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 Reeh-Schlieder Defeats Newton-Wigner:
 On Alternative Localization Schemes

 in Relativistic Quantum Field Theory*

 Hans Halvorsontt

 Many of the "counterintuitive" features of relativistic quantum field theory have their
 formal root in the Reeh-Schlieder theorem, which in particular entails that local opera-
 tions applied to the vacuum state can produce any state of the entire field. It is of great
 interest then that I. E. Segal and, more recently, G. Fleming (in a paper entitled "Reeh-
 Schlieder meets Newton-Wigner") have proposed an alternative "Newton-Wigner" lo-
 calization scheme that avoids the Reeh-Schlieder theorem. In this paper, I reconstruct
 the Newton-Wigner localization scheme and clarify the limited extent to which it avoids
 the counterintuitive consequences of the Reeh-Schlieder theorem. I also argue that there
 is no coherent interpretation of the Newton-Wigner localization scheme that renders it
 free from act-outcome correlations at spacelike separation.

 1. Introduction. Relativistic quantum theory presents us with a set of pe-
 culiar interpretive difficulties over and above the traditional ones of ele-
 mentary quantum mechanics. For example, while the notion of a "local-
 ized object" has a transparent mathematical counterpart in elementary
 quantum mechanics, it appears that not every aspect of our common-sense
 notion of localization can be maintained in the context of relativistic quan-
 tum theory (cf. Malament 1996). Many of the thorny issues involving
 localization in relativistic quantum field theory have a common formal
 root in the so-called "Reeh-Schlieder theorem." Thus, it is of particular
 philosophical interest that I. E. Segal (1964) and, more recently, G. Flem-
 ing (2000) have shown that it is possible-at least on a purely formal
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 HANS HALVORSON

 level-to avoid the Reeh-Schlieder theorem, and thereby its counterintui-
 tive consequences, by means of a judicious reworking of the standard
 association between observables and regions of space.'

 I am not convinced, however, that Segal and Fleming's "Newton-
 Wigner" localization scheme offers any satisfying resolution for the
 "problem" of localization in relativistic quantum field theory. In partic-
 ular, the Newton-Wigner localization scheme is itself subject to variants
 of the Reeh-Schlieder theorem which are no less counterintuitive than the

 original version of the theorem. Furthermore, under the only defensible
 interpretation of the Newton-Wigner localization scheme, its empirical
 predictions come into direct conflict with special relativity.

 The context of the Reeh-Schlieder theorem is the axiomatic (or alge-
 braic) approach to quantum field theory. This approach singles out a fam-
 ily of postulates that apply quite generally to "physically reasonable"
 quantum field models, and these postulates are used as a starting point
 for further structural investigations. One might expect, then, that Segal
 and Fleming would attempt to undercut the Reeh-Schlieder theorem by
 questioning one of the assumptions it makes concerning which models are
 "physically reasonable." However, Segal and Fleming do not discuss the
 Reeh-Schlieder theorem at this level of generality; rather, their discussion
 of the Reeh-Schlieder theorem is restricted to a concrete field model, viz.,
 the free Bose field.

 I begin then in Section 2 with a brief review of the global structure of
 the free Bose field model. In Section 3, I present the standard recipe for
 assigning observables to regions in space, and I explicate the counterin-
 tuitive consequences-stemming from the Reeh-Schlieder theorem-of
 this standard localization scheme. In Section 4, I present the Newton-
 Wigner localization scheme and show how it "avoids" the counterintuitive
 consequences of the Reeh-Schlieder theorem. Finally, in Sections 5 and 6,
 I argue that Reeh-Schlieder has the final word against the Newton-Wigner
 localization scheme.

 2. The Free Bose field. In this section, I briefly review the mathematical
 formalism for the quantum theory of the free Bose field. Although my
 presentation differs from Fleming's (2000) in being more abstract and in
 its emphasis on mathematical rigor, I take it that all parties agree con-
 cerning the global structures of the free field model (at least in the absence
 of measurement interactions). That is, we agree on our answers to the
 following four questions:

 1. Saunders 1992 provides an extensive discussion of Segal's approach, although with
 different points of emphasis than the current presentation.
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 1. What is the state space?
 2. What are the observables (i.e., physical quantities)?
 3. When no measurements are being made, how does the system

 evolve in time? In other words, what is the (free) Hamiltonian?
 4. What is the ground (i.e., vacuum) state?

 Disputes arise only at the level of the local structure of the free field model;
 e.g., which states are "localized" in this region of space? In this section, I
 spell out the answers to questions 1-4. In Section 3, I take up questions
 concerning localization.

 Recall that in its heuristic formulation, the free scalar quantum field is
 described by an "operator-valued field" 4 on Minkowski spacetime that
 solves the Klein-Gordon equation

 02s
 - + m2Q, = V20, (1)

 and that satisfies the appropriate (equal-time) canonical commutation
 relations. As is well-known, however, there are mathematical difficulties
 with understanding D as an operator-valued function. A more rigorous
 approach takes D as an "operator-valued distribution." That is, for each
 smooth, real-valued test-functionfon Minkowski spacetime, (f ) can be
 defined as an operator on some Hilbert space.
 For my purposes here, it will be more convenient to turn to another

 (mathematically equivalent) representation of the field (. Let C-(R3) de-
 note the vector space of smooth, compactly supported functions from R3
 into R, and let

 S = Co (R3) ? C- (R3). (2)

 Recall now that a scalar-valued solution 4 of the Klein-Gordon equation
 is uniquely determined by its Cauchy data (i.e., its values, and the values
 of its first derivative) at any fixed time. Thus, there is a one-to-one cor-
 respondence between elements of S and (a certain subset of) the space of
 solutions of the Klein-Gordon equation. Moreover, the conserved four-

 +4

 vector current < a , v gives rise to a symplectic form a on S:

 a(Uo0 ( U, Vo ( V1) = (u0vl - ulVo) d3x. (3)

 We let D, denote the natural (inertial) symplectic flow on S; i.e., D, maps
 the time-zero Cauchy data of < to the time-t Cauchy data of <. The triple
 (S, c, D,) contains the essential information specifying the classical theory
 of the scalar field of mass m.
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 A representation of the Weyl form of the canonical commutation re-
 lations (CCRs) is a mappingf - W(f) of S into unitary operators acting
 on some Hilbert space /such that W(O) = I and

 W(f)W(g) = e-iO(g)W(f + g). (4)

 I will now sketch the construction of the unique (up to unitary equivalence)
 "Minkowski vacuum representation" of the CCRs. This construction pro-
 ceeds in two steps. Infirst quantization, we "Hilbertize" the classical phase
 space S, and we "unitarize" the classical dynamical group D,. More
 precisely, suppose that #/ is a Hilbert space, and that U, is a weakly
 continuous one-parameter group of unitary operators acting on A. Sup-
 pose also that the infinitesimal generator A of Ut is a positive operator;
 i.e., (f, Af) > 0 for allfin the domain of A. If there is a one-to-one real-
 linear mapping K of S into 4/such that

 1. K(S) + iK(S) is dense in .,
 2. 2Im(Kf, Kg) = a(f, g),
 3. UtK = KD,,

 then we say that the triple (K, c4, Ut) is a one-particle structure over (S, a,
 Dt). Constructing a one-particle structure over (S, a, D,) is a mathemat-
 ically rigorous version of "choosing the subspace of positive frequency
 solutions" of the space of complex solutions to the Klein-Gordon equa-
 tion.

 If there is a one-particle structure over (S, a , Dt), then it is unique up
 to unitary equivalence. (Kay 1979) That is, suppose that (K, ,1, U,) and
 (L ,4/, U) are one-particle structures over (S, c, D,). Then, L o K-1
 extends uniquely to a unitary mapping V from 4/onto .

 S K ^

 L\ V

 It is also not difficult to see that V intertwines the unitary groups on the
 respective Hilbert spaces, i.e., VU, = U,V. This uniqueness result can be
 interpreted as showing that the choice of time evolution in the classical
 phase space suffices to determine uniquely the (first) quantization of the
 classical system.
 I will construct two (unitarily equivalent) versions of the one-particle

 structure over (S, a , D,). First, we may complete S relative to the unique
 Hilbert space norm in which time-evolution (given by Dr) is an isometry.
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 Specifically, let H denote the linear operator (-V2 + m2)12 on C-(R3),2
 and define a real inner-product p on S by

 p(uo ( u, , vo ) v,) = (1/2) ((u , Hvo) + (u,, H-'v,)) (5)

 = (1/2) (f u(Hv)d3x + fu(H-'v,) d3x). (6)

 Now let //, denote the completion of S relative to the inner-product g.3
 Define an operator J on i, by setting

 J(uo ( u,) = -H-lu, ) Hu,, (7)

 on the dense subset S of 4,. Clearly J2 = -I, i.e., J is a "complex struc-
 ture" on o4. Thus, 04 becomes a complex vector space when we define
 scalar multiplication by (a + ib)f = af + J(bf), and is a complex Hilbert
 space relative to the inner-product

 (f, g), = g(f, g) + igW(Jf, g) (8)
 = i(f, g) + (i/2)a(f, g). (9)

 Finally, it can be shown that [J, D,] = 0, so that D, extends uniquely to
 a weakly continuous one-parameter group of unitary operators (denoted
 again by D) on the complex Hilbert space . Therefore, (t, ,/ , D,),
 with t the identity mapping, is a one-particle structure over (S, a, D).

 It may not be immediately obvious-especially to those accustomed to
 non-relativistic quantum mechanics-how to tie the physics of localization
 to the mathematical structure of the Hilbert space/,. (For example, which
 vectors in /, are localized in a given spatial region?) The Newton-Wigner
 one-particle structure brings us back to familiar territory by using the
 space L2(R3) as the concrete representation of the one-particle space. In
 particular, define the mapping K: S - L2(R3) by

 K(uo ? u,) = 2-l'2(Hl2u + iH-'2u,). (10)

 It is then straightforward to check that the complex-linear span of K(S)
 is dense in L2(R3), and that K preserves (modulo a factor of 2) the sym-
 plectic form a. Moreover, it can be shown that K intertwines D, with the
 one parameter unitary group U, = e'it on L2(R3). Therefore, (K, L2(R3),
 U,) is a one-particle structure over (S, a , D).

 2. The mathematically rigorous definition of H is as follows: Define the operator A =
 - V2 + m2 on C((R3). Then, A is essentially self-adjoint, and the self-adjoint closure A
 of A is a positive operator with spectrum in [m2, oo). Using the functional calculus for
 unbounded operators, we may define H = A'2, and it follows that the spectrum of H
 is contained in [m, oo).

 3. If 2+(R3) denotes the completion of C(R3) relative to the inner product (-, H-'),
 then- = .+(R3) )2-(R3).
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 Since (t , , /, D,) and (K, L2(R3) , Ut) are one-particle structures over
 (S, , D,), it follows that (K o t-') = K extends uniquely to a unitary
 operator V from 04 onto L2(R3):

 S L 'EZ

 K V

 L2(R3)

 Thus, the one-particle spaces ( , D,) and (L2(R3) , Ut) are mathemati-
 cally, and hence physically, equivalent. On the other hand, the two spaces
 certainly suggest different notions of localization.

 2.1. Second quantization. Once we have a one-particle space (4/, U,) in
 hand, the movement to a quantum field theory (i.e., "second quantiza-
 tion") is mathematically straightforward and uniquely determined.4 In
 particular, let ?(,) denote the "Fock space" over (. That is,

 (,,/) = C >4/() all2 G) af3 ()- ", (11)

 where J/n is the n-fold symmetric tensor product of,,/ As usual we let

 Ql = 1 o 03 0I .' (12)

 denote the vacuum vector in 4(7,/). For eachfE A we define the creation
 a+(f) and annihilation a(f) operators on 7(c4) as usual, and we let
 OI(f) denote the self-adjoint closure of the unbounded operator

 2-1/2 (a(f) + a+(f)). (13)

 If we let W(f) = exp{i((f)}, then the W(f) satisfy the Weyl form of
 the canonical commutation relations:

 W(f)W(g) = e- lm(fg/2 W( f + g) (14)

 and vacuum expectation values are given explicitly by

 (f , W(f)f) = exp ( - f112/4). (15)

 The dynamical group on 47(o4) is given by the "second quantization"
 r(U,) = eitar(I of the dynamical group U, = eitH on A, and the vacuum
 vector 0 is the unique eigenvector of the Hamiltonian dT(H) with eigen-
 value 0.

 4. For a more detailed exposition, see Bratteli and Robinson 1997, Section 5.2.
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 3. Local Algebras and the Reeh-Sehlieder Theorem. To this point we have
 only discussed the global structure of the free Bose field model. The physi-
 cal observables for the free Bose field are given by the self-adjoint oper-
 ators on Fock space /?(J/). We equip this model with a local structure
 when we define a correspondence between regions in space and "sub-
 algebras" of observables. This labelling may be done for various purposes,
 but the traditional motivation was to indicate those observables that can

 (in theory) be measured in that region of space.
 Now, each real-linear subspace E of the one-particle space /gives rise

 naturally to a subalgebra of operators, viz., the algebra generated by the
 Weyl operators { W(f) :f E E}. Thus, a localization scheme needs only
 to determine which real-linear subspace of , should be taken as corre-
 sponding to a region G in physical space. It is on thispoint that the Newton-
 Wigner localization scheme disagrees with the standard localization scheme.
 In the remainder of this section, I discuss the standard localization scheme
 and its consequences.

 The standard localization scheme assigns to the spatial region G the
 subset S(G) C /, of Cauchy data localized in G. That is, if C'(G) denotes
 the subspace of C-(R3) of functions with support in G, then

 S(G) = C-(G) ? C-(G), (16)

 is a real-linear subspace of ,. (Note that S(G) is not closed nor, as we
 shall soon see, complex-linear.) Thus, in the Newton-Wigner representa-
 tion, the classical localization scheme assigns G to the real-linear subspace
 V(S(G)) of L2(R3). When no confusion can result, I will suppress reference
 to the unitary operator V and simply use S(G) to denote the pertinent
 subspace in either concrete version of the one-particle space.
 Note that the correspondence G - S(G) is monotone; i.e., if GI C G2

 then S(G,) C S (G2). Moreover, if G, n G2 = 0, then S(GI) and S(G2) are
 "symplectically orthogonal." That is, if f E S(G1) and g E S(G2, then
 Im(f, g) = 0. Indeed, if uo ( u, E S(G,) and vo ( v, E S(G2), then

 a(uo ( u, , vo v1) = f (ovl - uo) d3x = 0, (17) R3

 since the u, and v, have disjoint regions of support.
 Now, we say that a Weyl operator W(f) acting on 7(h') is classically

 localized in G just in case f E S(G). ("Classically" here refers simply to
 the fact that our notion of localization is derived from the local structure

 of the classical phase space S.) Let B('(o4s)) denote the algebra of
 bounded operators on d?(S#). We then define the subalgebra R9(G) C
 B(9(.4')) of operators classically localized in G to be the "von Neumann
 algebra" generated by the Weyl operators classically localized in G. That
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 is, 91(G) consists of arbitrary linear combinations and "weak limits" of
 Weyl operators classically localized in G.5

 If 91 C B(fl(,4)), we let 9' denote all operators in B(a(G#)) that
 commute with every operator in 91. If 91 contains I and is closed under
 taking adjoints, then von Neumann's "double commutant theorem" en-
 tails that (9')' is the von Neumann algebra generated by 9. Thus, we
 have

 9t(G) = {W(f) : E S(G)}". (18)

 In order also to associate unbounded operators with local regions, we say
 that an unbounded operator A is affiliated with the local algebra 91(G)
 just in case U-1AU = A for any unitary operator U E 91(G)'. It then
 follows that (I(f) is affiliated with 91(G) just in case W(f) E 91(G).6

 The correspondence G - 9(G) clearly satisfies isotony. That is, if G1
 C G2 then 9M(G,) C 91(G2). Moreover, the local algebras also satisfy fixed-
 time microcausality. That is, if G1 n G2 = 0 then all operators in 91(G1)
 commute with all operators in 91(G2). (This follows directly from Eq. (14)
 and the fact that S(G1) and S(G2) are symplectically orthogonal.)

 3.1. Anti-locality and the Reeh-Schlieder theorem. Let 91 be some sub-
 algebra of B('(4./)). We say that a vector W E 7(o4') is cyclic for 91 just
 in case [9wV] = (,/), where [91W] denotes the closed linear span of {Aw
 : A E 91}. Of course, every vector in a (c4), including the vacuum vector
 Q, is cyclic for the global algebra B(a (,4)) of all bounded operators on
 47(,4). The Reeh-Schlieder theorem, however, tells us that the vacuum
 vector Q is cyclic for any local algebra 91(G).

 The first version of the Reeh-Schlieder theorem I will present is a re-
 stricted version of the theorem-due to Segal and Goodman-applicable
 only to the free Bose field model. The key concept in this version of the
 theorem is the notion of an "anti-local" operator.

 Definition. An operator A on L2 (R3) is said to be anti-local just in case:
 For anyf E L2(R3) and for any open subset G of R3, supp(f) n G =
 0 and supp(Af) n G = 0 only iff = 0.

 Thus, in particular, an anti-local operator maps any wavefunction with
 support inside a bounded region to a wavefunction with infinite "tails."

 The following lemma may be the most important lemma for under-
 standing the local structure of the free Bose field model:

 5. Sincef - W(f) is weakly continuous, 9(G) contains W(f) for allfin the closure
 of S(G).

 6. One can show that eiA is in a von Neumann algebra (for all t) iff A is affiliated to
 that algebra.
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 Lemma (Segal and Goodman 1965). The operator H = (- V2 + m2)1'2 is
 anti-local.

 This lemma has the important consequence that for any non-empty
 open subset G of R3, the complex-linear span of S(G) is dense in / (cf.
 Segal and Goodman 1965, Corollary 1). However, for any real-linear sub-
 space E of A Q is cyclic for the algebra generated by { W(f) : f E E} if
 and only if the complex-linear span of E is dense in / (cf. Petz 1990,
 Proposition 7.7). Thus, the anti-locality of H entails that fQ is cyclic for
 every local algebra.

 Reeh-Schlieder Theorem. Let G be any nonempty open subset of 3. Then,
 ?Q is cyclic for 9t(G).

 What is the significance of this cyclicity result? Segal claims that the
 theorem is "striking," since it entails that, ". .. the entire state vector space
 of the field could be obtained from measurements in an arbitrarily small
 region of space-time!" (1964, 140) He then goes on to claim that the result
 is, "quite at variance with the spirit of relativistic causality." (143) Fleming
 also sees the cyclicity result as counterintuitive, apparently because it does
 not square well with our understanding of relativistic causality. For ex-
 ample (cf. Fleming 2000, 499), the Reeh-Schlieder theorem entails that for
 any state y E (o/), and for any predetermined e, there is an operator
 A E 91(G) such that IIAQ - wll < s. In particular, vy may be a state that
 differs from the vacuum only in some region G' that is disjoint (and hence
 spacelike separated) from G. If, then, A is interpreted as an "operation"
 that can be performed in the region G, it follows that operations performed
 in G can result in arbitrary changes of the state in the region G'. This,
 then, is taken by Fleming to show that, "the local fields allow the possi-
 bility of arbitrary space-like distant effects from arbitrary localized ac-
 tions." (2000, 513)

 Fleming's use of "actions" and "effects" seems to construe a local opera-
 tion-represented by an operator A E R(G)-as a purely physical distur-
 bance of the system; i.e., the operation here is a cause with an effect at space-
 like separation. If this were the only way to think of local operations, then
 I would grant that the Reeh-Schlieder theorem is counterintuitive, and in-
 deed very contrary to the spirit of relativistic causality. However, once one
 makes the crucial distinction between selective and nonselective local opera-
 tions, local cyclicity does not obviously conflict with relativistic causality
 (cf. Clifton and Halvorson 2000, Section 2). Rather than dwell on that here,
 however, I will proceed to spell out some of the further "counterintuitive"
 consequences of the Reeh-Schlieder theorem.

 1. Let G, and G2 be disjoint subsets of R3. Suppose that W(f) is clas-
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 sically localized in G, and W(g) is classically localized in G2. Then,
 Im(f, g) = 0 and therefore W(f)W(g) = W(f + g). Thus,

 (Q , W(f)W(g)Q) = exp(-llf + g112/4) (19)
 = ( , W(f)Q)-(Q , W(g)Q) e-Re(fg)'. (20)

 However, S(G,) and S(G2) are not orthogonal relative to the real part of
 the inner product (, ). Indeed, iff = u0 ( ul and g = vo ( vl, then

 Re(f, g) = (u, Hvo) + (u, , H-'lv) (21)

 = uo(Hvo)dx + f u(H- v,)d3x. (22)

 But since H and H- are anti-local, the two integrals in (22) will not gen-
 erally vanish. Therefore, the vacuum state is not a product state across
 R((G1) and l(G2).

 It should be noted, however, that the above argument does not entail
 that the vacuum state is "entangled"-since it could still be a mixture of
 product states across 9R(G,) and R(G2). However, it can be shown directly
 from the cyclicity of the vacuum vector fQ that the vacuum state is not
 even a mixture of product states across RS(G1) and R(G2). (Halvorson and
 Clifton 2000) Moreover, the vacuum predicts a maximal violation of Bell's
 inequality relative to the algebras ZR(G) and 91(G'), where G' = R3\G.
 (Summers and Werner 1985) (Bell correlation, however, is not entailed by
 cyclicity.)

 2. The cyclicity of the vacuum combined with (equal-time) microcau-
 sality entails that the vacuum vector is separating for any local algebra
 SR(G), where G' = R3\G has non-empty interior. That is, for any operator
 A E 91(G), if AQ = 0 then A = 0. In particular, for any local event-
 represented by projection operator P E 91(G)-the probability that event
 will occur in the vacuum state is nonzero. Thus, the vacuum is "seething
 with activity" at the local level.

 Since the vacuum is entangled across 9R(G) and 9R(G'), it follows that
 the vacuum is a mixed state when restricted to the local algebra 9R(G). In
 fact, when we restrict the vacuum to 9R(G), it is maximally mixed in the
 sense that the vacuum may be written as a mixture with any one of a dense
 set of states of 9R(G). (Clifton and Halvorson 2000) Intuitively speaking,
 then, the vacuum state provides minimal information about local states
 of affairs. This is quite similar to the singlet state, which restricts to the
 maximally mixed state (1/2)I on either one-particle subsystem (cf. Redhead
 1995a).

 3. For any annihilation operator a(f), we have a(f)Q1 = 0. Thus, a(f)
 cannot be affiliated with the local algebra 91(G). Since the family of op-
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 erators affiliated with r(G) is closed under taking adjoints, it also follows
 that no creation operators are affiliated with 9(G).

 The concreteness of the model we are dealing with allows a more direct
 understanding of why, mathematically speaking, local algebras do not
 contain creation and annihilation operators. Inverting the relation in (13),
 and using the fact thatf - a+(f) is linear andf - a(f) is anti-linear, it
 follows that

 a+(f) = 2- /2 (Q(f)- iD(if)), (23)
 a(f) = 2-'2(Q(f ) + i0(if)). (24)

 Thus, an algebra generated by the operators { W(J) :fE E}, will contain
 the creation and annihilation operators {a+(f), a(f) :f E E} only if E is
 a complex-linear subspace of 4 This is not the case for a local algebra
 9I(G) where E = S(G) is a real-linear subspace of . In fact, referring to
 the concrete one-particle space ,/ allows us to see clearly that S(G) is not
 invariant under the complex structure J. If u0 ( ul E S(G), then

 J(uo ( u,) = -H-'ul, Huo. (25)

 But since H and H-' are anti-local, it is not the case that Huo E C(G) or
 - H-'u E C(G). Thus, Jf S(G) whenf E S(G). What is more, since
 the complex span of S(G) is dense in ,,, if S(G) were a complex subspace,
 then it would follow that 9t(G) = B(4(,)).

 Number operators also annihilate the vacuum. Since the vacuum is
 separating for local algebras, no number operator is affiliated with any
 local algebra. Thus, an observer in the region G cannot count the number
 of particles in G!

 How should we understand the inability of local observers to count the
 number of particles in their vicinity? According to Redhead, a heuristic
 calculation shows that the local number density operator NG does not
 commute with the density operator NG, (where G' is the complement of
 G). Thus, he claims that

 ... it is usual in axiomatic formulations of quantum field theory to
 impose a microcausality condition on physically significant local ob-
 servables, viz that the associated operators should commute at space-
 like separation. The conclusion of this line of argument is that number
 densities are not physical observables, and hence we do not have to
 bother about trying to interpret them. (1995b, 81)

 While Redhead's conclusion is correct, it is instructive to note that his
 reasoning cannot be reproduced in a mathematically rigorous fashion.
 That is, there are no local number density operators-in particular, neither
 NG nor NG' exist-and so it cannot be literally true that NG and NG, fail to
 commute.
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 In order to see this, consider first the (single wavefunction) number
 operator Nf = a+(f)a(f), wherefis "classically localized" in G, i.e.,fE
 S(G). Since f - a+(f) is linear, and f - a(f) is anti-linear, it follows
 that Nf = N(,i for all t E R. That is, a single wavefunction number op-
 erator Nfis invariant under phase transformations off. However, classical
 localization of a wavefunction is not invariant under phase transforma-
 tions. Thus, it is not possible to formulate a well-defined notion of classical
 localization for a single wavefunction number operator.

 How, though, do we define a number density operator NG? Heuristi-
 cally, one sets

 NG = N(x)d3x, (26)

 where N(x) = a+(x)a(x). Since, however, N(x) is not a well-defined math-
 ematical object, Eq. (26) is a purely formal expression. Thus, we replace
 N(x) with the single wavefunction number operator Nf and we set,

 NG = Nf,, (27)

 where f is a basis of the real-linear subspace S(G) of 7 Using the fact
 that Nf = Nif for eachf, it follows then that NG = N[1, where Nt~ is the
 number operator for the closed complex-linear span [S(G)] of S(G) in ;
 and the anti-locality of H entails that [S(G)] = . Therefore, the operator
 we defined in Eq. (27) turns out to be the total number operator N.
 4. The Reeh-Schlieder theorem also has implications for the internal

 structure of the local algebra MR(G). In particular, the local algebra R(G)
 is what is called a "type III" von Neumann algebra. (Araki 1964) (The
 algebra B(?(s4)) of all bounded operators on f(,4) is called a type I
 von Neumann algebra.) From a physical point of view, this is significant
 since type III algebras contain only infinite-dimensional projections-
 which entails that there are strict limits on our ability to "isolate" a local
 system from outside influences. (Clifton and Halvorson 2000) Type III
 algebras also have no pure (normal) states.

 4. Newton-Wigner Localizsation. In the previous section, we saw that the
 standard localization scheme G ) 91(G) has a number of "counterintui-
 tive" features, all of which follow from the Reeh-Schlieder theorem. These
 counterintuitive features prompted Segal (1964) and Fleming (2000) to
 suggest a reworking of the correspondence between spatial regions and

 7. Actually, this infinite sum is also a formal expression, since it sums unbounded
 operators. A technically correct definition would define NG as an upper bound of qua-
 dratic forms (see Bratteli and Robinson 1997).
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 subalgebras of observables. In this section I give a mathematically rigor-
 ous rendering of the Segal-Fleming proposal, and I show how it avoids
 both the Reeh-Schlieder theorem and its consequences. (Here I deal only
 with Fleming's first proposal, prior to his generalization to "covariant
 fields.")

 Recall that a localization scheme defines a correspondence between
 regions in space and real-linear subspaces of the one-particle space . The
 Newton-Wigner localization scheme defines this correspondence in pre-
 cisely the way it is done in elementary quantum mechanics: A region G in
 R3 corresponds to the subspace L2(G) C L2(R3) of wavefunctions with
 probability amplitude vanishing (almost everywhere) outside of G. We
 may then use the unitary mapping V between / and L2(R3) to identify
 the subspace V-1L2(G) of Newton-Wigner localized wavefunctions in,,.
 Hereafter, I will suppress reference to V-1 and use L2(G) to denote the
 pertinent subspace in either concrete version of the one-particle space.

 Note that the correspondence G - L2(G) is monotone; i.e., if G1 C G2
 then L2(G,) C L2(G2). Moreover, if G, n G2 = 0, then L2(Gi) and L2(G2)
 are fully orthogonal-a key difference between NW localization and clas-
 sical localization.

 Now, we say that a Weyl operator W(f) acting on a7(,4) is NW-
 localized in G just in casef E L2(G). We then define the algebra T9Nw(G)
 of NW-localized operators on '7(c4) as the von Neumann algebra gen-
 erated by the Weyl operators NW-localized in G. That is,

 9Nw(G) = W(f) :f E L2(G)}". (28)

 Clearly, the correspondence G - RtN(G) satisfies isotony. Moreover,
 since G1 n G2 = 0 entails that L2(G1) and L2(G2) are orthogonal subspaces
 of,,, the correspondence G - 9Nw(G) satisfies fixed-time microcausality.
 Thus, at least in this fixed-time formulation, the NW localization scheme
 appears to have all the advantages of the classical localization scheme. I
 will now proceed to spell out some features of the NW localization scheme
 that may make it seem more attractive than the standard localization
 scheme.

 If G is an open subset of R3, then

 L2(R3) = L2(G U G') = L2(G) ) L2(G'). (29)

 Accordingly, if we let 7G, = f(L2(G)) and a7G, = L(L2(G')) then it follows
 that

 (o4/) = TGo ? ' G'. (30)

 (Here the equality sign is intended to denote that there is a natural iso-
 morphism between ]7(,4/) and 7G (? G'.) Moreover, the vacuum vector
 l E G (J4) is the product fiG ( f G' of the respective vacuum vectors in
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 G and G'. By definition, ?(f) is affiliated with RNw(G) whenfE L2(G).
 Since L2(G) is a complex-linear subspace of , it follows that QD(if) is also
 affiliated with 9Nw(G), and hence that a+(f), a(f), and Nf are all affili-
 ated with 9JNw(G). If we let U denote the unitary operator that maps FG
 0 7G' naturally onto 9(,,), then it is not difficult to see that

 U-'a+(f)U = aG(f) ( I, (31)

 where a (f) is the creation operator on G. Thus, we also have U-'a(f)U
 = aG(f) ( I, and since the creation and annihilation operators {a-(f):
 f E L2(G)} form an irreducible set of operators on 7G, it follows that

 9tN(G) = B('G) ? I, (32)
 9sN(G') = I ( B(7G,). (33)

 (Again, equality here means there is a natural isomorphism.)
 It follows then that acting on Cl = fG 0? fG' with elements from

 9RNw(G) results only in vectors of the form v ( flG' for some W E a7G.
 Thus, the vacuum is not cyclic for the local algebra Rtw(G).

 1. It is obvious from the preceding that the vacuum is a product state
 across YNW(G) and its complement 9sN(G'). This also follows directly
 from the fact that L2(G) and L2(G') are fully orthogonal subspaces of.,
 Indeed, let W(f) E 9tNw(G) and W(g) E 9tNw(G'). Then since lif + gil2
 = Ilf 112 + 1lgl2, it follows that

 (Q , W(f)W(g)) = ( , W(f + g)Q) (34)
 = exp(-llf + gJ12/4) (35)
 = ( l, W(f)Q)-(n, W(g)n). (36)

 2. Restricting the vacuum state tl to &(Nw(G) is equivalent to restricting
 the product state foG 0 r G' to B(7G) ( I. Thus, the restriction of Qt to
 9tNw(G) is pure, and the global vacuum provides a "maximally specific"
 description of local states of affairs.

 3. If {ff} is an orthonormal basis of L2(G), then the number operator
 NG = X,Nf is affiliated with 9Nw(G). Moreover, the number operator NG,
 is affiliated with RNw(G'), and by microcausality we have [NG, NG'] = 0.
 We may also see this by employing the correspondence between f/(o/)
 and 7G 0? G'. The Fock space G has its own total number operator NG.
 Similarly, 7G, has its own total number operator NG'. Obviously then, NG
 0 Iis affiliated with B(7G) ? I, and I NG' is affiliated with I? B(G').
 Just as obviously, NG ( I commutes with I ( NG'.

 4. As can be seen from Eq. (32), the local algebra tWNw(G) is a type I
 von Neumann algebra. According to Segal (1964, 140), this is precisely
 the structure of local algebras that is "suggested by considerations of cau-
 sality and empirical accessibility."
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 5. The Full Strength of Reeh-Schlieder. The results of the previous two
 sections speak for themselves: The Newton-Wigner localization scheme
 results in a mathematical structure that appears to be much more in accord
 with our a priori physical intuitions than the structure obtained from the
 standard localization scheme. In this section, however, I show that the
 NW localization scheme "avoids" the Reeh-Schlieder theorem in only a
 trivial sense, and I show that the NW localization scheme has its own
 counterintuitive features without parallel in the standard localization
 scheme.

 First, while the NW-local algebras avoid cyclicity of the vacuum vector,
 they still have a dense set of cyclic vectors.8

 Theorem 1. (Nw(G) has a dense set of cyclic vectors in ,(.S).
 Proof. Since the Hilbert spaces CG and 4, have the same (infinite) di-

 mension, it follows from Theorem 4 of (Clifton et al. 1998) that
 RNw(G) = B(c7) ? I has a dense set of cyclic vectors in ~7(,) =
 ?4G .G o0

 Thus, if the worry about the Reeh-Schlieder theorem is about cyclicity in
 general, adopting the NW localization scheme does nothing to alleviate
 this worry.

 Perhaps, however, the worry about the Reeh-Schlieder theorem is spe-
 cifically a worry about cyclicity of the vacuum state. (One wonders, though,
 why this would be worse than cyclicity of any other state.) Even so, I
 argue now that the NW localization scheme does not avoid the "vacuum-
 specific" consequences of the full Reeh-Schlieder theorem.

 Let ,be an arbitrary Hilbert space, representing the state space of some
 quantum field theory. (For example, X = 7(,4z) in the case of the free
 Bose field.) Suppose also that there is a representation a -, U(a) of the
 spacetime translation group in the group of unitary operators on Xi Given
 such a representation, there is a "four operator" P on /such that U(a) =
 eiaP. We say that the representation a - U(a) satisfies the spectrum con-
 dition just in case the spectrum of P is contained in the forward light cone.
 From a physical point of view, the spectrum condition corresponds to the
 assumption that (a) all physical effects propagate at velocities at most
 the speed of light, and (b) energy is positive. Note, consequently, that the
 spectrum condition is a purely global condition, and so is not likely to be
 a source of dispute between proponents of differing localization schemes.

 A net of local observable algebras is an assignment O A- 1(O) of open
 regions in Minkowski spacetime to von Neumann subalgebras of B(,).

 8. Cf. Fleming's claim that, "... it is remarkable that any state can have enough struc-
 ture within an arbitrarily small region, 0, to enable even the mathematical reconsti-
 tuting of essentially the whole state space." (Fleming 2000, 499)

 125

This content downloaded from 131.111.184.7 on Fri, 17 Jan 2020 17:00:42 UTC
All use subject to https://about.jstor.org/terms



 HANS HALVORSON

 (Note that this definition is not immediately pertinent to the localization
 schemes presented in Sections 3 and 4, since they gave an assignment of
 algebras to open regions in space at a fixed time.) The full Reeh-Schlieder
 theorem will apply to this net if it satisfies the following postulates:

 1. Isotony: If 01 C 02, then 2(O0) C 2(02).
 2. Translation Covariance: U(a)-12(O)U(a) = 1(0 + a).
 3. Weak Additivity: For any open O C M, the set

 U U(a)-' () U(a)
 aEM

 of operators is irreducible (i.e., leaves no subspace ofkinvariant).

 In this general setting, a vacuum vector Q can be taken to be any vector
 invariant under all spacetime translations U(a).

 Full Reeh-Schlieder Theorem. Suppose that {81(O)} is a net of local ob-
 servable algebras satisfying postulates 1-3. Then, for any open region
 0 in Minkowski spacetime, f is cyclic for 1(0).

 Note that the Reeh-Schlieder theorem does not require the postulate of
 microcausality (i.e., if A E 9(0) and B E 1(02), where 01 and 02 are
 spacelike separated, then [A , B] = 0).9

 For the standard localization scheme, there is a straightforward con-
 nection between the full Reeh-Schlieder theorem and the fixed-time ver-

 sion given in Section 3. In particular, there is an alternative method for
 describing the standard localization scheme that involves appeal to space-
 time regions rather than space regions at a fixed time (see Horuzhy 1988,
 Chapter 4). It then follows that 9R(G) = 2(OG), where OG is the "domain
 of dependence" of the spatial region G. Thus, the fixed-time version of the
 Reeh-Schlieder theorem may be thought of as corollary of the full Reeh-
 Schlieder theorem in connection with the fact that 91(G) = W(OG).

 Segal and Fleming avoid the fully general version of the Reeh-Schlieder
 theorem only by remaining silent about how we ought to assign algebras
 of observables to open regions of spacetime. 0 Since, however, the typical
 quantum field theory cannot be expected to admit a fixed-time (3 + 1)
 formulation (cf. Haag 1992, 59), it is not at all clear that they have truly
 avoided the Reeh-Schlieder theorem in any interesting sense. It would
 certainly be interesting to see which, if any, of the full Reeh-Schlieder

 9. To see that microcausality is logically independent from postulates 1-3, take the
 trivial localization scheme: W(O) = B(X), for each O.

 10. It is essential for the proof of the full Reeh-Schlieder theorem that the region O has
 some "temporal extension": The theorem uses the fact that if A E 2(0,) where 0, C
 O, then U(a) -A U(a) E A(0) for sufficiently small a in four independent directions.
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 theorem's three premises would be rejected by a more general NW local-
 ization scheme.

 However, we need not speculate about the possibility that the full Reeh-
 Schlieder theorem will apply to some generalization of the NW localiza-
 tion scheme: The Reeh-Schlieder theorem already has "counterintuitive"
 consequences for the fixed-time NW localization scheme. In particular,
 although the vacuum Q is not cyclic under operations NW-localized in
 some spatial region G at a single time, fQ is cyclic under operators NW-
 localized in G within an arbitrarily short time interval. Before I give the
 precise version of this result, I should clarify some matters concerning the
 relationship between the dynamics of the field and local algebras.

 In the standard localization scheme, the dynamics of local algebras may
 be thought of two ways. On the one hand, we may think of the assignment
 G - 91t(G) as telling us, once and for all, which observables are associated
 with the region G, in which case the state of ~R(G) (i.e., the reduced state
 of the entire field) changes via the unitary evolution U(t) (Schr6dinger
 picture). On the other hand, we may think of the state of the field as fixed,
 in which case the algebra 91(G) evolves over time to the algebra
 U(t)-'I(G)U(t) (Heisenberg picture). Thus, U(t)-l'(G)U(t) gives those
 operators classically localized in G at time t. The Schrodinger picture is
 particularly intuitive in this case, since it mimics the dynamics of a classical
 field where quantities associated with points in space change their values
 over time.

 Now, neither Segal nor Fleming explain how we should think of the
 dynamics of the NW-local algebras. Presumably, however, we are to think
 of the dynamics of the NW-local algebras in precisely the same way as we
 think of the dynamics of the standard local algebras." In particular, we
 may suppose that the state of the field is, at all times, the vacuum state Q,
 and that U(t)-l'9N(G)U(t) gives those operators NW-localized in G at
 time t.

 Now for any A C R let

 SA = {U(t)'AU(t) : A E SRN(G), t E A}. (37)

 That is, S, consists of those operators NW-localized in G at some time t E A.

 Theorem 2. For any interval (a, b) around 0, Ql is cyclic for S(ab).

 Sketch of proof: Let [S(ab,Q] denote the closed linear span of {AQl: A

 11. It is conceivable that Segal or Fleming have some different idea concerning
 the relationship between NW-local algebras at different times. For example, perhaps
 even in the Schr6dinger picture, the map G - 9RNw(G) should be thought of as time-
 dependent. Although this is surely a formal possibility, it is exceedingly difficult to
 understand what it might mean, physically, to have a time-dependent association of
 physical magnitudes with regions in space.
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 E S(ab)}. Since the infinitesimal generator dF(H) of the group U(t) is
 positive, Kadison's "little Reeh-Schlieder theorem" (1970) entails
 that [S(ab)f] = [SRQf]. However, [SRf2] = (os); i.e., Q is cyclic under
 operators NW-localized in G over all times. (Segal 1964, 143) There-
 fore, Q is cyclic for S(ab).

 In Fleming's language, then, the NW-local fields "allow the possibility
 of arbitrary space-like distant effects" from actions localized in an arbi-
 trarily small region of space over an arbitrarily short period of time. Is
 this any less "counterintuitive" than the instantaneous version of the
 Reeh-Schlieder theorem for the standard localization scheme?12

 Finally, we are in a position to see explicitly a "counterintuitive" feature
 of the NW localization scheme that is not shared by the standard locali-
 zation scheme: NW-local operators fail to commute at spacelike separa-
 tion. For this, choose mutually disjoint regions G, and G2 in R3, and choose
 an interval (a, b) around 0 so that O, : = U,t(ab) (G, + t) and 02 :=
 Ut(a,b)(G2 + t) are spacelike separated. Let ,,N(O) be the von Neumann
 algebra generated by

 U U(t)-l SN(Gi)U(t). (38)
 tE(a,b)

 Then it follows from Theorem 2 that the vacuum is cyclic for ,Nw(02).
 However, since %Nw(O0) D tRw(G) contains annihilation operators and
 number operators, it follows that WNw(O,) and vNw(02) do not satisfy
 microcausality. (Microcausality, in conjunction with cyclicity of the
 vacuum vector, would entail that the vacuum vector is separating.) More
 specifically, while the algebras U(t)- '1Nw(G,) U(t) and U(t)- 'iRN(G2) U(t)
 do satisfy microcausality for any fixed t, microcausality does not generally
 hold for the algebras U(t)-'9iNw(G,)U(t) and U(s)-'lNw(G2)U(s) when
 t # s (despite the fact that G, + t and G2 + s are spacelike separated).

 It would be naive at this stage to claim that failure of generalized micro-
 causality provides a simple reductio ad absurdum of the NW localization
 scheme. As I will argue in the next section, however, the failure of gen-
 eralized microcausality for the NW-local algebras leaves little room for
 making any physical sense of the NW localization scheme.

 6. Local Properties and Local Measurements. Mathematically speaking,
 there is no limit to the number of ways we could associate operators with
 subsets of a spacetime manifold. But when does such an association have
 physical significance, or a natural physical interpretation? In other words,

 12. One may, however, reject the interpretation of elements of RINw(G) as operations
 that can be performed in G. I return to this point in the next section.
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 when does a mathematical relation, such as A E 9R(G), correspond to
 some physical relation of "localization" between the corresponding ob-
 servable and region of space? The standard localization scheme was orig-
 inally introduced with the explicit intention that the mathematical relation
 A E Rt(G) should denote that the observable represented by A is measur-
 able in the region of space denoted by G. On the other hand, advocates
 of the NW localization scheme have not been uniformly clear concerning
 its intended physical significance. In this section, I will argue that advo-
 cates of the NW localization scheme are impaled on the horns of a di-
 lemma: Either A E 9t,(G) entails that A is measurable in G, in which
 case the NW localization scheme predicts act-outcome correlations at
 spacelike separation, or the NW localization scheme is a formal recipe
 without physical significance.

 Note first that if A E JNw(G) entails that A is measurable in G, then the
 NW localization scheme is empirically inequivalent to the standard locali-
 zation scheme. [For example, the vacuum displays Bell correlations relative
 to the algebras R(G) and R(G'), while the vacuum is a product state across
 SNW(G) and SNw(G').] Segal is clear that he is willing to accept this con-
 sequence, and indeed, he believes the NW localization scheme gives a more
 accurate account of what is locally measurable. He says,

 From an operational viewpoint it is these variables [i.e., ?((f) withf
 G L2(G)] ... that appear as the localized field variables, and the ring
 SNw(G)... appears as the appropriate ring of local field observables,
 rather than the ring 9(G) ... (Segal 1964, 142; notation adapted)

 However, if A and B are two observables that do not commute, then
 measurement of A can alter the statistics for measurement outcomes of B.

 As a result, the failure of generalized microcausality (i.e., commutation at
 spacelike separation) for NW local algebras entails the possibility of act-
 outcome correlations at spacelike separation.13 Thus, when equipped with
 the local measurability interpretation, the NW localization scheme ap-
 pears to be inconsistent with special relativity.

 Although Fleming argues for the "physical significance" of the NW
 localization scheme, he does not put it forward as a replacement for, or
 competitor to, the standard localization scheme:

 How shall we choose between these perspectives? We need not choose
 and we should not. Rather, wisdom lies in exploring the implications
 and the subtler details of the interpretation of both perspectives.
 (Fleming 2000, 513)

 13. Although I lack direct historical evidence, it appears that Segal eventually aban-
 doned the NW localization scheme due to the conflict with relativistic causality (cf.
 Baez, et al., 1997, 173).
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 Since the two localization schemes are empirically inequivalent, when both
 are interpreted in terms of local measurability, Fleming must eschew the
 claim that elements of NW local algebras are locally measurable. Indeed,
 Fleming notes elsewhere that

 ... one naturally assumes that one can interpret the association of an
 operator with a spacetime region as implying that one can measure it
 by performing operations confined to that region,

 but he goes on to "question [this] interpretive assumption." (Fleming and
 Butterfield 1999, 158-159) How then does Fleming interpret the associa-
 tion of an observable with a region in space? That is, what does he mean
 by saying that an observable is localized in a region of space?

 In his explanation of NW-localization, Fleming refers to the NW po-
 sition operator (which, in the case of the free Bose field, is identical to the
 center of energy position operator). He argues that,

 ... HD [hyperplane dependent] position operators, such as the gen-
 eral CE [center of energy] and the general NW position operators, are
 more closely related than the local field coordinate to assessments of
 where, on hyperplanes and in space-time, objects, systems, their lo-
 calizable properties and phenomena are located. (Fleming 2000, 514)

 However, the NW position operator is not contained in any NW local
 algebra, and there is no natural correspondence between the spectral pro-
 jections of the NW position operator and the NW local algebras.14 Thus,
 even if we were to concede that the NW position operator has "unequiv-
 ocal physical significance," this would not appear to clarify the physical
 significance of NW local algebras.

 Perhaps, however, the physical significance of the NW local algebras
 can be derived from their relationship to the relevant number operators.
 In particular, the NW number operator NG is affiliated with tNw(G); and,
 as a result, the projection P onto the complement of the nullspace of NG
 is contained in BtNw(G). Now, according to the advocate of NW locali-
 zation, P represents that property possessed by the system iff there are
 particles in G. Thus, it would seem reasonable to say that P represents a
 property that is localized in G, and, by extension, that any projection
 operator in 9tNw(G) represents a property that is localized in G.

 Despite the shift in emphasis to "properties," this interpretation of the
 NW localization scheme does not differ from the interpretation of the
 standard localization scheme. Indeed, the standard localization scheme
 also says that elements of R(G) correspond to properties that are localized

 14. Suppose that G, and G2 are disjoint. Then, no pair of non-trivial projections from
 MNw(G,) and 9INw(G2) is orthogonal (cf. Eqs. (32) and (33)).
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 in G. The only difference between the two cases is that the standard lo-
 calization scheme defines the relation "is localized in" in terms of the

 (more fundamental) relation "is measurable in," whereas Fleming appears
 to take the localization relation to be primitive. However, if localization
 is a primitive relation, it is not obvious why we should think it coincides
 with the assignments made by the NW localization scheme. In particular,
 let E be some spacelike hypersurface in Minkowski spacetime, and let h
 be a symmetry of S. Let U(h) denote the unitary transformation of 9(e )

 induced by h, and let tNw(G) = U(h)-1iNw(G)U(h). Then iNw(G) and

 S1N(G) are identical in their formal properties, and thus have, prima
 facie, an equal claim as descriptions of which properties are localized in
 G. Thus, it is incumbent upon Fleming to describe some relevant difference
 between the two algebras.

 To clarify this point further, consider the analogous situation of a spa-
 tially extended, classical system (cf. Fleming 2000, 507). Let C denote the
 center of energy of the system. Then, in each state of the system (i.e., at
 each time) C may be identified with some point x in the hypersurface S.
 For each x E E, let P(x) = 1 if C = x, and let P(x) = 0 otherwise. Then,
 P(x) represents that property possessed by the system iff the center of
 energy is x. Thus, we might wish to infer that P(x) represents a property
 that is localized at x. Suppose, however, that we are given some symmetry
 h of E. Let P(x) = 1 if C = h-'(x), and let P(x) = 0 otherwise. Then,
 P(x) represents that property possessed by the system iff the quantity C
 h(C) takes the value x. Applying the same reasoning we used to conclude
 that P(x) is localized at x, it follows that P(x) = P(h-'(x)) is localized at
 x. Since h- (x) could be any point of X, the argument for the claim that
 P(x) is localized at x is clearly invalid.

 In fact, it is only in cases where we have locally measurable quantities
 that we can resolve the arbitrariness introduced by the possibility of shift-
 ing quantities from point to point (or from region to region). For example,
 let X denote the position observable of a classical point particle. Let P(x)
 denote that property possessed by the system iff X = x, and let P(x) denote
 that property possessed by the system iff X = h- (x). Then P(x), but not
 P(x), is measurable at x. Thus, there is a significant difference between
 these two ways of associating quantities with points. On the other hand,
 in the center of energy example, neither P(x) nor P(x) is measurable at x.
 Thus, there are no relevant grounds for favoring one of the two associa-
 tions between quantities and points.

 To sum up: In the absence of some other criterion for distinguishing
 NW local algebras, we must conclude that either the NW localization
 scheme is arbitrary, or A E SN,,(G) entails that A is measurable in G.
 However, if A E tNw,(G) entails that A is measurable in G, then the NW
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 localization scheme predicts the possibility of act-outcome correlations at
 spacelike separation. Therefore, the NW localization scheme is either in-
 curably arbitrary, or is inconsistent with special relativity.

 7. Conclusion. Introduction of the NW localization scheme into quantum
 field theory was an ingenious move. By means of one deft transformation,
 it appears to thwart the Reeh-Schlieder theorem and to restore the "in-
 tuitive" picture of localization from non-relativistic quantum mechanics.
 However, there are many reasons to doubt that Newton-Wigner has truly
 spared us of the counterintuitive consequences of the Reeh-Schlieder the-
 orem. First, NW-local algebras still have a dense set of cyclic vectors.
 Second, since general quantum field theories cannot be expected to admit
 a fixed-time formulation, it is not clear that the NW localization scheme
 has any interesting level of generality. Third, NW-local operations on the
 vacuum over an arbitrarily short period of time do generate the state space
 of the entire field. And, finally, the failure of generalized microcausality
 for the NW local algebras entails the possibility of act-outcome correla-
 tions at spacelike separation.

 After showing that the Reeh-Schlieder theorem fails for NW-local al-
 gebras, Fleming states that, "Now it is clear why it would be worthwhile
 to see the NW fields as covariant structures." (2000, 505) While there may
 be very good reasons for seeing the NW fields as covariant structures,
 avoiding the Reeh-Schlieder theorem is not one of them.
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