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Abstract. We show how invariance under spatial translations and Galilei boosts
constrains the classical Hamiltonian to have the form, h = (µ/2)v2 + f(q).

1. Introduction

It is possible to view certain symmetries of phase space as underlying and
justifying a common form taken by the classical Hamiltonian, h = (µ/2)v2 + f(q).
This was first pointed out in the context of quantum mechanics by Jauch [3, 4].
Lévy-Leblond later suggested that a similar argument should be available in the
context of classical Hamiltonian mechanics. Here we give a rigorous derivation of
Jauch’s theorem in the context of classical symplectic mechanics.

2. Notation

2.1. Phase space. My notation for classical mechanics will roughly follow that of
Geroch [2, §1-2]. Let P (for “Phase space”) be a smooth, connected, 2n-dimensional
manifold. Each point x ∈ P will be interpreted as a “possible state” of a classical
system. A function f : P → R will be interpreted as an “observable.” Observables
assign real values to each possible state of our system, and can represent physical
quantities such as the energy or position of that state.

We will adopt the “abstract index” notation of Penrose, and accordingly de-
note a vector va with an index upstairs, and a covector wa with an index downstairs.
The operation of contraction (sometimes called “interior multiplication” or “index
summation”) between tensors will be indicated by a common index in both upper
and lower positions, such as wava. The unique exterior derivative on k-forms of a
manifold will be denoted da.

2.2. Symplectic structure. The central features of Hamiltonian mechanics are
captured by a symplectic form on P. Mathematically, a symplectic form is a 2-
form on P, denoted Ωab; that is, Ωab is a skew-symmetric (Ωab = −Ωba), bilinear
mapping from pairs of vectors in TP to the reals, Ωab : vawb 7→ r ∈ R. It is also
closed (daΩbc = 0) and non-degenerate (Ωabv

a = 0 ⇒ va = 0). This implies that
Ωab is a bijection from vectors to covectors, and thus has an inverse; we denote its
inverse by Ωab.

The interpretive significance of the symplectic form is that it allows us to
input an observable h, and output a unique smooth vector field Ha := Ωbadbh, such
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that the value of h is conserved along the trajectories that thread the vector field Ha.
This generalizes the traditional role that Hamilton’s equations play, in providing a
space of deterministic trajectories along which energy is conserved. There do exist
classical descriptions that fail to satisfy these conditions, and thus that fail to admit
a symplectic form. However, the scope of our discussion will be restricted to the
broad class of classical descriptions that do.

Given a manifold and a symplectic form (P,Ωab), it will be convenient to
define the Poisson bracket {· , ·} on smooth functions f, h : P → R, given by

{f, h} := Ωab(dah)(dbf).

The right hand side is itself a smooth function on P. So, the Poisson bracket takes a
pair of scalar fields to a scalar field. From Ωab and da, the Poisson bracket inherits the
properties of being antisymmetric, linear in both terms, satisfying the Leibniz rule
in both terms, and vanishing for constant functions. If f, h generate vector fields

F a and Ha by the prescription above, let ϕfα and ϕhβ denote the diffeomorphism
flows with tangent fields F a and Ha, respectively. It will be useful in what follows
to observe that, by our definitions,

(1) {f, h} := Ωab(dah)(dbf) = Hbdbf =
d

dβ

(
f ◦ ϕhβ

)∣∣∣∣
β=0

where the last equality is an expression of the chain rule. In other words, the Poisson
bracket {f, h} at a point p is equal to the directional derivative of the scalar field f
at p, in the direction of the vector field Ha determined by h.

2.3. Classical systems. We will take a classical system to consist of a 2n-dimensional
symplectic manifold (P,Ωab), together with a smooth function h : P → R that we
refer to as the “Hamiltonian.” The interpretive significance of h will be (1) that we
take the quantity it assigns to states in P to be their energy, and (2) that the tra-
jectories h generates (the integral curves that thread Ha) are the possible motions
of the classical system in time.

3. Position and velocity in Hamiltonian mechanics

We will now impose some additional structure on a classical system (P,Ωab, h).
Our classical systems will be taken to have have a certain property that can be
thought of as “position,” and will satisfy certain symmetries with respect to that
property.

3.1. Defining position and velocity. The “position in space” of a classical sys-
tem will be defined in terms of what is sometimes called a “maximal orthogonal set”
or a “real polarization” on P.

Definition 1. A maximal orthogonal set for a 2n-dimensional symplectic manifold

(P,Ωab) is a set { 1
q,

2
q, . . . ,

n
q} of n smooth functions

i
q : P → R such that (i) { i

q,
j
q} = 0

for each i, j = 1, . . . , n, and (ii) if f is another smooth function satisfying {f, i
q} = 0

for all i, then f = f(
1
q, . . . ,

n
q) is a function of the

i
q.
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It makes sense to think of position as forming such a set, for example, if
we represent possible positions as points in Rn, and represent phase space by the
cotangent bundle P = T ∗Rn. Then, for any Cartesian coordinate chart { 1

q,
2
q, . . . ,

n
q}

on Rn, the set { 1
q ◦ π, 2

q ◦ π, . . . , n
q ◦ π} is a maximal orthogonal set for P (where π is

the canonical projection, π : (q, p) 7→ q). This maximal orthogonal set is one typical
way of representing position in classical mechanics1. However, our more abstract
formulation has the advantage of allowing us to speak more generally about the
spatial position of a classical system. Indeed, we follow Woodhouse [6] in observing
that a maximal orthogonal set is the natural classical analogue of a complete set of
a commuting observables in quantum mechanics. In this sense, the assumption that
“classical position” is a maximal orthogonal set is analogous to the assumption that
“quantum position” as a complete set of commuting observables, and hence, that
there are no internal degrees of freedom like spin or charge.

Given a classical system (P,Ωab, h) with a maximal orthogonal set { 1
q,

2
q, . . . ,

n
q},

we can define the “velocity” or instantaneous change in this set over time. Since
change over time is given by the phase flow ϕht generated by h, the velocity of a
function q is given by

v(t) :=
d

dt
(q ◦ ϕht ),

In what follows, we will make use in particular of the initial velocity v of a classical
system, defined by

(2) v := v(0) =
d

dt
(q ◦ ϕht )

∣∣∣∣
t=0

= {q, h},

where the last equality follows from our observation in Equation (1).

4. Defining translations and boosts

In Galilean physics, spatial translations and Galilei boosts are transforma-
tions that involve the simple “linear addition” of a vector to the value of position
and velocity, respectively.

Definition 2 (Translations and Boosts). We take a spatial translation and Galilei
boost group for a classical system (P,Ωab, h) to be a 2n-parameter group of diffeo-
morphisms Φ(σ, ρ) : P → P, which forms a representation of R2n, and such that

(i) q ◦ Φ(σ, ρ) = q + σ
(ii) v ◦ Φ(σ, ρ) = v + ρ

where q = { 1
q, . . . ,

n
q} is a maximal set of orthogonal functions, and v is the corre-

sponding initial velocity. We define two associated diffeomorphism groups ϕsσ :=
Φ(σ, 0) and ϕrρ := Φ(0, ρ), and refer to them as the translation group and the boost
group, respectively. When these groups have a generator, we denote those genera-
tors by s : P → R and r : P → R, respectively. To ensure that these generators

1This particular set is sometimes called the vertical polarization over Rn. The “polarization”
language comes from the fact that a maximal orthogonal set induces a foliation on P, consisting
of n-dimensional surfaces on which the values of the functions in { 1

q,
2
q, . . . ,

n
q} are constant. In the

vertical polarization, each of these surfaces corresponds to the cotangent space at a point in Rn.
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correspond to n independent directions of space, we assume that { i
s,

j
s} = { i

r,
j
r} = 0

and { i
s,

j
r} = 0 if and only if i 6= j.

Note that in adopting the shorthand q = (
1
q, . . . ,

n
q), Definition 2 really says

that when
i
q and

j
s have the same index i = j, then q ◦ ϕsσ = q + σ, but q ◦ ϕsσ = q

when i 6= j. On the other hand, no matter what the values of i and j for qi and rj ,

we always have that q ◦ ϕrρ = q. Similarly for initial velocity: when
i
v and

j
r have

the same index i = j, then v ◦ ϕrρ = v + ρ, and otherwise v ◦ ϕrρ = v. Moreover,

for all indices i, j of
i
v and

j
s, we have that v ◦ ϕsσ = v. In what follows, we will

sometimes spare ourselves having to write out all these indices by simply adopting
the shorthand q ◦ ϕsσ = q + σ and v ◦ ϕrρ = v + ρ.

We now turn to “invariance” of the classical laws under a transformation
Φ : P → P, by which we mean that a set of dynamical trajectories Ha := Ωbadbh
corresponding to the Hamiltonian h is possible only if the transformed set of tra-
jectories H̃a := Φ∗Ha is also possible with respect to some Hamiltonian h̃; that is,
H̃a = Ωbadbh̃ for some smooth h̃ : P → R. It is well known that this notion of
invariance is equivalent to the statement that Φ preserves the symplectic form Ωab

[5, Proposition 2.6.1]. So, the following definition of invariance makes sense.

Definition 3 (Translation and Boost invariance). A classical system (P,Ωab, h) is
invariant under spatial translations and Galilei boosts if there exists a translation
and boost group Φ(σ, ρ) on P such that each element of the group is symplectic, in
that Φ∗(σ, ρ)Ωab = Ωab for all σ, ρ.

5. Classical Analogue of the Jauch Theorem

Theorem. If a classical system (P,Ωab, h) is invariant under spatial translations

and Galilei boosts with respect to a maximal orthogonal set { 1
q, . . . ,

n
q}, then { i

q, µ
j
v} =

δij (i.e., 1 if i = j and 0 otherwise) for some non-zero µ ∈ R, and h = (µ/2)v2+v(q)
for some function v of q alone.

It is convenient to build the proof of the theorem using three lemmas.

Lemma 1. Let (
1
r, . . . ,

n
r) and (

1
s, . . . ,

n
s) be sets of functions on a symplectic manifold

(P,Ωab), such that { i
r,

j
r} = { i

s,
j
s} = 0 and { i

r,
j
s} = δij (where δij = 1 if i = j and 0

otherwise). If f is any function such that {f, i
r} = {f, i

s} = 0 for each i = 1, . . . , n,
then f is a constant function.

Proof. The 2n pairs (
i
r,

j
s) provide a local coordinate chart φ : U → R2n for P,

defined by φ(x) := (r(x), s(x)) =
( 1
r(x), . . . ,

n
r(x);

1
s(x), . . . ,

n
s(x)

)
. So, any smooth

function f : P → R may be written f = f(r, s). Let
i

Rb = Ωabda
i
r and

i

Sb = Ωabda
i
s

be the vector fields generated by
i
r and

i
s, respectively. Then by assumption,

0 = {f, i
r} := Ωab(da

i
r)(dbf) =

i

Rbdbf,

0 = {f, i
s} := Ωab(da

i
s)(dbf) =

i

Sbdbf

for each i = 1, . . . , n. This says that each of the 2n distinct directional derivatives
of f(r, s) vanish. Therefore, f is a constant function. �
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Lemma 2. If (P,Ωab, h) is invariant under spatial translations and Galilei boosts,
with s generating the translation group and r generating the boost group, then

{ i
q,

j
r} = { i

v,
j
s} = 0 and { i

q,
j
s} = { i

v,
j
r} = δij for all i, j.

Proof. From the definition of spatial translations and Galilei boosts introduced
above, we find by direct calculation that,

{ i
q,

j
s} =

d

dσ
(q ◦ ϕsσ) =

d

dσ
(q + σδij) = δij , { i

q,
j
r} =

d

dρ

(
q ◦ ϕrρ

)
=

d

dρ
(q) = 0,

{ i
v,

j
r} =

d

dρ

(
v ◦ ϕrρ

)
=

d

dρ
(v + ρδij) = δij , { i

v,
j
s} =

d

dσ
(v ◦ ϕsσ) =

d

dσ
(v) = 0.

�

Lemma 3. If (P,Ωab, h) is translation and Galilei boost invariant, with s generating

the translation group and r generating the boost group, then { i
s,

j
r} = µ ∈ R, where

µ = 0 if and only if i 6= j.

Proof. We have assumed in the definition of Galilei invariance that { i
s,

j
r} = 0 if and

only if i 6= j, so it only remains to show that { i
s,

j
r} is a constant when i = j. This

follows from the fact that the translation and boost group Φ(σ, ρ) is defined to be
a representation of the additive group of real vectors. Since the latter is abelian,
Φ(σ, ρ) = Φ(σ, 0)Φ(0, ρ) = Φ(0, ρ)Φ(σ, 0). Thus, the translation group ϕsσ := Φ(σ, 0)
and the boost group ϕrρ := Φ(0, ρ) are commuting diffeomorphism flows, in that
ϕsσϕ

r
ρ = ϕrρϕ

s
σ. Moreover, the invariance assumption entails that these flows are

symplectic. But the symplectic flows generated by s and r commute if and only if

{s, r} is a constant function [1, p.218 Cor.9]. Therefore, { i
s,

j
r} = µ ∈ R. �

The theorem is now established by the following two propositions.

Proposition 1. If (P,Ωab, h) is translation and Galilei boost invariant with respect

to a maximal orthogonal set { 1
q, . . . ,

n
q}, then { i

q, µ
j
v} = δij, where δij = 1 if i = j

and 0 otherwise, and µ = 0 if and only if i 6= j.

Proof. By our invariance assumption, the translation and Galilei boost groups are
symplectic. This is a necessary and sufficient condition for each to have a generator
[5, Proposition 2.6.1], which we denote by s and r, respectively. We have assumed

that { i
s,

j
s} = { i

r,
j
r} = 0 in the definition of these transformations. Moreover, we

know by Lemma 3 that

(i) { i
s,

j
r} = µ ∈ R,

where µ = 0 if and only if i 6= j. This implies that the set of functions s and r
provide a local orthonormal coordinate chart for P. So, whenever a function Poisson
commutes with both s and r, we may conclude from Lemma 1 that it is a constant
function. We will now use this fact to show that the function

i
r + µ

i
q is a constant

function each i = 1, . . . , n.

Since the Poisson bracket is skew-symmetric, { i
s,

j
r} = µ is equivalent to

{ i
r,

j
s} = −µ. From Lemma 2, we also have the relations,

(ii) { i
q,

j
s} = { i

v,
j
r} = δij ,
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(iii) { i
q,

j
r} = { i

v,
j
s} = 0.

Multiplying both sides of { i
q,

j
s} = δij by µ, we get {µ i

q,
j
s} = µ. Using the linearity

of the Poisson bracket, we thus find that for all j,

{ i
r + µ

i
q,

j
s} = { i

r,
j
s}+ {µ i

q,
j
s} = −µ+ µ = 0.

But the function (
i
r + µ

i
q) also Poisson commutes with

j
r for all j, since { i

r,
j
r} =

{ i
r,

j
q} = 0. So,

i
r + µ

i
q Poisson commutes with both

j
r and

j
s for all j, and we may

conclude that
i
r + µ

i
q = k for some constant k, or equivalently,

j
r = −µ j

q + µk.

Substituting this into { i
v,

j
r} = δij , we have

δij = { i
v,

j
r} = { i

v, (−µ j
q + µk)} = { i

v, (−µ j
q)} = { j

q, µ
i
v},

where the penultimate equality follows from the fact that the Poisson bracket is lin-
ear and vanishes for constants in either term, and the last equality is an application
of skew symmetry. �

Proposition 2. If (P,Ωab, h) is a classical system with {q, µv} = 1 for some µ ∈ R,
then h = µ

2 v
2 + v(q) for some function v of q alone.

Proof. From the fact that the Poisson bracket satisfies the Leibniz rule,{
q,
µ

2
v2
}

=
1

2
v {q, µv}+

1

2
{q, µv} v =

1

2
v +

1

2
v = v,

where the penultimate equality follows from our hypothesis that {q, µv} = 1. But
by definition, v = {q, h} (see Equation (2)). Subtracting the expression for v just
calculated from this definition, we see that {q, h − µ

2 v
2} = 0. But q is a maximal

orthogonal set (Definition 1), and so by definition, h− µ
2 v

2 = v(q) for some function
v of q alone. �

Corollary 1. On the same assumptions, µv = s + k, where s is the generator of
the spatial translation group ϕsσ and k is a constant.

Proof. We have assumed that { i
q,

j
q} = { i

s,
j
s} = 0, and Lemma 2 implies that { i

q,
j
s} =

δij . Therefore, q and s provide a local orthonormal coordinate chart. Lemma 1 thus
implies that the only functions that Poisson commutes with both q and s are the

constant functions. We now show that µ
i
v − j

s is one of them.

We know that { i
q,

j
s} = δij by Lemma 2, and { i

q, µ
j
v} = δij by Proposition 1.

Therefore, applying the linearity of the Poisson bracket, we find that

{ i
q, (

j
s− µ j

v)} = { i
q,

j
s} − { i

q, µ
j
v} = 0

for all j = 1, . . . , n. Moreover, we have assumed that { i
s,

j
s} in the definition of

Galilei invariance, and found that { i
s,

}
v = 0 in Lemma 2. Therefore,

{ i
s, (µ

j
v − j

s)} = { i
s, µ

j
v} − { i

s,
j
s} = 0.

We conclude that µ
j
v− j

s must be a constant function for all j, and so we may write
µv = s+ k for some constant k ∈ Rn. �
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Since the generator s of a group of symplectic transformations ϕsσ is only
defined up to an additive constant, this implies that we can choose a generator s of
the same group of spatial translations such that s = µv. Taking this generator to
be the definition of “momentum,” we may interpret this result as the well-known
relation that the momentum of a classical system is proportional to its velocity. We
thus have the following.

Corollary 2. On the same assumptions, q and µv form an orthonormal coordinate
chart.

Proof. Combing the result of Corollary 1 with our assumption that { i
s,

j
s} = 0 for

all i, j, it follows immediately that {µ i
v, µ

j
v} = 0 for all i, j. Moreover, { i

q,
j
q} = 0

as a consequence of our assumption that q forms a maximal orthogonal set. Our

conclusion thus follows from the result of Proposition 1 that { i
q, µ

j
v} = δij . �

As a final observation for this section, we note that systems satisfying the
assumptions of our theorem are guaranteed to be time reversal invariant. A time
reversal transformation is an antisymplectic mapping (i.e., one that reverses the
sign of the symplectic form Ωab). For a local coordinate system (q, p), a time re-
versal transformation has the form τ : (q, p) 7→ (q,−p). Setting p = µv, we can
thus immediately see that Galilei invariant classical systems are time reversal in-
variant, since the Hamiltonian h(q, p) = (1/2µ)p2 + f(q) remains unchanged under
the transformation τ . In summary, we have the following.

Corollary 3. On the same assumptions, the system is time reversal invariant,
in that the transformation τ : (q, µv) 7→ (q,−µv) is antisymplectic and leaves the
Hamiltonian unchanged.
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