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a b s t r a c t

We pose and resolve a puzzle about spontaneous symmetry breaking in the quantum theory of infinite
systems. For a symmetry to be spontaneously broken, it must not be implementable by a unitary
operator in a ground state's GNS representation. But Wigner's theorem guarantees that any symmetry's
action on states is given by a unitary operator. How can this unitary operator fail to implement the
symmetry in the GNS representation? We show how it is possible for a unitary operator of this sort to
connect the folia of unitarily inequivalent representations. This result undermines interpretations of
quantum theory that hold unitary equivalence to be necessary for physical equivalence.
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1. Introduction

The precise mathematical definition of spontaneous symmetry
breaking (SSB) in quantum theory is somewhat up for grabs. But
all hands agree that, in the case of infinitely many degrees of
freedom, unitarily inequivalent representations are needed.

In physics more generally, SSB occurs when a ground state is
not invariant under a symmetry of the laws. This means that a
symmetry transformation will take a ground state to another
(formally distinct) ground state. But in quantum field theory, an
(irreducible) Hilbert space representation of the commutation
relations can include only a single vacuum state. So a sponta-
neously broken symmetry must map between different unitarily
inequivalent representations.

Thus for SSB to occur in infinite quantum theory, the broken
symmetry must not be implemented by a unitary operator on the
ground states' irreducible representations. (That is to say, the
symmetry must not intertwine the two representations; otherwise
they would be unitarily equivalent.) This is generally agreed to be

a necessary condition (Emch & Liu, 2005) and is sometimes taken
to be both necessary and sufficient (Earman, 2003; Strocchi, 2008).

Put this way, it can be difficult to see how a symmetry can
possibly be spontaneously broken. The difficulty arises from an
apparent conflict with Wigner's unitary–antiunitary theorem, a
foundational result that applies to all quantum theories. John
Earman has stated the puzzle thus:

[A spontaneously broken] symmetry of the Lagrangian is not
unitarily implementable, i.e. its action is not faithfully repre-
sented by a unitary operator on Hilbert space. But how can this
be, since Wigner's theorem has taught us that a symmetry in QM
is represented by a unitary transformation (or, as in the case of
time reversal, an anti-unitary transformation)? (Earman, 2003,
338).

Since a symmetry ought to preserve all the empirical predictions
of a quantum state, it must not change the transition probabilities
between pure states, which are represented by the inner products
between vectors in a Hilbert space representation. Wigner's
theorem shows that any mapping that preserves these probabil-
ities for all vector states in a Hilbert space must be a unitary
mapping.

This fact has occasionally been taken to imply that broken
symmetries don't preserve transition probabilities. Fonda and
Ghirardi (1970, 446), for example, write that “[T]here are field
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theories whose Lagrangian is invariant under a certain transfor-
mation of the fields whereas there exists no corresponding unitary
operator implementing the transformation… We face a situation
in which even though a mapping of physically realizable rays is
defined, the transformation does not conserve the probability…”

Similarly, Arageorgis (1995, 302) has suggested that Wigner's
theorem implies no mapping between the states of unitarily
inequivalent representations can preserve transition probabilities.

But to the contrary, all symmetries preserve transition prob-
abilities, even broken ones. Besides being physically intuitive, this
can be proven rigorously even in paradigm cases of SSB. But as
Earman notes, it isn't immediately clear how to reconcile this with
the possibility of SSB. If a symmetry preserves transition prob-
abilities, its action on state vectors must be given by a unitary
operator. This operator must fail to implement the symmetry on
the ground states' irreducible representations, but how is this
possible?

Our task here is to explain how. We'll begin by explaining some
general features that apply in all cases of quantum SSB. We will
show that in such cases, Wigner's theorem applies. The puzzle
therefore appears. To resolve it, we'll explain why the existence of
a unitary symmetry in Wigner's sense does not entail the unitary
equivalence of the Hilbert space representations it connects.
In particular, the unitary operator whose existence is guaranteed
by Wigner's theorem lacks some of the properties one would
naively expect it to have, permitting it to coexist with unitary
inequivalence. There remains a sense in which the symmetry is
not (strictly speaking) unitarily implementable. Combined with
the orthodox view that symmetries preserve empirical predic-
tions, these facts undermine the notion that unitary equivalence is
a necessary condition for physical equivalence.

2. Quantum SSB

We begin by recalling some general properties of quantum
theories on the algebraic approach. At the broadest level of
generality, a quantum theory is described by a Cn-algebra A
obeying the canonical commutation or anticommutation relations
(CCRs or CARs respectively) in their bounded form. This is either
an algebra of observables or (as in the present case) a field algebra.
The self-adjoint operators in A stand for physical quantities and
are often called observables. The states of the algebra are the
possible assignments of expectation values to the operators in A.
These are given by normed linear functionals ω : A-C. The
expectation value of A in state ω is written ωðAÞ.

A clear connection exists between this algebraic formalism and
the better-known Hilbert space formalism. The abstract algebraic
states and observables can be concretely realized by a Hilbert
space representation of A (also called a representation of the
CCRs/CARs). Such a representation is a mapping π from A into the
algebra of bounded operators BðHÞ on a Hilbert space H. The
representation map is not usually a bijection; Hilbert space
representations will include more operators, and in particular
more observables, than the Cn-algebra. Some of the states ω of
A will be representable by density operators on H that agree with
their expectation values for all A in A. Collectively these states are
called the folium of the representation π.

Every algebraic state ω has a unique “home” representation in
which it is given by a cyclic vector. This is established by the

GNS Theorem. For each state ω of A, there is a representation π of
A on a Hilbert space H, and a vector ΩAH such that
ωðAÞ ¼ 〈Ω;πðAÞΩ〉, for all AAA, and the vectors fπðAÞΩ : AAAg are
dense in H. (Call any representation meeting these criteria a GNS
representation.) The GNS representation is unique in the sense that

for any other representation ðH′;π′;Ω′Þ satisfying the previous two
conditions, there is a unique unitary operator U : H-H′ such that
UΩ¼Ω′ and UπðAÞ ¼ π′ðAÞU, for all A inA (see Kadison & Ringrose,
1997, 278–279).

The definition of “same representation” presumed in this
statement of uniqueness is called unitary equivalence. We call
representations π and π′ unitarily inequivalent, and treat them as
distinct,1 if there is no unitary operator U between their Hilbert
spaces which relates the representations by

UπðAÞ ¼ π′ðAÞU: ð1Þ
When Eq. (1) does hold, we say that the unitary U intertwines the
representations π and π′.

A useful source on the representation of symmetry in this
framework is Roberts and Roepstorff (1969). They posit (very
reasonably) that any symmetry of a quantum system must at a
minimum consist of two bijections, α from the algebra of physical
quantities A onto itself and α′ from the space of states of A onto
itself. These must preserve all expectation values, so that

α′ðωðαðAÞÞ ¼ωðAÞ: ð2Þ
They then show that any such α is a n-automorphism of A, a
bijection α : A-A which preserves its algebraic structure and
commutes with the adjoint mapping ð�Þn. Furthermore, α′ can be
defined in terms of this n-automorphism as it acts on states.
Clearly α′ðωÞ is given by ω○α�1 ¼ωðα�1ðAÞÞ. We therefore have a
justification, from physical principles, of the oft-cited fact that
symmetries in quantum theory are given by n-automorphisms.

Clearly if α is a symmetry and πðAÞ is a representation of A on a
Hilbert spaceH, π○αðAÞ ¼ πðαðAÞÞ is also a representation ofA onH.
In this case αwill act as a bijective mapping from π to π○α. We call α
unitarily implementable in the representation π when there is a
unitary mapping U : H-H such that

π′ðAÞ ¼ πðαðAÞÞ ¼ UπðAÞUn: ð3Þ
This means the symmetry α is unitarily implementable in π iff π and
π○α are unitarily equivalent representations of A.

This is where spontaneous symmetry breaking comes in.
In general, a state ω breaks the symmetry α only if α is not unitarily
implementable in ω's GNS representation.2 When this occurs, ω's
GNS representation and the GNS representation of the symmetry-
transformed state α′ðωÞ ¼ω○α�1 will be unitarily inequivalent.

In one example, the CAR algebra (so-called because it obeys the
canonical anticommutation relations) is the field algebra for a
system of interacting spin-1/2 systems. We may use the infinite
version of the algebra to represent an infinitely long chain of spins
confined to a one-dimensional lattice, as in the Heisenberg model
of a ferromagnet. This infinite CAR algebra possesses a non-
unitarily implementable automorphism which represents a sym-
metry of the ferromagnet: namely, a 1801 rotation which flips all of
the spins in the chain. The rotation is therefore a spontaneously
broken symmetry. See Ruetsche (2006) for a detailed study of this
case; we present only a few general features it shares in common
with other examples of SSB.

The lowest-energy states available to an infinite spin chain are
ones in which all of the spins align in the same direction. The
Heisenberg ferromagnet has two such ground states: ω, in which
all of the spins point along þx (where x is the axis of the one-
dimensional chain) and ω′, in which they all point along �x. These

1 Although we always treat inequivalent representations as formally or
mathematically distinct, note that they may not always be physically inequivalent.
As we shall see, they are sometimes related by symmetries, which are normally
assumed to preserve all the physical facts.

2 On the approach shared by Strocchi and Earman, this is both a necessary and
sufficient condition.
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states each define a GNS representation (π; π′ respectively) on
Hilbert spaces H and H′. If α is the automorphism of the CAR
algebra representing a 1801 rotation along an axis perpendicular to
x, ω′¼ α′ðωÞ. But since α is spontaneously broken, π must be
unitarily inequivalent to π′. This is where things get confusing.

3. Wigner's theorem and Earman's problem

The expectation values of observables aren't the only important
quantities in quantum physics. We should also expect a symmetry
to preserve the transition probabilities between (pure) states of
any quantum theory. In the Hilbert space formalism these are
given by inner products: 〈ψ ;ψ ′〉 represents the likelihood of a
spontaneous transition from vector state ψ to ψ ′.3

It seems obvious that no symmetry worth its salt will alter any
of the transition probabilities. This led Wigner to conclude that
any symmetry worth its salt is given by a unitary operator.4 For the
following can be proven (see Bargmann, 1964):

Wigner's theorem. Any bijection from the unit rays (vector states)
of a Hilbert space H to the unit rays of H′ which preserves the inner
product is given by a unitary mapping W : H-H′.

This is puzzling. A spontaneously broken symmetry should still
map bijectively between the vector states of the two representa-
tions, and it would be very strange if it failed to preserve transition
probabilities. But we also know that broken symmetries are not
unitarily implementable. How can such a symmetry be given by a
unitary operator in the sense important to Wigner's theorem?

We are not the first to notice this puzzle. As noted in our
introduction, Earman (2003) posed it some time ago. But while
Earman successfully casts the puzzle in precise mathematical
terms, he does so in a peculiar way. Earman resolves his inter-
pretation of the puzzle without addressing what we consider the
most natural and interesting conceptual question in the vicinity.

Earman begins by noting the implications of Wigner's theorem:
any symmetry α′ on states that preserves transition probabilities
on a Hilbert space H is given by a unitary operator U on H. Earman
calls this a “Wigner symmetry”. Further, U is unitary iff it
corresponds to an automorphism of BðHÞ that takes an operator
O to UOUn. So any Wigner symmetry induces an automorphism of
BðHÞ, which automorphism must be unitarily implementable–and
conversely, any such automorphism must be a Wigner symmetry.
Earman asks,

How then can a symmetry in the guise of an automorphism of a
Cn-algebra A fail to be an unbroken or Wigner symmetry? The
answer is that two different senses of “broken symmetry” are
in play. For a broken symmetry in the sense of spontaneous
symmetry breaking, the Cn-algebraA is not isomorphic to BðHÞ;
indeed, a representation π of A is into rather than onto BðHÞ,
and there is no continuous extension of πðAÞ to all of BðHÞ.
An automorphism [α] of A is broken in the sense of sponta-
neous symmetry breaking not because it is broken in the
Wigner sense in that it fails to preserve probabilities but
because it is not an automorphism of BðHÞ (Earman, 2003, 341).

Earman has correctly solved a puzzle concerning how a broken
symmetry α can fail to be unitarily implementable without
violating Wigner's theorem–but it is not, we think, the most
obvious or pressing puzzle of this sort. He addresses what we will
call

Earman's problem: Given that any automorphism of BðHÞ is
unitarily implementable on ðπ;HÞ, how can
a symmetry α fail to be unitarily imple-
mentable on ðπ;HÞ?

The answer, as Earman notes, is that α is an automorphism of A,
not BðHÞ. If α were defined as an automorphism of BðHÞ, as
opposed to A, it would be unitarily implementable on π for the
reasons explained by Earman. To clarify his explanation a bit, the
crucial fact is not that πðAÞ does not extend continuously to BðHÞ–
even in the absence of broken symmetry, no such extension exists
for physically interesting Cn-algebras. What's important is that α
itself does not extend continuously to an automorphism of BðHÞ,
because if such an extension existed it would constitute a unitary
operator implementing α on π, and hence intertwining π and π′.

As helpful as it is to understand the resolution of Earman's
problem, a further puzzle also challenges our understanding of
howWigner's theorem can coexist with SSB. For Wigner's theorem
implies the existence of a unitary operator which looks for all the
world like it ought to implement α on π. Whether α is an
automorphism of BðHÞ or not, α′ is still a bijection between the
states of the representation Hilbert spaces H and H′. Furthermore,
as Roberts and Roepstorff (1969, 335) prove, α′ must preserve all
transition probabilities. By Wigner's theorem, this guarantees the
existence of a unitary operator whose action on states is the same
as α's, prompting

Our problem: Given that the action of a symmetry α on the
states of H preserves transition probabilities–and
is therefore given by a mapping ϕ-Wϕ for a
unitary operator W–how can W fail to unitarily
implement α on ðπ;HÞ?

There is of course a sense in which Earman's solution to his
problem implies that there must be a solution to our problem.
After all, it is impossible for W, or any other unitary operator, to
intertwine π and π′ on the assumption that α does not extend
continuously to an automorphism of BðHÞ. In a sense, this is simply
to reiterate that α is a broken symmetry and SSB requires unitary
inequivalence. But subsuming W under this general fact is not the
same as providing a constructive explanation for why W in
particular fails to intertwine the representations, especially since
its unique properties seem to imply that it must do so.

Although W has so far been defined in terms of its action on the
state vectors inH, it does of course act on operators as well, taking the
operator πðAÞ on H to WπðAÞWn. And it is trivial that the expectation
value of this transformed operator in the transformed state Wψ is
given by ðWψ ;WπðAÞWnWψ Þ ¼ ðψ ;πðAÞψ Þ. This is the same as the
expectation value of the operator αðAÞ in the state α′ðωÞ, where ω is
the abstract state corresponding to ψ. The natural conclusion to draw
is that WπðAÞWn ¼ πðαðAÞÞ. But this can't be a correct conclusion,
since if it were true W would intertwine the representations π and π′,
which contradicts the assumption that α is broken.

In sum, the problem posed by Earman cannot be fully laid to
rest without exploring the properties of the unitary symmetry
whose existence is implied by Wigner's theorem.

4. The resolution

Since Wigner's theorem applies to all symmetries, a sponta-
neously broken symmetry must in some sense give a unitary
mapping between the states of unitarily inequivalent representa-
tions. So there must be some wiggle room in the definition of
unitary equivalence that makes this possible. To solve our problem,
we must look again at the definition and find the wiggle room.

3 Only on collapse interpretations do such transitions actually occur, of course.
But we should nevertheless expect other interpretations to retain the statistical
predictions codified in transition probabilities.

4 Or by an antiunitary operator; for present purposes we ignore the difference.
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In effect, we have two data points to work with. First, as
Roberts and Roepstorff prove, Wigner's theorem applies to all
algebraic symmetries. This means that any symmetry α′, as it acts
on states, must be induced by some unitary operator. Since the
existence of this operator is guaranteed byWigner's theorem, we'll
call it the Wigner unitary W. Since for any state ω, α′ðωÞ ¼ω○α�1,
Wigner's theorem is telling us that W must take the state vector ψ
that represents ω to a vector Wψ that represents ω○α�1.

Our second data point is the fact that spontaneous symmetry
breaking is possible. This implies that some symmetries are not
unitarily implementable in a ground state's GNS representation, in
the sense that they fail to satisfy Eq. (3) for any unitary U. For these
symmetries, the unitary W must map the vector states of H to
those of H′ without satisfying Eq. (1) for U¼W. In such a case, the
representations are unitarily inequivalent even though their Hil-
bert spaces are related by a unitary operator. There is nothing
strictly contradictory about this, since the existence of a unitary
operator implies unitary equivalence only if the operator inter-
twines the representations. Their respective representations π; π′
of the Cn-algebra may nonetheless be preserved byW, as long asW
does not map the representation π pointwise to the representation
π′. So it may still be that

WπðAÞ ¼ π′ðAÞW ð4Þ

although there are individual operators AAA for which (1) does
not hold.

In fact, an operator meeting these criteria exists whenever the
states of two irreducible representations are connected by a
symmetry. We will show in steps that in every such case a unitary
W exists which satisfies Eq. (4), and which implements the
symmetry as it acts on states without intertwining the representa-
tions. First, we establish its existence:

Representation Wigner theorem. Let 〈H;π;Ω〉 be a GNS repre-
sentation for ω, and let 〈H′;π′;Ω′〉 be a GNS representation for
ω○α�1. Then there is a unique unitary operator W ¼Wπ;π′ : H-H′
such that WΩ¼Ω′, and Wπðα�1ðAÞÞ ¼ π′ðAÞW for all AAA. (Proof
in Appendix 1.)

Since α�1ðAÞ ¼A and W intertwines π○α�1 and π′, Eq. (4)
follows. This means that when π and π′ are not unitarily equiva-
lent, W maps between these two representations without map-
ping π pointwise to π′, which is what we expected. In other words,
W acts as a bijection between the operators of these representa-
tions but does not, in general, intertwine the representations.

We have established that a unitary mapping preserving transi-
tion probabilities can exist even between unitarily inequivalent
representations. Indeed, such a mapping always exists in cases of
SSB. This is not yet enough to establish that the conclusion of
Wigner's theorem is true (as it must be). Wigner's theorem
ensures, not just that such a mapping exists, but that every
mapping which preserves transition probabilities must be unitary.
This includes every symmetry (whether spontaneously broken or
not) as it acts on states.

So we must also show that a spontaneously broken symmetry
can be given by a unitary operator in the sense just discussed,
without intertwining π and π′ — that is, without satisfying Eq. (3).
To establish this, we will show that W itself induces the symmetry
as it acts on states.

Keep in mind that any representation π : A-BðHÞ of a
Cn-algebra gives rise to a map Tπ of unit vectors of H into the
state space of A. In particular,

TπðxÞðAÞ ¼ 〈x;πðAÞx〉 ðAAAÞ:

We now use this map to show that W induces the symmetry α′ as
it acts between the states of representations π and π′.

Corollary 1. Let ðH;π;ΩÞ be a GNS representation for ω. Then the
Wigner unitary W for α implements the action of α on vectors in H.
That is, Tπ′ðWxÞ ¼ TπðxÞ○α�1 for any unit vector x in H. (Proof in
Appendix 1.)

In other words, when we apply W to the state vector xAH
which represents the algebraic state TπðxÞ in the GNS representa-
tion π, the result is the vector WxAH′ which represents the state
α′ðTπðxÞÞ ¼ TπðxÞ○α�1 in the representation π′. This is just what it
means for W to implement the symmetry as it acts on states.

Finally, we confirm that W does not in general intertwine the
representations π and π′. In fact, we can show that W intertwines
these representations only if it is trivial:

Corollary 2. If the Wigner unitary W : H-H′ also induces a unitary
equivalence between π and π′, then α′○Tπ ¼ Tπ . (Proof in Appendix 1.)

That is, every vector state in π's Hilbert space is invariant under
the symmetry α′, and hence left unchanged by W. This means W
must be the identity.

The astute reader may be puzzled by some of the properties we
ascribe to the Wigner unitary. In particular, we've shown that the
Wigner unitary, which implements a symmetry as it acts on states,
never implements that same symmetry unitarily on an irreducible
representation π unless it is the trivial identity operator. How,
then, can a non-trivial symmetry be unitarily implemented on π
(and hence unbroken)? This sort of puzzle is best resolved by
looking at concrete examples of Wigner unitaries in the case of
both broken and unbroken symmetries, which examples we
provide in Appendix B.

We've shown that whenever two states are related by a sym-
metry, a unitary mapping exists between the Hilbert spaces of their
GNS representations and has the properties we would expect. This is
the Wigner unitary. Its existence vindicates Wigner's theorem, in
that it shows how the theorem can be true even when spontaneous
symmetry breaking prevents a symmetry from being unitarily
implemented between irreducible representations.

5. Foundational significance

Besides the dissolution of a confusing puzzle, are there founda-
tional implications of this result? We believe so. To underscore the
foundational importance of our problem and its solution, let's
briefly explore how it bears on one vexed question in the
philosophy of quantum field theory. What are the necessary
conditions for physical equivalence between field-theoretic states?
In AQFT, the representations of the field algebra separate the states
into natural “families:” the folia of states given by density
operators in each representation. We may therefore ask what
conditions must be met for two such families of states–two folia–
to represent the same set of physical possibilities.

For two folia to be physically equivalent, they must at least be
empirically equivalent. The mistaken line of reasoning that led to
Earman's problem suggests that unitary equivalence is necessary if
we want to preserve transition probabilities. Since a quantum
theory's transition probabilities are part of its empirical content, it
would seem to follow that the folia of unitarily inequivalent
representations cannot predict the same empirical consequences–
making them physically inequivalent by the above reasoning.

This is why Arageorgis, while attempting “to clarify the con-
nection between ‘intertranslatability’ [a necessary condition for
physical equivalence] and ‘unitary equivalence,’” writes in his
seminal dissertation,

Intertranslatability requires a mapping between theoretical
descriptions that preserves the reports of empirical findings.
These are couched in terms of probabilities in quantum theory.
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And as Wigner has taught us, the preservation of probabilities
in the Hilbert space formulation implies the existence of a
unitary (or antiunitary)5 operator (Arageorgis, 1995, 302 fn 111).

He takes this point to establish that folia must belong to unitarily
equivalent representations if they are to count as physically equiva-
lent. But his argument includes a false premise: the assumption that
the existence of a unitary operator connecting the folia of two
representations implies a unitary equivalence between those repre-
sentations. As we have shown, though, there is no such implication
if the unitary operator is what we've called a Wigner unitary.
Arageorgis's argument is unsound.

This means that at least one significant part of the empirical
content of a quantum theory–its transition probabilities–can be
preserved by a mapping between the folia of two inequivalent
representations. If we further assume (as conventional wisdom
dictates) that a quantum theory's symmetries preserve all empiri-
cal content, then the folia of at least some pairs of inequivalent
representations must be empirically equivalent if spontaneous
symmetry breaking is possible. Indeed, the existence of a sym-
metry is often taken to imply physical equivalence in the fullest
sense (see Baker, 2011).6 The notion that unitary equivalence is a
necessary condition for physical equivalence should now appear
quite suspect. Insofar as the so-called “Hilbert space conservative”
interpretation of quantum field theory identifies physical equiva-
lence with unitary equivalence (see Ruetsche, 2002), that inter-
pretation must come into question as well.

Appendix A. Representation Wigner theorem

Here we prove the results mentioned in the main text.

Definition. Let ω be a state on a Cn-algebra A, let H be a Hilbert
space with Ω a unit vector in H, and π : A-BðHÞ a representation
of A. We say that the triple 〈H;π;Ω〉 is a GNS representation for ω
just in case:

1. 〈Ω;πðAÞΩ〉¼ωðAÞ, for all AAA, and
2. fπðAÞΩ : AAAg is dense in the Hilbert space H.

The GNS theorem shows that for each state ω, there is a GNS
representation; and that any two GNS representations of ω are
unitarily equivalent.

Let A be a Cn-algebra, let ω be a state of A, and let α be a
n-automorphism of A. Let ðH;π;ΩÞ be the GNS triple of A induced
by ω, and let ðH′;π′;Ω′Þ be the GNS triple of A induced by ω○α�1.
For brevity, we sometimes just use π and π′ to denote the
corresponding triples.

Representation Wigner theorem. Let 〈H;π;Ω〉 be a GNS repre-
sentation for ω, and let 〈H′;π′;Ω′〉 be a GNS representation for
ω○α�1. Then there is a unique unitary operator W ¼Wπ;π′ : H-H′
such that WΩ¼Ω′, and Wπðα�1ðAÞÞ ¼ π′ðAÞW for all AAA.

In fact this is a special case of Roberts and Roepstorff (1969),
Proposition 6.2, but we provide a more elementary proof that does
not appeal to Wigner's theorem as a premise.

Proof. Let ðH;π;ΩÞ be a GNS representation of A for the state ω,
and let ðH′;π′;Ω′Þ be a GNS representation of A for the state

ω○α�1. Define W : H-H′ by setting

WπðAÞΩ¼ π′ðαðAÞÞΩ′; 8AAA:

Since αðIÞ ¼ I, it follows that WΩ¼Ω′. Since

Jπ′ðαðAÞÞΩ′J2 ¼ 〈Ω′;π′ðαðAnAÞÞΩ′〉¼ωðα�1ðαðAnAÞÞÞ ¼ωðAnAÞ
¼ JπðAÞΩJ2;

it follows that W is well defined and extends uniquely to a unitary
operator from H to H′. Note that since πðAÞΩ¼WnWπðAÞΩ¼
Wnπ′ðαðAÞÞΩ′, it follows that Wnπ′ðBÞΩ′¼ πðα�1ðBÞÞΩ for all
BAA. Therefore,

Wnπ′ðAÞWπðBÞΩ¼Wnπ′ðAαðBÞÞΩ′¼ πðα�1ðAÞBÞΩ¼ πðα�1ðAÞÞπðBÞΩ;

for all A;BAA. Since the vectors πðBÞΩ, for BAA, are dense in H, it
follows that Wnπ′ðAÞW ¼ πðα�1ðAÞÞ for all AAA. That is, W imple-
ments a unitary equivalence from π○α�1 to π′.
To show the uniqueness of W, it suffices to note thatΩ is a cyclic

vector for π○α, Ω′ is a cyclic vector for π′, and WΩ¼Ω′. Thus,
there is at most one unitary intertwiner from π○α�1 to π′ that
maps Ω to Ω′. □

Note that if α¼ ι is the identity automorphism, and if we take
〈H′;π′;Ω′〉¼ 〈H;π;Ω〉, then I satisfies the conditions of the theo-
rem, hence by uniqueness Wπ;π′ ¼ I.

For the following corollary, recall that any representation
π : A-BðHÞ of a Cn-algebra gives rise to a map Tπ of unit vectors
of H into the state space of A. In particular,

TπðxÞðAÞ ¼ 〈x;πðAÞx〉 ðAAAÞ:

Corollary 1. Let ðH;π;ΩÞ be a GNS representation for ω. Then the
Wigner unitary W for α implements the action of α on vectors in H.
That is, Tπ′ðWxÞ ¼ TπðxÞ○α�1 for any unit vector x in H.

Proof. By the Theorem, a Wigner unitary W intertwines π○α�1

and π′, that is

πðα�1ðAÞÞ ¼Wnπ′ðAÞW ;

for all AAA. Hence

Tπ′ðWxÞðAÞ ¼ 〈Wx;π′ðAÞWx〉

¼ 〈x;Wnπ′ðAÞWx〉

¼ 〈x;πðα�1ðAÞÞx〉
¼ TπðxÞðα�1ðAÞÞ;

for all AAA. □

The preceding corollary can be conveniently pictured via a
commuting diagram:

where SðAÞ is the state space of A, and α′ : SðAÞ-SðAÞ is the
symmetry ω↦ω○α�1.

Corollary 2. If the Wigner unitary W : H-H′ also induces a unitary
equivalence between π and π′, then α′○Tπ ¼ Tπ .

Recall that α′ : SðAÞ-SðAÞ is defined by α′ðωÞ ¼ω○α�1.

Proof. If W induces a unitary equivalence between π and π′ then

πðAÞWn ¼Wnπ′ðAÞ ¼ πðα�1ðAÞÞWn;

5 Recall that for purposes of this paper we ignore the distinction between
unitary and antiunitary.

6 Our view should be carefully distinguished from the notion that any
automorphism between representations of A implies their physical or empirical
equivalence. In our opinion, this holds only for automorphisms which are also
symmetries (i.e., which commute with the theory's dynamics).
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for all AAA. Canceling the unitary operator Wn on the right gives
πðAÞ ¼ πðα�1ðAÞÞ for all AAA, that is π ¼ π○α�1. From the latter
equation it clearly follows that Tπ ¼ α′○Tπ . □

Appendix B. Properties of the Wigner unitary operator

We now give a special case of the Representation Wigner
theorem which will illustrate some properties of the Wigner
unitary. But first we need a lemma.

Lemma. If 〈H;π;Ω〉 is a GNS representation for the state ω then
〈H;π○α�1;Ω〉 is a GNS representation for the state ω○α�1 .

Proof. Since 〈Ω;πðα�1ðAÞÞΩ〉¼ωðα�1ðAÞÞ and since Ω is cyclic
under fπðα�1ðAÞÞ : AAAg, it follows that 〈H;π○α�1;Ω〉 is a GNS
representation for ω○α�1. □

We can now apply the Representation Wigner theorem to the
representations 〈H;π;Ω〉 and 〈H;π○α�1;Ω〉.

Specialized Representation Wigner theorem. If W : H-H is the
Wigner operator for the representations 〈H;π;Ω〉 and 〈H;π○α�1;Ω〉,
then W¼ I.

Proof. By RWT, WΩ¼Ω and Wπðα�1ðAÞÞ ¼ πðα�1ðAÞÞW for all
AAA. Since α is an automorphism, WπðAÞ ¼ πðAÞW for all AAA.
Hence

WπðAÞΩ¼ πðAÞWΩ¼ πðAÞΩ;

for all AAA. Since the set fπðAÞΩ : AAAg of vectors is dense in H,
it follows that Wx¼x for every vector in H; that is, W¼ I. □

We now apply SRWT to the case of symmetries in elementary
quantum mechanics. Let H be a finite-dimensional Hilbert space,
and let U : H-H be a unitary operator that induces a symmetry.
Then we have the following transformations:

φ⟼Uφ transformed state

A⟼UAUn transformed observable

Of course, BðHÞ is a Cn-algebra, and each (pure) state of BðHÞ is
represented uniquely by a ray in H. The unitary U induces the
automorphism αðAÞ ¼ UAUn of BðHÞ, as well as the corresponding
state mapping.

In order to apply SRWT, we need to find representations. The
first representation is 〈H; ι;φ〉, where ι : BðHÞ-BðHÞ is the identity,
and φ is an arbitrarily chosen unit vector. The second representa-
tion is 〈H; ι○α�1;φ〉. By GWT, there is a Wigner unitary W : H-H,
and by SRWT, W¼ I.

So, in what sense does W induce the symmetry U on states?
Should we not have W¼U? No, because a vector φ in H names
different states on BðHÞ according to which representation we
consider, either ι or α�1. Relative to the first, φ represents the state
A↦〈φ;Aφ〉, and relative to the second, φ represents the state
A↦〈φ;α�1ðAÞφ〉.

What W does is to map a vector representing some state ω
relative to π to a vector representing the state ω○α�1 relative to
π○α�1. In the way we have set things up, W ¼ 1H , which just
means that if φ represents ω relative to π, then φ represents
ω○α�1 relative to π′¼ π○α�1. So, indeed, the identity map imple-
ments the symmetry ω↦ω○α�1 of states!

Let us look now, more generally, at the case of an unbroken
symmetry. By hypothesis, the symmetry α is unbroken just in case
the representations ðH;π;ΩÞ and ðH;π○α�1;ΩÞ are unitarily
equivalent. That is, there is a unitary operator V : H-H such that
Vπðα�1ðAÞÞ ¼ πðAÞV . In fact, in the most interesting case where ω
is a pure state, V can be chosen such that V ¼ πðUÞ for some unitary
operator UAA, hence

πðαðAÞÞ ¼ VπðAÞVn ¼ πðUAUnÞ;
for all AAA. (To verify the existence of such a UAA, see Kadison
& Ringrose, 1997, 730.)

Of course, we are still guaranteed the existence of the Wigner
Unitary W : H-H. (In fact, we know that W¼ I; but ignore that
fact for now.) Which operator,W or V, implements the symmetry α
on states? The answer is that they both do, but in different senses.

Compare the following two diagrams:

The square on the left shows the action of the Wigner unitary
W for the special case of the GNS representation ðH;π○α�1;ΩÞ for
ω○α�1. The square on the right shows that action of the unitary V
that implements the equivalence between π and π○α�1. The key
difference, of course, is that V implements the symmetry in such a
way that the correspondence between vectors and states can be
held invariant (the vertical arrows are the same), whereas W's
implementation requires a change of correspondence (Tπ versus
Tπ′). But a state is a way to map observables to numbers, so
changing the correspondence between vectors and states is equiva-
lent to leaving this correspondence fixed and instead changing the
labels of observables. In equation form:

Tπ′ ¼ α′JTπ ;

i.e. the correspondence Tπ′ matches vectors with an observable A in
exactly the way that the correspondence Tπ matches vectors with
the observable α�1ðAÞ.
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