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The importance of the Unruh effect lies in the fact that, together with the related (but distinct) Hawking

effect, it serves to link the three main branches of modern physics: thermal/statistical physics, relativity

theory/gravitation, and quantum physics. However, different researchers can have in mind different

phenomena when they speak of ‘‘the Unruh effect’’ in flat spacetime and its generalization to curved

spacetimes. Three different approaches are reviewed here. They are shown to yield results that are

sometimes concordant and sometimes discordant. The discordance is disconcerting only if one insists

on taking literally the definite article in ‘‘the Unruh effect.’’ It is argued that the role of linking different

branches of physics is better served by taking ‘‘the Unruh effect’’ to designate a family of related

phenomena. The relation between the Hawking effect and the generalized Unruh effect for curved

spacetimes is briefly discussed.

& 2011 Elsevier Ltd. All rights reserved.
When citing this paper, please use the full journal title Studies in History and Philosophy of Modern Physics
1. Introduction

One way to achieve immortality in physics is to have your name
attached to an important equation or effect. By this measure
William G. Unruh is numbered among the immortals by having
his name attached to

TU ¼
_a

2pck
ð1Þ

which asserts that an observer in constant linear acceleration
through the Minkowski vacuum for a non-interacting scalar field
will find herself immersed in a thermal bath at a temperature
proportional to the magnitude a of her (proper) acceleration. (From
here on set _¼ k¼ c¼ 1 unless otherwise noted.) In Unruh’s (1990,
pp. 108–109) own colorful characterization ‘‘You could cook your
steak by accelerating it’’. This method of cooking is not apt to replace
a charcoal grill since an acceleration of 1024 cm/s2 is required to
achieve a temperature of 300 1C (Unruh, 1990, p. 109). But it is not
the size of the effect but its existence that matters: the Unruh effect
and the related (but distinct) Hawking effect serve to link the three
ll rights reserved.
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main branches of modern physics—thermal/statistical physics, rela-
tivity theory/gravitation, and quantum physics—and to my knowl-
edge these are the only effects that currently serve this function.
Together they are widely regarded as forming a valuable signpost in
the search for a quantum theory of gravity (see Smolin, 2000).

The literature on the Unruh effect begins with Unruh (1976,
1977a, 1977b)1 and it continues in a steady stream down to the
present day, with the number of citations to Unruh (1976) averaging
50 or above in recent years. A related effect was obtained earlier by
Davies (1975); namely, when the right Rindler wedge (see Section 3
below) is equipped with a reflecting wall to the right of the origin, an
observer uniformly accelerated through the Minkowski vacuum sees
the wall radiate at (what would come to be called) Unruh or Davies–
Unruh temperature. The reader who wishes to get a sense of the
development of the various treatments of the Unruh effect may
consult the articles by Sciama, Candelas, and Deutsch (1981), Birrell
and Davies (1982), Takagi (1986), Fulling and Ruijensaars (1987),
Ginsburg and Frolov (1987), and Wald (1994, Chap. 5). A recent
review article by Crispino, Higuchi, and Matsas (2008) will surely
become a standard reference. An overview of proposed experimental
tests can be found in Rosu (2001) and Crispino et al. (2008).

The Unruh effect is not uncontroversial—some critiques can be
found in Belinskii, Karnakov, Mur, and Marozknyi (1997), Fedetov,
Mur, Narozhny, Belinskii, and Karnakov (1999), Narozhny, Fedotov,
1 The results of Unruh (1977a) were presented in July 1975 at the first Marcel

Grossmann Meeting on General Relativity. I take this to be the first public

presentation of the Unruh effect.
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Karnakov, Mur, and Belinskii (2000, 2002), and Oriti (2000).2

Although the naysaying is largely without merit, the fact that the
naysayers can publish in main line physics journals shows that there
is some confusion about what the Unruh effect is. This confusion
derives in large part, I will argue, from the fact that there are at least
three different approaches to the Unruh effect that yield related but
not always concordant results. This does not mean that the Unruh
effect does not exist (as some naysayers insinuate) but rather that
‘‘the Unruh effect’’ is a bit of a misnomer since it refers ambiguously
to one or another of a family of effects.

Additionally, the controversy was also fueled by the fact that
the Unruh effect has been enlisted in the service of two allied
campaigns. The goal of one was to operationalize the particle
concept in quantum field theory (QFT), the slogan being that
‘‘Particles are what particle detectors detect.’’3 The other cam-
paign had as its goal the demotion of the particle concept in QFT
to second class citizenship, the argument being that the notion of
particle has to be relativized to a reference frame or an observer.
The Unruh effect supposedly supports this campaign as follows:
the detector employed by Unruh (1976) in his initial exploration
of the eponymous effect and the monopole version used by
DeWitt (1979) have been labeled ‘‘particle detectors,’’ and (alleg-
edly) when such detectors are in constant linear acceleration
through the Minkowski vacuum they register a thermal flux
of particles, variously called Rindler or Fulling particles.4 Thus,
one sometimes sees references to the ‘‘Fulling-Unruh effect’’
(Korbakken and Leinaas, 2004) or the ‘‘Fulling-Davies–Unruh
effect’’ (see Vanzella and Matsas, 2001; Matsas and Vanzella,
2003).5 My own view (which I will not defend here) is that there
are strong reasons for regarding particles as having the status of
epiphenomena in QFT in that the best interpretation of the theory
does not count them as being part of the basic ontology but rather
seeks to explain how and why particle-like behavior arises under
certain circumstances; but I believe that the case for this inter-
pretational stance can be made without having to appeal either to
an operationalist conception of particle or the dubious notion that
a uniformly accelerating observer encounters a flux of Fulling
quanta (see Section 6).

In what follows I will examine three approaches to the Unruh
effect. Section 2 gives a brief review of modular theory, the
mathematical tool needed for the most rigorous and model-
independent approach. The application of modular theory to the
Rindler wedge and other regions of Minkowski spacetime is
discussed in Section 3. Section 4 reviews the generalization of
the Unruh effect to curved spacetimes and the relation of this
generalized effect to the Hawking effect. As with the flat space-
time case, the key concepts are drawn from modular theory.
While there can be no doubt about the precision and power of
the mathematical apparatus of modular theory, there are reasons
to be chary about drawing physical consequences from the
2 At various junctures these critical papers display a bizarre quality. For a

response to the Russian group and a rejoinder from them, see Fulling & Unruh

(2004) and Narozhny, Fedotov, Karnakov, & Mur (2004).
3 ‘‘What we mean by a ‘‘particle’’ cannot sensibly be expressed without

reference to a detector. All we can predict and discuss (as far as the physical

world is concerned) are the experiences of detectors’’ (Davies, 1978, p. 71).
4 I will speak of Fulling quanta since Rindler had no hand in showing how

to quantize the Klein–Gordon field from the point of view of Rindler observers

(see Section 6 and Appendix C).
5 ‘‘In 1976 Unruh found that the Minkowski vacuum, i.e. the state associated

with the non-existence of particles with respect to inertial observers, corresponds

to a thermal bath of particles at the temperature TFDU ¼ a=2p ð‘¼ c¼ k¼ 1Þ to

uniformly accelerated observers with proper acceleration a¼const. This has

clarified previous results of Davies (1975), and confirmed Fulling’s conclusion

that elementary particles are observer dependent.’’ (Matsas & Vanzella, 2003,

p. 1573) I leave it to the reader to decide whether this is an accurate characteriza-

tion of what ‘‘Unruh found’’ in 1976.
apparatus. Some of these reasons are aired in Section 5. This
makes it desirable to explore other approaches to the Unruh effect
that do not rely on modular theory. Section 6 explores a way of
understanding the Unruh effect in terms of the Fulling quantiza-
tion of the Klein–Gordon field on a Rindler wedge region of
Minkowski spacetime. Section 7 discusses the explication of the
Unruh effect in terms of the response of accelerated detectors.
Summary and conclusions are presented in Section 8. Throughout
the focus of the discussion will be on non-interacting scalar fields
because this is the case for which a large number of precise
results have been proven. Readers interested in the Unruh effect
for interacting fields can start with Gibbons and Perry (1978) and
Unruh and Weiss (1984). The list of references at the end
represents only a small slice of the vast literature on the Unruh
effect and topics directly related to it, but it is intended to be
representative enough to provide guidance to readers who wish
to explore various facets of the Unruh effect in more depth.

Achieving a balance between readability and rigor when
expositing these topics is not easy, and I can only hope that the
choices I have made do not fatally compromise either goal. As far
as possible, details on operator algebras, relativistic spacetimes,
etc. have been relegated to the Appendices.
2. KMS states and modular theory

For a number of leading theoretical physicists, the official
version of the Unruh effect is explicated in terms of KMS states
and modular theory (see, for example, Sewell, 1982; Kay and
Wald, 1991; Wald, 1994, 1999, 2001; Haag, 1996, Section V.4.1).
However, as far as I am aware Unruh himself has never endorsed
this approach, and his own expositions of the eponymous effect
emphasize the detector approach described below in Section 7.
This section provides a quick and superficial review of some of the
terminology and results of modular theory. Readers desiring more
details are referred to Bratelli and Robinson (1987) and Emch and
Liu (2001).

In quantum statistical mechanics (QSM) a Gibbs state at inverse
temperature b (¼1/kT¼1/T in our chosen units) is expressed as a
density operator Rb ¼ expð�bHÞ=Trðexpð�bHÞÞ acting on a Hilbert
space H, where H (the Hamiltonian) is a self-adjoint operator on H.
Such a state describes the equilibrium of, say, a box of gas in contact
with a heat reservoir at temperature 1=b. The density operator Rb
defines an algebraic state j on the von Neumann algebra BðHÞ of
bounded operators on H by setting jbðAÞ :¼ TrðRbAÞ, AABðHÞ (see
Appendix A). Further, the Hamiltonian H generates a one-parameter
group of dynamical automorphisms of that algebra by stðAÞ :¼

expðitHÞAexpð�itHÞ, tAR and AABðHÞ. As befitting of an equili-
brium state, jb is invariant under these automorphisms, i.e.
jbðstðAÞÞ ¼jbðAÞ for all AABðHÞ. Assuming that the extension of
st to complex values of t is such that z/jbðAszðBÞÞ is analytic in
the strip f0o ImðzÞobg of the complex plane, it is easy to verify that
jb satisfies the condition jbðAsibðBÞÞ ¼jbðBAÞ, A,BABðHÞ, which
will play a key role in what follows.

Now consider a case where there may be no density operator of
the appropriate form—say because normalization fails, as will be the
case when H has a continuous spectrum as usually happens when
the thermodynamic limit is taken in which the number of particles
N and the volume V of the gas go to þ1 while keeping N/V
constant. It is highly desirable to have an analogue of a Gibbs
equilibrium state to cover such situations. Only after physicists
produced the desired analogue was it realized that mathematicians
had independently been developing the relevant technical appara-
tus. In hindsight the key concepts can be introduced as follows. At
the most general level the system of interest is described by a von
Neumann algebra of observables M (which typically will not be
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isomorphic to the familiar BðHÞ of ordinary QM) and a one-
parameter group of automorphisms ss, sAR, of M. (I have used s

rather than t as the group parameter since I do not want to beg the
question as to whether s is time.6) A state j on M satisfying the
condition that for any A,BAM there is a function fA,B(z) analytic on
the strip f0o ImðzÞobg such that fA,BðsÞ ¼jðssðAÞBÞÞ and
fA,Bðsþ ibÞ ¼jðBssðAÞÞ for all sAR is called a ðss,bÞ�KMS state after
Kubo, Martin, and Schwinger, who first recognized the importance
of the condition for quantum statistical mechanics (see Kubo, 1957;
Martin and Schwinger, 1959).7 Such a state satisfies the condition
noted above that is characteristic of the algebraic counterpart of a
Gibbs state; namely, jðAsibðBÞÞ ¼jðBAÞ for all A and B in a weakly
dense ss-invariant subalgebra of M. Note that KMS states are
guaranteed to be ss-invariant; thus, if ss can be identified with
the dynamical automorphism group, KMS states exhibit stationarity,
the most basic property of equilibrium states. And KMS states also
possess other properties of equilibrium states, such as stability and
passivity8 (see Bratelli and Robinson, 1987; Emch and Liu, 2001). In
sum, there is strong evidence that KMS states provide the correct
mathematical generalization of Gibbs states. KMS states have
features that Gibbs states lack, but this is typically all to the good.
For example, a ðss,bÞ-Gibbs state (if it is exists) is unique; but there
can be many distinct ðss,bÞ-KMS states. The latter fact allows KMS
states to represent different thermodynamical phases. This feature
of KMS states will not play any role here.

Note that b can be eliminated by rescaling the group parameter:
j is a ðss,bÞ-KMS state if and only if it is a ðsu,�1Þ-KMS state, where
u¼�bs. Without any loss of generality mathematicians set b¼�1
and call this form of the resulting form of the KMS condition the
modular condition. The minus sign has no physical significance and
simply reflects the fact that the mathematicians who developed
modular theory used a sign convention different from the one used
by the physicists who worked in QSM.

The formalism of KMS states is quite flexible, and it applies not
only to states of systems obtained from taking the thermodynamic
limit in QSM but also, for example, to states in relativistic QFT as will
be seen in the following section. The application proceeds via the
celebrated Tomita–Takasaki theorem:

Theorem. Let M be a von Neumann algebra acting on a Hilbert
space H and let j be a faithful normal state on M. Then there
exists a unique one-parameter group of automorphisms ss,
sAR, of M such that j satisfies the modular condition with
respect to ss, i.e. j is a ðss,�1Þ-KMS state.

At the abstract level sketched above modular theory provides no
way to choose a preferred parameterization of the automorphism
group and, thus, allows the ‘‘temperature’’ 1=b to be set at any
value in the range ð0,þ1Þ by rescaling the group parameter. And
relatedly, the abstract theory provides no connection between the
group parameterization and the experienced time of an obser-
ver who is to measure the ‘‘temperature’’ 1=b. The missing
ingredients have to come not from the mathematical theory but
from the details of physical applications to concrete cases. One
promising class of applications occurs in QFT when the modular
6 The Connes–Rovelli thermal time hypothesis, crudely put, is that time—not

just the direction of time but time itself—arises from statistical considerations

(see Connes & Rovelli, 1994; Rovelli, 2004, Sections 3.4 and 5.5) and that in

appropriate circumstances the group parameter s is to be identified with the

physical time that governs macroscopic thermodynamical processes. A discussion

of this fascinating proposal will be reserved for another occasion.
7 KMS states are defined not only for von Neumann algebras but for

Cn-algebras as well. I emphasize the application to von Neumann algebras because

of the use made below of the Tomita–Takasaki theorem.
8 Passivity means that energy cannot be extracted from the system by an

external perturbation that is periodic in time.
group has a geometric action on spacetime. Examples are dis-
cussed in the next section.
3. Modular automorphism groups with geometric actions in
Minkowski spacetime and the modular time hypothesis

In the algebraic formulation of relativistic QFT (see Haag, 1996) a
Cn-algebra AðOÞ of observables is associated with each open
bounded region of O�R4 of Minkowski spacetime R4,Zab. This
association is assumed to have the net property that if O1 �O2 then
AðO1Þ �AðO2Þ. If O1 and O2 are relatively spacelike, Einstein
causality (aka microcausality) demands that ½AðO1Þ,AðO2Þ� ¼ 0.
The quasi-local algebra for the entirety of Minkowski spacetime
AðR4

Þ is given by
S
OAðOÞ, where the overbar denotes the closure

with respect to the Cn-norm. The focus of most of the discussions of
the Unruh effect is the Klein–Gordon field of mass mZ0 (see
Appendix C). I will continue this tradition, although as will become
apparent the apparatus used here has much wider applicability. The
construction of the Weyl form of the canonical commutation
relation (CCR) algebra for the Klein–Gordon field has been carried
out and extensively investigated (see, for example, Kay and Wald,
1991; Wald, 1994). This rigorous quantization procedure yields a
preferred vacuum state, jM , referred to as the Minkowski vacuum
state. Heuristically, it corresponds to the vacuum obtained by
quantizing the field using inertial time to pick out the positive
frequency modes of the field (see Appendix C).9

In any approach to QFT that takes the basic algebras to be
Cn-algebras, the von Neumann algebras that are the home of some
of the physically important observables are representation-
dependent objects. The standard practice is to focus on vacuum
representations, and that practice will be followed here. So let jM

be the Minkowski vacuum state for the Weyl CCR algebra AðR4
Þ

of the Klein–Gordon field. The von Neumann algebra affiliated
with the local algebra AðOÞ for an open region O�R4 is MMðOÞ :
¼ ðpjM jAðOÞ ðAðOÞÞÞ00 where jMjAðOÞ denotes the restriction of jM to
the subalgebra AðOÞ �AðR4

Þ, pjM jAðOÞ is the GNS representation
determined by jMjAðOÞ, and ‘‘00’’ denotes the double commutant
(see Appendix A). To apply KMS theory to MMðOÞ we need to be
assured that the (unique) canonical extension of jMjAðOÞ to MMðOÞ
is a faithful normal state. (From here on I will use the same
symbol for this state and its canonical extension.) To obtain this
assurance for any region O whose causal complement Oc

(consisting of all spacetime points that are spacelike with respect
to O) contains a non-null open set, start from the fact that the
GNS representation of AðR4

Þ determined by jM is (unitarily
equivalent to) a Fock space representation in which the
GNS vector is just the Minkowski vacuum vector j0MS. By the
Reeh–Schleider theorem j0MS is a cyclic vector with respect to
MMðOc

Þ and, thus, is a separating vector for MMðOc
Þ
0. By Einstein

causality MMðOÞ �MMðOc
Þ
0 and, thus, j0MS is a separating vector

for any MMðOÞ where O has non-null causal complement. Thus,
the vector state wj0MS on MMðOÞ corresponding to j0MS is a
faithful normal state for MMðOÞ.10 By the Tomita–Takasaki theo-
rem wj0MS is a ðss,�1Þ-KMS state with respect to a unique
9 The use of different inertial coordinates will result in different quantizations,

but they are all unitarily equivalent.
10 Here wj0MS is the algebraic state defined by wj0MSðAÞ ¼/0M jAj0MS for all

AAMMðOÞ. To see that this state is faithful note that if wj0MSðA
�AÞ ¼ 0 then

JAj0MSJ¼ 0 which means that Aj0MS¼ 0 since j0MS and, thus, A¼0 because

j0MS is a separating vector. That wj0MS is normal follows from the fact that it is a

vector state. This might seem puzzling since wj0MS is a mixed state (see below). In

ordinary QM the set of vector states is identical with the set of pure states. But in

the setting of algebraic QM the difference between pure and mixed states

corresponds to those that determine respectively irreducible and reducible GNS

representations.
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automorphism group ss. But wj0MS is nothing other than the
canonical extension of jM jAðOÞ to MMðOÞ.

Until the work of Bisognano and Wichmann (1975, 1976) this
easy result caused not the slightest stir in the mathematical
physics community since there was no a priori reason to expect
that the modular group associated with an arbitrary open region
of Minkowski spacetime with non-null causal complement would
have geometrical significance. But remarkably, such significance
holds for Rindler wedge regions. The right Rindler wedge R
pictured in Fig. 1 is the region x4 jtj where (x,y,z,t) is an inertial
coordinate system. R is covered by Rindler coordinates ðz,y,z,rÞ
where the ðz,rÞ are related to (x,t) by

x¼ zcoshðrÞ, t¼ zsinhðrÞ ð2Þ

In Rindler coordinates, the Minkowski line element becomes

ds2
¼ dz2

þdy2
þdz2

�z2 dr2 ð3Þ

which makes it evident that ðz,y,z,rÞ is a static coordinate system
(see Appendix B). For future reference note that the Rindler
coordinates ‘‘go bad’’ on the boundaries x¼ 7t of R where r
takes infinite values. And also note that when considered as a
spacetime in its own right, R is globally hyperbolic with the
hypersurfaces r¼ const of constant Rindler time forming a folia-
tion of Cauchy surfaces. The orthogonal trajectories of these
surfaces are timelike hyperbolae corresponding to the worldlines
of observers in constant linear acceleration. The (proper) accel-
eration a along one of these trajectories varies from trajectory to
trajectory according as a¼ 1=z, and the proper time ta along such
a trajectory is given by ta ¼ zr¼ r=a. The distance between
trajectories as measured along the hypersurfaces r¼ const is
independent r, giving an example of what is called Born rigid
motion (see Appendix B).

The results of Bisognano and Wichmann (1975, 1976) show
that the modular automorphism group for the restriction of the
Minkowski vacuum state to MMðRÞ does have geometrical sig-
nificance since its generators are the Lorentz boosts on R, i.e. the
orbits of the modular group are the hyperbolae of constant
acceleration. When the group parameter is chosen to be the
Rindler time r, the restriction of the Minkowski vacuum state
to MMðRÞ is a ðsr,2pÞ-KMS state.

The relevance of this result for the Unruh effect—which was
initially explored by Unruh (1976) not on the basis of modular
theory but rather by exploiting detectors (see Section 7)—was first
recognized by Sewell (1982) who proposed that a natural rescaling
of the modular group would give the Unruh temperature (1). The
temperature T ¼ 1=2p from the Bisognano–Wichmann theorem,
Sewell wrote
is not the observed temperature, however, since this is based
on the time ½r�, rather than the proper time ta. In fact, the
temperature observed by Oacc [a uniformly accelerating obser-
ver] will take the value Ta, corresponding to a rescaling of time
from ½r� to ta y[i.e. Ta ¼ a=2p]. (p. 209)

It seems fair to interpret these remarks as embodying what I will
call the modular temperature hypothesis, which comes in a
restricted and an extended form. Suppose the modular auto-
morphism group ss for a ðss,bÞ-KMS state j has geometrical
significance in that the modular flow is everywhere a timelike
flow on spacetime. The restricted modular temperature hypoth-
esis (RMTH) applies to the case where the proper time t of an
observer whose worldline belongs to the said flow is such that
dt=ds is constant along the observer’s worldline. It posits that the
inverse temperature ~bt measured by this observer is given by
b� dt=ds. In the Rindler wedge case this posit (per design)
associates the inverse Unruh temperature 2p=a with an observer
moving with constant linear acceleration a. The extended mod-
ular temperature hypothesis (EMTH) is designed to cover cases
where dtðsÞ=ds varies along the worldline of an observer. It posits
that the local inverse temperature ~btðsÞ measured by an observer
whose worldline belongs to the modular flow is given by
b� dtðsÞ=ds. The modular temperature hypothesis is rarely made
explicit, but without it—or some similar hypothesis—modular
theory does not associate any definite temperature with an
observer. Martinetti and Rovelli (2003) explicitly advocate the
EMTH in order to apply modular theory to diamond and future
cone regions of Minkowski spacetime.

A diamond region DðLÞ of Minkowski spacetime, where L is the
dimension of the diamond, can be specified in inertial coordinates
(x, y, z, t) as a region such that j x

!
jþjtjoL. Restricted to DðLÞ, the

Minkowski vacuum state for an m¼0 Klein–Gordon field is a KMS
state for the diamond algebra. The m¼0 field is conformally
invariant and a conformal transformation can be used to map a
wedge region to a diamond region. The latter can be used to
transfer the modular flow on the wedge to the diamond, resulting
in timelike worldlines with uniform acceleration that start at the
past vertex of the diamond and terminate at the future vertex.
This suggests that the modular group for DðLÞ has a geometric
action and that the group orbits are identical with those given by
the transfer construction. A proof that the suggestion is correct is
given by Hislop and Longo (1982). Application of the EMTH yields
the result that the modular temperature associated with an orbit
parameterized by proper time is ta given by (Martinetti and
Rovelli, 2003)

TðtaÞ ¼
La2

2pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2L2
p

�coshðataÞÞ
: ð4Þ

For observers with a large acceleration a (which is needed for an
orbit that stays near the boundary of the diamond) and for large L,
the associated modular temperature is approximately equal to the
Unruh temperature a=2p. For a centrally located observer, who has
zero acceleration, the extended modular temperature hypothesis
associates a temperature of 2=pT , where T ¼ 2L is the elapse of
proper time along the observer’s worldline from the bottom tip to
the apex of the diamond. Such observers confined to small
diamonds and, thus, having short lifetimes can console themselves
with the fact that they have a high temperature associated with
them. Indeed, by making their lifetimes sufficiently short, they can
overcome the smallness of the (suppressed) numerical factor
_=2pck so as to make the modular temperature rise above the
ordinary background room temperature.

The other instance where the modular group is known to have
a geometric action is the case of the Minkowski vacuum state for
an m¼0 Klein–Gordon field restricted to the algebra associated



Fig. 2. Bifurcate Killing horizons; sample orbits of the horizon Killing field

indicated by arrowed lines.
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with interior Vþ of a future light cone, which without loss of
generality can be situated at the origin of an inertial coordinate
system (i.e. Vþ consists of those points such that t4 j x!j). Since
Vþ does not have a non-null causal complement one cannot
proceed as the case of a wedge or diamond. But advantage can be
taken of the fact that in a Minkowski spacetime of even dimen-
sion the m¼0 field propagates at exactly the speed of light.
Consequently, the algebra of observables associated with Vþ and
the algebra associated with the twin past cone V� commute (see
Buchholz, 1978). By the Reeh–Schleider theorem j0MS is cyclic
with respect to the V� algebra and, thus, is separating for the
commutant algebra which includes the Vþ algebra. The upshot is
that the restriction of j0MS to the Vþ algebra defines a faithful
normal state and, thus, by the Tomita–Takasaki theorem a KMS
state. The modular group ss for this state acts by spacetime
dilations (see Haag, 1996, Section V.4). Martinetti and Rovelli
(2003) interpret the orbits of ss as inertial worldlines that fan out
from the origin. Proper time along one of these worldlines is
related to the modular parameter by tðsÞ ¼ expð�2psÞ. The
extended modular temperature associated with these observers
is non-zero at birth and then decreases exponentially.

These somewhat startling consequences of the EMTH might
lead one to doubt it. But such doubters who at the same time
want to apply RMTH to Rindler wedges have to provide a
principled motivation for accepting RMTH while rejecting EMTH,
for otherwise doubts about the latter will also infect the former.
Such a motivation might start with the observation that only in
cases where the RMTH applies is it guaranteed that the modular
group ss for a ðss,bÞ-KMS state j can be reparameterized using
the proper time t of an observer; and it continues by asserting
that only when such a reparameterization is possible can the
modular automorphism group be identified with the dynamical
automorphism group for an observer with proper time t. In these
happy circumstances j is a ðst, ~btÞ-KMS state with ~bt ¼ bx dt=ds,
i.e. the RMTH is equivalent to the statement that the value of the
inverse temperature associated with an observer is to be read off
the reparameterization of modular group by said observer’s
proper time. Doubts about the EMTH can also be explored by
comparing its predictions for DðLÞ and Vþ with the responses of
appropriate detectors.11 I will not pursue this matter here and
will restrict attention to cases falling under the RMTH.
4. The Unruh effect in curved spacetimes and its relation to
the Hawking effect

A null surface N of a relativistic spacetimeM,gab is said to be a
Killing horizon if there is a Killing field xa

ð£xc gab ¼ 0Þ normal to N
(see Appendix B). This concept is important to black hole physics
since it is known that the event horizon of a stationary black hole
must be a Killing horizon. A bifurcate Killing horizon for a four-
dimensional spacetime consists of a pair of null surfaces N A and
N B that intersect in a spacelike two-surface S such that N A and
N B are both Killing horizons with respect to the same Killing field
xa. Provided that there is a Cauchy surface containing S, the
bifurcate horizons divide the spacetime up into four wedges F, P,
L, R as indicated schematically in Fig. 2.
11 The rub, of course, is deciding what an appropriate detector is for such

cases. Inertially moving Unruh–DeWitt detectors that have been switched on the

asymptotic past give a null result (see Section 7). Switching on in the finite past

will produce transients, but these effects should dissipate in a finite time leaving

a null response. Such null responses would seem to clash with the predictions of

the EMTH for DðLÞ and Vþ . Perhaps, however, Unruh–Dewitt detectors are not

appropriate. But then what are appropriate detectors?
In the case of Minkowski spacetime, the Killing field
xa
¼ ½xð@=@tÞaþtð@=@xÞa� has the associated bifurcate Killing hor-

izon consisting of null planes intersecting at the origin. The wedge
regions L and R where the Killing horizon field is timelike are, of
course, the left and right Rindler wedges. Consider the quasi-free
states on the Weyl CCR algebra for a Klein–Gordon field propa-
gating on Minkowski spacetime.12 Among these states there is a
unique non-singular one that is invariant under the automorph-
isms of the algebra corresponding to the isometries whose
generator is the horizon Killing field in the region where this
field is timelike. This state is none other than the Minkowski
vacuum state, and (as we already know) the restriction of this
state to the right Rindler wedge algebra is a KMS state at
inverse temperature 2p. A non-singular state j is one that
satisfies the Hadamard condition which guarantees that the
point-splitting method of renormalization yields a finite expecta-
tion value /TabSj of the stress-energy tensor TabðfÞ :¼ rafrbf
� 1

2 gabðrcfr
cfþm2f2

Þ for the free field f (see Wald, 1994 for
details).

Kay and Wald (1991) show how this situation generalizes to a
minimally coupled free scalar field propagating on a curved
globally hyperbolic spacetime with bifurcate Killing horizons such
that the intersection S of N A and N B is contained in a Cauchy
surface. More specifically, they prove that on a ‘‘large’’ subalgebra
of a L or R wedge algebra of observables there is at most one
quasi-free non-singular (Hadamard) state that is invariant under
the automorphisms generated by the Killing horizon isometries.13

They also show that under the further assumption of the exis-
tence of a ‘‘wedge reversal’’ isometry, the restriction of the unique
invariant state—if it exists—to the observables of the large
subalgebra of observables that are localized in one of the L or R

wedges is a KMS state at Hawking temperature

TH ¼
k

2p
ð5Þ

with respect to the automorphism group generated by the Killing
horizon isometries. Here k :¼ � 1

2 ðraxbÞðr
axb
Þ, evaluated on the

horizon, is the surface gravity. It can be shown that k¼ limðaVÞ

where V :¼ ð�xaxaÞ
1=2 is the norm of the horizon Killing field,

a :¼ ðababÞ
1=2 is the norm of the acceleration ab :¼ xc

rcx
b=V of

the orbit, and the limit is taken as the horizon is approached.
12 The GNS representation induced by such a state has a natural Fock space

structure (see Appendix C).
13 Kay (1993) shows that the quasi-free assumption can be dropped.
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The surface gravity k is constant on the horizon (see Wald, 1984,
Section 12.4).14 The inevitability of the Hawking temperature for
linear quantum fields is reinforced by the result of Haag,
Narnhofer, and Stein (1984) showing that if there is a KMS state
with respect to the bifurcate Killing horizon field and if this state
satisfies a condition of local definiteness—roughly, the state must
be indistinguishable from the Minkowski vacuum in the infinite-
simal regime—then the temperature of the state must be k=2p.

Applying the modular temperature hypothesis, the inverse
temperature associated with an observer whose worldline is an
orbit of the Killing horizon field is 2p=k multiplied by the ratio of
the observer’s proper time to the modular parameter (here the
Killing parameter), yielding the modular temperature

T ¼
k

2pV
: ð6Þ

When appropriate vacuum states exist (6) encapsulates what can
be deemed a generalized Unruh effect for curved spacetimes. The
task now is to find when these states exist and to compute k and
V for these cases and, thereby, the modular temperature.

In the case of Minkowski spacetime a vacuum state for a
Klein–Gordon field satisfying the conditions of the Kay and Wald
(1991) theorem does exist—it is, of course, the Minkowski
vacuum. As a consistency check we can compute the surface
gravity k¼ limðaVÞ using the fact that in a Rindler wedge a¼ 1=z
and V ¼ z (recall that z is the Rindler spatial coordinate) giving
k¼ 1 and a modular temperature equal to the Unruh tempera-
ture. In the case of the Kruskal maximal extension of the
Schwarzschild solution (see Fig. 3) the desired vacuum state also
exists—in the literature it is called the Hartle–Hawking vacuum
state j0HS (see Hartle and Hawking, 1976).15 Here

a¼
GM

r2 1� 2GM
r

� �1=2
, V ¼ 1�

2GM

r

� �1=2

where r is the Schwarzschild radial coordinate and M is the mass
of the black hole, yielding a modular temperature of

k
2pV

¼
1

8pGM 1� 2GM
r

� �1=2

for an observer moving along the orbit r¼const. As the horizon at
r¼2M is approached, k=2pV-a=2p, which is the same form as
the Unruh effect for Minkowski spacetime. But note a key
difference between this generalized Unruh effect and the Unruh
effect for flat spacetime. The latter is rightly referred to as an
acceleration effect, for as the Rindler spatial coordinate z-1, the
acceleration of the Killing orbit a-0 and the Unruh temperature
TU-0. (Unruh himself tends to use the term ‘‘acceleration
radiation’’ to refer to the Unruh effect in flat spacetime.) But in
the case of the Hartle–Hawking vacuum for Kruskal spacetime, as
r-1, a-0 while the modular temperature k=2pV-1=8pGM.16

Examples of non-existence results for a generalized Unruh
effect are given by a minimally coupled Klein–Gordon field on
either the globally hyperbolic portion of Kerr spacetime, which
describes a rotating black hole, or the Schwarzschild–de Sitter
spacetime, which is composed of an infinite chain of alternating
Schwarzschild and de Sitter spacetimes. There is no appropriate
KMS state for these cases; indeed, there is no Hadamard vacuum
14 If xa is a Killing field, then so is Cxa where C is an arbitrary constant, which

seems to lead to an ambiguity in the value of the surface gravity. But in the case of

an asymptotically flat spacetime the ambiguity can be squelched by requiring that

V ¼ ð�xaxaÞ
1=2-1 as r-1.

15 The names of the vacuum states are somewhat confusing: the Hartle–

Hawking vacuum is the state relevant to the (generalized) Unruh effect while the

Unruh vacuum is the state relevant to the Hawking effect (see below).
16 For a solar mass black hole, this corresponds to a temperature of 6� 10�8

1.
state invariant under the automorphisms generated by the Killing
horizon isometries (Kay and Wald, 1991).

On a more positive note, the generalized Unruh effect does
hold for de Sitter spacetime. For an m40 minimally coupled
Klein–Gordon field Allen (1985) found a one (complex) parameter
family vacuum states invariant under the de Sitter group of
isometries.17 But only one of these, the ‘‘Euclidean vacuum,’’
satisfies a Hadamard-type condition. This condition is weaker
than the one used in Kay and Wald (1991), so it is not apparent
whether their results apply. Fortunately, there are independent
proofs that the restriction of the Euclidean vacuum state to a
wedge region corresponding to a bifurcate Killing field produces a
KMS state at Hawking temperature k=2p¼ ð1=2pÞ

ffiffiffiffiffiffiffiffiffi
L=3

p
where

L40 is the cosmological constant (see Bros and Moschella,
1996). As noted by Wald (1994, p. 127) every non-accelerated
observer in de Sitter spacetime has an associated modular
temperature equal to the Hawking temperature since for any
timelike geodesic g in de Sitter spacetime a bifurcate Killing field
xa can be chosen to be tangent to g and normalized along g so that
V ¼ ð�xaxaÞ

1=2
¼ 1. Here then is another example where the

generalized Unruh effect is not an acceleration effect. For a
conformally coupled m¼0 scalar field (see Appendix C) on de
Sitter spacetime it has been argued that the temperature mea-
sured by an observer in uniform acceleration a through the
conformal vacuum is ð1=2pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=3þa2

p
(see Narnhofer, Peter,

and Thirring, 1996).
All of the results reported above pertain to non-interacting

scalar fields, which might occasion the worry that what is being
called the generalized Unruh effect is an artifact of focusing on
overly simple case. This worry is somewhat assuaged by Summers
and Verch’s (1996) model-independent proof that when a state on
a net of local algebras is restricted to a subnet of algebras, the
members of which are invariant under the automorphisms
generated by the Killing horizon isometries, the result is a KMS
state at inverse Hawking temperature. Of course, the question of
the existence of the appropriate algebras and states is a model-
dependent affair, and not surprisingly most of the positive
existence results have been obtained for the simplest case of
linear scalar fields.
17 For m¼0 no such vacuum state exists.
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21 For a solar mass black hole the evaporation time is finite but very long—on

the order of 1067 years. What happens when a black hole evaporates is a matter of

controversy, e.g. is information lost in the process? For a very readable (but

somewhat biased) overview of the controversy, see Susskind (2008).
22 A salutary example where a formal ‘‘temperature’’ has no connection to

statistical–thermodynamical temperature is given by Srinivasan, Sriamkumar, &

Padmanabhan (1997). Consider a plane wave mode fðx,tÞ ¼ cosðot�k � xÞ of a
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Returning to Kruskal spacetime, in addition to the Hartle–
Hawking vacuum two other candidate vacuum states are available:
the Boulware vacuum (see Boulware, 1975) and the Unruh vacuum
(see Unruh, 1976).18 The Boulware vacuum j0BS can be seen as
analogue of the Fulling vacuum j0FS for a Rindler wedge algebra in
Minkowski spacetime. The Fulling quantization will be discussed in
Section 6 (see also Appendix C); but for present purposes suffice it to
say that for both j0FS and j0BS the positive frequency modes are
defined relative to the Killing horizon trajectories. Like j0FS, j0BS is
a non-thermal, indeed, pure state on a L or R wedge algebra. And
just as j0FS is singular (non-Hadamard) at the edges of the Rindler
wedge (see Section 6), so j0BS is singular on both the past (or white
hole) horizon and the future (or black hole) horizon (labeled
respectively HP and HF in Fig. 3).

The invocation of the ‘‘Hawking temperature’’ in the above
exposition should not be taken as an invitation to conflate the
generalized Unruh effect with the Hawking effect which asserts that
at sufficiently late times a black hole radiates with a thermal
spectrum at Hawking temperature (6) as seen by an observer near
infinity (Hawking, 1975; Wald, 1975). Sometimes a derivation of the
generalized Unruh effect is taken eo ipso as a demonstration of the
Hawking effect (see, for example, Sewell, 1980). But as emphasized
by Wald (1994, 1999), the Hawking effect and the generalized
Unruh effect are quite distinct since they refer to different states of
the quantum field—in the case of Kruskal spacetime, they refer
respectively to the Unruh and Hartle–Hawking vacua.

In the Hawking effect, the asymptotic final state of the
quantum field is a state in which the modes of the quantum
field that appear to a distant observer to have propagated from
the black hole region of the spacetime are thermally populated
at temperature [TH], but the modes which appear to have
propagated in from infinity are unpopulated. This state
(usually referred to as the ‘Unruh vacuum’) would be singular
[non-Hadamard] on the white hole horizon in the analytically
continued spacetime containing a bifurcate Killing horizon. On
the other hand, in the Unruh effect and its generalization to
curved spacetimes, the state in question (usually referred to as
the ‘Hartle–Hawking vacuum’) is globally non-singular and all

modes in the quantum field in the ‘left and right wedges’ are
thermally populated.19 (Wald, 1999, pp. A182–A183)

The difference between the generalized Unruh effect and the
Hawking effect is at its starkest in the case of a Kerr black hole. As
already noted there is no analogue of the Unruh effect, at least not
on the approach that takes the Unruh effect and its generalization to
curved spacetime to be a statement about KMS states; but the
derivation of the Hawking effect in the form of particle creation in
the formation of a Kerr black hole goes through (Wald, 1994, p. 129).

The importance of the Hawking effect is at least two-fold. First,
it provides the physical grounding for black hole thermodynamics
by showing that the Hawking temperature is the physical tem-
perature of a black hole and, thus, that the expression for black
hole entropy, originally developed by Birkenstein (1973) on the
basis of a formal analogies, is truly the thermodynamic entropy of
a black hole.20 Second, when backreaction effects of the Hawking
18 A overview of the properties of the three candidate vacuum states for

Kruskal spacetime can be found in Novikov & Frolov (1989, Chap. 10). Rigorous

algebraic versions of these states can be found in Dimock & Kay (1987).
19 The fact that the Unruh vacuum state is singular on the white hole horizon

might seem to call into question the basis of the Hawking effect. But note that

Kruskal spacetime is not a good model for the formation of a spherically

symmetric black hole through the process of gravitational collapse. A more

realistic model would eschew the Kruskal white hole and with it the past horizon

on which the Unruh vacuum state becomes singular.
20 For a survey of black hole thermodynamics, see Wald (1998, 2001).
radiation are taken into account, it is found that a black hole loses
mass at a rate that leads to the evaporation of a black hole in a
finite time.21 The Unruh effect does not occupy such a funda-
mental role in black hole physics. Nor was it intended for
such a role; indeed, in its original incarnation was supposed
to apply just to flat spacetime, and it was only as an afterth-
ought that it was generalized to black hole and other curved
spacetimes.
5. Some qualms about the modular theory approach

Although never made explicit, the following attitude is implicit
in a significant fraction of the literature on the Unruh effect: ‘The
Unruh effect in flat spacetime and its generalization to curved
spacetimes is no more and no less than what is given in the
theorems (reviewed in Sections 3 and 4) that flow from QFT by
way of modular theory. The modular temperature hypothesis
need not be regarded as an extra empirical hypothesis but as part
of an implicit definition of the concept of modular temperature.
Since there is no arguing with theorems, case closed with no
further need for discussion.’ While this is a respectable attitude
for mathematicians to adopt, it spells shortsightedness for phy-
sicists and an outright dereliction of duty for philosophers of
physics.

A KMS state is an analogue of a Gibbs state, and as with all
analogical reasoning one can wonder how reliable the analogy is
and what inferences it supports; in particular, when it is safe to
infer that the analogical ‘‘temperature’’ 1=b appearing in a KMS
state has something like its ordinary thermodynamical mean-
ing?22 In the applications originally envisioned by Kubo, Martin,
and Schwinger—KMS states for systems obtained by taking the
thermodynamic limit of ordinary thermodynamical systems—

doubts are readily assuaged. For example, in some model cases
it can be shown that the limiting system acts as athermal
reservoir at temperature 1=b in that if it is coupled to a finite
system, the latter will be driven to thermal equilibrium at
temperature 1=b (see Sewell, 1974). The need for reassurance is
more pressing in instances where the KMS state characterizes a
system that is not the thermodynamic limit of an ordinary
thermodynamical system but a system that, a priori, does not
lend itself to thermodynamical description, such as a quantum
field in a vacuum state.

In the flat spacetime case the needed reassurance would take
the form of comparing the deliverances of modular theory
with the responses of physical objects accelerated through the
Minkowski vacuum. But there is an apparent obstacle to even
getting started on making such comparisons. Consider the
question
zero-mass Klein–Gordon field traveling along the x-axis in Minkowski spacetime,

i.e. k¼(k, 0, 0). The Fourier transform with respect to the proper time t of an

observer is given by ~fðOÞ ¼
R þ1
�1

cosðotðtÞ�k � xðsÞÞexpð�iOtÞ. For an observer

with uniform acceleration a along the x-axis, the power spectrum PðOÞ :¼
O=j ~fðOÞj2 has three terms, one of which is NðOÞ ¼ 1=ðexpð2pO=aÞ�1Þ, i.e. a Planck

distribution in O at Unruh temperature. But as the authors note, ‘‘The system we

are considering has no fluctuations or temperature in the sense of statistical

physics’’ (p. 6693). Formal results of this type are sometimes billed as demon-

strating that the Unruh effect has ‘‘classical roots’’ (see Pauri & Vallisneri, 1999).

On the contrary, I take them as raising a caution flag—in both classical and

quantum settings—when drawing physical conclusions from formal temperature

expressions.
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Q1: My steak is currently accelerating through the Minkowski
vacuum, and the wordlines of the points of the steak constitute
a Born rigid motion described in Section 3. What modular
temperature does a point undergoing an acceleration of
magnitude a experience?

The answer to Q1 is not necessarily given by plugging the value of
the acceleration into the formula T ¼ _a=2pck. In fact without the
help of further information modular theory does not supply an
answer to Q1; indeed, from the point of view of modular theory
whether or not it makes sense to give a definite answer to Q1
depends not only on the current state of motion of the steak but
on its entire history. In brief, the point is this: the philosophy
behind the modular theory approach to the Unruh effect is that a
Rindler observer experiences a thermal state because she can
access only a limited subalgebra of the full algebra of observables
of the quantum field; but that such limited access obtains is not
assured by the facts about any proper portion of the observer’s
history.

To develop the point, start with a humble example from
ordinary QM, say, a system of two spin 1/2 particles in a singlet
state which is, of course, a pure state. For an observer who has
access to only one of the particles the relevant state is the
restriction of the singlet state to the algebra of observables
associated with said particle. Because the singlet state encodes
correlations between the two particles, tracing out the degrees of
freedom associated with the unobserved particle produces a
mixed state on the algebra of observables associated with the
particle to which the observer has access. And so it is in the case
of QFT. Suppose that the system is a Klein–Gordon field on
Minkowski spacetime and that the state is the Minkowski
vacuum state. An observer who always has been and always will
be in constant linear acceleration has access only to those
observables associated with the Rindler wedge to which her
worldline is confined. For her the relevant state is the Minkowski
vacuum state restricted to her Rindler wedge algebra. Because the
Minkowski vacuum state encodes correlations between relatively
spacelike regions, the restriction of this pure state to a Rindler
wedge region is a mixed state.23 And—this is the surprise that
comes out of relativistic QFT—the resulting state is not a garden
variety mixed state but one with very special thermal properties,
at least by the lights of modular theory. Now consider an observer
who maintains constant linear acceleration for a finite stretch of
(proper) time as long as you like but who is unaccelerated either
in the asymptotic past or the asymptotic future. Such an observer
has access to observables associated with regions outside any
Rindler wedge region and, consequently, the argument that for
her the relevant state is a mixed, thermal (KMS) state no longer
applies. This makes it mysterious how to mesh the deliverances of
modular theory with the registrations of laboratory instruments.
For an instrument that registers only at t¼ þ1 is useless for
theory testing; and, barring backwards causation, the registration
at any finite t0 cannot depend on whether for times t4t0 the
instrument is in constant linear acceleration.24

It is tempting to try to overcome this conundrum by pointing
to the need to employ idealizations in applying theoretical
physics to actual situations. This truism is certainly borne out in
23 Lemma: Let A be a Cn-algebra and let B be a Cn-algebra subalgebra of A. If

the restriction jjB to B of a state on A is a pure state, then jðXYÞ ¼jðXÞjðYÞ for all

XAB and all YAA such that ½Y ,B� ¼ 0. To apply this lemma let B and C be

subalgebras of A associated with relatively spacelike regions. By Einstein causality

½B,C� ¼ 0. To say that a state j encodes correlations between observables belong-

ing to B and C is to say that there are XAB and all YAC such that

jðXYÞajðXÞjðYÞ. Hence, by the Lemma it follows that jjB is not pure.
24 Misgivings about the use of modular theory to explicate the Unruh effect

can be read between the lines of some of the physics literature. But the first
the part of the literature on the Unruh effect dealing with
detectors where the analysis focuses on highly idealized point-
like systems that serve as stand-ins for actual laboratory instru-
ments. But the idea that modular theory can be used to make
predictions about the registration of such an idealized detector
during some finite period U of proper time during which it is
undergoing constant linear acceleration through the vacuum by
further idealizing the situation to one where U extends to 71
seems fundamentally mistaken. The most straightforward way to
use local algebraic QFT to make predictions is to restrict the
vacuum state to the local algebra of observables associated with a
local neighborhood of the portion of the worldline of the detector
corresponding to U. The result will be a KMS state, but typically
the associated automorphism group will not have a geometrical
significance that allows the automorphisms to be linked to the
worldlines of the detector.

Ignoring this conundrum only opens the way to another worry
embodied in a second question.
(foo

exp

rath
Q2: Suppose that my steak is forever and always in Born rigid
motion through the Minkowski vacuum and that the mean
modular temperature associated with the worldlines of the
steak is 3001C. Will it be charred?
Modular theory can suggest an answer through the modular
temperature hypothesis which assigns temperatures to special
families of worldlines. But to derive from QFT the response of a
physical object—our steak, for example—the worldlines of the
points of which form one of these special families, requires
assumptions about the constitution of the object and about how
the constituents couple to the quantum field. One might hope
that for a wide range of constitutions and couplings the resulting
response is fairly generic and is characterized by familiar thermal
effects, such as the charring of our steak. The enterprise of
showing that the hope is fulfilled would need to call on empirical
hypotheses and mathematical techniques that are not part of
modular theory, and if the enterprise is successful it would
establish a version of the Unruh effect that is independent of
the modular theory version. It would be surprising if there were
not some concordance of the two versions; but it would be
equally surprising if they were in complete agreement.

In sum, while modular theory strongly suggests that in QFT
thermal effects arise from acceleration, other ways are needed to
substantiate these effects, at least if ‘‘thermal’’ is to have a
meaning that goes beyond the incestuous sense that is implicitly
defined by the theorems of modular theory. Two such ways are
discussed in the following sections. Section 6 takes up the idea
that the thermal effects detected by an observer uniformly
accelerating through the Minkowski vacuum arise from the fact
that said observer encounters a thermal bath of quanta. This is an
idea that might seem to be stillborn by definition since the
vacuum state is devoid of quanta. However, a common response
in the literature is that although the Minkowski vacuum is, of
course, devoid of Minkowski quanta, said observer encounters
a thermal flux of quanta of a different species—Fulling quanta.
This response will be found wanting. Section 7 explores a way of
rationalizing the Unruh effect in terms of the response of
detectors to acceleration, an approach that is quite independent
of and somewhat discordant with modular theory.
tnote continued)

licit expression of misgiving I could find is in Schlicht (2004), which comes

er late in the game.
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6. Fulling and other non-Minkowskian quanta

The following are typical sentiments found in the literature on
the Unruh effect:

Unruh’s observation was that the theory that is thereby
constructed [quantizing using Fulling modes] is not unitarily
equivalent to the usual free field theory on Minkowski space-
time. Of even greater surprise was the subsequently discov-
ered fact that the usual Poincaré invariant vacuum state
appropriate to Minkowski space ycontains a thermal distri-
bution with respect to the Fulling Fock space. (Sciama et al.,
1981, p. 343)

The Minkowski vacuum is full of Rindler [Fulling] photons,
although it is devoid of Minkowski photons. (DeWitt, 1979,
p. 694)25

Sometimes the Unruh effect is characterized as ‘‘the equivalence
between the Minkowski vacuum and a thermal bath of Rindler
[Fulling] particles’’ (Crispino et al., 2008, p. 2). The main goal of
this section is to explain why I think this characterization is
misleading.

As noted above, if a right Rindler wedge R of Minkowski
spacetime is considered a spacetime in its own right it is a globally
hyperbolic spacetime that is covered by the static Rindler coordi-
nates. One can follow the quantization procedure outlined in
Appendix C to quantize the Klein–Gordon field on this spacetime
using the Rindler time coordinate r rather than the inertial time t to
identify the positive frequency modes of the field, i.e. using �i@=@r
rather than �i@=@t as the energy operator. This procedure was first
carried out by Fulling (1972, 1973) who showed that it yields a
notion of particle (or better quantum) distinct from that of the
standard Minkowski quantization.

Now the idea that a number of physicists have had is that we can
get a handle on what is experienced by an observer in constant
linear acceleration through the Minkowski vacuum by expressing
the Minkowski vacuum state j0MS in the Fock space of the Fulling
representation. One encounters in the literature formulae in which
j0MS is written as a superposition of the (tensor) products of
positive frequency Fulling modes for the left L and right R Rindler
wedges. Tracing out over the degrees of freedom in, say, L produces
a mixed state for the wedge algebra AðRÞ in the form of a thermal
density operator at Unruh temperature (see, for example, Sciama
et al., 1981; Unruh and Wald, 1984; Lee, 1986; Takagi, 1986, Section
2.8; Ginsburg and Frolov, 1987). Such expressions supposedly justify
the idea that an observer uniformly accelerated through the
Minkowski vacuum encounters a thermal flux of Fulling quanta.
These results, together with analogous results for curved spacetimes,
have sometimes been advertised as ‘‘thermalization theorems’’ (see
Israel, 1976; Lee, 1986; Takagi, 1986, Section 2.8; Ginsburg and
Frolov, 1987).

Strictly speaking, however, the crucial formulae involved are
mathematically ill-defined, and genuine thermalization results that
establish an Unruh effect for Minkowski spacetime and a generalized
effect for curved spacetime cannot bypass the need to prove the
satisfaction of an appropriate KMS condition.26 To see why the
ambition of expressing the Minkowski vacuum state as a density
operator in the Fulling representation is unfulfillable, begin by noting
that the Fulling vacuum state jF is a pure state on AðRÞ and, thus,
25 DeWitt refers to photons because, for reasons that will become clear in the

following section, he is working with the case of a m¼0 Klein–Gordon field.
26 If this is the point that the Russian school which naysays the Unruh effect

(Belinskii et al., 1997; Fedetov et al., 1999; Narozhny et al., 2000, 2002) intends to

make, then they are correct. But it hardly follows that the Unruh effect does not

exist.
the Fulling representation pjF
ðAðRÞÞ is irreducible; by contrast the

Minkowski representation pjM jAðRÞ ðAðRÞÞ is reducible since jMjAðRÞ is
a mixed state. Thus, trivially, the Minkowski and Fulling representa-
tions are not unitarily equivalent, a fact noted in Fulling (1972). What
Fulling (1972, 1973) did not establish is the stronger conclusion that
these representations are disjoint, a result that follows from the fact
that the von Neumann algebra MMðRÞ :¼ pjM jAðRÞ ðAðRÞÞ00 affiliated
with the Minkowski representation is a Type III factor (see Araki,
1964) while that associated with the Fulling representation MF ðRÞ :¼
pjF
ðAðRÞÞ00 is a Type I factor (see Appendix A). In outline, the

argument is that factor representations are either quasi-equivalent
or disjoint; but quasi-equivalent representations must have affiliated
von Neumann algebras which are n-isomorphic, which MMðRÞ and
MF ðRÞ are not since they are of different types. (The alert reader will
have noted that this disjointness result has nothing to do with the
specific nature of the Fulling representation per se; it relies only on
the fact the representation arises from a pure state on the algebra at
issue and, thus, is irreducible. Hence, the disjointness from the
Minkowski representation would hold for any other candidate
vacuum state on AðRÞ.) The importance of this result is that
disjointness of the representations implies that no normal state of
one representation (i.e. no state expressible as a density operator in
that representation) is a normal state of the other.27

Of course, the fact that formulae expressing jMjAðRÞ as a density
operator in the Fulling representation are mathematically ill-defined
does not imply that they do not express approximately correct truths
in that they yield approximately correct results when used to
calculate quantities of interest. To justify this approximation idea
one might appeal to Fell’s theorem which shows that any non-
degenerate representations p1 and p2 of a Weyl algebra W are
weakly equivalent in the sense that for any normal state j for one
representation, any finite list of observables O1,O2, . . . ,OnAW, and
any error tolerances e1,e2, . . . ,en40, there is a normal state j0 for the
other representation such that jjðOjÞ�j0ðOjÞjoej for all j¼1,2,y,n.
The theorem applies in the present case since the AðRÞ at the center
of attention is a Weyl algebra. The trouble is that appeals to Fell’s
theorem cannot help with the key observables of interest in the
present case because they are representation-dependent in that they
live not in the Cn-algebra AðRÞ but in the von Neumann algebras
MMðRÞ and MF ðRÞ affiliated with the Minkowski and Fulling
representations respectively. In particular, this is true of the total
Fulling particle number operator NF

R and the number operators NF
k,R

for the individual Fulling modes (labeled by k) for R. Nevertheless,
one can try to calculate the values of these operators for the
Minkowski vacuum state, and the answers one obtains in both cases
is ‘‘1’’ (see Letaw and Pfautsch, 1981, p. 1495). These results can be
glossed as ‘‘The Minkowski vacuum is filled with an infinity of Fulling
quanta of every mode,’’ but strictly speaking what they mean is
that the Minkowski vacuum vector is not in the domain of either
NF
R or NF

k,R.
Just as there are attempts to understand the Unruh effect for

Minkowski spacetime in terms of a thermal flux of Fulling quanta, so
there are attempts to understand the generalized Unruh effect in
Kruskal spacetime (recall Section 4) in terms of a thermal flux of
Boulware quanta encountered by an observer who is accelerating
through the Hartle–Hawking vacuum, the Boulware and Hartle–
Hawking vacua being respectively the analogues of the Fulling and
Minkowski vacua (see Israel, 1976; Sciama et al., 1981; Ginsburg and
Frolov, 1987). The objections to this construal of the Unruh effect for
the Minkowski case apply equally to the Kruskal case on the
27 See Bratelli & Robinson (1987, Theorem 2.4.26). Physicists sometimes

express this disjointness property by saying things like ‘‘every element of the

Hilbert space that contains the Rindler [Fulling] vacuum is perpendicular to the

Hilbert space containing the Minkowski vacuum’’ and vice versa (see, for example,

Gerlach, 1989).
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Fig. 4. Milne coordinates for a future cone region of Minkowski spacetime.
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supposition that the von Neumann algebra affiliated with the Hartle–
Hawking representation of a wedge algebra for Kruskal spacetime is a
non-Type I factor, for then it would follow that the Hartle–Hawking
representation is disjoint from the Boulware representation. Although
I believe that this supposition holds, I know of no formal proof.

Returning to the Unruh effect in Minkowski spacetime, there are
excellent mathematical physicists who acknowledge the technical
difficulties reviewed above but who, nevertheless, find it heuristically
useful to think of the Minkowski vacuum state as defining a thermal
density operator in the Fulling representation. But heuristics, no
matter how useful and suggestive, cannot be trusted to adjudicate
foundational issues, especially if the heuristics do not have a well-
founded basis. And it is for just this reason that Wald (1994, pp. 117–
118), who advocates the heuristic, points to the need for a character-
ization of what it means for jMjAðRÞ to be a thermal equilibrium state
without presuming (per impossible) that jM jAðRÞ exists as a density
matrix in the Fulling representation. A formal characterization that
fits the bill is provided by the KMS condition. But as argued in the
preceding section, that formal characterization needs to be supple-
mented in order to give thermodynamic content to the notion of
temperature it embodies. The idea that this temperature can be
understood in terms of a thermal bath of Fulling quanta was one way
of trying to provide such content. Under scrutiny, however, that idea
turns out to have only heuristic value. To try to add real value by
appeal to KMS theory leads to a circle, and multiple loops around the
circle will not provide the sought after content.

Leaving aside mathematical niceties, there is also reason to doubt
that appealing to the Fulling representation is a good heuristic for
getting a handle on what is experienced by an observer in constant
linear acceleration through the Minkowski vacuum. It comes from the
claim that a necessary condition for a state j on the wedge algebra
AðRÞ (or the canonical extension of j to its affiliated von Neumann
algebra pjðRÞ00) to be physically realizable is not simply that it satisfy
for AðRÞ (or pjðRÞ00) whatever adequacy conditions are demanded
for physically acceptable states but also that j can be extended to
state on the global algebra for Minkowski spacetime that also satisfies
the adequacy conditions. If these adequacy conditions include the
Hadamard condition then jF is condemned as physically unrealiz-
able, for it cannot be extended beyond R as a Hadamard state since
/TabSjF

diverges as the edges of the wedge are approached—in fact,
the energy density approaches �1.

In rejoinder it might be claimed that the uniformly accelerated
observers who are confined to the Rindler wedge R have every right
to treat R as the entirety of spacetime and, thus, every right to
quantize a la Fulling and so arrive at jF as the vacuum state of the
field; that jF becomes singular when extended to a state on a larger
spacetime into which R is embedded is irrelevant to observers
confined to R. Although this claim has some initial plausibility, its
plausibility vanishes when applied to analogous situations where it
leads to patently unacceptable consequences.

Consider, for example, a family of observers who are born at
the origin of the inertial coordinates (x, y, z, t) of Minkowski
spacetime and who disperse by moving with uniform speeds
ðocÞ along the x-axis. A coordinate system (X, Y, Z, T) adapted to
the motion of these observers and covering the future cone Vþ to
which they are confined is given by

x¼ a�1expðaTÞsinhðaXÞ, t¼ a�1expðaTÞcoshðaXÞ

y¼ Y , z¼ Z ð7Þ

The capitalized coordinates are known as Milne coordinates. In them
the Minkowski line element takes the form

ds2
¼ expð2aTÞðdX2

�dT2
ÞþdY2

þdZ2
ð8Þ

The T¼const hypersurfaces, which are orthogonal to the trajectories
of the X¼const worldlines of the observers, give a foliation of Vþ by
Cauchy surfaces for Vþ considered as a spacetime in its own right
(see Fig. 4). Parroting the rejoinder under consideration into the
present case, the claim would be that observers confined to Vþ have
every right to consider Vþ as the entirety of spacetime and, thus,
every right to quantize appropriately to this consideration. Since
the metric components in the (X, Y, Z, T) coordinate system are
T-dependent, the quantization procedure outlined in Appendix C
cannot be applied. But one can proceed in the spirit of the quantiza-
tion applied to a Klein–Gordon field propagating in an expanding
Friedman–Walker–Robertson cosmological model. That is, one can
construct an In one-particle Hilbert space and thence a Fock space
from the positive frequency modes in the asymptotic past ðT-�1Þ
and an Out one-particle Hilbert space and corresponding Fock space
from the positive frequency modes in the asymptotic future
ðT-þ1Þ. One then finds that in this scheme there is ‘‘particle
creation’’ because the T-�1 positive frequency modes evolve to a
linear combination of T-þ1 positive and negative frequency
modes (see Padmanabhan, 1990). Interestingly, in the m40 case
the Unruh temperature makes an appearance in the formula for the
number density nk of created particles

nk ¼
1

expð2pjkxj=aÞ�1
ð9Þ

where kx is x-component of the linear momentum. But the point is
that no serious physicist believes that genuine particle creation takes
place in a flat spacetime.

Padmanabhan (1990) worried that this example suggests that
alleged instances of particle creation in curved spacetime might be
spurious effects due to an unfortunate choice of coordinate system
and urged that ‘‘We have to produce a sensible criterion which will
distinguish particle creation due to spacetime curvature effects from
effects due to choice of coordinates’’ (1990, p. 2473). A different but
equally effective response to the challenge raised by this example is
to develop a criterion of physically realizable states and to show that
it excludes the In and Out vacuum states for Vþ obtained from
quantizing in the Milne coordinates. Such a criterion is already at
hand, viz. a physically realizable state on the algebra of observables
associated with Vþ must be extendible to a non-singular state on the
full algebra of observables associated with Minkowski spacetime. This
criterion has been deployed by Winters-Hilt, Redmount, and Parker
(1999), who motivate it by the idea that physically admissible states
are those that arise from the evolution of regular initial data in the
remote past. And they show that it excludes the Milne In and Out

vacuum states on Vþ because such states are ill-behaved at the
boundary of Vþ .
7. Detectors

To give operational content to the idea that an observer
accelerated through the Minkowski vacuum experiences thermal
effects the most natural move is to equip her with an appropriate
detector that is coupled to field, and because the Unruh



29 In the literature on detectors ‘‘thermal’’ is used ambiguously to characterize

a response where _F ðEÞ satisfies detailed balance vs. a response where _F ðEÞ has

a Planckian spectrum. I use it here in the latter sense.
30 Some insight into the origin of this statistics reversal is given by Unruh
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temperature varies with the acceleration and, thus, from world-
line to worldline, it is natural to try to design a point-like detector.
The DeWitt (1979) detector obliges by using a point-like particle
initially in its ground state. A transition of the detector particle to
an excited state counts as the detection event, although what the
detector is detecting is not immediately obvious. The coupling of
the DeWitt detector to the Klein–Gordon field f is of the form
lmð ~xðtÞÞfð ~xðtÞÞ, where ~xðtÞ is the worldline of the detector
parameterized by proper time t, l40 is the coupling constant,
and mð ~xðtÞÞ is the monopole charge. The Unruh (1976) detector,
consisting of a particle in a box, is somewhat more realistic in that
it is spatially extended. In the Rindler wedge case its components
follow the Lorentz boost trajectories with mean acceleration a.
The DeWitt monopole detector can be viewed as a long wave-
length or low-energy approximation of the box detector (see
Grove and Ottewill, 1983). I will discuss results concerning the
monopole detector, and will follow standard practice in the
literature by referring to it as the Unruh–DeWitt detector.

Consider an Unruh–DeWitt detector which has been switched
on in the asymptotic past and which is moving through the
Minkowski vacuum. To first order in perturbation theory the
probability that at proper time t0 the detector will be found in
an excited state at energy E above its ground state energy E0 is
given by

CðEÞ
Z t0

�1

dt
Z t0

�1

dt0expð�iEðt�t0ÞÞ/0M jfð ~xðtÞÞfð ~xðt0Þj0MS ð10Þ

where E :¼ E�E0. The coefficient CðEÞ, which expresses the
sensitivity of the detector and depends on the internal details of
the detector, will be ignored. The focus will be on the
response function Ft0

ðEÞ :¼
R t0

�1
dt
R t0

�1
dt0expð�iEðt�t0ÞÞ/0Mj

fð ~xðtÞÞfð ~xðt0Þj0MS and more particularly on the time derivative
of Ft0

ðEÞ with respect t0, which determines the detector transition
rate and which is independent of internal details of the detector.
A little manipulation shows that

_F t0
ðEÞ ¼ 2

Z 0

�1

ds Re½expð�iEsÞ�/0Mjfð ~xðt0ÞÞfð ~xðt0þsÞj0MS ð11Þ

_F t0
ðEÞ is independent of t0 when the worldline ~xðtÞ of the detector

is such that the geodesic distance between two points ~xðt1Þ and
~xðt2Þ depends only on jt1�t2j, which is characteristic of a
stationary motion (Letaw, 1981). In such cases the subscript on
_F t0
ðEÞ will be dropped. There has been some debate about how to

perform the regularization needed to get a finite answer from the
computation of the two-point function /0Mjfð ~xðtÞÞfð ~xðt0Þj0MS,
but recently general agreement on this matter has crystallized
(see Schlicht, 2004; Langlois, 2006; Louko and Satz, 2006).

For inertial motion the response of the detector is null in the
sense that _F ðEÞ ¼ 0 for E40 although, of course, _F ðEÞ is non-zero
for Eo0 due to the possibility of spontaneous emission from the
detector.28 For a detector in hyperbolic motion with acceleration
a through the Minkowski vacuum of an m¼0 field on Minkowski
spacetime of dimension d¼4 the response is thermal (Planckian)
28 An interesting side issue is whether an inertially moving Unruh–DeWitt

detector that explores the field only in a Rindler wedge region can tell the difference

between the Minkowski and Fulling vacua. The question is a little delicate since an

inertial detector can be confined to a Rindler wedge region for only a finite amount of

proper time. But however the question is parsed the answer is certainly positive since

the autocorrelation functions /0M jfð ~xðtÞÞfð ~xðt0Þj0MS and /0F jfð ~xðtÞÞfð ~xðt0Þj0FS
that determine the detector responses in the Minkowski and Fulling vacua are

different for any two distinct points ~xðtÞ and ~xðt0Þ on the detector’s worldline; see

Unruh (1992) and compare to Grove (1988) and Candelas & Sciama (1983), the latter

of whom seem to be claiming that an inertial detector cannot distinguish between

j0MS and j0FS.
at Unruh temperature:

_F ðEÞ ¼ E
2p

1

expðE=TÞ�1
, T ¼

a

2p ð12Þ

While this result fits well the modular theory approach to the
Unruh effect, a discordance between the modular theory
approach and the detector approach becomes apparent in other
cases. In particular, the modular theory derivation of the Unruh
effect sketched in Sections 2 and 3 applies to m40 Klein–Gordon
fields as well as the m¼0 case, and it holds for all spacetime
dimension d. But the response of an Unruh–DeWitt detector in
hyperbolic motion in d¼4 Minkowski spacetime is far from
Planckian for large m40 (Takagi, 1986, Section 4.5). This dis-
crepancy can be traced to the fact that the KMS condition ensures
thermal equilibrium in the sense of detailed balance: for E40,
_F ðEÞ ¼ _F ð�EÞexpð�E=TÞ, i.e. the upward transition rate for E0-E is
equal to the probability of the downward transition for E-E0

multiplied by the equilibrium probability of the excited state. But
this balancing is not sufficient to guarantee that the spectrum of
Unruh–DeWitt detector excitations is thermal (Takagi, 1986,
Section 4.3).29 Second, for d44 the expression for _F ðEÞ acquires
an additional numerical factor that depends on E. Third, and most
surprisingly, for an m¼0 field in a Minkowski spacetime of
odd dimension d, a ‘‘statistics reversal’’ takes place in which
the Bose factor 1=ðexpðE=TÞ�1Þ is replaced by a Fermi factor
1=ðexpðE=TÞþ1Þ (Takagi, 1986, Section 4.2)30

How does the detector approach square with the idea that the
modular temperature associated with an observer in constant
linear acceleration through the Minkowski vacuum can be inter-
preted as the temperature of a thermal bath of non-Minkowskian
particles/quanta? The response of an Unruh–DeWitt detector can
be analyzed in terms of the absorption of Fulling quanta and
the emission of Minkowski quanta for the case of an m¼0
Klein–Gordon field (see Unruh and Wald, 1984).31 But such an
analysis is subject to the general qualms about Fulling quanta
reviewed in Section 6. Moreover, insofar as explanation consists
of deduction from general principles,32 an explanation of detector
responses can be carried out entirely within the Minkowski
representation, without any need to use or mention the Fulling
representation: just substitute an explicit expression for the
worldline ~xðtÞ of the detector into the expression for _F t0

ðEÞ and
start calculating. Note that this explanation works for all mZ0
fields, all spacetime dimensions, and all motions of the
detector—even those that are not associated with a stationary
frame of reference and, thus, are not subject to a particle/quanta
explanation since there is no natural way to associate a non-
Minkowskian particle/quanta concept with such a frame, at least
not one that does not involve spurious particle creation in flat
spacetime. In sum, if uniformity of explanation is a virtue, the
(1986). If the autocorrelation function in (11) is computed using a complete set of

Fulling modes, it is found that each mode is thermally populated. It is the

integration over all the modes to which the detector is sensitive that produces

the statistics reversal for odd spacetime dimension.
31 There is an ongoing controversy about whether a uniformly accelerated

oscillator will radiate at Unruh temperature (Unruh radiation); see Raine, Sciama,

& Grove (1991), Unruh (1992), Ford & O’Connell (2006), and Smolyaninov (2008).
32 In the philosophical literature this conception of scientific explanation is

discussed under the label of Hempel’s DN (for Deductive-Nomological) model; see

Hempel (1970). There are many criticisms of this model, but for present purposes

it serves as good first-order approximation to what quantum field theorists mean

by explanation. Below I will consider a demand that the explanation of the

detector response take the form of a deduction exhibiting particular features.
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explanation of detector responses that sticks to the Minkowski
representation and eschews non-Minkowskian particles/quanta is
to be preferred.

A case that illustrates how the various concepts discussed
above fail to meld is provided by the analysis of an Unruh–DeWitt
detector at rest in a frame rotating with constant angular velocity
~o about the axis of rotation. This frame is stationary but, of

course, not static. Since the detector cannot move with a speed
greater than c (¼1), the domain of the frame consists of those
spacetime points at a distance R from the axis of rotation such
that ~oRo1. Considered as a spacetime in its own right, this
domain is not globally hyperbolic and, thus, rigorous quantization
procedures that rely on global hyperbolicity do not apply. There is
no natural notion of event horizon for the family of uniformly
rotating observers, as there is for the Rindler observers in
constant linear acceleration, and thus a non-null detector
response for the former case cannot be classified as ‘‘horizon
effect.’’ The spacetime domain for which the rotating frame is
defined does not have non-null causal complement, and so the
restriction of the Minkowski vacuum state to this domain is not a
KMS state (or at least the kind of argument given in Section 3 does
not suffice to show that it is a KMS state). An Unruh–DeWitt
detector at rest in the uniformly rotating frame shows a non-null
response. _F ðEÞ depends on R and ~o, and although for any given R

and ~o the transition rate for the case of m¼0 and d¼4 has a
Planck-like form it is not identically Planckian (Letaw, 1981). The
fact that the detector becomes excited cannot be attributed to the
work being done to maintain it in orbit because this work is zero.
Nor can the response of the detector be explained as the detection
of particles/quanta, at least not if one ignores the fact that the
relevant portion of Minkowski spacetime is not globally hyper-
bolic and naively applies the canonical quantization procedure33

to coordinates adapted to the rotating frame. For the ‘‘rotating
vacuum state’’ that results from this procedure coincides with
the Minkowski vacuum state; in this sense, an observer at rest in
the rotating frame ‘‘sees’’ no particles/quanta, whether Minkows-
kian or ‘‘rotating’’ (Letaw, 1981; Letaw and Pfautsch, 1981;
Padmanabhan, 1981).34 This discordance disappears when the
rotating frame is contained within a limiting surface at radius
Ro1= ~o and Dirichlet boundary conditions are imposed on the
field ðfðr¼ R,tÞ ¼ 0Þ, for then the response of a rotating Unruh–
DeWitt detector is null (Levin, Peleg, and Peres, 1993; Davies,
Dray, and Manogue, 1996).

These last points call for a bit of explication. In canonical
quantization it is assumed that a complete set of orthonormal
modes of the field f appropriate to a stationary frame, the
worldlines of whose points are the trajectories of a timelike
Killing field xa, can be obtained from solutions to £xaf¼�iof.
For a static frame, i.e. xa is non-rotating as well as stationary (as
assumed in the case treated in Appendix C), o can always be
chosen to be positive so that the condition of a positive norm is
equivalent to the condition of positive frequency. But when xa is
not static—as with a uniformly rotating frame—some positive
norm modes may have negative frequency. In canonical quantiza-
tion the creation and annihilation operators and, thus, the particle
number operators are defined by a decomposition of the field
33 In so-called canonical quantization, the equal time CCR are imposed on the

field operator F and the canonically conjugate momentum operator. It is assumed

that the F can be expressed as a linear combination of the positive norm modes fi

as F¼
P

iðaifiþayi f
�

i Þ. As a result the creation and annihilation operators satisfy

the familiar CCR ½ai ,aj� ¼ ½a
y

i ,ayj � ¼ 0 and ½ai,a
y

j � ¼ dij . The vacuum state is defined by

the condition aij0S¼ 0 for all i.
34 Rejecting the naive application of canonical quantization as too naive to be

trusted in this case does not resolve the discordance between the detector

approach and the particle approach but only makes it worse since then no

particle/quanta content can be associated with the rotating frame.
operator obtained from positive norm modes.35 By contrast, an
analysis of the response of the Unruh–DeWitt detector shows that
excitation depends on the presence of negative frequency modes.
Thus, in principle, excitation of the detector at rest in a rotating
frame can take place even in the absence of ‘‘rotating particles’’.
And detailed calculations show that this possibility is in fact
realized when the detector is not contained within a limiting
surface on which Dirichlet boundary conditions are imposed
(Letaw, 1981; Letaw and Pfautsch, 1981; Padmanabhan, 1981;
Sriamkumar and Padmanabhan, 2002).

Part of attraction of a particle/quanta explanation of the
response of an accelerated detector is surely due to the tendency
to think that a satisfactory answer to ‘‘Why is the detector
showing a non-null response (even after being adjusted, if
necessary, for transient effects of switching the detector on)?’’
must take the form ‘‘Because it is detecting X,’’ coupled with a
tendency to search for a thing-like entity to play the role of X. I
think that both tendencies should be resisted. But suppose that
we give in to the first; and suppose that we agree that, because of
the examples just discussed, ‘‘X ¼ non-Minkowskian quanta’’ is
not in general a suitable filling. It then remains to say what a
generally satisfactory filling is. The best general answer was first
suggested by Candelas and Sciama (1977) who noted that the
response function for an Unruh–Dewitt detector is determined by
the Fourier transform of the autocorrelation function of the
quantum field evaluated at points on the detector worldline,
and this transform is what statisticians recognize as the power
spectrum of noise or fluctuations of a stochastic process.36 As
Candelas (1980) puts it, an Unruh–DeWitt detector is a ‘‘‘fluctu-
ometer’ rather than a particle detector and, therefore, contains
information both about the fluctuations of the field and the
motion of the box [detector]’’ (p. 2198). Thus, insofar as an
Unruh–DeWitt detector can be said to be detecting X, a generally
applicable (i.e. for arbitrary detector motion ~xðtÞ) X is ‘‘the noise
or fluctuations in the Minkowski vacuum.’’

Returning to the case of an Unruh–DeWitt detector at rest in a
uniformly rotating frame, two quite different attitudes towards
what to count as the Unruh effect are possible. Insofar as the
Unruh effect is identified with the existence of an appropriate
KMS state, there is no Unruh effect in the offing since, as noted
above, the restriction of the Minkowski vacuum to the spacetime
domain on which the rotating frame is defined is (presumably)
not a KMS state. On the other hand, those who take detector
response to be the key feature of the Unruh effect may want to
follow Bell and Leinaas (1987) in speaking of a ‘‘circular Unruh
effect’’ (see also Leinaas, 1999; Levin et al., 1993). Although the
transition rate function _F ðEÞ for the case of an m¼0 field and
spacetime dimension d¼4 does not have exactly Planckian form,
Bell and Leinaas (1987, p. 488) conclude that ‘‘a physical system
in circular motion is heated by the vacuum fluctuations’’.

The logical extreme of the Bell–Leinaas line is to recognize a
‘‘____ Unruh effect’’ where the blank is filled in with any type of
non-inertial motion since in every such case _F t0

ðEÞ40 for E40.
A more conservative attitude would be to limit the filling for the
blank to cases for which _F t0

ðEÞ has the ‘‘nearly’’ thermal form,
where some principled criterion of nearness must be supplied.
The most conservative attitude would be to limit the filling for the
blank to cases where _F t0

ðEÞ has exactly thermal form. Presumably,
this conservative stance requires that the allowed detector
motions are stationary (and thus _F t0

ðEÞ is independent of t0).
35 The absence of ‘‘rotating particles’’ is no surprise since the positive norm

rotating modes are just the positive norm Minkowski modes transformed to

rotating coordinates.
36 In the statistics literature this is called the Wiener–Khinchin theorem; see

Papoulis (1991, Section 10. 3).



37 Or a thermal flux of Boulware quanta in the case of the generalized Unruh

effect for Kruskal spacetime.
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Letaw and Pfautsch (1982) have classified the stationary motions
for Minkowski spacetime and they found six distinct classes: the
three obvious cases consisting of inertial worldlines, hyperbolic
worldlines, and helical worldlines; and three less obvious cases
consisting of worldlines whose spatial projections are ‘‘semi-
cubical parabolas’’ containing a cusp at which the direction of
motion is reversed, worldlines whose spatial projections are
catenaries, and rotating worldlines uniformly accelerated normal
to their plane of rotation. Only in the case of hyperbolic motion
through the Minkowski vacuum of an m¼0 field and spacetime
dimension d¼4 does _F ðEÞ have an exactly thermal form (Letaw,
1981; Rosu, 2002). Thus, on the most conservative version of the
detector approach, the Unruh effect in Minkowski spacetime does
not generalize to non-hyperbolic motions.

The above discussion focused exclusively on the Unruh–DeWitt
detector. But accepting the detector approach as the principal means
of understanding the Unruh effect carries a responsibility to broaden
the discussion beyond the simple monopole detector. In the first
place, there is a need to consider extended detectors. The idealiza-
tion involved in the monopole detector contains an inherent
tension: the probe of the field is supposed to trace out a classical
worldline; but by the uncertainty principle this idealization is
inconsistent with a thoroughgoing quantum treatment. Some of
the complications that can arise for detectors consisting of multi-
level atoms and heavy ions are discussed respectively in Marzlin
and Audretsch (1998) and Mur and Karnakov (1998). And even for
idealized infinitesimal point detectors there is a need to investigate
couplings to the field that go beyond the simple linear coupling of
the Unruh–DeWitt detector. An example of what such investigations
hold in store is given by Hinton’s (1983, 1984) analysis of detectors
that couple to an m¼0 field through derivatives of the field. He
found that in d¼2 Minkowski spacetime the spectrum of excitations
for a derivatively coupled detector in constant linear acceleration is
the same as for an Unruh–DeWitt detector. But he also found that
the concurrence vanishes for d¼4 Minkowski spacetime where the
derivatively coupled detectors can give non-Planckian responses.
Sriamkumar (2002) studied the response of monopole detectors that
are non-linearly coupled to the field through the n-th power of the
field. When d is even, the response of a such a detector in constant
linear acceleration through the Minkowski vacuum is characterized
by a Bose–Einstein factor for all n; but when d is odd, the response is
characterized by a Bose–Einstein factor for n even and a Fermi–Dirac
factor when n is odd.

In sum, if detector response is to hold the key to the Unruh
effect, then either an argument has to be mounted to show that
only a privileged class of detectors is appropriate for probing the
thermal properties of quantum fields, or else it has to be
concluded that ‘‘the Unruh effect’’ stands for different effects in
different types of detectors.

Thus far the discussion of the detector approach to the Unruh
effect has been confined to Minkowski spacetime, but obviously
the response of accelerated detectors to vacuum states of quantum
fields on curved spacetimes can be studied. The interested reader is
referred to Candelas (1980), Sciama et al. (1981), Birrell and Davies
(1982), and Langlois (2006) for relevant results. I will only mention
two illustrative examples. First, for the Hartle–Hawking vacuum
state in Kruskal spacetime, the spectrum of excitations of an
Unruh–DeWitt detector whose worldline coincides with an orbit
of the Killing horizon field tends to a thermal spectrum at Hawking
temperature 1=8pGM as r-1, which is in accord with the
modular temperature assignment. Second, the response of an
Unruh–DeWitt detector moving with uniform acceleration a in
the vacuum of a conformally coupled m¼0 field on d¼4 de Sitter
spacetime is thermal at the temperature ð1=2pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=3þa2

p
(Langlois, 2006). Attempts have been made to shortcut the details
of the detector analysis for de Sitter spacetime with a clever
argument (Deser and Levin, 1997, 1999; Jacobson, 1998). The idea
is to exploit the conformal invariance of the field and the fact that
d-dim de Sitter spacetime can be embedded as a hyperboloid in
(dþ1)-dim Minkowski spacetime. The two-point functions which
determine the response of an Unruh–DeWitt monopole detector
for the conformal vacuum for d¼4 de Sitter spacetime are same as
those induced by the Minkowski vacuum state of the d¼5
embedding Minkowski spacetime. An observer who has uniform
acceleration a4 in d¼4 de Sitter spacetime is seen to have uniform
acceleration a5 in the d¼5 embedding spacetime. The response of a
detector carried by the latter observer will be thermal (so the
argument goes) at Unruh temperature T ¼ a5=2p. The desired

result then follows from the fact that a5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=3þa2

4

q
. This clever

argument is undercut by the phenomenon of statistics reversal in
Minkowski spacetimes of odd dimension.
8. Conclusion

Of the three approaches to the Unruh effect discussed above,
the least helpful is what was called the particle approach which
tries to rationalize the Unruh temperature in terms of a thermal
flux of Fulling quanta.37 While this approach retains some
heuristic value, its value in settling foundations issues is undercut
by two fatal flaws in the idea that what is seen by an observer in
constant linear acceleration through the Minkowski vacuum can
be addressed by expressing the Minkowski vacuum vector in the
Fulling Fock space: first, because the Minkowski and Fulling
representations are disjoint so that no normal state (i.e. no state
expressible as a density operator) of one representation is a
normal state of the other; and second because the Fulling vacuum
state is arguably not a physically realizable state.

The particle approach can be seen as a flawed attempt to prove
a thermalization result of the form: when the Minkowski vacuum
state is restricted to a Rindler wedge algebra it is a thermal state
at Unruh temperature. Where the particle approach fails the
modular theory approach succeeds in proving rigorous results
that do not have to rely dubious appeals to the Fulling represen-
tation. Or at least it succeeds if ‘‘thermal state’’ is identified with a
KMS state with respect to the automorphism group generated by
the Rindler wedge isometries. But it is not easy to square the
philosophy behind the modular theory approach with experi-
mental measurements: the assignment of a modular temperature
to an observer requires that the observer can access only a limited
subalgebra of observables, which requires in turn a knowledge of
the entire past and future history of the observer; but barring
backwards causation, no laboratory registration taken at a finite
time is sensitive to what the instrument does in the future.
Moreover, the modular theory approach does not always mesh
with the deliverances of detectors. To mention two of the
discordances: the modular theory approach assigns a temperature
equal to Unruh temperature for an observer in constant linear
acceleration through the Minkowski vacuum of an m40 scalar field,
but the noise of the vacuum recorded by an Unruh–DeWitt detector
is far from thermal (Planckian) for large m; in the other direction, for
an m¼0 scalar field, the spectrum of excitations of an Unruh–DeWitt
detector at rest in a uniformly rotating frame is nearly thermal, but
the modular theory approach does not apply to this case.

The strength and weaknesses of the modular theory approach
and the detector approach are complementary. The former yields
general, model-independent results; but these results need to be
related to experimental measurements, something that modular
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theory by itself cannot accomplish. The detector approach is
attractive in that it ties the Unruh effect directly to measurable
quantities; but it is highly model-dependent, with different types
of detectors with different couplings to the quantum field yielding
divergent verdicts about the response to various accelerated
motions though the vacuum.

The shortcoming and weaknesses of the three approaches
mean that a forced choice of one of them would result in a
trilemma, each of whose horns gores in a different way. But such
a choice is forced only if one takes the definite article in ‘‘the
Unruh effect’’ too seriously by insisting that the phrase designates
a single phenomenon characterizable in 20 words or less. In
fulfilling its role of linking thermal physics, relativity theory, and
quantum theory, it seems preferable to take ‘‘the Unruh effect’’ as
designating a family of related but distinct effects. The differences
are less important than the similarities. The fact that similar
results emerge from different approaches applied to a number of
circumstances is a strong indication that a fundamental principle
of nature has been identified, even if not completely understood.

Needless to say, this eclectic reading of ‘‘the Unruh effect’’
makes more complicated a discussion of experimental tests of the
Unruh effect. I will not attempt to provide details of the discus-
sion here and simply refer the interested reader to Rosu (2001)
and Crispino et al. (2008) for overviews of various experimental
proposals. However, I do want to comment on the overall shape of
the discussion. Crispino et al. (2008, p. 788) take the attitude that
‘‘the Unruh effect itself does not need experimental confirmation
any more than free quantum field theory does’’. This would be a
bit over the top even if it were true that the Unruh effect were a
theorem of QFT since every extant physical theory—even those as
well tested as QFT—can always use additional confirmation,
especially as concerns novel effects. Second, the review given
here of the various approaches to the Unruh effect should make
one leery of the notion that the effect can be straightforwardly
derived from QFT without the use of additional physical hypoth-
eses or novel interpretative moves. Nevertheless, I do think the
main point of Crispino et al. (2008) regarding experimental tests
is exactly on the mark; namely, typical proposals for ‘‘experi-
mental tests’’ of the Unruh effect are misnamed since they consist
of showing how the effect can be used to rationalize experimental
data. As an example, Bell and Leinaas (1987) were the first to
suggest that the observed depolarization of electrons in accel-
erator storage rings can be understood by treating spin as a
thermometer that measures the Unruh effect (for discussions of
this point of view see Akhmedov and Singleton, to appear-a, to
appear; Jackson, 1999; Leinaas, 1999; McDonald, 1999; Unruh,
1998). The extreme version of this way of looking at the experi-
mental status of the Unruh effect would consist in showing that
the Unruh effect is required to maintain the consistency of a well-
tested sector of QFT. Just such an argument has been given by
Vanzella and Matsas (2001) and Matsas and Vanzella (2003), who
claim that without the ‘‘Fulling–Davies–Unruh effect’’ inertial and
accelerating observers would reach different conclusions about
the stability of protons. While I am not persuaded by their
reasoning,38 the general line of argumentation is important.

Finally, it is worth commenting on the role of the Minkowski
vacuum in understanding the Unruh effect for flat spacetime. On
the modular theory approach it is a remarkable feature of the
vacuum—namely, that the restriction of the vacuum state to a
wedge region is a KMS state whose automorphism group has a
geometrical interpretation—that underwrites the Unruh effect.
There is a sense on which only the vacuum state has this feature;
38 In part because their argument relies heavily on the reality of Fulling

quanta. But perhaps the argument can be recast so as to avoid this feature.
indeed, Buchholz and Summers (1986) propose to use this
property to give an intrinsic characterization of the vacuum in
Minkowski spacetime. Thus, from the point of view of modular
theory the Unruh effect is purely a vacuum effect. On the other
hand, one might expect that the detector approach would con-
tinue to reveal thermal effects for acceleration through non-
vacua; but as far as I am aware this matter has not been
investigated.

Although it is disappointing to have to close while unable to
supply simple and definite answers to the questions ‘‘What is the
Unruh effect?’’ and ‘‘What are the prospects of experimental
detection?’’, I hope that the above discussion shows, first, why
simple and definitive answers are hard to come by and, second,
how the investigation of these questions casts light on some of
the most fundamental foundations issues at the interfaces of the
main branches of modern physics.
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Appendix A. Cn-algebras and von Neumann algebras39

A n-algebra is an algebra closed with respect to an involution
A 3 A/A�AA satisfying: ðA�Þ� ¼ A, ðAþBÞ� ¼ A�þB�, ðcAÞ� ¼ cA�

and ðABÞ� ¼ B�A� for all A,BAA and all complex c (where the
overbar denotes the complex conjugate). A Cn-algebra is a
n-algebra equipped with a norm, satisfying JA�AJ¼ JAJ2 and
JABJrJAJJBJ for all A,BAA, and is complete in the topology
induced by that norm. It will be assumed that all the algebras of
interest contain the identity I.

A representation of a Cn-algebra A is a n-morphism p : A-BðHÞ
where BðHÞ is the algebra of bounded linear operators on a
Hilbert space H. The representation p is said to be cyclic if there is
a vector jcSAH such that fpðAÞjcSg is a dense set. p is irreducible

if there is no non-trivial subspace of H that is invariant under
pðAÞ. Two representations p and p0 are unitarily equivalent iff
there is a unitary map V : BðHpÞ-BðHp0 Þ such that p0ðAÞ ¼
VpðAÞV�1 for all AAA. A weaker notion of equivalence of
representations will be defined below once von Neumann alge-
bras have been introduced.

A state on an algebra A is a positive linear functional j : A-C

such that jðIÞ ¼ 1. A state is said to be mixed if it can be written as
a non-trivial convex combination of other states; otherwise it is
said to be pure. j is faithful to A if jðA�AÞ ¼ 0 for AAA implies
that A¼0. The basic result on representations, called the Gelfand–
Naimark–Segal (GNS) theorem, shows that each state on a
Cn-algebra determines a cyclic representation: if A is a Cn-algebra
and j is a state on A, then there is a Hilbert space Hj, a
n-morphism pj : A-BðHjÞ, and a cyclic vector jOjSAHj such
that jðAÞ ¼/OjjpjðAÞjOjS for all AAA. The GNS representation
is the unique (up to unitary equivalence) cyclic representation.
The GNS representation pj determined by a state j is irreducible
just in case j is pure.

A von Neumann algebra M is a Cn-algebra of bounded linear
operators acting on a Hilbert space H such that M is closed in the
weak operator topology or, equivalently, ðM0Þ0 :¼M00 ¼M, where
‘0’ indicates the commutant. (A sequence of bounded operators O1,
O2,y acting on a Hilbert space H converges in the weak topology
39 A comprehensive treatment of these topics can be found in Bratelli &

Robinson (1987, 1997) and Kadison & Ringrose (1991). Definitions of the concepts

used in the body of the paper are recapitulated here.



J. Earman / Studies in History and Philosophy of Modern Physics 42 (2011) 81–97 95
to O just in case /c1jOjc2S converges to /c1jOc2S for all
jc1S,jc2SAH.) If p : A-BðHÞ is a representation of the
Cn-algebra A, the affiliated von Neumann algebra is the weak
closure of pðAÞ or, equivalently, the double commutant pðAÞ00.
A normal state j of a von Neumann algebra M acting on a Hilbert
spaceH is a completely additive state or, equivalently, a state that
can be expressed as a density matrix R on H via the trace
prescription, i.e. jðAÞ ¼ TrðRAÞ for all AAM. A separating vector

jcSAH for a von Neumann algebra acting on H has the property
that AjcS¼ 0 implies that A¼0 for any AAM. In parallel with the
definition of a cyclic vector for a representation of a Cn-algebra, a
vector jcSAH for a von Neumann algebra acting on H is cyclic
just in case fMjcSg is dense in H. A basic result is that a vector is
cyclic for M just in case it is separating for M0. A factor algebra M

is one whose center M \M0 consists of multiples of the identity.
The characteristic feature of a Type I factor is that it contains
minimal projectors. A Type III factor contains no finite projectors.

Quasi-equivalence of representations of Cn-algebras is the
relevant generalization of the concept of unitary equivalence to
reducible representations; it means that the representations are
unitarily equivalent up to multiplicity. A basic result is that the
quasi-equivalence of representations p1 and p2 of A is equivalent
to each of the following: (a) there is a n-isomorphism i :
p1ðAÞ00-p2ðAÞ00 such that iðp1ðAÞÞ ¼ p2ðAÞ for all AAA (Bratelli
and Robinson, 1987, Theorem 2.4.26), and (b) every p1-normal
state is a p2-normal state and vice versa. p1 and p2 are said to be
disjoint just in case no p1-normal state is a p2-normal state and
vice versa.

A Weyl algebra is a Cn-algebra that encodes an exponentiated
form of the canonical commutation relations. For a construction of
the Weyl algebra for the Klein–Gordon field on a globally hyperbolic
spacetime (defined in Appendix B), see Kay and Wald (1991) and
Wald (1994). A quasi-free state on this algebra has n-point functions
that are sums of products of two-point functions. The GNS repre-
sentation of such a state is (unitarily equivalent to) a Fock space
representation with the GNS vector playing the role of the Fock
vacuum state. A rigorous algebraic procedure is available for
quantizing the Klein–Gordon field on a stationary globally hyper-
bolic spacetime (see Wald, 1994). Unfortunately, this procedure
does not apply to Rindler spacetime since it requires a (nowhere
vanishing) timelike Killing field whose norm is bounded away from
zero. Thus, one must resort to the procedure described below in
Appendix C.
Appendix B. Relativistic spacetimes40

A relativistic spacetimeM,gab consists of a differentiable manifold
M (assumed for convenience to be C1) together with an everywhere
defined Lorentzian metric gab. The signature convention (þþþ�) is
in effect. This definition includes, of course, Minkowski spacetime
whereM¼R4 and gab ¼ Zab (the Minkowski metric). A spacetime is
said to be stationary if there exits a (nowhere vanishing) timelike
vector field xc satisfying the Killing condition £xc gab ¼ 2rðaxbÞ

¼ 0,
where £xc is the Lie derivative with respect to xc and ra is the
covariant derivative operator determined by gab. A timelike vector
field xc can be thought of as defining a reference frame, the
trajectories of the field being the worldlines of the points of the
frame. An observer whose worldline coincides with a trajectory of a
stationary frame does not see any change in the metric of spacetime
as her ‘‘now’’ sweeps up her worldline. A spacetime is said to be static

if it admits a frame xc that is both stationary and irrotational, i.e.
x½arbxc �

¼ 0. In a static spacetime it is always possible to choose
40 The recommended reference here is Wald (1984).
(locally) a coordinate system ðxa,tÞ such that the line element takes
the form ds2

¼ gabðx
gÞ dxa dxb�g44ðx

gÞ dt2, where a,b,g run over the
spatial coordinates.

A variety of causality conditions can be imposed on relativistic
spacetimes (see Wald, 1984, Chap. 8). One of the strongest
conditions is called global hyperbolicity, which is equivalent to
the condition that the spacetime admit a Cauchy surface, i.e.
a spacelike hypersurface that intersects every maximally
extended causal curve exactly once. An equation for a field
propagating on a globally hyperbolic spacetime is said to admit
an initial value formulation if appropriate initial data on a Cauchy
surface fixes a unique solution of the field equation. This is
the case for a Klein–Gordon field whose quantization is
discussed below.

Let uc be the normed (ubub¼�1) tangent field of a worldline.
The acceleration of the worldline is given by ac :¼ _uc

¼ ubrbuc

where the dot denotes differentiation with respect to proper time.
Constant linear acceleration means that _ac :¼ ubrbac ¼ adaduc .
Differentiating ubub¼�1 gives abub¼0. Using this fact, the con-
dition of constant linear acceleration is seen to imply that
_adad ¼ 0 and that the magnitude of acceleration a :¼ ðadadÞ

1=2 is
constant. When the acceleration is along, say, the x-axis of an
inertial coordinate system (x, y, z, t) of Minkowski spacetime, the
worldline of an observer in constant linear acceleration has the
form of a hyperbola, i.e. x2�t2 ¼ C40.

The reference frame defined by a timelike vector field xc is said
to be Born rigid if the expansion and shear of the field both vanish
(see Wald, 1994 for definitions). This is equivalent to the condi-
tion that the distance between infinitesimally neighboring tra-
jectories of xc , as measured at some instant in the spacelike
hyperplane orthogonal to one of them, is independent of the
instant chosen. Any stationary frame is Born rigid; but the
converse need not hold.
Appendix C. The Fulling quantization

In general covariant form the minimally coupled Klein–Gordon
equation reads

gabrarbf�m2f¼ 0 ðC:1Þ

where m is the mass of the field. A conformally coupled field obeys
the equation

gabrarbf�
d�2

4ðd�1Þ
Rf�m2f¼ 0 ðC:2Þ

where R is the Ricci scalar and d is the dimension of the space-
time. For the case m¼0 and d¼4, the resulting field equation
gabrarbf�ðR=6Þf¼ 0 is conformally invariant. In spacetimes
(such as de Sitter spacetime) where R is a non-negative constant
the conformally invariant equation is equivalent to the equation
for a minimally coupled field with mass m¼

ffiffiffiffiffiffiffiffiffi
R=6

p
. The quantiza-

tion for the minimally coupled field will be discussed here.
For a globally hyperbolic spacetime (C1) has a well-posed

initial value problem. Suppose now that the spacetime is not only
globally hyperbolic but static as well, and for the sake of
convenience suppose that there is globally defined static coordi-
nate system ðxa,tÞ. In such coordinates (C1) becomes

�
@2f
@t2
¼ g44

1ffiffiffiffiffiffiffi
�g
p @að

ffiffiffiffiffiffiffi
�g
p

gab@bfÞ�m2fÞ
� �

� Kf ðC:3Þ

Since the differential operator K contains only spatial derivatives,
(C.3) can be solved by the separation of variables ansatz
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fðx,tÞ ¼cðxÞwðtÞ to give

d2wðtÞ
dt2

þo2wðtÞ ¼ 0 ðC:4aÞ

KcðxÞ ¼o2cðxÞ ðC:4bÞ

Since the spacetime is assumed to be globally hyperbolic it can
be foliated by a family SðtÞ of Cauchy surfaces. The operator K is
formally symmetric and positive on the Hilbert space L2ðS,m d3xÞ

of complex valued square integrable functions on a Cauchy
surface SASðtÞ, with the inner product given by

/f ,gS :¼

Z
S

f ðxÞgðxÞmðxÞ d3x ðC:5Þ

where m¼�g44 ffiffiffiffiffiffiffi
�g
p

. Because it is independent of the choice of S
from the family SðtÞ this inner product is not indexed with S.
Assuming that K has a unique self-adjoint extension, the square
root of this extension is a positive linear operator, which serves as
the single particle Hamiltonian relative to the time t. One can
choose an orthonormal basis fckg for L2ðS,m d3xÞ consisting of
solutions to

Kck ¼o2
kck ðC:6Þ

The functions ukðx,tÞ ¼ ð2o2
k Þ
�1=2ckðxÞexpð�ioktÞ and their com-

plex conjugates uk
n (called respectively the positive and negative

frequency modes) constitute a complete set of mode solutions in
that a general solution to (C.3) can be written in the form

fðx,tÞ ¼

Z
~S
½akckðxÞexpð�ioktÞþaykc

�

kðxÞexpðioktÞ�
dmðkÞffiffiffiffiffiffiffiffiffi

2ok

p ðC:7Þ

The space of positive frequency solutions can be equipped
with an inner product, and the completion in this inner product
gives the ‘‘one-particle’’ Hilbert space H for the field. The state
space for the field is constructed as the symmetric Fock space F
over H. That is, F is the completed direct sum "1

i ¼ 0ðS½#iH�Þ,
where S½#nH� denotes the symmetrized n-fold tensor product of
H and #0H is stipulated to be C.

Needless to say, this procedure applies when the static
coordinate system is chosen to be an inertial coordinate system
for Minkowski spacetime, and the application of the procedure
leads to the familiar Minkowski Fock space FM and its vacuum
vector j0MS. (Different inertial systems produce unitarily equiva-
lent quantizations.) The procedure also applies to the Rindler
coordinates for the right Rindler wedge, leading to the Fulling
Fock space F F and its vacuum vector j0FS.
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