metrics
in Reichenbach's conventionality formula g0μνþFμν ¼ gμν, one can
construct the ‘universal force’ that relates the two conformal
structures, evading the claimed conformal restriction.
2. Wigner's mass–spin taxonomy of relativistic wave equations

The range of options in relativistic classical field theory can be
found in work from the 1920–30s in the guise of relativistic
quantumwave equations: one merely needs to interpret the “wave
function” as a classical field. Indeed an older physics idiom used
the term “second quantization” to reflect the fact than a wave
equation that one perhaps initially met as a quantum particle's
wave equation (the Klein–Gordon equation, Dirac equation, or the
like), was mathematically just a classical field. Thus “second-
quantizing” such a relativistic wave equation would give a quan-
tum field theory, while leaving it alone would give a classical field
theory. Nowadays, with the triumph of Jordan's subsumption of all
matter into fields, one rarely hears of anything being “second-
quantized.” But works on quantum field theory still contain large
warmup exercises in classical field theory—often the first few
chapters of a book, with many other relevant bits scattered
throughout. Likewise, one can learn important things about rela-
tivistic classical field theory by reading articles nominally about
quantum field theory in such paradigmatically particle physics-
oriented venues as Nuclear Physics B. Indeed much of what one
learns about “Special Relativity” from particle physics literature,
though perfectly classical in nature, is harder to learn elsewhere,
especially in newer literature. Some examples might be the parity-
flipping off-brand tensors (pseudo-scalars, axial vectors, etc.), the
15-parameter conformal group and its association with massless-
ness, massive wave equations, spinors, irreducibility of repre-
sentations, Belinfante–Rosenfeld equivalence of canonical and
metric stress–energy tensors, and two newer examples, the
“improved” energy-momentum tensor (Callan, Coleman, & Jackiw,
1970) and nonlinear group realizations (Coleman, Wess, & Zumino,
1969; Isham, Salam, & Strathdee, 1971; Ogievetskii ̆ & Polubarinov,
1965). One finds the divide overcome primarily in work on
supergravity (including strings!) and on gauge theories of gravity.
Thus neither special nor general relativistic physics is easily fully
and accurately comprehensible without attention to particle phy-
sics, notwithstanding various traditional-institutional arrange-
ments in physics, philosophy and technical history of science,
especially literature consumption habits.

Indeed one thing that one learns from particle physics litera-
ture is that while a theory might be known to be invariant under
the 10-parameter Poincaré symmetry group (3 boosts, 3 rotations,
and 4 translations for the part connected to the identity), addi-
tional symmetries sometimes arise indirectly (Deser, 1970; Feyn-
man et al., 1995; Ogievetsky, 1973). Such additional symmetries
might be as mild as the 15-parameter Bateman–Cunningham
conformal group, or as wild as the gauge symmetry of Einstein's
General Relativity. There is a respectable usage according to which
theories invariant under the 15-parameter conformal group do not
fit within Special Relativity (Misner, Thorne, & Wheeler, 1973, p.
179, 187–189; Norton, 1992, p. 19), because they do not exhibit the
full Minkowski space–time structure. Hence one might initially
think that one has a special relativistic theory, and then discover
that one doesn't after all. Such a shift might feel unsettling, or
seem impossible, if one is wedded to a Riemannian “additive”
strategy (Norton, 1999b) of starting with a manifold and adding
structures (straight paths, parallel transport, length, etc.) bit-by-
bit, because adding structures and pronouncing them “real”
sounds so permanent. Such a shift is, however, quite natural in
terms of a Kleinian “subtractive” strategy in which progressi-
vely larger symmetry groups strip away reality from structures
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antecedently considered meaningful. On the other hand, Kleinian
subtractions can feel permanent as well, as in the elimination of
Lorentz's aether on the way to Einstein's version of Special Rela-
tivity and the elimination of preferred coordinate systems on the
way to General Relativity.1

One lesson here is that it isn't the case that the Kleinian picture
is obsolete; but neither should one embrace Klein and reject Rie-
mann. Rather than thinking of either Riemannian addition or
Kleinian elimination as a strategy for making irreversible progress,
it is helpful to think in both directions without prejudice, as moves
that can be made depending on the circumstances. One should be
prepared to run the Riemannian additive strategy in reverse if the
need arises, if a formerly “real” structure proves superfluous due to
a new Kleinian argument. To that end, it can be helpful to avoid
such reifying terms as “Special Relativity” and “Minkowski space–
time,” which, not coincidentally, are nouns,2 in favor of adjectives
such as “Poincaré-invariant” or perhaps “special relativistic.” A
useful corrective is thus found in such a title as “Minkowski space–
time: A Glorious Non-entity” (Brown & Pooley, 2006). But evidence
could come to support a new Riemannian addition undoing a
Kleinian subtraction. Such would occur if a satisfactory massive
graviton theory were devised and then empirically confirmed (or
it could occur in some other way). Scalar gravity being obsolete,
that could only happen for massive spin-2 gravity, which has seen
renewed attention in the last 15 years (after a dearth from 1972)
and an explosion of work since 2010 (Hinterbichler, 2012; de
Rham, 2014), but it brings up many subtleties as well. Indeed
physicists have recently contemplated theories in which not only
do two metrics exist, but both couple to matter (Akrami, Koivisto,
& Solomon, 2015); in general there exists no effective pseudo-
Riemannian metric describing what exists, but one can define an
effective Finslerian metric, for which the infinitesimal Pythagorean
theorem involves a quartic form and hence a symmetric rank-4
metric tensor. My task at hand is much simpler because of the
assumption that matter sees only one metric (as usual in massive
spin-2 gravity), and for spin-0 gravity the two metrics are con-
formally related.

Additional insight from the particle physics side of classical
relativistic field theory pertains to two modifications that one
might envisage making to the wave equation

∂μ∂μϕ¼ ð�∂2=∂t2þ∇2Þϕ¼ 0

for a source-free wave equation satisfied by nearly any physical
potential ϕ (which might be a scalar, a vector, a spinor, etc.).3 In the
static, spherically symmetric case in spherical polar coordinates,
one has

1
r2

∂
∂r

r2
∂ϕ
∂r

� �
¼ 0

outside sources, giving (with reasonable boundary conditions) a
1=r potential and, after taking the derivative, a 1=r2 force. This is
familiar, but worth saying for comparison to two alternatives,
1 Whether preferred coordinate systems were fully eliminated is not entirely
obvious in the wake of the failure of the Anderson–Friedman absolute objects
program to yield the expected conclusion that General Relativity is substantively
generally covariant (Giulini, 2007; Pitts, 2006), the culprit being

ffiffiffiffiffiffiffiffi�g
p

.
2 Worries about reification, misplaced concreteness, hypostatization, and the

like are not new, but they find a nice example in space–time philosophy.
3 One can of course also add sources—charge density, energy–momentum

density, or the like—to the right side of the equation. It might turn out that (as in
Brans–Dicke gravity, e.g.) it isn't terribly clear whether some terms belong on the
right side as sources, or on the left side akin to ∂μ∂μϕ. The choice might be merely
conventional, especially classically (Faraoni & Nadeau, 2007). Arguably (though less
convincingly), there is no fact of the matter in General Relativity either, which
absence can be useful (Deser, 1970, 2010; Kraichnan, 1955; Pitts & Schieve, 2001).
More generally, one can include interactions and even self-interactions, making the
equation nonlinear.
especially because the potentials are more tractable than the
forces.

A modification that tends to go unconceived in the context of
General Relativity, but is routine in particle physics, involves
adding an algebraic term in ϕ in the field equations. The coefficient
of such an algebraic term, if the sign is suitable, is called the
“mass” (squared) of the particle/field ϕ. Such terminology makes
inessential use of Planck's constant to achieve proper units;
instead one could simply regard the quantity as a new inverse
length scale, something that many particles/fields demonstrably
have (weak bosons, electrons, nowadays at least some neutrinos,
etc., less fundamental entities such as protons and neutrons, and
various less famous particles, whether fundamental or composite),
and by analogy, presumably might be had by any particle/field. The
resulting wave equation, which was invented multiple times
around 1926 (Kragh, 1984), is known as the Klein–Gordon equa-
tion

ð�∂2=∂t2þ∇2�m2Þϕ¼ 0:

“Particle mass” is just a property of a classical field, expressed in
entrenched quantum terminology, for which there is no brief
alternative. In the static, spherically symmetric case, this equation
becomes

ð∇2�m2Þϕ¼ 1
r2

∂
∂r

r2
∂ϕ
∂r

� �
�m2ϕ¼ 0:

For a massive theory, one gets a faster exponential fall-off as
ð1=rÞe�mr . More specifically, a graviton mass m gives the potential
�ðGM=rÞe�mr , which gives a attractive force that is qualitatively
similar to the more common m¼0 case, proportional to the heavy
body's mass M and merely weakening faster with distance thanks
to the graviton mass m. If one pays attention to units—a good habit
enforced upon beginning students and later lost by theorists—one
notices that m functions as an inverse length. If one takes m to be
really a mass, then mc=ℏ is an inverse length (setting c¼1 and
ℏ¼ 1 as usual makes mass and inverse length the same); the
length is the reduced Compton wavelength. A classical theory
should know nothing of ℏ, however, so one can take mc=ℏ as
primitive, a new inverse length in the wave equation. Using units
such that c¼1 and ℏ¼ 1 will remove the need to make such dis-
tinctions. A ð1=rÞe�mr potential appeared in or before the 1890s in
astronomy and physics in the works of Seeliger and Neumann4

(Neumann, 1886, 1896; Norton, 1999a; Pockels, 1891; von Seeliger,
1896) and again due to Yukawa in particle physics in the 1930s
(Yukawa, 1935). The inverse ofm is known as the range of the field,
so nonzero m gives a field a finite-range, while m¼0 gives a “long”
or “infinite” range. For the electro-weak theory, for example, the
weak nuclear force is not noticeable in daily life as electro-
magnetism because the weak force is massive and hence short-
ranged, though its mass arises in a more subtle way attributed to
the Higgs particle/field. While simply adding a mass term works
fine for electromagnetism even under quantization, and works
classically for Yang–Mills, there are distinctively quantum field
theoretic reasons (trouble at 1-loop Boulware & Deser, 1972;
Hurth, 1997; Slavnov, 1972) for introducing the Higgs particle in
Yang–Mills. Even so, the Higgs particle gives rise, after a field
redefinition suited to the true minimum energy, to an effective
mass term for the vector bosons. Now that the Higgs is empirically
4 Norton has insightfully discussed the problem of Neumann's 1890s priority
claimwith a brief reference to Neumann's 1870s work (Norton, 1999a), the problem
being that no such Neumann work seems to exist. In particular (Neumann, 1874)
does not seem to be the right paper. I note that Neumann's 1886 paper in a sister
journal (Neumann, 1886) at least is relevant and appeared some years before the
mid-1890s, though it isn't from quite the right journal, the right decade, or the
right pages.
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confirmed, it is still worthwhile to recall why it ‘had to be there’
before it was seen.

A graviton mass term violates the supposedly fairly generic
template

OPðPOTÞ ¼ SOURCE

(Renn, 2005; Renn & Sauer, 2007) (SOURCE being some kind of
source term involving mass-energy, POT being the gravitational
potential, and OP being a purely second-order differential opera-
tor) that Einstein employed in searching for his field equations. If
one comes to believe that matter is relativistic fields, one will want
a mass term (inverse length scale) in the wave equation in order to
have matter that can sit still, like a tree, rather than travel at the
speed of light. (We don't, of course, presently observe light or
gravity sitting still in that sense; perhaps they can't, but that isn't
yet clear.) While the concept of adding a ‘particle mass’ term in the
modern sense was not fully available in the 1910s, the analogous
concept was entertained for relativistic photons (which lacked the
Seeliger–Neumann precedent) already in the early 1920s by de
Broglie (de Broglie, 1922, 1923, 1924). During the 1920–30s pro-
gress in relativistic quantum theory, the concept of adding a mass
term to the wave equation would become routine. Massive pho-
tons were explored initially Proca in terms of fields in 1930s, and
later Schrödinger and others (Bass & Schrödinger, 1955; Belinfante,
1949; de Broglie, 1940, 1942; Poenaru & Calboreanu, 2006; Proca,
1936; Schrödinger, 1943a, 1943b).

In massive electromagnetism, the kinetic term �1
4FμνF

μν in the
Lagrangian density has a gauge symmetry, but the mass term �1

2
m2AμAμ breaks the gauge symmetry. Massive theories also have
the advantage of being local in terms of the true degrees of free-
dom, unlike gauge theories (Sundermeyer, 1982), perhaps giving
the best of both worlds to some degree. In terms of quantization,
broken gauge theories are somewhat special in relation to natur-
alness, inheriting some of the benefits of the symmetry that they
almost have (Dine, 2015; ’t Hooft, 1980). Strikingly, ’t Hooft
exempted gravity from naturalness because the cosmological
constant was already known to violate it. On the other hand, a
small spin-2 graviton mass should be compatible with naturalness
because the massless theory (General Relativity) is more sym-
metric than the massive theory(s). While typical scalar field the-
ories do not become more symmetric with 0 mass, massive
Nordström scalar gravities do become more symmetric, shifting
from the Poincaré group to the 15-parameter conformal group. ’t
Hooft notes that for scalar theories “[c]onformal symmetry is
violated at the quantum level.” However, he argues that one has a
self-interacting massive ϕ4 theory that is natural as long as the
self-interaction is small (because in a free theory particles are
conserved) or the mass and self-interaction are both small. What
seems to be excluded is for the mass to be small but the self-
interaction large. Fortunately the self-interaction terms for uni-

versally coupled massive scalar gravities are of the form m2
ffiffiffiffi
G

p j�2

ϕj (jZ3) (Ogievetsky & Polubarinov, 1965; Pitts, 2011a), implying
that the self-interaction is also small if the graviton mass is small.
The massless limit of massive electromagnetism (sometimes called
a neutral vector meson if the electromagnetic interpretation is not
emphasized) is smooth not only in classical field theory (Jackson,
1975), but also in quantum field theory (Bass & Schrödinger, 1955;
Belinfante, 1949; Boulware, 1970; Boulware & Deser, 1972; Boul-
ware & Gilbert, 1962; Glauber, 1953; Goldhaber & Nieto, 1971,
2010; Shizuya, 1975; Slavnov, 1972; Slavnov & Faddeev, 1971;
Stueckelberg, 1957; Ruegg & Ruiz-Altaba, 2004), yielding an
interesting case of the underdetermination of theories by data
with a non-standard logical form (Pitts, 2011b).

Inspired by de Broglie and Pauli-Fierz, Marie-Antoinette Ton-
nelat and Gérard Petiau explored massive gravitons in the 1940s
(de Broglie, 1943, 1954; Petiau, 1941a, 1941b, 1941c, 1943a, 1943b,
1943c, 1944a, 1944b, 1945, 1946a, 1946b; Tonnelat, 1941a, 1941b,
1941c, 1941d, 1941e, 1942a, 1942b, 1943, 1944a, 1944b, 1944c).
The gravitational case is in fact earlier, due to Neumann, Seeliger
and Einstein. Massive theories are plausible in terms of relativistic
field theory. As Freund, Maheshwari and Schonberg put it,

In the Newtonian limit, equation (1) is now replaced by the
Neumann–Yukawa equation,

ðΔ�m2ÞV ¼ κρ; ð3Þ
which leads to the quantum-mechanically reasonable Yukawa
potential

VðrÞ ¼ �κMe�mr

r
; ð4Þ

rather than the peculiar oscillator [due to the cosmological
constant Λ] of equation (2). (Freund, Maheshwari, & Schonberg,
1969).

This potential was sufficiently plausible as to be independently
invented 3 times (Seeliger among many other potentials, Neu-
mann, and Einstein); Seeliger and Einstein were both addressing
the problem of mathematically divergent gravitational potential
in an infinite homogeneous static Newtonian universe. The pecu-
liarity of Λ and its resistance to sensible interpretations has also
been noticed by authors who do not contrast it with a graviton
mass and who do not see its peculiarities as a reductio (Kerszberg,
1989; McCrea, 1971). For massive gravitons one has the plausible
form

OPðPOTÞþPOT ¼ SOURCE;

which is excluded by the narrow schematic equation employed by
Einstein with no POT term permitted.

In the first half of his 1917 paper on the cosmological constant
Λ, Einstein briefly entertained what is in effect a massive scalar
gravitational theory:

We may ask ourselves the question whether [these difficulties
involving the Newtonian potential in a cosmological context]
can be removed by a modification of the Newtonian theory.
First of all we will indicate a method which does not in itself
claim to be taken seriously; it merely serves as a foil for what is
to follow. In place of Poisson's equation we write

∇2ϕ�λϕ¼ 4πκρ : : : ð2Þ
where λ denotes a universal constant. (Einstein, 1923, p. 179)

Thus Einstein in effect contemplated a theory of the sort that, in
light of later quantum mechanics terminology, one might call a
theory of gravity using a nonrelativistic massive scalar field
(Boulware & Deser, 1972), with λ equaling the square of the scalar
graviton mass (with ℏ¼ c¼ 1). Relativistic massive scalar fields in
the absence of interacting satisfy the Klein–Gordon equation, but
interpreting the field as gravity introduces interactions, including
self-interaction and hence nonlinearity.

Einstein's cosmological constant Λ has waxed and waned in its
empirical fortunes, but its plausibility or implausibility vis-a-vis
relativistic wave equations has not always been appreciated.
Unfortunately, the dominant effect of Λ is to introduce a constant
into the field equations, like ð1=r2Þð∂=∂rÞ r2∂ϕ=∂r

� �þC ¼ 0. Wide-
spread historical misunderstanding of this fact, going back to
Einstein in 1917 (Einstein, 1923), has occurred. Such an alteration
seems likely to produce a rather peculiar point mass potential.
Indeed it does: the potential grows quadratically with distance,
like a harmonic oscillator (or its opposite, depending on the sign),
and not at all like any fundamental physical force behaves in
mundane experience. (The strong nuclear force is not part of what
I mean by mundane experience; intrinsically nonperturbative



5 The point that philosophers did not keep up with developments in physics is
strengthened, not weakened, by the fact that after Salmon's period of philosophical
stasis, further physical innovations in the 1960s involving nonlinear group reali-
zations, still poorly known even among physicists outside the supergravity com-
munity, largely deflatedWeyl's result (Bilyalov, 2002; Isham et al., 1971; Ogievetskii ̆

& Polubarinov, 1965; Pitts, 2012).
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theories are different.) The matter was well described by Freund,
Maheshwari and Schonberg.

In the “Newtonian” limit it leads to the potential equation,

ΔVþΛ¼ κρ: ð1Þ
Correspondingly, the gravitational potential of a material point
of mass M will be given by

V ¼ �1
2
Λr2�κM

r
: ð2Þ

A “universal harmonic oscillator” is, so to speak, superposed on
the Newton law. The origin of this extra “oscillator” term is, to
say the least, very hard to understand. (Freund et al., 1969).

Such a modification, like a graviton mass term, also violates the
supposedly fairly generic template

OPðPOTÞ ¼ SOURCE

(Renn, 2005; Renn & Sauer, 2007) that Einstein employed in
searching for his field equations, because a cosmological constant
involves the gravitational potentials algebraically. For Λ one has
the curious form

OPðPOTÞþPOTþCONST ¼ SOURCE;

because the gravitational potential/field indicating deviation from
triviality is something like gμν�diagð�1;1;1;1Þ. Both terms POT
and CONST are novel, but CONST is abnormal.

Tragically, Einstein conflated these two quite different ideas, Λ
and (what we now call) a graviton mass, in his famous 1917 paper
that introduced Λ (Einstein, 1923). Many, many authors have
added a cosmological constant to General Relativity and thought,
erroneously, that they had thereby given the graviton a mass. But
it makes all the difference whether the lowest order algebraic
term, which will dominate for weak fields, is zeroth order within
the field equations (first order within the Lagrangian density), as
with the cosmological constant, or first order within the field
equations (second order within the Lagrangian density), as with a
mass term. Not only the gross qualitative behavior of the solutions,
but also the presence or absence of gauge freedom, are at issue:
mass terms tend to remove gauge freedom in favor of having more
physical degrees of freedom (Fierz, 1940; Pauli & Fierz, 1939). The
cosmological constant Λ does not remove gauge (coordinate)
freedom and hence does not reduce the number of physical
degrees of freedom. Hence neglecting the massive possibility can
lead to overconfidence in the existence of a large symmetry group.
By conflating the cosmological constant Λ in General Relativity
with (what we now construe as) a graviton mass, Einstein helped
to obscure for himself and others the deep conceptual issues
raised by the mass term.

A substantial portion of 20th century physics was not seriously
attended by philosophers of space–time either at the time or later.
According to Wes Salmon, “[d]uring the years between 1930 and
1950, roughly, little of significance seems to have been achieved in
philosophy of space and time.” (Salmon, 1977b,p. 29). While this
assessment seems true, it is no reflection on what physicists were
doing. Rather, it says more about how only a few philosophers
were productively involved in studying physics in the 1920s, and
then they stopped. Schlick and Carnap had turned their attention
elsewhere well before the end of the decade (followed by Schlick's
assassination in the 1930s). Even Reichenbach, who paid more
serious technical attention to physics for longer (Reichenbach,
1929b) than one might expect from reading the truncated English
translation of his book (Reichenbach, 1958), quit paying much
attention after c. 1930. So crucial a development as the inclusion of
fermions (including electrons and, less fundamentally, protons and
neutrons)—which Weyl took to be a great conceptual novelty due
to its conclusion of the inadequacy of tensor calculus (Scholz,
2005; Weyl, 1929)—fell into the period of neglect.5 Given the
degree to which space–time philosophy took lasting shape in the
late 1910–20 s in the thought and works of Schlick, Reichenbach
and Carnap, the fact that Einstein's false analogy went undetected
until 1942 in Germany (Heckmann, 1942), and was not challenged
again until the 1960s, enabled philosophers to quit paying atten-
tion to physics relevant to space–time (but not necessarily pri-
marily about space–time!) long before the issues were sorted out.
This oversight has never been corrected, not least due to the
general relativity vs. particle physics split within physics (on which
see Feynman et al., 1995; Rovelli, 2002), a barrier across which
little communication occurs, except through supergravity (Brink
et al., 2006) (and superstrings!) and gauge theories of gravity.
Most philosophers and historians take most of their guidance on
space–time from general relativists, so whatever is best learned
from particle physicists is less familiar.

In the actual contingent history, Einstein was unaware of See-
liger's work until after the final GR field equations were known
(Einstein, 1996, p. 420; Einstein, 1998, p. 557; Einstein, 2002a,
pp. 142, 146; Einstein, 2002b,p. 189). (Pace Earman, Earman, 2001,
section 30 addressing Seeliger in Einstein's popular book first
appeared in 1918 Einstein, 1996, p. 420.) When he did discuss the
idea in 1917 (not yet aware of Seeliger's work) (Einstein, 1923), he
drew an analogy between (what we would call) massive scalar
gravity and his cosmological constant Λ term, but a spurious one
(DeWitt, 1965; Earman, 2001; Faraoni & Cooperstock, 1998; Freund
et al., 1969; Harvey & Schucking, 2000; Heckmann, 1942; Norton,
1999a; Schucking, 1991; Trautman, 1965; Treder, 1968)—an error
that would resurface often. This false analogy—Einstein's ‘other’
blunder with the cosmological constant (besides the reportedly
self-diagnosed blunder of introducing it in the first place Gamow,
1970, p. 44)—tends to obscure the possibility of a genuine spin
2 analog to massive scalar gravity. In 1913 Einstein even enun-
ciated a principle to the effect that the field equations for gravity
should not depend on the absolute value of the gravitational
potential(s) (Norton, 1992, p. 72) (Einstein, 2007, pp. 544, 545). It
follows immediately that a mass term is not permitted, but there is
little justification for the principle. Modern historians of GR, in the
course of commenting on Einstein's principle of simplicity (Klein,
Kox, Renn, & Schulmann, 1995, pp. 501–503), seem unaware of the
fact that Einstein in 1913 thereby excluded both massive scalar
gravity and massive GR from the list of theories that he would
entertain. As Norton notes, Einstein's refusal to take the modified
Poisson equation seriously (Einstein, 1923) is not accompanied by
good reasons (Norton, 1999a). Much of his motivation is his a priori
opposition to absolute inertial coordinate systems (Norton, 2002,
2007), an opposition that one can fail to share. Even if one shares
it, one loses the possibility of supporting this opinion by evidence
if one refuses to entertain and critique theories that contradict it.

Part of the novelty of the treatment below consists in pointing
out how this conflation lead to total failure until now to recognize
the philosophical interest of massive gravity. One could consider
either massive scalar gravity (a cousin to Nordström's 1914 theory)
or massive tensor gravity (a cousin to Einstein's theory). It turns
out that there is more than one massive scalar gravity theory
(Pitts, 2011a) and, presumably, more than one massive tensor
gravity (Hassan & Rosen, 2011; Ogievetsky & Polubarinov, 1965;
Pitts, 2011c), due to the many possibilities for self-interaction



m¼
ma

6 Reference to Bass & Schrödinger (1955).
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(algebraic nonlinear terms), whittled down to give theories that
don't have certain subtle problems. Massive scalar gravity, which
approximates Nordström's theory arbitrarily well for sufficiently
small graviton mass, was thus falsified in 1919 by the bending of
light, whether anyone had conceived of it or not. It was born
refuted. Perhaps that is not a rare problem; Lakatos claimed that it
is a “historical fact that most important theories are born refuted”
(Lakatos, 1971, p. 114). Massive scalar gravity will not become an
important theory, but its cousin massive spin-2 gravity perhaps
might. Thus since 1919 the problem of unconceived alternatives
applies more properly in terms of massive spin-2 gravity. Massive
scalar gravity is easier to understand (a pedagogical virtue for
philosophical consumption), indeed much easier to analyze for
working physicists, whose views on the viability of massive tensor
gravity shifted radically for the worse in the early 1970s, gradually
improved since 1999, and shifted radically for the better in 2010,
with continuing change since then. Whether or not massive tensor
gravity ultimately makes sense (an outcome which is difficult to
judge in 2015 due to the rapid pace of physical development),
massive scalar gravity clearly does make sense. It has plenty of
lessons for what space–time could have been like, as well as
interesting, currently plausible suggestions for what space–time in
fact might be like—to the degree that massive tensor gravity works
and insofar as massive tensor gravity is analogous to massive
scalar gravity (a presumptive analogy that can fail in surprising
ways requiring the reinstallation of gauge freedom Pitts & Schieve,
2007!). Hence right now there is a great deal to learn about space–
time philosophy from massive scalar gravity. The field seems to be
entirely open. The only near-exceptions that come to mind dis-
playing philosophical awareness of massive gravity (apart from
Pitts, 2011a, 2011b) is some 1970s work by Peter Mittelstaedt
(Mittelstaedt, 1970). But even Mittelstaedt described the graviton
mass merely as an empirical parameter that might be 0, not as a
conceptual watershed as it should be seen, and as some physicists
recognized (Freund et al., 1969). Furthermore, massive gravitons
shortly ran into serious trouble (Boulware & Deser, 1972; van Dam
& Veltman, 1970, 1972). Recently the tide has turned
and massive graviton theories have become a ‘small industry’
(de Rham, 2014; de Rham, Gabadadze, & Tolley, 2011; Hassan &
Rosen, 2011, 2012; Hinterbichler, 2012). Whether or not massive
spin-2 gravity survives as a viable theory and rival to General
Relativity, progress will have been made by exploring serious
alternatives.

Particle physics would enable historians of General Relativity to
ask questions that they tend not to ask, such as why Einstein did
not seriously consider massive gravities (despite eventually (p)
reinventing massive scalar gravity in 1917, in a sense). Develop-
ments in group theory as applied to relativistic quantum mech-
anics, such as by Wigner (Bargmann & Wigner, 1948; Wigner,
1939), classified all possible fields in terms of the Lorentz group
with various masses and various spins. (Merely the words that are
quantum mechanical; the concepts are just classical field theory.
Avoiding the quantum words involves using c. 5 times as many
syllables.) As noted above, relativistic massive scalar fields, if non-
interacting, satisfy the Klein–Gordon equation ð�∂2t þ∇2�m2Þ
ϕ¼ 0, where the speed of light and Planck's constant have been
set to 1. Massive fields with spins higher than 0 also tend to satisfy
the Klein–Gordon equation as a consequence of logically stronger
equations of motion. Given particle physicists' taxonomy in terms
of mass and spin, it is natural to look for and to fill in the blanks by
considering all the possibilities, as the table suggests. The table
omits half-integral spins, which have to be fermions by the spin-
statistics theorem, and hence do not accumulate into powerful
classical forces. It also omits higher spins, which cannot produce
long-range forces due to the lack of suitable conserved currents to
which they could couple (Weinberg, 1995, p. 253).
Mass–spin taxonomy exemplified
Spin 0
 Spin 1
 Spin 2

0
 Nordström
 Maxwell
 Einstein

0
 ?
 de Broglie-Proca
 ?
In the late 1930s Pauli and Fierz found that the theory of a non-
interacting massless spin 2 (symmetric tensor) field in Minkowski
space–time was just the linear approximation of Einstein's GR
(Fierz & Pauli, 1939; Pauli & Fierz, 1939; Wentzel, 1949). Tonnelat
and Petiau, associated with de Broglie, pursued massive spin
2 theories (cited above). Tonnelat cited Fierz (Fierz, 1939; Tonnelat,
1941d). Thus by the end of the 1930s, the idea of a graviton mass
was available not merely by analogy to electromagnetism, or the
older non-relativistic work by Neumann, Seeliger, and Einstein,
but in detailed relativistic work in several papers by a leading
physicist (Pauli) with gravity as one intended application, with
follow-on work in France encouraged by de Broglie in the
early 1940s.

Nordström's theory of a long-range scalar field is, in this par-
ticle physics terminology applied retrospectively, a theory of a
massless spin 0 field; thus when one considers Nordström's the-
ory, it is natural to consider a massive variant and to ascertain
whether the massless limit of the massive theory is smooth. If it is,
then the massive variant serves as a rival to the massless theory,
implying a case of underdetermination of theories by data. As
Boulware and Deser put it, there is a

basic principle, physical continuity, which demands that a
theory be “stable” in its predictions, i.e., no more isolated from
nearby models than our finite observations warrant. In parti-
cular, a good theory of long-range forces should have a smooth
limit as the range tends to infinity, and this limit should agree
with the strictly infinite-range model. This viewpoint has been
forcefully stated for electrodynamics by Schrödinger,6 and it
has been amply demonstrated by analysis of massive vector
theory [references suppressed] that approximate gauge invar-
iance is not the contradiction it first seems. (Boulware & Deser,
1972)

(This was not their final view in light of the new Yang–Mills and
gravity cases, but it sets up the appropriate expectation in terms of
particle physics knowledge through the 1960s, which is progress.)
Massive scalar gravities, if the mass is sufficiently small, fit the
data as well as does Nordström's theory, as a consequence of the
smoothness of the limit of a massive scalar field theory as the mass
goes to zero (Boulware & Deser, 1972; Weinberg, 1995, p. 246).
Thus there is a problem of underdetermination between the
massless theory and its massive variants for sufficiently small
masses (Pitts, 2011b).

This instance of underdetermination, apart from framing in
terms of particle mass, was already clearly anticipated by Seeliger
in the 1890s. He wrote (as translated by John Norton) that New-
ton's law was “a purely empirical formula and assuming its
exactness would be a new hypothesis supported by nothing.”
(Norton, 1999a; von Seeliger, 1895) That claim is too strong, in that
Newton's law had virtues that not every rival formula empirically
viable in the 1890s had. But a certain kind of exponentially
decaying formula was associated with an appropriate differential
equation and hence had theoretical credentials comparable to
Newton's (Neumann, 1896; Pockels, 1891), vindicating the spirit of
Seeliger's point. The idea of exploring whether a massive theory
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could work in place of a massless one (or vice versa), much as
Seeliger proposed, is a commonplace in particle physics.

The massless vs. massive competition is an especially inter-
esting and well motivated example of the fact, noted by Pierre
Duhem, that the curve fitting problem always applies in physics:
through any set of experimental results (especially with error
bars!), multiple curves can be proposed as the correct theory. Two
consecutive section headings from the famous part II, chapter 5 of
Duhem's book make the point: “A Law of Physics Is, Properly
Speaking, neither True nor False but Approximate” and “Every Law
of Physics Is Provisional and Relative because It Is Approximate”
(Duhem, 1954, pp. 168, 172). There are many ways that a given
body of data can be fit by a theoretical formula, but Duhem
expects that generally a choice of one option will be made on the
basis of good sense. However, the competition between massive
and massless theories is one that good sense does not settle, in
that both competitors are taken seriously by particle physicists
until reason to the contrary is found (Boulware & Deser, 1972).
While successes of the “gauge principle” since the early 1970s are
noteworthy and encourage gauge freedom and masslessness for
spins high enough to imply gauge freedom (Z1), the moderately
surprising and fairly recently learned fact that at least some neu-
trinos are massive (Bilenky, 2010; Roy, 2000) serves as a reminder
not to neglect massive theories. Spin 0 and spin 1

2 particles have no
negative-energy lower spin degrees of freedom that one might
want to get rid of via gauge freedom, because one cannot take a
divergence or trace to make lower spin. Thus the gauge principle
does not apply.

Logically speaking, mass terms are children not of quantum
theory or whatever quantum ‘particles’ might be, but of special
relativity, the idea that ponderable matter is made of fields (arising
from ideas of Mie, Hilbert and Jordan), and daily experience.
Whether or not one has the particle-related concept of a particle
mass, it is empirically obvious that most stuff doesn't move at the
speed of light or look like standing waves made from oppositely-
directed waves moving at the speed of light, for example. Thus one
has an overwhelming empirical motive to look for classical rela-
tivistic wave equations with dispersion and the possibility of
having the bulk of matter be motionless in some reference frame.
Thus the introduction of the ∂2=∂t2 terms due to relativity does
much to motivate the algebraic terms.
7 It is perhaps unfortunate linguistically that one has to distinguish, besides the
ordinary mass of heavy objects and the associated weight that one determines
using a bathroom scale, the unrelated idea of a graviton mass and the further
unrelated mathematical idea of density weight.
3. Massive scalar gravity is just special relativistic

Features of Nordström's scalar gravity are said to have shown
that even the simplest and most conservative relativistic field
theory of gravitation had to burst the bounds of Special Relativity
(SR) (Misner et al., 1973, pp. 179, 187–189; Norton, 1992, p. 19).
Relativistic gravity couldn't be merely special relativistic, accord-
ing to these claims. Nordström's theory indeed has a merely
conformally flat space–time geometry (Einstein & Fokker, 1914),
and it arguably is the simplest and most conservative option. But
how do such claims fare in light of the broader range of possibi-
lities of particle physics (or Neumann–Seeliger–Einstein), espe-
cially with a graviton mass term as an option?

The best way to write the conformally flat geometry—well
adapted to ontology by attending to Ockham's razor (no gratuitous
introduction of volume elements that one doesn't want and con-
formal transformations to cancel them out)—involves breaking a
metric into its irreducible parts. (For irreducible geometric objects
in differential geometry, see Stachel, 2002; Zajtz, 1966.) Having
become familiar with the irreducible parts, their physical mean-
ings, and how to do tensor calculus with them, one can then take
them to be primitive, regarding the metric as derived, if it exists at
all. One can use one part without the other, swap one part out and
replace it with a different one of the same sort, introduce two or
more of the same type, etc.

It is a classical result that one can define a tensor density that
precisely picks out the conformal part of a metric, excising any
information about volumes. According to Kentaro Yano in 1939,

… M. T. Y. Thomas 2Þ a introduit, en 1925, une densité tensor-
ielle du poids �2

n

ð0:4Þ Gij ¼ gij=g
1
n

où g est le déterminant formé avec les gij. (Yano, 1939, p. 72)

The reference is to Thomas (1925); the work (Thomas, 1926)
further explored such matters. This tensor density has a
dimension-dependent and (for dimension 3 or greater) fractional
density weight (poids). It follows that the determinant of Thomas's
quantity Gij (which I write with a caret as ĝμν, partly by association
with the unit vectors of vector calculus) is 1 for the positive
definite case, or �1 for space–time, in all coordinate systems.
Densities of arbitrary weight seem to be due to Veblen and
Thomas (who called them relative tensors) (Veblen & Thomas,
1924) and to Weyl (Hawkins, 2000, p. 462; Weyl, 1925). Densities
acquire an extra weight-related term7 in their Lie and covariant
derivatives (Anderson, 1967; Schouten, 1954; Veblen & Thomas,
1924). Differential geometry in the modern style has tended to
employ Weyl's conformal rescalings rather than Thomas's more
direct and economical characterization of conformal geometry, a
tendency critiqued (without the historical context) by Calderbank
and Pedersen:

As counterpoint to the tendency to do conformal geometry in a
Riemannian framework, we would like to suggest that a con-
formal structure is more fundamental than a Riemannian
structure by defining the latter in terms of the former. (Cal-
derbank & Pedersen, 1999, p. 391)

Branson comments that Thomas's work was largely forgotten
until the 1990s (Branson, 2005, p. 180). This forgetting seems to
refer to mathematicians (apart from Haantjes, 1941; Schouten &
Haantjes, 1936; Yano, 1939), because physicists often remembered
(Anderson, 1967; Anderson & Finkelstein, 1971; Peres, 1963;
Unruh, 1989).

Writing Thomas's equation for a flat metric tensor ημν (not that
flatness affects this decomposition), one has

η̂μν ¼ ημνð�ηÞ�1=4 ð1Þ

after specializing to n¼4 space–time dimensions. One can invert
to express the metric in terms of its irreducible parts, the con-
formal (angle-related) part η̂μν and the (unsigned) volume ele-
ment

ffiffiffiffiffiffiffiffi�η
p

:

ημν ¼ η̂μν
ffiffiffiffiffiffiffiffi�η

p 1=2: ð2Þ

One now can and should think of η̂μν and
ffiffiffiffiffiffiffiffi�η

p
as independent

entities in their own right. η̂μν describes a conformally flat geo-
metry—perhaps one should say a flat conformal geometry, flat in
the same of vanishing Weyl curvature tensor, “conformal geo-
metry” to emphasize that it isn't a geometry that defines distances.
The 15-parameter conformal group first studied by Bateman and
Cunningham (Bateman, 1909, 1910; Cunningham, 1910) is just the
group of generalized Killing vectors for η̂μν, the vectors for which
it has 0 Lie derivative. η̂μν determines the light cones just as if for a
flat metric in SR. Note that there is nothing “flat” about

ffiffiffiffiffiffiffiffi�η
p

,
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because one volume element is like another. The flatness of ημν,
insofar as it goes beyond the (conformal) flatness of η̂μν, is due to a
relation between η̂μν and

ffiffiffiffiffiffiffiffi�η
p

rather than a property of
ffiffiffiffiffiffiffiffi�η

p
.

Using a volume element one can define a “volume connection,” a
term due to Coleman and Korté (1994). The entity is familiar as the
trace of the Christoffel symbols, but it is a gradient and hence has
0 curvature, the ‘other’ trace of the Riemann tensor, which one
usually takes to vanish.

One can write Nordström's theory geometrically, as Einstein
and Fokker showed (Einstein & Fokker, 1914). One can write it
more economically using a Thomas-style decomposition with no
surplus structure:

gμν ¼ η̂μν
ffiffiffiffiffiffiffiffi�g

p 1=2
: ð3Þffiffiffiffiffiffiffiffi�g

p
includes the influence of gravity. One could derive

ffiffiffiffiffiffiffiffi�g
p

by
combining the gravitational potential with

ffiffiffiffiffiffiffiffi�η
p

(Deser & Halpern,
1970; Kraichnan, 1955; Pitts, 2011a); for Nordström's theory, such
a derivation is a plausible heuristic but ultimately perhaps not
illuminating, in that

ffiffiffiffiffiffiffiffi�η
p

does nothing by itself in the final theory
(at least not locally)—like a Poincaré–Reichenbach universal force.
Because the only non-variational field in the theory's Lagrangian
density is η̂μν, the symmetry group of the non-variational fields is
the 15-parameter conformal group, a larger group than the usual
10-parameter Poincaré group of Special Relativity, thus admitting
a larger class of preferred coordinate systems than do paradig-
matic special relativistic theories. Thus not all the structure of
Minkowski space–time is exhibited, and the effective geometry
seen by rods and clocks is curved and only conformally flat (Mis-
ner et al., 1973, pp. 179, 187–189; Norton, 1992, p. 19).

But massive variants of Nordström's theory contain both
ffiffiffiffiffiffiffiffi�g

p
and

ffiffiffiffiffiffiffiffi�η
p

in the mass term and so are merely Poincaré-invariant,
hence strictly special relativistic, as far as symmetries are con-
cerned. Rods and clocks are distorted by gravity, and in a way that
can be empirically ascertained due to the mass term. The difference
in symmetry group of the non-variational (that is, not varied in the
principle of least action Gotay et al., 2004; Pitts, 2006) objects
reflects the difference in non-variational objects present in the
Lagrangian density. Because of the graviton mass term, mass-
ive scalar gravities have the full flat background metric ημν in the
Lagrangian density (Pitts, 2011a). Thus the Lagrangian has only
the symmetries of ημν, 10 Killing vectors (4 translations, 6 boost-
rotations). By contrast in the (massless) Nordström theory, only
the conformal part of a flat metric, η̂μν, is present in the Lagrangian
density. Consequently the symmetries are the conformal Killing
vector fields, those such that the Lie derivative of the conformal
metric density8 vanishes (Anderson, 1967; Schouten, 1954):

dξη̂μν ¼ ξα
∂

∂xα
η̂μνþ η̂μα

∂
∂xν

ξαþ η̂αν
∂
∂xμ

ξα�1
2
η̂μν

∂
∂xα

ξα: ð4Þ

Because a scalar graviton mass term breaks the 15-parameter
conformal symmetry and leaves only the 10-parameter Poicaré
symmetry, it is therefore false, pace (Misner et al., 1973, p. 179,
187–189 Norton, 1992, p. 19), that relativistic gravitation could not
have fit within the confines of Special Relativity as construed to
require exhibiting the full Minkowski space–time structure. While
it is true that no phenomena required the mass term, it was
epistemically possible that the mere smallness of the mass para-
meter explained its empirical obscurity, as Seeliger had already
proposed in the Newtonian case. Indeed it is still possible, or
8 One often sees the conformal Killing equation in terms of an arbitrary metric
in a conformal equivalence class and require that the Lie derivative of such a metric
be proportional to that metric, dξημν � ημν , as if it weren't known how to isolate the
relevant piece. But Thomas showed how in the 1920s; the arbitrary volume ele-
ment is no more relevant to conformal Killing vector fields than is the aether to
Special Relativity.
rather again possible (after seeming impossible since the early
1970s), that a tensorial analog of this issue exists today. Something
similar happened with neutrinos a few years back, one recalls.
4. Massive gravities, laws, geometry, and explanation

A recent debate among philosophers of physics, albeit one with
striking similarities to older debates about conventionality, per-
tains to the explanatory priority of space–time structure vs. the
field equations satisfied by fields on space–time. Harvey Brown
has recently defended the latter view (Brown, 2005, 2009), known
by terms such as constructive relativity or physical relativity.
While the former view has an undeniable economy and provides
in some respects a natural classification—for example, Einstein's
General Relativity and theories involving higher powers of the
Riemann tensor clearly have some natural affinities—consideration
of massive theories of gravity reveals that space–time structure,
construed as a list of geometric object fields defined on a manifold,
is either too narrow or unhelpfully vague (Freund et al., 1969).

If there is more than one metric—and why shouldn't there be, if
one's imagination is fueled by mathematics after the 1910s (Levi-
Civita, 1926, ch. 8)?—much of the phenomenology is unspecified
until the field equations are introduced. Even with the modest
ingredients of a flat space–time metric and a scalar gravitational
potential, uncountably infinitely many theories can be written
down due to the possibilities for a mass term, at least a one-
parameter family (Pitts, 2011a, 2011b) but likely more. Indeed one
can derive the full nonlinear Lagrangian density for a universally
coupled massive scalar gravity theory using a relation of the form

~g ¼ ffiffiffiffiffiffiffiffi�g
p w ¼ ffiffiffiffiffiffiffiffi�η

p wþ8w
ffiffiffiffiffiffiffi
πG

p
~γ ;

where ~γ is the gravitational potential and w is an arbitrary real
number (the case w¼0 requiring special care). If one already has
the Lagrangian density in hand, then one is more interested in
whether one can write it using only a combined quantity such asffiffiffiffiffiffiffiffi�g
p

, or whether one needs both
ffiffiffiffiffiffiffiffi�g

p
and

ffiffiffiffiffiffiffiffi�η
p

. The kinetic term
(with time and space derivatives of the potential) is just that of
Nordström's theory and so can be written in terms of

ffiffiffiffiffiffiffiffi�g
p

only;
thus Nordström's theory is geometrizable. The graviton mass term
can be written in terms of the effective volume element

ffiffiffiffiffiffiffiffi�g
p

(with volumes distorted by gravity) and also the undistorted
volume element

ffiffiffiffiffiffiffiffi�η
p

of the flat metric. The fact that
ffiffiffiffiffiffiffiffi�η

p
appears by itself, not merely hidden within

ffiffiffiffiffiffiffiffi�g
p

clothed by γ,
implies most of what is conceptually interesting about massive scalar
gravity vis-à-vis Nordström's theory, blocking the usual criticisms of
universal forces as superfluous. This 1-parameter family of mas-
sive scalar gravities is analogous to the 2-parameter family of
massive spin-2 gravities proposed in 1965 as variants of General
Relativity (Ogievetsky & Polubarinov, 1965). The scalar case has the
advantages of technical simplicity and immunity to the difficulties
that have at times (especially 1972-c. 1999 or 2010) afflicted
massive spin-2 gravity. It isn't very profitable to ask what the
gravitational potential is in relation to

ffiffiffiffiffiffiffiffi�g
p

and
ffiffiffiffiffiffiffiffi�η

p
, because

after the linear term, the answer is merely a conventional choice.
(For the expression above, the answer depends on w.) In fact that
freedom to use a variety of field (re)definitions is a crucial resource
in the derivations (Ogievetsky & Polubarinov, 1965; Pitts, 2011a,
2011c, 2015; Pitts & Schieve, 2007). Linearity is convenient; equi-
vocating about the meaning of the quantity in which an expression
is linear lets one discuss infinitely many theories at once. That is
much faster than trying to derive an uncountable infinity of the-
ories one at a time, and much more general than deriving only
one theory as in Freund and Nambu (1968), and Freund et al.
(1969). The parameter w is the density weight of the gravitational
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potential under coordinate transformations used in the initial
derivation.

For any real w (using l'Hôpital's rule for w¼0 or w¼1), a uni-
versally coupled massive theory is given by (Pitts, 2011a)

L¼LNordþ
m2

64πG

ffiffiffiffiffiffiffiffi�g
p
w�1

þ
ffiffiffiffiffiffiffiffi�g

p w ffiffiffiffiffiffiffiffi�η
p 1�w

wð1�wÞ �
ffiffiffiffiffiffiffiffi�η

p
w

" #
:

ð5Þ

One can express this mass term as a quadratic term in the
potential and, typically, a series of higher powers using the
expansion

ffiffiffiffiffiffiffiffi�g
p w ¼ ffiffiffiffiffiffiffiffi�η

p wþ8w
ffiffiffiffiffiffiffi
πG

p
~γ , where ~γ is the gravitational

potential. Different values of w thus give different definitions of
the gravitational potential (disagreeing at second or higher order).
If one takes the wth root and then takes the limit w-0, the limit isffiffiffiffiffiffiffiffi�g
p ¼ ffiffiffiffiffiffiffiffi�η

p
expð8

ffiffiffiffiffiffiffi
πG

p
γÞ:

An exponential change of variables very much like this was
already employed by Kraichnan, though without application to
massive theories (Kraichnan, 1955).

It can be useful to rewrite the continuous family of massive
scalar gravities given above using this exponential relationship;
this definition of γ is somewhat ecumenical. The result is

Lms ¼
m2 ffiffiffiffiffiffiffiffi�η

p
64πG

½we8γ
ffiffiffiffiffi
πG

p
�e8wγ

ffiffiffiffiffi
πG

p
þ1�w�

wðw�1Þ ; ð6Þ

the special cases w¼0 and w¼1 readily handled by l'Hôpital's
rule. Using the series expansion for the exponential function,
which converges everywhere, one has, reassuringly, a series
involving quadratic (mass) and higher (self-interaction) terms:

Lms ¼ �m2 ffiffiffiffiffiffiffiffi�η
p

64πG

X1
j ¼ 2

ð8γ
ffiffiffiffiffiffiffi
πG

p
Þj

j!
1�wj�1

1�w
¼ �m2γ2

ffiffiffiffiffiffiffiffi�η
p
2

�4m2
ffiffiffiffiffiffiffi
πG

p
ð1þwÞ

3
γ3þ…: ð7Þ

A given massive scalar gravity, such as for a specific value of w
from the family above, is either not the manifestation of any
geometry, or is just one of many possible manifestations of the
geometry comprised of two metrics, one flat and one conformally
related to it. Thus a dynamics-first approach to relativity, or
something like it, is appropriate (Brown, 2005, Ch. 9 & Appendix
A)—and one can see this from examples that could have been, and
almost were, invented in the 1910s. One could hardly claim that
space–time's being flat, conformally flat, bimetric, or whatever it is
in these massive scalar gravity theories, provides a ready expla-
nation of the detailed phenomenology exhibited by the field
equations, because, among other reasons, the geometry does not
pick out a value of w. In this respect, the recently derived infinity
of scalar gravities marks a conceptual advance over the derivation
of only one (Freund & Nambu, 1968), an advance that could be
anticipated by consideration of the massive spin 2 analogs (Ogie-
vetsky & Polubarinov, 1965). Neither does the arguable existence
of Minkowski space–time explain why rods and clocks exhibit
Minkowskian behavior as Norton expects (Norton, 2008), because
they don't exhibit Minkowski behavior. Rods and clocks, if they
exhibit any unique geometry, exhibit the geometry to which
matter couples; thus one can inspect the matter Lagrangian and
see that rods and clocks do not exhibit Minkowski geometry. As
Norton elsewhere urges, the philosophy of geometry is not an
enterprise rightly devoted to giving a spurious air of necessity to
whatever theory is presently our best (Norton, 1993, pp. 848, 849).
So merely possible theories, especially those that are so similar to
realistic physics and readily derived using well motivated princi-
ples, should be entertained when assessing issues of the expla-
natory priority of laws vs. geometry (Brown, 2005, Ch. 9 &
Appendix A), or, for that matter, the conventionality vs. empirical
factuality of geometry. Yet critiques of Brown's work routinely
default to single-metric theories, or more specifically even to “our
best scientific theory.” Strikingly, a similar omission occurred in
the 1970s critiques of Grünbaum's conventionality of geometry
thesis, as will appear below. In taking laws as prior to geometry, I
do not mean to imply that laws are entirely free of geometrical
presuppositions, but that geometry is adequately encoded in the
laws (such as in the Lagrangian density) in any theory, and in most
theories it is not adequately described by a list of geometric
objects.9 Massive scalar gravity(s) show that this inadequacy
extends even into what one might describe as Special Relativity or
Minkowski space–time.
5. Massive scalar gravity as violating Einstein's principles

The mathematical-philosophical side of Einstein's process of
discovery for General Relativity involved various Principles: gen-
eral relativity, general covariance, equivalence, and Mach. (For a
brief useful history of the principles, including how Mach's prin-
ciple was split off from the principle of general relativity, see
Lehner, 2005.) Part of the interest of massive scalar gravity, like
massive variants of General Relativity (Freund et al., 1969), is that
though massive scalar gravities are perfectly sensible special
relativistic field theories, they violate all of Einstein's principles, at
least in the robust senses in which Einstein used them to derive
substantive conclusions. Massive scalar gravities admit the inertial
references frames of special relativity but no larger set of reference
frames, contrary to the principle of general relativity. Massive
scalar gravities privilege the Poincaré transformations as relating
preferred coordinate systems, while arbitrary coordinate systems
are admissible only using tensor calculus to introduce fudge fac-
tors such as the metric tensor and Christoffel symbols, contrary to
the stronger and more interesting (as opposed to purely formal)
sense of general covariance in which the metric tensor and
Christoffel symbols don't enter simply to correct for failure to
employ the privileged Cartesian coordinates. Massive scalar
gravities distinguish between gravitation and inertia, because
inertia is characterized by the flat metric tensor, while the grav-
itational potential is a distinct scalar (density) field. Thus the
principle of equivalence (read strongly as the identification of
gravity and inertia, or a bit more weakly as the claim that gravity
and inertia have the same effects10) fails for massive scalar gravity,
though empirically the difference between gravity and inertia is
observable only in experiments sensitive to the graviton mass term
and hence involving long distances. In massive scalar gravity,
contrary to Machian expectations, inertia has a core that is abso-
lute and given from above, but gravity also modifies inertia
somewhat; the core can be distinguished if one is looks carefully
enough to observe the influence of the mass term in the gravita-
tional field equation. In short, massive scalar gravity shows how
readily conceivable is the failure of most or all of Einstein's prin-
ciples in the strong interesting senses, and hence how frail a jus-
tification for Einstein's equations must be if it relies on such
principles as premises. A similar point has been made by Blanchet
(1992). According to Robert DiSalle,

Einstein thought that anyone who followed the philosophical
steps that he had taken, whatever their [sic] scientific back-
ground, would be convinced of the basic principles of special
and general relativity. By the later twentieth century, however,
philosophers came to think of those steps as somewhat arbi-
trary, and as not very clearly related to the theories that Ein-
stein actually produced. They had a heuristic value for Einstein,
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and may have again for a future theory of space–time. To
believe again that such philosophical arguments could be cru-
cial—not only to the motivation for a theory, but also to its real
significance in our scientific understanding of the world— we
need a more philosophically subtle and historically realistic
account of those arguments, and the peculiar roles that philo-
sophy and physics have played in them. (DiSalle, 2006, pxi)

Norton on occasion has felt the need to try to dispel the mystical
air surrounding many common justifications for Einstein's equa-
tions by seeking eliminative inductions (Norton, 1995).

Violating Einstein's principles with a theory that was empiri-
cally falsified in 1919 due to the bending of light might seem to set
the bar too low. Who cares if a wildly obsolete and wrong theory
violates Einstein's principles? One should care because so much of
what one learns about massive scalar (spin-0) gravity has a good
chance of being true also about massive spin-2 (tensor) gravity
also. Hence one needs to consider massive spin-2 gravity and
show that either it doesn't work, or that it isn't like massive scalar
gravity in the given respect after all, or else one should anticipate
violating the strong interesting versions of Einstein's principle
with a currently adequate theory.

By contrast Peter van Nieuwenhuizen could describe roughly
what philosophers would call an eliminative induction leading to
Einstein's theory. Having moved beyond scalar theories (which do
not bend light), the next option for gravity is a symmetric rank
2 tensor (spin 2). Recalling that “ghosts” are negative-energy
degrees of freedom, which are expected to produce instability,
while tachyons move faster than light and hence should be
excluded to preserve the usual relativistic notion of causality,

[t]he conclusions are that the only tensor theories without
ghosts or tachyons, which contain spin two, are linear Einstein
theory and [massive] Fierz-Pauli theory. Hence, the gauge
invariance and locality of gravitation follow from the absence of
ghosts and need no longer be postulated separately [reference
to Nachtmann, Schmidle, and Sexl, 1968, 1969; Sexl, 1967], and
general relativity follows from special relativity by excluding
ghosts [reference to Deser, 1970]. Also it follows that any linear
or non-linear theory of gravitation has a discontinuous mass
limitn. [footnote to Boulware and Deser, 1972] (van Nieu-
wenhuizen, 1973).

At a time when historians of General Relativity have made a
detailed study of Einstein's notebooks from c. 1914 (Janssen &
Renn, 2007; Renn & Sauer, 2007) that has shown the importance
of his physical strategy involving energy–momentum conservation
and the analogy to electromagnetism, it is striking to see both how
similar the later particle physics work is in general outline and
how much more compelling the later argumentation is. A key
ingredient added by particle physicists is testing for ghosts. It
seems not to have been noticed that Einstein's Entwurf theory is
full of ghosts. Even with that powerful new test, van Nieuwenhui-
zen's claim is a bit too quick: besides massive spin-2 gravity, which
seemed freshly falsified (at least empirically, if not a priori) when
he wrote but has experienced a revival since 2010, one could also
include unimodular General Relativity (like General Relativity with
a solution-dependent cosmological constant) and slightly bimetric
theories (Pitts & Schieve, 2001) (like scalar-tensor theories with a
solution-dependent cosmological constant). These theories are all
closely related to Einstein's theory, however, so at least one arrives
near Einstein's theory in many respects, including nonlinear terms.

Massive scalar gravities are not geometrizable in the usual
sense: there is no way to absorb fully the gravitational potential
into the geometry of space–time, at least if one does not permit
multiple volume elements. The mass term depends on both

ffiffiffiffiffiffiffiffi�g
p

that contains the gravitational influence and
ffiffiffiffiffiffiffiffi�η

p
, which contains
no gravitational influence. Massive scalar gravity, like Seeliger–
Neumann–Einstein ‘massive’ Newtonian theory, makes a distinc-
tion between the space–time geometry and the gravitational field,
albeit a subtle one. By contrast Newtonian gravity in the geome-
trized Newton–Cartan form, Nordström scalar gravity in geome-
trized Einstein–Fokker form, and General Relativity in its usual
form combine the gravitational influence and space–time geo-
metry such that neither gravity nor any supposed originally flat
geometry appears separately. If one permits more than one
volume element in scalar gravity, then one can have any depen-
dence whatsoever on the gravitational potential, making geom-
etrization toothless and purely formal rather than substantive.
The same holds for multiple metrics, multiple connections, etc.:
one could easily hide a gravitational potential (or its gradient) as
the difference between them. Massive scalar gravities contain both
the conformally flat metric gμν ¼ η̂μν

ffiffiffiffiffiffiffiffi�g
p 1=2 of Nordström's the-

ory (as geometrized by Einstein & Fokker, 1914 and improved with
help from T.Y. Thomas) and the flat metric ημν ¼ η̂μν

ffiffiffiffiffiffiffiffi�η
p 1=2 of SR.

(Massive Newtonian gravity, that is, Neumann–Seeliger–Einstein
gravity, is not geometrizable either.) Because there are two metrics
present (albeit conformally related), one has a good argument for
the conventionality of geometry, as Poincaré envisaged (on which
more below). For the same reasons, strong versions of the
equivalence principle are not admissible; gravity is not a feature of
space–time geometry, though it looks that way unless one makes
sufficiently precise measurements involving cosmic distances due
to the smallness of the graviton mass. It is only the empirical fact
of the bending of light by gravity, not any inherent conceptual
defect, that made it impossible to treat gravity adequately as a
special relativistic theory of a massive scalar field (c.f. Giulini,
2007, 2008). Had Nordström's theory still been viable by the time
that Wigner's classification of Lorentz group representations in
terms of mass and spin was widely known, it seems certain that
massive scalar gravity would have been considered. Its neglect
until 1968 (Delbourgo, Salam, & Strathdee, 1969; Deser & Halpern,
1970; Freund & Nambu, 1968), if not the present, is one of the
many disadvantages from the well known gulf (Rovelli, 2002;
Feynman et al., 1995) between general relativists and particle
physicists. The precedent that should have been noticed for mas-
sive scalar gravity suggests by analogy that one could consider
massive tensor gravity as well.
6. Conventionalism vs. empiricism, Ehlers–Pirani–Schild, and
Poincaré's modal argument

Mathematicians have recently found it worthwhile to study
what one can do with a metric and an additional volume element,
under the name “metric-measure space” (Lott, 2003). Such a fra-
mework fits the well known Brans–Dicke scalar-tensor theory and
various related theories (Brans & Dicke, 1961), hence is not very
new. In fact such possibilities, in the simplest cases, are more than
a century old. Poincaré envisaged the possibility of a theory in
which more than one metric played a role and saw this possibility
as motivating the conventionality of geometry (Ben-Menahem,
2001; Poincaré, 1913, pp. 88, 89). Let us call this “Poincaré's modal
argument for the conventionality of geometry.” To assess this
argument, one needs to be a bit clearer than usual about the main
competition of the same era, empiricism. In important respects the
old empiricism vs. conventionalism debate of the 1920s (such as
Eddington vs. Poincaré Eddington, 1920) has been recapitulated by
the realism vs. conventionalism debate of the 1970s (such as
Putnam, Stein, Earman and Friedman vs. Grünbaum) and the
recent realism vs. constructivism debate (Brown, 2005; Norton,
2008). In all three cases a more or less unrecognized issue leading
the two sides to talk past each other was a disagreement about
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modal scope, with the conventionalist/constructivist side envisa-
ging a broad modal scope and hence discussing alternative the-
ories, and the empiricist/realist side considering primarily ‘our
best theory,’ General Relativity. Given that the two sides (if the
reader will accept my amalgamation of conventionalism and
constructivism, and of empiricism and realism, for present pur-
poses) have asked different questions, it becomes less surprising
that the answers differed, and more plausible that both views
contain important insights. Despite criticisms of conventionalism
(Norton, 1994) and constructivism (Norton, 2008), Norton has
urged (as noted above) that the philosophy of geometry is not an
enterprise rightly devoted to giving a spurious air of necessity to
whatever theory is presently our best (Norton, 1993, pp. 848, 849).

Empiricism comes in two different senses relevant to geometry.
The broader sense involves the revisability in principle of even
deeply entrenched and intuitively plausible ideas and the enter-
tainment of as many options as possible in light of experience, as
opposed to apriorism. Empiricism in this sense is, in my view, a
good idea. Geometric empiricism, by contrast, involves the claim
that the geometry of space(time) can and should be ascertained
empirically, but it came to mean something stronger. In Helm-
holtz's time, geometric empiricism was still an instance of
empiricism in the broader sense. But the progress of mathematics
from 1898 made a flat metric together with conformally related
curved metric (agreeing on angles but not volumes) available
(Brinkmann, 1923; Cotton, 1898, 1899; Finzi, 1903, 1922, 1923;
Fubini, 1905; Kasner, 1921, 1922; Levi-Civita, 1926; Poincaré, 1913;
Schouten, 1921, 1924; Schouten & Struik, 1919, 1983; Struik, 1922;
Weyl, 1918), and indeed fairly common in 3 dimensions, in French,
Italian and German, and eventually in English. Thus Poincaré the
philosopher-mathematician was aware of the possibility of there
being no specific fact of the matter about geometry (Ben-Mena-
hem, 2001; Poincaré, 1913, pp. 88, 89). Just this possibility,
upgraded from space to space–time, is realized physically massive
scalar gravities. The geometric empiricism of Eddington (1920, p.
10) and Eddington (1928, pp. 159–162), by contrast, had hardened
into a dogma. It did so by presupposing that there exists a unique
geometry—long after alternatives to that presupposition were
available, as even his own work on affine gravity suggests
(Eddington, 1921; Goenner, 2004). Later geometric empiricism
thus rejected a priori such theories as might not have a unique
geometry. The tendency is to freeze the development of mathe-
matics and of the physics that employs it in the 1910s. By stopping
history early, one can make General Relativity appear as the end
of it.

Whereas physicists aware of the particle physics tradition often
incline toward conventionalism (Feynman et al., 1995; Freund
et al., 1969; Sexl, 1970; Weinberg, 1972) and sometimes employ
multiple metrics due to a graviton mass in particular (Freund et al.,
1969; Ogievetsky & Polubarinov, 1965), philosophical works aim-
ing to refute conventionalism tend not to address particle physics
or multi-geometry theories (Coleman & Korté, 1990; Earman,
1970; Friedman, 1972, 1983; Norton, 1994; Putnam, 1975b; Spirtes,
1981; Torretti, 1996). (A partial exception is Stein, 1977.) From the
broad modal perspective, single-geometry theories, such as New-
tonian physics, Special Relativity, Nordström's theory, and General
Relativity, are a special and somewhat degenerate case, albeit one
of great importance as well as convenience. Single-geometry
theories are the home turf of geometric empiricism (and its later
cousin realism). In that context the massless spin 2 particle physics
derivations (Ben-Menahem, 2006; Deser, 1970; Feynman et al.,
1995; Freund et al., 1969; Gupta, 1954; Kraichnan, 1955; Pitts &
Schieve, 2001) achieve rough parity for conventionalism via som-
ething like a demonstrative and eliminative induction for Ein-
stein's equations starting from a field theory in flat space–time.
Conventionalism about geometry indeed would be disappointing
if universal forces were the conventionalist's only or main idea, as
sometimes is suggested. But on the contrary, universal forces are
rather the response to the hardest cases for conventionalism, cases
where it is meaningful to talk about the geometry of space(time).
Thus Norton's critique of Reichenbach's conventionalism and
universal forces speaks of “the [metric] revealed by direct mea-
surement” (Norton, 1994, 159) and “the [metric] revealed by
uncorrected distance measurements.” (Norton, 1994, p. 166) But
why must there be any such thing? Reichenbach (1928, Appendix
only in the German original),11 and Grünbaum (below) had already
seen in metric-affine theories the possible nonexistence of such
a thing.

The difficulty can now be seen in the longstanding and sop-
histicated Coleman–Korté argument for the non-conventionality
of geometry (Coleman & Korté, 1980, 1982, 1984; Coleman & Korté,
1995a, 1995b; Coleman & Korté, 2001; Bell & Korté, 2011) from
the Ehlers–Pirani–Schild (EPS) construction. Purged of chaff via
attention to irreducible geometric objects, the EPS construction is
a charming exercise in differential geometry, relating the 36
components of the symmetric covariant derivative of a (unim-
odular) conformal metric density to the 36 components of a (tra-
celess) symmetric projective connection (Coleman & Korté, 2001;
Ehlers et al., 1972; Schouten, 1954; Weyl, 1921). (Note that a pro-
jective connection is not a connection, but a weaker structure that
makes sense in its own right.) If one makes the volume connection
integrable, then one gets a metric up to a constant numerical
factor. This presentation highlights the utility of irreducible geo-
metric objects (conformal metric density, volume element, pro-
jective connection, volume connection) and the utility of classical
differential geometry for isolating them. Unfortunately the anti-
conventionalist argument hinges entirely on the assumption that
there is exactly one physically relevant conformal metric density
and exactly one physically relevant projective connection. If one
has more than one conformal metric density, or more than one
projective connection, then one can run the Ehlers–Pirani–Schild
construction multiple times! Early critics of anti-conventionalist
arguments from the EPS construction realized that it requires a
conventional choice, such as a choice of inertially moving bodies
(Grünbaum, 1973b, ch. 22; Salmon, 1977a,p. 295; Sklar, 1977, p. 259
Winnie, 1977, p. 197). A choice of inertially moving bodies is in
effect a choice of projective connection. Perhaps the con-
ventionalists did not emphasize enough (though the themes can
be found) that (1) the most interesting question is the modally
broad one that considers a variety of theories rather than a single
theory (even ‘our best’), and (2) there exists a moderately inter-
esting physical theory (or many of them) containing within itself
‘rival’ geometries, that is, more than one example of a given type
of geometric object. Thus EPS manifestly fails to undermine con-
ventionality for any theory with multiple geometries—the sort that
made conventionalism especially attractive anyway.

As Ben-Menahem pointed out in modern times (Ben-Mena-
hem, 2001), Poincaré already envisaged the possibility of theories
in which some kinds of matter exhibit one geometry, but other
kinds of matter see another geometry. He writes

Suppose, for example, that we have a great sphere of radius R
and that the temperature decreases from the center to the
surface of this sphere according to the law of which I have
spoken in describing the non-Euclidean world.

We might have bodies whose expansion would be negligible
and which would act like ordinary rigid solids; and, on the
other hand, bodies very dilatable and which would act like
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non-Euclidean solids. We might have two double pyramids
OABCDEFGH and O0A0B0C0D0E0F 0G0H0 and two triangles αβγ and
α0β0γ0. The first double pyramid might be rectilinear and the
second curvilinear; the triangle αβγ might be made of inex-
pansible matter and the other of a very dilatable matter.

It would then be possible to make the first observations with
the double pyramid OAH and the triangle αβγ, and the second
with the double pyramid O0A0H0 and the triangle α0β0γ0. And
then experiment would seem to prove first that the Euclidean
geometry is true and then that it is false.

Experiments therefore have a bearing, not on space, but on bodies.
(Poincaré, 1913, pp. 88, 89) (emphasis in the original)

One might update the last sentence to say that experiments have
a bearing not on the geometry of space–time, but on the way that
geometry(s) appear in the Lagrangian densities for the various
matter fields.

Ben-Menahem, who might be the first to make much of this
passage at least for a long time, comments

Poincaré goes to great lengths to show that it is conceivable
that different types of objects conform to different geometries.
We could ask a mechanic, he says, to construct an object that
moves in conformity with non-Euclidean geometry, while
other objects retain their Euclidean movement. In the same
way, in his hypothetical world, bodies with negligible con-
traction, that behave like ordinary invariable solids, could
coexist with more variable bodies that behave in non-Euclidean
ways. [Quotation of Poincaré suppressed to avoid repetition.] Is
it absurd, according to Poincaré, to relinquish the quest for a
unified geometry? Probably, on pragmatic grounds; but it is not
incoherent. The conceivability of such pluralism is another
point in favor of conventionalism. (Ben-Menahem, 2001, p.
489)

Apart from massive gravities, the multiple-metric option resur-
faced in physics around 1960 with scalar-tensor theories due to
Brans and Dicke, with some 1950s ideas by Jordan and Thiry
involving a higher space–time dimensionality. Philosophers even-
tually noticed this and other examples and drew conventionalist
and/or constructivist conclusions (Brown, 2005; Weinstein, 1996),
in effect reinventing Poincaré's argument in light of now-extant
examples. A fresh physics paper asks a good question in its title
article: “The Nature of Spacetime in Bigravity: Two Metrics or
None?” (Akrami et al., 2015) Such questions could and perhaps
should have appeared in a specific physical theory the 1910s or
1920s with the proposal of massive scalar gravity. How does the
later hardened geometric empiricism or the new realism address
such possibilities?

Massive scalar gravity, had it been available to Reichenbach,
would have diverted attention at least partly away from universal
forces, toward almost-universal forces. In massive scalar gravities,
matter sees a conformally flat metric, the volume element being a
combination of a non-dynamical part

ffiffiffiffiffiffiffiffi�η
p

and the gravitational
potential γ, a literal instantiation of the Poincaré epistemological
sum of geometry and physics. But the dynamics of gravity itself
exhibits the full flat background geometry. Thus one cannot set
gravity, the almost universal force, to 0. (Recall that such annihi-
lation of universal forces was hailed by Carnap as a great insight of
Reichenbach, 1958, p. vii.) And yet one can never be sure, on
account of the smoothness of the massless limit, that the graviton
mass is zero; one has permanent underdetermination from appr-
oximate but arbitrarily close empirical equivalence (Pitts, 2011b).
Thus one can never be sure that the observable geometry is the
same as the geometry pertaining to the symmetries of the theory's
laws. Such a result would hold, at least prima facie, also for massive
variants of General Relativity, the conception of which is greatly
facilitated by the spin 0–spin 2 analogy, replacing a scalar by a
symmetric tensor.

But the deep point of conventionalism about geometry is not
that the true geometry is flat, or even that one can retain flat
geometry. Though that point is less implausible than many have
thought since the rise of General Relativity (Freund et al., 1969), it
doesn't even apply for Brans–Dicke scalar-tensor gravity (Faraoni &
Nadeau, 2007; Weinstein, 1996). The deep point is rather that
questions about the ‘true geometry’ have no good answers in
general, do not need good answers, and are not very interesting. It
is precisely the dearth of interesting theories that can be built out
of just a single metric that makes geometry so informative in the
case of General Relativity (massless spin 2) and Nordström's the-
ory (massless spin 0). Hence the need to expand the modal scope
by investigating a larger class of well motivated theories arises,
especially theories without a unique (single-metric) geometry.
7. Grünbaum on Riemann's concordance assumption, Putnam

The proposal that conventionalists/constructivists and empiri-
cists/realists have been talking past each other due to different
assumed modal scope helps one to shed a little light on some
notoriously opaque debates regarding conventionalism in the
1960–70 s. Earman, broadly sympathetic to Putnam's critique of
Grünbaum on conventionality but differing on some details, pro-
vides a useful example of focusing attention on the ‘best theory’;
Grünbaum may not always have presented conventionalism in
(what I take to be) its strongest light. Earman wrote

… my goal is the limited one of showing that (i) contrary to
Gruenbaum, the general theory of relativity (hereafter, GTR)
does not support the claim that there is a latitude for a con-
ventional choice in the standards of spatial and temporal con-
gruence and that (ii) Gruenbaum's thesis of the metrical
amorphousness of space and time does not illuminate and does
not draw support from the GTR. (Earman, 1970)

If single-geometry theories are a special case, one where empiri-
cism and realism flourish and conventionalism and constructivism
seem unhelpful, then Earman's points fit perfectly. One could
define parallel transport and hence congruence in a way incom-
patible with gμν, but doing so would be contraindicated by the
convenience, empirical guidance, and judgment forming parts of
Poincaré's conventionalism at least. Earman's immediate depreca-
tion of the result also fits: “… I do not view the achievement of this
goal as being terribly important in itself…” (Earman, 1970).
The crucial next question is what, if anything, one says about the
broader modal scope, theories that, unlike General Relativity, have
multiple geometries. These theories, though individually unim-
pressive in most cases, are far more numerous than single-
geometry theories and could be true. They have been taken with
much greater seriousness in the past five years (massive spin-2
gravity, bigravity) than at most times in the past.

Something like Poincaré's modal argument for conventionality
is suggested by Grünbaum's invocation of Max von Laue's dis-
cussion of bimetric theories (Grünbaum, 1977, note 74) (von Laue,
1953, pp. 186–196), which mentions work by Levi-Civita, Nathan
Rosen, Achille Papapetrou, and Max Kohler. Because a space–time
metric induces a connection, two metrics induce (at least) two
connections. Actually one can define more than two connections,
most obviously by splitting metrics into conformal and volume
pieces, splitting connections into projective (traceless) and pure
trace (volume) pieces, and mixing and matching. There seems to
be no objection to taking arbitrarily weighted geometric means of



J.B. Pitts / Studies in History and Philosophy of Modern Physics 53 (2016) 73–9286
the volume elements
ffiffiffiffiffiffiffiffi�g

p u ffiffiffiffiffiffiffiffi�η
p ð1�uÞ (giving arbitrarily weighted

arithmetic means of the volume connections by logarithmic dif-
ferentiation) and arbitrarily weighted arithmetic means of the
projective connections vΓ̂

α
μνþð1�vÞ α̂

μν

n o
, achieving a 2-parameter

family of connections using just two metrics. Hence bimetric
geometry from the 1920s raises most or all the issues raised by
metric-incompatible connections from the late 1910s.12 Clearly the
connection associated with one metric will generically be incom-
patible with a different metric (excepting the trivial case where
one metric is a constant times the other). Of course there is no
direct route from having some geometrical entity in a theory to
that entity's having direct chronogeometric significance (Brown,
2005; Butterfield, 2007; Freund et al., 1969; Knox, 2013). One has
to look at the matter Lagrangian density to ascertain what geo-
metry(s) matter actually sees. It also isn't terribly easy to get every
type of matter to couple to a connection except via a metric. (The
“hypermomentum” of Friedrich Hehl and collaborators would fill
in this gap Hehl, von der Heyde, Kerlick, & Nester, 1976.) Hence in
considering stories about the physical meaning of a connection
incompatible with the/a metric,13 one wants to think in some
detail about their physical realizability.

The idea(s) that parallel transport might fail to be compatible
with (the? a?) metric is an interesting issue highlighted by
Grünbaum, quite separable from the question of the clarity of his
distinction between intrinsic and extrinsic metrics. I take the lib-
erty of making a lengthy quotation, which is punctuated by useful
quotations from Einstein, Marzke and Wheeler, and Reichenbach.

1. Let us note first that an important empirical hypothesis
actually underlies the alleged conceptual necessity to metrize
any kind of P-space by means of rods and tapes. The pertin-
ent hypothesis was characterized as empirical by Einstein as
follows:
All practical geometry is based upon a principle which is
accessible to experience, and which we will now try to
realise. We will call that which is enclosed between two
boundaries, marked upon a practically-rigid body, a tract.
We imagine two practically-rigid bodies, each with a tract
marked out on it. These two tracts are said to be “equal to
one another” if the boundaries of the one tract can be
brought to coincide permanently with the boundaries of the
other. We now assume that:
If two tracts are found to be equal once and anywhere, they
are equal always and everywhere.
Not only the practical geometry of Euclid, but also its
nearest generalisation, the practical geometry of Riemann
and therewith the general theory of relativity, rest upon this
assumption ([reference to a reprint of Einstein, 1922]).

As I have done previously elsewhere (Grünbaum, 1968, pp. 272,
277), I shall refer to the empirical assumption just formulated
by Einstein as “Riemann's concordance assumption,” or, briefly,
as “RCA.”…
We see that the empirical truth of RCA plays the following role:
it is a necessary condition for the consistent use of rigid rods in
12 A classic treatment of the non-metricity tensor is Schouten's (1954).
13 There is of course a large difference between a connection's being incom-

patible with some metric, which is a relation between that connection and that
metric, and a connection's not being compatible with any metric. Being compatible
with some specific metric yields a familiar but optional antisymmetry of the Rie-
mann tensor with one index lowered by that metric (Misner et al., 1973, pp. 324,
325; Wald, 1984, p. 39). For more detail see Edgar (1991, 1992, 1994). An even
stronger sort of metric-incompatibility comes from not being compatible even with
any volume element; such a property (not a relation) implies that the trace of the
connection coefficients has non-zero curl, which is just the non-vanishing of the
other trace of the primordial ð1;3Þ Riemann tensor.
assigning lengths to space intervals that any collection of two
or more initially coinciding unit solid rods of whatever che-
mical constitution can thereafter be used interchangeably
everywhere in the P-manifold independently of their paths of
transport, unless they are subjected to independently desig-
natable perturbing influences. Thus, the assumption is made
here that there is a concordance in the coincidence behavior of
solid rods such that no inconsistency would result from the
subsequent interchangeable use of initially coinciding unit
rods, if they remain unperturbed or “rigid” in the specified
sense. In short, there is concordance among rigid rods such that
all rigid unit rods alike yield the same metric and the same
geometry. It will be recalled that in section 2(c), (i), we had
occasion to cite the following comment on RCA by Marzke and
Wheeler:

This postulate is not obvious and, in principle, could even be
wrong. For example, Weyl once proposed (and later had to
give up) a unified theory of electromagnetism and gravita-
tion in which the Riemann postulate was abandoned. In
Weyl's theory, two measuring rods, cut to have identical
lengths at a point A in space–time, and carried by different
routes to a point C, will differ in length when they are
brought together (Marzke & Wheeler, 1964, p. 58).

There we also noted that Marzke and Wheeler consider “what
kind of physics would not be compatible with Riemann's pos-
tulate,” offer the “Validity of Pauli Principle as Partial Evidence
for Riemann's Postulate” (Marzke & Wheeler, 1964, p. 60), but
conclude (Marzke & Wheeler, 1964, p. 61) that “It would be
desirable to have a more decisive experimental argument for
the Riemannian postulate.”
In the philosophical literature, Reichenbach has given a vivid
description of the kinds of phenomena that would occur if solid
bodies were to violate RCA, as they do in Weyl's kind of non-
Riemannian geometry. This description, which appears in the
German original of his classic Philosophie der Raum-Zeit-Lehre
but not in the 1958 English translation [58], runs as follows:
… whether we could put, say, six chairs in a row into a room
would depend on the path by which the chairs were to be
brought into the room, and we might perhaps first have to
let our chairs make a trip around the world so that the room
could accommodate them. By the same token, it would be
uncertain whether a visitor could fit onto one of the chairs;
this would depend on his prior trajectory. Such states of
affairs might perhaps strike us as strange, but they are
logically possible; and were they to obtain, humans would
surely have come to terms with them ([57], p. 333; trans-
lation is mine [Grünbaum's]).

It is, of course, irrelevant to the issue posed by Swinburne that
Weyl's nonRiemannian geometry, in which rods are held to
violate RCA, did not succeed empirically as a unified theory of
electromagnetism and gravitation. Instead, the import of the
logical possibility that the hypothesis RCA might be empirically
false emerges from the following considerations.… (Grünbaum,
1970, pp. 571, 572)

Where Grünbaum finds a significant philosophical issue (more
or less correctly, though my caution about achieving chronogeo-
metric significance for a geometrical structure in the physical laws
via a Lagrangian density, rather than by ‘by hand’, should be
recalled), and it involves a broad modal scope, Putnam only finds
paradox:

Reichenbach used to begin his lectures on the Philosophy of
Space and Time in a way which already brought an air of
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paradox to the subject. He would take two objects of markedly
different size, say an ash tray and a table, situated in different
parts of the room, and ask the students “How do you know that
one is bigger than the other?” (Putnam, 1975b)

Apparently such possibilities were not among those that Putnamwas
prepared to conceive; the problem is Putnam's. Insofar as one can
think of a rigid rod as a vector to undergo parallel transport, the
possibility of parallel transport according to a connection not derived
from or even compatible with14 the metric that one is considering
can be readily entertained; it is part of the great conceptual advance
of recognizing the connection as an entity independent of a metric
(Schouten, 1954). One might think that parallel transport with respect
to a metric-incompatible connection is always merely due to an
unwise choice of connection. But there are theories in which non-
metricity plays a dynamical role (Hehl, 1976; Hehl, Lord, & Smalley,
1981), which one ought not to refuse to entertain. Furthermore, there
are connections that are not compatible with any metric. Hence
simply making a wiser choice of connection to avoid non-metricity
might not be an option. Reichenbach and Grünbaum both explored
the idea of connections not derived from ametric (Reichenbach, 1928,
untranslated German appendix; Reichenbach; Reichenbach, 1929a,
1929b; Grünbaum, 1973a). By contrast, Putnam's work on space–time
physics (Putnam, 1975a, 1975b, 1967) seems not to profit from
developments in physics and geometry after 1916, such as Weyl's
work on connections that are not based wholly on a metric, not to
mention Levi-Civita's bimetric geometry or the whole tradition of
particle physicists’ work on gravity. Even after Grünbaum's detailed
consideration of the possible failure of Riemann's concordance
hypothesis (Grünbaum, 1970), Putnam's discussion defaults to
single-metric General Relativity, evading the issue of what to make
of theories with multiple or ‘rival’ geometric ingredients.

According to Putnam's early critique of Grünbaum's philosophy
of geometry,

In sum: our alleged ‘freedom’ to choose a different gik tensor (a
different space–time metric) at the cost of complicating the laws
of nature is in fact never employed in the general theory of rela-
tivity. All observers are required to ‘choose’ the same space–
time metric. (Putnam, 1975a)

Putnam has defaulted to the narrow scope of ‘our best theory’ and
so has surreptitiously achieved a sort of home-field advantage. But
still he falters: one can perhaps rescue this descriptive claim from
effortless falsification even using literature before 1963 (including
Gupta's foundational work on quantum gravity Gupta, 1952, 1954,
1957; Kohler, 1952, 1953; von Laue, 1953; Papapetrou, 1948; Rosen,
1940, 1974) if one carefully gerrymanders the physics literature
so that the many counterexamples, some of them by eminent
authors, do not count as “the general theory of relativity.” Putnam
wrote those words at roughly the time of Feynman's significant
further development of particle physics treatments of General
Relativity (Feynman, 1963), which circulated informally (Feynman,
1971) and then eventually mostly were published as a book
(Feynman et al., 1995). But then one will need to credit other
authors with inventing an alternative theory that shares the same
field equations, or uses the same field equations as a classical
starting point before quantizing, or the like. Space–time physics is
a bit like heaven and earth as portrayed by Hamlet to Horatio:

“[t]here are more things in heaven and earth…
Than are dreamt of in your philosophy.”
14 Torsion offers the possibility of a connection compatible with a metric but
not derived from it (Knox, 2013).
Subsequent work will discuss how massive scalar gravity, if
entertained at the right time in the right context, would have
blocked Moritz Schlick's sociologically successful overthrow of
Kantian synthetic a priori knowledge, and how Einstein's widely
followed false analogy between his reinvented Seeliger–Neumann
modification of gravity and his cosmological constant (Schucking,
1991) facilitated the neglect of massive (spin 0 and spin 2) gravity
during 1917–1939, much of the era when the fate of Kantian phi-
losophy was settled negatively and logical empiricism took shape.
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Appendix A. Malament–Weatherall–Manchak conformal
restriction of conventionality evaded

It has been argued that the conventionality of space–time
metric geometry, whatever one makes of it, should be restricted to
conformally related metrics, the null cone structure being factual
rather than conventional (Malament, 1985; Weatherall & Man-
chak, 2014). That claim appears to be a technical point motivated
by a conceptual point that causality is not conventional for
Reichenbach. Indeed causality is not conventional for Reichenbach,
but the geometrical use of that null cone field that marks out
causality, rather than an arbitrarily chosen one, is conventional—at
least, no less conventional than the metric is. The geometry of
angles, being a part of the geometry of distances, automatically
inherits whatever conventionality there might be in metric geo-
metry that survives the excision of volumes. Thomas's decom-
position shows how to apply Reichenbach's conventionality-of-
geometry equation

g0μνþFμν ¼ gμν

(Reichenbach, 1958) to the conformal part of a metric, pace the
claim that the two metrics must be conformally related.

Using the Thomas-style decomposition for both g0μν and gμν,
and letting bars j j signify a matrix determinant, one can show that

ĝ 0
μνþFμνð�g0Þ�1=4

ð� j ĝ 0
αβþFαβð�g0Þ�1=4 j Þ1=4

¼ ĝμν: ð8Þ

(The exponents 71
4 reflect the 4-dimensionality of space–time,

but the expression generalizes.) Thus the universal ‘force’
(potential) making the conformal geometry no less conventional
than the metric geometry is Fαβð�g0Þ�1=4—or, better yet, a certain
90% of it. At least if Fμν is small enough for perturbative expansion,
then the universal force for the conformal geometry is the
ĝ 0
μν-traceless part of Fαβð�g0Þ�1=4. One easily sees that if Fμν is

proportional to ĝ 0
μν, then it cancels out of the conformal part.

Other parametrizations of a metric and, concomitantly, its con-
formal part are of course possible (Isham, Salam, & Strathdee,
1972). It would be an interesting but nontrivial task to say some-
thing global about these issues.
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