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This document, and its succcessor on the Quantization of Linear Dynamical Systems with
Infinitely many degrees of freedom, expound a rigorous quantization procedure developed by
Irving Segal and others in the 1960s. This means we postpone to the second half of term, cov-
erage of algebraic quantum theory; which will include e.g. inequivalent representations, ‘getting
out of Fock space’, Haag’s theorem etc. (cf. e.g. Emch 1972). But the present material:

(i) gives a strong grip on the first (forbiddingly concise!) third of Wald 1994, which is
the basis for the rest of that book on QFT in curved spacetime and thus e.g. the Unruh e↵ect;

(ii) is of intrinsic interest... though please be warned that here you will find: no La-
grangian, no path integrals, no renormalization, no gauge theory, no curved spacetime, no
gravitation; indeed, no interactions, and overall, not much physics ... we will focus on the har-
monic oscillator (!),the free KG field and spin-chains (and without putting a Hamiltonian on the
chain...). Nor will you find much straight-up philosophy ... but perhaps the light here shed on
field/wave vs.particle counts as philosophy, since wave vs.particle is, like continuum vs. discrete,
a perennial dichotomy of natural philosophy...

In this document, we consider only finitely many degrees of freedom, and lead up to the Stone-
von Neumann Theorem, which essentially guarantees that the quantization of point particles in
Rn is unique. We begin by introducing the Weyl form of the CCRs; and posing the quest for
its representations (Section 1). Then we present the complexification and realification of vector
spaces, complex structures etc. (Section 2); and symplectic vector spaces and manifolds (Section
3). Then we present linear systems, both classical and quantum; and thus the harmonic oscillator
(Section ??). With all this in hand, we can then see the task of quantization as “unitarizing”
a Hamiltonian evolution in a symplectic space so as to give an evolution in a complex Hilbert
space. This gives the idea of a one particle structure, both in general and for the harmonic
oscillator as an example (Section 5). The key to successful quantization, which see at work in
the harmonic oscillator example, turns out to be the two out of three property of the unitary
group: which concerns its relation to certain orthogonal and symplectic groups (Section 6).
Then we treat the case of finitely many harmonic oscillators, and so the occupation number
representation: which can be described in a “Fock-space way” (Section 7). Finally, we state (i)
the Stone-von Neumann Theorem; and (ii) an analogous theorem (the Jordan-Wigner theorem)
about the uniqueness of the representation of the CARs (as against CCRs) of a finite system,
such as a spin chain (Section 8).

Mottoes:
Let us try to introduce a quantum Poisson Bracket which shall be the analogue of the classical
one....we are thus led to the following definition for the quantum Poisson Bracket of any two
variables u and v: uv � vu = i~[u, v]. Dirac (1930/1958, Section 21)

There is thus a complete harmony between the wave and light-quantum descriptions of the
interaction. (Dirac, 1927, p. 245).

First quantization is a mystery, but second quantization is a functor. (E. Nelson).

Probably all these connections would have been clarified long ago, if quantum physicists had
not been hampered by a prejudice in favor of complex and against real numbers. (Freeman
Dyson)
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The life of a theoretical physicist consists of solving the harmonic oscillator at ever higher
levels of abstraction. (S. Coleman)
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1 Canonical quantization introduced

1.1 Commutation relations: from Heisenberg to Weyl

Preamble. The idea of canonical quantization is familiar from elementary quantum mechanics:
to “promote” the classical Poisson bracket relations

{qi, qj} = {pi, pj} = 0; {qi, pj} = �ij , (1)

where i, j 2 {1, 2, . . . n}, to the Heisenberg canonical commutation relations (CCRs)

[Qi, Qj ] = [Pi, Pj ] = 0; [Qi, Pj ] = i~�ij1; (2)

(we will usually set ~ := 1). This Poisson bracket-commutator correspondence originated with
Dirac (cf. his Principles of Quantum Mechanics 1958, Section 21f.) The standard representation
of eq. (2) is the familiar Schroedinger representation: namely, for n configurational degrees of
freedom, e.g. a spinless particle in Euclidean n-space, or n such particles on a line:

Qi = qi , Pj = �
ih

2⇡

@ 

@qj
for  2 L2(IRn, dq). (3)

This prompts four main topics. They are of increasing scope, and we will consider only the
first.

(a): To examine canonical quantization as just described for position and momentum in
IRn. The big positive result here is the Stone von Neumann theorem, stating (roughly) that for
IRn as the configuration space, the Schroedinger representation of (2) is unique up to unitary
equivalence. Cf Section 8. But so as to set the scene for quantum field theory, and more
generally so as to get materials useful for contexts other than IRn, we will lead up to this slowly.
This will mean expounding some ideas of Segal quantization, which is the most straightforward
generalization of the above ideas. In short: it replaces IRn as the classical configuration space,
by an arbitrary n-dimensional manifold.

(b): To extend quantization to other quantities, in particular functions (polynomial, or
even “arbitrary”, functions) of position and momentum.

(c): To consider other methods of quantization.
(d) To pursue the pure mathematical interest of quantization. For a glimpse of this, cf.

Folland (2008, p. 49; and Vogan 2005, cited there). In short: the interest lies in how it helps
one find all the irreducible unitary representations of a connected Lie group G: i.e. in physical
language, finding all quantum systems in which G acts irreducibly as a symmetry group. The
corresponding classical problem is to find all symplectic manifolds on which G acts transitively as
a group of canonical transformations (symplectomorphisms), i.e. all symplectic homogeneous G-
spaces. But this classical problem is “under good control”. For the orbits of the co-adjoint action
of G on g⇤ are symplectic homogeneous G-spaces; and furthermore, all symplectic homogeneous
G-spaces can be, more or less, built from orbits of such co-adjoint action. (Here, “more or
less” signals issues about central extensions and covering spaces). Thus a “good” quantization
procedure for such spaces is likely to be illuminating for the task of finding all the irreducible
unitary representations of G.

Of course, we foreswear (d); and for the most part, we foreswear (b) and (c). For an
introduction to both, and of course (a), we recommend:

(i): N Landsman, Between Classical and quantum, especially Section 3; in J Butterfield
and J Earman eds, Handbook of Philosophy of Physics (2006) and: quant-ph:0506082; and for
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more details:
(ii): S Ali and M Englis, Quantization methods: a guide for physicists and analysts,

Reviews in Mathematical Physics 2005, math-ph: 0405065.

In particular, as to (b): Ali and Englis Section 1 review the obstructions confronting quan-
tization of (even just a “handful” of polynomial) functions of position and momentum. These
obstructions concern ambiguities of operator-ordering. That is: natural general constraints on
the quantization map Q (“adding a hat”) that sends a classical (real-scalar) quantity f : IR2n

!IR
to a quantum quantity, i.e. to a self adjoint operator Qf : L2(IRn)!L2(IRn), lead to contra-
dictions. This topic originates in papers by Groenewold and van Hove. Recent developments
include: Gotay et al. Obstructions in quantization theory, Journal of Nonlinear Science, volume
6, p. 469-498, 1996; and Gotay, On the Groenewold-van Hove Problem, Journal of Mathematical
Physics 1999.

As to (c): Ali and Englis review (Section 3f.) geometric quantization, deformation quan-
tization etc. But even their Section 2 gives details of e.g. the inequivalent quantizations involved
in the Aharonov Bohm e↵ect.

But the four topics are of course closely related. For example, these obstructions mean that
a main motivation to pursue (c)’s other methods of quantization is to extend quantization to as
many quantities as possible.

For us, concentrating on (a): the main point about (b), i.e. the obstructions, will be that
(cf. Wald 1994, Section 2.2 , pp. 17-18): Segal quantization “works” for:

(i) a classical configuration space that is an arbitrary n-dimensional manifold M (so that
classical quantities are real functions of the cotangent bundle T ⇤M); provided that

(ii) we restrict consideration to quantities that are at most linear in the momenta (i.e.
the momenta canonically conjugate to arbitrary configurational coordinates q on M).

Here, the word “works” means that the quantization map Q maps Poisson brackets into
commutators, divided by i~. (In more formal jargon: “Q respects Lie algebra structure”). That
is: Q obeys, for classical quantities f, g : T ⇤M!IR that are appropriately restricted by condition
(ii) above:

[Q(f), Q(g)] = i~ Q({f, g}) . (4)

In this sense, Segal quantization is a good framework for the quantization of finite-dimensional
systems.

And Segal quantization has other merits. We will also see that for linear classical systems, it
“respects” the dynamics. That is: the Segal quantization of the classical Hamiltonian (which is
essentially like that of a harmonic oscillator: “p2 + q2”) is the “correct” quantum Hamiltonian.
Besides, we will eventually see that it works for (some!) quantum field theories. Specifically,
it works for the quantization of the free bose field (e.g. De Faria and De Melo, Section 6.3).
Furthermore, it does this in a manner that generalizes readily to constructing quantum field
theories on curved spacetimes (Wald 1994, p. 31 and Section 3.2).

So much by way of preamble. For our main topic, i.e. (a) above, the first job is to pass
from the Heisenberg CCRs to the Weyl form of the CCRs. The point here is that since the
classical position and momentum quantities, for a phase space IR2n, are unbounded, we expect
the quantum position and momentum Qi, Pj to also be unbounded, indeed to have all of IR as
their spectra—so that, if they are to be self-adjoint, they cannot be defined on all of L2(IRn).

Indeed, setting aside the physical desideratum that the spectra should be unbounded: there

4



is a simple theorem that if two bounded self-adjoint operators Q,P have a commutator that is
proportional to the identity, they must commute. That is: If [Q,P ] = ↵I for some ↵ 2 |C, then
↵ = 0. (De Faria and De Melo, Lemma 2.11; Jauch 1968, p. 205, Problem 4).

In short: we face issues of domains. We remedy this by formulating to the Weyl form of
the CCRs. These govern unitary exponentiations of linear combinations of the position, and
similarly, of the momentum operators.

Thus we define, for any a,b 2 Rn,

U(a) := e�ia.P/~ ; V (b) := e�ib.Q/~; (5)

Since the Us and V s are both families of unitaries, their spectra are bounded, and are defined
everywhere on L2(Rn). In the Schroedinger representation, we have

(U(a) )(x) =  (x� a) ; (V (b) )(x) = e�ib.x/~ (x) (6)

so that U represents translations in space, and V represents translations in momentum-space.

We have, of course, commutation for each of position and momentum, alone:

U(a)U(b) = U(b)U(a) = U(a+ b) ; V (a)V (b) = V (b)V (a) = V (a+ b) (7)

To deduce the commutation relations of U and V operators, we need the Campbell-Baker-
Hausdor↵ formula for products of exponentials of non-commuting operators. Given a self-adjoint
operator A, we say that a vector  2 H is analytic if for all n, An( ) is defined, and so is eA .
Then the version of the Campbell-Baker-Hausdor↵ formula which is appropriate here (De Faria
and De Melo, Lemma 2.12) says that if:

(i) A,B and A+B have a common dense domain D of analytic vectors, and
(ii) [A,B] commutes with A and with B:

then in D:
eAeB = eA+B+ 1

2 [A,B]
⌘ eA+Be

1
2 [A,B] . (8)

To apply (8) to (5), we set A := �ia.P/~ and B := �ib.Q/~, to deduce that

U(a)V (b) = exp(
1

2
i(a · b)/~). exp(�i(a.P/~+ b.Q/~)) ; (9)

and mutatis mutandis, we set A := �ib.Q/~ and B := �ia.P/~, to deduce that

V (b)U(a) = exp(�
1

2
i(a · b)/~). exp(�i(a.P/~+ b.Q/~)). (10)

Combining these immediately gives the Weyl commutation relations:1

U(a)V (b) = eia.b/~V (b)U(a). (11)
1Beware: (i) many authors ‘flip’ the notation of U and V , so that V represents translations in space; and

(ii) some authors (even rigorous ones e.g. Prugovecki 1981, Chapter IV, Sections 6.2, 6.4!) also put the ~
in the numerator of the exponent, so that the exponent is in dire danger of having dimension action-squared!
Besides, (iii): various texts also get the sign of the exponent in (11) wrong. (See later for discussion of di↵erent
choices of sign in the two definitions of (5).) we are following S. Summers (2001: in John von Neumann and the
Foundations of quantum mechanics, ed. M. Redei and M. Stoeltzner). Summers puts the ~ in the denominator
of the exponent, is perfectionist about signs; and his use of U for translation in space, is like Weyl himself (1932,
Chapter IV, Section 14, building on Chapter II, Section 11): this last text being no doubt correct, but—with all
due respect!—incomprehensible.
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1.2 The Weyl algebra

So from now on, we take as our CCRs, not the Heisenberg form (2), but (11) together with the
trivial commutations of Us and V s alone i.e. (7).

We have so far built the Us and V s concretely from given Q,P. But in the usual tradition
of physics, we can:

(i) consider an abstract algebra of Us and V s subject to the relations (11) and (7); any
such algebra is called the Weyl algebra; and then

(ii) try to classify the representations of this algebra, especially the unitary representa-
tions on some Hilbert space.
As already announced at the start of Section 1.1, the main result about (ii), for finite-dimensional
systems, will be the Stone-von Neumann uniqueness theorem. But as that discussion also sug-
gested: the Weyl algebra, and Segal quantization, will also be centre-stage for quantizing fields
(including on curved spacetime) and for the pure mathematical topic (d) of Section 1.1.

Now, we first make two comments about this endeavour (in order of increasing importance
for us); and then develop a more abstract formulation of the Weyl relations, which will be central
in all that follows.

(1): The relation between the Heisenberg and Weyl forms:– The Weyl form of the CCRs
implies the Heisenberg form, and so a representation of the Weyl form is also a representation
of the Heisenberg form. But uniqueness (up to unitary equivalence) of a representation of the
Weyl form does not imply uniqueness of the implied representation of the Heisenberg form. The
reason lies in the simple theorem above, that two bounded self-adjoint operators Q,P cannot
obey the Heisenberg form. In fact, the Heisenberg form does not imply the Weyl form, even if Q
and P are essentially self-adjoint on their respective domains; though conditions can be added
that make the implication go through (e.g. Dixmier’s condition (1958: in French!), discussed by
Jauch (1968, p. 204-205)).

(2): Allowing for projective unitary representations:— Of course, the quantum state is non-
redundantly represented by a ray rather than a unit vector. This motivates considering projective
representations of groups, rather than “true” representations. Such representations allow a phase
to occur in equations stating the group composition law for the representing operators. Indeed,
we see this even for elementary abelian groups, like the phase-space translation groups we are
concerned with: cf. the phase in (11), and in (63) below.

Equation (11) can be given a more abstract formulation, which both:
(i) brings out the role being played by the symplectic structure in the underlying frame-

work of Hamiltonian mechanics, and
(ii) underpins how Segal quantization succeeds in quantizing linear classical systems,

both finite-dimensional and infinite-dimensional.

Setting z := (a,b) 2 R2n, we define the family of operators

W (z) := e
1
2 ia.bU(a)V (b). (12)

Then the Weyl form of the CCRs, i.e. (11) and and (7), are equivalent to the following, which
is thus also called the Weyl algebra: for all z, z1, z2 2 R2n,

W (z1)W (z2) = e
1
2 i⌦(z1,z2)W (z1 + z2);

W †(z) = W (�z);
(13)
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where ⌦ is the symplectic product :

⌦(z1, z2) := a2.b1 � a1.b2, (14)

The symplectic meaning of ⌦ will be explained in Section 3. But as a preliminary to that,
we spell out in Section 2 some elementary ideas and results about complexification and complex
structures: which are often treated very concisely if at all, (e.g. Wald 1994, p. 190).

2 Complexification, complex structures—and all that

There is a circle of ideas which can be traversed starting from almost any point... We begin with
complexification, then describe complex structures, then the compatibility of a complex structure
with a bilinear form, such as an inner product or symplectic form. This will give us a glimpse of
how we can “go back and forth” between certain classical phase spaces (viz. symplectic vector
spaces) and Hilbert spaces. It will also give us a glimpse of (i) Kahler manifolds, and (ii) how in
a quantum theory di↵erent choices of a complex structure are associated with di↵erent splittings
of positive and negative frequencies, and thereby (iii) the Unruh e↵ect.The Section ends with
discussion of the complex conjugation of spaces.

2.1 Complexification

2.1.A Complexification as tensor product:— The complexification V
|C of a real vector space

V is defined as the tensor product of V with the complex numbers C

V C := V ⌦ |C . (15)

Here we think of |C as a copy of IR2, with a basis {(1, 0), (0, i)}. So far, this is just a real vector
space. Every vector in V

|C can be written uniquely as

v = v1 ⌦ 1 + v2 ⌦ i (16)

and the (real) dimension of V
|C is twice the dimension of V . But we make it into a complex

vector space, by defining complex scalar multiplication by

↵(v ⌦ �) = v ⌦ (↵�) for all v 2 V and ↵,� 2 |C ; (17)

where we also of course require scalar multiplication to distribute over addition, i.e. we ‘extend
by linearity’:

↵(v ⌦ � + u⌦ �) := ↵(v ⌦ �) + ↵(u⌦ �) ⌘ v ⌦ (↵�) + u⌦ (↵�) . (18)

Since every vector in V
|C can be written uniquely as v = v1 ⌦ 1 + v2 ⌦ i, it is usual to drop the

tensor product symbol and just write

v = v1 + iv2. (19)

One then checks that the definition eq. 15, equivalently eq. 16, implies that the complex scalar
multiplication defined by eq. 17, can be written in the usual-looking form. Namely: for a
complex number ↵ = a+ ib with a, b 2 IR

(a+ ib)(v1 + iv2) = (av1 � bv2) + i(bv1 + av2). (20)
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So we regard V
|C as the direct sum of two copies of V , equipped with a complex scalar multipli-

cation defined by eq. 20 .

There is a natural embedding of V in to V
|C given by

v 7! v ⌦ 1 . (21)

V may thus be regarded as a real subspace of V
|C. If V has a basis {ei} over IR then a cor-

reponding basis for V
|C is given by {ei ⌦ 1} over |C. The complex dimension of V

|C is therefore
equal to the real dimension of V :

dim|CV
|C = dimIRV. (22)

2.1.B Complexification as direct sum:— Alternatively, we can define the complexifica-
tion of V as the direct sum

V
|C := V � V (23)

equipped with a complex structure (cf. below for details) given by the operator J : V
|C
!V

|C,
where J is defined by

J(v, w) := (�w, v) . (24)

Here J encodes multiplication by i in the sense that setting a = 0, b = 1 in eq. 20 yields

i(v1 + iv2) = �v2 + iv1 = �v2 ⌦ 1 + v1 ⌦ i (25)

where the last expression on the right is in the notation of eq. 16.

Let dimIRV = n. Then in matrix form, J is given by a 2n⇥ 2n matrix J , viz.

J =

✓
0 �1V
1V 0

◆
. (26)

where �1V is the identity map on V .

Thus V
|C can be written as V � JV or as V � iV , so as (i) to avoid the tensor product

notation, and (ii) to signal the fact that the direct sum in eq. 23 is endowed with J . J swaps
the summands in the sense that J(v, 0) = (0, v).

Examples: (i) the complexification of IRn is |Cn; (ii) if V is the m ⇥ n matrices with real
entries, then V

|C is the m⇥ n matrices with complex entries.

Again we have (cf. eq. 22): the complex dimension of V
|C is equal to the real dimension of

V , which is half the real dimension of V � V :

dim|CV
|C = dimIRV =

1

2
dimIR(V � V ) . (27)

2.1.C A matter of convention:— The above discussion (in 2.1.A and 2.1.B) has an
obviously conventional aspect. Suppose that in 2.1.A, we had taken the basis of |C as a copy of
IR2, to be in the opposite order, i.e. {(0, i), (1, 0)}. Then eq. 16 would become

v = v1 ⌦ i+ v2 ⌦ 1 (28)
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Then the definition of complex scalar multiplication, eq. 17 and 18, remain as they are. But
the notation that drops the tensor product, i.e. eq. 19, becomes

v = iv1 + v2 ; (29)

and the usual-looking form of the complex scalar multiplication that we now deduce is the
following analogue of eq. 20: for a complex number ↵ = a+ ib with a, b 2 IR

(a+ ib)(iv1 + v2) = (av2 � bv1) + i(av1 + bv2). (30)

Similarly, for the alternative direct sum approach of 2.1.B. Instead of eq. 24, we define the
complex structure J on the direct sum V � V by

J(v, w) := (w,�v) . (31)

Then, setting a = 0, b = 1 in eq. 30 yields

i(iv1 + v2) = �v1 + iv2 = iv2 � v1 = v2 ⌦ i� v1 ⌦ 1 (32)

where the last expression on the right is in the notation of eq. 28. This J as defined by eq. 31
is of course just minus the J defined by eq. 24. The matrix form of J as defined by eq. 31 is
thus the negative of eq. 26. That is:

J =

✓
0 1V

�1V 0

◆
. (33)

This last equation will give us, shortly, an obvious comparison with the matrix expression of a
symplectic form.

2.2 Complex structures

2.2.A Basics:— A complex structure on a real vector space V is an automorphism J of V that
squares to minus the identity map, - I. That is: J2 = �1 ⌘ - I. Such a structure on V allows
one to define multiplication by complex scalars in a canonical fashion so as to regard V as a
complex vector space. Namely:

(x+ iy)v := xv + yJ(v) for all v 2 V and x, y 2 IR ; (34)

which (check!) makes V into a complex vector space, denoted VJ .

If V is any real vector space, there is a canonical complex structure J on the direct sum
V � V : namely, the complex structure on the complexification V

|C of V , i.e. on the tensor
product V ⌦ |C, written as V � JV or as V � iV . That is, J is given by J(v, w) := (�w, v), i.e.
by eq. 24, ; and the matrix form of J is as in eq. 26.

In this notation for complexification—i.e. the notation, V � JV or V � iV—we can write:
V � JV = (V � V )J or similarly V � iV = (V � V )J .

One can go in the other direction. Any complex vector space W is also a real vector space,
with the same vector addition and real scalar multiplication. On this underlying real vector
space, one defines a complex structure J by J(w) := iw for all w 2 W ; where the right-hand-
side is given us by W being a complex vector space. With this complex structure defined on
this underlying real vector space, we of course get back the original complex vector space W .
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In fact, if VJ has complex dimension n, then V must have real dimension 2n. That is, a
finite-dimensional real space V admits a complex structure only if it is even-dimensional. If
{v1, ..., vn} is a basis of the complex vector space VJ , then {v1, J(v1)..., vn, J(vn)} is a basis of
the underlying real vector space V .

Every even-dimensional real vector space V admits a complex structure. Indeed, many. For
any basis {e1, e2, . . . , e2n} of V can be divided in to n pairs, say {e1, e2}, . . . , {e2n�1, e2n}, and
then one can define J as the ‘swap with a minus’ on each such pair, i.e. J(e1) := e2, J(e2) :=
�e1, . . . , J(e2n�1) := e2n, J(e2n) := �e2n�1, and then one extends by linearity to all of V . So
J2 = �1.

Suppose that we are given a real linear transformation A : V!V on a real vector space V ,
and that V admits a complex structure J . Then A defines a complex linear transformation of
the complex space VJ if and only if A commutes with J , i.e. if and only if AJ = JA: (trivial
check, cf. eq. 34).

Likewise, a real subspace U of V is a complex subspace of VJ (i.e. is closed under complex-
linear combinations) if and only if J preserves U , i.e. if and only if J(U) < U ; (trivial check).

2.2.B: Basic example:— Obviously, the main example of a complex structure is the struc-
ture on IR2n coming from the complex structure on |Cn. That is, the complex n-dimensional
space |Cn is also a real 2n-dimensional space. Here, one uses the same vector addition and real
scalar multiplication: while multiplication by the complex number i is not only a complex linear
transform of the space, thought of as a complex vector space, but also a real linear transform of
the space, thought of as a real vector space. This is just because scalar multiplication by i:

(a) commutes with scalar multiplication by real numbers, i.e. i(�v) = (i�)v = (�i)v =
�(iv), and

(b) distributes across vector addition.
As a complex n⇥ n matrix, this complex structure is simply the diagonal matrix with i on the
diagonal. The corresponding real 2n ⇥ 2n matrix is denoted J . What this matrix J looks like
will depend on how we order the basis: cf. eq. 36 and 37 in (1) and (2) of Paragraph 2.2.C
below.

Again, there is the general equation that counts dimensions, with V
|C = (V � V )J (cf.

eq. 27):
1

2
dimIR(V � V )J = dim|C(V � V )J = dimIRV =

1

2
dimIR(V � V ) . (35)

And in this example, with V = IRn: these numbers are all n.

2.2.C: The “look” of J :— Suppose given a complex vector space, of complex dimension
n, and a basis {e1, e2, . . . , en}. This set, together with these vectors multiplied by i, namely
{ie1, ie2, . . . , ien}, form a basis for the underlying real vector space. (Cf. 2.2.A, paragraph 5,
above.) There are two natural ways to order this basis.

(1): If one orders the basis as {e1, ie1, e2, ie2, . . . , en, ien}, then the matrix for J takes the

following block-diagonal form, where the blocks are the 2 ⇥ 2 matrix J2 :=

✓
0 �1
1 0

◆
. That
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is: J is (with subscript 2n added, so as to indicate dimension):

J2n :=

0

BBB@

J2 0 . . . 0
0 J2 . . . 0

. . .

0 0 . . . J2

1

CCCA
. (36)

(2): If one orders the basis as {e1, e2, . . . , en, ie1, , ie2, . . . , ien}, then the matrix for J is
block-antidiagonal:

J2n :=

✓
0 �1n
1n 0

◆
: (37)

This is more natural when one thinks of the real space as a direct sum of real spaces, as in the
second, alternative, approach to complexification at the end of Section 2.1. Thus eq. 37 is the
same as eq. 26.

2.3 Compatibility of a complex structure with bilinear forms

2.3.A: Basics:— Later we will be much concerned with vector spaces that have: either an inner
product (like a Hilbert space) or a symplectic product (as in Hamiltonian mechanics; cf. Section
3). So we here consider, in general, the “meshing” of a complex structure with bilinear forms.
This will lead, in 2.3.B and 2.3.C, to “building a Hilbert space”, and to the construction in the
reverse direction, from a Hilbert space to a symplectic space.

If B is a bilinear form on a real vector space V , i.e. B : V ⇥ V! IR, then we say that J
preserves B if for all u, v 2 V

B(Ju, Jv) = B(u, v) . (38)

Recall that since J is an automorphism with J2 = �1, we have J�1 = �J . This implies that
eq. 38 is equivalent to J being skew-adjoint with respect to B. That is:

B(Ju, v) = �B(u, Jv) . (39)

Examples of bilinear forms are inner products and symplectic products. If g is an inner product
on V then J preserves g if and only if J is an orthogonal transformation. Likewise, J pre-
serves a non-degenerate, skew-symmetric form !, i.e. a symplectic product, if and only if J is
a symplectic transformation, i.e. !(Ju, Jv) = !(u, v). If ! and J obey, for all non-zero u 2 V ,
!(u, Ju) > 0, we say that J tames !.

2.3.B: From symplectic form and compatible J to real-valued inner product:— A
symplectic form ! on a real vector space V , together with a complex structure J that preserves
!, define: a symmetric bilinear form gJ on the complex vector space VJ . Namely, by:

gJ(u, v) := !(u, Jv) . (40)

This is called the Kähler condition. We note that gJ is symmetric because J being skew-adjoint
with respect to !, i.e. eq. 39, implies that the rhs of eq. 40, i.e. !(u, Jv) = �!(Ju, v) ⌘

!(v, Ju) =: gJ(v, u). One similarly checks trivially that: (i) J preserves gJ ; (ii) if J tames !,
then gJ is positive-definite, i.e. an inner product.
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One also checks trivially that on the complex vector space VJ : gj is complex-linear, even
though gJ is real-valued. Thus, applying the initial definition of complex scalar multiplication
for VJ , eq. 34, we write:

gJ((x+ iy)u, v) := !((x+ iy)u, J(v)) ⌘ !((xu+ yJ(u)), J(v)) (41)

⌘ !(xu, J(v)) + !(yJ(u), J(v)) ⌘ x!((u, J(v)) + y!(J(u), J(v))

⌘ xgJ(u, v) + ygJ(Ju, v) .

2.3.C: Defining a complex-valued inner product:— From 2.3.B, we assume we are
given: (i) a real vector space V with (ii) a symplectic form !, and (iii) a complex structure J
that preserves and tames !; and thereby (iv), on the complex vector space VJ , a positive-definite
real-valued inner product gJ : namely as defined by the Kähler condition, eq. 40.

Now let us define a complex-valued function on V ⇥ V in terms of gJ and ! by

hu, vi ⌘ hu, vi!,J := gJ(u, v) + i!(u, v) (42)

where the subscript shows the dependence on the given ! and J . It is trivial that this function
is additive in each argument, i.e. hu+ w, vi = hu, vi+ hw, vi and similarly for additivity of the
second argument. One checks (exercise!) that it is sesquilinear. That is: it is complex-linear in
the second argument, but antiinear in the first argument. That is, with x, y 2 IR:

h(x+ iy)u, vi = xhu, vi � iyhu, vi and hu, (x+ iy)vi = xhu, vi+ iyhu, vi . (43)

The check of eq. 43 uses most of the properties we have postulated. Namely: the definition eq.
40 of gJ in terms of ! and J ; the antisymmetry of ! and the symmetry of gJ ; and the fact that
J preserves !.

Besides, recall that we assumed that J tames !, so that gJ is positive-definite, i.e. a real-
valued inner product (cf. 2.3.B). Then since ! is also non-degenerate, one checks (exercise!)
that h·, ·i is positive-definite. To conclude: h·, ·i is a complex inner product in the usual sense:
sesquilinear and positive-definite.

We recall that a (complex) Hilbert space is a a complex inner product space, that is complete
in the norm induced by the inner-product. That is: Cauchy sequences, in the norm, converge to
a vector in the space. This completeness does not follow from the above assumptions, unless the
given real vector space V is finite-dimensional. (Thus a complex inner product space is often
called a pre-HIlbert space.) But even if V is infinite-dimensional, and not complete in the norm,
there is a canonical construction of a Hilbert space from it. This is like the canonical construc-
tion, for an arbitrary metric space (X, d), of a complete metric space (X̄, d̄), into which (X, d)
can be isometrically embedded. Namely, the points of X̄ are appropriately defined equivalence
classes of Cauchy sequences in X. For details, cf. e.g. Prugovecki (REF).

2.4 A compatible J is not unique—and encodes some dynamics

There are three remarks to make at this point, about this development from 2.2.A to 2.3.C.
They all concern the non-uniqueness of J , and they give a glimpse of further, more physical,
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developments, including the Unruh e↵ect—glimpsed in 2.4.C below.

2.4.A: On the non-uniqueness of J :— We stressed in 2.2.A that an even-dimensional real
vector space V admits many complex structures. For any basis {e1, e2, ..., e2n} can be divided
into n pairs (in many ways), with J can then defined as the ‘swap with a minus’ on each such
pair, extended by linearity.

But in this Subsection, since 2.3.B, we have assumed that a symplectic form ! is given, and
that J is compatible with it. So does fixing ! and requiring compatibility still leave freedom in
the definition of J? In fact, it does.

Fixing ! defines (by an analogue of the Gram-Schmidt diagonalization of a bilinear form)
bases such that !’s matrix form is that of J in eq. 26 (cf. Section 2.1, and eq. 58 in Section
3.1 below, about symplectic structure). This is best understood in terms of how Hamiltonian
mechanics defines a symplectic form on the phase space “of qs and ps”, i..e. of positions and
momenta. This naturally associates each q one-to-one with a p, and so the basis of 2n vectors
breaks down in to n pairs. We might write the basis as {q1, q2, ..., qn, p1, p2, ...pn}, with each
(qi, pi) forming a pair that J is to “swap with a minus”. (Cf. the discussions above about the
direct-sum way of thinking about complexification and complex structure.) The J thus defined
will be, by construction, compatible with the given !. So does compatibility with this fixed !
also fix, i.e. determine, J?

No. For we must remember that our vector space has no concept of length of vectors: it
has only a concept of area given by the symplectic form (cf. the discussion in Section 3.1). So
for each i = 1, ..., n, and each qi in the basis yielding the matrix form in eq. 26, there is a
positive-real-parameter family of vectors pi, any one of which can be chosen while preserving
!’s form in eq. 26. So with dim(V ) = 2n, there is an entire (IR+)n ‘hyperquadrant’ in IRn of
choices of the n vectors pi. (Note that this freedom in J is not just a choice of sign, as discussed
for complexifications in Section 2.1.C.)

We will see later a physical rationale for this: elegant and helpful, since it concerns the simple
harmonic oscillator (SHO). In one spatial dimension, the SHO has a phase space IR2

3 (q1, p1),
with the system’s possible trajectories (histories) being ellipses. But this copy of IR2 has no
concept of length, but only of area. A choice of J will thus encode facts about the eccentricity of
the ellipses, and thus about the dynamics (the Hamiltonian). (The image J((q1, p1)) of a point
(q1, p1) under the action of J will lie on the same ellipse as (q1, p1).)

The idea that J—and a closely associated map K that “maps from the (complex!) classical
solution space to the quantum Hilbert space”—encode facts about the dynamics will be impor-
tant in the sequel: also for understanding the Unruh e↵ect. Cf. 2.4.C below.

2.4.B: From vector space to manifold:— In Hamiltonian mechanics, the phase space is
in general a manifold, not a vector space. Namely, a symplectic manifold. Usually, this is the
cotangent bundle of the configuration space. But if it is not, Darboux’ theorem secures that
locally it can be written as a cotangent bundle, and so has a canonical decomposition in to qs
and ps, that associates each q one-to-one with a p.

However, in the sequel, we will be mostly concerned with the “happy” case of a phase space
that is a vector space. It may be infinite-dimensional, as for classical fields; or it may be finite-
dimensional, as for n uncoupled SHOs. In either case, a linear combination of solutions is itself a
solution. For classical fields on a spatial manifold, e.g. IR3, we add—or more generally, linearly
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combine—the field configurations and the momenta pointwise. For n uncoupled SHOs, we add
(linearly combine) for each SHO independently. If we are given two solutions for the ith SHO
(with a frequency !i say), labelled by their amplitude and phase (i.e. amplitude at time t = 0),
we just add the two amplitudes and the two phases.

For any symplectic manifold M , we can of course rehearse for the tangent space TpM at
each point p 2 M , and for its dual space T ⇤

pM , the development above from 2.2.A to 2.3.C.
This means that given a symplectic form ! that smoothly varies across a local neighbourhood
U ⇢ M , the bases it defines as in (1) above, i.e. the bases of TpM at each point p 2 U such
that !’s matrix is as in eq. 26 (cf. Section 2.1), also vary smoothly. And so the expression of J
varies smoothly. In short, the local constructions presented above, from 2.2.A to 2.3.C, can be
smoothly meshed with each other at the points in a local neighbourhood U ⇢ M .

But this still leaves open the question of global existence of a smooth J compatible with
the global smooth !. There can be obstructions to global existence. (Wald’s exposition (1994)
assumes there are none.) So when we do the local construction of J at each point p 2 M , as
above, we say there is an almost complex structure. For details of this, cf. e.g. Ana da Silva,
Lectures on Symplectic Geometry.

2.4.C: Complexifying the classical solution space; and then splitting the frequen-
cies in di↵erent ways:— When we study linear systems (Section ??), we will see that a
complex structure J corresponds to a splitting of the frequencies of complex classical solutions
into positive and negative frequencies; and we will later see that having more than one complex
structure J underlies the Unruh e↵ect. The idea will be that in the Unruh e↵ect, there are two
di↵erent notions of time-evolution (two di↵erent Killing fields, two di↵erent Hamiltonians), that
determine di↵erent one particle structures (cf. Section 5), and so di↵erent complex structures
J . The general ideas are as follows; (cf. Wald 1994, (i) p. 24-29, for finite systems; and (ii) pp.
35-43, especially 39-41, for infinite systems, i.e. the Klein-Gordon field).

We first take the complexification of the solution space of the classical linear system. Here, we
identify the solutions with the initial states, thanks to the determinism of the classical equations
of motion. So writing S for the real symplectic vector space of solutions, the complexification is
S

|C (cf. Section 2.1).

We then define a ‘positive frequency’/‘positive energy’ Hilbert space H by its being spanned
by (as the span of) the complex classical solutions that oscillate with purely positive frequency
(NB: also written !!). For the simple harmonic oscillator, this means the complex classical
solutions: q(t) = ↵ exp(�i!t), ↵ a constant in |C. (Think of the momentum information being
in the imaginary part.) For n uncoupled simple harmonic oscillators with frequencies !1, ...,!n,
this means: qj(t) = ↵j exp(�i!jt) with j = 1, ....n. So for the latter case, H has complex
dimension n.

Then the ‘negative frequency’/‘negative energy’ Hilbert space H̄ is the span of the complex
classical solutions that oscillate with purely negative frequency. In Section 2.5, just below, we
will see that H̄ can be taken as the complex conjugate of H, as defined there.

S
|C is then the direct sum of the positive and negative frequency Hilbert spaces: S

|C = H�H̄.
This direct sum structure means that there is a real-linear one-to-one onto “projection map”
K : S!H that extracts the positive frequency part of any real classical solution. This map K
“maps from the (complex!) classical solution space to the quantum Hilbert space”. It is the
(main part of the definition of) one particle structure, which wil be central in the sequel, both
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for quantization in general (obviously!) and for e.g. the Unruh e↵ect. Cf. Section 5.

The Unruh e↵ect then arises in a scenario (defined on Minkowski spacetime!) in which two
di↵erent notions of time-evolution (two di↵erent Killing fields, two di↵erent Hamiltonians) yield:
two di↵erent frequency-splittings in (two di↵erent direct sum decompositions of) S

|C, and so two
di↵erent Js; and so two di↵erent maps K; and thus two di↵erent vacua (ground states), and
two di↵erent Fock spaces built from these vacua.

Besides: the failure of the Stone von Neumann theorem for infinite systems, means that here,
‘di↵erent’ means ‘unitarily inequivalent’. That is: the two di↵erent Fock spaces built from the
two vacua give unitarily inequivalent representations of the Weyl algebra.

Incidentally, Wald points out (p. 29 paragraph 2) that also for finite systems, e.g. n uncou-
pled time-independent simple harmonic oscillators, one can choose a di↵erent frequency-splitting
than the usual one, and so define a di↵erent vacuum (ground) state, which is usually called a
squeezed vacuum. But here, there is unitary equivalence of representations.

There is a general philosophico-mathematical theme hereabouts: singular limits. That is:
for every finite n, we have unitary equivalence; but for n = 1, there is unitary inequivalence.
We will see exactly the same for spin-chains. There, the canonical anti-commutation relations
(CARs)—rather than CCRs—have for finite spin chains a unique representation upto unitary
equivalence (the Jordan-Wigner theorem). But for infinite spin chains there are countless uni-
tarily inequivalent representations.

2.5 Complex conjugation of spaces

2.5.A: Basics:— The complex conjugate of complex vector space W is the complex vector space
W that has the same elements and additive group structure asW , but whose scalar multiplication
involves conjugation. That is: we define the scalar multiplication ⇤ in W in terms of the scalar
multiplication · in W by:

↵ ⇤ w := ↵ · w , for all ↵ 2 |C, w 2 W (44)

Various properties and results ensue!

(1) W = W .

(2) W and W have the same complex dimension. Note that the identity map id : W!W
is an antilinear map, since

id(↵ · w) = ↵ · w ⌘ ↵ ⇤ w = ↵ ⇤ id(w) (45)

and id maps any basis of W into a basis of W . So id is an anti-isomorphism from W to W . It is
a “canonical” one in the sense that its definition needs no choice of basis. That is: it is defined
in terms of the underlying identity of vectors.

But of course, there are countless anti-isomorphisms defined in terms of such bases (just
like there are countless isomorphisms!). For given any two bases, {ei} and {fi}, of W and W
respectively, the map ⇥ : ei!fi can be extended by antilinearity to be an antilinear map, an
anti-isomorphism, from W to W .
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