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Abstract I argue that a criterion of theoretical equivalence due to Glymour (Noûs

11(3):227–251, 1977) does not capture an important sense in which two theories

may be equivalent. I then motivate and state an alternative criterion that does

capture the sense of equivalence I have in mind. The principal claim of the paper is

that relative to this second criterion, the answer to the question posed in the title is

‘‘yes’’, at least on one natural understanding of Newtonian gravitation.

1 Introduction

Are Newtonian gravitation and geometrized Newtonian gravitation (Newton-Cartan

Theory) equivalent theories? Glymour (1970, 1977, 1980) has articulated a natural

criterion of theoretical equivalence and argued that, by this criterion, the answer is

‘‘no’’.1 I will argue here that the situation is more subtle than Glymour suggests, by

characterizing a robust sense in which two theories may be equivalent that

Glymour’s criterion does not capture. This alternative sense of equivalence, which

is in the same spirit as Glymour’s, is best construed as a friendly amendment.2 Still,

it will turn out that by this alternative criterion, Newtonian gravitation is equivalent

to geometrized Newtonian gravitation—at least on one way of construing
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Newtonian gravitation.3 It follows that there exist realistic theories that are

equivalent in a robust and precise sense, but which apparently disagree regarding

certain basic features of the world, such as whether spacetime is curved.

The paper will proceed as follows. I will begin by briefly reviewing the two

versions of Newtonian gravitation. I will then describe Glymour’s criterion for

theoretical equivalence, according to which the two versions of Newtonian

gravitation fail to be equivalent. Next, I will apply Glymour’s criterion to two

formulations of electromagnetism that, I will argue, should be (and typically are)

taken to be equivalent. It will turn out that these theories fail to be equivalent by

Glymour’s criterion of equivalence. In the following sections, I will develop an

alternative notion of equivalence between theories that I will argue does capture the

sense in which these two formulations of electromagnetism are equivalent. I will

then return to the question of principal interest in the present paper, arguing that

there are two ways of construing standard (nongeometrized) Newtonian gravitation.

I will state and prove a simple proposition to the effect that, by the alternative

criterion, on one of the two ways of construing standard Newtonian gravitation (but

not the other), it is theoretically equivalent to geometrized Newtonian gravitation. I

will conclude by drawing some morals concerning the interpretation of physical

theories. Proofs of selected propositions appear in an appendix.

2 Two Formulations of Newtonian Gravitation

The two theories with which I am principally concerned are Newtonian gravitation

(NG) and a variant of Newtonian gravitation due to Élie Cartan (1923, 1924) and

Kurt Friedrichs (1927), called ‘‘Newton-Cartan theory’’ or ‘‘geometrized Newtonian

gravitation’’ (GNG).4 In NG, gravitation is a force exerted by massive bodies on

other massive bodies. It is mediated by a gravitational potential, and in the presence

of a (non-constant) gravitational potential, massive bodies will accelerate. In GNG,

meanwhile, gravitation is ‘‘geometrized’’ in much the same way as in general

relativity: the geometrical properties of spacetime depend on the distribution of

matter, and conversely, gravitational effects are manifestations of this geometry.

Despite these differences, however, there is a precise sense, which I will state

below, in which the theories are empirically equivalent. The central question of the

paper is whether they are also equivalent in some stronger sense.

On both theories, spacetime is represented by a four dimensional manifold of

spacetime events, which I will assume throughout is R4: This manifold is equipped

with two (degenerate) metrics: a temporal metric tab of signature (1, 0, 0, 0) that

assigns temporal lengths to vectors, and a spatial metric hab of signature (0, 1, 1, 1)

that (indirectly) assigns spatial lengths to vectors.5 These are required to satisfy

habtbc ¼ 0 everywhere. There always exists (at least locally) a covector field ta such

3 David Zaret (1980) has also replied to Glymour on this question. But his argument is markedly different

than the one presented here, and Spirtes and Glymour (1982) offer what I take to be an effective reply.
4 For background on geometrized Newtonian gravitation, see Malament (2012) or Trautman (1965).
5 Throughout the paper I use the abstract index notation, explained in Malament (2012, §1.4).
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that tab ¼ tatb; a spacetime is temporally orientable if this field can be defined

globally. In what follows, I will limit attention to temporally orientable spacetimes.

Finally, spacetime is endowed with a derivative operator r that is compatible with

both metrics, in the sense that ratb ¼ 0 and rah
bc ¼ 0 everywhere. Since ratb ¼ 0

and R4 is simply connected, there exists a globally defined smooth function t :
M ! R such that ta ¼ rat: This function allows us to foliate spacetime into

maximal t ¼ const hypersurfaces, each with a positive definite metric induced by

hab: These surfaces represent space at various times; here we assume that each of

these hypersurfaces is diffeomorphic to R3 and complete relative to the metric

induced by hab:
With these assumptions, the four elements just described define a classical

spacetime, written ðM; ta; h
ab;rÞ: Matter in both theories is represented by its mass

density field, which is a smooth scalar field q: Massive point particles are

represented by their worldlines—smooth curves whose tangent vector fields na

satisfy nata 6¼ 0: Such curves are called timelike.

In this context, NG is the theory whose models are classical spacetimes with flat

(Ra
bcd ¼ 0) derivative operators, endowed with a gravitational potential, which is a

scalar field u satisfying Poisson’s equation, rarau ¼ 4pq:6 A massive point

particle whose worldline has tangent field na will accelerate according to nnrnn
a ¼

�rau: In the geometrized version of the theory, meanwhile, the derivative operator

is permitted to be curved and the gravitational potential is omitted. The curvature

field associated with the derivative operator satisfies a geometrized version of

Poisson’s equation, Rab ¼ 4pqtatb; and in the absence of any external (i.e., non-

gravitational) interactions, massive particles traverse timelike geodesics of this

curved derivative operator. In both cases, we take the ‘‘empirical content’’ of the

theory to consist in the allowed trajectories of massive bodies, in the absence of any

non-gravitational force, given a particular mass density.

Given a model of NG, it is always possible to produce a (unique) model of GNG

that agrees on empirical content in this sense.

Proposition 2.1 (Trautman 1965) Let ðM; ta; h
ab;r

f

Þ be a flat classical spacetime,

let u and q be smooth scalar fields satisfying Poisson’s equation with respect to r
f

;

and let r
g

¼ ðr
f

;Ca
bcÞ; with Ca

bc ¼ �tbtcr
f

au:7 Then ðM; ta; h
ab;r

g

Þ is a classical

spacetime; r
g

is the unique derivative operator on M such that given any timelike

curve with tangent vector field na; nnr
g

nn
a ¼ 0 iff nnr

f

nn
a ¼ �r

f
au; and the

Riemann curvature tensor relative to r
g

; R
g
a
bcd; satisfies (1) R

g

ab ¼ 4pqtatb; (2)

R
g
a
b
c
d ¼ R

g
c
d
a
b; and (3) R

g
ab

cd ¼ 0:

6 Here rau ¼ habrbu:
7 The notation r0 ¼ ðr;Ca

bcÞ is explained in Malament (2012, Prop. 1.7.3). Briefly, the action of the

derivative operator r0 on any tensor field can be expressed as the sum of the action of r on that field and

terms involving a ‘‘connecting field’’ Ca
bc. Specifying r and Ca

bc is thus sufficient to define r0:
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It is also possible to go in the other direction, as follows.

Proposition 2.2 (Trautman (1965)) Let ðM; ta; h
ab;r

g

Þ be a classical spacetime

that satisfies conditions (1)–(3) in Prop. 2.1 for some smooth scalar field q: Then

there exists a smooth scalar field u and a flat derivative operator r
f

such that

ðM; ta; h
ab;r

f

Þ is a classical spacetime; given any timelike curve with tangent vector

field na; nnr
g

nn
a ¼ 0 iff nnr

f

nn
a ¼ �r

f
au; and u and q together satisfy Poisson’s

equation relative to r
f

:

It is important emphasize that the pair ðr
f

;uÞ in Prop. 2.2 is not unique. A second

pair ðr
f
0;u0Þ will satisfy the same conditions provided that (1) r

g
ar
g
bðu0 � uÞ ¼ 0

and (2) r
f
0 ¼ ðr

f

;Ca
bcÞ; with Ca

bc ¼ tbtcr
g
aðu0 � uÞ: Note, too, that Prop. 2.2 holds

only if conditions (1)-(3) from Prop. 2.1 are satisfied. The geometrized Poisson

equation, condition (1), has already been assumed to hold of models of GNG; for

present purposes, I will limit attention to models of GNG that also satisfy conditions

(2) and (3).8

3 Glymour on Theoretical Equivalence

I will now turn to Glymour’s account of theoretical equivalence. The underlying

intuition is that two theories are theoretically equivalent if (1) they are empirically

equivalent and (2) they are mutually inter-translatable.9 In general, empirical

equivalence is a slippery concept, but we will not discuss it further. For present

purposes, it suffices to stipulate that the theories being compared are empirically

equivalent, in the precise senses described.

The idea behind the second condition, of mutual inter-translatability, is that two

theories should be said to be equivalent if they have precisely the same expressive

resources, or in other words, if anything one can say about the world in one theory

can be said equally well in the other, and vice versa. Glymour makes this criterion

precise via the notion of definitional equivalence in first order logic.10 Suppose that

L and Lþ are first-order signatures, with L � Lþ: An explicit definition of a symbol

8 Note that throughout this section, one could substitute ‘‘gravitational field’’ for ‘‘gravitational potential’’

by replacing every instance of rau with a smooth vector field ua satisfying r½aub� ¼ 0. The choice

makes no difference to the results below, though some readers may think a theory committed to a

gravitational field is more plausible than one committed to a gravitational potential.
9 Glymour does not state that empirical equivalence is a necessary condition for theoretical equivalence,

though he does appear to take theoretical equivalence to be strictly stronger than empirical equivalence,

and, as Sklar (1982) emphasizes, empirical equivalence is a substantive interpretive constraint that goes

beyond any formal relations between two theories.
10 For details on explicit definability and definitional equivalence, see Hodges (1993, Ch. 2.6). See also

the classic work by de Bouvere (1965b, a), and more recently, Barrett and Halvorson (2015b).
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in Lþ in terms of L is a sentence in Lþ that asserts the equivalence between that

symbol (appropriately used) and some formula in L. Given a theory T in L, by

appending explicit definitions of the symbols in Lþ=L to T, we may extend T to a

theory in Lþ: The resulting theory is a definitional extension of T in Lþ: Now

suppose T1 and T2 are first-order theories in signatures L1 and L2; respectively,

with L1 \ L2 ¼ ;: Then T1 and T2 are definitionally equivalent if and only if there

are first order theories Tþ
1 and Tþ

2 in L1 [ L2 such that Tþ
1 is a definitional

extension of T1; Tþ
2 is a definitional extension of T2; and Tþ

1 and Tþ
2 are logically

equivalent. Definitional equivalence captures a sense of inter-translatability in that,

given any pair of definitionally equivalent theories T1 and T2 and a formula . in

the language of T1, it is always possible to translate . into a formula in the

language of T2, and then back into a formula in the language of T1 that is

T1�provably equivalent to .:11

Definitional equivalence is a natural notion of equivalence for first order

theories. But it is difficult to apply directly to physical theories, since we rarely

have first order formulations available. For this reason, Glymour works with a

model-theoretic variant of definitional equivalence. Suppose T1 and T2 are

definitionally equivalent theories, and suppose that A1 is a model of T1: Then it is

always possible to expand A1 into a model A of Tþ
1 ; the definitional extension of

T1: Since Tþ
1 and Tþ

2 (the extension of T2) are logically equivalent, A is also a

model of Tþ
2 : We may thus turn A into a model A2 of T2 by restricting A to

symbols in the language of T2. The whole process can then be reversed to recover

A1: In this sense, definitionally equivalent theories ‘‘have the same models’’

insofar as a model of one theory can be systematically transformed into a model of

the other theory, and vice versa.12

Using this model-theoretic characterization of definitional equivalence as

inspiration, Glymour proposes the following criterion of equivalence for physical

theories expressed in terms of covariant objects on a manifold.13

Criterion 1 Theories T1 and T2 are theoretically equivalent if for every model M1

in T1; there exists a unique model M2 in T2 that (1) has the same empirical content

as M1 and (2) is such that the geometrical objects associated with M2 are uniquely

and covariantly definable in terms of the elements of M1 and the geometrical objects

associated with M1 are uniquely and covariantly definable in terms of M2; and vice

versa.

GNG and NG fail to meet this criterion. The reason is that, as noted at the end of

the last section, models of NG are not uniquely determined by models of GNG.

11 For more on this sort of translation, see Barrett and Halvorson (2015a).
12 It is essential that one can go from a model A1 of T1 to a model A2 of T2; and then back to the same

model A1 of T1: See Andréka et al. (2005).
13 Actually, all Glymour claims is that clause (2) of this criterion is a necessary condition for theoretical

equivalence. I am extrapolating when I say that the two clauses together are also sufficient.
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4 A Problem Case for Glymour?

I will presently argue that criterion 1 does not capture an important sense in which

two physical theories may be equivalent. I will do so by displaying two ‘‘theories’’

(actually, formulations of a single theory) that usually are (I claim correctly) taken

to be equivalent, but which fail to meet Glymour’s criterion. These theories

correspond to two ways of presenting classical electromagnetism on Minkowski

spacetime, ðM; gabÞ:14

On the first formulation of the theory, which I will call EM1; the dynamical

variable a smooth, antisymmetric tensor field Fab on M. This field is called the

Faraday tensor; it represents the electromagnetic field on spacetime. The Faraday

tensor satisfies Maxwell’s equations, which may be written as (1) r½aFbc� ¼ 0 and

(2) raF
ab ¼ Jb; where Jb is a smooth vector field representing charge-current

density. (Here r is the Levi-Civita derivative operator compatible with gab.) Models

on this formulation may be written ðM; gab;FabÞ:15 On the second formulation,

which I will call EM2; the dynamical variable is a smooth vector field Aa on M,

called the 4�vector potential. This field satisfies the differential equation

raraAb �rbraA
a ¼ Jb: Models may be written ðM; gab;AaÞ:

These two formulations are systemically related. Given a vector potential Aa on

M, one may define a Faraday tensor by Fab ¼ r½aAb�: This tensor will satisfy

Maxwell’s equations for some Ja if Aa satisfies the differential equation above for

the same Ja: Conversely, given a Faraday tensor Fab satisfying Maxwell’s equations

(for some Ja), there always exists a vector potential Aa satisfying the required

differential equation (for that Ja), such that Fab ¼ r½aAb�: We stipulate that on both

formulations, the empirical content of a model is exhausted by its associated

Faraday tensor. In this sense, the theories are empirically equivalent, since for any

model of EM1; there is a corresponding model of EM2 with the same empirical

content (for some fixed Ja), and vice versa.

But are EM1 and EM2 equivalent by Glymour’s criterion? No. Given any model

ðM; gab;AaÞ of EM2; I can uniquely determine a model ðM; gab;FabÞ of EM1 by

taking Fab ¼ r½aAb�: But given a model ðM; gab;FabÞ of EM1; there are generally

many corresponding models of EM2: In particular, if Fab ¼ r½aAb� for some 4-

vector potential Aa; then Fab ¼ r½a ~Ab� will also hold if (and only if) ~Aa ¼ Aa þ Ga;

where Ga is a closed one form (i.e., r½aGb� ¼ 0). Thus uniqueness fails in the EM2

to EM1 direction.

What should one make of this result? On the one hand, Glymour’s criterion

seems to capture something important: the failure of uniqueness suggests that EM2

distinguishes physical situations that EM1 cannot distinguish. On the other hand,

EM1 and EM2 are usually taken to be different formulations of the same theory;

14 Minkowski spacetime is a (fixed) relativistic spacetime ðM; gabÞ where M is R4; gab is a flat Lorentzian

metric, and the spacetime is geodesically complete. For more on these two formulations of

electromagnetism, see Weatherall (2015c).
15 Here and in what follows, we do not include the charge-current density in specifications of models of

electromagnetism, as this field can be uniquely reconstructed from the other fields, given Maxwell’s

equations.
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they are intended to have precisely the same theoretical content. The tension

concerns the relationship between the models of EM2: The transformations between

models of EM2 associated with the same Faraday tensor are often called ‘‘gauge

transformations’’. On their standard interpretation, models related by a gauge

transformation are physically equivalent, in the sense that they have the capacity to

represent precisely the same physical situations.16 Thus EM2 does not distinguish

situations that EM1 cannot. And indeed, it seems to me that there is a clear and

robust sense in which two theories should be understood as equivalent if, on their

standard interpretations, they differ only with regard to features that, by the lights of

the theories themselves, have no physical content.

5 An Alternative Criterion

Thus far, I have introduced a criterion of theoretical equivalence and argued that it

fails to capture the sense in which EM1 and EM2 are equivalent. In the present

section, I will present a criterion of equivalence that does capture the sense in

which EM1 and EM2 are equivalent. To motivate this new criterion, note first that

there are actually two reasons that EM1 and EM2 fail to meet Glymour’s criterion.

The first problem concerns the failure of a model of EM1 to correspond to a

unique model of EM2: In particular, if we want a sense of theoretical equivalence

that captures the sense in which EM1 and EM2 are equivalent to one another, we

need to be able to accommodate the possibility that not all of the structure of

models of EM2 is salient. That is, we want a sense of unique recovery up to

physical equivalence.

One way to make this idea precise is to modify the definition of models of EM2:
Instead of characterizing a model as a triple ðM; gab;AaÞ; we might take a model to

be a triple ðM; gab; ½Aa�Þ; where ½Aa� is the equivalence class of physically equivalent

vector potentials, ½Aa� ¼ f~Aa : ~Aa ¼ Aa þ Ga for closedGag: This approach explic-

itly equivocates between physically equivalent vector potentials. Call the theory

whose models are so characterized EM0
2:

Proposition 5.1 For any model ðM; gab;FabÞ of EM1, there is a unique model

ðM; gab; ½Aa�Þ of EM0
2 such that Fab ¼ daXa for every Xa 2 ½Aa�:

Thus we do have unique recovery of models of EM0
2 from models of EM1:

We still face a second problem, however. This problem concerns what is meant

by ‘‘covariant definability’’.17 Glymour does not make this notion precise, and it is

not obvious that there is a unique or particularly natural way to do so that would

meet all of the desiderata one might impose on a notion of ‘‘definability’’. To see the

difficulty, observe that even in first order logic, a distinction is made between

‘‘explicit definition’’ and ‘‘implicit definition’’, and there are a number of

substantive and subtle theorems that show that these different notions of definability

16 The status of the vector potential arguably changes in quantum mechanics. See Belot (1998).
17 I am particularly grateful to Thomas Barrett and Jeff Schatz for discussions about and suggestions on

this paragraph and the next two. But they should not be held responsible for what I say!
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are equivalent.18 These theorems do not hold in many other logics of interest—

including second order logic, where implicit and explicit definability come apart in

general.19

The theories we are working with here are not first order theories—or at least, we

have not specified a first order ‘‘language of electromagnetism’’ or ‘‘language of

geometrized Newtonian gravitation,’’ nor have we presented axioms of any sort or

relied only on proofs in a first order system. Indeed, it is not clear that satisfactory

first order theories of electromagnetism or geometrized Newtonian gravitation exist.

More importantly, the question of whether such theories do exist does not seem to

arise in practice. But if we are not in a first order setting, then there are, at least in

principal, different notions of definability available for these theories, none of which

has been made precise in the present context. So it is hard to know how to

proceed.20

To be sure, this issue does not arise in Glymour’s own treatment of NG and

GNG, or in the relationship between EM1 and EM2 as discussed in the previous

section. The reason is that the failures of uniqueness in both cases show that,

whatever one means by covariant definability, one will not be able to produce the

necessary definitions. But the problem becomes acute once we move to EM0
2; where

Prop. 5.1 guarantees that we do have unique recovery. It is just not clear what the

further requirement of ‘‘covariant definability’’ amounts to.

To address this problem, let us return to Glymour’s original argument. Recall that

the basic strategy was to adapt definitional equivalence to a setting more conducive

to analyzing physical theories by identifying a model theoretic consequence of

definitional equivalence. Now, though, we see that Glymour’s criterion is not as

well suited to evaluating physical theories as it appeared to be. But we need not

abandon the basic strategy, of looking to relations between the collections of models

of definitionally equivalent theories. One such relation that seem particularly

attractive concerns not bare sets of models, as in Glymour’s condition, but rather

categories of models associated with definitionally equivalent theories.21 In

18 The classic results here are Beth’s theorem and Svenonius’ theorem. See Hodges (1993, Theo-

rem 6.64 & Corollary 10.5.2) and the surrounding discussion.
19 For a survey of definability properties in various logics, including second order logic, see Makowsky

and Shelah (1979); see also Craig (1965), Gostanian and Hrbacek (1976), and, for a more accessible

treatment, Andreka and Németi (2014).
20 For instance, if I do not know what the ‘‘language of electromagnetism’’ is, I can hardly write down an

explicit definition in that language!
21 A category consists of (1) a collection of objects A;B;C. . .; (2) a collection of arrows f ; g; h. . .; and (3)

assignments to each arrow f of a pair of objects, dom(f) and cod(f), called the domain and codomain of the

arrow, respectively. (We abbreviate this by f : domðf Þ ! codðf Þ.) We require that for any arrows f, g

such that codðf Þ ¼ domðgÞ; there exists an arrow g � f : domðf Þ ! codðgÞ called the composition of f and

g; and for any object A, there exists an arrow 1A : A ! A called the identity arrow. Together, these must

satisfy: (1) for any arrows f, g, h, if ðh � gÞ � f exists, then ðh � gÞ � f ¼ h � ðg � f Þ; and (2) for any arrow

f : A ! B, f � 1A ¼ f ¼ 1B � f . The category of models of a theory T has models of T as objects and

elementary embeddings as arrows. For more on categories and the related notions described below, see

Mac Lane (1998), Borceux (2008), or Leinster (2014), among many other excellent texts. For more on the

present proposal for understanding theoretical equivalence using category theory, see Halvorson (2012),

Halvorson (2015), Barrett and Halvorson (2015b), and Weatherall (2015a).
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particular, if theories T and T 0 are definitionally equivalent, then their categories of

models are isomorphic.22

This observation suggests the following alternative criterion of equivalence.

Criterion 10 Two theories are theoretically equivalent just in case there exists an

isomorphism between their categories of models that preserves empirical content.

I call this criterion 10 because it bears a very close relationship to Glymour’s

original criterion. For one, criterion 10 is motivated by the same basic intuition about

inter-translation as criterion 1: in both cases, the basic idea is that two theories are

equivalent if I can take whatever one theory says about the world and translate it, in

some appropriate sense, into the other theory, and vice versa, in a way that loses

nothing. We have even adopted both the same starting point for making this idea of

‘‘mutual intertranslatability’’ precise—definitional equivalence—and the same

strategy for adapting it to the present context, of moving to models of theories.

This is not to say that the resulting criteria are the same. In fact, even in first order

logic, isomorphism between categories of models is strictly weaker than definitional

equivalence.23 In the present context, one might characterize the difference as

follows: Glymour’s criterion attempts to spell out ‘‘inter-translatability’’ using some

combination of ‘‘semantic’’ considerations—translating directly between models of

the theory—and ‘‘syntactic’’ ones, insofar as his criterion requires some notion of

‘‘definition’’. The present criterion, meanwhile, drops the definability requirement,

but adds the requirement that further structure be preserved by the maps relating the

models of the theories—namely, the category theoretic structure encoding

information about automorphisms and other elementary embeddings of models.

One may think of this as capturing the idea that the models of the two theories have

the same structure—and thus, have the capacity to represent the same physical

situations.

As hoped, this new criterion is readily applied to physical theories. To do so in

the present case, we define a category EM1 whose objects are models of EM1 and

whose arrows are isometries of Minkowski spacetime that preserve the Faraday

tensor, and a category EM0
2 whose objects are models of EM0

2 and whose arrows are

isometries of Minkowski spacetime that preserve the equivalence classes of vector

potentials.24 Given these categories, we may then prove the following result.

22 A functor F : C ! D is a map between categories that takes objects to objects and arrows to arrows,

and which preserves identity arrows and composition. Given functors F : C ! D and G : D ! E, the

composition G � F, defined in the obvious way, is always a functor. A functor F : C ! D is an

isomorphism of categories if there is a functor F�1 : D ! C such that F � F�1 ¼ 1D and F�1 � F ¼ 1C,

where 1C : C ! C and 1D : D ! D are functors that act as the identity on objects and arrows. The result

cited in the text is proved by Barrett and Halvorson (2015b). (The result they state concerns equivalence

of categories, to be discussed below, but in fact they show the stronger thing as well).
23 Again, this is discussed in full detail in Barrett and Halvorson (2015b). It is not known how much

weaker categorical isomorphism is than definitional equivalence, or Morita equivalence, which is a

weakening of definitional equivalence that allows one to define new sorts. Note that the model theoretic

criterion Glymour begins with is actually equivalent to definitional equivalence (de Bouvere 1965b), at

least in simple cases, though that is of little comfort if, as I have argued, it cannot actually be applied in

realistic cases. See Glymour (2013) and Halvorson (2013) for a recent discussion of these issues.
24 What is meant by ‘‘preserve the equivalence classes’’ is described in more detail in Lemma 5.3, below.
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Proposition 5.2 There exists an isomorphism of categories between EM1 and

EM0
2 that preserves empirical content.

Prop. 5.2 shows that there is a sense in which EM1 and EM0
2 are equivalent—

namely, the sense given by criterion 10:
To get a clearer sense of what is going on, and how Prop. 5.2 relates to

criterion 1, observe that in the course of proving Prop. 5.2, one establishes the

following.

Lemma 5.3 Let ðM; gab;FabÞ and ðM; gab;F
0
abÞ be models of EM1 and let

ðM; gab; ½Aa�Þ and ðM; gab; ½Aa�0Þ be the unique corresponding models of EM2: Then

an isometry v : M ! M is such that v�ðFabÞ ¼ F0
ab iff ½v�ðAaÞ� ¼ ½Aa�0:25

This result provides a sense in which the models of EM0
2 might be said to be

implicitly definable from the models of EM1: any map that preserves a Faraday

tensor, as well as the other structure of Minkowski spacetime, automatically

preserves the equivalence class of vector potentials associated with that Faraday

tensor, and vice versa. One might even think of this result as establishing a perfectly

good sense in which models of EM0
2 are (implicitly) covariantly definable from

models of EM1 after all.

So much for EM1 and EM0
2: But what about EM2; the alternative formulation of

electromagnetism we began with? After all, it was this theory that we originally

wanted to claim was equivalent to EM1: We may define a category of models of this

theory, too: as a first pass, we take EM2 to be the category whose objects are models

of EM2 and whose arrows are isometries of Minkowski spacetime that preserve the

vector potential. But this category is not isomorphic to EM1—and so, on this

representation of EM2; EM1 and EM2 are still not equivalent, even by criterion 10.
The problem is the same as with Glymour’s criterion: there is a failure of unique

recovery.

We have already argued that this sort of non-uniqueness is spurious, at least on

the standard interpretation of EM2; because models related by a gauge transfor-

mation should be counted as physically equivalent. The category EM2 does not

reflect this equivalence between models, because in general, two models that differ

by a gauge transformation will not be isomorphic in this category. On the other

hand, we also know that there is another class of mapping between models that does

reflect this sort of physical equivalence—namely, the gauge transformations

themselves. These maps do not appear as arrows in the category EM2; which

suggests that if we want to represent EM2 accurately, in the sense of representing it

in a way that accords with what structure we take to be physically significant on the

standard interpretation, we need a different category, one that includes information

about the gauge transformations.

We define such a category as follows: we take EM2 to be the category whose

objects are models of EM2 and whose arrows are pairs of the form ðv;GaÞ :
ðM; gab;AaÞ ! ðM; gab;A

0
aÞ; where Ga is closed and v is an isometry that preserves

25 Here v� is the pushforward along v, defined for differential forms because v is a diffeomorphism.
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the (gauge transformed) vector potential Aa þ Ga; in the sense that v�ðA0
aÞ ¼

Aa þ Ga:

Proposition 5.4 EM2 is a category.

Note that EM2 is naturally understood to include the arrows of EM1; which may

be identified with pairs of the form ðv; 0Þ; the gauge transformations, which are

arrows of the form ð1M;GaÞ; and compositions of these.

Intuitively speaking, EM2 is the result of taking EM2 and ‘‘adding’’ arrows

corresponding to the gauge transformations. Simply adding arrows in this way,

however, does not yield a category that is (empirical-content-preservingly)

isomorphic to EM1: The reason is that the extra arrows do not address the failure

of unique recovery. But that does not mean this exercise was in vain. Although there

is not an isomorphism between EM1 and EM2 that preserves empirical content,

there is an equivalence of categories that does so.26

Proposition 5.5 There is an equivalence of categories between EM1 and EM2

that preserves empirical content.

Equivalent categories may be thought of as categories that are isomorphic ‘‘up to

object isomorphism’’—which is precisely the notion of equivalence we argued we

were looking for between EM1 and EM2 at the end of the last section.

The considerations in the last paragraph suggest a new, still weaker criterion.

Criterion 2 Two theories are theoretically equivalent just in case there exists an

equivalence between their categories of models that preserves empirical content.

Prop. 5.5 establishes that EM1 and EM2 are theoretically equivalent by this new

criterion—so long as we represent EM2 by EM2, rather than EM2: It is in this sense,

I claim, that the two formulations of electromagnetism should be taken to be

equivalent.

What can be said about this sense of equivalence? In fact, the same interpretation

can be given for criterion 2 as for criterion 10: Once again, we are capturing a sense

in which models of one theory can be ‘‘translated’’ into models of another theory,

and then back, without losing any information—or in other words, the models of the

two theories have the same structure, and one can map between models of the two

theories without losing that structure. The difference between 10 and 2 comes down

to whether we require the ‘‘translation’’ to be unique, or merely unique up to

isomorphism. But if our goal is to capture the idea that the models of the two

theories have the same amount of structure, then it is hard to see why we would

want more than uniqueness up to isomorphism, since after all, isomorphic models

have the same structure, qua models of the theory in question.27

26 An equivalence of categories is a pair of functors F : C ! D and G : D ! C that are almost inverses

in the sense that given any object A of C; there is an isomophism gA : A ! G � FðAÞ; where these

isomorphisms collectively satisfy the requirement that for any arrow f : A ! B of C,

gB � f ¼ G � Fðf Þ � gA; and likewise, mutatis mutandis, for any object of D:
27 More generally, Barrett and Halvorson (2015b) show that if two theories are Morita equivalent, which

is similar to definitional equivalence, but with the flexibility to define new sorts, then their categories of
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As a final remark, let me observe that criterion 2 also captures the sense in which

EM2 and EM0
2 are equivalent. In particular, these theories are not equivalent by

criterion 10, even though EM0
2 and EM2 may seem to be equally good ways of

capturing ‘‘gauge equivalence’’ in a formal representation of EM2. This reflects the

more general fact that for most mathematical purposes, equivalence of categories is

a more natural and fruitful notion of ‘‘sameness’’ of categories than isomorphism. It

also suggests that criterion 10 is at best an awkward half-way point once we have

begun thinking in the present terms.

6 Are NG and GNG Theoretically Equivalent?

With these new criteria in hand, we now return to the question at the heart of the

paper. To apply either criterion to NG and GNG, however, one first needs to say

what categories we will use to represent the theories. For GNG, there is a clear

choice. We represent GNG by the category GNG whose objects are classical

spacetimes ðM; ta; h
ab;rÞ satisfying the required curvature conditions from

Prop. 2.1, and whose arrows are diffeomorphisms that preserve the classical

metrics and the derivative operator.28

NG is more complicated, however. There is a natural option for the objects: they

are classical spacetimes with gravitational potentials ðM; ta; h
ab;r;uÞ, where r flat.

But we face a choice concerning the arrows, corresponding to a choice about which

models of NG are physically equivalent.

Option 1. One takes models of NG that differ with regard to the gravitational

potential to be distinct.29

Option 2. One takes models of NG whose gravitational potential and derivative

operators are related by the transformation u 7!u0 ¼ uþ w and

r7!r0 ¼ ðr; tbtcrawÞ, for any smooth w satisfying rarbw ¼ 0, to

be equivalent.30

In the second case, one takes the gravitational potential to be a gauge quantity, much

like the vector potential in electromagnetism. In the first case, one does not.

These two options suggest different categories. In particular, we define NG1 to be

the category whose objects are as above, and whose arrows are diffeomorphisms

that preserve the classical metrics, the derivative operator, and the gravitational

Footnote 27 continued

models are equivalent, but not necessarily isomorphic. So there is reason to think that even in the first

order case, we should be interested in categorical equivalence, rather than isomorphism.
28 Given a diffeomorphism v : M ! M0 and derivative operators r and r0 on M and M0 respectively, we

say that v preserves r if for any tensor field ka1 ���ar
b1 ���bs on M, v�ðrnk

a1���ar
b1���bs Þ ¼ r0

nv�ðk
a1���ar
b1���bs Þ.

29 Alternatively, one could replace ‘‘gravitational potential’’ with ‘‘gravitational field’’ to yield a distinct,

and perhaps more plausible, option. (Recall footnote 8.) But the difference does not matter for the present

discussion.
30 Note that, since all of the derivative operators considered in NG and GNG agree once one raises their

index, one can characterize the gauge transformation with regard to any of them without ambiguity.
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potential, and we define NG2 to be the category with the same objects, but whose

arrows are pairs ðv;wÞ, where w is a smooth scalar field satisfying rarbw ¼ 0, and

v is a diffeomorphism that preserves the classical metrics and the (gauge

transformed) derivative operator r0 ¼ ðr; tbtcrawÞ and gravitational potential

uþ w. The first category corresponds to option 1, while the second corresponds to

option 2. Since these options correspond to different interpretations of the

formalism, I will treat them as prima facie distinct theories, labeled as NG1 and

NG2, respectively, in what follows.

What considerations might lead one to prefer one option over the other? The first

option better reflects how physicists have traditionally thought of Newtonian

gravitation. On the other hand, this option appears to distinguish between models

that are not empirically distinguishable, even in principle. Moreover, there are

physical systems for which option 1 leads to problems, such as cosmological models

with homogeneous and isotropic matter distributions, where option 1 generates

contradictions that option 2 avoids.31 These latter arguments strike me as

compelling, and I tend to think that option 2 is preferable. But I will not argue

further for this thesis, and for the purposes of the present paper, I will remain

agnostic about these options.

We may now ask: are any of these theories pairwise equivalent by either

criterion? None of these theories are equivalent by criterion 10, effectively for the

reason that NG and GNG fail to be equivalent by Glymour’s original criterion.32

Moreover, NG1 is not equivalent to either GNG or NG2 by criterion 2. But GNG

and NG2 are equivalent by criterion 2.

Proposition 6.1 There is an equivalence of categories between NG2 and GNG
that preserves empirical content.

The situation is summarized by Table 1.

7 Interpreting Physical Theories: Some Morals

I have now made the principal arguments of the paper. In short, criterion 1 does not

capture the sense in which EM1 and EM2 are equivalent. However, there is a natural

alternative criterion that does capture the sense in which EM1 and EM2 are

equivalent. And by this criterion, GNG and NG are equivalent too, if one adopts

option 2 above. Moreover, criterion 2 highlights an important distinction between

two ways of understanding NG.

31 For more on this point, see the debate between John Norton (1992, 1995) and David Malament (1995).

Arguably, Newton himself recognized the empirical equivalence of models related by these transfor-

mations—for instance, see the discussions of Corollary VI to the laws of motion in DiSalle (2008); see

also Saunders (2013), Knox (2014), Weatherall (2015b).
32 Note, however, that one could construct an alternative presentation of NG2 analogous to EM0

2, in such

a way that this would be equivalent to GNG by criterion 10. Moreover, if one restricts attention to the

collections of models of NG and GNG in which (1) the matter distribution is supported on a spatially

compact region and (2) the gravitational field (for models of NG) vanishes at spatial infinity, then NG1,

NG2, and GNG are all equivalent by both criteria.
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There are a few places where one might object. One might say that no formal

criterion captures what it would mean for two theories to be equivalent.33 One might

also reject the significance of the particular criteria discussed here. I do not agree

with these objections, but I will not consider them further. For the remainder of this

paper, I will suppose that criterion 2 does capture an interesting and robust sense in

which these theories may be equivalent. If this is right, there are several

observations to make.

First of all, the arguments here support one of Glymour’s principal claim, which

is that there exist empirically equivalent, theoretically inequivalent theories. This is

because even if NG2 and GNG are theoretically equivalent, NG1 and GNG are still

inequivalent, even by criterion 2. Glymour’s further claim that GNG is better

supported by the empirical evidence, on his account of confirmation, is only slightly

affected, in that one needs to specify that GNG is only better supported than NG1.

This makes sense: the reason, on Glymour’s account, that GNG is better supported

than NG is supposed to be that NG makes additional, unsupported ontological

claims regarding the existence of a gravitational potential.34 But one can understand

the difference between NG1 and NG2 in this way as well, since NG2 explicitly

equivocates between models that differ with regard to their gravitational potentials.

There is another purpose to which Glymour puts these arguments, however.

There is a view, originally due to Poincaré (1905) and Reichenbach (1958), that the

geometrical properties of spacetime are a matter of convention because there always

exist empirically equivalent theories that differ with regard to (for instance) whether

spacetime is curved or flat.35 Glymour argues against conventionalism by pointing

out that the empirical equivalence of two theories does not imply that they are

equally well confirmed, since the theories may be theoretically inequivalent. But the

present discussion suggests that there is another possibility that is not often

considered: theories that attribute apparently distinct geometrical properties to the

world may be more than just empirically equivalent. They may provide different,

but equally good, ways of representing the same structure in the world.

As I have just noted, one way of understanding NG2 is as a theory on which the

gravitational potential is not a real feature of the world, because the gravitational

potential is not preserved by mappings that reflect physical equivalence. GNG,

meanwhile, does not make any reference to a gravitational potential. In this sense

GNG and NG2 appear to have the same ontological implications, at least with regard

Table 1 A summary of the

equivalences and inequivalences

of NG and GNG, by the

standards set by criteria 10 and 2

Criterion 10 Criterion 2

NG1 and NG2 Inequivalent Inequivalent

NG1 and GNG Inequivalent Inequivalent

NG2 and GNG Inequivalent Equivalent

33 For versions of this worry, see Sklar (1982) and Coffey (2014).
34 Once again, one could substitute ‘‘gravitational field’’ for ‘‘gravitational potential,’’ mutatis mutandis.

Recall footnotes 8 and 29.
35 For a clear and detailed description of the positions that have been defended on the epistemology of

geometry in the past, see Sklar (1977); see also Weatherall and Manchak (2014).
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to gravitational potentials. Still, GNG and NG2 do differ in one important way. In

particular, in generic models of GNG, spacetime is curved. In all models of NG2,

meanwhile, spacetime is flat. Now, interpreting this second fact is somewhat subtle.

Since we have taken models of NG2 to be equivalent if they are related by gauge

transformations that in general do not preserve derivative operators—even though

they do preserve curvature—it is not correct to say that models of NG2 represent

spacetime as flat, since in fact, they do not posit any particular parallel transport

properties. Another way of making this point is to observe that although in all

models of NG2, parallel transport of vectors is path independent, the result of

parallel transporting any particular vector along a given (fixed) curve will generally

vary even between equivalent models, because the derivative operator varies with

gauge transformations.36

One might conclude from this that GNG provides a more perspicuous

representation of spacetime geometry, since the apparent geometry of the models

of NG2 is obscured by the gauge transformations.37 But there is another option

available. As Weatherall (2015b) shows, there is some geometrical structure shared

by all isomorphic models of NG2, beyond just the metric structure: namely, they all

agree on a standard of rotation. In other words, we may think of models of NG2 as

positing enough structure to say when a body (say) is rotating, but not enough to say

that it is undergoing unaccelerated (inertial) motion, full stop.38

In any case, one thing seems clear. Models of GNG represent spacetime as

curved, whereas models of NG2 do not. Thus, at least in this context, there is a sense

in which classical spacetime admits equally good, theoretically equivalent

descriptions as either curved or not. Let me emphasize that this view is not a

recapitulation of traditional conventionalism about geometry. For one, it is not a

general claim about spacetime geometry; the view here depends on the details of the

geometry of classical spacetime physics. Indeed, there is good (though perhaps not

dispositive) reason to think that general relativity, for instance, is not equivalent to a

theory on which spacetime is flat, by any of the criteria discussed here.39 More

generally, I do not believe that it is a matter of convention whether we choose one

empirically equivalent theory over another. I agree with Glymour that there are

often very good reasons to think one theory is better supported than an empirically

equivalent alternative. Rather, the point is that in some cases, apparently different

descriptions of the world—such as a description on which spacetime is flat and one

on which it is curved—amount to the same thing, insofar as they have exactly the

same capacities to represent physical situations. In a sense, they say the same things

about the world.

The suggestion developed in the last paragraph will worry some readers. Indeed, one

might be inclined to reject criterion 2 (or even criterion 10) on the grounds that one has

antecedent or even a priori reason for thinking that there is, in all cases, an important

36 I am grateful to Oliver Pooley for pressing this point.
37 Knox (2011) makes a closely related point.
38 In other words, one might think of the models of NG2 as having the structure of Maxwell-Huygens

spacetime, as in Weatherall (2015b); see also Saunders (2013) and Knox (2014).
39 See Knox (2011) and Weatherall and Manchak (2014) for evidence supporting this claim.
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distinction—perhaps a metaphysical distinction—between a theory that says space-

time is curved and one that does not. Two theories that disagree in this regard could not

both be true, because at most one could accurately reflect the facts about the curvature

of spacetime, and thus, two such theories could not be equivalent. I think this position

is probably tenable. But it seems to me to get things backwards. At the very least, there

is another way of looking at matters, whereby one allows that the distinctions that one

can sensibly draw depends on the structure of the world. And the best guide to

understanding what those distinctions are will be to study the properties of and

relationships between our best physical theories.
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Proofs of Propositions

Proof of Prop. 5.1 Suppose there were vector potentials Aa and ~Aa such that

½Aa� 6¼ ½~Aa�; but for every Xa 2 ½Aa�; r½aXb� ¼ r½a ~Ab� ¼ Fab: Then r½aðXb� � ~Ab�Þ ¼
0 for every Xa 2 ½Aa�; and thus Xa � ~Aa is closed for every Xa 2 ½Aa�: Thus ½Aa� �
½~Aa�: A similar argument establishes that ½~Aa� � ½Aa�: h

Proof of Lemma 5.3 Suppose we have an isometry v s.t. v�ðFabÞ ¼ F0
ab: Then for

every Xa 2 ½Aa�; we have v�ðr½aXb�Þ ¼ v�ðFabÞ ¼ F0
ab: But exterior derivatives

commute with pushforwards along diffeomorphisms, and so v�ðr½aXb�Þ ¼
r½av�ðXb�Þ ¼ F0

ab: Thus by Prop. 5.1, ½v�ðAaÞ� ¼ ½A0
a�: Conversely, if v�ðAaÞ 2 ½Aa�;

then F0
ab ¼ r½av�ðAb�Þ ¼ v�ðr½aAb� ¼ v�ðFabÞÞ: h

Proof of Prop. 5.2 The isomorphism is given by F : EM0
2 ! EM1 acting on

models as ðM; gab; ½Aa�Þ7!ðM; gab;r½aAb�Þ and acting on arrows as the identity. That

this yields an isomorphism is an immediate consequence of Prop. 5.1, Lemma 5.3,

and basic facts about the composition of pushforward maps. h

Proof of Prop. 5.4 EM2 includes identity arrows, which are pairs of the form

ð1M; 0Þ; (2) it contains all compositions of arrows, since given any two arrows

ðv;GaÞ and ðv0;G0
aÞ with appropriate domain and codomain, ðv0;G0

aÞ � ðv;GaÞ ¼
ðv0 � v; v�ðG0

aÞ þ GaÞ is also an arrow; and (3) composition of arrows is associative,

since given three pairs ðv;GaÞ, ðv0;G0
aÞ, and ðv00;G00

aÞ with appropriate domain and

codomain, ðv00;G00
aÞ � ððv0;G0

aÞ � ðv;GaÞÞ ¼ ðv00;G00
aÞ � ðv0 � v; v�ðG0

aÞ þ GaÞ ¼ ðv00 �
ðv0 � vÞ; v�� v0�ðG00

aÞ þ v�ðGaÞ0 þ GaÞ ¼ ððv00 � v0Þ � v; v�ðv0�ðG00
aÞ þ G0

aÞ þ GaÞ ¼
ðv00 � v0; v0�ðG00

aÞ þ G0
aÞ � ðv;GaÞ ¼ ððv00;G00

aÞ � ðv0;G0
aÞÞ � ðv;GaÞ. h
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Proof of Prop. 5.5 It suffices to show that there is a functor from EM2 to EM1 that

is full, faithful, and essentially surjective, and which preserves Fab. Consider the

functor E : EM2 ! EM1 defined as follows: E acts on objects as

ðM; gab;AaÞ7!ðM; gab;r½aAb�Þ and on arrows as ðv;GaÞ7!v. This functor clearly

preserves Fab. It is also essentially surjective, since given any Fab, there always

exists some Aa such that r½aAb� ¼ Fab. Finally, to show that it is full and faithful, we

need to show that for any two objects ðM; gab;AaÞ and ðM; gab;A
0
aÞ, the induced map

on arrows between these models is bijective. First, suppose there exist two distinct

arrows ðv;GaÞ; ðv0;G0
aÞ : ðM; gab;AaÞ ! ðM; gab;A

0
aÞ. If v 6¼ v0 we are finished, so

suppose for contradiction that v ¼ v0. Since by hypothesis these are distinct arrows,

it must be that Ga 6¼ G0
a. But then Aa þ Ga 6¼ Aa þ G0

a, and so

v�ðAa þ GaÞ 6¼ v�ðAa þ G0
aÞ. So we have a contradiction, and v 6¼ v0. Thus the

induced map on arrows is injective. Now consider an arrow

v : EððM; gab;AaÞÞ ! EððM; gab;A
0
aÞÞ. This is an isometry such that

v�ðr½aAb�Þ ¼ r½aA
0
b�. It follows that v�ðr½aAb� � r½av�ðA0

b�ÞÞ ¼ 0, and thus that

r½aAb� � r½av�ðA0
b�Þ is closed. So there is an arrow ðv; v�ðA0

aÞ � AaÞ :
ðM; gab;AaÞ ! ðM; gab;A

0
aÞ such that Eððv; v�ðA0

aÞ � AaÞÞ ¼ v, and the induced map

on arrows is surjective. h

Proof of Prop. 6.1 This argument follows the proof of Prop. 5.5 closely. Consider

the functor E : NG2 ! GNG defined as follows: E takes objects to their

geometrizations, as in Prop. 2.1, and it acts on arrows as ðv;wÞ7!v. This functor

preserves empirical content because the geometrization lemma does; meanwhile,

Prop. 2.2 ensures that the functor is essentially surjective. We now show it is full

and faithful. Consider any two objects A ¼ ðM; ta; h
ab;r;uÞ and A0 ¼

ðM0; t0a; h
0ab;r0;u0Þ. Suppose there exist distinct arrows ðv;wÞ; ðv0;w0Þ : A ! A0, and

suppose (for contradiction) that v ¼ v0. Then w 6¼ w0, since the arrows were

assumed to be distinct. But then uþ w 6¼ uþ w0, and so ðuþ wÞ � v 6¼
ðuþ w0Þ � v. Thus v 6¼ v0 and E is faithful. Now consider any arrow

v : EðAÞ ! EðA0Þ; we need to show that there is an arrow from A to A0 that E maps

to v. I claim that the pair ðv;u0 � v� uÞ : A ! A0 is such an arrow. Clearly if this

arrow exists in NG2, E maps it to v, so it only remains to show that this arrow exists.

First, observe that since v is an arrow from E(A) to EðA0Þ, v : M ! M0 is a dif-

feomorphism such that v�ðtaÞ ¼ t0a and v�ðhabÞ ¼ h0ab. Moreover, v�ðuþ
ðu0 � v� uÞÞ ¼ v�ðu0 � vÞ ¼ u0 � ðv � v�1Þ ¼ u0, so v maps the gauge transformed

potential associated with A to the potential associated with A0. Now consider the

action of v on the derivative operator r. We need to show that for any tensor field

ka1���ar
b1���bs , v�ð ~rnk

a1���ar
b1���bsÞ ¼ r0

nv�ðk
a1���ar
b1���bsÞ, where ~r ¼ ðr; tbtcraðu0 � v� uÞÞ is the

gauge transformed derivative operator associated withA. We will do this for an arbitrary

vector field; the argument for general tensor fields proceeds identically. Consider some

vector field na. Then v�ð ~rnn
aÞ ¼ v�ðrnn

a � tntmn
mraðu0 � v �uÞÞ ¼ v�ðr

g

nn
a �

tntmn
mrau� tntmn

mraðu0 � v� uÞÞ ¼ v�ðr
g

nn
aÞ �v�ðtntmnmraðu0 � vÞÞ, where

r
g

¼ ðr; tbtcrauÞ is the derivative operator associated with E(A). Now, we know that
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v : EðAÞ ! EðA0Þ is an arrow ofGNG, so v�ðr
g

nn
aÞ ¼ r

g

nv�ðnaÞ. Moreover, note that

the definitions of the relevant Ca
bc fields guarantee that raka1���ar

b1���bs ¼ r
g
aðka1���ar

b1���bsÞ and

similarly for r0 andr
g
0. Thus we have v�ðr

g

nn
aÞ � v�ðtntmnmraðu0 � vÞÞ ¼ r

g
0
nv�ðnaÞ

�t0nt
0
mv�ðnmÞr0aðu0 � ðv � v�1ÞÞ ¼ r

g
0
nv�ðnaÞ � t0nt

0
mv�ðnmÞr0au0 ¼ r0

nv�ðnaÞ, where

r
g
0 ¼ ðr0;�tbtcrau0Þ is the derivative operator associated with EðA0Þ. So v does

preserve the gauge transformed derivative operator. The final step is to confirm that

rarbðu0 � v� uÞ ¼ 0. To do this, again consider an arbitrary vector field na on M.

We have just shown that r0
av�ðn

bÞ � v�ðran
bÞ ¼ �v�ðtatmnmrbðu0 � v� uÞÞ. Now

consider acting on both sides of this equation with r0a. Beginning with the left

hand side (and recalling that r and r0 are both flat), we find: r0nr0
av�ðnbÞ�

r0nv�ðran
bÞ ¼ r0

ar
g
0nv�ðnbÞ � v�ðrar

g
nnbÞ ¼ r

g
0
ar
g
0nv�ðnaÞ � t0at

0
mðr0bu0Þr

g
0nv�

ðnmÞ �v�ðr
g

ar
g
nnbÞ þ v�ðtatmðrbuÞr

g
nnmÞ ¼ v�ðtatmðrbðu� u0 � vÞÞr

g
nnmÞ. The

right hand side, meanwhile, yields �r0nðv�ðtatmnmrbðu0 � v� uÞÞ ¼
v�ðtatmðrnnmÞrbðu� u0 � vÞÞ þ v�ðtatmnmrnrbðu� u0 � vÞÞ. Comparing these,

we conclude that v�ðtatmnmrnrbðu� u0 � vÞÞ ¼ 0, and thus

tatmn
mrnrbðu� u0 � vÞ ¼ 0. But since ta is non-zero and this must hold for any

vector field na, it follows that rarbðu0 � v� uÞ ¼ 0. Thus E is full. h
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Glymour, C. (1980). Theory and Evidence. Princeton, NJ: Princeton University Press.

Glymour, C. (2013). Theoretical equivalence and the semantic view of theories. Philosophy of Science,

80(2), 286–297.

Gostanian, R., & Hrbacek, K. (1976). On the failure of the weak Beth property. Proceedings of the

American Mathematical Society, 58, 245–249.

Halvorson, H. (2012). What scientific theories could not be. Philosophy of Science, 79(2), 183–206.

Halvorson, H. (2013). The semantic view, if plausible, is syntactic. Philosophy of Science, 80(3),

475–478.

Halvorson, H. (2015). Scientific theories. In Humphreys, P. (Ed.), The Oxford handbook of the philosophy

of science. Oxford: Oxford University Press. http://philsci-archive.pitt.edu/11347/.

Hodges, W. (1993). Model theory. New York: Cambridge University Press.

Knox, E. (2011). Newton-Cartan theory and teleparallel gravity: The force of a formulation. Studies in

History and Philosophy of Modern Physics, 42(4), 264–275.

Knox, E. (2014). Newtonian spacetime structure in light of the equivalence principle. The British Journal

for Philosophy of Science, 65(4), 863–880.

Leinster, T. (2014). Basic category theory. Cambridge: Cambridge University Press.

Mac Lane, S. (1998). Categories for the working mathematician (2nd ed.). New York: Springer.

Makowsky, J. A., & Shelah, S. (1979). Theorems of Beth and Craig in abstract model theory. I The

abstract setting. Transactions of the American Mathematical Society, 256, 215–239.

Malament, D. (1995). Is Newtonian cosmology really inconsistent? Philosophy of Science, 62(4),

489–510.

Malament, D.B. (2012). Topics in the Foundations of General Relativity and Newtonian Gravitation

Theory. Chicago, IL: University of Chicago Press.

Norton, J. (1992). A paradox in Newtonian gravitation theory. PSA: Proceedings of the Biennial Meeting

of the Philosophy of Science Association, 1992, 412–420.

Norton, J. (1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science,

62(4), 511–522.
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