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The GNS representation theorem is a result due to Gel’fand, Naimark
and Segal, and is one of the core results of the representation theory lying
at the heart of quantum mechanics. The result is that one can begin with
the algebraic facts describing an arbitrary quantum system, and use them
to construct a representation of those facts in a familiar form as operators
on an ordinary Hilbert space. A general statement and proof of the GNS
theorem can be found in Araki (1999), or any standard textbook on algebraic
quantum theory. However, to get a concrete sense of how it works, it is a
good exercise to see how the construction looks in the concrete case of the
Pauli spin algebra. In this note we carry out that exercise.

Consider the Pauli spin operators, σx, σy, σz. But suppose that we don’t
know that these operators can be represented as the usual matrices on a 2-
dimensional complex vector space. Suppose we can only conceive of them ab-
stractly as self-adjoint operators (σi = σ∗i ) in an algebra with a ∗-operation
and a norm | · |, and that these operators satisfy,

σ2i = I σiσj = −σjσi
σiσj = iεijkσk [σi, σj ] = 2iεijkσk

where εijk = 1 for cyclic permutations of ijk and is −1 otherwise. We
denote the resulting algebra by A. It consists in the norm-closure of these
operators.

Let ϕ : A → C be a pure state1. Secretly we might think of this state
as assigning an expectation value 〈ψ, σψ〉 to each element of the algebra
σ ∈ A. But the point of this construction is that we’re pretending we don’t
yet know how to represent the elements of A as Hilbert space operators. So,
we don’t yet have an inner product 〈, 〉 operating on vectors ψ. All we can
currently do is specify abstract properties that ϕ has in virtue of its being a
state, such as that ϕ(A) is a real number when A is self-adjoint (e.g. when
A = σz), is complex when A is not self-adjoint (e.g. when A = σxσy), and
so on.

Let’s now be quite specific and choose a particular state ϕ. Let ϕ(σz) = 1
and ϕ(σy) = ϕ(σx) = 0. Since the entire algebra A is generated by algebraic

1A state ϕ : A → C is a linear function that satisfies ϕ(I) = 1 and ϕ(A∗A) ≥ 0 for all
A ∈ A. A state is not pure or mixed if it can be written as convex combination of states
ϕ = λϕ1 + (1− λ)ϕ2 with λ 6= 0 and ϕ1 6= ϕ2. Otherwise it is pure.
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combinations of these operators, this defines ϕ on the entire algebra. Thus,
we begin with an algebra-state pair (A, ϕ).

We’re now going to do something remarkable. Starting with only the pair
(A, ϕ), we’re going to apply an algorithm that uses these objects to build
the following structures.

(1) A 2-dimensional vector space H;
(2) An inner-product 〈, 〉 that makes H a Hilbert space; and
(3) A set of bounded operators on H that is isomorphic to A.

In other words, we’re going to build a Hilbert space representation of (A, ϕ)
algorithmically, using only the known facts about (A, ϕ). That is the GNS
construction. In a sense, we’ll show that a representation of A was “living”
in the pair (A, ϕ) all along. The construction proceeds in three steps.

Step 1: A vector space. The first step is to observe that the algebra A
is itself already a complex vector space under addition. This is part of the
definition of an algebra: it is a vector space under its built-in operations of
addition and scalar multiplication.

Step 2: A semi-inner product. We’ll work out the structure of this
vector space shortly. But first, observe that one can use the state ϕ we de-
fined above to construct something that is almost our desired inner product
〈, 〉. Let us make the definition,

〈A,B〉 := ϕ(A∗B).

This product is obviously antilinear in the first argument and linear in the
second. Since ϕ(A∗B)∗ = ϕ(B∗A), this product also satisfies conjugate
symmetry, 〈A,B〉 = 〈B,A〉∗. We also know that 〈A,A〉 ≥ 0, since ϕ(A∗A) ≥
0 whenever ϕ is positive, and a state is by definition positive. A product
with these properties is sometimes called a semi-inner product.

However, quantum mechanics requires an inner product, which means
that 〈, 〉 would have to satisfy the positive-definiteness condition, 〈A,A〉 = 0
only if A = 0. That doesn’t hold in our case. Just look at A = σx + iσy. It
is certainly not zero. And yet it is an easy exercise2 to check that, accord-
ing to the commutation relations on the first page and our definition of ϕ,
〈A,A〉 = 0. This operator A is non-zero, but still has zero “length” from
the perspective of the inner product. This indicates a sense in which our
vector space is not appropriate for our inner product.

Step 3: A better vector space with an inner product. In order
to reduce our vector space to something more appropriate for our inner
product, we must “quotient out” the redundancy in length above. Let us

2Solution: From the commutation relations we find that A∗A = (σx− iσy)(σx + iσy) =
σ2
x + i(σxσy−σyσx)+σ2

x = 1+ i(2iσz)+1 = 2−2σz. But ϕ is linear and defined to satisfy
ϕ(σz) = 1. Thus we have 〈A,A〉 := ϕ(A∗A) = ϕ(2− 2σz) = 2− 2ϕ(σz) = 2− 2 = 0.
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write ψA to denote an equivalence class of elements that includes A ∈ A,
where equivalence is defined by,

ψA = ψB iff ϕ((A−B)∗(A−B)) = 0.

The vectors ψA together form a vector space. Why? The answer is a little bit
subtle. The set kerϕ := {A |ϕ(A∗A) = 0} is called the kernal of ϕ. One can
show using a straightforward application of the Cauchy-Schwarz inequality
that this set is in fact a left-ideal ofA (see e.g. Araki 1999, p.36). This implies
that the space of equivalence classes of the form ψA = {B | (A−B) ∈ kerϕ}
is a quotient space, which can be written A/ kerϕ. The vectors satisfying
the equivalence relation above are the elements of that quotient (vector)
space.

Let us call completion of this vector space H, suggestively — we can now
see that it is a Hilbert space. The problematic element σx+iσy that gave rise
to the “redundancy” above is now identical to the 0 vector in the new vector
space H. Indeed, this new vector space is constructed in such a way that
the same product 〈, 〉 defined on H automatically becomes positive definite,
and is therefore an inner product. So, since H is defined to be complete, it
follows that it is a Hilbert space.

Step 4: Dimension of the Hilbert space. Our Hilbert space H
is two-dimensional, as one would expect given the single-fermion algebraic
relations that define A. To see this, we simply observe that (σy, σz) form
an orthonormal basis for H. They span the space because their algebraic
combinations produce the generators σx, σy, σz of the algebra A. Neither
ψσy nor ψσz are zero as elements of H, and indeed 〈σy, σy〉 = 〈σz, σz〉 = 1.
They are also orthogonal, since,

〈σy, σz〉 = ϕ(σ∗yσz) = ϕ(σyσz) = ϕ(iσx) = iϕ(σx) = 0,

since ϕ(σx) = 0 by our definition. Thus, the underlying vector space of H
is actually just the complex vector space of two dimensions, i.e. it is C2.

Step 5: Operators on the Hilbert space. Now we just need to see
that we can find bounded operators on this Hilbert space that are isomorphic
to the Pauli spin algebra A. But our construction provides a neat way to
do this. For each vector ψA ∈ H and each operator B ∈ A, let us define a
mapping B̂ : H → H given by the definition,

B̂ψA := ψBA.

The resulting algebra of operators on H are isomorphic to A, since B̂ĈψA =

ψBC(A) = ˆ(BC)ψA. In other words, we have constructed a representation of
the algebra A on H.

To see a little more concretely how this looks, we can think through the
value of 〈ψσz , σyψσz〉. By our definition we know that σyψσz = ψσyσz =
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−ψiσx = iψσx . One can check using the same arguments as above that,

〈ψσz , σyψσz〉 = i〈ψσz , ψσx〉 = 0.

This says that the expectation value of the σy observable for a system in
the σy state is zero, as expected. It is also easy to verify a number of fur-
ther (expected) facts: that ψσz is a z-eigenstate for σz with eigenvalue 1, etc.

That is the essence of the GNS representation theorem. We begin with
only algebraic facts about the Pauli spin operators, and construct a Hilbert
space representation on this basis alone. Of course, we already knew that
we have a representation of the Pauli spin algebra in terms of the famous
matrices σx =

(
1

1

)
, σy =

( −i
i

)
, σz =

(
1
−1

)
. Why do we need this new

representation? The reason is that the GNS technique for constructing a
representation for the Pauli relations is perfectly general. We could have
begun with an arbitrary algebra A, and we would still be able to find a
representation.

There are further interesting facts that one can infer about the GNS
representation, such as that it is irreducible whenever ϕ is pure, and that
the vector ψI corresponding to the identity in A is cyclic in the algebra. I
leave these consequences as exercises.
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