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To prepare for philosophical aspects of quantum field theory, we begin with a review of mathe-
matical quantum theory, with some interspersed Philosophical Remarks. Apart from these Remarks,
the main themes here will be to build up to some intuition for the functional analysis ideas that
underpin the algebraic approach, which we will often see applied to quantum field theory. We will
also see some high points of quantum theory per se, such as Stone’s theorem, Gleason’s theorem and
superselection.

The main books ‘in the background’ of this review are:
T. Jordan. Linear Operators for Quantum Mechanics: Chapters 1 to 5. Wiley 1969; Dover 2006.
E. Prugovecki. Quantum Mechanics in Hilbert Space: Parts III, IV. Academic 1981; Dover 2006.

We especially recommend for this review, and for foundations of quantum theory, as a whole:
N. Landsman. Foundations of Quantum Theory. Springer 2017: especially Chapters 5, 6,7,9,10.
Open access: downloadable at: https://link.springer.com/book/10.1007/978-3- 319-51777-3

We also recommend for the early history of mathematical quantum theory, Landsman’s recent
survey: ‘Quantum theory and functional analysis’, arxiv: 1911.06630.

1 Vector spaces and linear functionals

1: Vector spaces (over R, or over C). Inner products. For a vector space over C, we write
(z , w�) = z

⇤
w( ,�). The Cauchy-Schwarz inequality: |( ,�)|  || ||.||�||, with equality i↵ the

vectors are linearly dependent.

2: Hilbert space:—
The convergence of vectors:  n !  := || n �  || ! 0 as n ! 1. So infinite linear combinations
of vectors are defined on analogy with ⌃1

n=1!n with !n 2 C. The vector space is complete i↵ every
Cauchy sequence converges. A Hilbert space is a complete inner product space. It is separable i↵ it
has a countable (finite or denumerable) basis.

By the way: One similarly says that a metric space (X, d) (i.e. X is a set; d : X2
! R+ := {r 2

R | r � 0} with d(x, x) = 0, d(x, y) = d(y.x) and triangle inequality) is complete i↵ every Cauchy
sequence converges. In fact, any metric space has a ‘canonical completion’. We define an equivalence
relation between Cauchy sequences of X. Roughly speaking: {xn} ⇠ {x

0
n} i↵ {xn} and {x

0
n} are

‘trying to converge to the same point that is trying to be in X’. The set of equivalence classes inherits
the metric from (X, d) (I.e. in a representative-independent way); and (X, d) can be isometrically
embedded in the set of equivalence classes.

Similarly: given an incomplete inner product space (sometimes called a ‘pee-Hilbert space’), we
can build its ‘canonical completion’ : which is a Hilbert space.

A subset of a vector space that is itself a vector space (so: closed under linear combination) is a
linear manifold. A linear manifold that is closed, i.e. that contains the limit vector of every Cauchy
sequence of vectors, is a subspace. For a finite-dimensional Hilbert space, every linear manifold is a
subspace. A subspace of a separable Hilbert space is itself a separable Hilbert space.

Example: l2 := {(x1, x2, ...) | xn 2 C,⌃|xn|2 < 1} has an orthonormal basis (1, 0, 0, ...), (0, 1, 0, 0, ...), ...
=: {�n}. So each vector is ⌃xn�n. The partial sums are (x1, x2, ..., xN , 0, 0, 0, ...), and these converge
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to (x1, x2, ..., xN , xN+1, ...).

In general: each vector  has a unique expression in terms of an orthonormal basis {�n}:  =
⌃ (�n, )�n. One uses Schwarz, applied to partial sums, to show this .

Any two Hilbert spaces (over R, or over C) of equal dimension are isomorphic: (“just map one
ortho-basis onto another”). So any infinite-dimensional separable Hilbert space can be identified
with l

2.

Ortho-complements and projectors: if M is a subspace of a Hilbert space H, then M
? := { 2

H | ( ,�) = 0 8� 2 H} is a linear manifold, indeed a subspace of H. Every  2 H has a unique
expression as a sum of two components in M and in M

? respectively:  =  M +  M? .

3: Spaces of functions:—
Treating spaces of functions needs care, for two main reasons. We want to say:

R
 
⇤(x)�(x) dx is an

inner product.
(1): But an inner product requires: ( , ) � 0 with equality only if  = 0. And there are many
non-zero functions on, say [0, 1],  : [0, 1] ! C, with

R 1
0 | |

2
dx = 0.

(2): Secondly, in Riemann (i.e. elementary) integration theory, there are Cauchy sequences that do
not converge. Define fn : [0, 1] ! {0, 1} ⇢ R by fn(x) := 1 i↵ x is of the form m

2�n , with m an integer
between 0 and 2n; and otherwise fn(x) := 0. Then any two functions fn, fn0 di↵er at only finitely
many points; and for every n,

R
fn = 0. But the limit of the sequence {fn} is the function f that

takes the value 1 on every integer-multiple of a reciprocal of a power of 2, and is otherwise 0. f is
not Riemann-integrable.

Both problems are solved by adopting Lebesque integration. We will not give details of this and
the associated measure theory. But we note that the function f just defined (value 1 on every integer-
multiple of a reciprocal of a power of 2, and otherwise 0) is Lebesque-integrable and

R
[0,1] fdx = 0:

an intuitive result in that f takes value 1 on a ‘merely’ denumerable set of arguments.

For us, the benefits of adopting Lebesque integration can be summed up, in terms of our two
problems: as follows ...

As to (1): We define an equivalence relation between functions on, say [0, 1],  : [0, 1] ! C:
f ⇠ f

0 i↵ f and f
0 are equal almost everywhere (a.e.), meaning ‘equal everywhere except on a set of

(Lebesque) measure 0’. Then the equivalence classes [f ] themselves form a vector space, in a natural
way. For example, the equivalence class of the pointwise sum f + g of two representative elements,
f 2 [f ] and g 2 [g], is independent of the representatives chosen. Besides, the equivalence classes [f ]
of those functions f , whose square integral

R
|f |

2
dx is finite, form an inner product space in a natural

way. That is: the inner product we intuitively want to have, viz.
R

f
⇤(x)g(x) dx is well-defined on

the equivalence classes, since the integral is independent of the representatives f, g that are chosen.
Thus returning to the original problem (1): the equivalence class of the zero-function, [0] is the
unique vector with norm zero.

As to (2): This inner product space whose elements are equivalence classes (under: almost
everywhere equality) of Lebesque-integrable functions f with finite square integral on, say [0, 1],
i.e.

R 1
0 |f |

2
dx < 1, is complete. That is: it is a Hilbert space. Similarly for square-integrable

functions on the whole real line. These spaces are called L
2 spaces. Thus we write, understanding

the equivalence relation to be: almost everywhere equality:—

L
2([0, 1]) := {[ ] |  : [0, 1] ! C,

Z 1

0
| |

2
dx < 1} ; L

2(R) := {[ ] |  : R ! C,
Z

R
| |

2
dx < 1}

(1)
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4: Philosophical Remarks:—
(A): We of course recognise L

2(R) as the (rigorous version of) the quantum state-space of a spinless
non-relativistic particle confined to the real line: the state-space with which we all first learnt wave
mechanics. Since the classical configuration space of such a particle is R, we see here the basic
idea that the state-space of a quantum system consists of assignments of complex amplitudes to the
possible configurations of the corresponding classical system. This will later lead to quantization
theory. A general slogan, and notation, would be: “we replace a classical configuration space Q by
its L2 space: L2(Q)”.

(B): We already see here, in embryo, the measurement problem: “how can we extract—how does
Nature deliver to us— a single classical fact, e.g. a particle being in a position X 2 R, from a
function  : R ! C?” ... about which this document (this course?!) will be silent...

(C): Even if one sets aside the physical and philosophical measurement problem, the question
arises: ‘Why Hilbert space?’ That is: what motivations can be given for assuming the state space of
a physical system is a Hilbert space?
Various research traditions make this precise, and o↵er an answer. Here is a glimpse of three:

(1): Quantum logic. This was initiated by Birkho↵ and von Neumann in their ‘Logic of
Quantum Mechanics’ (1936), and flourished especially in the 1960s (the Geneva school of J. Jauch)
and later. Experimental ‘Yes-No’ propositions about a physical system are partially ordered by a
sort of logical strength, endowed with logical operations of conjunction (and), disjunction (or) and
negation (not), subject to certain (judiciously chosen!) conditions, to make them a lattice, (usually:
an orthomodular lattice). This lattice is then shown in a representation theorem to be represented
by the lattice of subspaces/projectors of a Hilbert space, partially ordered by inclusion.

(2): ‘Algebras of quantities’: C*-algebras. We have not yet discussed quantities. (In Section
2 below, we will review the usual treatment of them as self-adjoint operators on Hilbert space.)
So we have not yet seen the quantum-classical contrast as a matter of quantum theory allowing
non-commutation of quantities. But a good case can be made for thinking of a system as given
primarily by an algebra of quantities: an algebra that is commutative for classical systems, but
non-commutative for quantum systems. States are then introduced as mathematical superstructure
on top of the algebra of quantities: namely, as linear expectation functionals—details below. The
most developed version of this approach uses C*-algebras. More details later: here, we just note that
in such an algebra, you can multiply any two elements even if they do not commute—an allowance
about which you might well raise a philosophical eyebrow ... Then states on C*-algebras are shown
to be representable in the traditional i.e. familiar ways—phase space for classical systems, Hilbert
space for quantum systems. The buzzword is: the GNS construction, applying to commutative,
respectively non-commutative, algebras.

(3): Information-theoretic and operational approaches. Inspired by studies of quantum non
locality and Bell’s theorem, and the rise of quantum information theory, with its protocols for eg.
teleportation: various approaches take as primitive a set of probability distributions, for various
quantities (normally with a finite discrete set of outcomes), on various individual and joint systems
(normally finite-dimensional). Thus conditions like no signalling/parameter independence are promi-
nent. Again, the Hilbert space formalism (normally finite-dimensional) is recovered with appropriate
representation theorems. Example: D’Ariano, Chiribella and Perinotti, Quantum Theory from First
Principles, CUP.

(D): The question ‘Why should quantities be represented by self-adjoint operators?’ also has a
very di↵erent aspect or meaning, that is not touched on in the literature under (C). After all, there
is nothing to prevent one associated experimental outcomes with complex, e.g. imaginary, numbers:
‘I can paint ‘5i metres’ on the dial of an apparatus measuring position!’ In Section 2, we will report
a helpful classification (due to Roberts) of the possibilities for a quantum physical quantity to be
represented by an operator that is not self-adjoint.
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(E): The pilot-wave theory is a noble tradition for solving the measurement problem. But it has
been developed entirely using intuitive wave mechanics, not L2 spaces.

5: Linear functionals:—
Given a vector space V over the field R or C, the dual space V

⇤ consists of the linear functionals
F : V ! R (or C). We recall that for a finite dimensional V , dim(V ) = dim (V ⇤); but there is
no natural (canonical, i.e. basis-independent) isomorphism between them. But between V and its
second dual V ⇤⇤, there is a natural isomorphism.

With the extra structure of an inner product space, there is a natural isomorphism between V

and its dual V ⇤. (This underlies how in relativity theory, the metric raises and lowers indices.) Thus
each  in an inner product space defines a linear functional F by:

F (�) := ( ,�). (2)

And if V is finite-dimensional, with {�i} an orthonormal basis: we assign to each F 2 V
⇤, the vector

 F := ⌃i F (�i)⇤�i 2 V . Applying the definition in eq. 2 to this  F yields F again. That is: for any
vector � = ⌃i (�i,�)�i, we have:

F (�) = ⌃i (�i,�)F (�i) = ( F ,�). (3)

To get a corresponding basis-independent correspondence for an infinite-dimensional inner prod-
uct space, we must require the linear functionals to be continuous, defined in the obvious way.
Namely: that F is continuous i↵:  n !  implies that F ( n) ! F ( ). Then we have the Riesz
representation theorem:—
For every continuous linear functional F on a separable Hilbert space, there is a unique  F 2 H,
such that F (�) = ( F ,�).

Of course, in Dirac notation the correspondence between linear functionals and vectors induced
by the inner product is built in to the notation. The linear functional F is denoted by h |, and the
two sides of eq. 2 are written as h |�i.

2 Linear operators on a Hilbert space

1: Linear operators and matrices: the elements recalled ... On a suitable space of functions, a linear
operator might be defined by

(A )(x) :=
d (x)

dx
; (A )(x) :=

Z
a(x, y) (y)dy (4)

We shall generally assume that all Hilbert spaces are separable.

2: Bounded operators:—
A linear operator A is continuous i↵:  n !  implies that A( n) ! A( ). A linear operator A is
bounded i↵ there is a positive number b such that for all  , ||A || < b|| ||. The infimum of such
numbers is the norm of A, written ||A||.

Theorem: A linear operator A is continuous i↵ it is bounded. (If H is finite-dimensional, then
every linear operator is continuous, and so bounded.)

The norms of linear operators obey:

||A+B||  ||A||+ ||B|| ; ||aA|| = |a|||A|| ; ||A|| = 0 i↵ A = 0 ; ||AB||  ||A||.||B|| . (5)
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The first three assertions follow straightforwardly from the same properties of the norm for vectors
in H. So we have a normed vector space of linear operators.

A bounded linear operator on a separable Hilbert spaces can be represented by a matrix.

3: Inverses:—
A linear operator A has an inverse if there is linear operator B with AB = 1 = BA. Theorem: A

has an inverse i↵: 8 , 9!� with  = A�.

For a finite-dimensional H, dim(H)= n, with {�i} any basis:— Each of the following is necessary
and su�cient for A to have an inverse:

(i): there is no non-zero vector � such that A� = 0;
(ii): the set {A�1, ..., A�n} is linearly independent;
(iii): there is a linear operator B such that BA = 1;
(iv):the matrix corresponding to A has a non-zero determinant.

But for an infinite-dimensional H, (i)-(iii) are not su�cient—even together. For consider the
“right-shift” on l

2: A : l2 ! l
2, with A(x1, x2, x3, ...) := (0, x1, x2, x3, ...). Then (i) and (ii) hold.

Also: define B as “delete the first component and left-shift”: B(x1, x2, x3, ...) := (x2, x3, ...); then
(iii) holds. But A has no inverse. For if  = (x1, x2, x3, ...) with x1 6= 0 then there is no � such that
 = A�.

4: Unitaries:—
A linear operator U is unitary i↵: both (a) U has an inverse and (b) ||U || = || || for all  .
(Incidentally: the example of the “right-shift” on l

2, just above, shows that for a infinite-dimensional
H, condition (a) is needed.)

Every unitary operator is bounded, with ||U || = 1.

Theorem: If U is unitary, then (U , U�) = ( ,�) for all  ,�. Corollary: It follows that the
unitary image of an ortho-basis is an ortho-basis.

A “partial converse to the Corollary”: If U is bounded, and the U -image of some ortho-basis is
an ortho-basis, then U is unitary.

5: Adjoints and Hermitian operators:—
Let A be bounded, and so continuous. Then for each  2 H, the linear functional F [ ] defined by

F
[ ](�) := ( , A�) (6)

is continuous. And so, by the Riesz theorem (Section 1: 5), there is a unique vector, call it A
†( )

such that F [ ](�) := (A†( ),�).

A
† is trivially linear. Using the Schwarz inequality (applied to ||A

†( )||2 = ( , AA
†
 ), one has:

Theorem: If A is bounded, then A
† is bounded, and ||A

†
|| = ||A||.

One checks that: A†† = A ; (AB)† = B
†
A

† ; (aA)† = a
⇤
A

† ; (A+B)† = A
† +B

†
.

A bounded linear operator A is self-adjoint or Hermitian i↵ A
† = A. NB: for an infinite-

dimensional H, it is impossible to define an unbounded Hermitian operator on all vectors: see later.
This means: (�, A ) = (A�, ). That is: (�, A ) = ( , A�)⇤. So for all  , we have: ( , A ) 2 R.

Example: On L
2([0, 1]), we define (A )(x) := x (x). This A is bounded with ||A ||

2
 || ||

2;
and so ||A|| = 1. And A is Hermitian, since

R 1
0 �

⇤(x).x (x) dx =
R 1
0 [x�(x)]⇤. (x) dx.

But a “corresponding definition” on L
2(R) is of course not bounded. But multiplying by a suitable
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“damping factor” gives a bounded and Hermitian operator on L
2(R), e.g. we define (V  )(x) :=

(exp |x|) (x).

Theorem: If A is bounded, and has a bounded inverse A
�1, then (A†)�1 exists and (A†)�1 =

(A�1)†.
Corollary: If A is bounded and Hermitian, and has a bounded inverse A

�1, then A
�1 is Hermitian.

Hermitian operators are analogues of real numbers. As in: if A is bounded, then its real and
imaginary parts defined by

ReA :=
1

2
(A+A

†) ; ImA :=
�i

2
(A�A

†) (7)

are bounded and Hermitian; and A = ReA+ ImA.

In the same way, unitary operators are analogues of complex numbers of absolute value one. We
have:–
Theorem: A linear operator U is unitary i↵ U

†
U = 1 = UU

†.

For bounded operators A,B, one readily checks using the adjoints that for any ortho-basis {�n},
the representing matrix (cjk) of the product C := AB is the product of the representing matrices,
that is: cjk = ⌃iajibik.

6: Projection operators:—
Recall from Section 1:2 that if M is a subspace of H, then M

? := { 2 H | ( ,�) = 0, 8� 2 H}

is also a subspace; and every  2 H has a unique expression as a sum of the two components:
 =  M +  M? . So we define the projection/projector EM : H ! H, by EM( ) :=  M.

Theorem: A bounded linear operator E is a projector i↵ E
2 = E = E

†. (To prove the leftward
implication, one defines the set M to be the range of E, shows it to be a subspace, and shows that
for any vector  , (1� E)( ) 2 M

? etc.)

7: Unbounded operators:—
Example: The quantity position in the Schrödinger representation (of the canonical commutation
relations; cf. later) on L

2(R). We define (Q )(x) := x (x). Then ||Q ||
2
⌘

R
R |x (x)|2 dx can be

arbitrarily larger than || ||
2
⌘

R
R | (x)|2 dx. So Q is unbounded. In fact we have the following ...

Theorem: If a linear operator A is defined for all vectors, and if (�, A ) = (A�, ) for all �, ,
then: A is bounded.

Quantum theory needs unbounded operatorsA with the algebraic Hermitian property, i.e. (�, A ) =
(A�, ) for all �, in the domain of A. So it needs operators A with domains of definition less than
all of H. Hence the jargon of: dense domain, and extension, of an operator.

If A has a dense domain, we can define A
†. Namely:

dom(A†) := { 2 H | there is a vector  ̃ such that 8� 2 dom(A) : (�,  ̃) = (A�, ) .}
Then we define A

† by A
† :  2 dom(A†) 7!  ̃. This defines A

†( ) uniquely (because dom(A) is
dense); and A

† is linear, and dom(A†) is a linear manifold.

We say that a linear operator A is symmetric i↵: A has a dense domain, and (�, A ) = (A�, )
for all �, in the domain of A. Then by the discussion just above, we conclude that: for all  in the
domain of A, A†( ) is defined, and A

†( ) = A( ). That is: A† is an extension of A.
If in fact A† = A, then we say A is self-adjoint or Hermitian.

Example: We define Q on L
2(R) by specifying that dom(Q): =. { |

R
R |x (x)|2 dx < 1}. This

domain is dense. (For we can approximate an arbitrary  2 L
2(R) by the “truncated” functions  n
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(n 2 Z) that are defined to be equal to  on the interval [�n, n], and to take the value 0 outside
that interval. Clearly  n !  ; and x n(x) is square-integrable.) Then on this domain, we define:
(Q )(x) := x (x). Then Q is clearly symmetric, since

R
R �

⇤(x).x (x) dx =
R

R [x�(x)]⇤. (x) dx. So
Q

† is defined and extends Q. But is the domain of Q† in fact larger than the domain of Q? In fact
it is not larger: (cf. Jordan, p.31). So Q

† = Q, and so Q is self-adjoint, aka: Hermitian.

A symmetric operator that cannot be extended to a larger domain is called maximal symmetric.
Theorem: Every self-adjoint operator is maximal symmetric; (but not conversely)

An unbounded operator cannot be continuous. The “next best thing to continuity” is being
closed, as follows.

We say an operator A is closed i↵: if (i) a sequence of vectors  n in dom(A) converges to a vector
 and (ii) the sequence of vectors A( n) converges to a vector �, then  2 dom(A) and A = �.

Theorem: If dom(A) is dense, then A
† is closed. So every self-adjoint operator is closed.

It is natural to ask: ‘What are the conditions for a symmetric operator to be self-adjoint?’
As just noted, being maximally symmetric is not su�cient. What about being symmetric and closed?
This also turns out to be not su�cient. But in paragraph 4 of the next Section, we will get an answer:
an answer that relates to Philosophical Remark (D) in paragraph 4 of Section 1: about the idea that
a quantity can be represented by an operator that is not self-adjoint.

3 Diagonalizing operators

We assume a complex separable Hilbert space.

1: Eigenvalues and eigenvectors:—
The definition of eigenvalue and of eigenvector is exactly the same for an infinite-dimensional Hilbert
space, as for the finite-dimensional case. The following elementary but important results are derived
exactly as for the finite-dimensional case:

1: If T is a linear operator with an inverse T
�1, then A and TAT

�1 have the same eigenvalues.
2: The eigenvalue of a Hermitian, respectively unitary, operator is real, respectively of absolute

value 1.
3: Two eigenvectors of a Hermitian, or of a unitary, operator, corresponding to di↵erent eigen-

values are orthogonal.

LetA be Hermitian or unitary. Let a1, a2, ..., ak, ... be its eigenvalues, with eigenspacesM1,M2, ...,Mk, ....
Then the orthogonal sum Eig(A) := �kMk is the subspace of H spanned by eigenvectors of A. Of
course, for a finite-dimensional complex Hilbert space, Eig(A) = H. This is the spectral decomposi-
tion or eigen-decomposition of the operator A.

We say that a subspace M < H reduces the linear operator A i↵ both M and M
? are invariant

under A. This turns out to be equivalent to A commuting with the projector onto M:
Theorem: Let EM be the projector ontoM. ThenM reduces A i↵ EMA = AEM i↵ (1�EM)A =

A(1� EM).

Theorem: Let A be Hermitian or unitary: then Eig(A) reduces A. So a Hermitian or unitary
operator splits in to two separate parts: one part acting on Eig(A), and represented there, with
respect to an eigenbasis, as a diagonal matrix; the other part acting on Eig(A)?.

2: Eigenvalue decomposition:—
We will generalise the spectral decomposition of a Hermitian or unitary operator A to the infinite-
dimensional case, i.e. address the question of how A acts on Eig(A)?. We begin by rewriting in a
suggestive way the spectral decomposition of a Hermitian operator A for the finite-dimensional case.
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So let A’s real eigenvalues be, in ascending order: a1 < a2 < ... < ak < ... < am, with corre-
sponding eigenspaces Mk. Let Ik be the projector on to Mk. Then the spectral decomposition of A
is just

A = ⌃m

k=1 akIk ⌘ �
m

k=1 akIk (8)

Now we define for each real number x, Ex := �ak<x Ik. So: Ex = 0 for x < a1, and Ex = 1 for
x > am. And if x < y, then ExEy = Ex = EyEx, i.e. Ex  Ey.

For each x 2 R, we also define dEx := Ex �Ex�" with " chosen so small that there is no aj such
that x� " < aj , x.

So dEx is not zero only when x is an eigenvalue ak; and in that case dEx = Ik.

So for ⌃m

k=1 Ik = 1, we can write:
R

R dEx = 1. And for A = ⌃m

k=1 akIk, we can write: A =R
R x dEx.

Besides: (�, Ex ) is a complex function of x 2 R that is continuous from the right, but which
jumps in value by (�, Ik ) at x = ak. So we have (a sordinary Riemann integrals):

(�, ) =

Z

R
d(�, Ex ) ; (�, A ) =

Z

R
x d(�, Ex ) . (9)

Similarly, for a unitary operator U in the finite-dimensional case. Its eigenvalues are uk ⌘ e
i✓k ,

where in ascending order: 0 < ✓1 < ✓2 < ... < ✓k < ... < ✓m  2⇡. Then we define for each real
number x, Ex := �✓k<x Ik. So we can write:

U =

Z 2⇡

0
e
ix
dEx ; (�, U ) =

Z 2⇡

0
e
ix
d(�, Ex ) . (10)

3: Spectral decomposition:—
A family of projectors {Ex}x2R is called a spectral family i↵:

(i) if x  y then Ex  Ey, i.e. ExEy = Ex = EyEx ;
(ii) continuity from the right: for all  and for all x: if " > 0, then Ex+" ! Ex , as "! 0;
(iii) for all  : Ex ! 0 as x ! �1, and Ex !  as x ! +1. The main theorem is then...

The Spectral Theorem: For each self-adjoint operator, there is a unique spectral family {Ex}x2R

such that for all  ,� 2 H:

(�, A ) =

Z

R
x d(�, Ex ) ; so we write A =

Z

R
x dEx . (11)

Similarly for unitary operators U , with Ex = 0 for x  0, and Ex = 1 for x > 2⇡:

(�, U ) =

Z 2⇡

0
e
ix
d(�, Ex ) ; so we write U =

Z 2⇡

0
e
ix
dEx . (12)

Example: “Position” on L
2([0, 1]). We define Ex on L

2([0, 1]) as “chopping the function o↵ above
x”. That is: (Ex )(y) :=  (y) for y  x, and (Ex )(y) := 0 for y > x. Then

||Ex+" � Ex )||
2 =

Z
x+"

x

| (y)|2 dy ! 0, as "! 0 . (13)

and {Ex}x2R is a spectral family. Now define A on L
2([0, 1]) by (A )(x) := x (x). Then A is

bounded and self-adjoint. For all  ,� 2 H, we have
Z

R
x d(�, Ex ) =

Z

R
x d

Z 1

0
�(y)⇤(Ex )(y) dy =

Z

R
x d

Z
x

0
�(y)⇤ (y) dy =

Z 1

0
�(x)⇤x (x) dx = ( , A�) .

(14)
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So {Ex}x2R gives the spectral decomposition of A.

This {Ex}x2R is continuous from the left, as well as from the right. We have

( , Ex�)� ( , Ex�"�) ⌘

Z
x

x�"
 
⇤(y)�(y)dy ! 0, as "! 0 . (15)

We say that {Ex}x2R jumps in value at x if for some vector  , (Ex � Ex�") does not converge
to 0, as "! 0. Otherwise, we say that {Ex}x2R is continuous at x.

So in the above example, {Ex}x2R is continuous at all x, since A has no eigenvalues/eigenvectors.
Similarly of course for position on L

2(R).

Theorem: Let A be a self-adjoint operator with spectral decomposition A =
R

R x dEx. Then
{Ex}x2R jumps in value at a i↵ a is an eigenvalue of A. And with Ia the projector onto the eigenspace
fo a, we have: ExIa = 0 for x < a; and ExIa = Ia for x � a; and for any  , Ea �Ea�" ! Ia , as
"! 0.

Accordingly, we define:—-
(1): the spectrum ofA := sp(A) := {x 2 R |Ex increases} ⌘ {x 2 R |x is not in an interval (a, b) on which Ex is constant};
(2): the point spectrum of A := {x 2 R |Ex jumps} ⌘ {x 2 R |x is an eigenvalue of A};
(3): the continuous spectrum of A := {x 2 R |Ex increases continuously}.

Theorem:: A self-adjoint operator is bounded i↵ its spectrum is bounded.

We say that self-adjoint operator A is positive i↵ for all  , ( , A ) � 0.

Theorem:: A self-adjoint operator is positive i↵ its spectrum is non-negative.

4: Philosophical remark:—
We return to the Philosophical Remark (D) in paragraph 4 of Section 1: the idea that a quantum
physical quantity can be represented by an operator that is not self-adjoint. Cf. B. Roberts (2018):
‘Observables, disassembled’, Studies in History and Philosophy of Modern Physics 63, 150– 162.
(Preprint: http://philsci-archive.pitt.edu/14449/). On p. 153, Roberts reports that being self-
adjoint is a “two out of three” property. That is:
A closed, densely-defined linear operator A is self-adjoint if it satisfies any two of the following three
properties:

(1): A is normal. That is: AA† = A
†
A;

(2): A is symmetric: (�, A ) = (A�, ) for all �, in the (dense) domain of A.
(3): A has real Spectrum, where we define ‘Spectrum’ in a more general way than we did

‘spectrum’ above: namely as the set Spec(A) := {z 2 C | (A� z.I) has no inverse}. So the condition
is: Spec(A) ⇢ R.

This yields four ways that a closed, densely-defined linear operator A can fail to be self-adjoint:
having just one of the above three properties, or having none of them. Roberts then explores each
of these four ways, finding for each of them: conceptual issues and circumstances in which it is a
reasonable notion of physical quantity.

5: Functions of an Operator:—
Let A be a self-adjoint operator, with spectral decomposition A =

R
R x dEx. Let f be a complex-

valued function on the real line: f : R ! C. We define the operator f(A), by

(�, f(A) ) :=

Z

R
f(x) d(�, Ex ) ; (16)

which for f continuous can be taken as an ordinary Riemann integral. Then we have:
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(1): for f(x) = x, f(A) = A;
(2): for f(x) = 1, f(A) = 1, since

R
R d(�, Ex ) = (�, );

(3): (f + g)(A) = f(A) + g(A) and (cf)(A) = c(f(A));
(4): we define (fg)(x) := f(x)g(x), so that (�, (fg)(A) ) :=

R
R (fg)(x) d(�, Ex ) =

R
R f(x)g(x) d(�, Ex ),

and then we compute that
Z

R
f(x)g(x) d(�, Ex ) =

Z

R
f(x) d

Z
x

�1
g(y) d(�, Ey ) =

Z

R
f(x) dx

Z +1

�1
g(y) dy(Ex�, Ey ) = (17)

Z +1

�1
f(x) d(�, Exg(A) ) = (�, f(A)g(A) ) . (18)

So we conclude that (fg)(A) = f(A)g(A), and thus that functions of the operator A commute with
each other.

So (5): polynomial functions are defined in the natural way. If f(x) = c0+ c1x+ c2x
2+ ...+ cnx

n,
then f(A) = c0 + c1A+ c2A

2 + ...+ cnA
n.

(6) If we define (f⇤)(x) := (f(x))⇤, then we compute that

(�, [f(A)]† ) = ( , f(A)�)⇤ =

Z +1

�1
f(x)⇤d( , Ex�)

⇤ =

Z +1

�1
(f⇤)(x)d(�, Ex ) ; (19)

so that [f(A)]† = (f⇤)(A). So if f is a real-valued function, f ;R ! R, f(A) is also self-adjoint. And
if f⇤

f = 1, then f(A) is a unitary operator since [f(A)]†f(A) = 1 = f(A)[f(A)]† .

(7): f(A) is positive if f(x) � 0 on the spectrum of A. For just consider: (�, f(A)�) =R +1
�1 f(x)d||Ex�||

2. Similarly, we deduce:
(8): f(A) is bounded if |f(x)| is bounded on the spectrum of A.

6: Stone’s Theorem :—
Given a self-adjoint operator H =

R +1
�1 xdEx, we define for all t 2 R: (�, Ut ) :=

R +1
�1 e

itx
d(�, Ex ).

Then Ut is an operators, viz. Ut = e
itH and Ut is unitary since (eitx)⇤.eitx = 1 (cf. the end of (6)

above). Evidently, U0 = 1; and since e
itx

e
it
0
x = e

i(t+t
0)x, we have UtUt0 = Ut+t0 . The converse of this

is...

Stone’s Theorem: Suppose that for all t 2 R, Ut is a unitary operator, such that:
(i): for all vectors �, : (�, Ut ) is a continuous function of t
(ii): U0 = 1 and UtUt0 = Ut+t0 : so the family {Ut}t2R is a unitary representation of the group

(R,+).
Then: there is a unique a self-adjoint operator H such that Ut = e

itH for all t 2 R, and
(1): the domain of H is { 2 H |

1
it
(Ut � 1) converges as t ! 0}; and then the limit vector

is H ;
(2): if a bounded operator commutes with all of the Ut, then it commutes with H.

Using (1), we infer: If Ut 2 dom(H), then: 1
i�t

(U�t � 1)Ut ) ! HUt , as �t ! 0. That is:

1

i�t
(Ut+�t � Ut) ! HUt , as �t ! 0 (20)

which we write as the “Schrödinger equation”:

� i
d

dt
(Ut ) = HUt . (21)
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7: Functions of commuting operators:—
Theorem: Let A be self-adjoint with spectral decomposition A =

R
xdEx; and let B be bounded,

self-adjoint and AB = BA. Then BEx = ExB.
Proof: If A has pure point spectrum, A = ⌃k akIk, the proof is elementary. If A is unbounded,

one needs a more careful statement to deal with issues about domains. Indeed: if two self-adjoint
operators A1, A2 are both unbounded, then we take E1

xE
2
y = E

2
yE

1
x for all x, y 2 R to be the definition

of [A1, A2] = 0.

Given f : R2
! C, (x, y) 7! f(x, y), we define f(A1, A2) for two commuting self-adjoint operators

A1, A2 by

(�, f(A1, A2) ) =

Z

R

Z

R
f(x, y) dxdy(�, E

1
xE

2
y ) , for all �, 2 H . (22)

Sums, scalar multiples, and products of such functions are defined in the obvious way. One shows
that:

[f(A1, A2)]† = (f⇤)fA1, A2); so that real functions f define self-adjoint operators f(A1, A2)
and functions f for which f

⇤
f = 1 define unitary operators f(A1, A2);

f(A1, A2) is positive if f(x, y) > 0 on the cartesian product of the spectra of A1 and A2 ;
f(A1, A2) is bounded if f(x, y) is bounded on the cartesian product of the spectra of A1 and

A2.
Compare items (5) to (8) at the end of Paragraph 5 above.

Example: the Schrödinger representation of position in R3. Consider L2(R3) 3  (x) ⌘  (x1, x2, x3);
with inner product (�, ) =

R
R3 �

⇤(x) (x) dx. For r = 1, 2, 3, we define the self-adjoint operator Qr

by Qr (x) = xr (x). Then in the spectral decomposition

Qr =

Z

R
x dE

r

x (23)

the projectors Er
x are defined by :(Er

x )(y) =  (y) for y with yr  x, and (Er
x )(y) = 0 for y with

yr > x. Then one has
(f(Q1, Q2, Q3) )(x) = f(x1, x2, x3) (x) . (24)

8: Complete sets of commuting operators :—
Let A1, A2, ..., AN be mutually commuting self-adjoint operators with pure point spectra; each with
their spectral decomposition, r = 1, 2, ..., N

Ar = ⌃k a
(r)
k

I
(r)
k

. (25)

Then for all r, s and j.k, we have: I(r)
k

I
(s)
j

= I
(s)
j

I
(r)
k

. And for any j, k, ...l, the product I(1)
j

I
(2)
k

...I
(N)
l

is a projector. Namely, the projector onto the subspace of simultaneous eigenvectors with corre-

sponding eigenvalues, i.e. the space of vectors  with A1 = a
(1)
j
 , A2 = a

(2)
k
 , ..., AN = a

(N)
l

 .
Some of these projectors may be zero: corresponding to combinations of eigenvalues that are not, in
philosophical jargon!, co-possible or compossible.

These subspaces are orthogonal, i.e.

I
(1)
j

I
(2)
k

...I
(N)
l

I
(1)
j0 I

(2)
k0 ...I

(N)
l0 = �jj0�kk0 ...�ll0 I

(1)
j

I
(2)
k

...I
(N)
l

(26)

and complete, i.e.

⌃j ⌃k ...⌃l I
(1)
j

I
(2)
k

...I
(N)
l

= 1 . (27)
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If none of these projects onto a subspace of dimension larger than one, we say that {A1, A2, ..., AN}

is a complete set of commuting operators. Then choosing eigenvectors of length one, and labelling
them with their eigenvalues, i.e. choosing an orthonormal eigenbasis, we can write in Dirac notation:

I
(1)
j

I
(2)
k

...I
(N)
l

= |a
(1)
j

a
(2)
k

...a
(N)
l

iha
(1)
j

a
(2)
k

...a
(N)
l

| (28)

Theorem: Let A1, A2, ..., AN be mutually commuting self-adjoint operators with pure point spec-
tra. This is a complete set i↵: every bounded operator B that commutes with all the A1, A2, ..., AN

is a function of them: B = f(A1, A2, ..., AN ).

The orthonormal eigenbasis {|a(1)
j

a
(2)
k

...a
(N)
l

i} gives a spectral representation of A1, A2, ..., AN and
of the functions f(A1, A2, ..., AN ) as diagonal matrices:

h a
(1)
j

a
(2)
k

...a
(N)
l

| f(A1, A2, ..., AN ) i = f(a(1)
j

a
(2)
k

...a
(N)
l

) h a(1)
j

a
(2)
k

...a
(N)
l

| i . (29)

9: Philosophical Remarks:—
The selection of a self-adjoint operator with pure point spectrum, and so of a complete family of
orthogonal eigenspaces, is at the heart of not just

(i) the mathematics; but also:
(ii) the physics; and
(iii) the interpretation/philosophy

of quantum theory. Besides, the main issues are already clear in the case of finite dimensional Hilbert
spaces. (Indeed, they are clear for real Hilbert spaces: for which, of course, ‘self-adjoint’ is replaced
by ‘symmetric’ in the sense of elementary matrix theory, i.e. the matrix elements aij obey: aij = aji.
Of course, this is not the sense we defined above!)

As to (i), the mathematics: we here note just:
Recall Philosophical Remark (C) (1), about quantum logic, in Paragraph 4 of Section 1. That is:
the lattice L of projectors (equivalently: subspaces) of Hilbert space. Selecting a complete family of
orthogonal eigenspaces, {Ei} say, amounts to picking a sublattice of L: one that is Boolean. More
precisely: a complete family of orthogonal eigenspaces (equivalently: projectors) is the set of atoms
(smallest, logically strongest, least-in-the-partial-order—but non-zero—elements) of a Boolean sub-
lattice of L. The other elements of the sublattice are given by all the possible sums (orthogonal sums,
�) of these atoms. Roughly speaking: ‘Boolean’ means that the distributive laws, of intersection \

over +, and vice versa, hold. That is with E,F,G being three subspaces, E,F,G < H, the laws are:

E \ (F +G) = (E \ F ) + (E \G) ; and E + (F \G) = (E + F ) \ (E +G) (30)

These equations are easily proved for E,F,G mutually orthogonal (as are the atoms); cf. elementary
projector algebra. But they also hold for the various possible sums of atoms. And they are very easily
disproved for E,F,G ‘skew’. Just take three mutually skew rays in the Euclidean plane H = R2.
Then the first equation of eq. 30 would read: E = 0, and the equation of eq. 30 would read: E = H.
Both of which are false.

We say that roughly speaking ‘Boolean’ means that the distributive laws hold: because we are here
neglecting conditions about the behaviour of the complement, i.e. the unary operation on subspaces,
E 7! E

?, or equivalently for projectors, E 7! 1� E.

Three final remarks about this lattice-theoretic perspective:
(1): Since a function f is in general many-one, i.e. two arguments can map to the same value,

a self-adjoint operator B being a function of another A, i.e. B = f(A), means that the sublattice of
L that is defined, as sketched above, by B (with B’s eigenspaces as its atoms) will be a sublattice of
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the sublattice defined by A. In short: coarse-graining.
Note also that B can be a function of two operators A,C that do not commute: i.e. .

B = f(A) = g(C) with [A,C] 6= 0. This point will be crucial in the discussion of FUNC and of ‘no go’
theorems against ‘hidden variable’ supplementations of orthodox quantum theory, that we discuss
under interpretation/philosophy below. For it means that imposing conditions on the assignment
of values to the operator B (and perhaps some other operator with which B commutes) can have
consequences for the values of operators A and C that do not commute.

(2): Later, when we discuss states i.e. probability distributions for the values of quantities
(and so for the values 1 and 0 for projectors), this Booleanness of the sub-lattice will secure there
being a classical (Kolmogorov) probability space for the distribution to be defined on.

(3): When we consider the algebraic approach to quantum theory, Booleanness of a lattice
will correspond to the abelianness of the algebra of quantities. The rough picture, here stated only
for bounded operators, is:

(3A): Although the elements of an algebra ‘go beyond’ projectors, by including also self-
adjoint operators (indeed, arbitrary real linear combinations of projectors: which can then be spec-
trally resolved), and then also skew-adjoint operators, the projectors are the building blocks of the
algebra; and so the abelianness of the algebra is caught by the mutual commutation of the projectors.

(3B): The commutation of projectors [E,F ] = 0 is equivalent to a neat lattice-theoretic
expression of their ranges (1-eigenspaces). If we now write E,F for the ranges, it is (using � to
signal that the summands are orthogonal):

E = (E \ F )� (E \ F
?) ; and F = (E \ F )� (E?

\ F ) . (31)

As to (ii), the physics: we note:
The selection of such an operator can be interpreted as choosing to measure the quantity it represents,
i.e. choosing an experimental context. And the non-commutation of two operators represents it being
impossible to measure them both simultaneously with arbitrary accuracy. Recall Bohr on mutually
exclusive experimental contexts! Cf. e.g. his essay in P.A. Schilpp ed. Albert Einstein: Philosopher-
Scientist

Later, after we introduce states, we will make simultaneous measurability more rigorous. As we
will see: this can be done without committing us to a version of the Projection Postulate or a similar
“collapse of the wave-packet”. For the moment, we just note that for a finite dimensional (indeed
real or complex) Hilbert space, it is natural to define:

(the quantities represented by) two self-adjoint operators A and B are co-measurable
along the following lines:

‘a measurement of one quantity does not disturb a pre-existing value of the other quantity’.
And it is natural to make ‘pre-existing value’ more precise in terms of an outcome/result (“pointer-
reading”) from an immediately preceding measurement process. That is: we imagine a measurement
of A yields some outcome/eigenvalue a; then an immediately succeeding measurement B yields
some outcome/eigenvalue b; and then an immediately succeeding second measurement A is done and
yields some outcome/eigenvalue a

0. In this scenario with its three successive acts of measurement, it
is natural to define:

‘measuring B does not disturb the measurement of A’
as follows:

‘Whatever are the outcomes/eigenvalues a, b of the first two measurements (and whatever
probabilities our theory may ascribe to them), the third measurement (i.e. the final = second
measurement A) is bound/certain to give the same outcome/eigenvalue as the first one did: a0 = a’.

So let us say that A and B are co-measurable i↵: measuring B does not disturb the measurement
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of A in this operational sense, and vice versa; that is: also, measuring A does not disturb the
measurement of B (i.e. in an obvious notation, we must have: b0 = b).

Then it is easy to connect this definition of co-measurability to commutation of operators for
finite dimensional Hilbert space, if we also say that measurement processes are described by the
elementary Projection Postulate, i.e. the postulate that a measurement of the system, in any state
(vector)  , for the quantity represented by A

(i) projects the system’s state instantaneously into the eigenspace of the eigenvalue obtained
as the measurement’s outcome; and then of course

(ii) re-normalizes the state by dividing it by its own length.
Thus, the Projection Postulate says there is an instantaneous state transition, which is, in a notation
adapted from the above discussion:

 7!
E

A
a  

||EA
a  ||

(32)

The connection, for finite dimensional Hilbert space, of the above definition of co-measurability,
understood with this Projection Postulate, to commutation of operators is the readily proved equiv-
alence:

Theorem: Two self-adjoint operators, with pure point spectra A = ⌃ ajE
A

j
and B = ⌃ bkE

B

k

are co-measurable in this sense i↵ they commute, i.e. [A,B] = 0. (Of course, this latter condition is
equivalent to all pairs of spectral projectors sommuting: i.e. [EA

j
, E

B

k
] = 0, for all j, k.)

As to (iii), the interpretation/philosophy: we note:
The orthodox view in the quantum textbooks (a kind of ‘precipitate’ of Bohr, Dirac, Heisenberg,
von Neumann; ‘Copenhagen’) is of course that a quantum system in state  only has values for
those physical quantities of which  is an eigenstate/eigenvector (the value being the corresponding
eigenvalue). (These quantities are sometimes called  ’s eigenquantities.)

In particular, the lack of common eigenstates for non-commuting quantities like position and
momentum (suppressing here their having continuous spectra. . . ) means that no system has a value
for both position and momentum. Thus we are faced with the measurement problem, i.e. the
appalling possibility that this lack of values, though it seems acceptable in the atomic realm which is
after all unvisualizable etc etc, could propagate to the macro-realm—and so conflict with the supreme
success of classical physics’ ascription to systems of values for both position and momentum. (Cf.
Schrödinger’s amazing ‘cat’ paper of 1935!) . . .

So it is natural to propose that we supplement the orthodox quantum state: we are to ascribe
values beyond the orthodox eigenvalues. The natural hope is that there are states that ascribe to
every self-adjoint operator an element of its spectrum, subject to natural conditions. What natural
conditions? The obvious one (sometimes called ‘FUNC’) is that if A is ascribed a value a, then
f(A) is ascribed the value f(a). (After all, we often envisage measuring f(A) by measuring A and
applying f to the outcome.) But even if we consider only operators with pure point spectrum on a
finite dimensional Hilbert space, there are problems.

That is: there are ‘no-go’ theorems that such an assignment, for all the self-adjoint operators, sat-
isfying FUNC for them all, is impossible. Indeed, it is provably impossible even for some judiciously—
the aspiring solver of the measurement problem might say: ‘unfortunately!’—chosen finite sets of
projectors on all Hilbert spaces of (complex) dimension 3 or more (i.e. C3

,C4
, . . . ).

These theorems are mostly associated with the names of Gleason (a theorem of 1957), and Kochen
and Specker (a joint paper of 1967). But beware: what is usually called ‘Gleason’s theorem’ is a
positive result. It is a representation theorem for probability distributions on the set of all subspaces
(projectors) of a Hilbert space. We will state it later, when we discuss states rigorously. The no-go
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theorem is a corollary to this positive result.

The history has various ironies: one might say, sadnesses. For:
First: One can prove this corollary directly. And J S Bell did so in his paper, ‘The problem

of hidden variables in quantum mechanics’, published in Reviews of Modern Physics, in 1966. This
paper was written in 1963: before Bell proved the Bell inequalities—which he did, and published,
in 1965. (The publication delay was due to the typescript being lost in the back of a filing cabinet
at the o�ces of Reviews of Modern Physics!) And the 1966 paper was written as a defence of the
programme of supplementing the orthodox quantum state, not as an argument against it. For Bell
proved the corollary, i.e. no-go theorem, as part of an analysis urging that the assumptions of it
were eminently deniable.

Second: Indeed, he pointed out in his 1966 paper that the assumptions are denied by the
pilot-wave theory: which he considered tenable, indeed eminently reasonable, despite having a man-
ifest non-locality in its guidance equation for a bipartite system. That is, in the traditional and
best-developed non-relativistic version of the theory: the deterministic spatial trajectory of one part
of such a system (one point-particle, according to the pilot-wave theory) is sensitive to where in space
the other point-particle is: instantaneously sensitive, in the manner of action-at-a-distance, though
without any fall-o↵ with distance as one has in Newtonian gravitation.

Third: In fact, Bell’s 1966 paper ends by making this point: that the pilot-wave theory is
manifestly non-local. He also there stresses that, of course, Bohm in 1952 was well aware of this
non-locality; and he ends by raising the question whether any supplementation of quantum theory
must be in some way non-local. (A footnote added in proof then mentions his previously published
1965 paper as having answered this question, for one notion of non-locality. Not so much a case of
backwards causation a la science fiction, but merely a disordered filing cabinet . . . )

Fourth: Gleason’s positive theorem—the representation theorem for probability distributions
on the set of all subspaces (projectors) of a Hilbert space—generalizes a theorem of von Neumann, in
his 1932 book. Historically, this latter theorem was very influential in persuading physicists between
ca 1932 and ca 1966 that this sort of supplementation of quantum theory could not work. It is
standardly called von Neumann’s ‘no hidden variables theorem’.

Here again, Bell’s 1966 paper is gold. For it articulates the Achilles heel of von Neumann’s
theorem. Namely: von Neumann assumes that, whatever the advocate of hidden variables envisages
as a state, they should accept that states ascribe expectations to self-adjoint operators, subject to
the following linearity condition. Namely: a state ascribes as the expectation Exp(A+B) of the sum
of self-adjoint operators A,B, the sum of their individual expectations. So Exp(A + B) = Exp(A)
+ Exp(B).

Bell points out that any advocate of hidden variables, i.e. of postulated dispersion-free
states (i.e. states ascribing values to all quantities) can, indeed should!, deny this condition. In a
judo-like manoeuvre (‘use your opponent’s momentum to defeat them!’), Bell invokes the Bohrian
idea that if A and B do not commute, and so cannot be measured together, one cannot measure
A+B by measuring both A and B and adding the outcomes. So although A+B is self-adjoint, and
can in general be measured, doing so will require some other experimental arrangement, di↵erent
from both that for A and that for B. Agreed: quantum states—whether vector states as discussed
so far, or density matrices, to be discussed later—do obey this linearity condition, even if A and B

do not commute. But, says Bell, that is a peculiarity of the quantum formalism, and by no means
a compulsory feature of states as ascriptions of expectation values. (Cf 1966, Section III, p. 449,
column 1. Incidentally, Einstein pointed out the same Achilles heel to Bargmann in conversation in
the 1940s ... )

Beware: the entire algebraic approach to quantum theory will blithely endorse von Neu-
mann’s assumption. As we say in England: ‘swallow it, hook line and sinker’ . . . We will return to
this irony . . .

Fifth: Finally, there is a further irony in relation to the first one above, about Bell’s 1966
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paper proving the relevant corollary of Gleason’s positive theorem. This final irony is that the main
drift of the Kochen-Specker paper of the following year (1967) is also to prove this corollary. This
paper is rightly lauded. Its merits include: . . .

(a) It connects the corollary to the quantum logic, lattice-theory, approach sketched above.
The non-Boolean lattice of projectors with its delicately interlaced Boolean sub-lattices, is treated
in a kindred manner to di↵erential geometry’s treatment of a manifold with its delicately interlaced
charts. In particular, the operations, like taking the sum of two projectors, are partial. They are
restricted to the summands being both in some Boolean sub-lattice. Thus the buzzword: partial
Boolean algebra. . . .

(b) It exhibits a specific finite set of projectors to which the values 1 and 0 cannot be
assigned without violating the (apparently natural) assumptions like FUNC, above. It even relates
these projectors to a specific quantum system (orthohelium). . . .

(c) It is mathematically elegant and has engendered an enormous literature, pursuing e.g.
the physical idea of ‘contextuality’, and mathematical fields like topos theory ...
But the Kochen-Specker paper falls in the quantum logic tradition. It does not discuss, as Bell does,
that the apparently natural assumptions are in fact deniable . . .

10: Complete (sets of commuting) operators, with continuous spectra :—
For operators A1, A2, ..., AN with continuous spectra, the definition of a complete set is given by the
condition in the Theorem at the end of Paragraph 8, above: viz. that every bounded operator B

that commutes with all the A1, A2, ..., AN is a function of them: B = f(A1, A2, ..., AN ). In fact, the
Schrödinger representation of position is, by itself, a complete set. That is: if on L

2(R), we define
the self-adjoint operator Q by Q (x) = x (x), then:

Theorem: every bounded operator B that commutes with Q is a function of Q.

We briefly connect with the Dirac notation which brings out the analogy with a complete set of
commuting operators, with pure point spectra. Thus we write:

hx | i =  (x) and hx |Q i = xhx | i and hx | f(Q) i = f(x)hx | i . (33)

Of course, Q has no eigenvectors. (For if x (x) = a (x), then  (x) = 0 for x 6= a, and so: || ||2 = 0.)
But we use delta functions, so that writing

a�(x–a) = x�(x–a) (34)

“justifies” our writing

Q| a i = a| a i and h a | i =  (a) =

Z

R
�(x–a) (x) dx . (35)

And similarly

 (x) =

Z

R
 (a)�(x–a) da “justifies” | i =

Z

R
h a | i| a i da ; (36)

so that any vector  can be “thought of” as a linear combination of delta-functions Thus delta-
functions are like an orthonormal basis of eigenfunctions.

We similarly use delta-functions to express operators, especially their spectral resolutions. Thus
for each a 2 R, let us define the ‘dyad’ | a ih a | by its action

( | a ih a | )(x) :=  (a)�(x–a) i.e. (| a ih a |) := h a | i| a i . (37)

Then with Ex in the spectral family for Q, we can write for all  : (Ex )(y) ⌘
R
x

�1  (a)�(y–a) da =R
x

�1 (| a ih a | )(y) da. So we can write

Ex =

Z
x

�1
| a ih a | da ; and similarly Q ⌘

Z

R
x dEx =

Z

R
x |x ihx | dx . (38)
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