
Week 6 Handout: Notes on the Unruh Effect

Bryan W. Roberts

b.w.roberts@lse.ac.uk

February 25, 2020

1. Introduction

The Unruh effect is a collection of results for relativistic quantum field theory.

The usual interpretation of these results is that an observer with uniform acceleration

α will interpret the Minkowski vacuum state as having non-zero particle number, and

energy described by a thermal density matrix with temperature T = α/2π.

1.1. Philosophical commentary. The original aim of Unruh (1977) was to provide

an analogy for the discussion of Hawking radiation and black hole thermodynamics.

Others have drawn more radical conclusions from the apparent observer-relative status

of particles:

“The Unruh effect may appear paradoxical to readers who are used

to thinking that quantum field theory is, fundamentally, a theory of

‘particles’, and that the notion of ‘particles’ has objective significance.

... No paradox arises when one views quantum field theory as, fun-

damentally, being a theory of local field observables, with the notion

of ‘particles’ merely being introduced as a convenient way of labelling

states in certain situations.” (Wald; 1994, p.118)

However, there is a good deal of controversy amongst philosophers about how to

interpret the Unruh effect.

• Clifton and Halvorson (2001) supplement Wald’s reading with a Bohr-inspired

take on the Unruh effect, as consisting in ‘complementary’ descriptions of the

vacuum.

• The conclusion that particles do not exist depends on there being a strong

sense in which the two descriptions of particles are inequivalent; Arageorgis et

al. (2003) argue that this has not yet been estbalished.

• Earman (2011) argues, it is not obvious that all arguments purporting to derive

the Unruh effect represent the same physical phenomenon.

• Baker (2009) argues that, if this reasoning does go through, then the very

same argumentation can be used to establish that fields do not exist either.
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1.2. Physical intuition. The Unruh effect can be motivated in heuristic terms by

appeal to Noether’s theorem. Suppose we define the energy associated with a Poincaré

invariant field to be the conserved quantity associated with time-translation symme-

tries. In the right ‘wedge’ of any lightcone in Minkowski spacetime (called a ‘right

Rindler wedge’), there are actually two timelike symmetry groups (two timelike Killing

fields): the inertial trajectories, and the uniform acceleration trajectories correspond-

ing to Lorentz boosts. The conserved ‘energy’ for one will not necessarily be conserved

for the other, nor can the definitions of energy be expected to reach their lowest values

in the same state. In other words, they cannot be expected to agree on whether or

not a given state is a stationary vacuum. As a result, the concept of ‘the vacuum’,

and the associated concepts of particle-number and temperature.

On this way of looking at it, the Unruh effect is an essentially quantum effect.

The argument only if the lowest energies associated with these two Killing fields really

are different. But, for classical fields, they are generally the same. This is because the

inertial time-translation Noether charge (energy) for a classical field φ is the integral

of the Hamiltonian density H(φ, π) which is minimised when φ = 0 everywhere.1

The situation changes when we redefine energy from the perspective of quan-

tum theory, where energy is associated with the spectrum of an operator. Here again

it is possible to get an intuition for how this happens using classical field theory, by

considering a different definition of energy, associated with a relativistic dispersion

relation.

For example, consider the case of the classical Klein-Gordon field on two-

dimensional Minkowski spacetime (R2, ηab) with global Euclidean coordinates (t, x).

The field is a smooth function φ : R2 → C that satisfies the Klein-Gordon equation

with m ≥ 0, in units where c = 1:

(1) (∇a∇a −m2)φ = 0.

In a reference frame (t, x), its solutions φ are linear combinations of plane-waves of the

form ψ(t, x) = eiEt−px, for any E, p ∈ R satisfying the relativistic dispersion relation,

E2 − p2 = m2.

Suppose that we take the ‘energy’ of a plane-wave ψ(t, x) to be given by its

four-momentum density, m =
√
E2 − p2. To describe the ‘inertial vacuum’ in this

reference frame, we could then consider the solution of minimum coordinate energy

E(p) as a function of p, which occurs when p = 0 and E = m. This occurs with

the plane wave ψ0(t, x) = eimt, which might be called the inertial ground state. In

all inertial coordinate systems, it is stationary (up to a phase) and has the same

energy-momentum density m.

However, it is not stationary from the perspective of a uniformly accelerated

reference frame, known as Rindler coordinates (t′, x′). These are defined in the Rindler

1For example, the (inertial) energy density for the Klein-Gordon field is H(φ, π) = 1
2π

2+ 1
2 (∇φ)2+

1
2m

2φ2. The integral of this quantity over space is minimised when φ = π = 0 everywhere.
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wedge where x > t and x > −t by,

t′ := 1
2

ln

(
x+ t

x− t

)
x′ := (x2 − t2)1/2,(2)

from which we can infer conversely that,

t = x′ sinh t′ x = x′ cosh t′.(3)

Expressing the inertial ground state ψ0 in Rindler coordinates we find,

(4) ψ0(t′, x′) = eimx
′ sinh t′ .

It is easy to check that this state is not stationary in Rindler coordinates: d
dt′
ψ0(t′, x′) =

imx′ sinh t′ cosh t′ψ0(t′, x′), which is not generally zero. So, the inertial ground state

is not stationary, let alone associated with a conserved value of energy. In fact, since

ψ0(t′, x′) is not a plane wave but a superposition of plane waves (via its Fourier de-

composition), it is associated with multiple non-zero ‘energies’ — a kind of classical

Unruh effect.

This thinking can be given a more detailed analysis that splits positive fre-

quency modes in order to introduce a notion of classical particle number; this turns

out to give a first-order approximation of the quantum expression of the Unruh effect;

see Higuchi and Matsas (1993) and Crispino et al. (2008, §H). However, it is less gen-

eral: it depends on the mass of the Klein-Gordon field being non-zero, since m = 0

implies the inertial vacuum plane-wave becomes a constant scalar field again, which is

the same in inertial coordinates, Rindler coordinates, and indeed all coordinates. So,

a more complete picture of the Unruh effect requires quantum field theory, to which

we turn next.

1.3. Overview of the quantum derivation. In the next sections, we will discuss

the derivation of the Unruh effect in a very general form. As mentioned at the

outset, there are many derivations of the Unruh effect. We will discuss one due to

Kay and Wald (1991) that is of interest because it is much more general than Klein-

Gordon fields on Minkowski spacetime. This derivation, sometimes referred to as the

‘generalised Unruh effect’, can be sketched as follows; the details will be filled out

after that.

(1) Clasical field theory. We consider a general class of Lorentzian manifolds

defined by a geometric structure known as a ‘bifurcate Killing horizon’. Ex-

amples include Minkowski spacetime, and also the Schwarzschild black hole.

When our derivation is applied to the latter, we find a sense of thermal radi-

ation for black holes, though it is not quite the same as Hawking radiation.

Our classical field theory on this background spacetime will generally allow

two distinct notions of time evolution, as in the heuristic argument above.

(2) Quantise in two different ways. Each notion of time evolution determines

a complex structure for the purposes of quantisation. So, our pair of distinct
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time evolutions give rise to a pair of distinct quantisations, due to the presence

of distinct complex structures.

(3) Compare quantisations. Finally, we compare quantisations. This will be

a little awkward, because their states turn out to be ‘disjoint’, or mutually

indescribable. However, we can still say some general things, and we can use

some approximation results like Fell’s theorem, as well as more general thermal

analysis like modular theory, in order to derive a non-zero temperature.

2. Classical field theory

We will be considering an argument for the Unruh effect that applies to a

general class of classical field theories, on a general class of Lorentzian manifolds.

The main restriction on the Lorentzian manifolds is that they be globally hyperbolic

and admit a special kind of horizon, to be discussed below. The main restriction

on the field theories will be that they are associated with a hyperbolic differential

equation.

2.1. Bifurcate Killing horizons. Classical field theory assigns scalar, tensor, or

spinor fields to a Lorentzian manifold (M, gab), which is assumed to be globally hyper-

bolic. A Lorentzian manifold is globally hyperbolic iff the diamond regions I+(p)∩I−(q)

are compact for all points p, q ∈M . Hyperbolic partial differential equations for fields

have a locally well-posed initial value problem. It is equivalent to the existence of a

Cauchy surface: a spacelike hypersurface that every inextendible timelike and null

curve intersects exactly once (Geroch; 1970). The values of fields on this surface pro-

vide the ‘initial conditions’ for a differential equation, and indeed imply the existence

of a foliation of the spacetime t 7→ Σt into Cauchy surfaces Σt parametrised by the

real numbers t ∈ R.

Some Lorentzian manifolds, which include Minkowski spacetime, Schwarzschild

spacetime, and even ‘acoustic black holes’, all share a common structure that makes it

possible to associate them with thermal radiation. That structure is called a ‘bifurcate

Killing horizon’. It can be defined in a few stages.

Let (M, gab) be an n > 2-dimensional Lorentzian manifold. A Killing field χa

is vector field that is tangent to a 1-parameter group of isometries; equivalently, it is

a vector field along which the Lie derivative of the metric vanishes, Lχ(gab) = 0. A

Killing horizon (with respect to a non-zero Killing field χa) is a null surface H that

is normal to χa, in that χaηa = 0 for all (null) vectors ηa tangent to H. Finally, a

bifurcate Killing horizon for a 4-dimensional Lorentzian manifold is a pair of Killing

horizons H1 and H2 with respect to the same Killing field χa, which intersect at a

2-dimensional surface S contained in a Cauchy surface. Some technical details in the

analysis entail infrared divergences when manifold is 2-dimensional; to avoid this, I’ll

stick to the realistic case in which dimM > 2.
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2.2. Minkowski and Schwarzschild horizons. A bifurcate Killing horizon appears

in Minkowski spacetime (R4, ηab) at the plane of intersection of any two null-surfaces.

In Euclidean coordinates (t, x, y, z) with ηab = (diag(−1, 1, 1, 1))ab, the group of isome-

tries associated with Lorentz boosts thread the Killing field χa =
(
t ∂
∂x

)a
+
(
x ∂
c∂t

)a
. It

is normal to the surface satisfying x = t, and to the surface x = −t, and so both are

Killing horizons. Their plane of intersection at x = t = 0 is contained in the Cauchy

surface (0, x, y, z), and so they form a bifurcate Killing horizon. As we shall see, this

turns out to be the essential geometric feature underpinning the Unruh effect.

An analogous observation can be made about the Schwarzschild black hole

(R4, gab), by converting the metric into Kruskal coordinates. In Schwarzschild coor-

dinates (t, r, θ, φ), the static vector field χa =
(
∂
∂t

)a
is a Killing field. To identify the

bifurcated Killing horizon associated with it, it is easiest to switch to Kruskal coor-

dinates (T,X, θ, φ), where the Killing field takes the same form as the boost Killing

field above, and the bifurcate Killing horizons X = T and X = −T define the black

hole event horizon.

2.3. Classical field solutions. We would like to view a classical field system from

a phase-space perspective that allows us to quantise it. We’ll review how this works

in the special case of a Klein-Gordon field on Minkowski spacetime (R4, ηab), and

then move on to the more general case. From the very beginning we will introduce

a preferred definition of time evolution; this choice is a crucial element of the Unruh

effect.

Let us first view time evolution from the perspective of a global coordinate

system (t,x). The Klein-Gordon equation is derived by extremising the Klein-Gordon

action S =
∫
Ldt, where the Lagrangian is given by,

(5) L(φ, φ̇) = 1
2
(φ̇2 − (∇φ)2 −m2),

with φ : Σ0 → R a smooth function with compact support2 on the t = 0 plane Σ0, and

φ̇ = (∂/∂t)φ denoting the coordinate derivative. The conjugate momentum variables

at t = 0 are defined by π = δS/δφ̇, which for the Klein-Gordon field gives π = φ̇, also

assumed to be of compact support. The points v = (φ, π) of this kind define a real

linear manifold V , with addition and scalar multiplication of real numbers defined in

the obvious way. We then define the symplectic structure Ω : M ×M → R for each

pair of points v1 = (φ1, π1) and v2 = (φ2, π2) to be,

(6) Ω(v1, v2) :=

∫
Σ0

(π1φ2 − π2φ1).

Since V is a vector space, it can be naturally identified with the tangent pace at each

point. When Ω is lifted in this way to a map on pairs of tangent vectors in this

way, it becomes a symplectic form Ωab, which given the Hamiltonian density H(φ, π)

2The restriction of compact support guarantees that each field is locally definable, and will prove

mathematically useful below.
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generates the time evolution of the field as a symplectic flow. The structure (V,Ω)

is thus a symplectic vector space characterising our classical field system, which is

nearly ready to be quantised following the prescription of last week’s lecture.

Generalisation: nothing about this construction is unique to Minkowski space-

time, or even the Klein-Gordon field. To do it on a general curved Lorentzian manifold

(M, gab), we only need a preferred notion of time evolution, and a corresponding pre-

ferred decomposition into spacelike hypersurfaces, that will allow us to identify a

configuration space.

Since we have assumed global hyperbolicity, we can foliate the Lorentzian

manifold into a one-parameter set of Cauchy surfaces t 7→ Σt. Let τa be a timelike

vector field such that τa∇at = 1. Then we can take our local coordinate system to

be (t, x1, x2, x3) with τa∇ax
i = 0 for i = 1, 2, 3, and so ta = (∂/∂t)a. The rest of the

construction then proceeds exactly as before: define our configuration variables to be

the smooth functions φ on the Cauchy surface Σ0 that have compact support. Given

a Lagrangian L(φ, φ̇) and action function S =
∫
Ldt, define the conjugate momentum

and symplectic structure a before. The result is again a symplectic vector space (V,Ω)

that is (nearly) ready to be quantised.

3. Quantising in two ways

3.1. How time-evolution determines a complex structure. Review: Last week

we showed that the quantisation of a linear symplectic space (V,Ω) begins with the

choice of a complex structure J (meaning: an automorphism of V that squares to the

identity map, J2 = −I) that is compatible with Ω, in that Ω(Jv, Jw) = (v, w) for

all v, w ∈ V . Intuitively, such a J ‘flips φ to −π’ in canonical coordinates. This J

allowed us to do everything we needed to quantise (V,Ω): we could view V as a vector

space over C, determine a metric structure g by the prescription g(v, w) := Ω(v, Jw),

and a complex inner product 〈v, w〉 := g(v, w) + iΩ(v, w), whose Cauchy-completion

is a Hilbert space.

Unfortunately, the complex structure J that underpins this construction is not

unique. As we noted last week, this may be viewed as arising from the fact that (V,Ω)

has no built-in notion of length. As a result, any J that ‘flips φ to −aπ’ for some a > 0

will be a complex structure, but which for example stretches the eccentricities in the

ellipses of a harmonic oscillator. However, J does turn out to be uniquely determined

once we choose a notion of time evolution that is ‘appropriate’ for quantisation in a

certain sense.

Time evolution on (V,Ω) is determined by a smooth function h : V → R, which

generates a symplectic flow: it determines a vector field ξb := Ωabdah that is assumed

to be complete, and whose integral curves are given by a continuous one-parameter

group of symplectomorphisms t 7→ σt. An ‘appropriate’ J for quantisation should

lead 7→ σt to be unitary. This is in order to retain the assumption of time-translation

invariance in our classical system: each map σt is an automorphism of (V,Ω), and
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so its quantisation should be an automorphism of the Hilbert space. This turns out

to hold for the Hilbert space we constructed if and only if σtJ = Jσt for all t ∈ R.

(Exercise: check this.) It should also lead to a notion of positive energy: when t 7→ σt

is a weakly continuous unitary group, Stone’s theorem as guarnatees there is a unique

self-adjoint H such that σt = e−itH for all t ∈ R; we say σt has ‘positive energy’ if and

only if H has a positive spectrum.

This conditions turn out to be enough to determine a complex structure. Let

K : V → H be a linear embedding of vectors in (V,Ω) into a real, dense subspace of a

Hilbert space H, which is compatible with Ω, and with a notion of time evolution t 7→
σt satisfying (i) Kσt = σtK for all t; and (ii) σt has positive energy. This K determines

our complex structure J on V : let K−1 : ranK → V be the associated inverse, which

extends by density to a map on H; then J is given by J(v) := K−1(iK(v)). And,

it is easy to check that condition (i) Kσt = σtK is equivalent to the condition that

Jσt = σtJ . Kay (1979) proved that given these conditions, the linear map K is

unique (up to unitary equivalence). As a result, the complex structure J is uniquely

determined as well, by a dynamics that is ‘appropriate’ in the sense above. This

means that the crucial element in determining a quantisation is really the choice of a

notion of time-translation. And, as suggested in the introduction, different notions of

time-translation will be seen to give rise to the Unruh effect.

3.2. Prescription 1: Inertial. As before, let me first consider the case of the Klein-

Gordon field system (S, ω) before turning to the more general case. We have adopted

an inertial notion of time-translations in the description of this system. We now turn

to ‘splitting the frequencies’, sometimes known as ‘first quantisation’.

We noted that, given an inertial notion of time-translation associated with

Euclidean coordinates, a solution φ(t) to the Klein-Gordon equation can be viewed as a

linear sum of plane waves ψ = eiEt−p·x satisfying the dispersion relation, E2−p2 = m2.

Those with positive values of E are called ‘positive frequency’ plane waves; those with

negative values are called ‘negative frequency’. One commonly avoids the unfortunate

problem of negative frequencies by splitting each solution φ(t) into its positive and

negative frequency modes, φ(t) = ψ+(t) + ψ−(t), and quantising only the positive

modes. However, speaking in this way hides an essential ingredient: our notion of

time evolution defines a complex structure, which is required in order to determine

the coeffecient E and p. In our discussion, we’ll make its role a little more explicit.

Begin with our phase space (S,Ω), with an ‘appropriate’ notion of time-

translation t 7→ σt defined as above by the inertial notion of time-evolution for the

Klein-Gordon field. This inertial perspective on time determines a complex structure,

which in turn will allow us to construct a Fock space and Weyl-algebra describing the

quantum correction to the field description. Here is a sketch of that procedure.

Let H be the Hilbert space constructed from (S,Ω) and t 7→ σt, associated

with the unique complex structure J . Let Hn denote its n-fold symmetric tensor
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product (i.e., projecting onto the symmetric subspace). Then the Fock space for H is

given by,

(7) F(H) := C⊕H1 ⊕H2 ⊕H3 ⊕ · · ·

The vacuum for this Fock space is ω := 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ · · · . The creation a∗ and

annihilation a operators can then be defined following a well-known prescription.

First, for each element v ∈ S, define a map a∗n : Sn−1 → Sn and an : Sn → Sn−1 by

a∗(v) : (v1, . . . , vn−1) 7→ (v, v1, . . . , vn−1) and a(v) : (v1, . . . , vn) 7→ g(v, v1)(v2, . . . , vn),

where g(·, ·) = Ω(·, J ·) is the metric structure associated with J . Then the creation

and annihilation operators are,

a∗(v) := a∗1(v)⊕
√

2E+a
∗
2(v)⊕

√
3E+a

∗
3(v)⊕ · · · ,(8)

a(v) := 0⊕ a1(v)⊕
√

2a2(v)⊕
√

3a3(v)⊕ · · · ,(9)

where E+ is the projection of Sn onto a symmetric subspace. These creation and an-

nihilation operators are self-adjoint. They make essential use of the complex structure

J , and therefore of our definition of time evolution.

These operators allow us to define a self-adjoint particle number operator

N(v) = a∗(v)a(v) for each v ∈ S, as well as a field operator,

(10) Φ(v) :=
1√
2

(a∗(v) + a(v)) .

Then the mapping f 7→ W (f) =iΦ(f). The set of unitary operators defined in this

way are an irreducible unitary representation of the Weyl algebra.

Thus we have begun with a classial systemp (V,Ω) with t 7→ σ − t, from

this produce a Fock space, together with an algebra of observables, which together

determine the statistical property of a quantum field system. This is our first approach

to quantisation. One can of course apply it to the case of the Klein-gordon field on

Minkowski spacetime; however, this reasoning applies equally a much larger class of

classical field systems on generally curved spacetime.

3.3. Prescription 2: Rindler. The Klein-Gordon field in Minkowski spacetime has

two distinct notions of time evolution in the right-Rindler wedge. The first is the

inertial (or more generally ‘affine’) notion discused above; the second is given by the

group of Lorentz boosts, which determine the trajectory of a uniformly accelerating

observer in the wedge. This situation occurs whenever there is a classical field theory

on a curved spacetime that admits a bifurcate Killing horizon in the sense defined

above; then the Lorentz boosts are replaced with the isometries that thread the Killing

field.

Let SR be the restriction to the functions with support in the right-Rindler

wedge; otherwise, our phase space (SR,Ω) will be the same. However, there is now

an alternative symplectic flow t 7→ σ′t for this system. It turns out to give rise to a

complex structure J that is unitarily inequivalent from the first. However, we can
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proceed to construct a representation v 7→ W (v) of the Weyl algebra using exactly

the same procedure described above. However, due to the restriction of SR to of the

functions to the right-Rindler wedge, it is best considered to be a quantum field theory

associated with the right-Rindler wedge.

4. Comparing quantisations

To compare the inertial and Rindler quantisations, one needs a way of trans-

forming between them. This is made awkward by the fact that the two representations

turn out to be unitarily inequivalent. In fact, the situation is worse: they are ‘dis-

joint’, meaning that no density-matrix state in one is a density-matrix state in the

other.

However, Fell’s theorem allows one way to do it: in two (possibly inequivalent

or disjoint) representations of the Weyl algebra, every state ρ in one can be weak-

* approximated by a state in the other on a finite sequence of elements Ai of the

algebra, in that |ρ1(Ai) − ρ2(Ai)| < εi for any sequence of real numbers εi > 0. It is

then possible to apply a Bogoljubov transformation U to the vacuum in the inertial

representation, in order to view it from the perspective of the Rindler representation

— the result is not strictly speaking in the Rindler representation, since U is unitary,

but it is approximate to the Rindler vacuum state. Wald (1994) finds in particular

that it gives rise to particle-content in the Minkowski vacuum.

See Clifton and Halvorson (2001) for a further sense in which, for any two

distinct complex structures J1, J2 used to quantise (S,Ω), the Fock-vacuum in one

predicts dispersion in the particle-number operator associated with the other. A fur-

ther approach is to use the modular theory of Tomita and Takesaki: on this approach,

it is possible to apply the Bisognano-Wichman theorem to conclude that the Rindler

automorphisms o f the Weyl algebra give rise to a unique KMS-state (a generalisation

of the Gibbs state) for the Minkowski vacuum, which is non-zero.
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