
Lecture 5 Handout: The cornerstones of quantum theory
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1. Cornerstone 1: Gleason’s theorem

Why does quantum mechanics use Hilbert space vectors, norms and traces?

Surely: it works to describe a certain class of experiment. But what kinds of ex-

periments? Gleason’s theorem tells us: any probabilistic experiment, in a certain

generalised sense of probability.

1.1. Quantum logic. Classical probabilities are defined on a Boolean logic of propo-

sitions. They always require a probability space, which is a triple (S,Σ, µ) in which S

is a set, Σ is a collection of subsets forming a σ-algebra, and µ : Σ→ [0, 1] is a mea-

sure. The σ-algebra is a Boolean logic1, which is widely viewed as defining the axioms

for classical logic. This allows one to view each subset A is a proposition describing

an outcome, with A ∩B meaning ‘A and B’, A ∪B meaning ‘A or B’, and the com-

plement A⊥ meaning ‘not A’. The additional ‘sigma’ property of countable closure

ensures that this structure satisfies the Kolmogorov axioms for probability when S is

uncountable; otherwise, difficulties associated with non-measurable abound.

The problem is a Boolean logic is that it fails to describe the statistics of

quantum systems observed in nature. The problem can be isolated precisely, that a

σ-algebra satisfies the distributive law,

(1) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

A toy example can be used to explain why this isn’t appropriate for quantum mechan-

ics: suppose we have a quantum system satisfying the position-momentum uncertainty

principle: let J ⊂ R be a small standard deviation momentum measurement, and let

I1, I2 ⊂ R each be a small standard deviation for position measurement in adjacent

regions of space, such that if a J-measurement is made, then neither I1 or I2 mea-

surements are possible, but that they can be measured within the accuracy of I1∪ I2.

Make the definitions:

• A = ‘the particle’s momentum is in J ’

• B = ‘the particle’s position is in I1’

• C = ‘the particle’s momentum is in I2’

1A Boolean logic is an algebra for which the two binary operations ∩ and ∪ are associative, commu-
tative, distributive, satisfy ‘absorption’ A∪(A∩B) = A and A∩(A∪B) = A, each admit an identity
A∪ 0 = A and A∩ 1 = A, and which admit a complement operation ⊥ satisfying A∪ (A⊥) = 1 and
A ∩ (A⊥) = 0. These are widely viewed as the axioms for a classical logic of propositions.
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Then A∩ (B ∪C) is true, but both (A∩B) and (A∩C) are false, so that their union

is false as well. That is, the distributive law fails in quantum mechanics.

Fortunately, the early developers of quantum mechanics found2 that the prob-

lem can be solved by replacing the distributive axiom with a logically weaker alter-

native, called the orthomodularity axiom, which says that distributivity holds in the

following particular circumstance:

(2) If A ⊆ B and A⊥ ⊆ C, then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

where A ⊆ B is defined to hold iff A = A∩B. This solves the problem in the example

above, since the antecedent A ⊆ B (i.e. A = A ∩ B) is false, and so distributivity

need not hold here. The resulting structure L is sometimes called a orthomodular

lattice, or more simply a quantum logic.

Strictly speaking, it is not possible to define a probability measure on an

orthomodular lattice, since probability measures are by definition associated with a

(Boolean) σ-algebra. However, it is possible to define a natural generalisation of

probability on an orthomodular lattice L. This is sometimes called a generalised

probability measure, defined to be a function p : L → [0, 1] that is σ-additive on

mutually orthogonal elements.3 A probability measure is obviously an example of

a generalised probability measure, but the latter may be applied to more general

algebraic structures.

1.2. Hilbert spaces for generalised probabilities. Calling the structure above

a ‘quantum logic’ is motivated in part by the fact that the standard framework for

quantum theory, Hilbert spaces, provide orthomodular lattice. In particular, we have:

Fact 1 (Hilbert space orthomodularity). The subspaces of a (possibly∞-dimensional)

Hilbert space H form an orthmodular lattice (where ∩ is subspace intersection, and ∪
is the linear closure under subspace union, and ⊥ is the complement).4, which are the

standard framework for quantum theory.

This fact obviously applies as well to the set of projection operators P(H)

associated with a Hilbert space H. For this reason, we sometimes refer to the projec-

tions as the (orthomodular) ‘Hilbert lattice of projection operators’. Not only that:

the Born rule, which is the conventional prescription for ‘probabilities’ in quantum

mechanics is in fact a generalised probability measure on this lattice:

2(Birkhoff and Neumann; 1936)
3Additivity on mutually orthogonal elements means that if A ⊆ B⊥, then p(A ∪ b) = p(A) + p(B).
Note that this implies that since 0 and 1 are orthogonal, p(1) = p(0 ∪ 1) = p(0) + p(1), and hence
that p(0) = 0 and p(1) = 1.
4Check this! For a reference, see Jauch (1968, §2-5).
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Fact 2 (Hilbert space ‘probabilities’). For each density operator5 ρ : H → H, the

‘Born rule map’ on projections p : P(H)→ [0, 1] defined by,

p(E) = Tr(ρE)

is a generalised probability measure. (Note that, when ρ is a vector-state associated

with a unit-norm vector ψ ∈ H, this is just the expectation value, p(E) = 〈ψ,Eψ〉.)

What is remarkable is that there is a sense in which the converse is also true.

That is, every generalised probability measure can be implemented on a Hilbert space

using the Born rule. This is the content of a representation theorem due to Gleason.

Its proof is deep and non-trivial.

Fact 3 (Gleason’s theorem). For every generalised probability measure ρ : L → [0, 1]

on an orthomodular lattice L with dim(L) > 2, there exists an isomorphism to a lattice

P(H) of Hilbert space projections and a fixed density operator ρ such that, writing the

association of the isomorphism as A 7→ EA, we have,

p(A) = Tr(ρEA)

for all A ∈ L.

The upshot of Gleason’s theorem is that we can always use Hilbert spaces

and the Born rule to represent the kinds of statistical phenomena associated with a

generalised probability measure. The result thus provides a substantial justification

for the standard formalism.

That said, when we are collecting direct statistical information in a laboratory,

we are normally using classical probabilities. So, an explanation of this practice is

still needed. That explanation comes from the second cornerstone of quantum theory.

2. Cornerstone 2: The spectral theorem

2.1. Projection valued measures. We learned from Gleason’s theorem that the

outcomes of a statistical experiment can always be viewed as associated with elements

of a lattice of projections P(H). But, a statistical experiment also normally involves a

set of outcomes that are ‘mutually exclusive’ and constitute ‘all that is possible’. We

can formalise these assumptions in the context of a Boolean logic or an orthomodular

lattice L in a straightforward way. Suppose that for a statistical experiment:

• (finite dimensions) Each outcome is a projection in sequence E1, E2, . . . , En
that are mutually orthogonal (EiEj = 0 for i 6= j), form a decomposition of

unity (
∑

iEi = I).

• (infinite dimensions) Each outcome is a projection in a projection-valued

measure (PVM) on a σ-algebra over a set X (usually the Borel sets over

the reals), i.e., ∆ 7→ E∆ that satisfies additivity for countable6 disjoint sets

5A density operator ρ : H → H is a positive linear operator of unit trace, Tr(ρ) = 1.
6If it is infinite, then this sum is the limit of partial sums.
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E∆∪∆′∪··· = E∆ + E∆′ + · · · , and is a decomposition of unity in that EX = I.

(This implies that E∆∩∆′ = E∆E∆′ = E∆′E∆, and that ∆ ∩ ∆′ = ∅ only if

E∆E∆′ = 0.)

Note that the former is in fact a special cases of the latter, associated with a finite

partition of R.

A projection-valued measure is a σ-algebra capable of supporting a classical

probability measure. Gleason’s theorem ensures that this can always be captured

using Hilbert space and the Born rule. What remains is to introduce quantitative

values into our statistical experiments.

2.2. Outcome values and the spectral theorem. In physics, the outcomes of an

experiment often involve measurement of a quantitative value, like ‘671,000,000 mph’.

Such numerical values are also required if we want to consider the expected value of

a random variable; for example, when we associated the outcome ‘coin lands heads’

with 1 and ‘coin lands tails’ with 0, then the expected value of a fair coin toss can be

identified with 1/2.

If our outcomes are represented by a numbers, then we can achieve this by

summing all elements of a projection-valued measure ∆ 7→ E∆, with each projection

‘weighted’ by a numerical value associated with that outcome. That is: let the out-

comes of our experiment be E1, E2, . . . , and let the corresponding numerical outcomes

be α1, α2, . . . ; then define an operator,

(3) A = α1E1 + α2E2 + · · ·

where the Ei form a projection-valued measure. (For a continuous PVM on Borel

sets ∆ 7→ E∆, we integrate A =
∫
R λdE(−∞,λ). Then, for any unit-norm vector state

ψ ∈ H, the Born rule for our statistics will produce the expected value, i.e. the sum

of the outcome values ‘weighted’ by their respective probabilities:

(4) 〈ψ,Aψ〉 = α1 〈ψ,E1ψ〉︸ ︷︷ ︸
Pr(outcome 1)

+α2 〈ψ,E2ψ〉︸ ︷︷ ︸
Pr(outcome 2)

+ · · · .

A PVM ∆ 7→ E∆ has the structure of a σ-algebra with the operations of addition,

multiplication and complement. With a unit-norm state ψ, the Born rule provides a

classical probability measure on that algebra. So, the operator A thus has a special

property: for each state ψ, it encodes the expectation value for a classical statistical

experiment. If an operator can be decomposed into a projection-valued measure in

this way, then it is called its spectral decomposition or spectral measure. It is of interest

to experimental practice to know: which operators have this property?
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You may know that the self-adjoint operators7 have it; this is sometimes pre-

sented as the ‘spectral theorem’. However, the more general class of operators that

have a spectral decomposition as well. A linear operator A is called normal if it

satisfies either of the two (equivalent8) properties:

• AA∗ = A∗A

• A = B + iC for some pair of commuting self-adjoint operators B,C.

Many familiar operators are normal; for example, every unitary operator is normal.

In the Schrödinger (position) representation, so is the operator Q + iQ. However,

Q+ iP in that representation is not normal, since [Q,P ] = i~ 6= 0.

The full statement of the spectral theorem is a property of normal operators

(Conway; 1990, Thm. X.4.11):

Fact 4 (Spectral theorem). If A is a normal operator on a Hilbert space, then there

exists a unique projection-valued measure on Borel sets of C, written in the discrete

case as i 7→ Ei, such that,

A =
n∑
i

ζiG,

where each ζi ∈ C is an eigenvalue of A. An operator B commutes with A iff it

commutes with each projection Ei. The eigenvalues ζi are all real numbers iff A is

self-adjoint.

This means that there is a sense in which all the normal operators can be

viewed as “observables”, if by that we mean, “operators with a PVM” that encode

the quantitative outcomes and expectation values of a statistical experiment using

classical probabilities. For a more general discussion of extending “observables” be-

yond self-adjoint operators, see Roberts (2018).

3. Cornerstone 3: Wigner’s theorem and Stone’s theorem

3.1. Symmetries and Wigner’s theorem. We now need to have a grip on the

notion of a “symmetry” in quantum theory. This is typically given by Wigner’s

theorem,9, which we state it here in a more general form due to Uhlhorn (1963); see

also Varadarajan (2007, Thm. 4.29). It makes use of the concept of a Hilbert space ray,

or equivalence class of vectors related by a phase factor, Ψ = {eiθψ | ψ ∈ H, θ ∈ R}.

7An operator A on a (possibly infinite-dimensional) Hilbert space H is called symmetric if Aψ = A∗ψ
for all ψ in the common domain of A and A∗; it is called self-adjoint if in addition, A and A∗ have
the same domain. In finite dimensions the latter condition is automatically satisfied, but not with
infinite dimensions.
8Every linear operator A can be written in the form A = B + iC by setting B = (A∗ + A)/2 and
B = i(A∗ −A)/2. Exercise: check that [B,C] = 0 if and only if AA∗ = A∗A.
9Wigner (1931) originally gave a heuristic proof of this theorem. Work making it precise and gen-
eralising it is an interesting discussion in philosophy of physics in its own right; for a recent survey,
see Chevalier (2007).
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Rays admit an inner product given by,

〈Ψ,Φ〉 := |〈ψ, φ〉|2 where ψ ∈ Ψ, φ ∈ Φ,

and if two rays are orthogonal (〈Ψ,Φ〉 = 0) then we write Ψ⊥Φ. As propositions,

orthogonal rays are “mutually exclusive” outcomes. Suppose we take “symmetry”

to be a transformation that preserves orthogonal outcomes. This provides a strong

constraint on what symmetries in quantum mechanics can be:

Fact 5 (Wigner-Uhlhorn theorem). Let S be a bijection on the rays Ψ of a Hilbert

space H of countable dimension > 2. Suppose 〈Ψ,Φ〉 = 0 if and only if 〈SΨ, SΦ〉 = 0.

Then for all rays Ψ,Φ,

〈SΨ, SΦ〉 = 〈Ψ,Φ〉.
Moreover, there exists a unique (up to a constant) S : H → H that implements S on

H in that ψ ∈ Ψ if and only if Sψ ∈ SΨ, where S is either unitary or antiunitary

and satisfies |〈Sψ, Sφ〉| = |〈ψ, φ〉| for all ψ, φ ∈ H.

As a reminder: a unitary operator U is one that satisfies:

(1) (linearity) U(aψ + bφ) = aUψ + bUφ for all a, b ∈ R and all ψ, φ ∈ H;

(2) (unitary property) U∗U = UU∗ = I.

These properties are jointly equivalent10 to the statement that 〈Uψ,Uφ〉 = 〈ψ, φ〉 for

all ψ, φ ∈ H. An antiunitary operator T is one that satisfies:

(1) (anti-linearity) T (aψ + bφ) = a∗Tψ + b∗Tφ for all a, b ∈ R and all ψ, φ ∈ H;

(2) (unitary property) T ∗T = TT ∗ = I.

These properties are jointly equivalent to the statement that 〈Uψ,Uφ〉 = 〈ψ, φ〉∗ for

all ψ, φ ∈ H.

3.2. The Noether correspondence and Stone’s theorem. Classical mechanics

in Lagrangian and Hamiltonian form both have a Noether-like correspondence, which

says something like:

(symmetry-observable correspondence) Every observable admits a con-

tinuous group of symmetries along which it is conserved, and vice versa:

every continuous group of symmetries generates an observable that it

conserves.

Such a correspondence exists for quantum theory as well. Suppose we view “observ-

ables” as self-adjoint operators, and “symmetries” as unitary or antiunitary operators;

the only continuous groups of symmetries are unitary, so we will restrict attention to

unitary operators.

Stone’s theorem makes use of the concept of a 1-parameter representation of

the real numbers under addition, namely, a set of Hilbert space operators {Us | s ∈ R}
such that Us+t = UsUt. We can now state (Blank et al.; 2008, Thm. 5.9.2):

10Exercise: Check this. Hint: Use the linearity and skew-linearity of the Hilbert space inner product.
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Fact 6 (Stone’s theorem). For any strongly continuous one-parameter unitary rep-

resentation of (R,+), written s 7→ Us, there exists a unique self-adjoint operator A

such that Us = e−isA for all s ∈ R. Conversely, for each self-adjoint operator the

association s 7→ e−isA := Us defines a strongly continuous one-parameter unitary

representation.

This result in particular allows us to motivate the dynamics of quantum theory,

using the assumptions that,

• Change occurs continuously in time; and

• Experiments are time-translation invariant.

Interpreting these assumptions as the antecedent of Stone’s theorem imply that time

evolution is represented by a unitary group t 7→ Ut = e−itH for some self-adjoint

operator H. Writing ψ(t) = e−itHψ for some initial vector ψ and differentiating both

sides then gives the famous Schrödinger equation,

i d
dt
ψ(t) = Hψ(t).

That is, the Schrödinger equation is the “differential form” off unitary time evolution.
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