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1. Overview

One can view the cornerstones of orthodox quantum mechanics as consisting

in four crucial theorems:

• Gleason’s theorem (statistical origin of Hilbert space)

• The spectral theorem (observables and statistics)

• Wigner’s theorem (symmetries)

• Stone’s theorem (Noether correspondence)

When evaluating an extension of the quantum framework, it is good philosophical

practice to evaluate the fate of these cornerstones. Here we consider the extension of

quantum theory to include Positive Operator-Valued Measures (POVMs), often asso-

ciated with an operational and information-theoretic approaches to quantum theory

(c.f. Busch et al.; 1995; Nielsen and Chuang; 2000).

2. POVMs and Effect Spaces

The set of projection operators on a Hilbert space is not a Boolean logic;

however, it is a generalisation of this logic known as an orthomodular lattice, on

which it is possible to define a generalised probability measure. However, it has been

argued that even these logics are overly restrictive. Might there be even more general

logics of interest?

For example, an idealised experiment is often described as consisting in a

sequence of definite outcomes. This is the case, for example, when we say that the

Stern-Gerlach outcomes are described by two projections P↑ and P↓ such that P↑+P↓ =

I and P↑P↓ = ∅, associated with two “spots” of silver atoms on a screen. However,

as Busch et al. (1995, §1) point out, this is an idealised description of the experiment

Stern and Gerlach produced, which actually consists in two “lips” of silver atoms

due to the magnet failing to be perfectly homogeneous, and so failing to produce a

perfectly pure beam (Figure 1).

This can be corrected inn the following way. Suppose the localisation of silver

atoms on the upper and lower halves of the screen is described in terms of projections

on a new “position on screen” degree of freedom:

• Hs is a Hilbert space representing “position on the screen” states;

• P+ (upper) and P− (lower) are projections representing deflection onto the

upper and lower halves of the screen;
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translational motion: 

(1.6) 

The states ¢± represent the wave packets deflected up or down due to the action 
of the (inhomogeneous) magnetic field. 

oven 

Figure 1.2. Scheme of the Stem-Gerlach experiment 

The next step should be to describe the registration of spots on the screen. 
To this end one would need to take into account the interaction between the silver 
atom and the molecules of the plate, which should establish the proper coupling 
between the positions of the atom and the plate molecules. The observable which 
corresponds to the measurement of the spots (called the screen observable) shall 
be modelled by means of projection operators P+ and P_ corresponding to the 
localisation in the upper or lower half planes of the screen. The corresponding 
probabilities can then be expressed with respect to the incoming spin state r.p as 
follows: 

(1.7) 

where the effects 

(1.8) 

constitute the unsharp spin observable actually measured in this experiment. One 
may immediately confirm that F+ + F_ = I; however, the effects (1.8) are no 
projections, i.e., Ff-/= F± , unless their eigenvalues (¢+1P±¢+) and (9-IP±¢-) are 
0 or 1. If the center of mass wave packets ¢± were well separated and localised 
in the appropriate half planes, i.e., if (¢±IP±¢±) = 1 and thus (¢±1P=f¢±) = 0, 
one would have recovered the familiar textbook description with F± coinciding just 
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with the projections P[r.p±]· However due to the spreading of wave packets this 
could only be achieved approximately and for special initial states ¢. 

This example provides a theoretical picture for possible sources of experimental 
inaccuracies which are due to the quantum indeterminacy inherent in the center of 
mass wave function. Even if the spin is prepared sharply prior to measurement, its 
value can only be ascertained with some uncertainty. If there was no definite spin 
value initially, there will not be one afterwards. Thus spin remains indeterminate, 
in general. 
Example 2. We investigate next how the photon statistics measured by a pho-
todetector are altered due to the presence of a beam splitter. Let us imagine a 
set-up as described in Figure 1.3. An input signal described by a state T, corre-
sponding to a single-mode photon field, propagates in a given direction and enters 
a photo detector D. The detector D is assumed to record with unit efficiency the 
number of photons. In other words, it serves as an ideal detector for the number 
observable N =I:; nln )( nl of the mode. Hence, if the field is in a k-photon num-
ber state T = lk )( kl, the statistics collected by D corresponds to the probability 
p(nlk) := I ( n I k) 1

2 = 8kn· Now a partially transparent mirror is placed in front 
of the photodetector as a lossless beam splitter BS of transparency c. The beam 
splitter induces a coupling between the signal mode in state T and a local field 
mode in the vacuum state I 0). 

T 

signal 

BS(e) 

local field 
IO)(OI 

Figure 1.3. Photon beam splitter arrangement 

D 

photon counter 

Thinking in accordance with the classical picture of a splitting of wave intensities 
into fractions, one would expect that given k input photons the detector would count 
ck photons. By contrast, a quantum mechanical calculation (Section VII.3.1) leads 
to binomial photon statistics, 

p(nlk,c) (1.9) 

Figure 1. The deflection pattern observed by Stern and Gerlach
(Busch et al.; 1995, p.8).

• P+P− = ∅ and P+ + P− = I.

When a given silver atom is measured spin-up, this corresponds to the measurement

of a “deflection up” state φ+, and similar for spin-down and a “deflection down” state

φ−. However, since the silver atom’s centre of mass is not perfectly localised on one

or the other half, these states are not necessarily eigenstates of P±.

These tools allow us to redescribe the Stern-Gerlach experiment in more detail.

For a given silver atom, the two general “effects” of motion into the upper and lower

halves of the screen can be described by operators of the form,

F+ := 〈φ+, P+φ+〉P↑ + 〈φ−, P−φ−〉P↓
F− := 〈φ+, P−φ+〉P↑ + 〈φ−, P−φ−〉P↓

These clearly satisfy F+ + F− = P↑ + P↓ = I. But, they are not projections unless

〈φ+, P±φ+〉 and 〈φ−, P±φ−〉 are 0 or 1. Each operator F+ and F− rather has two

positive eigenvalues, respectively 〈φ±, P+φ±〉 and 〈φ±, P−φ±〉. Operators with a pos-

itive spectrum of this kind are called positive operators. That is, we have replaced

projections with positive operators.

Now let ϕ = c↑ϕ↑ + c↓ϕ↓ be the spin-state of the silver atom, with eigenstates

ϕ↑ and ϕ↓. The more detailed, combined description of a given silver atom in the

experiment can then be given in terms of a mixture of the form,

ψf = c↑(φ+ ⊗ ϕ↑) + c↓(φ− ⊗ ϕ↓).

The expected deflection for the silver atom can then be expressed in terms of effects

as,

〈ψf , P±ψf〉 = |c↑|2〈φ+, Pφ+〉+ |c↓|2〈φ−, P±φ−〉

= 〈ϕ, F±ϕ〉.

Just as the Hilbert space projections have a logic generalising classical logic,

so do the positive operators. This is known as an effect algebra. In a Hilbert space,

this is found by extending the set of projection operators to the set of operators with

spectrum in the interval [0, 1], known in the literature as ‘effects’. It is easy to check
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that it forms an algebra; and, one might try to view this as a logic, on the following

analogy:

• A projection P ∈ P(H) has eigenvalues 0, 1, which can be viewed as repre-

senting “true” or “false” outcomes; probabilities on projections correspond to

the probability of the proposition being true.

• An effect E ∈ E(H) has eigenvalues in the interval [0, 1]. These are some-

times said to represent “unsharp measurement” outcomes of the kind described

above.

Just as the Hilbert space projections can be described axiomatically as a logic

in terms of an orthomodular lattice, so the effects can be described in terms of a logic

as well. This approach was developed by Ludwig (1983, 1985); see Busch et al. (1995)

for a textbook treatment.

3. Cornerstone 1: Gleason’s theorem

Gleason’s theorem shows that the probability measures on projections are com-

pletely characterised by the Born rule, so long as dimH ≥ 3. But by expanding at-

tention from projections to the larger space of effects E(H) on a Hilbert space, Busch

(2003) found a similar (and much simpler) result. Remarkably, the result also holds

for Hilbert spaces of arbitrary dimension.

We first define a positive operator valued measure to be an association ∆ 7→
F∆ of elements of a σ-algebra (usually Borel sets of reals) with positive self-adjoint

operators that sum to the identity. In the discrete case, this is written,
∑

i Fi = I for

i ∈ Z+. In the case of continuous spectrum operators, it is written,
∫
R dFλ = I. We

can now state the Busch-Gleason theorem:

Generalised Gleason Theorem (Busch). Given a generalised probability measure1

p : E(H) → [0, 1], there exists a density operator ρ on H such that p(E) = TrρE for

all E ∈ E(H).

So, analogous to our interpretation of Gleason’s theorem, we may conceive

of a general statistical experiment in terms of generalised probabilities on an effect

algebra, and conclude that statistical experiments can always be described in terms

of Hilbert spaces and the Born rule. Moreover, unlike Gleason’s theorem, the proof

of the Busch-Gleason theorem is surprisingly elementary, and can be understood in

just a couple of pages of reading and elementary methods.

4. Cornerstone 2: The spectral theorem

Elements of a projection-valued measure (PVM) ∆ 7→ E∆ sum to give a self-

adjoint operator, in that A :=
∑

i λiEi = is self-adjoint (discrete case), or A :=

1A generalised probability measure on a set of effects E(H) is a function p : E(H) → [0, 1] such that
p(I) = 1 and p(

∑
i Ei) ≤

∑
i p(Ei) whenever the countable sequence Ei satisfies

∑
i Ei ≤ I.
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∈ RλdEλ is self-adjoint (continuous case). The spectral theorem guarantees that

the converse is true: every self-adjoint operator admits a PVM decomposition of the

kind written above. Is there a spectral theorem analogue for positive operator-valued

measures or POVMs?

The answer is “yes”. Let H be a (possibly infinite dimensional) Hilbert space.

An operator A is symmetric if,

A∗ψ = Aψ

for all ψ in the common domain DA∩DA∗ of A and A∗. It is self-adjoint iff DA = DA∗ .

It is easy to check that the weighted sum of elements of a POVM is symmetric,

though not necessarily self-adjoint. It turns out that the converse is also true:

Naimark Spectral Theorem. Let A be a closed, densely defined symmetric oper-

ator. Then there exists a POVM ∆ 7→ F∆ such that A =
∫
R λdFλ, which is unique

(up to unitary equivalence) if and only if A is maximal symmetric, and which is a

Projection Valued Measure if and only if A is self-adjoint. (Dubin and Hennings;

1990, Thm. 5.16, pg.135)

5. Cornerstone 3: Wigner’s theorem and Stone’s theorem

5.1. Wigner’s theorem. In our analysis of Wigner’s theorem, we proposed to view

symmetries as the bijections preserving the 1-dimensional subspaces (the rays), or

equivalently the one-dimensional projections, of a Hilbert space H. By shifting at-

tention from projections to positive operators, we now have a new definition of sym-

metries:

An effect symmetry is a bijection U on the effect algebra E(H) associ-

ated with a Hilbert space.

One might think that an entirely new analysis of Wigner’s theorem would be needed

in light of this change. In fact, no such change is needed: this symmetry group turns

out to be equivalent to the one on rays.

Fact 1 (Cassinelli et al. 1997). Every effect symmetry preserves ray-space orthog-

onality; conversely, every ray-space orthogonality-preserving transformation can be

implemented by a unique effect symmetry.

See also Chevalier (2007). The analysis of symmetry for this generalisation of

quantum theory is therefore essentially the same: every symmetry can be implemented

by either a unitary or antiunitary operator, as in ordinary quantum theory.

5.2. Generalised Stone Theorem. The assumptions of Stone’s theorem fail for

maximal symmetric operators, so they do not generate a unitary group in the usual

sense. However, they do satisfy a closely related result. Stating this result uses the

concept of an isometry, that is, a linear Hilbert space operator U for which U∗U = E

is a projection operator (a unitary operator is thus a particular isometry for which
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U∗U = UU∗ = I). An isometry is a symmetry transformation in much the same sense

as a unitary operator, but in a more restricted domain, in that |〈Uψ,Uφ〉| = |〈ψ, φ〉|
for all ψ, φ ∈ EH. Isometries also allow one to state the following generalisation of

Stone’s theorem.2

Generalised Stone Theorem. If s 7→ Us is a strongly continuous, one-parameter

set of isometries satisfying UrUs = Ur+s for all r, s ≥ 0 (or for all r, s ≤ 0, but not

both), then there exists a unique maximal symmetric operator A such that Us = eisA.

Conversely, every maximal symmetric operator A generates a strongly continuous one

parameter set of isometries s 7→ Us = eisA satisfying UrUs = Ur+s, for all r, s ≥ 0 (or

for all r, s ≤ 0, but not both). (Cooper; 1947, 1948)

This means that maximal symmetric operators are associated with a set of

symmetries after all, in much the same way as self-adjoint operators. These symme-

tries are simply limited to a restricted subspace, in addition to being limited by the

parameter values of the set.

When a maximal symmetric observable is a Hamiltonian, the Generalised Stone

Theorem says that a unique solution to the Schrödinger equation exists, although it

is only defined for non-negative times or non-positive times (but not both). As far

as determinism is concerned, this situation is an improvement on the failure of es-

sential self-adjointness considered by Earman (2009). The generalised Stone theorem

says that the dynamical evolution generated by a maximal symmetric Hamiltonian

is unique, much like the dynamics of an essentially self-adjoint Hamiltonian. The

dynamics is time-translation invariant, in the restricted sense of an isometry. The

limitation is merely that this dynamics is not defined for all times t ∈ R. But as

discussed above, having a dynamics for all times is a very strong requirement, which

we may have good reason to relax.
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metričeskogo operatora’ by the Steklov Mathematical Institute, Russian Academy

of Sciences.

Naimark, M. A. (1968). Linear differential operators, London:Frederick Ungar Pub-

lishing Co., Inc. Parts I and II, Translated by E. R. Dawson and edited by W. N.

Everitt.

Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum In-

formation, Cambridge: Cambridge University Press.
Email address: b.w.roberts@lse.ac.uk


	1. Overview
	2. POVMs and Effect Spaces
	3. Cornerstone 1: Gleason's theorem
	4. Cornerstone 2: The spectral theorem
	5. Cornerstone 3: Wigner's theorem and Stone's theorem
	5.1. Wigner's theorem
	5.2. Generalised Stone Theorem

	References

